1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/CodeGenOptions.h" 24 #include "clang/Basic/DiagnosticFrontend.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> // std::sort 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 // Helper for coercing an aggregate argument or return value into an integer 44 // array of the same size (including padding) and alignment. This alternate 45 // coercion happens only for the RenderScript ABI and can be removed after 46 // runtimes that rely on it are no longer supported. 47 // 48 // RenderScript assumes that the size of the argument / return value in the IR 49 // is the same as the size of the corresponding qualified type. This helper 50 // coerces the aggregate type into an array of the same size (including 51 // padding). This coercion is used in lieu of expansion of struct members or 52 // other canonical coercions that return a coerced-type of larger size. 53 // 54 // Ty - The argument / return value type 55 // Context - The associated ASTContext 56 // LLVMContext - The associated LLVMContext 57 static ABIArgInfo coerceToIntArray(QualType Ty, 58 ASTContext &Context, 59 llvm::LLVMContext &LLVMContext) { 60 // Alignment and Size are measured in bits. 61 const uint64_t Size = Context.getTypeSize(Ty); 62 const uint64_t Alignment = Context.getTypeAlign(Ty); 63 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 64 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 65 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 66 } 67 68 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 69 llvm::Value *Array, 70 llvm::Value *Value, 71 unsigned FirstIndex, 72 unsigned LastIndex) { 73 // Alternatively, we could emit this as a loop in the source. 74 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 75 llvm::Value *Cell = 76 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 77 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 78 } 79 } 80 81 static bool isAggregateTypeForABI(QualType T) { 82 return !CodeGenFunction::hasScalarEvaluationKind(T) || 83 T->isMemberFunctionPointerType(); 84 } 85 86 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 87 bool Realign, 88 llvm::Type *Padding) const { 89 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 90 Realign, Padding); 91 } 92 93 ABIArgInfo 94 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 95 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 96 /*ByVal*/ false, Realign); 97 } 98 99 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 100 QualType Ty) const { 101 return Address::invalid(); 102 } 103 104 static llvm::Type *getVAListElementType(CodeGenFunction &CGF) { 105 return CGF.ConvertTypeForMem( 106 CGF.getContext().getBuiltinVaListType()->getPointeeType()); 107 } 108 109 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 110 if (Ty->isPromotableIntegerType()) 111 return true; 112 113 if (const auto *EIT = Ty->getAs<BitIntType>()) 114 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 115 return true; 116 117 return false; 118 } 119 120 ABIInfo::~ABIInfo() {} 121 122 /// Does the given lowering require more than the given number of 123 /// registers when expanded? 124 /// 125 /// This is intended to be the basis of a reasonable basic implementation 126 /// of should{Pass,Return}IndirectlyForSwift. 127 /// 128 /// For most targets, a limit of four total registers is reasonable; this 129 /// limits the amount of code required in order to move around the value 130 /// in case it wasn't produced immediately prior to the call by the caller 131 /// (or wasn't produced in exactly the right registers) or isn't used 132 /// immediately within the callee. But some targets may need to further 133 /// limit the register count due to an inability to support that many 134 /// return registers. 135 static bool occupiesMoreThan(CodeGenTypes &cgt, 136 ArrayRef<llvm::Type*> scalarTypes, 137 unsigned maxAllRegisters) { 138 unsigned intCount = 0, fpCount = 0; 139 for (llvm::Type *type : scalarTypes) { 140 if (type->isPointerTy()) { 141 intCount++; 142 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 143 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 144 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 145 } else { 146 assert(type->isVectorTy() || type->isFloatingPointTy()); 147 fpCount++; 148 } 149 } 150 151 return (intCount + fpCount > maxAllRegisters); 152 } 153 154 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 155 llvm::Type *eltTy, 156 unsigned numElts) const { 157 // The default implementation of this assumes that the target guarantees 158 // 128-bit SIMD support but nothing more. 159 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 160 } 161 162 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 163 CGCXXABI &CXXABI) { 164 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 165 if (!RD) { 166 if (!RT->getDecl()->canPassInRegisters()) 167 return CGCXXABI::RAA_Indirect; 168 return CGCXXABI::RAA_Default; 169 } 170 return CXXABI.getRecordArgABI(RD); 171 } 172 173 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 174 CGCXXABI &CXXABI) { 175 const RecordType *RT = T->getAs<RecordType>(); 176 if (!RT) 177 return CGCXXABI::RAA_Default; 178 return getRecordArgABI(RT, CXXABI); 179 } 180 181 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 182 const ABIInfo &Info) { 183 QualType Ty = FI.getReturnType(); 184 185 if (const auto *RT = Ty->getAs<RecordType>()) 186 if (!isa<CXXRecordDecl>(RT->getDecl()) && 187 !RT->getDecl()->canPassInRegisters()) { 188 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 189 return true; 190 } 191 192 return CXXABI.classifyReturnType(FI); 193 } 194 195 /// Pass transparent unions as if they were the type of the first element. Sema 196 /// should ensure that all elements of the union have the same "machine type". 197 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 198 if (const RecordType *UT = Ty->getAsUnionType()) { 199 const RecordDecl *UD = UT->getDecl(); 200 if (UD->hasAttr<TransparentUnionAttr>()) { 201 assert(!UD->field_empty() && "sema created an empty transparent union"); 202 return UD->field_begin()->getType(); 203 } 204 } 205 return Ty; 206 } 207 208 CGCXXABI &ABIInfo::getCXXABI() const { 209 return CGT.getCXXABI(); 210 } 211 212 ASTContext &ABIInfo::getContext() const { 213 return CGT.getContext(); 214 } 215 216 llvm::LLVMContext &ABIInfo::getVMContext() const { 217 return CGT.getLLVMContext(); 218 } 219 220 const llvm::DataLayout &ABIInfo::getDataLayout() const { 221 return CGT.getDataLayout(); 222 } 223 224 const TargetInfo &ABIInfo::getTarget() const { 225 return CGT.getTarget(); 226 } 227 228 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 229 return CGT.getCodeGenOpts(); 230 } 231 232 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 233 234 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 235 return false; 236 } 237 238 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 239 uint64_t Members) const { 240 return false; 241 } 242 243 bool ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const { 244 // For compatibility with GCC, ignore empty bitfields in C++ mode. 245 return getContext().getLangOpts().CPlusPlus; 246 } 247 248 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 249 raw_ostream &OS = llvm::errs(); 250 OS << "(ABIArgInfo Kind="; 251 switch (TheKind) { 252 case Direct: 253 OS << "Direct Type="; 254 if (llvm::Type *Ty = getCoerceToType()) 255 Ty->print(OS); 256 else 257 OS << "null"; 258 break; 259 case Extend: 260 OS << "Extend"; 261 break; 262 case Ignore: 263 OS << "Ignore"; 264 break; 265 case InAlloca: 266 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 267 break; 268 case Indirect: 269 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 270 << " ByVal=" << getIndirectByVal() 271 << " Realign=" << getIndirectRealign(); 272 break; 273 case IndirectAliased: 274 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 275 << " AadrSpace=" << getIndirectAddrSpace() 276 << " Realign=" << getIndirectRealign(); 277 break; 278 case Expand: 279 OS << "Expand"; 280 break; 281 case CoerceAndExpand: 282 OS << "CoerceAndExpand Type="; 283 getCoerceAndExpandType()->print(OS); 284 break; 285 } 286 OS << ")\n"; 287 } 288 289 // Dynamically round a pointer up to a multiple of the given alignment. 290 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 291 llvm::Value *Ptr, 292 CharUnits Align) { 293 llvm::Value *PtrAsInt = Ptr; 294 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 295 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 296 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 297 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 298 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 299 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 300 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 301 Ptr->getType(), 302 Ptr->getName() + ".aligned"); 303 return PtrAsInt; 304 } 305 306 /// Emit va_arg for a platform using the common void* representation, 307 /// where arguments are simply emitted in an array of slots on the stack. 308 /// 309 /// This version implements the core direct-value passing rules. 310 /// 311 /// \param SlotSize - The size and alignment of a stack slot. 312 /// Each argument will be allocated to a multiple of this number of 313 /// slots, and all the slots will be aligned to this value. 314 /// \param AllowHigherAlign - The slot alignment is not a cap; 315 /// an argument type with an alignment greater than the slot size 316 /// will be emitted on a higher-alignment address, potentially 317 /// leaving one or more empty slots behind as padding. If this 318 /// is false, the returned address might be less-aligned than 319 /// DirectAlign. 320 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 321 Address VAListAddr, 322 llvm::Type *DirectTy, 323 CharUnits DirectSize, 324 CharUnits DirectAlign, 325 CharUnits SlotSize, 326 bool AllowHigherAlign) { 327 // Cast the element type to i8* if necessary. Some platforms define 328 // va_list as a struct containing an i8* instead of just an i8*. 329 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 330 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 331 332 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 333 334 // If the CC aligns values higher than the slot size, do so if needed. 335 Address Addr = Address::invalid(); 336 if (AllowHigherAlign && DirectAlign > SlotSize) { 337 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 338 CGF.Int8Ty, DirectAlign); 339 } else { 340 Addr = Address(Ptr, CGF.Int8Ty, SlotSize); 341 } 342 343 // Advance the pointer past the argument, then store that back. 344 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 345 Address NextPtr = 346 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 347 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 348 349 // If the argument is smaller than a slot, and this is a big-endian 350 // target, the argument will be right-adjusted in its slot. 351 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 352 !DirectTy->isStructTy()) { 353 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 354 } 355 356 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 357 return Addr; 358 } 359 360 /// Emit va_arg for a platform using the common void* representation, 361 /// where arguments are simply emitted in an array of slots on the stack. 362 /// 363 /// \param IsIndirect - Values of this type are passed indirectly. 364 /// \param ValueInfo - The size and alignment of this type, generally 365 /// computed with getContext().getTypeInfoInChars(ValueTy). 366 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 367 /// Each argument will be allocated to a multiple of this number of 368 /// slots, and all the slots will be aligned to this value. 369 /// \param AllowHigherAlign - The slot alignment is not a cap; 370 /// an argument type with an alignment greater than the slot size 371 /// will be emitted on a higher-alignment address, potentially 372 /// leaving one or more empty slots behind as padding. 373 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 374 QualType ValueTy, bool IsIndirect, 375 TypeInfoChars ValueInfo, 376 CharUnits SlotSizeAndAlign, 377 bool AllowHigherAlign) { 378 // The size and alignment of the value that was passed directly. 379 CharUnits DirectSize, DirectAlign; 380 if (IsIndirect) { 381 DirectSize = CGF.getPointerSize(); 382 DirectAlign = CGF.getPointerAlign(); 383 } else { 384 DirectSize = ValueInfo.Width; 385 DirectAlign = ValueInfo.Align; 386 } 387 388 // Cast the address we've calculated to the right type. 389 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy), *ElementTy = DirectTy; 390 if (IsIndirect) 391 DirectTy = DirectTy->getPointerTo(0); 392 393 Address Addr = 394 emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, DirectAlign, 395 SlotSizeAndAlign, AllowHigherAlign); 396 397 if (IsIndirect) { 398 Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align); 399 } 400 401 return Addr; 402 } 403 404 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 405 QualType Ty, CharUnits SlotSize, 406 CharUnits EltSize, const ComplexType *CTy) { 407 Address Addr = 408 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 409 SlotSize, SlotSize, /*AllowHigher*/ true); 410 411 Address RealAddr = Addr; 412 Address ImagAddr = RealAddr; 413 if (CGF.CGM.getDataLayout().isBigEndian()) { 414 RealAddr = 415 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 416 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 417 2 * SlotSize - EltSize); 418 } else { 419 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 420 } 421 422 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 423 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 424 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 425 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 426 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 427 428 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 429 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 430 /*init*/ true); 431 return Temp; 432 } 433 434 static Address emitMergePHI(CodeGenFunction &CGF, 435 Address Addr1, llvm::BasicBlock *Block1, 436 Address Addr2, llvm::BasicBlock *Block2, 437 const llvm::Twine &Name = "") { 438 assert(Addr1.getType() == Addr2.getType()); 439 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 440 PHI->addIncoming(Addr1.getPointer(), Block1); 441 PHI->addIncoming(Addr2.getPointer(), Block2); 442 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 443 return Address(PHI, Addr1.getElementType(), Align); 444 } 445 446 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 447 448 // If someone can figure out a general rule for this, that would be great. 449 // It's probably just doomed to be platform-dependent, though. 450 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 451 // Verified for: 452 // x86-64 FreeBSD, Linux, Darwin 453 // x86-32 FreeBSD, Linux, Darwin 454 // PowerPC Linux, Darwin 455 // ARM Darwin (*not* EABI) 456 // AArch64 Linux 457 return 32; 458 } 459 460 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 461 const FunctionNoProtoType *fnType) const { 462 // The following conventions are known to require this to be false: 463 // x86_stdcall 464 // MIPS 465 // For everything else, we just prefer false unless we opt out. 466 return false; 467 } 468 469 void 470 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 471 llvm::SmallString<24> &Opt) const { 472 // This assumes the user is passing a library name like "rt" instead of a 473 // filename like "librt.a/so", and that they don't care whether it's static or 474 // dynamic. 475 Opt = "-l"; 476 Opt += Lib; 477 } 478 479 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 480 // OpenCL kernels are called via an explicit runtime API with arguments 481 // set with clSetKernelArg(), not as normal sub-functions. 482 // Return SPIR_KERNEL by default as the kernel calling convention to 483 // ensure the fingerprint is fixed such way that each OpenCL argument 484 // gets one matching argument in the produced kernel function argument 485 // list to enable feasible implementation of clSetKernelArg() with 486 // aggregates etc. In case we would use the default C calling conv here, 487 // clSetKernelArg() might break depending on the target-specific 488 // conventions; different targets might split structs passed as values 489 // to multiple function arguments etc. 490 return llvm::CallingConv::SPIR_KERNEL; 491 } 492 493 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 494 llvm::PointerType *T, QualType QT) const { 495 return llvm::ConstantPointerNull::get(T); 496 } 497 498 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 499 const VarDecl *D) const { 500 assert(!CGM.getLangOpts().OpenCL && 501 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 502 "Address space agnostic languages only"); 503 return D ? D->getType().getAddressSpace() : LangAS::Default; 504 } 505 506 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 507 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 508 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 509 // Since target may map different address spaces in AST to the same address 510 // space, an address space conversion may end up as a bitcast. 511 if (auto *C = dyn_cast<llvm::Constant>(Src)) 512 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 513 // Try to preserve the source's name to make IR more readable. 514 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 515 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 516 } 517 518 llvm::Constant * 519 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 520 LangAS SrcAddr, LangAS DestAddr, 521 llvm::Type *DestTy) const { 522 // Since target may map different address spaces in AST to the same address 523 // space, an address space conversion may end up as a bitcast. 524 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 525 } 526 527 llvm::SyncScope::ID 528 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 529 SyncScope Scope, 530 llvm::AtomicOrdering Ordering, 531 llvm::LLVMContext &Ctx) const { 532 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 533 } 534 535 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 536 537 /// isEmptyField - Return true iff a the field is "empty", that is it 538 /// is an unnamed bit-field or an (array of) empty record(s). 539 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 540 bool AllowArrays) { 541 if (FD->isUnnamedBitfield()) 542 return true; 543 544 QualType FT = FD->getType(); 545 546 // Constant arrays of empty records count as empty, strip them off. 547 // Constant arrays of zero length always count as empty. 548 bool WasArray = false; 549 if (AllowArrays) 550 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 551 if (AT->getSize() == 0) 552 return true; 553 FT = AT->getElementType(); 554 // The [[no_unique_address]] special case below does not apply to 555 // arrays of C++ empty records, so we need to remember this fact. 556 WasArray = true; 557 } 558 559 const RecordType *RT = FT->getAs<RecordType>(); 560 if (!RT) 561 return false; 562 563 // C++ record fields are never empty, at least in the Itanium ABI. 564 // 565 // FIXME: We should use a predicate for whether this behavior is true in the 566 // current ABI. 567 // 568 // The exception to the above rule are fields marked with the 569 // [[no_unique_address]] attribute (since C++20). Those do count as empty 570 // according to the Itanium ABI. The exception applies only to records, 571 // not arrays of records, so we must also check whether we stripped off an 572 // array type above. 573 if (isa<CXXRecordDecl>(RT->getDecl()) && 574 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 575 return false; 576 577 return isEmptyRecord(Context, FT, AllowArrays); 578 } 579 580 /// isEmptyRecord - Return true iff a structure contains only empty 581 /// fields. Note that a structure with a flexible array member is not 582 /// considered empty. 583 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 584 const RecordType *RT = T->getAs<RecordType>(); 585 if (!RT) 586 return false; 587 const RecordDecl *RD = RT->getDecl(); 588 if (RD->hasFlexibleArrayMember()) 589 return false; 590 591 // If this is a C++ record, check the bases first. 592 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 593 for (const auto &I : CXXRD->bases()) 594 if (!isEmptyRecord(Context, I.getType(), true)) 595 return false; 596 597 for (const auto *I : RD->fields()) 598 if (!isEmptyField(Context, I, AllowArrays)) 599 return false; 600 return true; 601 } 602 603 /// isSingleElementStruct - Determine if a structure is a "single 604 /// element struct", i.e. it has exactly one non-empty field or 605 /// exactly one field which is itself a single element 606 /// struct. Structures with flexible array members are never 607 /// considered single element structs. 608 /// 609 /// \return The field declaration for the single non-empty field, if 610 /// it exists. 611 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 612 const RecordType *RT = T->getAs<RecordType>(); 613 if (!RT) 614 return nullptr; 615 616 const RecordDecl *RD = RT->getDecl(); 617 if (RD->hasFlexibleArrayMember()) 618 return nullptr; 619 620 const Type *Found = nullptr; 621 622 // If this is a C++ record, check the bases first. 623 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 624 for (const auto &I : CXXRD->bases()) { 625 // Ignore empty records. 626 if (isEmptyRecord(Context, I.getType(), true)) 627 continue; 628 629 // If we already found an element then this isn't a single-element struct. 630 if (Found) 631 return nullptr; 632 633 // If this is non-empty and not a single element struct, the composite 634 // cannot be a single element struct. 635 Found = isSingleElementStruct(I.getType(), Context); 636 if (!Found) 637 return nullptr; 638 } 639 } 640 641 // Check for single element. 642 for (const auto *FD : RD->fields()) { 643 QualType FT = FD->getType(); 644 645 // Ignore empty fields. 646 if (isEmptyField(Context, FD, true)) 647 continue; 648 649 // If we already found an element then this isn't a single-element 650 // struct. 651 if (Found) 652 return nullptr; 653 654 // Treat single element arrays as the element. 655 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 656 if (AT->getSize().getZExtValue() != 1) 657 break; 658 FT = AT->getElementType(); 659 } 660 661 if (!isAggregateTypeForABI(FT)) { 662 Found = FT.getTypePtr(); 663 } else { 664 Found = isSingleElementStruct(FT, Context); 665 if (!Found) 666 return nullptr; 667 } 668 } 669 670 // We don't consider a struct a single-element struct if it has 671 // padding beyond the element type. 672 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 673 return nullptr; 674 675 return Found; 676 } 677 678 namespace { 679 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 680 const ABIArgInfo &AI) { 681 // This default implementation defers to the llvm backend's va_arg 682 // instruction. It can handle only passing arguments directly 683 // (typically only handled in the backend for primitive types), or 684 // aggregates passed indirectly by pointer (NOTE: if the "byval" 685 // flag has ABI impact in the callee, this implementation cannot 686 // work.) 687 688 // Only a few cases are covered here at the moment -- those needed 689 // by the default abi. 690 llvm::Value *Val; 691 692 if (AI.isIndirect()) { 693 assert(!AI.getPaddingType() && 694 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 695 assert( 696 !AI.getIndirectRealign() && 697 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 698 699 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 700 CharUnits TyAlignForABI = TyInfo.Align; 701 702 llvm::Type *ElementTy = CGF.ConvertTypeForMem(Ty); 703 llvm::Type *BaseTy = llvm::PointerType::getUnqual(ElementTy); 704 llvm::Value *Addr = 705 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 706 return Address(Addr, ElementTy, TyAlignForABI); 707 } else { 708 assert((AI.isDirect() || AI.isExtend()) && 709 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 710 711 assert(!AI.getInReg() && 712 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 713 assert(!AI.getPaddingType() && 714 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 715 assert(!AI.getDirectOffset() && 716 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 717 assert(!AI.getCoerceToType() && 718 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 719 720 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 721 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), 722 CGF.ConvertTypeForMem(Ty)); 723 CGF.Builder.CreateStore(Val, Temp); 724 return Temp; 725 } 726 } 727 728 /// DefaultABIInfo - The default implementation for ABI specific 729 /// details. This implementation provides information which results in 730 /// self-consistent and sensible LLVM IR generation, but does not 731 /// conform to any particular ABI. 732 class DefaultABIInfo : public ABIInfo { 733 public: 734 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 735 736 ABIArgInfo classifyReturnType(QualType RetTy) const; 737 ABIArgInfo classifyArgumentType(QualType RetTy) const; 738 739 void computeInfo(CGFunctionInfo &FI) const override { 740 if (!getCXXABI().classifyReturnType(FI)) 741 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 742 for (auto &I : FI.arguments()) 743 I.info = classifyArgumentType(I.type); 744 } 745 746 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 747 QualType Ty) const override { 748 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 749 } 750 }; 751 752 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 753 public: 754 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 755 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 756 }; 757 758 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 759 Ty = useFirstFieldIfTransparentUnion(Ty); 760 761 if (isAggregateTypeForABI(Ty)) { 762 // Records with non-trivial destructors/copy-constructors should not be 763 // passed by value. 764 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 765 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 766 767 return getNaturalAlignIndirect(Ty); 768 } 769 770 // Treat an enum type as its underlying type. 771 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 772 Ty = EnumTy->getDecl()->getIntegerType(); 773 774 ASTContext &Context = getContext(); 775 if (const auto *EIT = Ty->getAs<BitIntType>()) 776 if (EIT->getNumBits() > 777 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 778 ? Context.Int128Ty 779 : Context.LongLongTy)) 780 return getNaturalAlignIndirect(Ty); 781 782 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 783 : ABIArgInfo::getDirect()); 784 } 785 786 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 787 if (RetTy->isVoidType()) 788 return ABIArgInfo::getIgnore(); 789 790 if (isAggregateTypeForABI(RetTy)) 791 return getNaturalAlignIndirect(RetTy); 792 793 // Treat an enum type as its underlying type. 794 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 795 RetTy = EnumTy->getDecl()->getIntegerType(); 796 797 if (const auto *EIT = RetTy->getAs<BitIntType>()) 798 if (EIT->getNumBits() > 799 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 800 ? getContext().Int128Ty 801 : getContext().LongLongTy)) 802 return getNaturalAlignIndirect(RetTy); 803 804 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 805 : ABIArgInfo::getDirect()); 806 } 807 808 //===----------------------------------------------------------------------===// 809 // WebAssembly ABI Implementation 810 // 811 // This is a very simple ABI that relies a lot on DefaultABIInfo. 812 //===----------------------------------------------------------------------===// 813 814 class WebAssemblyABIInfo final : public SwiftABIInfo { 815 public: 816 enum ABIKind { 817 MVP = 0, 818 ExperimentalMV = 1, 819 }; 820 821 private: 822 DefaultABIInfo defaultInfo; 823 ABIKind Kind; 824 825 public: 826 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 827 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 828 829 private: 830 ABIArgInfo classifyReturnType(QualType RetTy) const; 831 ABIArgInfo classifyArgumentType(QualType Ty) const; 832 833 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 834 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 835 // overload them. 836 void computeInfo(CGFunctionInfo &FI) const override { 837 if (!getCXXABI().classifyReturnType(FI)) 838 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 839 for (auto &Arg : FI.arguments()) 840 Arg.info = classifyArgumentType(Arg.type); 841 } 842 843 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 844 QualType Ty) const override; 845 846 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 847 bool asReturnValue) const override { 848 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 849 } 850 851 bool isSwiftErrorInRegister() const override { 852 return false; 853 } 854 }; 855 856 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 857 public: 858 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 859 WebAssemblyABIInfo::ABIKind K) 860 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 861 862 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 863 CodeGen::CodeGenModule &CGM) const override { 864 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 865 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 866 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 867 llvm::Function *Fn = cast<llvm::Function>(GV); 868 llvm::AttrBuilder B(GV->getContext()); 869 B.addAttribute("wasm-import-module", Attr->getImportModule()); 870 Fn->addFnAttrs(B); 871 } 872 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 873 llvm::Function *Fn = cast<llvm::Function>(GV); 874 llvm::AttrBuilder B(GV->getContext()); 875 B.addAttribute("wasm-import-name", Attr->getImportName()); 876 Fn->addFnAttrs(B); 877 } 878 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 879 llvm::Function *Fn = cast<llvm::Function>(GV); 880 llvm::AttrBuilder B(GV->getContext()); 881 B.addAttribute("wasm-export-name", Attr->getExportName()); 882 Fn->addFnAttrs(B); 883 } 884 } 885 886 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 887 llvm::Function *Fn = cast<llvm::Function>(GV); 888 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 889 Fn->addFnAttr("no-prototype"); 890 } 891 } 892 }; 893 894 /// Classify argument of given type \p Ty. 895 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 896 Ty = useFirstFieldIfTransparentUnion(Ty); 897 898 if (isAggregateTypeForABI(Ty)) { 899 // Records with non-trivial destructors/copy-constructors should not be 900 // passed by value. 901 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 902 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 903 // Ignore empty structs/unions. 904 if (isEmptyRecord(getContext(), Ty, true)) 905 return ABIArgInfo::getIgnore(); 906 // Lower single-element structs to just pass a regular value. TODO: We 907 // could do reasonable-size multiple-element structs too, using getExpand(), 908 // though watch out for things like bitfields. 909 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 910 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 911 // For the experimental multivalue ABI, fully expand all other aggregates 912 if (Kind == ABIKind::ExperimentalMV) { 913 const RecordType *RT = Ty->getAs<RecordType>(); 914 assert(RT); 915 bool HasBitField = false; 916 for (auto *Field : RT->getDecl()->fields()) { 917 if (Field->isBitField()) { 918 HasBitField = true; 919 break; 920 } 921 } 922 if (!HasBitField) 923 return ABIArgInfo::getExpand(); 924 } 925 } 926 927 // Otherwise just do the default thing. 928 return defaultInfo.classifyArgumentType(Ty); 929 } 930 931 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 932 if (isAggregateTypeForABI(RetTy)) { 933 // Records with non-trivial destructors/copy-constructors should not be 934 // returned by value. 935 if (!getRecordArgABI(RetTy, getCXXABI())) { 936 // Ignore empty structs/unions. 937 if (isEmptyRecord(getContext(), RetTy, true)) 938 return ABIArgInfo::getIgnore(); 939 // Lower single-element structs to just return a regular value. TODO: We 940 // could do reasonable-size multiple-element structs too, using 941 // ABIArgInfo::getDirect(). 942 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 943 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 944 // For the experimental multivalue ABI, return all other aggregates 945 if (Kind == ABIKind::ExperimentalMV) 946 return ABIArgInfo::getDirect(); 947 } 948 } 949 950 // Otherwise just do the default thing. 951 return defaultInfo.classifyReturnType(RetTy); 952 } 953 954 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 955 QualType Ty) const { 956 bool IsIndirect = isAggregateTypeForABI(Ty) && 957 !isEmptyRecord(getContext(), Ty, true) && 958 !isSingleElementStruct(Ty, getContext()); 959 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 960 getContext().getTypeInfoInChars(Ty), 961 CharUnits::fromQuantity(4), 962 /*AllowHigherAlign=*/true); 963 } 964 965 //===----------------------------------------------------------------------===// 966 // le32/PNaCl bitcode ABI Implementation 967 // 968 // This is a simplified version of the x86_32 ABI. Arguments and return values 969 // are always passed on the stack. 970 //===----------------------------------------------------------------------===// 971 972 class PNaClABIInfo : public ABIInfo { 973 public: 974 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 975 976 ABIArgInfo classifyReturnType(QualType RetTy) const; 977 ABIArgInfo classifyArgumentType(QualType RetTy) const; 978 979 void computeInfo(CGFunctionInfo &FI) const override; 980 Address EmitVAArg(CodeGenFunction &CGF, 981 Address VAListAddr, QualType Ty) const override; 982 }; 983 984 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 985 public: 986 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 987 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 988 }; 989 990 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 991 if (!getCXXABI().classifyReturnType(FI)) 992 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 993 994 for (auto &I : FI.arguments()) 995 I.info = classifyArgumentType(I.type); 996 } 997 998 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 999 QualType Ty) const { 1000 // The PNaCL ABI is a bit odd, in that varargs don't use normal 1001 // function classification. Structs get passed directly for varargs 1002 // functions, through a rewriting transform in 1003 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 1004 // this target to actually support a va_arg instructions with an 1005 // aggregate type, unlike other targets. 1006 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 1007 } 1008 1009 /// Classify argument of given type \p Ty. 1010 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1011 if (isAggregateTypeForABI(Ty)) { 1012 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1013 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1014 return getNaturalAlignIndirect(Ty); 1015 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1016 // Treat an enum type as its underlying type. 1017 Ty = EnumTy->getDecl()->getIntegerType(); 1018 } else if (Ty->isFloatingType()) { 1019 // Floating-point types don't go inreg. 1020 return ABIArgInfo::getDirect(); 1021 } else if (const auto *EIT = Ty->getAs<BitIntType>()) { 1022 // Treat bit-precise integers as integers if <= 64, otherwise pass 1023 // indirectly. 1024 if (EIT->getNumBits() > 64) 1025 return getNaturalAlignIndirect(Ty); 1026 return ABIArgInfo::getDirect(); 1027 } 1028 1029 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1030 : ABIArgInfo::getDirect()); 1031 } 1032 1033 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1034 if (RetTy->isVoidType()) 1035 return ABIArgInfo::getIgnore(); 1036 1037 // In the PNaCl ABI we always return records/structures on the stack. 1038 if (isAggregateTypeForABI(RetTy)) 1039 return getNaturalAlignIndirect(RetTy); 1040 1041 // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly. 1042 if (const auto *EIT = RetTy->getAs<BitIntType>()) { 1043 if (EIT->getNumBits() > 64) 1044 return getNaturalAlignIndirect(RetTy); 1045 return ABIArgInfo::getDirect(); 1046 } 1047 1048 // Treat an enum type as its underlying type. 1049 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1050 RetTy = EnumTy->getDecl()->getIntegerType(); 1051 1052 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1053 : ABIArgInfo::getDirect()); 1054 } 1055 1056 /// IsX86_MMXType - Return true if this is an MMX type. 1057 bool IsX86_MMXType(llvm::Type *IRType) { 1058 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1059 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1060 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1061 IRType->getScalarSizeInBits() != 64; 1062 } 1063 1064 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1065 StringRef Constraint, 1066 llvm::Type* Ty) { 1067 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1068 .Cases("y", "&y", "^Ym", true) 1069 .Default(false); 1070 if (IsMMXCons && Ty->isVectorTy()) { 1071 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1072 64) { 1073 // Invalid MMX constraint 1074 return nullptr; 1075 } 1076 1077 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1078 } 1079 1080 // No operation needed 1081 return Ty; 1082 } 1083 1084 /// Returns true if this type can be passed in SSE registers with the 1085 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1086 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1087 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1088 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1089 if (BT->getKind() == BuiltinType::LongDouble) { 1090 if (&Context.getTargetInfo().getLongDoubleFormat() == 1091 &llvm::APFloat::x87DoubleExtended()) 1092 return false; 1093 } 1094 return true; 1095 } 1096 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1097 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1098 // registers specially. 1099 unsigned VecSize = Context.getTypeSize(VT); 1100 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1101 return true; 1102 } 1103 return false; 1104 } 1105 1106 /// Returns true if this aggregate is small enough to be passed in SSE registers 1107 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1108 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1109 return NumMembers <= 4; 1110 } 1111 1112 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1113 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1114 auto AI = ABIArgInfo::getDirect(T); 1115 AI.setInReg(true); 1116 AI.setCanBeFlattened(false); 1117 return AI; 1118 } 1119 1120 //===----------------------------------------------------------------------===// 1121 // X86-32 ABI Implementation 1122 //===----------------------------------------------------------------------===// 1123 1124 /// Similar to llvm::CCState, but for Clang. 1125 struct CCState { 1126 CCState(CGFunctionInfo &FI) 1127 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1128 1129 llvm::SmallBitVector IsPreassigned; 1130 unsigned CC = CallingConv::CC_C; 1131 unsigned FreeRegs = 0; 1132 unsigned FreeSSERegs = 0; 1133 }; 1134 1135 /// X86_32ABIInfo - The X86-32 ABI information. 1136 class X86_32ABIInfo : public SwiftABIInfo { 1137 enum Class { 1138 Integer, 1139 Float 1140 }; 1141 1142 static const unsigned MinABIStackAlignInBytes = 4; 1143 1144 bool IsDarwinVectorABI; 1145 bool IsRetSmallStructInRegABI; 1146 bool IsWin32StructABI; 1147 bool IsSoftFloatABI; 1148 bool IsMCUABI; 1149 bool IsLinuxABI; 1150 unsigned DefaultNumRegisterParameters; 1151 1152 static bool isRegisterSize(unsigned Size) { 1153 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1154 } 1155 1156 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1157 // FIXME: Assumes vectorcall is in use. 1158 return isX86VectorTypeForVectorCall(getContext(), Ty); 1159 } 1160 1161 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1162 uint64_t NumMembers) const override { 1163 // FIXME: Assumes vectorcall is in use. 1164 return isX86VectorCallAggregateSmallEnough(NumMembers); 1165 } 1166 1167 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1168 1169 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1170 /// such that the argument will be passed in memory. 1171 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1172 1173 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1174 1175 /// Return the alignment to use for the given type on the stack. 1176 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1177 1178 Class classify(QualType Ty) const; 1179 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1180 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1181 1182 /// Updates the number of available free registers, returns 1183 /// true if any registers were allocated. 1184 bool updateFreeRegs(QualType Ty, CCState &State) const; 1185 1186 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1187 bool &NeedsPadding) const; 1188 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1189 1190 bool canExpandIndirectArgument(QualType Ty) const; 1191 1192 /// Rewrite the function info so that all memory arguments use 1193 /// inalloca. 1194 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1195 1196 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1197 CharUnits &StackOffset, ABIArgInfo &Info, 1198 QualType Type) const; 1199 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1200 1201 public: 1202 1203 void computeInfo(CGFunctionInfo &FI) const override; 1204 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1205 QualType Ty) const override; 1206 1207 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1208 bool RetSmallStructInRegABI, bool Win32StructABI, 1209 unsigned NumRegisterParameters, bool SoftFloatABI) 1210 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1211 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1212 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1213 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1214 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1215 CGT.getTarget().getTriple().isOSCygMing()), 1216 DefaultNumRegisterParameters(NumRegisterParameters) {} 1217 1218 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1219 bool asReturnValue) const override { 1220 // LLVM's x86-32 lowering currently only assigns up to three 1221 // integer registers and three fp registers. Oddly, it'll use up to 1222 // four vector registers for vectors, but those can overlap with the 1223 // scalar registers. 1224 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1225 } 1226 1227 bool isSwiftErrorInRegister() const override { 1228 // x86-32 lowering does not support passing swifterror in a register. 1229 return false; 1230 } 1231 }; 1232 1233 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1234 public: 1235 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1236 bool RetSmallStructInRegABI, bool Win32StructABI, 1237 unsigned NumRegisterParameters, bool SoftFloatABI) 1238 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1239 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1240 NumRegisterParameters, SoftFloatABI)) {} 1241 1242 static bool isStructReturnInRegABI( 1243 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1244 1245 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1246 CodeGen::CodeGenModule &CGM) const override; 1247 1248 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1249 // Darwin uses different dwarf register numbers for EH. 1250 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1251 return 4; 1252 } 1253 1254 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1255 llvm::Value *Address) const override; 1256 1257 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1258 StringRef Constraint, 1259 llvm::Type* Ty) const override { 1260 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1261 } 1262 1263 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1264 std::string &Constraints, 1265 std::vector<llvm::Type *> &ResultRegTypes, 1266 std::vector<llvm::Type *> &ResultTruncRegTypes, 1267 std::vector<LValue> &ResultRegDests, 1268 std::string &AsmString, 1269 unsigned NumOutputs) const override; 1270 1271 llvm::Constant * 1272 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1273 unsigned Sig = (0xeb << 0) | // jmp rel8 1274 (0x06 << 8) | // .+0x08 1275 ('v' << 16) | 1276 ('2' << 24); 1277 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1278 } 1279 1280 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1281 return "movl\t%ebp, %ebp" 1282 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1283 } 1284 }; 1285 1286 } 1287 1288 /// Rewrite input constraint references after adding some output constraints. 1289 /// In the case where there is one output and one input and we add one output, 1290 /// we need to replace all operand references greater than or equal to 1: 1291 /// mov $0, $1 1292 /// mov eax, $1 1293 /// The result will be: 1294 /// mov $0, $2 1295 /// mov eax, $2 1296 static void rewriteInputConstraintReferences(unsigned FirstIn, 1297 unsigned NumNewOuts, 1298 std::string &AsmString) { 1299 std::string Buf; 1300 llvm::raw_string_ostream OS(Buf); 1301 size_t Pos = 0; 1302 while (Pos < AsmString.size()) { 1303 size_t DollarStart = AsmString.find('$', Pos); 1304 if (DollarStart == std::string::npos) 1305 DollarStart = AsmString.size(); 1306 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1307 if (DollarEnd == std::string::npos) 1308 DollarEnd = AsmString.size(); 1309 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1310 Pos = DollarEnd; 1311 size_t NumDollars = DollarEnd - DollarStart; 1312 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1313 // We have an operand reference. 1314 size_t DigitStart = Pos; 1315 if (AsmString[DigitStart] == '{') { 1316 OS << '{'; 1317 ++DigitStart; 1318 } 1319 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1320 if (DigitEnd == std::string::npos) 1321 DigitEnd = AsmString.size(); 1322 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1323 unsigned OperandIndex; 1324 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1325 if (OperandIndex >= FirstIn) 1326 OperandIndex += NumNewOuts; 1327 OS << OperandIndex; 1328 } else { 1329 OS << OperandStr; 1330 } 1331 Pos = DigitEnd; 1332 } 1333 } 1334 AsmString = std::move(OS.str()); 1335 } 1336 1337 /// Add output constraints for EAX:EDX because they are return registers. 1338 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1339 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1340 std::vector<llvm::Type *> &ResultRegTypes, 1341 std::vector<llvm::Type *> &ResultTruncRegTypes, 1342 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1343 unsigned NumOutputs) const { 1344 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1345 1346 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1347 // larger. 1348 if (!Constraints.empty()) 1349 Constraints += ','; 1350 if (RetWidth <= 32) { 1351 Constraints += "={eax}"; 1352 ResultRegTypes.push_back(CGF.Int32Ty); 1353 } else { 1354 // Use the 'A' constraint for EAX:EDX. 1355 Constraints += "=A"; 1356 ResultRegTypes.push_back(CGF.Int64Ty); 1357 } 1358 1359 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1360 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1361 ResultTruncRegTypes.push_back(CoerceTy); 1362 1363 // Coerce the integer by bitcasting the return slot pointer. 1364 ReturnSlot.setAddress( 1365 CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy)); 1366 ResultRegDests.push_back(ReturnSlot); 1367 1368 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1369 } 1370 1371 /// shouldReturnTypeInRegister - Determine if the given type should be 1372 /// returned in a register (for the Darwin and MCU ABI). 1373 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1374 ASTContext &Context) const { 1375 uint64_t Size = Context.getTypeSize(Ty); 1376 1377 // For i386, type must be register sized. 1378 // For the MCU ABI, it only needs to be <= 8-byte 1379 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1380 return false; 1381 1382 if (Ty->isVectorType()) { 1383 // 64- and 128- bit vectors inside structures are not returned in 1384 // registers. 1385 if (Size == 64 || Size == 128) 1386 return false; 1387 1388 return true; 1389 } 1390 1391 // If this is a builtin, pointer, enum, complex type, member pointer, or 1392 // member function pointer it is ok. 1393 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1394 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1395 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1396 return true; 1397 1398 // Arrays are treated like records. 1399 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1400 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1401 1402 // Otherwise, it must be a record type. 1403 const RecordType *RT = Ty->getAs<RecordType>(); 1404 if (!RT) return false; 1405 1406 // FIXME: Traverse bases here too. 1407 1408 // Structure types are passed in register if all fields would be 1409 // passed in a register. 1410 for (const auto *FD : RT->getDecl()->fields()) { 1411 // Empty fields are ignored. 1412 if (isEmptyField(Context, FD, true)) 1413 continue; 1414 1415 // Check fields recursively. 1416 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1417 return false; 1418 } 1419 return true; 1420 } 1421 1422 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1423 // Treat complex types as the element type. 1424 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1425 Ty = CTy->getElementType(); 1426 1427 // Check for a type which we know has a simple scalar argument-passing 1428 // convention without any padding. (We're specifically looking for 32 1429 // and 64-bit integer and integer-equivalents, float, and double.) 1430 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1431 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1432 return false; 1433 1434 uint64_t Size = Context.getTypeSize(Ty); 1435 return Size == 32 || Size == 64; 1436 } 1437 1438 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1439 uint64_t &Size) { 1440 for (const auto *FD : RD->fields()) { 1441 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1442 // argument is smaller than 32-bits, expanding the struct will create 1443 // alignment padding. 1444 if (!is32Or64BitBasicType(FD->getType(), Context)) 1445 return false; 1446 1447 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1448 // how to expand them yet, and the predicate for telling if a bitfield still 1449 // counts as "basic" is more complicated than what we were doing previously. 1450 if (FD->isBitField()) 1451 return false; 1452 1453 Size += Context.getTypeSize(FD->getType()); 1454 } 1455 return true; 1456 } 1457 1458 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1459 uint64_t &Size) { 1460 // Don't do this if there are any non-empty bases. 1461 for (const CXXBaseSpecifier &Base : RD->bases()) { 1462 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1463 Size)) 1464 return false; 1465 } 1466 if (!addFieldSizes(Context, RD, Size)) 1467 return false; 1468 return true; 1469 } 1470 1471 /// Test whether an argument type which is to be passed indirectly (on the 1472 /// stack) would have the equivalent layout if it was expanded into separate 1473 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1474 /// optimizations. 1475 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1476 // We can only expand structure types. 1477 const RecordType *RT = Ty->getAs<RecordType>(); 1478 if (!RT) 1479 return false; 1480 const RecordDecl *RD = RT->getDecl(); 1481 uint64_t Size = 0; 1482 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1483 if (!IsWin32StructABI) { 1484 // On non-Windows, we have to conservatively match our old bitcode 1485 // prototypes in order to be ABI-compatible at the bitcode level. 1486 if (!CXXRD->isCLike()) 1487 return false; 1488 } else { 1489 // Don't do this for dynamic classes. 1490 if (CXXRD->isDynamicClass()) 1491 return false; 1492 } 1493 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1494 return false; 1495 } else { 1496 if (!addFieldSizes(getContext(), RD, Size)) 1497 return false; 1498 } 1499 1500 // We can do this if there was no alignment padding. 1501 return Size == getContext().getTypeSize(Ty); 1502 } 1503 1504 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1505 // If the return value is indirect, then the hidden argument is consuming one 1506 // integer register. 1507 if (State.FreeRegs) { 1508 --State.FreeRegs; 1509 if (!IsMCUABI) 1510 return getNaturalAlignIndirectInReg(RetTy); 1511 } 1512 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1513 } 1514 1515 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1516 CCState &State) const { 1517 if (RetTy->isVoidType()) 1518 return ABIArgInfo::getIgnore(); 1519 1520 const Type *Base = nullptr; 1521 uint64_t NumElts = 0; 1522 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1523 State.CC == llvm::CallingConv::X86_RegCall) && 1524 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1525 // The LLVM struct type for such an aggregate should lower properly. 1526 return ABIArgInfo::getDirect(); 1527 } 1528 1529 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1530 // On Darwin, some vectors are returned in registers. 1531 if (IsDarwinVectorABI) { 1532 uint64_t Size = getContext().getTypeSize(RetTy); 1533 1534 // 128-bit vectors are a special case; they are returned in 1535 // registers and we need to make sure to pick a type the LLVM 1536 // backend will like. 1537 if (Size == 128) 1538 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1539 llvm::Type::getInt64Ty(getVMContext()), 2)); 1540 1541 // Always return in register if it fits in a general purpose 1542 // register, or if it is 64 bits and has a single element. 1543 if ((Size == 8 || Size == 16 || Size == 32) || 1544 (Size == 64 && VT->getNumElements() == 1)) 1545 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1546 Size)); 1547 1548 return getIndirectReturnResult(RetTy, State); 1549 } 1550 1551 return ABIArgInfo::getDirect(); 1552 } 1553 1554 if (isAggregateTypeForABI(RetTy)) { 1555 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1556 // Structures with flexible arrays are always indirect. 1557 if (RT->getDecl()->hasFlexibleArrayMember()) 1558 return getIndirectReturnResult(RetTy, State); 1559 } 1560 1561 // If specified, structs and unions are always indirect. 1562 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1563 return getIndirectReturnResult(RetTy, State); 1564 1565 // Ignore empty structs/unions. 1566 if (isEmptyRecord(getContext(), RetTy, true)) 1567 return ABIArgInfo::getIgnore(); 1568 1569 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1570 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1571 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1572 if (ET->isFloat16Type()) 1573 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1574 llvm::Type::getHalfTy(getVMContext()), 2)); 1575 } 1576 1577 // Small structures which are register sized are generally returned 1578 // in a register. 1579 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1580 uint64_t Size = getContext().getTypeSize(RetTy); 1581 1582 // As a special-case, if the struct is a "single-element" struct, and 1583 // the field is of type "float" or "double", return it in a 1584 // floating-point register. (MSVC does not apply this special case.) 1585 // We apply a similar transformation for pointer types to improve the 1586 // quality of the generated IR. 1587 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1588 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1589 || SeltTy->hasPointerRepresentation()) 1590 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1591 1592 // FIXME: We should be able to narrow this integer in cases with dead 1593 // padding. 1594 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1595 } 1596 1597 return getIndirectReturnResult(RetTy, State); 1598 } 1599 1600 // Treat an enum type as its underlying type. 1601 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1602 RetTy = EnumTy->getDecl()->getIntegerType(); 1603 1604 if (const auto *EIT = RetTy->getAs<BitIntType>()) 1605 if (EIT->getNumBits() > 64) 1606 return getIndirectReturnResult(RetTy, State); 1607 1608 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1609 : ABIArgInfo::getDirect()); 1610 } 1611 1612 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1613 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1614 } 1615 1616 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1617 const RecordType *RT = Ty->getAs<RecordType>(); 1618 if (!RT) 1619 return false; 1620 const RecordDecl *RD = RT->getDecl(); 1621 1622 // If this is a C++ record, check the bases first. 1623 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1624 for (const auto &I : CXXRD->bases()) 1625 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1626 return false; 1627 1628 for (const auto *i : RD->fields()) { 1629 QualType FT = i->getType(); 1630 1631 if (isSIMDVectorType(Context, FT)) 1632 return true; 1633 1634 if (isRecordWithSIMDVectorType(Context, FT)) 1635 return true; 1636 } 1637 1638 return false; 1639 } 1640 1641 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1642 unsigned Align) const { 1643 // Otherwise, if the alignment is less than or equal to the minimum ABI 1644 // alignment, just use the default; the backend will handle this. 1645 if (Align <= MinABIStackAlignInBytes) 1646 return 0; // Use default alignment. 1647 1648 if (IsLinuxABI) { 1649 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1650 // want to spend any effort dealing with the ramifications of ABI breaks. 1651 // 1652 // If the vector type is __m128/__m256/__m512, return the default alignment. 1653 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1654 return Align; 1655 } 1656 // On non-Darwin, the stack type alignment is always 4. 1657 if (!IsDarwinVectorABI) { 1658 // Set explicit alignment, since we may need to realign the top. 1659 return MinABIStackAlignInBytes; 1660 } 1661 1662 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1663 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1664 isRecordWithSIMDVectorType(getContext(), Ty))) 1665 return 16; 1666 1667 return MinABIStackAlignInBytes; 1668 } 1669 1670 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1671 CCState &State) const { 1672 if (!ByVal) { 1673 if (State.FreeRegs) { 1674 --State.FreeRegs; // Non-byval indirects just use one pointer. 1675 if (!IsMCUABI) 1676 return getNaturalAlignIndirectInReg(Ty); 1677 } 1678 return getNaturalAlignIndirect(Ty, false); 1679 } 1680 1681 // Compute the byval alignment. 1682 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1683 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1684 if (StackAlign == 0) 1685 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1686 1687 // If the stack alignment is less than the type alignment, realign the 1688 // argument. 1689 bool Realign = TypeAlign > StackAlign; 1690 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1691 /*ByVal=*/true, Realign); 1692 } 1693 1694 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1695 const Type *T = isSingleElementStruct(Ty, getContext()); 1696 if (!T) 1697 T = Ty.getTypePtr(); 1698 1699 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1700 BuiltinType::Kind K = BT->getKind(); 1701 if (K == BuiltinType::Float || K == BuiltinType::Double) 1702 return Float; 1703 } 1704 return Integer; 1705 } 1706 1707 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1708 if (!IsSoftFloatABI) { 1709 Class C = classify(Ty); 1710 if (C == Float) 1711 return false; 1712 } 1713 1714 unsigned Size = getContext().getTypeSize(Ty); 1715 unsigned SizeInRegs = (Size + 31) / 32; 1716 1717 if (SizeInRegs == 0) 1718 return false; 1719 1720 if (!IsMCUABI) { 1721 if (SizeInRegs > State.FreeRegs) { 1722 State.FreeRegs = 0; 1723 return false; 1724 } 1725 } else { 1726 // The MCU psABI allows passing parameters in-reg even if there are 1727 // earlier parameters that are passed on the stack. Also, 1728 // it does not allow passing >8-byte structs in-register, 1729 // even if there are 3 free registers available. 1730 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1731 return false; 1732 } 1733 1734 State.FreeRegs -= SizeInRegs; 1735 return true; 1736 } 1737 1738 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1739 bool &InReg, 1740 bool &NeedsPadding) const { 1741 // On Windows, aggregates other than HFAs are never passed in registers, and 1742 // they do not consume register slots. Homogenous floating-point aggregates 1743 // (HFAs) have already been dealt with at this point. 1744 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1745 return false; 1746 1747 NeedsPadding = false; 1748 InReg = !IsMCUABI; 1749 1750 if (!updateFreeRegs(Ty, State)) 1751 return false; 1752 1753 if (IsMCUABI) 1754 return true; 1755 1756 if (State.CC == llvm::CallingConv::X86_FastCall || 1757 State.CC == llvm::CallingConv::X86_VectorCall || 1758 State.CC == llvm::CallingConv::X86_RegCall) { 1759 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1760 NeedsPadding = true; 1761 1762 return false; 1763 } 1764 1765 return true; 1766 } 1767 1768 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1769 if (!updateFreeRegs(Ty, State)) 1770 return false; 1771 1772 if (IsMCUABI) 1773 return false; 1774 1775 if (State.CC == llvm::CallingConv::X86_FastCall || 1776 State.CC == llvm::CallingConv::X86_VectorCall || 1777 State.CC == llvm::CallingConv::X86_RegCall) { 1778 if (getContext().getTypeSize(Ty) > 32) 1779 return false; 1780 1781 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1782 Ty->isReferenceType()); 1783 } 1784 1785 return true; 1786 } 1787 1788 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1789 // Vectorcall x86 works subtly different than in x64, so the format is 1790 // a bit different than the x64 version. First, all vector types (not HVAs) 1791 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1792 // This differs from the x64 implementation, where the first 6 by INDEX get 1793 // registers. 1794 // In the second pass over the arguments, HVAs are passed in the remaining 1795 // vector registers if possible, or indirectly by address. The address will be 1796 // passed in ECX/EDX if available. Any other arguments are passed according to 1797 // the usual fastcall rules. 1798 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1799 for (int I = 0, E = Args.size(); I < E; ++I) { 1800 const Type *Base = nullptr; 1801 uint64_t NumElts = 0; 1802 const QualType &Ty = Args[I].type; 1803 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1804 isHomogeneousAggregate(Ty, Base, NumElts)) { 1805 if (State.FreeSSERegs >= NumElts) { 1806 State.FreeSSERegs -= NumElts; 1807 Args[I].info = ABIArgInfo::getDirectInReg(); 1808 State.IsPreassigned.set(I); 1809 } 1810 } 1811 } 1812 } 1813 1814 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1815 CCState &State) const { 1816 // FIXME: Set alignment on indirect arguments. 1817 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1818 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1819 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1820 1821 Ty = useFirstFieldIfTransparentUnion(Ty); 1822 TypeInfo TI = getContext().getTypeInfo(Ty); 1823 1824 // Check with the C++ ABI first. 1825 const RecordType *RT = Ty->getAs<RecordType>(); 1826 if (RT) { 1827 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1828 if (RAA == CGCXXABI::RAA_Indirect) { 1829 return getIndirectResult(Ty, false, State); 1830 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1831 // The field index doesn't matter, we'll fix it up later. 1832 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1833 } 1834 } 1835 1836 // Regcall uses the concept of a homogenous vector aggregate, similar 1837 // to other targets. 1838 const Type *Base = nullptr; 1839 uint64_t NumElts = 0; 1840 if ((IsRegCall || IsVectorCall) && 1841 isHomogeneousAggregate(Ty, Base, NumElts)) { 1842 if (State.FreeSSERegs >= NumElts) { 1843 State.FreeSSERegs -= NumElts; 1844 1845 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1846 // does. 1847 if (IsVectorCall) 1848 return getDirectX86Hva(); 1849 1850 if (Ty->isBuiltinType() || Ty->isVectorType()) 1851 return ABIArgInfo::getDirect(); 1852 return ABIArgInfo::getExpand(); 1853 } 1854 return getIndirectResult(Ty, /*ByVal=*/false, State); 1855 } 1856 1857 if (isAggregateTypeForABI(Ty)) { 1858 // Structures with flexible arrays are always indirect. 1859 // FIXME: This should not be byval! 1860 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1861 return getIndirectResult(Ty, true, State); 1862 1863 // Ignore empty structs/unions on non-Windows. 1864 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1865 return ABIArgInfo::getIgnore(); 1866 1867 llvm::LLVMContext &LLVMContext = getVMContext(); 1868 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1869 bool NeedsPadding = false; 1870 bool InReg; 1871 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1872 unsigned SizeInRegs = (TI.Width + 31) / 32; 1873 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1874 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1875 if (InReg) 1876 return ABIArgInfo::getDirectInReg(Result); 1877 else 1878 return ABIArgInfo::getDirect(Result); 1879 } 1880 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1881 1882 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1883 // added in MSVC 2015. 1884 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1885 return getIndirectResult(Ty, /*ByVal=*/false, State); 1886 1887 // Expand small (<= 128-bit) record types when we know that the stack layout 1888 // of those arguments will match the struct. This is important because the 1889 // LLVM backend isn't smart enough to remove byval, which inhibits many 1890 // optimizations. 1891 // Don't do this for the MCU if there are still free integer registers 1892 // (see X86_64 ABI for full explanation). 1893 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1894 canExpandIndirectArgument(Ty)) 1895 return ABIArgInfo::getExpandWithPadding( 1896 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1897 1898 return getIndirectResult(Ty, true, State); 1899 } 1900 1901 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1902 // On Windows, vectors are passed directly if registers are available, or 1903 // indirectly if not. This avoids the need to align argument memory. Pass 1904 // user-defined vector types larger than 512 bits indirectly for simplicity. 1905 if (IsWin32StructABI) { 1906 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1907 --State.FreeSSERegs; 1908 return ABIArgInfo::getDirectInReg(); 1909 } 1910 return getIndirectResult(Ty, /*ByVal=*/false, State); 1911 } 1912 1913 // On Darwin, some vectors are passed in memory, we handle this by passing 1914 // it as an i8/i16/i32/i64. 1915 if (IsDarwinVectorABI) { 1916 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1917 (TI.Width == 64 && VT->getNumElements() == 1)) 1918 return ABIArgInfo::getDirect( 1919 llvm::IntegerType::get(getVMContext(), TI.Width)); 1920 } 1921 1922 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1923 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1924 1925 return ABIArgInfo::getDirect(); 1926 } 1927 1928 1929 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1930 Ty = EnumTy->getDecl()->getIntegerType(); 1931 1932 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1933 1934 if (isPromotableIntegerTypeForABI(Ty)) { 1935 if (InReg) 1936 return ABIArgInfo::getExtendInReg(Ty); 1937 return ABIArgInfo::getExtend(Ty); 1938 } 1939 1940 if (const auto *EIT = Ty->getAs<BitIntType>()) { 1941 if (EIT->getNumBits() <= 64) { 1942 if (InReg) 1943 return ABIArgInfo::getDirectInReg(); 1944 return ABIArgInfo::getDirect(); 1945 } 1946 return getIndirectResult(Ty, /*ByVal=*/false, State); 1947 } 1948 1949 if (InReg) 1950 return ABIArgInfo::getDirectInReg(); 1951 return ABIArgInfo::getDirect(); 1952 } 1953 1954 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1955 CCState State(FI); 1956 if (IsMCUABI) 1957 State.FreeRegs = 3; 1958 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1959 State.FreeRegs = 2; 1960 State.FreeSSERegs = 3; 1961 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1962 State.FreeRegs = 2; 1963 State.FreeSSERegs = 6; 1964 } else if (FI.getHasRegParm()) 1965 State.FreeRegs = FI.getRegParm(); 1966 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1967 State.FreeRegs = 5; 1968 State.FreeSSERegs = 8; 1969 } else if (IsWin32StructABI) { 1970 // Since MSVC 2015, the first three SSE vectors have been passed in 1971 // registers. The rest are passed indirectly. 1972 State.FreeRegs = DefaultNumRegisterParameters; 1973 State.FreeSSERegs = 3; 1974 } else 1975 State.FreeRegs = DefaultNumRegisterParameters; 1976 1977 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1978 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1979 } else if (FI.getReturnInfo().isIndirect()) { 1980 // The C++ ABI is not aware of register usage, so we have to check if the 1981 // return value was sret and put it in a register ourselves if appropriate. 1982 if (State.FreeRegs) { 1983 --State.FreeRegs; // The sret parameter consumes a register. 1984 if (!IsMCUABI) 1985 FI.getReturnInfo().setInReg(true); 1986 } 1987 } 1988 1989 // The chain argument effectively gives us another free register. 1990 if (FI.isChainCall()) 1991 ++State.FreeRegs; 1992 1993 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1994 // arguments to XMM registers as available. 1995 if (State.CC == llvm::CallingConv::X86_VectorCall) 1996 runVectorCallFirstPass(FI, State); 1997 1998 bool UsedInAlloca = false; 1999 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 2000 for (int I = 0, E = Args.size(); I < E; ++I) { 2001 // Skip arguments that have already been assigned. 2002 if (State.IsPreassigned.test(I)) 2003 continue; 2004 2005 Args[I].info = classifyArgumentType(Args[I].type, State); 2006 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 2007 } 2008 2009 // If we needed to use inalloca for any argument, do a second pass and rewrite 2010 // all the memory arguments to use inalloca. 2011 if (UsedInAlloca) 2012 rewriteWithInAlloca(FI); 2013 } 2014 2015 void 2016 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2017 CharUnits &StackOffset, ABIArgInfo &Info, 2018 QualType Type) const { 2019 // Arguments are always 4-byte-aligned. 2020 CharUnits WordSize = CharUnits::fromQuantity(4); 2021 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2022 2023 // sret pointers and indirect things will require an extra pointer 2024 // indirection, unless they are byval. Most things are byval, and will not 2025 // require this indirection. 2026 bool IsIndirect = false; 2027 if (Info.isIndirect() && !Info.getIndirectByVal()) 2028 IsIndirect = true; 2029 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2030 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2031 if (IsIndirect) 2032 LLTy = LLTy->getPointerTo(0); 2033 FrameFields.push_back(LLTy); 2034 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2035 2036 // Insert padding bytes to respect alignment. 2037 CharUnits FieldEnd = StackOffset; 2038 StackOffset = FieldEnd.alignTo(WordSize); 2039 if (StackOffset != FieldEnd) { 2040 CharUnits NumBytes = StackOffset - FieldEnd; 2041 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2042 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2043 FrameFields.push_back(Ty); 2044 } 2045 } 2046 2047 static bool isArgInAlloca(const ABIArgInfo &Info) { 2048 // Leave ignored and inreg arguments alone. 2049 switch (Info.getKind()) { 2050 case ABIArgInfo::InAlloca: 2051 return true; 2052 case ABIArgInfo::Ignore: 2053 case ABIArgInfo::IndirectAliased: 2054 return false; 2055 case ABIArgInfo::Indirect: 2056 case ABIArgInfo::Direct: 2057 case ABIArgInfo::Extend: 2058 return !Info.getInReg(); 2059 case ABIArgInfo::Expand: 2060 case ABIArgInfo::CoerceAndExpand: 2061 // These are aggregate types which are never passed in registers when 2062 // inalloca is involved. 2063 return true; 2064 } 2065 llvm_unreachable("invalid enum"); 2066 } 2067 2068 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2069 assert(IsWin32StructABI && "inalloca only supported on win32"); 2070 2071 // Build a packed struct type for all of the arguments in memory. 2072 SmallVector<llvm::Type *, 6> FrameFields; 2073 2074 // The stack alignment is always 4. 2075 CharUnits StackAlign = CharUnits::fromQuantity(4); 2076 2077 CharUnits StackOffset; 2078 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2079 2080 // Put 'this' into the struct before 'sret', if necessary. 2081 bool IsThisCall = 2082 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2083 ABIArgInfo &Ret = FI.getReturnInfo(); 2084 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2085 isArgInAlloca(I->info)) { 2086 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2087 ++I; 2088 } 2089 2090 // Put the sret parameter into the inalloca struct if it's in memory. 2091 if (Ret.isIndirect() && !Ret.getInReg()) { 2092 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2093 // On Windows, the hidden sret parameter is always returned in eax. 2094 Ret.setInAllocaSRet(IsWin32StructABI); 2095 } 2096 2097 // Skip the 'this' parameter in ecx. 2098 if (IsThisCall) 2099 ++I; 2100 2101 // Put arguments passed in memory into the struct. 2102 for (; I != E; ++I) { 2103 if (isArgInAlloca(I->info)) 2104 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2105 } 2106 2107 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2108 /*isPacked=*/true), 2109 StackAlign); 2110 } 2111 2112 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2113 Address VAListAddr, QualType Ty) const { 2114 2115 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2116 2117 // x86-32 changes the alignment of certain arguments on the stack. 2118 // 2119 // Just messing with TypeInfo like this works because we never pass 2120 // anything indirectly. 2121 TypeInfo.Align = CharUnits::fromQuantity( 2122 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2123 2124 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2125 TypeInfo, CharUnits::fromQuantity(4), 2126 /*AllowHigherAlign*/ true); 2127 } 2128 2129 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2130 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2131 assert(Triple.getArch() == llvm::Triple::x86); 2132 2133 switch (Opts.getStructReturnConvention()) { 2134 case CodeGenOptions::SRCK_Default: 2135 break; 2136 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2137 return false; 2138 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2139 return true; 2140 } 2141 2142 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2143 return true; 2144 2145 switch (Triple.getOS()) { 2146 case llvm::Triple::DragonFly: 2147 case llvm::Triple::FreeBSD: 2148 case llvm::Triple::OpenBSD: 2149 case llvm::Triple::Win32: 2150 return true; 2151 default: 2152 return false; 2153 } 2154 } 2155 2156 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2157 CodeGen::CodeGenModule &CGM) { 2158 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2159 return; 2160 2161 llvm::Function *Fn = cast<llvm::Function>(GV); 2162 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2163 if (FD->getNumParams() == 0) 2164 return; 2165 2166 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2167 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2168 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2169 Fn->getContext(), ByValTy); 2170 Fn->addParamAttr(0, NewAttr); 2171 } 2172 2173 void X86_32TargetCodeGenInfo::setTargetAttributes( 2174 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2175 if (GV->isDeclaration()) 2176 return; 2177 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2178 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2179 llvm::Function *Fn = cast<llvm::Function>(GV); 2180 Fn->addFnAttr("stackrealign"); 2181 } 2182 2183 addX86InterruptAttrs(FD, GV, CGM); 2184 } 2185 } 2186 2187 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2188 CodeGen::CodeGenFunction &CGF, 2189 llvm::Value *Address) const { 2190 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2191 2192 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2193 2194 // 0-7 are the eight integer registers; the order is different 2195 // on Darwin (for EH), but the range is the same. 2196 // 8 is %eip. 2197 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2198 2199 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2200 // 12-16 are st(0..4). Not sure why we stop at 4. 2201 // These have size 16, which is sizeof(long double) on 2202 // platforms with 8-byte alignment for that type. 2203 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2204 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2205 2206 } else { 2207 // 9 is %eflags, which doesn't get a size on Darwin for some 2208 // reason. 2209 Builder.CreateAlignedStore( 2210 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2211 CharUnits::One()); 2212 2213 // 11-16 are st(0..5). Not sure why we stop at 5. 2214 // These have size 12, which is sizeof(long double) on 2215 // platforms with 4-byte alignment for that type. 2216 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2217 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2218 } 2219 2220 return false; 2221 } 2222 2223 //===----------------------------------------------------------------------===// 2224 // X86-64 ABI Implementation 2225 //===----------------------------------------------------------------------===// 2226 2227 2228 namespace { 2229 /// The AVX ABI level for X86 targets. 2230 enum class X86AVXABILevel { 2231 None, 2232 AVX, 2233 AVX512 2234 }; 2235 2236 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2237 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2238 switch (AVXLevel) { 2239 case X86AVXABILevel::AVX512: 2240 return 512; 2241 case X86AVXABILevel::AVX: 2242 return 256; 2243 case X86AVXABILevel::None: 2244 return 128; 2245 } 2246 llvm_unreachable("Unknown AVXLevel"); 2247 } 2248 2249 /// X86_64ABIInfo - The X86_64 ABI information. 2250 class X86_64ABIInfo : public SwiftABIInfo { 2251 enum Class { 2252 Integer = 0, 2253 SSE, 2254 SSEUp, 2255 X87, 2256 X87Up, 2257 ComplexX87, 2258 NoClass, 2259 Memory 2260 }; 2261 2262 /// merge - Implement the X86_64 ABI merging algorithm. 2263 /// 2264 /// Merge an accumulating classification \arg Accum with a field 2265 /// classification \arg Field. 2266 /// 2267 /// \param Accum - The accumulating classification. This should 2268 /// always be either NoClass or the result of a previous merge 2269 /// call. In addition, this should never be Memory (the caller 2270 /// should just return Memory for the aggregate). 2271 static Class merge(Class Accum, Class Field); 2272 2273 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2274 /// 2275 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2276 /// final MEMORY or SSE classes when necessary. 2277 /// 2278 /// \param AggregateSize - The size of the current aggregate in 2279 /// the classification process. 2280 /// 2281 /// \param Lo - The classification for the parts of the type 2282 /// residing in the low word of the containing object. 2283 /// 2284 /// \param Hi - The classification for the parts of the type 2285 /// residing in the higher words of the containing object. 2286 /// 2287 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2288 2289 /// classify - Determine the x86_64 register classes in which the 2290 /// given type T should be passed. 2291 /// 2292 /// \param Lo - The classification for the parts of the type 2293 /// residing in the low word of the containing object. 2294 /// 2295 /// \param Hi - The classification for the parts of the type 2296 /// residing in the high word of the containing object. 2297 /// 2298 /// \param OffsetBase - The bit offset of this type in the 2299 /// containing object. Some parameters are classified different 2300 /// depending on whether they straddle an eightbyte boundary. 2301 /// 2302 /// \param isNamedArg - Whether the argument in question is a "named" 2303 /// argument, as used in AMD64-ABI 3.5.7. 2304 /// 2305 /// \param IsRegCall - Whether the calling conversion is regcall. 2306 /// 2307 /// If a word is unused its result will be NoClass; if a type should 2308 /// be passed in Memory then at least the classification of \arg Lo 2309 /// will be Memory. 2310 /// 2311 /// The \arg Lo class will be NoClass iff the argument is ignored. 2312 /// 2313 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2314 /// also be ComplexX87. 2315 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2316 bool isNamedArg, bool IsRegCall = false) const; 2317 2318 llvm::Type *GetByteVectorType(QualType Ty) const; 2319 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2320 unsigned IROffset, QualType SourceTy, 2321 unsigned SourceOffset) const; 2322 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2323 unsigned IROffset, QualType SourceTy, 2324 unsigned SourceOffset) const; 2325 2326 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2327 /// such that the argument will be returned in memory. 2328 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2329 2330 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2331 /// such that the argument will be passed in memory. 2332 /// 2333 /// \param freeIntRegs - The number of free integer registers remaining 2334 /// available. 2335 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2336 2337 ABIArgInfo classifyReturnType(QualType RetTy) const; 2338 2339 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2340 unsigned &neededInt, unsigned &neededSSE, 2341 bool isNamedArg, 2342 bool IsRegCall = false) const; 2343 2344 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2345 unsigned &NeededSSE, 2346 unsigned &MaxVectorWidth) const; 2347 2348 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2349 unsigned &NeededSSE, 2350 unsigned &MaxVectorWidth) const; 2351 2352 bool IsIllegalVectorType(QualType Ty) const; 2353 2354 /// The 0.98 ABI revision clarified a lot of ambiguities, 2355 /// unfortunately in ways that were not always consistent with 2356 /// certain previous compilers. In particular, platforms which 2357 /// required strict binary compatibility with older versions of GCC 2358 /// may need to exempt themselves. 2359 bool honorsRevision0_98() const { 2360 return !getTarget().getTriple().isOSDarwin(); 2361 } 2362 2363 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2364 /// classify it as INTEGER (for compatibility with older clang compilers). 2365 bool classifyIntegerMMXAsSSE() const { 2366 // Clang <= 3.8 did not do this. 2367 if (getContext().getLangOpts().getClangABICompat() <= 2368 LangOptions::ClangABI::Ver3_8) 2369 return false; 2370 2371 const llvm::Triple &Triple = getTarget().getTriple(); 2372 if (Triple.isOSDarwin() || Triple.isPS()) 2373 return false; 2374 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2375 return false; 2376 return true; 2377 } 2378 2379 // GCC classifies vectors of __int128 as memory. 2380 bool passInt128VectorsInMem() const { 2381 // Clang <= 9.0 did not do this. 2382 if (getContext().getLangOpts().getClangABICompat() <= 2383 LangOptions::ClangABI::Ver9) 2384 return false; 2385 2386 const llvm::Triple &T = getTarget().getTriple(); 2387 return T.isOSLinux() || T.isOSNetBSD(); 2388 } 2389 2390 X86AVXABILevel AVXLevel; 2391 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2392 // 64-bit hardware. 2393 bool Has64BitPointers; 2394 2395 public: 2396 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2397 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2398 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2399 } 2400 2401 bool isPassedUsingAVXType(QualType type) const { 2402 unsigned neededInt, neededSSE; 2403 // The freeIntRegs argument doesn't matter here. 2404 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2405 /*isNamedArg*/true); 2406 if (info.isDirect()) { 2407 llvm::Type *ty = info.getCoerceToType(); 2408 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2409 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2410 } 2411 return false; 2412 } 2413 2414 void computeInfo(CGFunctionInfo &FI) const override; 2415 2416 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2417 QualType Ty) const override; 2418 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2419 QualType Ty) const override; 2420 2421 bool has64BitPointers() const { 2422 return Has64BitPointers; 2423 } 2424 2425 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2426 bool asReturnValue) const override { 2427 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2428 } 2429 bool isSwiftErrorInRegister() const override { 2430 return true; 2431 } 2432 }; 2433 2434 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2435 class WinX86_64ABIInfo : public SwiftABIInfo { 2436 public: 2437 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2438 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2439 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2440 2441 void computeInfo(CGFunctionInfo &FI) const override; 2442 2443 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2444 QualType Ty) const override; 2445 2446 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2447 // FIXME: Assumes vectorcall is in use. 2448 return isX86VectorTypeForVectorCall(getContext(), Ty); 2449 } 2450 2451 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2452 uint64_t NumMembers) const override { 2453 // FIXME: Assumes vectorcall is in use. 2454 return isX86VectorCallAggregateSmallEnough(NumMembers); 2455 } 2456 2457 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2458 bool asReturnValue) const override { 2459 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2460 } 2461 2462 bool isSwiftErrorInRegister() const override { 2463 return true; 2464 } 2465 2466 private: 2467 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2468 bool IsVectorCall, bool IsRegCall) const; 2469 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2470 const ABIArgInfo ¤t) const; 2471 2472 X86AVXABILevel AVXLevel; 2473 2474 bool IsMingw64; 2475 }; 2476 2477 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2478 public: 2479 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2480 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2481 2482 const X86_64ABIInfo &getABIInfo() const { 2483 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2484 } 2485 2486 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2487 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2488 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2489 2490 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2491 return 7; 2492 } 2493 2494 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2495 llvm::Value *Address) const override { 2496 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2497 2498 // 0-15 are the 16 integer registers. 2499 // 16 is %rip. 2500 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2501 return false; 2502 } 2503 2504 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2505 StringRef Constraint, 2506 llvm::Type* Ty) const override { 2507 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2508 } 2509 2510 bool isNoProtoCallVariadic(const CallArgList &args, 2511 const FunctionNoProtoType *fnType) const override { 2512 // The default CC on x86-64 sets %al to the number of SSA 2513 // registers used, and GCC sets this when calling an unprototyped 2514 // function, so we override the default behavior. However, don't do 2515 // that when AVX types are involved: the ABI explicitly states it is 2516 // undefined, and it doesn't work in practice because of how the ABI 2517 // defines varargs anyway. 2518 if (fnType->getCallConv() == CC_C) { 2519 bool HasAVXType = false; 2520 for (CallArgList::const_iterator 2521 it = args.begin(), ie = args.end(); it != ie; ++it) { 2522 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2523 HasAVXType = true; 2524 break; 2525 } 2526 } 2527 2528 if (!HasAVXType) 2529 return true; 2530 } 2531 2532 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2533 } 2534 2535 llvm::Constant * 2536 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2537 unsigned Sig = (0xeb << 0) | // jmp rel8 2538 (0x06 << 8) | // .+0x08 2539 ('v' << 16) | 2540 ('2' << 24); 2541 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2542 } 2543 2544 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2545 CodeGen::CodeGenModule &CGM) const override { 2546 if (GV->isDeclaration()) 2547 return; 2548 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2549 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2550 llvm::Function *Fn = cast<llvm::Function>(GV); 2551 Fn->addFnAttr("stackrealign"); 2552 } 2553 2554 addX86InterruptAttrs(FD, GV, CGM); 2555 } 2556 } 2557 2558 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2559 const FunctionDecl *Caller, 2560 const FunctionDecl *Callee, 2561 const CallArgList &Args) const override; 2562 }; 2563 2564 static void initFeatureMaps(const ASTContext &Ctx, 2565 llvm::StringMap<bool> &CallerMap, 2566 const FunctionDecl *Caller, 2567 llvm::StringMap<bool> &CalleeMap, 2568 const FunctionDecl *Callee) { 2569 if (CalleeMap.empty() && CallerMap.empty()) { 2570 // The caller is potentially nullptr in the case where the call isn't in a 2571 // function. In this case, the getFunctionFeatureMap ensures we just get 2572 // the TU level setting (since it cannot be modified by 'target'.. 2573 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2574 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2575 } 2576 } 2577 2578 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2579 SourceLocation CallLoc, 2580 const llvm::StringMap<bool> &CallerMap, 2581 const llvm::StringMap<bool> &CalleeMap, 2582 QualType Ty, StringRef Feature, 2583 bool IsArgument) { 2584 bool CallerHasFeat = CallerMap.lookup(Feature); 2585 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2586 if (!CallerHasFeat && !CalleeHasFeat) 2587 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2588 << IsArgument << Ty << Feature; 2589 2590 // Mixing calling conventions here is very clearly an error. 2591 if (!CallerHasFeat || !CalleeHasFeat) 2592 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2593 << IsArgument << Ty << Feature; 2594 2595 // Else, both caller and callee have the required feature, so there is no need 2596 // to diagnose. 2597 return false; 2598 } 2599 2600 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2601 SourceLocation CallLoc, 2602 const llvm::StringMap<bool> &CallerMap, 2603 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2604 bool IsArgument) { 2605 uint64_t Size = Ctx.getTypeSize(Ty); 2606 if (Size > 256) 2607 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2608 "avx512f", IsArgument); 2609 2610 if (Size > 128) 2611 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2612 IsArgument); 2613 2614 return false; 2615 } 2616 2617 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2618 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2619 const FunctionDecl *Callee, const CallArgList &Args) const { 2620 llvm::StringMap<bool> CallerMap; 2621 llvm::StringMap<bool> CalleeMap; 2622 unsigned ArgIndex = 0; 2623 2624 // We need to loop through the actual call arguments rather than the the 2625 // function's parameters, in case this variadic. 2626 for (const CallArg &Arg : Args) { 2627 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2628 // additionally changes how vectors >256 in size are passed. Like GCC, we 2629 // warn when a function is called with an argument where this will change. 2630 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2631 // the caller and callee features are mismatched. 2632 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2633 // change its ABI with attribute-target after this call. 2634 if (Arg.getType()->isVectorType() && 2635 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2636 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2637 QualType Ty = Arg.getType(); 2638 // The CallArg seems to have desugared the type already, so for clearer 2639 // diagnostics, replace it with the type in the FunctionDecl if possible. 2640 if (ArgIndex < Callee->getNumParams()) 2641 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2642 2643 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2644 CalleeMap, Ty, /*IsArgument*/ true)) 2645 return; 2646 } 2647 ++ArgIndex; 2648 } 2649 2650 // Check return always, as we don't have a good way of knowing in codegen 2651 // whether this value is used, tail-called, etc. 2652 if (Callee->getReturnType()->isVectorType() && 2653 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2654 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2655 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2656 CalleeMap, Callee->getReturnType(), 2657 /*IsArgument*/ false); 2658 } 2659 } 2660 2661 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2662 // If the argument does not end in .lib, automatically add the suffix. 2663 // If the argument contains a space, enclose it in quotes. 2664 // This matches the behavior of MSVC. 2665 bool Quote = Lib.contains(' '); 2666 std::string ArgStr = Quote ? "\"" : ""; 2667 ArgStr += Lib; 2668 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2669 ArgStr += ".lib"; 2670 ArgStr += Quote ? "\"" : ""; 2671 return ArgStr; 2672 } 2673 2674 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2675 public: 2676 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2677 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2678 unsigned NumRegisterParameters) 2679 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2680 Win32StructABI, NumRegisterParameters, false) {} 2681 2682 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2683 CodeGen::CodeGenModule &CGM) const override; 2684 2685 void getDependentLibraryOption(llvm::StringRef Lib, 2686 llvm::SmallString<24> &Opt) const override { 2687 Opt = "/DEFAULTLIB:"; 2688 Opt += qualifyWindowsLibrary(Lib); 2689 } 2690 2691 void getDetectMismatchOption(llvm::StringRef Name, 2692 llvm::StringRef Value, 2693 llvm::SmallString<32> &Opt) const override { 2694 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2695 } 2696 }; 2697 2698 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2699 CodeGen::CodeGenModule &CGM) { 2700 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2701 2702 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2703 Fn->addFnAttr("stack-probe-size", 2704 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2705 if (CGM.getCodeGenOpts().NoStackArgProbe) 2706 Fn->addFnAttr("no-stack-arg-probe"); 2707 } 2708 } 2709 2710 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2711 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2712 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2713 if (GV->isDeclaration()) 2714 return; 2715 addStackProbeTargetAttributes(D, GV, CGM); 2716 } 2717 2718 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2719 public: 2720 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2721 X86AVXABILevel AVXLevel) 2722 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2723 2724 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2725 CodeGen::CodeGenModule &CGM) const override; 2726 2727 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2728 return 7; 2729 } 2730 2731 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2732 llvm::Value *Address) const override { 2733 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2734 2735 // 0-15 are the 16 integer registers. 2736 // 16 is %rip. 2737 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2738 return false; 2739 } 2740 2741 void getDependentLibraryOption(llvm::StringRef Lib, 2742 llvm::SmallString<24> &Opt) const override { 2743 Opt = "/DEFAULTLIB:"; 2744 Opt += qualifyWindowsLibrary(Lib); 2745 } 2746 2747 void getDetectMismatchOption(llvm::StringRef Name, 2748 llvm::StringRef Value, 2749 llvm::SmallString<32> &Opt) const override { 2750 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2751 } 2752 }; 2753 2754 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2755 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2756 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2757 if (GV->isDeclaration()) 2758 return; 2759 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2760 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2761 llvm::Function *Fn = cast<llvm::Function>(GV); 2762 Fn->addFnAttr("stackrealign"); 2763 } 2764 2765 addX86InterruptAttrs(FD, GV, CGM); 2766 } 2767 2768 addStackProbeTargetAttributes(D, GV, CGM); 2769 } 2770 } 2771 2772 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2773 Class &Hi) const { 2774 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2775 // 2776 // (a) If one of the classes is Memory, the whole argument is passed in 2777 // memory. 2778 // 2779 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2780 // memory. 2781 // 2782 // (c) If the size of the aggregate exceeds two eightbytes and the first 2783 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2784 // argument is passed in memory. NOTE: This is necessary to keep the 2785 // ABI working for processors that don't support the __m256 type. 2786 // 2787 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2788 // 2789 // Some of these are enforced by the merging logic. Others can arise 2790 // only with unions; for example: 2791 // union { _Complex double; unsigned; } 2792 // 2793 // Note that clauses (b) and (c) were added in 0.98. 2794 // 2795 if (Hi == Memory) 2796 Lo = Memory; 2797 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2798 Lo = Memory; 2799 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2800 Lo = Memory; 2801 if (Hi == SSEUp && Lo != SSE) 2802 Hi = SSE; 2803 } 2804 2805 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2806 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2807 // classified recursively so that always two fields are 2808 // considered. The resulting class is calculated according to 2809 // the classes of the fields in the eightbyte: 2810 // 2811 // (a) If both classes are equal, this is the resulting class. 2812 // 2813 // (b) If one of the classes is NO_CLASS, the resulting class is 2814 // the other class. 2815 // 2816 // (c) If one of the classes is MEMORY, the result is the MEMORY 2817 // class. 2818 // 2819 // (d) If one of the classes is INTEGER, the result is the 2820 // INTEGER. 2821 // 2822 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2823 // MEMORY is used as class. 2824 // 2825 // (f) Otherwise class SSE is used. 2826 2827 // Accum should never be memory (we should have returned) or 2828 // ComplexX87 (because this cannot be passed in a structure). 2829 assert((Accum != Memory && Accum != ComplexX87) && 2830 "Invalid accumulated classification during merge."); 2831 if (Accum == Field || Field == NoClass) 2832 return Accum; 2833 if (Field == Memory) 2834 return Memory; 2835 if (Accum == NoClass) 2836 return Field; 2837 if (Accum == Integer || Field == Integer) 2838 return Integer; 2839 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2840 Accum == X87 || Accum == X87Up) 2841 return Memory; 2842 return SSE; 2843 } 2844 2845 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, 2846 Class &Hi, bool isNamedArg, bool IsRegCall) const { 2847 // FIXME: This code can be simplified by introducing a simple value class for 2848 // Class pairs with appropriate constructor methods for the various 2849 // situations. 2850 2851 // FIXME: Some of the split computations are wrong; unaligned vectors 2852 // shouldn't be passed in registers for example, so there is no chance they 2853 // can straddle an eightbyte. Verify & simplify. 2854 2855 Lo = Hi = NoClass; 2856 2857 Class &Current = OffsetBase < 64 ? Lo : Hi; 2858 Current = Memory; 2859 2860 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2861 BuiltinType::Kind k = BT->getKind(); 2862 2863 if (k == BuiltinType::Void) { 2864 Current = NoClass; 2865 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2866 Lo = Integer; 2867 Hi = Integer; 2868 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2869 Current = Integer; 2870 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2871 k == BuiltinType::Float16) { 2872 Current = SSE; 2873 } else if (k == BuiltinType::LongDouble) { 2874 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2875 if (LDF == &llvm::APFloat::IEEEquad()) { 2876 Lo = SSE; 2877 Hi = SSEUp; 2878 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2879 Lo = X87; 2880 Hi = X87Up; 2881 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2882 Current = SSE; 2883 } else 2884 llvm_unreachable("unexpected long double representation!"); 2885 } 2886 // FIXME: _Decimal32 and _Decimal64 are SSE. 2887 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2888 return; 2889 } 2890 2891 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2892 // Classify the underlying integer type. 2893 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2894 return; 2895 } 2896 2897 if (Ty->hasPointerRepresentation()) { 2898 Current = Integer; 2899 return; 2900 } 2901 2902 if (Ty->isMemberPointerType()) { 2903 if (Ty->isMemberFunctionPointerType()) { 2904 if (Has64BitPointers) { 2905 // If Has64BitPointers, this is an {i64, i64}, so classify both 2906 // Lo and Hi now. 2907 Lo = Hi = Integer; 2908 } else { 2909 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2910 // straddles an eightbyte boundary, Hi should be classified as well. 2911 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2912 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2913 if (EB_FuncPtr != EB_ThisAdj) { 2914 Lo = Hi = Integer; 2915 } else { 2916 Current = Integer; 2917 } 2918 } 2919 } else { 2920 Current = Integer; 2921 } 2922 return; 2923 } 2924 2925 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2926 uint64_t Size = getContext().getTypeSize(VT); 2927 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2928 // gcc passes the following as integer: 2929 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2930 // 2 bytes - <2 x char>, <1 x short> 2931 // 1 byte - <1 x char> 2932 Current = Integer; 2933 2934 // If this type crosses an eightbyte boundary, it should be 2935 // split. 2936 uint64_t EB_Lo = (OffsetBase) / 64; 2937 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2938 if (EB_Lo != EB_Hi) 2939 Hi = Lo; 2940 } else if (Size == 64) { 2941 QualType ElementType = VT->getElementType(); 2942 2943 // gcc passes <1 x double> in memory. :( 2944 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2945 return; 2946 2947 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2948 // pass them as integer. For platforms where clang is the de facto 2949 // platform compiler, we must continue to use integer. 2950 if (!classifyIntegerMMXAsSSE() && 2951 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2952 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2953 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2954 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2955 Current = Integer; 2956 else 2957 Current = SSE; 2958 2959 // If this type crosses an eightbyte boundary, it should be 2960 // split. 2961 if (OffsetBase && OffsetBase != 64) 2962 Hi = Lo; 2963 } else if (Size == 128 || 2964 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2965 QualType ElementType = VT->getElementType(); 2966 2967 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2968 if (passInt128VectorsInMem() && Size != 128 && 2969 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2970 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2971 return; 2972 2973 // Arguments of 256-bits are split into four eightbyte chunks. The 2974 // least significant one belongs to class SSE and all the others to class 2975 // SSEUP. The original Lo and Hi design considers that types can't be 2976 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2977 // This design isn't correct for 256-bits, but since there're no cases 2978 // where the upper parts would need to be inspected, avoid adding 2979 // complexity and just consider Hi to match the 64-256 part. 2980 // 2981 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2982 // registers if they are "named", i.e. not part of the "..." of a 2983 // variadic function. 2984 // 2985 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2986 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2987 Lo = SSE; 2988 Hi = SSEUp; 2989 } 2990 return; 2991 } 2992 2993 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2994 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2995 2996 uint64_t Size = getContext().getTypeSize(Ty); 2997 if (ET->isIntegralOrEnumerationType()) { 2998 if (Size <= 64) 2999 Current = Integer; 3000 else if (Size <= 128) 3001 Lo = Hi = Integer; 3002 } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { 3003 Current = SSE; 3004 } else if (ET == getContext().DoubleTy) { 3005 Lo = Hi = SSE; 3006 } else if (ET == getContext().LongDoubleTy) { 3007 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3008 if (LDF == &llvm::APFloat::IEEEquad()) 3009 Current = Memory; 3010 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 3011 Current = ComplexX87; 3012 else if (LDF == &llvm::APFloat::IEEEdouble()) 3013 Lo = Hi = SSE; 3014 else 3015 llvm_unreachable("unexpected long double representation!"); 3016 } 3017 3018 // If this complex type crosses an eightbyte boundary then it 3019 // should be split. 3020 uint64_t EB_Real = (OffsetBase) / 64; 3021 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3022 if (Hi == NoClass && EB_Real != EB_Imag) 3023 Hi = Lo; 3024 3025 return; 3026 } 3027 3028 if (const auto *EITy = Ty->getAs<BitIntType>()) { 3029 if (EITy->getNumBits() <= 64) 3030 Current = Integer; 3031 else if (EITy->getNumBits() <= 128) 3032 Lo = Hi = Integer; 3033 // Larger values need to get passed in memory. 3034 return; 3035 } 3036 3037 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3038 // Arrays are treated like structures. 3039 3040 uint64_t Size = getContext().getTypeSize(Ty); 3041 3042 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3043 // than eight eightbytes, ..., it has class MEMORY. 3044 // regcall ABI doesn't have limitation to an object. The only limitation 3045 // is the free registers, which will be checked in computeInfo. 3046 if (!IsRegCall && Size > 512) 3047 return; 3048 3049 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3050 // fields, it has class MEMORY. 3051 // 3052 // Only need to check alignment of array base. 3053 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3054 return; 3055 3056 // Otherwise implement simplified merge. We could be smarter about 3057 // this, but it isn't worth it and would be harder to verify. 3058 Current = NoClass; 3059 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3060 uint64_t ArraySize = AT->getSize().getZExtValue(); 3061 3062 // The only case a 256-bit wide vector could be used is when the array 3063 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3064 // to work for sizes wider than 128, early check and fallback to memory. 3065 // 3066 if (Size > 128 && 3067 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3068 return; 3069 3070 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3071 Class FieldLo, FieldHi; 3072 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3073 Lo = merge(Lo, FieldLo); 3074 Hi = merge(Hi, FieldHi); 3075 if (Lo == Memory || Hi == Memory) 3076 break; 3077 } 3078 3079 postMerge(Size, Lo, Hi); 3080 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3081 return; 3082 } 3083 3084 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3085 uint64_t Size = getContext().getTypeSize(Ty); 3086 3087 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3088 // than eight eightbytes, ..., it has class MEMORY. 3089 if (Size > 512) 3090 return; 3091 3092 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3093 // copy constructor or a non-trivial destructor, it is passed by invisible 3094 // reference. 3095 if (getRecordArgABI(RT, getCXXABI())) 3096 return; 3097 3098 const RecordDecl *RD = RT->getDecl(); 3099 3100 // Assume variable sized types are passed in memory. 3101 if (RD->hasFlexibleArrayMember()) 3102 return; 3103 3104 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3105 3106 // Reset Lo class, this will be recomputed. 3107 Current = NoClass; 3108 3109 // If this is a C++ record, classify the bases first. 3110 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3111 for (const auto &I : CXXRD->bases()) { 3112 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3113 "Unexpected base class!"); 3114 const auto *Base = 3115 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3116 3117 // Classify this field. 3118 // 3119 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3120 // single eightbyte, each is classified separately. Each eightbyte gets 3121 // initialized to class NO_CLASS. 3122 Class FieldLo, FieldHi; 3123 uint64_t Offset = 3124 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3125 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3126 Lo = merge(Lo, FieldLo); 3127 Hi = merge(Hi, FieldHi); 3128 if (Lo == Memory || Hi == Memory) { 3129 postMerge(Size, Lo, Hi); 3130 return; 3131 } 3132 } 3133 } 3134 3135 // Classify the fields one at a time, merging the results. 3136 unsigned idx = 0; 3137 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3138 LangOptions::ClangABI::Ver11 || 3139 getContext().getTargetInfo().getTriple().isPS(); 3140 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3141 3142 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3143 i != e; ++i, ++idx) { 3144 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3145 bool BitField = i->isBitField(); 3146 3147 // Ignore padding bit-fields. 3148 if (BitField && i->isUnnamedBitfield()) 3149 continue; 3150 3151 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3152 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3153 // 3154 // The only case a 256-bit or a 512-bit wide vector could be used is when 3155 // the struct contains a single 256-bit or 512-bit element. Early check 3156 // and fallback to memory. 3157 // 3158 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3159 // than 128. 3160 if (Size > 128 && 3161 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3162 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3163 Lo = Memory; 3164 postMerge(Size, Lo, Hi); 3165 return; 3166 } 3167 // Note, skip this test for bit-fields, see below. 3168 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3169 Lo = Memory; 3170 postMerge(Size, Lo, Hi); 3171 return; 3172 } 3173 3174 // Classify this field. 3175 // 3176 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3177 // exceeds a single eightbyte, each is classified 3178 // separately. Each eightbyte gets initialized to class 3179 // NO_CLASS. 3180 Class FieldLo, FieldHi; 3181 3182 // Bit-fields require special handling, they do not force the 3183 // structure to be passed in memory even if unaligned, and 3184 // therefore they can straddle an eightbyte. 3185 if (BitField) { 3186 assert(!i->isUnnamedBitfield()); 3187 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3188 uint64_t Size = i->getBitWidthValue(getContext()); 3189 3190 uint64_t EB_Lo = Offset / 64; 3191 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3192 3193 if (EB_Lo) { 3194 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3195 FieldLo = NoClass; 3196 FieldHi = Integer; 3197 } else { 3198 FieldLo = Integer; 3199 FieldHi = EB_Hi ? Integer : NoClass; 3200 } 3201 } else 3202 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3203 Lo = merge(Lo, FieldLo); 3204 Hi = merge(Hi, FieldHi); 3205 if (Lo == Memory || Hi == Memory) 3206 break; 3207 } 3208 3209 postMerge(Size, Lo, Hi); 3210 } 3211 } 3212 3213 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3214 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3215 // place naturally. 3216 if (!isAggregateTypeForABI(Ty)) { 3217 // Treat an enum type as its underlying type. 3218 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3219 Ty = EnumTy->getDecl()->getIntegerType(); 3220 3221 if (Ty->isBitIntType()) 3222 return getNaturalAlignIndirect(Ty); 3223 3224 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3225 : ABIArgInfo::getDirect()); 3226 } 3227 3228 return getNaturalAlignIndirect(Ty); 3229 } 3230 3231 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3232 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3233 uint64_t Size = getContext().getTypeSize(VecTy); 3234 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3235 if (Size <= 64 || Size > LargestVector) 3236 return true; 3237 QualType EltTy = VecTy->getElementType(); 3238 if (passInt128VectorsInMem() && 3239 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3240 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3241 return true; 3242 } 3243 3244 return false; 3245 } 3246 3247 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3248 unsigned freeIntRegs) const { 3249 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3250 // place naturally. 3251 // 3252 // This assumption is optimistic, as there could be free registers available 3253 // when we need to pass this argument in memory, and LLVM could try to pass 3254 // the argument in the free register. This does not seem to happen currently, 3255 // but this code would be much safer if we could mark the argument with 3256 // 'onstack'. See PR12193. 3257 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3258 !Ty->isBitIntType()) { 3259 // Treat an enum type as its underlying type. 3260 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3261 Ty = EnumTy->getDecl()->getIntegerType(); 3262 3263 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3264 : ABIArgInfo::getDirect()); 3265 } 3266 3267 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3268 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3269 3270 // Compute the byval alignment. We specify the alignment of the byval in all 3271 // cases so that the mid-level optimizer knows the alignment of the byval. 3272 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3273 3274 // Attempt to avoid passing indirect results using byval when possible. This 3275 // is important for good codegen. 3276 // 3277 // We do this by coercing the value into a scalar type which the backend can 3278 // handle naturally (i.e., without using byval). 3279 // 3280 // For simplicity, we currently only do this when we have exhausted all of the 3281 // free integer registers. Doing this when there are free integer registers 3282 // would require more care, as we would have to ensure that the coerced value 3283 // did not claim the unused register. That would require either reording the 3284 // arguments to the function (so that any subsequent inreg values came first), 3285 // or only doing this optimization when there were no following arguments that 3286 // might be inreg. 3287 // 3288 // We currently expect it to be rare (particularly in well written code) for 3289 // arguments to be passed on the stack when there are still free integer 3290 // registers available (this would typically imply large structs being passed 3291 // by value), so this seems like a fair tradeoff for now. 3292 // 3293 // We can revisit this if the backend grows support for 'onstack' parameter 3294 // attributes. See PR12193. 3295 if (freeIntRegs == 0) { 3296 uint64_t Size = getContext().getTypeSize(Ty); 3297 3298 // If this type fits in an eightbyte, coerce it into the matching integral 3299 // type, which will end up on the stack (with alignment 8). 3300 if (Align == 8 && Size <= 64) 3301 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3302 Size)); 3303 } 3304 3305 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3306 } 3307 3308 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3309 /// register. Pick an LLVM IR type that will be passed as a vector register. 3310 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3311 // Wrapper structs/arrays that only contain vectors are passed just like 3312 // vectors; strip them off if present. 3313 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3314 Ty = QualType(InnerTy, 0); 3315 3316 llvm::Type *IRType = CGT.ConvertType(Ty); 3317 if (isa<llvm::VectorType>(IRType)) { 3318 // Don't pass vXi128 vectors in their native type, the backend can't 3319 // legalize them. 3320 if (passInt128VectorsInMem() && 3321 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3322 // Use a vXi64 vector. 3323 uint64_t Size = getContext().getTypeSize(Ty); 3324 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3325 Size / 64); 3326 } 3327 3328 return IRType; 3329 } 3330 3331 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3332 return IRType; 3333 3334 // We couldn't find the preferred IR vector type for 'Ty'. 3335 uint64_t Size = getContext().getTypeSize(Ty); 3336 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3337 3338 3339 // Return a LLVM IR vector type based on the size of 'Ty'. 3340 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3341 Size / 64); 3342 } 3343 3344 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3345 /// is known to either be off the end of the specified type or being in 3346 /// alignment padding. The user type specified is known to be at most 128 bits 3347 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3348 /// classification that put one of the two halves in the INTEGER class. 3349 /// 3350 /// It is conservatively correct to return false. 3351 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3352 unsigned EndBit, ASTContext &Context) { 3353 // If the bytes being queried are off the end of the type, there is no user 3354 // data hiding here. This handles analysis of builtins, vectors and other 3355 // types that don't contain interesting padding. 3356 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3357 if (TySize <= StartBit) 3358 return true; 3359 3360 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3361 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3362 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3363 3364 // Check each element to see if the element overlaps with the queried range. 3365 for (unsigned i = 0; i != NumElts; ++i) { 3366 // If the element is after the span we care about, then we're done.. 3367 unsigned EltOffset = i*EltSize; 3368 if (EltOffset >= EndBit) break; 3369 3370 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3371 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3372 EndBit-EltOffset, Context)) 3373 return false; 3374 } 3375 // If it overlaps no elements, then it is safe to process as padding. 3376 return true; 3377 } 3378 3379 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3380 const RecordDecl *RD = RT->getDecl(); 3381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3382 3383 // If this is a C++ record, check the bases first. 3384 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3385 for (const auto &I : CXXRD->bases()) { 3386 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3387 "Unexpected base class!"); 3388 const auto *Base = 3389 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3390 3391 // If the base is after the span we care about, ignore it. 3392 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3393 if (BaseOffset >= EndBit) continue; 3394 3395 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3396 if (!BitsContainNoUserData(I.getType(), BaseStart, 3397 EndBit-BaseOffset, Context)) 3398 return false; 3399 } 3400 } 3401 3402 // Verify that no field has data that overlaps the region of interest. Yes 3403 // this could be sped up a lot by being smarter about queried fields, 3404 // however we're only looking at structs up to 16 bytes, so we don't care 3405 // much. 3406 unsigned idx = 0; 3407 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3408 i != e; ++i, ++idx) { 3409 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3410 3411 // If we found a field after the region we care about, then we're done. 3412 if (FieldOffset >= EndBit) break; 3413 3414 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3415 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3416 Context)) 3417 return false; 3418 } 3419 3420 // If nothing in this record overlapped the area of interest, then we're 3421 // clean. 3422 return true; 3423 } 3424 3425 return false; 3426 } 3427 3428 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3429 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3430 const llvm::DataLayout &TD) { 3431 if (IROffset == 0 && IRType->isFloatingPointTy()) 3432 return IRType; 3433 3434 // If this is a struct, recurse into the field at the specified offset. 3435 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3436 if (!STy->getNumContainedTypes()) 3437 return nullptr; 3438 3439 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3440 unsigned Elt = SL->getElementContainingOffset(IROffset); 3441 IROffset -= SL->getElementOffset(Elt); 3442 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3443 } 3444 3445 // If this is an array, recurse into the field at the specified offset. 3446 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3447 llvm::Type *EltTy = ATy->getElementType(); 3448 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3449 IROffset -= IROffset / EltSize * EltSize; 3450 return getFPTypeAtOffset(EltTy, IROffset, TD); 3451 } 3452 3453 return nullptr; 3454 } 3455 3456 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3457 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3458 llvm::Type *X86_64ABIInfo:: 3459 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3460 QualType SourceTy, unsigned SourceOffset) const { 3461 const llvm::DataLayout &TD = getDataLayout(); 3462 unsigned SourceSize = 3463 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3464 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3465 if (!T0 || T0->isDoubleTy()) 3466 return llvm::Type::getDoubleTy(getVMContext()); 3467 3468 // Get the adjacent FP type. 3469 llvm::Type *T1 = nullptr; 3470 unsigned T0Size = TD.getTypeAllocSize(T0); 3471 if (SourceSize > T0Size) 3472 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3473 if (T1 == nullptr) { 3474 // Check if IRType is a half + float. float type will be in IROffset+4 due 3475 // to its alignment. 3476 if (T0->isHalfTy() && SourceSize > 4) 3477 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3478 // If we can't get a second FP type, return a simple half or float. 3479 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3480 // {float, i8} too. 3481 if (T1 == nullptr) 3482 return T0; 3483 } 3484 3485 if (T0->isFloatTy() && T1->isFloatTy()) 3486 return llvm::FixedVectorType::get(T0, 2); 3487 3488 if (T0->isHalfTy() && T1->isHalfTy()) { 3489 llvm::Type *T2 = nullptr; 3490 if (SourceSize > 4) 3491 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3492 if (T2 == nullptr) 3493 return llvm::FixedVectorType::get(T0, 2); 3494 return llvm::FixedVectorType::get(T0, 4); 3495 } 3496 3497 if (T0->isHalfTy() || T1->isHalfTy()) 3498 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3499 3500 return llvm::Type::getDoubleTy(getVMContext()); 3501 } 3502 3503 3504 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3505 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3506 /// about the high or low part of an up-to-16-byte struct. This routine picks 3507 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3508 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3509 /// etc). 3510 /// 3511 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3512 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3513 /// the 8-byte value references. PrefType may be null. 3514 /// 3515 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3516 /// an offset into this that we're processing (which is always either 0 or 8). 3517 /// 3518 llvm::Type *X86_64ABIInfo:: 3519 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3520 QualType SourceTy, unsigned SourceOffset) const { 3521 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3522 // returning an 8-byte unit starting with it. See if we can safely use it. 3523 if (IROffset == 0) { 3524 // Pointers and int64's always fill the 8-byte unit. 3525 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3526 IRType->isIntegerTy(64)) 3527 return IRType; 3528 3529 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3530 // goodness in the source type is just tail padding. This is allowed to 3531 // kick in for struct {double,int} on the int, but not on 3532 // struct{double,int,int} because we wouldn't return the second int. We 3533 // have to do this analysis on the source type because we can't depend on 3534 // unions being lowered a specific way etc. 3535 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3536 IRType->isIntegerTy(32) || 3537 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3538 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3539 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3540 3541 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3542 SourceOffset*8+64, getContext())) 3543 return IRType; 3544 } 3545 } 3546 3547 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3548 // If this is a struct, recurse into the field at the specified offset. 3549 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3550 if (IROffset < SL->getSizeInBytes()) { 3551 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3552 IROffset -= SL->getElementOffset(FieldIdx); 3553 3554 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3555 SourceTy, SourceOffset); 3556 } 3557 } 3558 3559 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3560 llvm::Type *EltTy = ATy->getElementType(); 3561 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3562 unsigned EltOffset = IROffset/EltSize*EltSize; 3563 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3564 SourceOffset); 3565 } 3566 3567 // Okay, we don't have any better idea of what to pass, so we pass this in an 3568 // integer register that isn't too big to fit the rest of the struct. 3569 unsigned TySizeInBytes = 3570 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3571 3572 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3573 3574 // It is always safe to classify this as an integer type up to i64 that 3575 // isn't larger than the structure. 3576 return llvm::IntegerType::get(getVMContext(), 3577 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3578 } 3579 3580 3581 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3582 /// be used as elements of a two register pair to pass or return, return a 3583 /// first class aggregate to represent them. For example, if the low part of 3584 /// a by-value argument should be passed as i32* and the high part as float, 3585 /// return {i32*, float}. 3586 static llvm::Type * 3587 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3588 const llvm::DataLayout &TD) { 3589 // In order to correctly satisfy the ABI, we need to the high part to start 3590 // at offset 8. If the high and low parts we inferred are both 4-byte types 3591 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3592 // the second element at offset 8. Check for this: 3593 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3594 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3595 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3596 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3597 3598 // To handle this, we have to increase the size of the low part so that the 3599 // second element will start at an 8 byte offset. We can't increase the size 3600 // of the second element because it might make us access off the end of the 3601 // struct. 3602 if (HiStart != 8) { 3603 // There are usually two sorts of types the ABI generation code can produce 3604 // for the low part of a pair that aren't 8 bytes in size: half, float or 3605 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3606 // NaCl). 3607 // Promote these to a larger type. 3608 if (Lo->isHalfTy() || Lo->isFloatTy()) 3609 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3610 else { 3611 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3612 && "Invalid/unknown lo type"); 3613 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3614 } 3615 } 3616 3617 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3618 3619 // Verify that the second element is at an 8-byte offset. 3620 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3621 "Invalid x86-64 argument pair!"); 3622 return Result; 3623 } 3624 3625 ABIArgInfo X86_64ABIInfo:: 3626 classifyReturnType(QualType RetTy) const { 3627 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3628 // classification algorithm. 3629 X86_64ABIInfo::Class Lo, Hi; 3630 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3631 3632 // Check some invariants. 3633 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3634 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3635 3636 llvm::Type *ResType = nullptr; 3637 switch (Lo) { 3638 case NoClass: 3639 if (Hi == NoClass) 3640 return ABIArgInfo::getIgnore(); 3641 // If the low part is just padding, it takes no register, leave ResType 3642 // null. 3643 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3644 "Unknown missing lo part"); 3645 break; 3646 3647 case SSEUp: 3648 case X87Up: 3649 llvm_unreachable("Invalid classification for lo word."); 3650 3651 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3652 // hidden argument. 3653 case Memory: 3654 return getIndirectReturnResult(RetTy); 3655 3656 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3657 // available register of the sequence %rax, %rdx is used. 3658 case Integer: 3659 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3660 3661 // If we have a sign or zero extended integer, make sure to return Extend 3662 // so that the parameter gets the right LLVM IR attributes. 3663 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3664 // Treat an enum type as its underlying type. 3665 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3666 RetTy = EnumTy->getDecl()->getIntegerType(); 3667 3668 if (RetTy->isIntegralOrEnumerationType() && 3669 isPromotableIntegerTypeForABI(RetTy)) 3670 return ABIArgInfo::getExtend(RetTy); 3671 } 3672 break; 3673 3674 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3675 // available SSE register of the sequence %xmm0, %xmm1 is used. 3676 case SSE: 3677 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3678 break; 3679 3680 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3681 // returned on the X87 stack in %st0 as 80-bit x87 number. 3682 case X87: 3683 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3684 break; 3685 3686 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3687 // part of the value is returned in %st0 and the imaginary part in 3688 // %st1. 3689 case ComplexX87: 3690 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3691 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3692 llvm::Type::getX86_FP80Ty(getVMContext())); 3693 break; 3694 } 3695 3696 llvm::Type *HighPart = nullptr; 3697 switch (Hi) { 3698 // Memory was handled previously and X87 should 3699 // never occur as a hi class. 3700 case Memory: 3701 case X87: 3702 llvm_unreachable("Invalid classification for hi word."); 3703 3704 case ComplexX87: // Previously handled. 3705 case NoClass: 3706 break; 3707 3708 case Integer: 3709 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3710 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3711 return ABIArgInfo::getDirect(HighPart, 8); 3712 break; 3713 case SSE: 3714 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3715 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3716 return ABIArgInfo::getDirect(HighPart, 8); 3717 break; 3718 3719 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3720 // is passed in the next available eightbyte chunk if the last used 3721 // vector register. 3722 // 3723 // SSEUP should always be preceded by SSE, just widen. 3724 case SSEUp: 3725 assert(Lo == SSE && "Unexpected SSEUp classification."); 3726 ResType = GetByteVectorType(RetTy); 3727 break; 3728 3729 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3730 // returned together with the previous X87 value in %st0. 3731 case X87Up: 3732 // If X87Up is preceded by X87, we don't need to do 3733 // anything. However, in some cases with unions it may not be 3734 // preceded by X87. In such situations we follow gcc and pass the 3735 // extra bits in an SSE reg. 3736 if (Lo != X87) { 3737 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3738 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3739 return ABIArgInfo::getDirect(HighPart, 8); 3740 } 3741 break; 3742 } 3743 3744 // If a high part was specified, merge it together with the low part. It is 3745 // known to pass in the high eightbyte of the result. We do this by forming a 3746 // first class struct aggregate with the high and low part: {low, high} 3747 if (HighPart) 3748 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3749 3750 return ABIArgInfo::getDirect(ResType); 3751 } 3752 3753 ABIArgInfo 3754 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs, 3755 unsigned &neededInt, unsigned &neededSSE, 3756 bool isNamedArg, bool IsRegCall) const { 3757 Ty = useFirstFieldIfTransparentUnion(Ty); 3758 3759 X86_64ABIInfo::Class Lo, Hi; 3760 classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall); 3761 3762 // Check some invariants. 3763 // FIXME: Enforce these by construction. 3764 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3765 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3766 3767 neededInt = 0; 3768 neededSSE = 0; 3769 llvm::Type *ResType = nullptr; 3770 switch (Lo) { 3771 case NoClass: 3772 if (Hi == NoClass) 3773 return ABIArgInfo::getIgnore(); 3774 // If the low part is just padding, it takes no register, leave ResType 3775 // null. 3776 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3777 "Unknown missing lo part"); 3778 break; 3779 3780 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3781 // on the stack. 3782 case Memory: 3783 3784 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3785 // COMPLEX_X87, it is passed in memory. 3786 case X87: 3787 case ComplexX87: 3788 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3789 ++neededInt; 3790 return getIndirectResult(Ty, freeIntRegs); 3791 3792 case SSEUp: 3793 case X87Up: 3794 llvm_unreachable("Invalid classification for lo word."); 3795 3796 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3797 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3798 // and %r9 is used. 3799 case Integer: 3800 ++neededInt; 3801 3802 // Pick an 8-byte type based on the preferred type. 3803 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3804 3805 // If we have a sign or zero extended integer, make sure to return Extend 3806 // so that the parameter gets the right LLVM IR attributes. 3807 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3808 // Treat an enum type as its underlying type. 3809 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3810 Ty = EnumTy->getDecl()->getIntegerType(); 3811 3812 if (Ty->isIntegralOrEnumerationType() && 3813 isPromotableIntegerTypeForABI(Ty)) 3814 return ABIArgInfo::getExtend(Ty); 3815 } 3816 3817 break; 3818 3819 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3820 // available SSE register is used, the registers are taken in the 3821 // order from %xmm0 to %xmm7. 3822 case SSE: { 3823 llvm::Type *IRType = CGT.ConvertType(Ty); 3824 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3825 ++neededSSE; 3826 break; 3827 } 3828 } 3829 3830 llvm::Type *HighPart = nullptr; 3831 switch (Hi) { 3832 // Memory was handled previously, ComplexX87 and X87 should 3833 // never occur as hi classes, and X87Up must be preceded by X87, 3834 // which is passed in memory. 3835 case Memory: 3836 case X87: 3837 case ComplexX87: 3838 llvm_unreachable("Invalid classification for hi word."); 3839 3840 case NoClass: break; 3841 3842 case Integer: 3843 ++neededInt; 3844 // Pick an 8-byte type based on the preferred type. 3845 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3846 3847 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3848 return ABIArgInfo::getDirect(HighPart, 8); 3849 break; 3850 3851 // X87Up generally doesn't occur here (long double is passed in 3852 // memory), except in situations involving unions. 3853 case X87Up: 3854 case SSE: 3855 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3856 3857 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3858 return ABIArgInfo::getDirect(HighPart, 8); 3859 3860 ++neededSSE; 3861 break; 3862 3863 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3864 // eightbyte is passed in the upper half of the last used SSE 3865 // register. This only happens when 128-bit vectors are passed. 3866 case SSEUp: 3867 assert(Lo == SSE && "Unexpected SSEUp classification"); 3868 ResType = GetByteVectorType(Ty); 3869 break; 3870 } 3871 3872 // If a high part was specified, merge it together with the low part. It is 3873 // known to pass in the high eightbyte of the result. We do this by forming a 3874 // first class struct aggregate with the high and low part: {low, high} 3875 if (HighPart) 3876 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3877 3878 return ABIArgInfo::getDirect(ResType); 3879 } 3880 3881 ABIArgInfo 3882 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3883 unsigned &NeededSSE, 3884 unsigned &MaxVectorWidth) const { 3885 auto RT = Ty->getAs<RecordType>(); 3886 assert(RT && "classifyRegCallStructType only valid with struct types"); 3887 3888 if (RT->getDecl()->hasFlexibleArrayMember()) 3889 return getIndirectReturnResult(Ty); 3890 3891 // Sum up bases 3892 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3893 if (CXXRD->isDynamicClass()) { 3894 NeededInt = NeededSSE = 0; 3895 return getIndirectReturnResult(Ty); 3896 } 3897 3898 for (const auto &I : CXXRD->bases()) 3899 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE, 3900 MaxVectorWidth) 3901 .isIndirect()) { 3902 NeededInt = NeededSSE = 0; 3903 return getIndirectReturnResult(Ty); 3904 } 3905 } 3906 3907 // Sum up members 3908 for (const auto *FD : RT->getDecl()->fields()) { 3909 QualType MTy = FD->getType(); 3910 if (MTy->isRecordType() && !MTy->isUnionType()) { 3911 if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE, 3912 MaxVectorWidth) 3913 .isIndirect()) { 3914 NeededInt = NeededSSE = 0; 3915 return getIndirectReturnResult(Ty); 3916 } 3917 } else { 3918 unsigned LocalNeededInt, LocalNeededSSE; 3919 if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE, 3920 true, true) 3921 .isIndirect()) { 3922 NeededInt = NeededSSE = 0; 3923 return getIndirectReturnResult(Ty); 3924 } 3925 if (const auto *AT = getContext().getAsConstantArrayType(MTy)) 3926 MTy = AT->getElementType(); 3927 if (const auto *VT = MTy->getAs<VectorType>()) 3928 if (getContext().getTypeSize(VT) > MaxVectorWidth) 3929 MaxVectorWidth = getContext().getTypeSize(VT); 3930 NeededInt += LocalNeededInt; 3931 NeededSSE += LocalNeededSSE; 3932 } 3933 } 3934 3935 return ABIArgInfo::getDirect(); 3936 } 3937 3938 ABIArgInfo 3939 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 3940 unsigned &NeededSSE, 3941 unsigned &MaxVectorWidth) const { 3942 3943 NeededInt = 0; 3944 NeededSSE = 0; 3945 MaxVectorWidth = 0; 3946 3947 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE, 3948 MaxVectorWidth); 3949 } 3950 3951 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3952 3953 const unsigned CallingConv = FI.getCallingConvention(); 3954 // It is possible to force Win64 calling convention on any x86_64 target by 3955 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3956 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3957 if (CallingConv == llvm::CallingConv::Win64) { 3958 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3959 Win64ABIInfo.computeInfo(FI); 3960 return; 3961 } 3962 3963 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3964 3965 // Keep track of the number of assigned registers. 3966 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3967 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3968 unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0; 3969 3970 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3971 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3972 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3973 FI.getReturnInfo() = classifyRegCallStructType( 3974 FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth); 3975 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3976 FreeIntRegs -= NeededInt; 3977 FreeSSERegs -= NeededSSE; 3978 } else { 3979 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3980 } 3981 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3982 getContext().getCanonicalType(FI.getReturnType() 3983 ->getAs<ComplexType>() 3984 ->getElementType()) == 3985 getContext().LongDoubleTy) 3986 // Complex Long Double Type is passed in Memory when Regcall 3987 // calling convention is used. 3988 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3989 else 3990 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3991 } 3992 3993 // If the return value is indirect, then the hidden argument is consuming one 3994 // integer register. 3995 if (FI.getReturnInfo().isIndirect()) 3996 --FreeIntRegs; 3997 else if (NeededSSE && MaxVectorWidth > 0) 3998 FI.setMaxVectorWidth(MaxVectorWidth); 3999 4000 // The chain argument effectively gives us another free register. 4001 if (FI.isChainCall()) 4002 ++FreeIntRegs; 4003 4004 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 4005 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 4006 // get assigned (in left-to-right order) for passing as follows... 4007 unsigned ArgNo = 0; 4008 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4009 it != ie; ++it, ++ArgNo) { 4010 bool IsNamedArg = ArgNo < NumRequiredArgs; 4011 4012 if (IsRegCall && it->type->isStructureOrClassType()) 4013 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE, 4014 MaxVectorWidth); 4015 else 4016 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 4017 NeededSSE, IsNamedArg); 4018 4019 // AMD64-ABI 3.2.3p3: If there are no registers available for any 4020 // eightbyte of an argument, the whole argument is passed on the 4021 // stack. If registers have already been assigned for some 4022 // eightbytes of such an argument, the assignments get reverted. 4023 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 4024 FreeIntRegs -= NeededInt; 4025 FreeSSERegs -= NeededSSE; 4026 if (MaxVectorWidth > FI.getMaxVectorWidth()) 4027 FI.setMaxVectorWidth(MaxVectorWidth); 4028 } else { 4029 it->info = getIndirectResult(it->type, FreeIntRegs); 4030 } 4031 } 4032 } 4033 4034 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4035 Address VAListAddr, QualType Ty) { 4036 Address overflow_arg_area_p = 4037 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4038 llvm::Value *overflow_arg_area = 4039 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4040 4041 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4042 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4043 // It isn't stated explicitly in the standard, but in practice we use 4044 // alignment greater than 16 where necessary. 4045 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4046 if (Align > CharUnits::fromQuantity(8)) { 4047 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4048 Align); 4049 } 4050 4051 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4052 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4053 llvm::Value *Res = 4054 CGF.Builder.CreateBitCast(overflow_arg_area, 4055 llvm::PointerType::getUnqual(LTy)); 4056 4057 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4058 // l->overflow_arg_area + sizeof(type). 4059 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4060 // an 8 byte boundary. 4061 4062 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4063 llvm::Value *Offset = 4064 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4065 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4066 Offset, "overflow_arg_area.next"); 4067 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4068 4069 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4070 return Address(Res, LTy, Align); 4071 } 4072 4073 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4074 QualType Ty) const { 4075 // Assume that va_list type is correct; should be pointer to LLVM type: 4076 // struct { 4077 // i32 gp_offset; 4078 // i32 fp_offset; 4079 // i8* overflow_arg_area; 4080 // i8* reg_save_area; 4081 // }; 4082 unsigned neededInt, neededSSE; 4083 4084 Ty = getContext().getCanonicalType(Ty); 4085 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4086 /*isNamedArg*/false); 4087 4088 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4089 // in the registers. If not go to step 7. 4090 if (!neededInt && !neededSSE) 4091 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4092 4093 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4094 // general purpose registers needed to pass type and num_fp to hold 4095 // the number of floating point registers needed. 4096 4097 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4098 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4099 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4100 // 4101 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4102 // register save space). 4103 4104 llvm::Value *InRegs = nullptr; 4105 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4106 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4107 if (neededInt) { 4108 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4109 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4110 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4111 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4112 } 4113 4114 if (neededSSE) { 4115 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4116 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4117 llvm::Value *FitsInFP = 4118 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4119 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4120 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4121 } 4122 4123 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4124 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4125 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4126 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4127 4128 // Emit code to load the value if it was passed in registers. 4129 4130 CGF.EmitBlock(InRegBlock); 4131 4132 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4133 // an offset of l->gp_offset and/or l->fp_offset. This may require 4134 // copying to a temporary location in case the parameter is passed 4135 // in different register classes or requires an alignment greater 4136 // than 8 for general purpose registers and 16 for XMM registers. 4137 // 4138 // FIXME: This really results in shameful code when we end up needing to 4139 // collect arguments from different places; often what should result in a 4140 // simple assembling of a structure from scattered addresses has many more 4141 // loads than necessary. Can we clean this up? 4142 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4143 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4144 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4145 4146 Address RegAddr = Address::invalid(); 4147 if (neededInt && neededSSE) { 4148 // FIXME: Cleanup. 4149 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4150 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4151 Address Tmp = CGF.CreateMemTemp(Ty); 4152 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4153 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4154 llvm::Type *TyLo = ST->getElementType(0); 4155 llvm::Type *TyHi = ST->getElementType(1); 4156 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4157 "Unexpected ABI info for mixed regs"); 4158 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4159 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4160 llvm::Value *GPAddr = 4161 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4162 llvm::Value *FPAddr = 4163 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4164 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4165 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4166 4167 // Copy the first element. 4168 // FIXME: Our choice of alignment here and below is probably pessimistic. 4169 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4170 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4171 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4172 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4173 4174 // Copy the second element. 4175 V = CGF.Builder.CreateAlignedLoad( 4176 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4177 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4178 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4179 4180 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4181 } else if (neededInt) { 4182 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4183 CGF.Int8Ty, CharUnits::fromQuantity(8)); 4184 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4185 4186 // Copy to a temporary if necessary to ensure the appropriate alignment. 4187 auto TInfo = getContext().getTypeInfoInChars(Ty); 4188 uint64_t TySize = TInfo.Width.getQuantity(); 4189 CharUnits TyAlign = TInfo.Align; 4190 4191 // Copy into a temporary if the type is more aligned than the 4192 // register save area. 4193 if (TyAlign.getQuantity() > 8) { 4194 Address Tmp = CGF.CreateMemTemp(Ty); 4195 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4196 RegAddr = Tmp; 4197 } 4198 4199 } else if (neededSSE == 1) { 4200 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4201 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4202 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4203 } else { 4204 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4205 // SSE registers are spaced 16 bytes apart in the register save 4206 // area, we need to collect the two eightbytes together. 4207 // The ABI isn't explicit about this, but it seems reasonable 4208 // to assume that the slots are 16-byte aligned, since the stack is 4209 // naturally 16-byte aligned and the prologue is expected to store 4210 // all the SSE registers to the RSA. 4211 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4212 fp_offset), 4213 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4214 Address RegAddrHi = 4215 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4216 CharUnits::fromQuantity(16)); 4217 llvm::Type *ST = AI.canHaveCoerceToType() 4218 ? AI.getCoerceToType() 4219 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4220 llvm::Value *V; 4221 Address Tmp = CGF.CreateMemTemp(Ty); 4222 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4223 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4224 RegAddrLo, ST->getStructElementType(0))); 4225 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4226 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4227 RegAddrHi, ST->getStructElementType(1))); 4228 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4229 4230 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4231 } 4232 4233 // AMD64-ABI 3.5.7p5: Step 5. Set: 4234 // l->gp_offset = l->gp_offset + num_gp * 8 4235 // l->fp_offset = l->fp_offset + num_fp * 16. 4236 if (neededInt) { 4237 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4238 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4239 gp_offset_p); 4240 } 4241 if (neededSSE) { 4242 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4243 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4244 fp_offset_p); 4245 } 4246 CGF.EmitBranch(ContBlock); 4247 4248 // Emit code to load the value if it was passed in memory. 4249 4250 CGF.EmitBlock(InMemBlock); 4251 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4252 4253 // Return the appropriate result. 4254 4255 CGF.EmitBlock(ContBlock); 4256 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4257 "vaarg.addr"); 4258 return ResAddr; 4259 } 4260 4261 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4262 QualType Ty) const { 4263 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4264 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4265 uint64_t Width = getContext().getTypeSize(Ty); 4266 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4267 4268 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4269 CGF.getContext().getTypeInfoInChars(Ty), 4270 CharUnits::fromQuantity(8), 4271 /*allowHigherAlign*/ false); 4272 } 4273 4274 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4275 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4276 const Type *Base = nullptr; 4277 uint64_t NumElts = 0; 4278 4279 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4280 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4281 FreeSSERegs -= NumElts; 4282 return getDirectX86Hva(); 4283 } 4284 return current; 4285 } 4286 4287 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4288 bool IsReturnType, bool IsVectorCall, 4289 bool IsRegCall) const { 4290 4291 if (Ty->isVoidType()) 4292 return ABIArgInfo::getIgnore(); 4293 4294 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4295 Ty = EnumTy->getDecl()->getIntegerType(); 4296 4297 TypeInfo Info = getContext().getTypeInfo(Ty); 4298 uint64_t Width = Info.Width; 4299 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4300 4301 const RecordType *RT = Ty->getAs<RecordType>(); 4302 if (RT) { 4303 if (!IsReturnType) { 4304 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4305 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4306 } 4307 4308 if (RT->getDecl()->hasFlexibleArrayMember()) 4309 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4310 4311 } 4312 4313 const Type *Base = nullptr; 4314 uint64_t NumElts = 0; 4315 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4316 // other targets. 4317 if ((IsVectorCall || IsRegCall) && 4318 isHomogeneousAggregate(Ty, Base, NumElts)) { 4319 if (IsRegCall) { 4320 if (FreeSSERegs >= NumElts) { 4321 FreeSSERegs -= NumElts; 4322 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4323 return ABIArgInfo::getDirect(); 4324 return ABIArgInfo::getExpand(); 4325 } 4326 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4327 } else if (IsVectorCall) { 4328 if (FreeSSERegs >= NumElts && 4329 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4330 FreeSSERegs -= NumElts; 4331 return ABIArgInfo::getDirect(); 4332 } else if (IsReturnType) { 4333 return ABIArgInfo::getExpand(); 4334 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4335 // HVAs are delayed and reclassified in the 2nd step. 4336 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4337 } 4338 } 4339 } 4340 4341 if (Ty->isMemberPointerType()) { 4342 // If the member pointer is represented by an LLVM int or ptr, pass it 4343 // directly. 4344 llvm::Type *LLTy = CGT.ConvertType(Ty); 4345 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4346 return ABIArgInfo::getDirect(); 4347 } 4348 4349 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4350 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4351 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4352 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4353 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4354 4355 // Otherwise, coerce it to a small integer. 4356 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4357 } 4358 4359 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4360 switch (BT->getKind()) { 4361 case BuiltinType::Bool: 4362 // Bool type is always extended to the ABI, other builtin types are not 4363 // extended. 4364 return ABIArgInfo::getExtend(Ty); 4365 4366 case BuiltinType::LongDouble: 4367 // Mingw64 GCC uses the old 80 bit extended precision floating point 4368 // unit. It passes them indirectly through memory. 4369 if (IsMingw64) { 4370 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4371 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4372 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4373 } 4374 break; 4375 4376 case BuiltinType::Int128: 4377 case BuiltinType::UInt128: 4378 // If it's a parameter type, the normal ABI rule is that arguments larger 4379 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4380 // even though it isn't particularly efficient. 4381 if (!IsReturnType) 4382 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4383 4384 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4385 // Clang matches them for compatibility. 4386 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4387 llvm::Type::getInt64Ty(getVMContext()), 2)); 4388 4389 default: 4390 break; 4391 } 4392 } 4393 4394 if (Ty->isBitIntType()) { 4395 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4396 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4397 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 4398 // or 8 bytes anyway as long is it fits in them, so we don't have to check 4399 // the power of 2. 4400 if (Width <= 64) 4401 return ABIArgInfo::getDirect(); 4402 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4403 } 4404 4405 return ABIArgInfo::getDirect(); 4406 } 4407 4408 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4409 const unsigned CC = FI.getCallingConvention(); 4410 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4411 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4412 4413 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4414 // classification rules. 4415 if (CC == llvm::CallingConv::X86_64_SysV) { 4416 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4417 SysVABIInfo.computeInfo(FI); 4418 return; 4419 } 4420 4421 unsigned FreeSSERegs = 0; 4422 if (IsVectorCall) { 4423 // We can use up to 4 SSE return registers with vectorcall. 4424 FreeSSERegs = 4; 4425 } else if (IsRegCall) { 4426 // RegCall gives us 16 SSE registers. 4427 FreeSSERegs = 16; 4428 } 4429 4430 if (!getCXXABI().classifyReturnType(FI)) 4431 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4432 IsVectorCall, IsRegCall); 4433 4434 if (IsVectorCall) { 4435 // We can use up to 6 SSE register parameters with vectorcall. 4436 FreeSSERegs = 6; 4437 } else if (IsRegCall) { 4438 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4439 FreeSSERegs = 16; 4440 } 4441 4442 unsigned ArgNum = 0; 4443 unsigned ZeroSSERegs = 0; 4444 for (auto &I : FI.arguments()) { 4445 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4446 // XMM/YMM registers. After the sixth argument, pretend no vector 4447 // registers are left. 4448 unsigned *MaybeFreeSSERegs = 4449 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4450 I.info = 4451 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4452 ++ArgNum; 4453 } 4454 4455 if (IsVectorCall) { 4456 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4457 // second pass. 4458 for (auto &I : FI.arguments()) 4459 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4460 } 4461 } 4462 4463 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4464 QualType Ty) const { 4465 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4466 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4467 uint64_t Width = getContext().getTypeSize(Ty); 4468 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4469 4470 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4471 CGF.getContext().getTypeInfoInChars(Ty), 4472 CharUnits::fromQuantity(8), 4473 /*allowHigherAlign*/ false); 4474 } 4475 4476 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4477 llvm::Value *Address, bool Is64Bit, 4478 bool IsAIX) { 4479 // This is calculated from the LLVM and GCC tables and verified 4480 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4481 4482 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4483 4484 llvm::IntegerType *i8 = CGF.Int8Ty; 4485 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4486 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4487 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4488 4489 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4490 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4491 4492 // 32-63: fp0-31, the 8-byte floating-point registers 4493 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4494 4495 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4496 // 64: mq 4497 // 65: lr 4498 // 66: ctr 4499 // 67: ap 4500 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4501 4502 // 68-76 are various 4-byte special-purpose registers: 4503 // 68-75 cr0-7 4504 // 76: xer 4505 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4506 4507 // 77-108: v0-31, the 16-byte vector registers 4508 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4509 4510 // 109: vrsave 4511 // 110: vscr 4512 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4513 4514 // AIX does not utilize the rest of the registers. 4515 if (IsAIX) 4516 return false; 4517 4518 // 111: spe_acc 4519 // 112: spefscr 4520 // 113: sfp 4521 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4522 4523 if (!Is64Bit) 4524 return false; 4525 4526 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4527 // or above CPU. 4528 // 64-bit only registers: 4529 // 114: tfhar 4530 // 115: tfiar 4531 // 116: texasr 4532 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4533 4534 return false; 4535 } 4536 4537 // AIX 4538 namespace { 4539 /// AIXABIInfo - The AIX XCOFF ABI information. 4540 class AIXABIInfo : public ABIInfo { 4541 const bool Is64Bit; 4542 const unsigned PtrByteSize; 4543 CharUnits getParamTypeAlignment(QualType Ty) const; 4544 4545 public: 4546 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4547 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4548 4549 bool isPromotableTypeForABI(QualType Ty) const; 4550 4551 ABIArgInfo classifyReturnType(QualType RetTy) const; 4552 ABIArgInfo classifyArgumentType(QualType Ty) const; 4553 4554 void computeInfo(CGFunctionInfo &FI) const override { 4555 if (!getCXXABI().classifyReturnType(FI)) 4556 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4557 4558 for (auto &I : FI.arguments()) 4559 I.info = classifyArgumentType(I.type); 4560 } 4561 4562 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4563 QualType Ty) const override; 4564 }; 4565 4566 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4567 const bool Is64Bit; 4568 4569 public: 4570 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4571 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4572 Is64Bit(Is64Bit) {} 4573 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4574 return 1; // r1 is the dedicated stack pointer 4575 } 4576 4577 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4578 llvm::Value *Address) const override; 4579 }; 4580 } // namespace 4581 4582 // Return true if the ABI requires Ty to be passed sign- or zero- 4583 // extended to 32/64 bits. 4584 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4585 // Treat an enum type as its underlying type. 4586 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4587 Ty = EnumTy->getDecl()->getIntegerType(); 4588 4589 // Promotable integer types are required to be promoted by the ABI. 4590 if (Ty->isPromotableIntegerType()) 4591 return true; 4592 4593 if (!Is64Bit) 4594 return false; 4595 4596 // For 64 bit mode, in addition to the usual promotable integer types, we also 4597 // need to extend all 32-bit types, since the ABI requires promotion to 64 4598 // bits. 4599 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4600 switch (BT->getKind()) { 4601 case BuiltinType::Int: 4602 case BuiltinType::UInt: 4603 return true; 4604 default: 4605 break; 4606 } 4607 4608 return false; 4609 } 4610 4611 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4612 if (RetTy->isAnyComplexType()) 4613 return ABIArgInfo::getDirect(); 4614 4615 if (RetTy->isVectorType()) 4616 return ABIArgInfo::getDirect(); 4617 4618 if (RetTy->isVoidType()) 4619 return ABIArgInfo::getIgnore(); 4620 4621 if (isAggregateTypeForABI(RetTy)) 4622 return getNaturalAlignIndirect(RetTy); 4623 4624 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4625 : ABIArgInfo::getDirect()); 4626 } 4627 4628 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4629 Ty = useFirstFieldIfTransparentUnion(Ty); 4630 4631 if (Ty->isAnyComplexType()) 4632 return ABIArgInfo::getDirect(); 4633 4634 if (Ty->isVectorType()) 4635 return ABIArgInfo::getDirect(); 4636 4637 if (isAggregateTypeForABI(Ty)) { 4638 // Records with non-trivial destructors/copy-constructors should not be 4639 // passed by value. 4640 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4641 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4642 4643 CharUnits CCAlign = getParamTypeAlignment(Ty); 4644 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4645 4646 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4647 /*Realign*/ TyAlign > CCAlign); 4648 } 4649 4650 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4651 : ABIArgInfo::getDirect()); 4652 } 4653 4654 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4655 // Complex types are passed just like their elements. 4656 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4657 Ty = CTy->getElementType(); 4658 4659 if (Ty->isVectorType()) 4660 return CharUnits::fromQuantity(16); 4661 4662 // If the structure contains a vector type, the alignment is 16. 4663 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4664 return CharUnits::fromQuantity(16); 4665 4666 return CharUnits::fromQuantity(PtrByteSize); 4667 } 4668 4669 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4670 QualType Ty) const { 4671 4672 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4673 TypeInfo.Align = getParamTypeAlignment(Ty); 4674 4675 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4676 4677 // If we have a complex type and the base type is smaller than the register 4678 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4679 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4680 // Clang expects us to produce a pointer to a structure with the two parts 4681 // packed tightly. So generate loads of the real and imaginary parts relative 4682 // to the va_list pointer, and store them to a temporary structure. We do the 4683 // same as the PPC64ABI here. 4684 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4685 CharUnits EltSize = TypeInfo.Width / 2; 4686 if (EltSize < SlotSize) 4687 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4688 } 4689 4690 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4691 SlotSize, /*AllowHigher*/ true); 4692 } 4693 4694 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4695 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4696 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4697 } 4698 4699 // PowerPC-32 4700 namespace { 4701 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4702 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4703 bool IsSoftFloatABI; 4704 bool IsRetSmallStructInRegABI; 4705 4706 CharUnits getParamTypeAlignment(QualType Ty) const; 4707 4708 public: 4709 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4710 bool RetSmallStructInRegABI) 4711 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4712 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4713 4714 ABIArgInfo classifyReturnType(QualType RetTy) const; 4715 4716 void computeInfo(CGFunctionInfo &FI) const override { 4717 if (!getCXXABI().classifyReturnType(FI)) 4718 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4719 for (auto &I : FI.arguments()) 4720 I.info = classifyArgumentType(I.type); 4721 } 4722 4723 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4724 QualType Ty) const override; 4725 }; 4726 4727 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4728 public: 4729 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4730 bool RetSmallStructInRegABI) 4731 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4732 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4733 4734 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4735 const CodeGenOptions &Opts); 4736 4737 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4738 // This is recovered from gcc output. 4739 return 1; // r1 is the dedicated stack pointer 4740 } 4741 4742 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4743 llvm::Value *Address) const override; 4744 }; 4745 } 4746 4747 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4748 // Complex types are passed just like their elements. 4749 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4750 Ty = CTy->getElementType(); 4751 4752 if (Ty->isVectorType()) 4753 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4754 : 4); 4755 4756 // For single-element float/vector structs, we consider the whole type 4757 // to have the same alignment requirements as its single element. 4758 const Type *AlignTy = nullptr; 4759 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4760 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4761 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4762 (BT && BT->isFloatingPoint())) 4763 AlignTy = EltType; 4764 } 4765 4766 if (AlignTy) 4767 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4768 return CharUnits::fromQuantity(4); 4769 } 4770 4771 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4772 uint64_t Size; 4773 4774 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4775 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4776 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4777 // System V ABI (1995), page 3-22, specified: 4778 // > A structure or union whose size is less than or equal to 8 bytes 4779 // > shall be returned in r3 and r4, as if it were first stored in the 4780 // > 8-byte aligned memory area and then the low addressed word were 4781 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4782 // > the last member of the structure or union are not defined. 4783 // 4784 // GCC for big-endian PPC32 inserts the pad before the first member, 4785 // not "beyond the last member" of the struct. To stay compatible 4786 // with GCC, we coerce the struct to an integer of the same size. 4787 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4788 if (Size == 0) 4789 return ABIArgInfo::getIgnore(); 4790 else { 4791 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4792 return ABIArgInfo::getDirect(CoerceTy); 4793 } 4794 } 4795 4796 return DefaultABIInfo::classifyReturnType(RetTy); 4797 } 4798 4799 // TODO: this implementation is now likely redundant with 4800 // DefaultABIInfo::EmitVAArg. 4801 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4802 QualType Ty) const { 4803 if (getTarget().getTriple().isOSDarwin()) { 4804 auto TI = getContext().getTypeInfoInChars(Ty); 4805 TI.Align = getParamTypeAlignment(Ty); 4806 4807 CharUnits SlotSize = CharUnits::fromQuantity(4); 4808 return emitVoidPtrVAArg(CGF, VAList, Ty, 4809 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4810 /*AllowHigherAlign=*/true); 4811 } 4812 4813 const unsigned OverflowLimit = 8; 4814 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4815 // TODO: Implement this. For now ignore. 4816 (void)CTy; 4817 return Address::invalid(); // FIXME? 4818 } 4819 4820 // struct __va_list_tag { 4821 // unsigned char gpr; 4822 // unsigned char fpr; 4823 // unsigned short reserved; 4824 // void *overflow_arg_area; 4825 // void *reg_save_area; 4826 // }; 4827 4828 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4829 bool isInt = !Ty->isFloatingType(); 4830 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4831 4832 // All aggregates are passed indirectly? That doesn't seem consistent 4833 // with the argument-lowering code. 4834 bool isIndirect = isAggregateTypeForABI(Ty); 4835 4836 CGBuilderTy &Builder = CGF.Builder; 4837 4838 // The calling convention either uses 1-2 GPRs or 1 FPR. 4839 Address NumRegsAddr = Address::invalid(); 4840 if (isInt || IsSoftFloatABI) { 4841 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4842 } else { 4843 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4844 } 4845 4846 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4847 4848 // "Align" the register count when TY is i64. 4849 if (isI64 || (isF64 && IsSoftFloatABI)) { 4850 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4851 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4852 } 4853 4854 llvm::Value *CC = 4855 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4856 4857 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4858 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4859 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4860 4861 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4862 4863 llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy; 4864 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4865 4866 // Case 1: consume registers. 4867 Address RegAddr = Address::invalid(); 4868 { 4869 CGF.EmitBlock(UsingRegs); 4870 4871 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4872 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty, 4873 CharUnits::fromQuantity(8)); 4874 assert(RegAddr.getElementType() == CGF.Int8Ty); 4875 4876 // Floating-point registers start after the general-purpose registers. 4877 if (!(isInt || IsSoftFloatABI)) { 4878 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4879 CharUnits::fromQuantity(32)); 4880 } 4881 4882 // Get the address of the saved value by scaling the number of 4883 // registers we've used by the number of 4884 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4885 llvm::Value *RegOffset = 4886 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4887 RegAddr = Address( 4888 Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset), 4889 CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4890 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4891 4892 // Increase the used-register count. 4893 NumRegs = 4894 Builder.CreateAdd(NumRegs, 4895 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4896 Builder.CreateStore(NumRegs, NumRegsAddr); 4897 4898 CGF.EmitBranch(Cont); 4899 } 4900 4901 // Case 2: consume space in the overflow area. 4902 Address MemAddr = Address::invalid(); 4903 { 4904 CGF.EmitBlock(UsingOverflow); 4905 4906 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4907 4908 // Everything in the overflow area is rounded up to a size of at least 4. 4909 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4910 4911 CharUnits Size; 4912 if (!isIndirect) { 4913 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4914 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4915 } else { 4916 Size = CGF.getPointerSize(); 4917 } 4918 4919 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4920 Address OverflowArea = 4921 Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty, 4922 OverflowAreaAlign); 4923 // Round up address of argument to alignment 4924 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4925 if (Align > OverflowAreaAlign) { 4926 llvm::Value *Ptr = OverflowArea.getPointer(); 4927 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4928 OverflowArea.getElementType(), Align); 4929 } 4930 4931 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4932 4933 // Increase the overflow area. 4934 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4935 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4936 CGF.EmitBranch(Cont); 4937 } 4938 4939 CGF.EmitBlock(Cont); 4940 4941 // Merge the cases with a phi. 4942 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4943 "vaarg.addr"); 4944 4945 // Load the pointer if the argument was passed indirectly. 4946 if (isIndirect) { 4947 Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy, 4948 getContext().getTypeAlignInChars(Ty)); 4949 } 4950 4951 return Result; 4952 } 4953 4954 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4955 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4956 assert(Triple.isPPC32()); 4957 4958 switch (Opts.getStructReturnConvention()) { 4959 case CodeGenOptions::SRCK_Default: 4960 break; 4961 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4962 return false; 4963 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4964 return true; 4965 } 4966 4967 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4968 return true; 4969 4970 return false; 4971 } 4972 4973 bool 4974 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4975 llvm::Value *Address) const { 4976 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4977 /*IsAIX*/ false); 4978 } 4979 4980 // PowerPC-64 4981 4982 namespace { 4983 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4984 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4985 public: 4986 enum ABIKind { 4987 ELFv1 = 0, 4988 ELFv2 4989 }; 4990 4991 private: 4992 static const unsigned GPRBits = 64; 4993 ABIKind Kind; 4994 bool IsSoftFloatABI; 4995 4996 public: 4997 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4998 bool SoftFloatABI) 4999 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 5000 5001 bool isPromotableTypeForABI(QualType Ty) const; 5002 CharUnits getParamTypeAlignment(QualType Ty) const; 5003 5004 ABIArgInfo classifyReturnType(QualType RetTy) const; 5005 ABIArgInfo classifyArgumentType(QualType Ty) const; 5006 5007 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5008 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5009 uint64_t Members) const override; 5010 5011 // TODO: We can add more logic to computeInfo to improve performance. 5012 // Example: For aggregate arguments that fit in a register, we could 5013 // use getDirectInReg (as is done below for structs containing a single 5014 // floating-point value) to avoid pushing them to memory on function 5015 // entry. This would require changing the logic in PPCISelLowering 5016 // when lowering the parameters in the caller and args in the callee. 5017 void computeInfo(CGFunctionInfo &FI) const override { 5018 if (!getCXXABI().classifyReturnType(FI)) 5019 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5020 for (auto &I : FI.arguments()) { 5021 // We rely on the default argument classification for the most part. 5022 // One exception: An aggregate containing a single floating-point 5023 // or vector item must be passed in a register if one is available. 5024 const Type *T = isSingleElementStruct(I.type, getContext()); 5025 if (T) { 5026 const BuiltinType *BT = T->getAs<BuiltinType>(); 5027 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 5028 (BT && BT->isFloatingPoint())) { 5029 QualType QT(T, 0); 5030 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 5031 continue; 5032 } 5033 } 5034 I.info = classifyArgumentType(I.type); 5035 } 5036 } 5037 5038 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5039 QualType Ty) const override; 5040 5041 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5042 bool asReturnValue) const override { 5043 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5044 } 5045 5046 bool isSwiftErrorInRegister() const override { 5047 return false; 5048 } 5049 }; 5050 5051 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5052 5053 public: 5054 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5055 PPC64_SVR4_ABIInfo::ABIKind Kind, 5056 bool SoftFloatABI) 5057 : TargetCodeGenInfo( 5058 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5059 5060 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5061 // This is recovered from gcc output. 5062 return 1; // r1 is the dedicated stack pointer 5063 } 5064 5065 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5066 llvm::Value *Address) const override; 5067 }; 5068 5069 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5070 public: 5071 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5072 5073 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5074 // This is recovered from gcc output. 5075 return 1; // r1 is the dedicated stack pointer 5076 } 5077 5078 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5079 llvm::Value *Address) const override; 5080 }; 5081 5082 } 5083 5084 // Return true if the ABI requires Ty to be passed sign- or zero- 5085 // extended to 64 bits. 5086 bool 5087 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5088 // Treat an enum type as its underlying type. 5089 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5090 Ty = EnumTy->getDecl()->getIntegerType(); 5091 5092 // Promotable integer types are required to be promoted by the ABI. 5093 if (isPromotableIntegerTypeForABI(Ty)) 5094 return true; 5095 5096 // In addition to the usual promotable integer types, we also need to 5097 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5098 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5099 switch (BT->getKind()) { 5100 case BuiltinType::Int: 5101 case BuiltinType::UInt: 5102 return true; 5103 default: 5104 break; 5105 } 5106 5107 if (const auto *EIT = Ty->getAs<BitIntType>()) 5108 if (EIT->getNumBits() < 64) 5109 return true; 5110 5111 return false; 5112 } 5113 5114 /// isAlignedParamType - Determine whether a type requires 16-byte or 5115 /// higher alignment in the parameter area. Always returns at least 8. 5116 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5117 // Complex types are passed just like their elements. 5118 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5119 Ty = CTy->getElementType(); 5120 5121 auto FloatUsesVector = [this](QualType Ty){ 5122 return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( 5123 Ty) == &llvm::APFloat::IEEEquad(); 5124 }; 5125 5126 // Only vector types of size 16 bytes need alignment (larger types are 5127 // passed via reference, smaller types are not aligned). 5128 if (Ty->isVectorType()) { 5129 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5130 } else if (FloatUsesVector(Ty)) { 5131 // According to ABI document section 'Optional Save Areas': If extended 5132 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5133 // format are supported, map them to a single quadword, quadword aligned. 5134 return CharUnits::fromQuantity(16); 5135 } 5136 5137 // For single-element float/vector structs, we consider the whole type 5138 // to have the same alignment requirements as its single element. 5139 const Type *AlignAsType = nullptr; 5140 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5141 if (EltType) { 5142 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5143 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5144 (BT && BT->isFloatingPoint())) 5145 AlignAsType = EltType; 5146 } 5147 5148 // Likewise for ELFv2 homogeneous aggregates. 5149 const Type *Base = nullptr; 5150 uint64_t Members = 0; 5151 if (!AlignAsType && Kind == ELFv2 && 5152 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5153 AlignAsType = Base; 5154 5155 // With special case aggregates, only vector base types need alignment. 5156 if (AlignAsType) { 5157 bool UsesVector = AlignAsType->isVectorType() || 5158 FloatUsesVector(QualType(AlignAsType, 0)); 5159 return CharUnits::fromQuantity(UsesVector ? 16 : 8); 5160 } 5161 5162 // Otherwise, we only need alignment for any aggregate type that 5163 // has an alignment requirement of >= 16 bytes. 5164 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5165 return CharUnits::fromQuantity(16); 5166 } 5167 5168 return CharUnits::fromQuantity(8); 5169 } 5170 5171 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5172 /// aggregate. Base is set to the base element type, and Members is set 5173 /// to the number of base elements. 5174 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5175 uint64_t &Members) const { 5176 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5177 uint64_t NElements = AT->getSize().getZExtValue(); 5178 if (NElements == 0) 5179 return false; 5180 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5181 return false; 5182 Members *= NElements; 5183 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5184 const RecordDecl *RD = RT->getDecl(); 5185 if (RD->hasFlexibleArrayMember()) 5186 return false; 5187 5188 Members = 0; 5189 5190 // If this is a C++ record, check the properties of the record such as 5191 // bases and ABI specific restrictions 5192 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5193 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5194 return false; 5195 5196 for (const auto &I : CXXRD->bases()) { 5197 // Ignore empty records. 5198 if (isEmptyRecord(getContext(), I.getType(), true)) 5199 continue; 5200 5201 uint64_t FldMembers; 5202 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5203 return false; 5204 5205 Members += FldMembers; 5206 } 5207 } 5208 5209 for (const auto *FD : RD->fields()) { 5210 // Ignore (non-zero arrays of) empty records. 5211 QualType FT = FD->getType(); 5212 while (const ConstantArrayType *AT = 5213 getContext().getAsConstantArrayType(FT)) { 5214 if (AT->getSize().getZExtValue() == 0) 5215 return false; 5216 FT = AT->getElementType(); 5217 } 5218 if (isEmptyRecord(getContext(), FT, true)) 5219 continue; 5220 5221 if (isZeroLengthBitfieldPermittedInHomogeneousAggregate() && 5222 FD->isZeroLengthBitField(getContext())) 5223 continue; 5224 5225 uint64_t FldMembers; 5226 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5227 return false; 5228 5229 Members = (RD->isUnion() ? 5230 std::max(Members, FldMembers) : Members + FldMembers); 5231 } 5232 5233 if (!Base) 5234 return false; 5235 5236 // Ensure there is no padding. 5237 if (getContext().getTypeSize(Base) * Members != 5238 getContext().getTypeSize(Ty)) 5239 return false; 5240 } else { 5241 Members = 1; 5242 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5243 Members = 2; 5244 Ty = CT->getElementType(); 5245 } 5246 5247 // Most ABIs only support float, double, and some vector type widths. 5248 if (!isHomogeneousAggregateBaseType(Ty)) 5249 return false; 5250 5251 // The base type must be the same for all members. Types that 5252 // agree in both total size and mode (float vs. vector) are 5253 // treated as being equivalent here. 5254 const Type *TyPtr = Ty.getTypePtr(); 5255 if (!Base) { 5256 Base = TyPtr; 5257 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5258 // so make sure to widen it explicitly. 5259 if (const VectorType *VT = Base->getAs<VectorType>()) { 5260 QualType EltTy = VT->getElementType(); 5261 unsigned NumElements = 5262 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5263 Base = getContext() 5264 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5265 .getTypePtr(); 5266 } 5267 } 5268 5269 if (Base->isVectorType() != TyPtr->isVectorType() || 5270 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5271 return false; 5272 } 5273 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5274 } 5275 5276 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5277 // Homogeneous aggregates for ELFv2 must have base types of float, 5278 // double, long double, or 128-bit vectors. 5279 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5280 if (BT->getKind() == BuiltinType::Float || 5281 BT->getKind() == BuiltinType::Double || 5282 BT->getKind() == BuiltinType::LongDouble || 5283 BT->getKind() == BuiltinType::Ibm128 || 5284 (getContext().getTargetInfo().hasFloat128Type() && 5285 (BT->getKind() == BuiltinType::Float128))) { 5286 if (IsSoftFloatABI) 5287 return false; 5288 return true; 5289 } 5290 } 5291 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5292 if (getContext().getTypeSize(VT) == 128) 5293 return true; 5294 } 5295 return false; 5296 } 5297 5298 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5299 const Type *Base, uint64_t Members) const { 5300 // Vector and fp128 types require one register, other floating point types 5301 // require one or two registers depending on their size. 5302 uint32_t NumRegs = 5303 ((getContext().getTargetInfo().hasFloat128Type() && 5304 Base->isFloat128Type()) || 5305 Base->isVectorType()) ? 1 5306 : (getContext().getTypeSize(Base) + 63) / 64; 5307 5308 // Homogeneous Aggregates may occupy at most 8 registers. 5309 return Members * NumRegs <= 8; 5310 } 5311 5312 ABIArgInfo 5313 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5314 Ty = useFirstFieldIfTransparentUnion(Ty); 5315 5316 if (Ty->isAnyComplexType()) 5317 return ABIArgInfo::getDirect(); 5318 5319 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5320 // or via reference (larger than 16 bytes). 5321 if (Ty->isVectorType()) { 5322 uint64_t Size = getContext().getTypeSize(Ty); 5323 if (Size > 128) 5324 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5325 else if (Size < 128) { 5326 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5327 return ABIArgInfo::getDirect(CoerceTy); 5328 } 5329 } 5330 5331 if (const auto *EIT = Ty->getAs<BitIntType>()) 5332 if (EIT->getNumBits() > 128) 5333 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5334 5335 if (isAggregateTypeForABI(Ty)) { 5336 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5337 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5338 5339 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5340 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5341 5342 // ELFv2 homogeneous aggregates are passed as array types. 5343 const Type *Base = nullptr; 5344 uint64_t Members = 0; 5345 if (Kind == ELFv2 && 5346 isHomogeneousAggregate(Ty, Base, Members)) { 5347 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5348 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5349 return ABIArgInfo::getDirect(CoerceTy); 5350 } 5351 5352 // If an aggregate may end up fully in registers, we do not 5353 // use the ByVal method, but pass the aggregate as array. 5354 // This is usually beneficial since we avoid forcing the 5355 // back-end to store the argument to memory. 5356 uint64_t Bits = getContext().getTypeSize(Ty); 5357 if (Bits > 0 && Bits <= 8 * GPRBits) { 5358 llvm::Type *CoerceTy; 5359 5360 // Types up to 8 bytes are passed as integer type (which will be 5361 // properly aligned in the argument save area doubleword). 5362 if (Bits <= GPRBits) 5363 CoerceTy = 5364 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5365 // Larger types are passed as arrays, with the base type selected 5366 // according to the required alignment in the save area. 5367 else { 5368 uint64_t RegBits = ABIAlign * 8; 5369 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5370 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5371 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5372 } 5373 5374 return ABIArgInfo::getDirect(CoerceTy); 5375 } 5376 5377 // All other aggregates are passed ByVal. 5378 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5379 /*ByVal=*/true, 5380 /*Realign=*/TyAlign > ABIAlign); 5381 } 5382 5383 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5384 : ABIArgInfo::getDirect()); 5385 } 5386 5387 ABIArgInfo 5388 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5389 if (RetTy->isVoidType()) 5390 return ABIArgInfo::getIgnore(); 5391 5392 if (RetTy->isAnyComplexType()) 5393 return ABIArgInfo::getDirect(); 5394 5395 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5396 // or via reference (larger than 16 bytes). 5397 if (RetTy->isVectorType()) { 5398 uint64_t Size = getContext().getTypeSize(RetTy); 5399 if (Size > 128) 5400 return getNaturalAlignIndirect(RetTy); 5401 else if (Size < 128) { 5402 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5403 return ABIArgInfo::getDirect(CoerceTy); 5404 } 5405 } 5406 5407 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5408 if (EIT->getNumBits() > 128) 5409 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5410 5411 if (isAggregateTypeForABI(RetTy)) { 5412 // ELFv2 homogeneous aggregates are returned as array types. 5413 const Type *Base = nullptr; 5414 uint64_t Members = 0; 5415 if (Kind == ELFv2 && 5416 isHomogeneousAggregate(RetTy, Base, Members)) { 5417 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5418 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5419 return ABIArgInfo::getDirect(CoerceTy); 5420 } 5421 5422 // ELFv2 small aggregates are returned in up to two registers. 5423 uint64_t Bits = getContext().getTypeSize(RetTy); 5424 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5425 if (Bits == 0) 5426 return ABIArgInfo::getIgnore(); 5427 5428 llvm::Type *CoerceTy; 5429 if (Bits > GPRBits) { 5430 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5431 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5432 } else 5433 CoerceTy = 5434 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5435 return ABIArgInfo::getDirect(CoerceTy); 5436 } 5437 5438 // All other aggregates are returned indirectly. 5439 return getNaturalAlignIndirect(RetTy); 5440 } 5441 5442 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5443 : ABIArgInfo::getDirect()); 5444 } 5445 5446 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5447 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5448 QualType Ty) const { 5449 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5450 TypeInfo.Align = getParamTypeAlignment(Ty); 5451 5452 CharUnits SlotSize = CharUnits::fromQuantity(8); 5453 5454 // If we have a complex type and the base type is smaller than 8 bytes, 5455 // the ABI calls for the real and imaginary parts to be right-adjusted 5456 // in separate doublewords. However, Clang expects us to produce a 5457 // pointer to a structure with the two parts packed tightly. So generate 5458 // loads of the real and imaginary parts relative to the va_list pointer, 5459 // and store them to a temporary structure. 5460 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5461 CharUnits EltSize = TypeInfo.Width / 2; 5462 if (EltSize < SlotSize) 5463 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5464 } 5465 5466 // Otherwise, just use the general rule. 5467 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5468 TypeInfo, SlotSize, /*AllowHigher*/ true); 5469 } 5470 5471 bool 5472 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5473 CodeGen::CodeGenFunction &CGF, 5474 llvm::Value *Address) const { 5475 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5476 /*IsAIX*/ false); 5477 } 5478 5479 bool 5480 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5481 llvm::Value *Address) const { 5482 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5483 /*IsAIX*/ false); 5484 } 5485 5486 //===----------------------------------------------------------------------===// 5487 // AArch64 ABI Implementation 5488 //===----------------------------------------------------------------------===// 5489 5490 namespace { 5491 5492 class AArch64ABIInfo : public SwiftABIInfo { 5493 public: 5494 enum ABIKind { 5495 AAPCS = 0, 5496 DarwinPCS, 5497 Win64 5498 }; 5499 5500 private: 5501 ABIKind Kind; 5502 5503 public: 5504 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5505 : SwiftABIInfo(CGT), Kind(Kind) {} 5506 5507 private: 5508 ABIKind getABIKind() const { return Kind; } 5509 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5510 5511 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5512 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5513 unsigned CallingConvention) const; 5514 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5515 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5516 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5517 uint64_t Members) const override; 5518 bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override; 5519 5520 bool isIllegalVectorType(QualType Ty) const; 5521 5522 void computeInfo(CGFunctionInfo &FI) const override { 5523 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5524 FI.getReturnInfo() = 5525 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5526 5527 for (auto &it : FI.arguments()) 5528 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5529 FI.getCallingConvention()); 5530 } 5531 5532 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5533 CodeGenFunction &CGF) const; 5534 5535 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5536 CodeGenFunction &CGF) const; 5537 5538 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5539 QualType Ty) const override { 5540 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5541 if (isa<llvm::ScalableVectorType>(BaseTy)) 5542 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5543 "currently not supported"); 5544 5545 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5546 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5547 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5548 } 5549 5550 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5551 QualType Ty) const override; 5552 5553 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5554 bool asReturnValue) const override { 5555 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5556 } 5557 bool isSwiftErrorInRegister() const override { 5558 return true; 5559 } 5560 5561 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5562 unsigned elts) const override; 5563 5564 bool allowBFloatArgsAndRet() const override { 5565 return getTarget().hasBFloat16Type(); 5566 } 5567 }; 5568 5569 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5570 public: 5571 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5572 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5573 5574 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5575 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5576 } 5577 5578 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5579 return 31; 5580 } 5581 5582 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5583 5584 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5585 CodeGen::CodeGenModule &CGM) const override { 5586 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5587 if (!FD) 5588 return; 5589 5590 const auto *TA = FD->getAttr<TargetAttr>(); 5591 if (TA == nullptr) 5592 return; 5593 5594 ParsedTargetAttr Attr = TA->parse(); 5595 if (Attr.BranchProtection.empty()) 5596 return; 5597 5598 TargetInfo::BranchProtectionInfo BPI; 5599 StringRef Error; 5600 (void)CGM.getTarget().validateBranchProtection( 5601 Attr.BranchProtection, Attr.Architecture, BPI, Error); 5602 assert(Error.empty()); 5603 5604 auto *Fn = cast<llvm::Function>(GV); 5605 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5606 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5607 5608 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5609 Fn->addFnAttr("sign-return-address-key", 5610 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5611 ? "a_key" 5612 : "b_key"); 5613 } 5614 5615 Fn->addFnAttr("branch-target-enforcement", 5616 BPI.BranchTargetEnforcement ? "true" : "false"); 5617 } 5618 5619 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5620 llvm::Type *Ty) const override { 5621 if (CGF.getTarget().hasFeature("ls64")) { 5622 auto *ST = dyn_cast<llvm::StructType>(Ty); 5623 if (ST && ST->getNumElements() == 1) { 5624 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5625 if (AT && AT->getNumElements() == 8 && 5626 AT->getElementType()->isIntegerTy(64)) 5627 return true; 5628 } 5629 } 5630 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5631 } 5632 }; 5633 5634 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5635 public: 5636 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5637 : AArch64TargetCodeGenInfo(CGT, K) {} 5638 5639 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5640 CodeGen::CodeGenModule &CGM) const override; 5641 5642 void getDependentLibraryOption(llvm::StringRef Lib, 5643 llvm::SmallString<24> &Opt) const override { 5644 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5645 } 5646 5647 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5648 llvm::SmallString<32> &Opt) const override { 5649 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5650 } 5651 }; 5652 5653 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5654 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5655 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5656 if (GV->isDeclaration()) 5657 return; 5658 addStackProbeTargetAttributes(D, GV, CGM); 5659 } 5660 } 5661 5662 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5663 assert(Ty->isVectorType() && "expected vector type!"); 5664 5665 const auto *VT = Ty->castAs<VectorType>(); 5666 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5667 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5668 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5669 BuiltinType::UChar && 5670 "unexpected builtin type for SVE predicate!"); 5671 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5672 llvm::Type::getInt1Ty(getVMContext()), 16)); 5673 } 5674 5675 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5676 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5677 5678 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5679 llvm::ScalableVectorType *ResType = nullptr; 5680 switch (BT->getKind()) { 5681 default: 5682 llvm_unreachable("unexpected builtin type for SVE vector!"); 5683 case BuiltinType::SChar: 5684 case BuiltinType::UChar: 5685 ResType = llvm::ScalableVectorType::get( 5686 llvm::Type::getInt8Ty(getVMContext()), 16); 5687 break; 5688 case BuiltinType::Short: 5689 case BuiltinType::UShort: 5690 ResType = llvm::ScalableVectorType::get( 5691 llvm::Type::getInt16Ty(getVMContext()), 8); 5692 break; 5693 case BuiltinType::Int: 5694 case BuiltinType::UInt: 5695 ResType = llvm::ScalableVectorType::get( 5696 llvm::Type::getInt32Ty(getVMContext()), 4); 5697 break; 5698 case BuiltinType::Long: 5699 case BuiltinType::ULong: 5700 ResType = llvm::ScalableVectorType::get( 5701 llvm::Type::getInt64Ty(getVMContext()), 2); 5702 break; 5703 case BuiltinType::Half: 5704 ResType = llvm::ScalableVectorType::get( 5705 llvm::Type::getHalfTy(getVMContext()), 8); 5706 break; 5707 case BuiltinType::Float: 5708 ResType = llvm::ScalableVectorType::get( 5709 llvm::Type::getFloatTy(getVMContext()), 4); 5710 break; 5711 case BuiltinType::Double: 5712 ResType = llvm::ScalableVectorType::get( 5713 llvm::Type::getDoubleTy(getVMContext()), 2); 5714 break; 5715 case BuiltinType::BFloat16: 5716 ResType = llvm::ScalableVectorType::get( 5717 llvm::Type::getBFloatTy(getVMContext()), 8); 5718 break; 5719 } 5720 return ABIArgInfo::getDirect(ResType); 5721 } 5722 5723 uint64_t Size = getContext().getTypeSize(Ty); 5724 // Android promotes <2 x i8> to i16, not i32 5725 if (isAndroid() && (Size <= 16)) { 5726 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5727 return ABIArgInfo::getDirect(ResType); 5728 } 5729 if (Size <= 32) { 5730 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5731 return ABIArgInfo::getDirect(ResType); 5732 } 5733 if (Size == 64) { 5734 auto *ResType = 5735 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5736 return ABIArgInfo::getDirect(ResType); 5737 } 5738 if (Size == 128) { 5739 auto *ResType = 5740 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5741 return ABIArgInfo::getDirect(ResType); 5742 } 5743 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5744 } 5745 5746 ABIArgInfo 5747 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5748 unsigned CallingConvention) const { 5749 Ty = useFirstFieldIfTransparentUnion(Ty); 5750 5751 // Handle illegal vector types here. 5752 if (isIllegalVectorType(Ty)) 5753 return coerceIllegalVector(Ty); 5754 5755 if (!isAggregateTypeForABI(Ty)) { 5756 // Treat an enum type as its underlying type. 5757 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5758 Ty = EnumTy->getDecl()->getIntegerType(); 5759 5760 if (const auto *EIT = Ty->getAs<BitIntType>()) 5761 if (EIT->getNumBits() > 128) 5762 return getNaturalAlignIndirect(Ty); 5763 5764 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5765 ? ABIArgInfo::getExtend(Ty) 5766 : ABIArgInfo::getDirect()); 5767 } 5768 5769 // Structures with either a non-trivial destructor or a non-trivial 5770 // copy constructor are always indirect. 5771 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5772 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5773 CGCXXABI::RAA_DirectInMemory); 5774 } 5775 5776 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5777 // elsewhere for GNU compatibility. 5778 uint64_t Size = getContext().getTypeSize(Ty); 5779 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5780 if (IsEmpty || Size == 0) { 5781 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5782 return ABIArgInfo::getIgnore(); 5783 5784 // GNU C mode. The only argument that gets ignored is an empty one with size 5785 // 0. 5786 if (IsEmpty && Size == 0) 5787 return ABIArgInfo::getIgnore(); 5788 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5789 } 5790 5791 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5792 const Type *Base = nullptr; 5793 uint64_t Members = 0; 5794 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5795 bool IsWinVariadic = IsWin64 && IsVariadic; 5796 // In variadic functions on Windows, all composite types are treated alike, 5797 // no special handling of HFAs/HVAs. 5798 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5799 if (Kind != AArch64ABIInfo::AAPCS) 5800 return ABIArgInfo::getDirect( 5801 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5802 5803 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5804 // default otherwise. 5805 unsigned Align = 5806 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5807 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5808 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5809 return ABIArgInfo::getDirect( 5810 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5811 nullptr, true, Align); 5812 } 5813 5814 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5815 if (Size <= 128) { 5816 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5817 // same size and alignment. 5818 if (getTarget().isRenderScriptTarget()) { 5819 return coerceToIntArray(Ty, getContext(), getVMContext()); 5820 } 5821 unsigned Alignment; 5822 if (Kind == AArch64ABIInfo::AAPCS) { 5823 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5824 Alignment = Alignment < 128 ? 64 : 128; 5825 } else { 5826 Alignment = std::max(getContext().getTypeAlign(Ty), 5827 (unsigned)getTarget().getPointerWidth(0)); 5828 } 5829 Size = llvm::alignTo(Size, Alignment); 5830 5831 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5832 // For aggregates with 16-byte alignment, we use i128. 5833 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5834 return ABIArgInfo::getDirect( 5835 Size == Alignment ? BaseTy 5836 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5837 } 5838 5839 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5840 } 5841 5842 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5843 bool IsVariadic) const { 5844 if (RetTy->isVoidType()) 5845 return ABIArgInfo::getIgnore(); 5846 5847 if (const auto *VT = RetTy->getAs<VectorType>()) { 5848 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5849 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5850 return coerceIllegalVector(RetTy); 5851 } 5852 5853 // Large vector types should be returned via memory. 5854 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5855 return getNaturalAlignIndirect(RetTy); 5856 5857 if (!isAggregateTypeForABI(RetTy)) { 5858 // Treat an enum type as its underlying type. 5859 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5860 RetTy = EnumTy->getDecl()->getIntegerType(); 5861 5862 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5863 if (EIT->getNumBits() > 128) 5864 return getNaturalAlignIndirect(RetTy); 5865 5866 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5867 ? ABIArgInfo::getExtend(RetTy) 5868 : ABIArgInfo::getDirect()); 5869 } 5870 5871 uint64_t Size = getContext().getTypeSize(RetTy); 5872 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5873 return ABIArgInfo::getIgnore(); 5874 5875 const Type *Base = nullptr; 5876 uint64_t Members = 0; 5877 if (isHomogeneousAggregate(RetTy, Base, Members) && 5878 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5879 IsVariadic)) 5880 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5881 return ABIArgInfo::getDirect(); 5882 5883 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5884 if (Size <= 128) { 5885 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5886 // same size and alignment. 5887 if (getTarget().isRenderScriptTarget()) { 5888 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5889 } 5890 5891 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5892 // Composite types are returned in lower bits of a 64-bit register for LE, 5893 // and in higher bits for BE. However, integer types are always returned 5894 // in lower bits for both LE and BE, and they are not rounded up to 5895 // 64-bits. We can skip rounding up of composite types for LE, but not for 5896 // BE, otherwise composite types will be indistinguishable from integer 5897 // types. 5898 return ABIArgInfo::getDirect( 5899 llvm::IntegerType::get(getVMContext(), Size)); 5900 } 5901 5902 unsigned Alignment = getContext().getTypeAlign(RetTy); 5903 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5904 5905 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5906 // For aggregates with 16-byte alignment, we use i128. 5907 if (Alignment < 128 && Size == 128) { 5908 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5909 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5910 } 5911 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5912 } 5913 5914 return getNaturalAlignIndirect(RetTy); 5915 } 5916 5917 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5918 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5919 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5920 // Check whether VT is a fixed-length SVE vector. These types are 5921 // represented as scalable vectors in function args/return and must be 5922 // coerced from fixed vectors. 5923 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5924 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5925 return true; 5926 5927 // Check whether VT is legal. 5928 unsigned NumElements = VT->getNumElements(); 5929 uint64_t Size = getContext().getTypeSize(VT); 5930 // NumElements should be power of 2. 5931 if (!llvm::isPowerOf2_32(NumElements)) 5932 return true; 5933 5934 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5935 // vectors for some reason. 5936 llvm::Triple Triple = getTarget().getTriple(); 5937 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5938 Triple.isOSBinFormatMachO()) 5939 return Size <= 32; 5940 5941 return Size != 64 && (Size != 128 || NumElements == 1); 5942 } 5943 return false; 5944 } 5945 5946 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5947 llvm::Type *eltTy, 5948 unsigned elts) const { 5949 if (!llvm::isPowerOf2_32(elts)) 5950 return false; 5951 if (totalSize.getQuantity() != 8 && 5952 (totalSize.getQuantity() != 16 || elts == 1)) 5953 return false; 5954 return true; 5955 } 5956 5957 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5958 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5959 // point type or a short-vector type. This is the same as the 32-bit ABI, 5960 // but with the difference that any floating-point type is allowed, 5961 // including __fp16. 5962 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5963 if (BT->isFloatingPoint()) 5964 return true; 5965 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5966 unsigned VecSize = getContext().getTypeSize(VT); 5967 if (VecSize == 64 || VecSize == 128) 5968 return true; 5969 } 5970 return false; 5971 } 5972 5973 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5974 uint64_t Members) const { 5975 return Members <= 4; 5976 } 5977 5978 bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() 5979 const { 5980 // AAPCS64 says that the rule for whether something is a homogeneous 5981 // aggregate is applied to the output of the data layout decision. So 5982 // anything that doesn't affect the data layout also does not affect 5983 // homogeneity. In particular, zero-length bitfields don't stop a struct 5984 // being homogeneous. 5985 return true; 5986 } 5987 5988 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5989 CodeGenFunction &CGF) const { 5990 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5991 CGF.CurFnInfo->getCallingConvention()); 5992 bool IsIndirect = AI.isIndirect(); 5993 5994 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5995 if (IsIndirect) 5996 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5997 else if (AI.getCoerceToType()) 5998 BaseTy = AI.getCoerceToType(); 5999 6000 unsigned NumRegs = 1; 6001 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 6002 BaseTy = ArrTy->getElementType(); 6003 NumRegs = ArrTy->getNumElements(); 6004 } 6005 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 6006 6007 // The AArch64 va_list type and handling is specified in the Procedure Call 6008 // Standard, section B.4: 6009 // 6010 // struct { 6011 // void *__stack; 6012 // void *__gr_top; 6013 // void *__vr_top; 6014 // int __gr_offs; 6015 // int __vr_offs; 6016 // }; 6017 6018 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 6019 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6020 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 6021 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6022 6023 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6024 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 6025 6026 Address reg_offs_p = Address::invalid(); 6027 llvm::Value *reg_offs = nullptr; 6028 int reg_top_index; 6029 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 6030 if (!IsFPR) { 6031 // 3 is the field number of __gr_offs 6032 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 6033 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 6034 reg_top_index = 1; // field number for __gr_top 6035 RegSize = llvm::alignTo(RegSize, 8); 6036 } else { 6037 // 4 is the field number of __vr_offs. 6038 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 6039 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 6040 reg_top_index = 2; // field number for __vr_top 6041 RegSize = 16 * NumRegs; 6042 } 6043 6044 //======================================= 6045 // Find out where argument was passed 6046 //======================================= 6047 6048 // If reg_offs >= 0 we're already using the stack for this type of 6049 // argument. We don't want to keep updating reg_offs (in case it overflows, 6050 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6051 // whatever they get). 6052 llvm::Value *UsingStack = nullptr; 6053 UsingStack = CGF.Builder.CreateICmpSGE( 6054 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6055 6056 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6057 6058 // Otherwise, at least some kind of argument could go in these registers, the 6059 // question is whether this particular type is too big. 6060 CGF.EmitBlock(MaybeRegBlock); 6061 6062 // Integer arguments may need to correct register alignment (for example a 6063 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6064 // align __gr_offs to calculate the potential address. 6065 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6066 int Align = TyAlign.getQuantity(); 6067 6068 reg_offs = CGF.Builder.CreateAdd( 6069 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6070 "align_regoffs"); 6071 reg_offs = CGF.Builder.CreateAnd( 6072 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6073 "aligned_regoffs"); 6074 } 6075 6076 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6077 // The fact that this is done unconditionally reflects the fact that 6078 // allocating an argument to the stack also uses up all the remaining 6079 // registers of the appropriate kind. 6080 llvm::Value *NewOffset = nullptr; 6081 NewOffset = CGF.Builder.CreateAdd( 6082 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6083 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6084 6085 // Now we're in a position to decide whether this argument really was in 6086 // registers or not. 6087 llvm::Value *InRegs = nullptr; 6088 InRegs = CGF.Builder.CreateICmpSLE( 6089 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6090 6091 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6092 6093 //======================================= 6094 // Argument was in registers 6095 //======================================= 6096 6097 // Now we emit the code for if the argument was originally passed in 6098 // registers. First start the appropriate block: 6099 CGF.EmitBlock(InRegBlock); 6100 6101 llvm::Value *reg_top = nullptr; 6102 Address reg_top_p = 6103 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6104 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6105 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6106 CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6107 Address RegAddr = Address::invalid(); 6108 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy; 6109 6110 if (IsIndirect) { 6111 // If it's been passed indirectly (actually a struct), whatever we find from 6112 // stored registers or on the stack will actually be a struct **. 6113 MemTy = llvm::PointerType::getUnqual(MemTy); 6114 } 6115 6116 const Type *Base = nullptr; 6117 uint64_t NumMembers = 0; 6118 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6119 if (IsHFA && NumMembers > 1) { 6120 // Homogeneous aggregates passed in registers will have their elements split 6121 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6122 // qN+1, ...). We reload and store into a temporary local variable 6123 // contiguously. 6124 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6125 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6126 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6127 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6128 Address Tmp = CGF.CreateTempAlloca(HFATy, 6129 std::max(TyAlign, BaseTyInfo.Align)); 6130 6131 // On big-endian platforms, the value will be right-aligned in its slot. 6132 int Offset = 0; 6133 if (CGF.CGM.getDataLayout().isBigEndian() && 6134 BaseTyInfo.Width.getQuantity() < 16) 6135 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6136 6137 for (unsigned i = 0; i < NumMembers; ++i) { 6138 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6139 Address LoadAddr = 6140 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6141 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6142 6143 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6144 6145 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6146 CGF.Builder.CreateStore(Elem, StoreAddr); 6147 } 6148 6149 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6150 } else { 6151 // Otherwise the object is contiguous in memory. 6152 6153 // It might be right-aligned in its slot. 6154 CharUnits SlotSize = BaseAddr.getAlignment(); 6155 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6156 (IsHFA || !isAggregateTypeForABI(Ty)) && 6157 TySize < SlotSize) { 6158 CharUnits Offset = SlotSize - TySize; 6159 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6160 } 6161 6162 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6163 } 6164 6165 CGF.EmitBranch(ContBlock); 6166 6167 //======================================= 6168 // Argument was on the stack 6169 //======================================= 6170 CGF.EmitBlock(OnStackBlock); 6171 6172 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6173 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6174 6175 // Again, stack arguments may need realignment. In this case both integer and 6176 // floating-point ones might be affected. 6177 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6178 int Align = TyAlign.getQuantity(); 6179 6180 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6181 6182 OnStackPtr = CGF.Builder.CreateAdd( 6183 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6184 "align_stack"); 6185 OnStackPtr = CGF.Builder.CreateAnd( 6186 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6187 "align_stack"); 6188 6189 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6190 } 6191 Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty, 6192 std::max(CharUnits::fromQuantity(8), TyAlign)); 6193 6194 // All stack slots are multiples of 8 bytes. 6195 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6196 CharUnits StackSize; 6197 if (IsIndirect) 6198 StackSize = StackSlotSize; 6199 else 6200 StackSize = TySize.alignTo(StackSlotSize); 6201 6202 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6203 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6204 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6205 6206 // Write the new value of __stack for the next call to va_arg 6207 CGF.Builder.CreateStore(NewStack, stack_p); 6208 6209 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6210 TySize < StackSlotSize) { 6211 CharUnits Offset = StackSlotSize - TySize; 6212 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6213 } 6214 6215 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6216 6217 CGF.EmitBranch(ContBlock); 6218 6219 //======================================= 6220 // Tidy up 6221 //======================================= 6222 CGF.EmitBlock(ContBlock); 6223 6224 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr, 6225 OnStackBlock, "vaargs.addr"); 6226 6227 if (IsIndirect) 6228 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy, 6229 TyAlign); 6230 6231 return ResAddr; 6232 } 6233 6234 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6235 CodeGenFunction &CGF) const { 6236 // The backend's lowering doesn't support va_arg for aggregates or 6237 // illegal vector types. Lower VAArg here for these cases and use 6238 // the LLVM va_arg instruction for everything else. 6239 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6240 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6241 6242 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6243 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6244 6245 // Empty records are ignored for parameter passing purposes. 6246 if (isEmptyRecord(getContext(), Ty, true)) { 6247 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), 6248 getVAListElementType(CGF), SlotSize); 6249 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6250 return Addr; 6251 } 6252 6253 // The size of the actual thing passed, which might end up just 6254 // being a pointer for indirect types. 6255 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6256 6257 // Arguments bigger than 16 bytes which aren't homogeneous 6258 // aggregates should be passed indirectly. 6259 bool IsIndirect = false; 6260 if (TyInfo.Width.getQuantity() > 16) { 6261 const Type *Base = nullptr; 6262 uint64_t Members = 0; 6263 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6264 } 6265 6266 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6267 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6268 } 6269 6270 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6271 QualType Ty) const { 6272 bool IsIndirect = false; 6273 6274 // Composites larger than 16 bytes are passed by reference. 6275 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6276 IsIndirect = true; 6277 6278 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6279 CGF.getContext().getTypeInfoInChars(Ty), 6280 CharUnits::fromQuantity(8), 6281 /*allowHigherAlign*/ false); 6282 } 6283 6284 //===----------------------------------------------------------------------===// 6285 // ARM ABI Implementation 6286 //===----------------------------------------------------------------------===// 6287 6288 namespace { 6289 6290 class ARMABIInfo : public SwiftABIInfo { 6291 public: 6292 enum ABIKind { 6293 APCS = 0, 6294 AAPCS = 1, 6295 AAPCS_VFP = 2, 6296 AAPCS16_VFP = 3, 6297 }; 6298 6299 private: 6300 ABIKind Kind; 6301 bool IsFloatABISoftFP; 6302 6303 public: 6304 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6305 : SwiftABIInfo(CGT), Kind(_Kind) { 6306 setCCs(); 6307 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6308 CGT.getCodeGenOpts().FloatABI == ""; // default 6309 } 6310 6311 bool isEABI() const { 6312 switch (getTarget().getTriple().getEnvironment()) { 6313 case llvm::Triple::Android: 6314 case llvm::Triple::EABI: 6315 case llvm::Triple::EABIHF: 6316 case llvm::Triple::GNUEABI: 6317 case llvm::Triple::GNUEABIHF: 6318 case llvm::Triple::MuslEABI: 6319 case llvm::Triple::MuslEABIHF: 6320 return true; 6321 default: 6322 return false; 6323 } 6324 } 6325 6326 bool isEABIHF() const { 6327 switch (getTarget().getTriple().getEnvironment()) { 6328 case llvm::Triple::EABIHF: 6329 case llvm::Triple::GNUEABIHF: 6330 case llvm::Triple::MuslEABIHF: 6331 return true; 6332 default: 6333 return false; 6334 } 6335 } 6336 6337 ABIKind getABIKind() const { return Kind; } 6338 6339 bool allowBFloatArgsAndRet() const override { 6340 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6341 } 6342 6343 private: 6344 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6345 unsigned functionCallConv) const; 6346 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6347 unsigned functionCallConv) const; 6348 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6349 uint64_t Members) const; 6350 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6351 bool isIllegalVectorType(QualType Ty) const; 6352 bool containsAnyFP16Vectors(QualType Ty) const; 6353 6354 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6355 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6356 uint64_t Members) const override; 6357 bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override; 6358 6359 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6360 6361 void computeInfo(CGFunctionInfo &FI) const override; 6362 6363 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6364 QualType Ty) const override; 6365 6366 llvm::CallingConv::ID getLLVMDefaultCC() const; 6367 llvm::CallingConv::ID getABIDefaultCC() const; 6368 void setCCs(); 6369 6370 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6371 bool asReturnValue) const override { 6372 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6373 } 6374 bool isSwiftErrorInRegister() const override { 6375 return true; 6376 } 6377 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6378 unsigned elts) const override; 6379 }; 6380 6381 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6382 public: 6383 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6384 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6385 6386 const ARMABIInfo &getABIInfo() const { 6387 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6388 } 6389 6390 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6391 return 13; 6392 } 6393 6394 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6395 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6396 } 6397 6398 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6399 llvm::Value *Address) const override { 6400 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6401 6402 // 0-15 are the 16 integer registers. 6403 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6404 return false; 6405 } 6406 6407 unsigned getSizeOfUnwindException() const override { 6408 if (getABIInfo().isEABI()) return 88; 6409 return TargetCodeGenInfo::getSizeOfUnwindException(); 6410 } 6411 6412 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6413 CodeGen::CodeGenModule &CGM) const override { 6414 if (GV->isDeclaration()) 6415 return; 6416 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6417 if (!FD) 6418 return; 6419 auto *Fn = cast<llvm::Function>(GV); 6420 6421 if (const auto *TA = FD->getAttr<TargetAttr>()) { 6422 ParsedTargetAttr Attr = TA->parse(); 6423 if (!Attr.BranchProtection.empty()) { 6424 TargetInfo::BranchProtectionInfo BPI; 6425 StringRef DiagMsg; 6426 StringRef Arch = Attr.Architecture.empty() 6427 ? CGM.getTarget().getTargetOpts().CPU 6428 : Attr.Architecture; 6429 if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 6430 Arch, BPI, DiagMsg)) { 6431 CGM.getDiags().Report( 6432 D->getLocation(), 6433 diag::warn_target_unsupported_branch_protection_attribute) 6434 << Arch; 6435 } else { 6436 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 6437 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 && 6438 "Unexpected SignReturnAddressScopeKind"); 6439 Fn->addFnAttr( 6440 "sign-return-address", 6441 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 6442 6443 Fn->addFnAttr("branch-target-enforcement", 6444 BPI.BranchTargetEnforcement ? "true" : "false"); 6445 } 6446 } else if (CGM.getLangOpts().BranchTargetEnforcement || 6447 CGM.getLangOpts().hasSignReturnAddress()) { 6448 // If the Branch Protection attribute is missing, validate the target 6449 // Architecture attribute against Branch Protection command line 6450 // settings. 6451 if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.Architecture)) 6452 CGM.getDiags().Report( 6453 D->getLocation(), 6454 diag::warn_target_unsupported_branch_protection_attribute) 6455 << Attr.Architecture; 6456 } 6457 } 6458 6459 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6460 if (!Attr) 6461 return; 6462 6463 const char *Kind; 6464 switch (Attr->getInterrupt()) { 6465 case ARMInterruptAttr::Generic: Kind = ""; break; 6466 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6467 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6468 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6469 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6470 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6471 } 6472 6473 Fn->addFnAttr("interrupt", Kind); 6474 6475 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6476 if (ABI == ARMABIInfo::APCS) 6477 return; 6478 6479 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6480 // however this is not necessarily true on taking any interrupt. Instruct 6481 // the backend to perform a realignment as part of the function prologue. 6482 llvm::AttrBuilder B(Fn->getContext()); 6483 B.addStackAlignmentAttr(8); 6484 Fn->addFnAttrs(B); 6485 } 6486 }; 6487 6488 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6489 public: 6490 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6491 : ARMTargetCodeGenInfo(CGT, K) {} 6492 6493 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6494 CodeGen::CodeGenModule &CGM) const override; 6495 6496 void getDependentLibraryOption(llvm::StringRef Lib, 6497 llvm::SmallString<24> &Opt) const override { 6498 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6499 } 6500 6501 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6502 llvm::SmallString<32> &Opt) const override { 6503 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6504 } 6505 }; 6506 6507 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6508 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6509 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6510 if (GV->isDeclaration()) 6511 return; 6512 addStackProbeTargetAttributes(D, GV, CGM); 6513 } 6514 } 6515 6516 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6517 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6518 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6519 FI.getCallingConvention()); 6520 6521 for (auto &I : FI.arguments()) 6522 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6523 FI.getCallingConvention()); 6524 6525 6526 // Always honor user-specified calling convention. 6527 if (FI.getCallingConvention() != llvm::CallingConv::C) 6528 return; 6529 6530 llvm::CallingConv::ID cc = getRuntimeCC(); 6531 if (cc != llvm::CallingConv::C) 6532 FI.setEffectiveCallingConvention(cc); 6533 } 6534 6535 /// Return the default calling convention that LLVM will use. 6536 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6537 // The default calling convention that LLVM will infer. 6538 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6539 return llvm::CallingConv::ARM_AAPCS_VFP; 6540 else if (isEABI()) 6541 return llvm::CallingConv::ARM_AAPCS; 6542 else 6543 return llvm::CallingConv::ARM_APCS; 6544 } 6545 6546 /// Return the calling convention that our ABI would like us to use 6547 /// as the C calling convention. 6548 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6549 switch (getABIKind()) { 6550 case APCS: return llvm::CallingConv::ARM_APCS; 6551 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6552 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6553 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6554 } 6555 llvm_unreachable("bad ABI kind"); 6556 } 6557 6558 void ARMABIInfo::setCCs() { 6559 assert(getRuntimeCC() == llvm::CallingConv::C); 6560 6561 // Don't muddy up the IR with a ton of explicit annotations if 6562 // they'd just match what LLVM will infer from the triple. 6563 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6564 if (abiCC != getLLVMDefaultCC()) 6565 RuntimeCC = abiCC; 6566 } 6567 6568 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6569 uint64_t Size = getContext().getTypeSize(Ty); 6570 if (Size <= 32) { 6571 llvm::Type *ResType = 6572 llvm::Type::getInt32Ty(getVMContext()); 6573 return ABIArgInfo::getDirect(ResType); 6574 } 6575 if (Size == 64 || Size == 128) { 6576 auto *ResType = llvm::FixedVectorType::get( 6577 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6578 return ABIArgInfo::getDirect(ResType); 6579 } 6580 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6581 } 6582 6583 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6584 const Type *Base, 6585 uint64_t Members) const { 6586 assert(Base && "Base class should be set for homogeneous aggregate"); 6587 // Base can be a floating-point or a vector. 6588 if (const VectorType *VT = Base->getAs<VectorType>()) { 6589 // FP16 vectors should be converted to integer vectors 6590 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6591 uint64_t Size = getContext().getTypeSize(VT); 6592 auto *NewVecTy = llvm::FixedVectorType::get( 6593 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6594 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6595 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6596 } 6597 } 6598 unsigned Align = 0; 6599 if (getABIKind() == ARMABIInfo::AAPCS || 6600 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6601 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6602 // default otherwise. 6603 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6604 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6605 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6606 } 6607 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6608 } 6609 6610 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6611 unsigned functionCallConv) const { 6612 // 6.1.2.1 The following argument types are VFP CPRCs: 6613 // A single-precision floating-point type (including promoted 6614 // half-precision types); A double-precision floating-point type; 6615 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6616 // with a Base Type of a single- or double-precision floating-point type, 6617 // 64-bit containerized vectors or 128-bit containerized vectors with one 6618 // to four Elements. 6619 // Variadic functions should always marshal to the base standard. 6620 bool IsAAPCS_VFP = 6621 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6622 6623 Ty = useFirstFieldIfTransparentUnion(Ty); 6624 6625 // Handle illegal vector types here. 6626 if (isIllegalVectorType(Ty)) 6627 return coerceIllegalVector(Ty); 6628 6629 if (!isAggregateTypeForABI(Ty)) { 6630 // Treat an enum type as its underlying type. 6631 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6632 Ty = EnumTy->getDecl()->getIntegerType(); 6633 } 6634 6635 if (const auto *EIT = Ty->getAs<BitIntType>()) 6636 if (EIT->getNumBits() > 64) 6637 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6638 6639 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6640 : ABIArgInfo::getDirect()); 6641 } 6642 6643 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6644 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6645 } 6646 6647 // Ignore empty records. 6648 if (isEmptyRecord(getContext(), Ty, true)) 6649 return ABIArgInfo::getIgnore(); 6650 6651 if (IsAAPCS_VFP) { 6652 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6653 // into VFP registers. 6654 const Type *Base = nullptr; 6655 uint64_t Members = 0; 6656 if (isHomogeneousAggregate(Ty, Base, Members)) 6657 return classifyHomogeneousAggregate(Ty, Base, Members); 6658 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6659 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6660 // this convention even for a variadic function: the backend will use GPRs 6661 // if needed. 6662 const Type *Base = nullptr; 6663 uint64_t Members = 0; 6664 if (isHomogeneousAggregate(Ty, Base, Members)) { 6665 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6666 llvm::Type *Ty = 6667 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6668 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6669 } 6670 } 6671 6672 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6673 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6674 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6675 // bigger than 128-bits, they get placed in space allocated by the caller, 6676 // and a pointer is passed. 6677 return ABIArgInfo::getIndirect( 6678 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6679 } 6680 6681 // Support byval for ARM. 6682 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6683 // most 8-byte. We realign the indirect argument if type alignment is bigger 6684 // than ABI alignment. 6685 uint64_t ABIAlign = 4; 6686 uint64_t TyAlign; 6687 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6688 getABIKind() == ARMABIInfo::AAPCS) { 6689 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6690 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6691 } else { 6692 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6693 } 6694 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6695 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6696 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6697 /*ByVal=*/true, 6698 /*Realign=*/TyAlign > ABIAlign); 6699 } 6700 6701 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6702 // same size and alignment. 6703 if (getTarget().isRenderScriptTarget()) { 6704 return coerceToIntArray(Ty, getContext(), getVMContext()); 6705 } 6706 6707 // Otherwise, pass by coercing to a structure of the appropriate size. 6708 llvm::Type* ElemTy; 6709 unsigned SizeRegs; 6710 // FIXME: Try to match the types of the arguments more accurately where 6711 // we can. 6712 if (TyAlign <= 4) { 6713 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6714 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6715 } else { 6716 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6717 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6718 } 6719 6720 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6721 } 6722 6723 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6724 llvm::LLVMContext &VMContext) { 6725 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6726 // is called integer-like if its size is less than or equal to one word, and 6727 // the offset of each of its addressable sub-fields is zero. 6728 6729 uint64_t Size = Context.getTypeSize(Ty); 6730 6731 // Check that the type fits in a word. 6732 if (Size > 32) 6733 return false; 6734 6735 // FIXME: Handle vector types! 6736 if (Ty->isVectorType()) 6737 return false; 6738 6739 // Float types are never treated as "integer like". 6740 if (Ty->isRealFloatingType()) 6741 return false; 6742 6743 // If this is a builtin or pointer type then it is ok. 6744 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6745 return true; 6746 6747 // Small complex integer types are "integer like". 6748 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6749 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6750 6751 // Single element and zero sized arrays should be allowed, by the definition 6752 // above, but they are not. 6753 6754 // Otherwise, it must be a record type. 6755 const RecordType *RT = Ty->getAs<RecordType>(); 6756 if (!RT) return false; 6757 6758 // Ignore records with flexible arrays. 6759 const RecordDecl *RD = RT->getDecl(); 6760 if (RD->hasFlexibleArrayMember()) 6761 return false; 6762 6763 // Check that all sub-fields are at offset 0, and are themselves "integer 6764 // like". 6765 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6766 6767 bool HadField = false; 6768 unsigned idx = 0; 6769 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6770 i != e; ++i, ++idx) { 6771 const FieldDecl *FD = *i; 6772 6773 // Bit-fields are not addressable, we only need to verify they are "integer 6774 // like". We still have to disallow a subsequent non-bitfield, for example: 6775 // struct { int : 0; int x } 6776 // is non-integer like according to gcc. 6777 if (FD->isBitField()) { 6778 if (!RD->isUnion()) 6779 HadField = true; 6780 6781 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6782 return false; 6783 6784 continue; 6785 } 6786 6787 // Check if this field is at offset 0. 6788 if (Layout.getFieldOffset(idx) != 0) 6789 return false; 6790 6791 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6792 return false; 6793 6794 // Only allow at most one field in a structure. This doesn't match the 6795 // wording above, but follows gcc in situations with a field following an 6796 // empty structure. 6797 if (!RD->isUnion()) { 6798 if (HadField) 6799 return false; 6800 6801 HadField = true; 6802 } 6803 } 6804 6805 return true; 6806 } 6807 6808 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6809 unsigned functionCallConv) const { 6810 6811 // Variadic functions should always marshal to the base standard. 6812 bool IsAAPCS_VFP = 6813 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6814 6815 if (RetTy->isVoidType()) 6816 return ABIArgInfo::getIgnore(); 6817 6818 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6819 // Large vector types should be returned via memory. 6820 if (getContext().getTypeSize(RetTy) > 128) 6821 return getNaturalAlignIndirect(RetTy); 6822 // TODO: FP16/BF16 vectors should be converted to integer vectors 6823 // This check is similar to isIllegalVectorType - refactor? 6824 if ((!getTarget().hasLegalHalfType() && 6825 (VT->getElementType()->isFloat16Type() || 6826 VT->getElementType()->isHalfType())) || 6827 (IsFloatABISoftFP && 6828 VT->getElementType()->isBFloat16Type())) 6829 return coerceIllegalVector(RetTy); 6830 } 6831 6832 if (!isAggregateTypeForABI(RetTy)) { 6833 // Treat an enum type as its underlying type. 6834 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6835 RetTy = EnumTy->getDecl()->getIntegerType(); 6836 6837 if (const auto *EIT = RetTy->getAs<BitIntType>()) 6838 if (EIT->getNumBits() > 64) 6839 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6840 6841 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6842 : ABIArgInfo::getDirect(); 6843 } 6844 6845 // Are we following APCS? 6846 if (getABIKind() == APCS) { 6847 if (isEmptyRecord(getContext(), RetTy, false)) 6848 return ABIArgInfo::getIgnore(); 6849 6850 // Complex types are all returned as packed integers. 6851 // 6852 // FIXME: Consider using 2 x vector types if the back end handles them 6853 // correctly. 6854 if (RetTy->isAnyComplexType()) 6855 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6856 getVMContext(), getContext().getTypeSize(RetTy))); 6857 6858 // Integer like structures are returned in r0. 6859 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6860 // Return in the smallest viable integer type. 6861 uint64_t Size = getContext().getTypeSize(RetTy); 6862 if (Size <= 8) 6863 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6864 if (Size <= 16) 6865 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6866 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6867 } 6868 6869 // Otherwise return in memory. 6870 return getNaturalAlignIndirect(RetTy); 6871 } 6872 6873 // Otherwise this is an AAPCS variant. 6874 6875 if (isEmptyRecord(getContext(), RetTy, true)) 6876 return ABIArgInfo::getIgnore(); 6877 6878 // Check for homogeneous aggregates with AAPCS-VFP. 6879 if (IsAAPCS_VFP) { 6880 const Type *Base = nullptr; 6881 uint64_t Members = 0; 6882 if (isHomogeneousAggregate(RetTy, Base, Members)) 6883 return classifyHomogeneousAggregate(RetTy, Base, Members); 6884 } 6885 6886 // Aggregates <= 4 bytes are returned in r0; other aggregates 6887 // are returned indirectly. 6888 uint64_t Size = getContext().getTypeSize(RetTy); 6889 if (Size <= 32) { 6890 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6891 // same size and alignment. 6892 if (getTarget().isRenderScriptTarget()) { 6893 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6894 } 6895 if (getDataLayout().isBigEndian()) 6896 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6897 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6898 6899 // Return in the smallest viable integer type. 6900 if (Size <= 8) 6901 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6902 if (Size <= 16) 6903 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6904 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6905 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6906 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6907 llvm::Type *CoerceTy = 6908 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6909 return ABIArgInfo::getDirect(CoerceTy); 6910 } 6911 6912 return getNaturalAlignIndirect(RetTy); 6913 } 6914 6915 /// isIllegalVector - check whether Ty is an illegal vector type. 6916 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6917 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6918 // On targets that don't support half, fp16 or bfloat, they are expanded 6919 // into float, and we don't want the ABI to depend on whether or not they 6920 // are supported in hardware. Thus return false to coerce vectors of these 6921 // types into integer vectors. 6922 // We do not depend on hasLegalHalfType for bfloat as it is a 6923 // separate IR type. 6924 if ((!getTarget().hasLegalHalfType() && 6925 (VT->getElementType()->isFloat16Type() || 6926 VT->getElementType()->isHalfType())) || 6927 (IsFloatABISoftFP && 6928 VT->getElementType()->isBFloat16Type())) 6929 return true; 6930 if (isAndroid()) { 6931 // Android shipped using Clang 3.1, which supported a slightly different 6932 // vector ABI. The primary differences were that 3-element vector types 6933 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6934 // accepts that legacy behavior for Android only. 6935 // Check whether VT is legal. 6936 unsigned NumElements = VT->getNumElements(); 6937 // NumElements should be power of 2 or equal to 3. 6938 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6939 return true; 6940 } else { 6941 // Check whether VT is legal. 6942 unsigned NumElements = VT->getNumElements(); 6943 uint64_t Size = getContext().getTypeSize(VT); 6944 // NumElements should be power of 2. 6945 if (!llvm::isPowerOf2_32(NumElements)) 6946 return true; 6947 // Size should be greater than 32 bits. 6948 return Size <= 32; 6949 } 6950 } 6951 return false; 6952 } 6953 6954 /// Return true if a type contains any 16-bit floating point vectors 6955 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6956 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6957 uint64_t NElements = AT->getSize().getZExtValue(); 6958 if (NElements == 0) 6959 return false; 6960 return containsAnyFP16Vectors(AT->getElementType()); 6961 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6962 const RecordDecl *RD = RT->getDecl(); 6963 6964 // If this is a C++ record, check the bases first. 6965 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6966 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6967 return containsAnyFP16Vectors(B.getType()); 6968 })) 6969 return true; 6970 6971 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6972 return FD && containsAnyFP16Vectors(FD->getType()); 6973 })) 6974 return true; 6975 6976 return false; 6977 } else { 6978 if (const VectorType *VT = Ty->getAs<VectorType>()) 6979 return (VT->getElementType()->isFloat16Type() || 6980 VT->getElementType()->isBFloat16Type() || 6981 VT->getElementType()->isHalfType()); 6982 return false; 6983 } 6984 } 6985 6986 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6987 llvm::Type *eltTy, 6988 unsigned numElts) const { 6989 if (!llvm::isPowerOf2_32(numElts)) 6990 return false; 6991 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6992 if (size > 64) 6993 return false; 6994 if (vectorSize.getQuantity() != 8 && 6995 (vectorSize.getQuantity() != 16 || numElts == 1)) 6996 return false; 6997 return true; 6998 } 6999 7000 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7001 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 7002 // double, or 64-bit or 128-bit vectors. 7003 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 7004 if (BT->getKind() == BuiltinType::Float || 7005 BT->getKind() == BuiltinType::Double || 7006 BT->getKind() == BuiltinType::LongDouble) 7007 return true; 7008 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 7009 unsigned VecSize = getContext().getTypeSize(VT); 7010 if (VecSize == 64 || VecSize == 128) 7011 return true; 7012 } 7013 return false; 7014 } 7015 7016 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 7017 uint64_t Members) const { 7018 return Members <= 4; 7019 } 7020 7021 bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const { 7022 // AAPCS32 says that the rule for whether something is a homogeneous 7023 // aggregate is applied to the output of the data layout decision. So 7024 // anything that doesn't affect the data layout also does not affect 7025 // homogeneity. In particular, zero-length bitfields don't stop a struct 7026 // being homogeneous. 7027 return true; 7028 } 7029 7030 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 7031 bool acceptHalf) const { 7032 // Give precedence to user-specified calling conventions. 7033 if (callConvention != llvm::CallingConv::C) 7034 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 7035 else 7036 return (getABIKind() == AAPCS_VFP) || 7037 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 7038 } 7039 7040 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7041 QualType Ty) const { 7042 CharUnits SlotSize = CharUnits::fromQuantity(4); 7043 7044 // Empty records are ignored for parameter passing purposes. 7045 if (isEmptyRecord(getContext(), Ty, true)) { 7046 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 7047 getVAListElementType(CGF), SlotSize); 7048 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 7049 return Addr; 7050 } 7051 7052 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 7053 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 7054 7055 // Use indirect if size of the illegal vector is bigger than 16 bytes. 7056 bool IsIndirect = false; 7057 const Type *Base = nullptr; 7058 uint64_t Members = 0; 7059 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 7060 IsIndirect = true; 7061 7062 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 7063 // allocated by the caller. 7064 } else if (TySize > CharUnits::fromQuantity(16) && 7065 getABIKind() == ARMABIInfo::AAPCS16_VFP && 7066 !isHomogeneousAggregate(Ty, Base, Members)) { 7067 IsIndirect = true; 7068 7069 // Otherwise, bound the type's ABI alignment. 7070 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 7071 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 7072 // Our callers should be prepared to handle an under-aligned address. 7073 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 7074 getABIKind() == ARMABIInfo::AAPCS) { 7075 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7076 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 7077 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 7078 // ARMv7k allows type alignment up to 16 bytes. 7079 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7080 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 7081 } else { 7082 TyAlignForABI = CharUnits::fromQuantity(4); 7083 } 7084 7085 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 7086 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 7087 SlotSize, /*AllowHigherAlign*/ true); 7088 } 7089 7090 //===----------------------------------------------------------------------===// 7091 // NVPTX ABI Implementation 7092 //===----------------------------------------------------------------------===// 7093 7094 namespace { 7095 7096 class NVPTXTargetCodeGenInfo; 7097 7098 class NVPTXABIInfo : public ABIInfo { 7099 NVPTXTargetCodeGenInfo &CGInfo; 7100 7101 public: 7102 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7103 : ABIInfo(CGT), CGInfo(Info) {} 7104 7105 ABIArgInfo classifyReturnType(QualType RetTy) const; 7106 ABIArgInfo classifyArgumentType(QualType Ty) const; 7107 7108 void computeInfo(CGFunctionInfo &FI) const override; 7109 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7110 QualType Ty) const override; 7111 bool isUnsupportedType(QualType T) const; 7112 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7113 }; 7114 7115 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7116 public: 7117 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7118 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7119 7120 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7121 CodeGen::CodeGenModule &M) const override; 7122 bool shouldEmitStaticExternCAliases() const override; 7123 7124 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7125 // On the device side, surface reference is represented as an object handle 7126 // in 64-bit integer. 7127 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7128 } 7129 7130 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7131 // On the device side, texture reference is represented as an object handle 7132 // in 64-bit integer. 7133 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7134 } 7135 7136 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7137 LValue Src) const override { 7138 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7139 return true; 7140 } 7141 7142 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7143 LValue Src) const override { 7144 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7145 return true; 7146 } 7147 7148 private: 7149 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7150 // resulting MDNode to the nvvm.annotations MDNode. 7151 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7152 int Operand); 7153 7154 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7155 LValue Src) { 7156 llvm::Value *Handle = nullptr; 7157 llvm::Constant *C = 7158 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7159 // Lookup `addrspacecast` through the constant pointer if any. 7160 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7161 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7162 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7163 // Load the handle from the specific global variable using 7164 // `nvvm.texsurf.handle.internal` intrinsic. 7165 Handle = CGF.EmitRuntimeCall( 7166 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7167 {GV->getType()}), 7168 {GV}, "texsurf_handle"); 7169 } else 7170 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7171 CGF.EmitStoreOfScalar(Handle, Dst); 7172 } 7173 }; 7174 7175 /// Checks if the type is unsupported directly by the current target. 7176 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7177 ASTContext &Context = getContext(); 7178 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7179 return true; 7180 if (!Context.getTargetInfo().hasFloat128Type() && 7181 (T->isFloat128Type() || 7182 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7183 return true; 7184 if (const auto *EIT = T->getAs<BitIntType>()) 7185 return EIT->getNumBits() > 7186 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7187 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7188 Context.getTypeSize(T) > 64U) 7189 return true; 7190 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7191 return isUnsupportedType(AT->getElementType()); 7192 const auto *RT = T->getAs<RecordType>(); 7193 if (!RT) 7194 return false; 7195 const RecordDecl *RD = RT->getDecl(); 7196 7197 // If this is a C++ record, check the bases first. 7198 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7199 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7200 if (isUnsupportedType(I.getType())) 7201 return true; 7202 7203 for (const FieldDecl *I : RD->fields()) 7204 if (isUnsupportedType(I->getType())) 7205 return true; 7206 return false; 7207 } 7208 7209 /// Coerce the given type into an array with maximum allowed size of elements. 7210 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7211 unsigned MaxSize) const { 7212 // Alignment and Size are measured in bits. 7213 const uint64_t Size = getContext().getTypeSize(Ty); 7214 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7215 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7216 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7217 const uint64_t NumElements = (Size + Div - 1) / Div; 7218 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7219 } 7220 7221 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7222 if (RetTy->isVoidType()) 7223 return ABIArgInfo::getIgnore(); 7224 7225 if (getContext().getLangOpts().OpenMP && 7226 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7227 return coerceToIntArrayWithLimit(RetTy, 64); 7228 7229 // note: this is different from default ABI 7230 if (!RetTy->isScalarType()) 7231 return ABIArgInfo::getDirect(); 7232 7233 // Treat an enum type as its underlying type. 7234 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7235 RetTy = EnumTy->getDecl()->getIntegerType(); 7236 7237 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7238 : ABIArgInfo::getDirect()); 7239 } 7240 7241 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7242 // Treat an enum type as its underlying type. 7243 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7244 Ty = EnumTy->getDecl()->getIntegerType(); 7245 7246 // Return aggregates type as indirect by value 7247 if (isAggregateTypeForABI(Ty)) { 7248 // Under CUDA device compilation, tex/surf builtin types are replaced with 7249 // object types and passed directly. 7250 if (getContext().getLangOpts().CUDAIsDevice) { 7251 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7252 return ABIArgInfo::getDirect( 7253 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7254 if (Ty->isCUDADeviceBuiltinTextureType()) 7255 return ABIArgInfo::getDirect( 7256 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7257 } 7258 return getNaturalAlignIndirect(Ty, /* byval */ true); 7259 } 7260 7261 if (const auto *EIT = Ty->getAs<BitIntType>()) { 7262 if ((EIT->getNumBits() > 128) || 7263 (!getContext().getTargetInfo().hasInt128Type() && 7264 EIT->getNumBits() > 64)) 7265 return getNaturalAlignIndirect(Ty, /* byval */ true); 7266 } 7267 7268 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7269 : ABIArgInfo::getDirect()); 7270 } 7271 7272 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7273 if (!getCXXABI().classifyReturnType(FI)) 7274 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7275 for (auto &I : FI.arguments()) 7276 I.info = classifyArgumentType(I.type); 7277 7278 // Always honor user-specified calling convention. 7279 if (FI.getCallingConvention() != llvm::CallingConv::C) 7280 return; 7281 7282 FI.setEffectiveCallingConvention(getRuntimeCC()); 7283 } 7284 7285 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7286 QualType Ty) const { 7287 llvm_unreachable("NVPTX does not support varargs"); 7288 } 7289 7290 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7291 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7292 if (GV->isDeclaration()) 7293 return; 7294 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7295 if (VD) { 7296 if (M.getLangOpts().CUDA) { 7297 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7298 addNVVMMetadata(GV, "surface", 1); 7299 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7300 addNVVMMetadata(GV, "texture", 1); 7301 return; 7302 } 7303 } 7304 7305 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7306 if (!FD) return; 7307 7308 llvm::Function *F = cast<llvm::Function>(GV); 7309 7310 // Perform special handling in OpenCL mode 7311 if (M.getLangOpts().OpenCL) { 7312 // Use OpenCL function attributes to check for kernel functions 7313 // By default, all functions are device functions 7314 if (FD->hasAttr<OpenCLKernelAttr>()) { 7315 // OpenCL __kernel functions get kernel metadata 7316 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7317 addNVVMMetadata(F, "kernel", 1); 7318 // And kernel functions are not subject to inlining 7319 F->addFnAttr(llvm::Attribute::NoInline); 7320 } 7321 } 7322 7323 // Perform special handling in CUDA mode. 7324 if (M.getLangOpts().CUDA) { 7325 // CUDA __global__ functions get a kernel metadata entry. Since 7326 // __global__ functions cannot be called from the device, we do not 7327 // need to set the noinline attribute. 7328 if (FD->hasAttr<CUDAGlobalAttr>()) { 7329 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7330 addNVVMMetadata(F, "kernel", 1); 7331 } 7332 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7333 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7334 llvm::APSInt MaxThreads(32); 7335 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7336 if (MaxThreads > 0) 7337 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7338 7339 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7340 // not specified in __launch_bounds__ or if the user specified a 0 value, 7341 // we don't have to add a PTX directive. 7342 if (Attr->getMinBlocks()) { 7343 llvm::APSInt MinBlocks(32); 7344 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7345 if (MinBlocks > 0) 7346 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7347 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7348 } 7349 } 7350 } 7351 } 7352 7353 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7354 StringRef Name, int Operand) { 7355 llvm::Module *M = GV->getParent(); 7356 llvm::LLVMContext &Ctx = M->getContext(); 7357 7358 // Get "nvvm.annotations" metadata node 7359 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7360 7361 llvm::Metadata *MDVals[] = { 7362 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7363 llvm::ConstantAsMetadata::get( 7364 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7365 // Append metadata to nvvm.annotations 7366 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7367 } 7368 7369 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7370 return false; 7371 } 7372 } 7373 7374 //===----------------------------------------------------------------------===// 7375 // SystemZ ABI Implementation 7376 //===----------------------------------------------------------------------===// 7377 7378 namespace { 7379 7380 class SystemZABIInfo : public SwiftABIInfo { 7381 bool HasVector; 7382 bool IsSoftFloatABI; 7383 7384 public: 7385 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7386 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7387 7388 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7389 bool isCompoundType(QualType Ty) const; 7390 bool isVectorArgumentType(QualType Ty) const; 7391 bool isFPArgumentType(QualType Ty) const; 7392 QualType GetSingleElementType(QualType Ty) const; 7393 7394 ABIArgInfo classifyReturnType(QualType RetTy) const; 7395 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7396 7397 void computeInfo(CGFunctionInfo &FI) const override { 7398 if (!getCXXABI().classifyReturnType(FI)) 7399 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7400 for (auto &I : FI.arguments()) 7401 I.info = classifyArgumentType(I.type); 7402 } 7403 7404 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7405 QualType Ty) const override; 7406 7407 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7408 bool asReturnValue) const override { 7409 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7410 } 7411 bool isSwiftErrorInRegister() const override { 7412 return false; 7413 } 7414 }; 7415 7416 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7417 public: 7418 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7419 : TargetCodeGenInfo( 7420 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7421 7422 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7423 CGBuilderTy &Builder, 7424 CodeGenModule &CGM) const override { 7425 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7426 // Only use TDC in constrained FP mode. 7427 if (!Builder.getIsFPConstrained()) 7428 return nullptr; 7429 7430 llvm::Type *Ty = V->getType(); 7431 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7432 llvm::Module &M = CGM.getModule(); 7433 auto &Ctx = M.getContext(); 7434 llvm::Function *TDCFunc = 7435 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7436 unsigned TDCBits = 0; 7437 switch (BuiltinID) { 7438 case Builtin::BI__builtin_isnan: 7439 TDCBits = 0xf; 7440 break; 7441 case Builtin::BIfinite: 7442 case Builtin::BI__finite: 7443 case Builtin::BIfinitef: 7444 case Builtin::BI__finitef: 7445 case Builtin::BIfinitel: 7446 case Builtin::BI__finitel: 7447 case Builtin::BI__builtin_isfinite: 7448 TDCBits = 0xfc0; 7449 break; 7450 case Builtin::BI__builtin_isinf: 7451 TDCBits = 0x30; 7452 break; 7453 default: 7454 break; 7455 } 7456 if (TDCBits) 7457 return Builder.CreateCall( 7458 TDCFunc, 7459 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7460 } 7461 return nullptr; 7462 } 7463 }; 7464 } 7465 7466 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7467 // Treat an enum type as its underlying type. 7468 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7469 Ty = EnumTy->getDecl()->getIntegerType(); 7470 7471 // Promotable integer types are required to be promoted by the ABI. 7472 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7473 return true; 7474 7475 if (const auto *EIT = Ty->getAs<BitIntType>()) 7476 if (EIT->getNumBits() < 64) 7477 return true; 7478 7479 // 32-bit values must also be promoted. 7480 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7481 switch (BT->getKind()) { 7482 case BuiltinType::Int: 7483 case BuiltinType::UInt: 7484 return true; 7485 default: 7486 return false; 7487 } 7488 return false; 7489 } 7490 7491 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7492 return (Ty->isAnyComplexType() || 7493 Ty->isVectorType() || 7494 isAggregateTypeForABI(Ty)); 7495 } 7496 7497 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7498 return (HasVector && 7499 Ty->isVectorType() && 7500 getContext().getTypeSize(Ty) <= 128); 7501 } 7502 7503 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7504 if (IsSoftFloatABI) 7505 return false; 7506 7507 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7508 switch (BT->getKind()) { 7509 case BuiltinType::Float: 7510 case BuiltinType::Double: 7511 return true; 7512 default: 7513 return false; 7514 } 7515 7516 return false; 7517 } 7518 7519 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7520 const RecordType *RT = Ty->getAs<RecordType>(); 7521 7522 if (RT && RT->isStructureOrClassType()) { 7523 const RecordDecl *RD = RT->getDecl(); 7524 QualType Found; 7525 7526 // If this is a C++ record, check the bases first. 7527 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7528 for (const auto &I : CXXRD->bases()) { 7529 QualType Base = I.getType(); 7530 7531 // Empty bases don't affect things either way. 7532 if (isEmptyRecord(getContext(), Base, true)) 7533 continue; 7534 7535 if (!Found.isNull()) 7536 return Ty; 7537 Found = GetSingleElementType(Base); 7538 } 7539 7540 // Check the fields. 7541 for (const auto *FD : RD->fields()) { 7542 // Unlike isSingleElementStruct(), empty structure and array fields 7543 // do count. So do anonymous bitfields that aren't zero-sized. 7544 7545 // Like isSingleElementStruct(), ignore C++20 empty data members. 7546 if (FD->hasAttr<NoUniqueAddressAttr>() && 7547 isEmptyRecord(getContext(), FD->getType(), true)) 7548 continue; 7549 7550 // Unlike isSingleElementStruct(), arrays do not count. 7551 // Nested structures still do though. 7552 if (!Found.isNull()) 7553 return Ty; 7554 Found = GetSingleElementType(FD->getType()); 7555 } 7556 7557 // Unlike isSingleElementStruct(), trailing padding is allowed. 7558 // An 8-byte aligned struct s { float f; } is passed as a double. 7559 if (!Found.isNull()) 7560 return Found; 7561 } 7562 7563 return Ty; 7564 } 7565 7566 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7567 QualType Ty) const { 7568 // Assume that va_list type is correct; should be pointer to LLVM type: 7569 // struct { 7570 // i64 __gpr; 7571 // i64 __fpr; 7572 // i8 *__overflow_arg_area; 7573 // i8 *__reg_save_area; 7574 // }; 7575 7576 // Every non-vector argument occupies 8 bytes and is passed by preference 7577 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7578 // always passed on the stack. 7579 Ty = getContext().getCanonicalType(Ty); 7580 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7581 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7582 llvm::Type *DirectTy = ArgTy; 7583 ABIArgInfo AI = classifyArgumentType(Ty); 7584 bool IsIndirect = AI.isIndirect(); 7585 bool InFPRs = false; 7586 bool IsVector = false; 7587 CharUnits UnpaddedSize; 7588 CharUnits DirectAlign; 7589 if (IsIndirect) { 7590 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7591 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7592 } else { 7593 if (AI.getCoerceToType()) 7594 ArgTy = AI.getCoerceToType(); 7595 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7596 IsVector = ArgTy->isVectorTy(); 7597 UnpaddedSize = TyInfo.Width; 7598 DirectAlign = TyInfo.Align; 7599 } 7600 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7601 if (IsVector && UnpaddedSize > PaddedSize) 7602 PaddedSize = CharUnits::fromQuantity(16); 7603 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7604 7605 CharUnits Padding = (PaddedSize - UnpaddedSize); 7606 7607 llvm::Type *IndexTy = CGF.Int64Ty; 7608 llvm::Value *PaddedSizeV = 7609 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7610 7611 if (IsVector) { 7612 // Work out the address of a vector argument on the stack. 7613 // Vector arguments are always passed in the high bits of a 7614 // single (8 byte) or double (16 byte) stack slot. 7615 Address OverflowArgAreaPtr = 7616 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7617 Address OverflowArgArea = 7618 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7619 CGF.Int8Ty, TyInfo.Align); 7620 Address MemAddr = 7621 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7622 7623 // Update overflow_arg_area_ptr pointer 7624 llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP( 7625 OverflowArgArea.getElementType(), OverflowArgArea.getPointer(), 7626 PaddedSizeV, "overflow_arg_area"); 7627 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7628 7629 return MemAddr; 7630 } 7631 7632 assert(PaddedSize.getQuantity() == 8); 7633 7634 unsigned MaxRegs, RegCountField, RegSaveIndex; 7635 CharUnits RegPadding; 7636 if (InFPRs) { 7637 MaxRegs = 4; // Maximum of 4 FPR arguments 7638 RegCountField = 1; // __fpr 7639 RegSaveIndex = 16; // save offset for f0 7640 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7641 } else { 7642 MaxRegs = 5; // Maximum of 5 GPR arguments 7643 RegCountField = 0; // __gpr 7644 RegSaveIndex = 2; // save offset for r2 7645 RegPadding = Padding; // values are passed in the low bits of a GPR 7646 } 7647 7648 Address RegCountPtr = 7649 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7650 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7651 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7652 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7653 "fits_in_regs"); 7654 7655 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7656 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7657 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7658 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7659 7660 // Emit code to load the value if it was passed in registers. 7661 CGF.EmitBlock(InRegBlock); 7662 7663 // Work out the address of an argument register. 7664 llvm::Value *ScaledRegCount = 7665 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7666 llvm::Value *RegBase = 7667 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7668 + RegPadding.getQuantity()); 7669 llvm::Value *RegOffset = 7670 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7671 Address RegSaveAreaPtr = 7672 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7673 llvm::Value *RegSaveArea = 7674 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7675 Address RawRegAddr( 7676 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"), 7677 CGF.Int8Ty, PaddedSize); 7678 Address RegAddr = 7679 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7680 7681 // Update the register count 7682 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7683 llvm::Value *NewRegCount = 7684 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7685 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7686 CGF.EmitBranch(ContBlock); 7687 7688 // Emit code to load the value if it was passed in memory. 7689 CGF.EmitBlock(InMemBlock); 7690 7691 // Work out the address of a stack argument. 7692 Address OverflowArgAreaPtr = 7693 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7694 Address OverflowArgArea = 7695 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7696 CGF.Int8Ty, PaddedSize); 7697 Address RawMemAddr = 7698 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7699 Address MemAddr = 7700 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7701 7702 // Update overflow_arg_area_ptr pointer 7703 llvm::Value *NewOverflowArgArea = 7704 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7705 OverflowArgArea.getPointer(), PaddedSizeV, 7706 "overflow_arg_area"); 7707 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7708 CGF.EmitBranch(ContBlock); 7709 7710 // Return the appropriate result. 7711 CGF.EmitBlock(ContBlock); 7712 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 7713 "va_arg.addr"); 7714 7715 if (IsIndirect) 7716 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy, 7717 TyInfo.Align); 7718 7719 return ResAddr; 7720 } 7721 7722 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7723 if (RetTy->isVoidType()) 7724 return ABIArgInfo::getIgnore(); 7725 if (isVectorArgumentType(RetTy)) 7726 return ABIArgInfo::getDirect(); 7727 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7728 return getNaturalAlignIndirect(RetTy); 7729 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7730 : ABIArgInfo::getDirect()); 7731 } 7732 7733 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7734 // Handle the generic C++ ABI. 7735 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7736 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7737 7738 // Integers and enums are extended to full register width. 7739 if (isPromotableIntegerTypeForABI(Ty)) 7740 return ABIArgInfo::getExtend(Ty); 7741 7742 // Handle vector types and vector-like structure types. Note that 7743 // as opposed to float-like structure types, we do not allow any 7744 // padding for vector-like structures, so verify the sizes match. 7745 uint64_t Size = getContext().getTypeSize(Ty); 7746 QualType SingleElementTy = GetSingleElementType(Ty); 7747 if (isVectorArgumentType(SingleElementTy) && 7748 getContext().getTypeSize(SingleElementTy) == Size) 7749 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7750 7751 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7752 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7753 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7754 7755 // Handle small structures. 7756 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7757 // Structures with flexible arrays have variable length, so really 7758 // fail the size test above. 7759 const RecordDecl *RD = RT->getDecl(); 7760 if (RD->hasFlexibleArrayMember()) 7761 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7762 7763 // The structure is passed as an unextended integer, a float, or a double. 7764 llvm::Type *PassTy; 7765 if (isFPArgumentType(SingleElementTy)) { 7766 assert(Size == 32 || Size == 64); 7767 if (Size == 32) 7768 PassTy = llvm::Type::getFloatTy(getVMContext()); 7769 else 7770 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7771 } else 7772 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7773 return ABIArgInfo::getDirect(PassTy); 7774 } 7775 7776 // Non-structure compounds are passed indirectly. 7777 if (isCompoundType(Ty)) 7778 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7779 7780 return ABIArgInfo::getDirect(nullptr); 7781 } 7782 7783 //===----------------------------------------------------------------------===// 7784 // MSP430 ABI Implementation 7785 //===----------------------------------------------------------------------===// 7786 7787 namespace { 7788 7789 class MSP430ABIInfo : public DefaultABIInfo { 7790 static ABIArgInfo complexArgInfo() { 7791 ABIArgInfo Info = ABIArgInfo::getDirect(); 7792 Info.setCanBeFlattened(false); 7793 return Info; 7794 } 7795 7796 public: 7797 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7798 7799 ABIArgInfo classifyReturnType(QualType RetTy) const { 7800 if (RetTy->isAnyComplexType()) 7801 return complexArgInfo(); 7802 7803 return DefaultABIInfo::classifyReturnType(RetTy); 7804 } 7805 7806 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7807 if (RetTy->isAnyComplexType()) 7808 return complexArgInfo(); 7809 7810 return DefaultABIInfo::classifyArgumentType(RetTy); 7811 } 7812 7813 // Just copy the original implementations because 7814 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7815 void computeInfo(CGFunctionInfo &FI) const override { 7816 if (!getCXXABI().classifyReturnType(FI)) 7817 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7818 for (auto &I : FI.arguments()) 7819 I.info = classifyArgumentType(I.type); 7820 } 7821 7822 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7823 QualType Ty) const override { 7824 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7825 } 7826 }; 7827 7828 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7829 public: 7830 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7831 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7832 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7833 CodeGen::CodeGenModule &M) const override; 7834 }; 7835 7836 } 7837 7838 void MSP430TargetCodeGenInfo::setTargetAttributes( 7839 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7840 if (GV->isDeclaration()) 7841 return; 7842 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7843 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7844 if (!InterruptAttr) 7845 return; 7846 7847 // Handle 'interrupt' attribute: 7848 llvm::Function *F = cast<llvm::Function>(GV); 7849 7850 // Step 1: Set ISR calling convention. 7851 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7852 7853 // Step 2: Add attributes goodness. 7854 F->addFnAttr(llvm::Attribute::NoInline); 7855 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7856 } 7857 } 7858 7859 //===----------------------------------------------------------------------===// 7860 // MIPS ABI Implementation. This works for both little-endian and 7861 // big-endian variants. 7862 //===----------------------------------------------------------------------===// 7863 7864 namespace { 7865 class MipsABIInfo : public ABIInfo { 7866 bool IsO32; 7867 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7868 void CoerceToIntArgs(uint64_t TySize, 7869 SmallVectorImpl<llvm::Type *> &ArgList) const; 7870 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7871 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7872 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7873 public: 7874 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7875 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7876 StackAlignInBytes(IsO32 ? 8 : 16) {} 7877 7878 ABIArgInfo classifyReturnType(QualType RetTy) const; 7879 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7880 void computeInfo(CGFunctionInfo &FI) const override; 7881 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7882 QualType Ty) const override; 7883 ABIArgInfo extendType(QualType Ty) const; 7884 }; 7885 7886 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7887 unsigned SizeOfUnwindException; 7888 public: 7889 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7890 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7891 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7892 7893 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7894 return 29; 7895 } 7896 7897 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7898 CodeGen::CodeGenModule &CGM) const override { 7899 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7900 if (!FD) return; 7901 llvm::Function *Fn = cast<llvm::Function>(GV); 7902 7903 if (FD->hasAttr<MipsLongCallAttr>()) 7904 Fn->addFnAttr("long-call"); 7905 else if (FD->hasAttr<MipsShortCallAttr>()) 7906 Fn->addFnAttr("short-call"); 7907 7908 // Other attributes do not have a meaning for declarations. 7909 if (GV->isDeclaration()) 7910 return; 7911 7912 if (FD->hasAttr<Mips16Attr>()) { 7913 Fn->addFnAttr("mips16"); 7914 } 7915 else if (FD->hasAttr<NoMips16Attr>()) { 7916 Fn->addFnAttr("nomips16"); 7917 } 7918 7919 if (FD->hasAttr<MicroMipsAttr>()) 7920 Fn->addFnAttr("micromips"); 7921 else if (FD->hasAttr<NoMicroMipsAttr>()) 7922 Fn->addFnAttr("nomicromips"); 7923 7924 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7925 if (!Attr) 7926 return; 7927 7928 const char *Kind; 7929 switch (Attr->getInterrupt()) { 7930 case MipsInterruptAttr::eic: Kind = "eic"; break; 7931 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7932 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7933 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7934 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7935 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7936 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7937 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7938 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7939 } 7940 7941 Fn->addFnAttr("interrupt", Kind); 7942 7943 } 7944 7945 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7946 llvm::Value *Address) const override; 7947 7948 unsigned getSizeOfUnwindException() const override { 7949 return SizeOfUnwindException; 7950 } 7951 }; 7952 } 7953 7954 void MipsABIInfo::CoerceToIntArgs( 7955 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7956 llvm::IntegerType *IntTy = 7957 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7958 7959 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7960 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7961 ArgList.push_back(IntTy); 7962 7963 // If necessary, add one more integer type to ArgList. 7964 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7965 7966 if (R) 7967 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7968 } 7969 7970 // In N32/64, an aligned double precision floating point field is passed in 7971 // a register. 7972 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7973 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7974 7975 if (IsO32) { 7976 CoerceToIntArgs(TySize, ArgList); 7977 return llvm::StructType::get(getVMContext(), ArgList); 7978 } 7979 7980 if (Ty->isComplexType()) 7981 return CGT.ConvertType(Ty); 7982 7983 const RecordType *RT = Ty->getAs<RecordType>(); 7984 7985 // Unions/vectors are passed in integer registers. 7986 if (!RT || !RT->isStructureOrClassType()) { 7987 CoerceToIntArgs(TySize, ArgList); 7988 return llvm::StructType::get(getVMContext(), ArgList); 7989 } 7990 7991 const RecordDecl *RD = RT->getDecl(); 7992 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7993 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7994 7995 uint64_t LastOffset = 0; 7996 unsigned idx = 0; 7997 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7998 7999 // Iterate over fields in the struct/class and check if there are any aligned 8000 // double fields. 8001 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 8002 i != e; ++i, ++idx) { 8003 const QualType Ty = i->getType(); 8004 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 8005 8006 if (!BT || BT->getKind() != BuiltinType::Double) 8007 continue; 8008 8009 uint64_t Offset = Layout.getFieldOffset(idx); 8010 if (Offset % 64) // Ignore doubles that are not aligned. 8011 continue; 8012 8013 // Add ((Offset - LastOffset) / 64) args of type i64. 8014 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 8015 ArgList.push_back(I64); 8016 8017 // Add double type. 8018 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 8019 LastOffset = Offset + 64; 8020 } 8021 8022 CoerceToIntArgs(TySize - LastOffset, IntArgList); 8023 ArgList.append(IntArgList.begin(), IntArgList.end()); 8024 8025 return llvm::StructType::get(getVMContext(), ArgList); 8026 } 8027 8028 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 8029 uint64_t Offset) const { 8030 if (OrigOffset + MinABIStackAlignInBytes > Offset) 8031 return nullptr; 8032 8033 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 8034 } 8035 8036 ABIArgInfo 8037 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 8038 Ty = useFirstFieldIfTransparentUnion(Ty); 8039 8040 uint64_t OrigOffset = Offset; 8041 uint64_t TySize = getContext().getTypeSize(Ty); 8042 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 8043 8044 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 8045 (uint64_t)StackAlignInBytes); 8046 unsigned CurrOffset = llvm::alignTo(Offset, Align); 8047 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 8048 8049 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 8050 // Ignore empty aggregates. 8051 if (TySize == 0) 8052 return ABIArgInfo::getIgnore(); 8053 8054 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8055 Offset = OrigOffset + MinABIStackAlignInBytes; 8056 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8057 } 8058 8059 // If we have reached here, aggregates are passed directly by coercing to 8060 // another structure type. Padding is inserted if the offset of the 8061 // aggregate is unaligned. 8062 ABIArgInfo ArgInfo = 8063 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 8064 getPaddingType(OrigOffset, CurrOffset)); 8065 ArgInfo.setInReg(true); 8066 return ArgInfo; 8067 } 8068 8069 // Treat an enum type as its underlying type. 8070 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8071 Ty = EnumTy->getDecl()->getIntegerType(); 8072 8073 // Make sure we pass indirectly things that are too large. 8074 if (const auto *EIT = Ty->getAs<BitIntType>()) 8075 if (EIT->getNumBits() > 128 || 8076 (EIT->getNumBits() > 64 && 8077 !getContext().getTargetInfo().hasInt128Type())) 8078 return getNaturalAlignIndirect(Ty); 8079 8080 // All integral types are promoted to the GPR width. 8081 if (Ty->isIntegralOrEnumerationType()) 8082 return extendType(Ty); 8083 8084 return ABIArgInfo::getDirect( 8085 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 8086 } 8087 8088 llvm::Type* 8089 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 8090 const RecordType *RT = RetTy->getAs<RecordType>(); 8091 SmallVector<llvm::Type*, 8> RTList; 8092 8093 if (RT && RT->isStructureOrClassType()) { 8094 const RecordDecl *RD = RT->getDecl(); 8095 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8096 unsigned FieldCnt = Layout.getFieldCount(); 8097 8098 // N32/64 returns struct/classes in floating point registers if the 8099 // following conditions are met: 8100 // 1. The size of the struct/class is no larger than 128-bit. 8101 // 2. The struct/class has one or two fields all of which are floating 8102 // point types. 8103 // 3. The offset of the first field is zero (this follows what gcc does). 8104 // 8105 // Any other composite results are returned in integer registers. 8106 // 8107 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8108 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8109 for (; b != e; ++b) { 8110 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8111 8112 if (!BT || !BT->isFloatingPoint()) 8113 break; 8114 8115 RTList.push_back(CGT.ConvertType(b->getType())); 8116 } 8117 8118 if (b == e) 8119 return llvm::StructType::get(getVMContext(), RTList, 8120 RD->hasAttr<PackedAttr>()); 8121 8122 RTList.clear(); 8123 } 8124 } 8125 8126 CoerceToIntArgs(Size, RTList); 8127 return llvm::StructType::get(getVMContext(), RTList); 8128 } 8129 8130 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8131 uint64_t Size = getContext().getTypeSize(RetTy); 8132 8133 if (RetTy->isVoidType()) 8134 return ABIArgInfo::getIgnore(); 8135 8136 // O32 doesn't treat zero-sized structs differently from other structs. 8137 // However, N32/N64 ignores zero sized return values. 8138 if (!IsO32 && Size == 0) 8139 return ABIArgInfo::getIgnore(); 8140 8141 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8142 if (Size <= 128) { 8143 if (RetTy->isAnyComplexType()) 8144 return ABIArgInfo::getDirect(); 8145 8146 // O32 returns integer vectors in registers and N32/N64 returns all small 8147 // aggregates in registers. 8148 if (!IsO32 || 8149 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8150 ABIArgInfo ArgInfo = 8151 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8152 ArgInfo.setInReg(true); 8153 return ArgInfo; 8154 } 8155 } 8156 8157 return getNaturalAlignIndirect(RetTy); 8158 } 8159 8160 // Treat an enum type as its underlying type. 8161 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8162 RetTy = EnumTy->getDecl()->getIntegerType(); 8163 8164 // Make sure we pass indirectly things that are too large. 8165 if (const auto *EIT = RetTy->getAs<BitIntType>()) 8166 if (EIT->getNumBits() > 128 || 8167 (EIT->getNumBits() > 64 && 8168 !getContext().getTargetInfo().hasInt128Type())) 8169 return getNaturalAlignIndirect(RetTy); 8170 8171 if (isPromotableIntegerTypeForABI(RetTy)) 8172 return ABIArgInfo::getExtend(RetTy); 8173 8174 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8175 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8176 return ABIArgInfo::getSignExtend(RetTy); 8177 8178 return ABIArgInfo::getDirect(); 8179 } 8180 8181 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8182 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8183 if (!getCXXABI().classifyReturnType(FI)) 8184 RetInfo = classifyReturnType(FI.getReturnType()); 8185 8186 // Check if a pointer to an aggregate is passed as a hidden argument. 8187 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8188 8189 for (auto &I : FI.arguments()) 8190 I.info = classifyArgumentType(I.type, Offset); 8191 } 8192 8193 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8194 QualType OrigTy) const { 8195 QualType Ty = OrigTy; 8196 8197 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8198 // Pointers are also promoted in the same way but this only matters for N32. 8199 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8200 unsigned PtrWidth = getTarget().getPointerWidth(0); 8201 bool DidPromote = false; 8202 if ((Ty->isIntegerType() && 8203 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8204 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8205 DidPromote = true; 8206 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8207 Ty->isSignedIntegerType()); 8208 } 8209 8210 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8211 8212 // The alignment of things in the argument area is never larger than 8213 // StackAlignInBytes. 8214 TyInfo.Align = 8215 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8216 8217 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8218 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8219 8220 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8221 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8222 8223 8224 // If there was a promotion, "unpromote" into a temporary. 8225 // TODO: can we just use a pointer into a subset of the original slot? 8226 if (DidPromote) { 8227 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8228 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8229 8230 // Truncate down to the right width. 8231 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8232 : CGF.IntPtrTy); 8233 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8234 if (OrigTy->isPointerType()) 8235 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8236 8237 CGF.Builder.CreateStore(V, Temp); 8238 Addr = Temp; 8239 } 8240 8241 return Addr; 8242 } 8243 8244 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8245 int TySize = getContext().getTypeSize(Ty); 8246 8247 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8248 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8249 return ABIArgInfo::getSignExtend(Ty); 8250 8251 return ABIArgInfo::getExtend(Ty); 8252 } 8253 8254 bool 8255 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8256 llvm::Value *Address) const { 8257 // This information comes from gcc's implementation, which seems to 8258 // as canonical as it gets. 8259 8260 // Everything on MIPS is 4 bytes. Double-precision FP registers 8261 // are aliased to pairs of single-precision FP registers. 8262 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8263 8264 // 0-31 are the general purpose registers, $0 - $31. 8265 // 32-63 are the floating-point registers, $f0 - $f31. 8266 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8267 // 66 is the (notional, I think) register for signal-handler return. 8268 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8269 8270 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8271 // They are one bit wide and ignored here. 8272 8273 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8274 // (coprocessor 1 is the FP unit) 8275 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8276 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8277 // 176-181 are the DSP accumulator registers. 8278 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8279 return false; 8280 } 8281 8282 //===----------------------------------------------------------------------===// 8283 // M68k ABI Implementation 8284 //===----------------------------------------------------------------------===// 8285 8286 namespace { 8287 8288 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8289 public: 8290 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8291 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8292 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8293 CodeGen::CodeGenModule &M) const override; 8294 }; 8295 8296 } // namespace 8297 8298 void M68kTargetCodeGenInfo::setTargetAttributes( 8299 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8300 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8301 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8302 // Handle 'interrupt' attribute: 8303 llvm::Function *F = cast<llvm::Function>(GV); 8304 8305 // Step 1: Set ISR calling convention. 8306 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8307 8308 // Step 2: Add attributes goodness. 8309 F->addFnAttr(llvm::Attribute::NoInline); 8310 8311 // Step 3: Emit ISR vector alias. 8312 unsigned Num = attr->getNumber() / 2; 8313 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8314 "__isr_" + Twine(Num), F); 8315 } 8316 } 8317 } 8318 8319 //===----------------------------------------------------------------------===// 8320 // AVR ABI Implementation. Documented at 8321 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8322 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8323 //===----------------------------------------------------------------------===// 8324 8325 namespace { 8326 class AVRABIInfo : public DefaultABIInfo { 8327 private: 8328 // The total amount of registers can be used to pass parameters. It is 18 on 8329 // AVR, or 6 on AVRTiny. 8330 const unsigned ParamRegs; 8331 // The total amount of registers can be used to pass return value. It is 8 on 8332 // AVR, or 4 on AVRTiny. 8333 const unsigned RetRegs; 8334 8335 public: 8336 AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) 8337 : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {} 8338 8339 ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const { 8340 if (isAggregateTypeForABI(Ty)) { 8341 // On AVR, a return struct with size less than or equals to 8 bytes is 8342 // returned directly via registers R18-R25. On AVRTiny, a return struct 8343 // with size less than or equals to 4 bytes is returned directly via 8344 // registers R22-R25. 8345 if (getContext().getTypeSize(Ty) <= RetRegs * 8) 8346 return ABIArgInfo::getDirect(); 8347 // A return struct with larger size is returned via a stack 8348 // slot, along with a pointer to it as the function's implicit argument. 8349 LargeRet = true; 8350 return getNaturalAlignIndirect(Ty); 8351 } 8352 // Otherwise we follow the default way which is compatible. 8353 return DefaultABIInfo::classifyReturnType(Ty); 8354 } 8355 8356 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const { 8357 unsigned TySize = getContext().getTypeSize(Ty); 8358 8359 // An int8 type argument always costs two registers like an int16. 8360 if (TySize == 8 && NumRegs >= 2) { 8361 NumRegs -= 2; 8362 return ABIArgInfo::getExtend(Ty); 8363 } 8364 8365 // If the argument size is an odd number of bytes, round up the size 8366 // to the next even number. 8367 TySize = llvm::alignTo(TySize, 16); 8368 8369 // Any type including an array/struct type can be passed in rgisters, 8370 // if there are enough registers left. 8371 if (TySize <= NumRegs * 8) { 8372 NumRegs -= TySize / 8; 8373 return ABIArgInfo::getDirect(); 8374 } 8375 8376 // An argument is passed either completely in registers or completely in 8377 // memory. Since there are not enough registers left, current argument 8378 // and all other unprocessed arguments should be passed in memory. 8379 // However we still need to return `ABIArgInfo::getDirect()` other than 8380 // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot 8381 // will be allocated, so the stack frame layout will be incompatible with 8382 // avr-gcc. 8383 NumRegs = 0; 8384 return ABIArgInfo::getDirect(); 8385 } 8386 8387 void computeInfo(CGFunctionInfo &FI) const override { 8388 // Decide the return type. 8389 bool LargeRet = false; 8390 if (!getCXXABI().classifyReturnType(FI)) 8391 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet); 8392 8393 // Decide each argument type. The total number of registers can be used for 8394 // arguments depends on several factors: 8395 // 1. Arguments of varargs functions are passed on the stack. This applies 8396 // even to the named arguments. So no register can be used. 8397 // 2. Total 18 registers can be used on avr and 6 ones on avrtiny. 8398 // 3. If the return type is a struct with too large size, two registers 8399 // (out of 18/6) will be cost as an implicit pointer argument. 8400 unsigned NumRegs = ParamRegs; 8401 if (FI.isVariadic()) 8402 NumRegs = 0; 8403 else if (LargeRet) 8404 NumRegs -= 2; 8405 for (auto &I : FI.arguments()) 8406 I.info = classifyArgumentType(I.type, NumRegs); 8407 } 8408 }; 8409 8410 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8411 public: 8412 AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) 8413 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {} 8414 8415 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8416 const VarDecl *D) const override { 8417 // Check if global/static variable is defined in address space 8418 // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5) 8419 // but not constant. 8420 if (D) { 8421 LangAS AS = D->getType().getAddressSpace(); 8422 if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) && 8423 toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified()) 8424 CGM.getDiags().Report(D->getLocation(), 8425 diag::err_verify_nonconst_addrspace) 8426 << "__flash*"; 8427 } 8428 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8429 } 8430 8431 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8432 CodeGen::CodeGenModule &CGM) const override { 8433 if (GV->isDeclaration()) 8434 return; 8435 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8436 if (!FD) return; 8437 auto *Fn = cast<llvm::Function>(GV); 8438 8439 if (FD->getAttr<AVRInterruptAttr>()) 8440 Fn->addFnAttr("interrupt"); 8441 8442 if (FD->getAttr<AVRSignalAttr>()) 8443 Fn->addFnAttr("signal"); 8444 } 8445 }; 8446 } 8447 8448 //===----------------------------------------------------------------------===// 8449 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8450 // Currently subclassed only to implement custom OpenCL C function attribute 8451 // handling. 8452 //===----------------------------------------------------------------------===// 8453 8454 namespace { 8455 8456 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8457 public: 8458 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8459 : DefaultTargetCodeGenInfo(CGT) {} 8460 8461 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8462 CodeGen::CodeGenModule &M) const override; 8463 }; 8464 8465 void TCETargetCodeGenInfo::setTargetAttributes( 8466 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8467 if (GV->isDeclaration()) 8468 return; 8469 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8470 if (!FD) return; 8471 8472 llvm::Function *F = cast<llvm::Function>(GV); 8473 8474 if (M.getLangOpts().OpenCL) { 8475 if (FD->hasAttr<OpenCLKernelAttr>()) { 8476 // OpenCL C Kernel functions are not subject to inlining 8477 F->addFnAttr(llvm::Attribute::NoInline); 8478 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8479 if (Attr) { 8480 // Convert the reqd_work_group_size() attributes to metadata. 8481 llvm::LLVMContext &Context = F->getContext(); 8482 llvm::NamedMDNode *OpenCLMetadata = 8483 M.getModule().getOrInsertNamedMetadata( 8484 "opencl.kernel_wg_size_info"); 8485 8486 SmallVector<llvm::Metadata *, 5> Operands; 8487 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8488 8489 Operands.push_back( 8490 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8491 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8492 Operands.push_back( 8493 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8494 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8495 Operands.push_back( 8496 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8497 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8498 8499 // Add a boolean constant operand for "required" (true) or "hint" 8500 // (false) for implementing the work_group_size_hint attr later. 8501 // Currently always true as the hint is not yet implemented. 8502 Operands.push_back( 8503 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8504 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8505 } 8506 } 8507 } 8508 } 8509 8510 } 8511 8512 //===----------------------------------------------------------------------===// 8513 // Hexagon ABI Implementation 8514 //===----------------------------------------------------------------------===// 8515 8516 namespace { 8517 8518 class HexagonABIInfo : public DefaultABIInfo { 8519 public: 8520 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8521 8522 private: 8523 ABIArgInfo classifyReturnType(QualType RetTy) const; 8524 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8525 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8526 8527 void computeInfo(CGFunctionInfo &FI) const override; 8528 8529 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8530 QualType Ty) const override; 8531 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8532 QualType Ty) const; 8533 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8534 QualType Ty) const; 8535 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8536 QualType Ty) const; 8537 }; 8538 8539 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8540 public: 8541 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8542 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8543 8544 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8545 return 29; 8546 } 8547 8548 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8549 CodeGen::CodeGenModule &GCM) const override { 8550 if (GV->isDeclaration()) 8551 return; 8552 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8553 if (!FD) 8554 return; 8555 } 8556 }; 8557 8558 } // namespace 8559 8560 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8561 unsigned RegsLeft = 6; 8562 if (!getCXXABI().classifyReturnType(FI)) 8563 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8564 for (auto &I : FI.arguments()) 8565 I.info = classifyArgumentType(I.type, &RegsLeft); 8566 } 8567 8568 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8569 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8570 " through registers"); 8571 8572 if (*RegsLeft == 0) 8573 return false; 8574 8575 if (Size <= 32) { 8576 (*RegsLeft)--; 8577 return true; 8578 } 8579 8580 if (2 <= (*RegsLeft & (~1U))) { 8581 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8582 return true; 8583 } 8584 8585 // Next available register was r5 but candidate was greater than 32-bits so it 8586 // has to go on the stack. However we still consume r5 8587 if (*RegsLeft == 1) 8588 *RegsLeft = 0; 8589 8590 return false; 8591 } 8592 8593 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8594 unsigned *RegsLeft) const { 8595 if (!isAggregateTypeForABI(Ty)) { 8596 // Treat an enum type as its underlying type. 8597 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8598 Ty = EnumTy->getDecl()->getIntegerType(); 8599 8600 uint64_t Size = getContext().getTypeSize(Ty); 8601 if (Size <= 64) 8602 HexagonAdjustRegsLeft(Size, RegsLeft); 8603 8604 if (Size > 64 && Ty->isBitIntType()) 8605 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8606 8607 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8608 : ABIArgInfo::getDirect(); 8609 } 8610 8611 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8612 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8613 8614 // Ignore empty records. 8615 if (isEmptyRecord(getContext(), Ty, true)) 8616 return ABIArgInfo::getIgnore(); 8617 8618 uint64_t Size = getContext().getTypeSize(Ty); 8619 unsigned Align = getContext().getTypeAlign(Ty); 8620 8621 if (Size > 64) 8622 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8623 8624 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8625 Align = Size <= 32 ? 32 : 64; 8626 if (Size <= Align) { 8627 // Pass in the smallest viable integer type. 8628 if (!llvm::isPowerOf2_64(Size)) 8629 Size = llvm::NextPowerOf2(Size); 8630 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8631 } 8632 return DefaultABIInfo::classifyArgumentType(Ty); 8633 } 8634 8635 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8636 if (RetTy->isVoidType()) 8637 return ABIArgInfo::getIgnore(); 8638 8639 const TargetInfo &T = CGT.getTarget(); 8640 uint64_t Size = getContext().getTypeSize(RetTy); 8641 8642 if (RetTy->getAs<VectorType>()) { 8643 // HVX vectors are returned in vector registers or register pairs. 8644 if (T.hasFeature("hvx")) { 8645 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8646 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8647 if (Size == VecSize || Size == 2*VecSize) 8648 return ABIArgInfo::getDirectInReg(); 8649 } 8650 // Large vector types should be returned via memory. 8651 if (Size > 64) 8652 return getNaturalAlignIndirect(RetTy); 8653 } 8654 8655 if (!isAggregateTypeForABI(RetTy)) { 8656 // Treat an enum type as its underlying type. 8657 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8658 RetTy = EnumTy->getDecl()->getIntegerType(); 8659 8660 if (Size > 64 && RetTy->isBitIntType()) 8661 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8662 8663 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8664 : ABIArgInfo::getDirect(); 8665 } 8666 8667 if (isEmptyRecord(getContext(), RetTy, true)) 8668 return ABIArgInfo::getIgnore(); 8669 8670 // Aggregates <= 8 bytes are returned in registers, other aggregates 8671 // are returned indirectly. 8672 if (Size <= 64) { 8673 // Return in the smallest viable integer type. 8674 if (!llvm::isPowerOf2_64(Size)) 8675 Size = llvm::NextPowerOf2(Size); 8676 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8677 } 8678 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8679 } 8680 8681 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8682 Address VAListAddr, 8683 QualType Ty) const { 8684 // Load the overflow area pointer. 8685 Address __overflow_area_pointer_p = 8686 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8687 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8688 __overflow_area_pointer_p, "__overflow_area_pointer"); 8689 8690 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8691 if (Align > 4) { 8692 // Alignment should be a power of 2. 8693 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8694 8695 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8696 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8697 8698 // Add offset to the current pointer to access the argument. 8699 __overflow_area_pointer = 8700 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8701 llvm::Value *AsInt = 8702 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8703 8704 // Create a mask which should be "AND"ed 8705 // with (overflow_arg_area + align - 1) 8706 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8707 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8708 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8709 "__overflow_area_pointer.align"); 8710 } 8711 8712 // Get the type of the argument from memory and bitcast 8713 // overflow area pointer to the argument type. 8714 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8715 Address AddrTyped = CGF.Builder.CreateElementBitCast( 8716 Address(__overflow_area_pointer, CGF.Int8Ty, 8717 CharUnits::fromQuantity(Align)), 8718 PTy); 8719 8720 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8721 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8722 8723 __overflow_area_pointer = CGF.Builder.CreateGEP( 8724 CGF.Int8Ty, __overflow_area_pointer, 8725 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8726 "__overflow_area_pointer.next"); 8727 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8728 8729 return AddrTyped; 8730 } 8731 8732 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8733 Address VAListAddr, 8734 QualType Ty) const { 8735 // FIXME: Need to handle alignment 8736 llvm::Type *BP = CGF.Int8PtrTy; 8737 CGBuilderTy &Builder = CGF.Builder; 8738 Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap"); 8739 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8740 // Handle address alignment for type alignment > 32 bits 8741 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8742 if (TyAlign > 4) { 8743 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8744 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8745 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8746 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8747 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8748 } 8749 Address AddrTyped = Builder.CreateElementBitCast( 8750 Address(Addr, CGF.Int8Ty, CharUnits::fromQuantity(TyAlign)), 8751 CGF.ConvertType(Ty)); 8752 8753 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8754 llvm::Value *NextAddr = Builder.CreateGEP( 8755 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8756 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8757 8758 return AddrTyped; 8759 } 8760 8761 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8762 Address VAListAddr, 8763 QualType Ty) const { 8764 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8765 8766 if (ArgSize > 8) 8767 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8768 8769 // Here we have check if the argument is in register area or 8770 // in overflow area. 8771 // If the saved register area pointer + argsize rounded up to alignment > 8772 // saved register area end pointer, argument is in overflow area. 8773 unsigned RegsLeft = 6; 8774 Ty = CGF.getContext().getCanonicalType(Ty); 8775 (void)classifyArgumentType(Ty, &RegsLeft); 8776 8777 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8778 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8779 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8780 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8781 8782 // Get rounded size of the argument.GCC does not allow vararg of 8783 // size < 4 bytes. We follow the same logic here. 8784 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8785 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8786 8787 // Argument may be in saved register area 8788 CGF.EmitBlock(MaybeRegBlock); 8789 8790 // Load the current saved register area pointer. 8791 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8792 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8793 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8794 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8795 8796 // Load the saved register area end pointer. 8797 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8798 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8799 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8800 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8801 8802 // If the size of argument is > 4 bytes, check if the stack 8803 // location is aligned to 8 bytes 8804 if (ArgAlign > 4) { 8805 8806 llvm::Value *__current_saved_reg_area_pointer_int = 8807 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8808 CGF.Int32Ty); 8809 8810 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8811 __current_saved_reg_area_pointer_int, 8812 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8813 "align_current_saved_reg_area_pointer"); 8814 8815 __current_saved_reg_area_pointer_int = 8816 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8817 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8818 "align_current_saved_reg_area_pointer"); 8819 8820 __current_saved_reg_area_pointer = 8821 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8822 __current_saved_reg_area_pointer->getType(), 8823 "align_current_saved_reg_area_pointer"); 8824 } 8825 8826 llvm::Value *__new_saved_reg_area_pointer = 8827 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8828 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8829 "__new_saved_reg_area_pointer"); 8830 8831 llvm::Value *UsingStack = nullptr; 8832 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8833 __saved_reg_area_end_pointer); 8834 8835 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8836 8837 // Argument in saved register area 8838 // Implement the block where argument is in register saved area 8839 CGF.EmitBlock(InRegBlock); 8840 8841 llvm::Type *PTy = CGF.ConvertType(Ty); 8842 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8843 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8844 8845 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8846 __current_saved_reg_area_pointer_p); 8847 8848 CGF.EmitBranch(ContBlock); 8849 8850 // Argument in overflow area 8851 // Implement the block where the argument is in overflow area. 8852 CGF.EmitBlock(OnStackBlock); 8853 8854 // Load the overflow area pointer 8855 Address __overflow_area_pointer_p = 8856 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8857 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8858 __overflow_area_pointer_p, "__overflow_area_pointer"); 8859 8860 // Align the overflow area pointer according to the alignment of the argument 8861 if (ArgAlign > 4) { 8862 llvm::Value *__overflow_area_pointer_int = 8863 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8864 8865 __overflow_area_pointer_int = 8866 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8867 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8868 "align_overflow_area_pointer"); 8869 8870 __overflow_area_pointer_int = 8871 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8872 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8873 "align_overflow_area_pointer"); 8874 8875 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8876 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8877 "align_overflow_area_pointer"); 8878 } 8879 8880 // Get the pointer for next argument in overflow area and store it 8881 // to overflow area pointer. 8882 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8883 CGF.Int8Ty, __overflow_area_pointer, 8884 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8885 "__overflow_area_pointer.next"); 8886 8887 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8888 __overflow_area_pointer_p); 8889 8890 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8891 __current_saved_reg_area_pointer_p); 8892 8893 // Bitcast the overflow area pointer to the type of argument. 8894 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8895 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8896 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8897 8898 CGF.EmitBranch(ContBlock); 8899 8900 // Get the correct pointer to load the variable argument 8901 // Implement the ContBlock 8902 CGF.EmitBlock(ContBlock); 8903 8904 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 8905 llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy); 8906 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8907 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8908 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8909 8910 return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign)); 8911 } 8912 8913 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8914 QualType Ty) const { 8915 8916 if (getTarget().getTriple().isMusl()) 8917 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8918 8919 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8920 } 8921 8922 //===----------------------------------------------------------------------===// 8923 // Lanai ABI Implementation 8924 //===----------------------------------------------------------------------===// 8925 8926 namespace { 8927 class LanaiABIInfo : public DefaultABIInfo { 8928 public: 8929 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8930 8931 bool shouldUseInReg(QualType Ty, CCState &State) const; 8932 8933 void computeInfo(CGFunctionInfo &FI) const override { 8934 CCState State(FI); 8935 // Lanai uses 4 registers to pass arguments unless the function has the 8936 // regparm attribute set. 8937 if (FI.getHasRegParm()) { 8938 State.FreeRegs = FI.getRegParm(); 8939 } else { 8940 State.FreeRegs = 4; 8941 } 8942 8943 if (!getCXXABI().classifyReturnType(FI)) 8944 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8945 for (auto &I : FI.arguments()) 8946 I.info = classifyArgumentType(I.type, State); 8947 } 8948 8949 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8950 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8951 }; 8952 } // end anonymous namespace 8953 8954 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8955 unsigned Size = getContext().getTypeSize(Ty); 8956 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8957 8958 if (SizeInRegs == 0) 8959 return false; 8960 8961 if (SizeInRegs > State.FreeRegs) { 8962 State.FreeRegs = 0; 8963 return false; 8964 } 8965 8966 State.FreeRegs -= SizeInRegs; 8967 8968 return true; 8969 } 8970 8971 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8972 CCState &State) const { 8973 if (!ByVal) { 8974 if (State.FreeRegs) { 8975 --State.FreeRegs; // Non-byval indirects just use one pointer. 8976 return getNaturalAlignIndirectInReg(Ty); 8977 } 8978 return getNaturalAlignIndirect(Ty, false); 8979 } 8980 8981 // Compute the byval alignment. 8982 const unsigned MinABIStackAlignInBytes = 4; 8983 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8984 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8985 /*Realign=*/TypeAlign > 8986 MinABIStackAlignInBytes); 8987 } 8988 8989 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8990 CCState &State) const { 8991 // Check with the C++ ABI first. 8992 const RecordType *RT = Ty->getAs<RecordType>(); 8993 if (RT) { 8994 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8995 if (RAA == CGCXXABI::RAA_Indirect) { 8996 return getIndirectResult(Ty, /*ByVal=*/false, State); 8997 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8998 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8999 } 9000 } 9001 9002 if (isAggregateTypeForABI(Ty)) { 9003 // Structures with flexible arrays are always indirect. 9004 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9005 return getIndirectResult(Ty, /*ByVal=*/true, State); 9006 9007 // Ignore empty structs/unions. 9008 if (isEmptyRecord(getContext(), Ty, true)) 9009 return ABIArgInfo::getIgnore(); 9010 9011 llvm::LLVMContext &LLVMContext = getVMContext(); 9012 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 9013 if (SizeInRegs <= State.FreeRegs) { 9014 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9015 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9016 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9017 State.FreeRegs -= SizeInRegs; 9018 return ABIArgInfo::getDirectInReg(Result); 9019 } else { 9020 State.FreeRegs = 0; 9021 } 9022 return getIndirectResult(Ty, true, State); 9023 } 9024 9025 // Treat an enum type as its underlying type. 9026 if (const auto *EnumTy = Ty->getAs<EnumType>()) 9027 Ty = EnumTy->getDecl()->getIntegerType(); 9028 9029 bool InReg = shouldUseInReg(Ty, State); 9030 9031 // Don't pass >64 bit integers in registers. 9032 if (const auto *EIT = Ty->getAs<BitIntType>()) 9033 if (EIT->getNumBits() > 64) 9034 return getIndirectResult(Ty, /*ByVal=*/true, State); 9035 9036 if (isPromotableIntegerTypeForABI(Ty)) { 9037 if (InReg) 9038 return ABIArgInfo::getDirectInReg(); 9039 return ABIArgInfo::getExtend(Ty); 9040 } 9041 if (InReg) 9042 return ABIArgInfo::getDirectInReg(); 9043 return ABIArgInfo::getDirect(); 9044 } 9045 9046 namespace { 9047 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 9048 public: 9049 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9050 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 9051 }; 9052 } 9053 9054 //===----------------------------------------------------------------------===// 9055 // AMDGPU ABI Implementation 9056 //===----------------------------------------------------------------------===// 9057 9058 namespace { 9059 9060 class AMDGPUABIInfo final : public DefaultABIInfo { 9061 private: 9062 static const unsigned MaxNumRegsForArgsRet = 16; 9063 9064 unsigned numRegsForType(QualType Ty) const; 9065 9066 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 9067 bool isHomogeneousAggregateSmallEnough(const Type *Base, 9068 uint64_t Members) const override; 9069 9070 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 9071 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 9072 unsigned ToAS) const { 9073 // Single value types. 9074 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty); 9075 if (PtrTy && PtrTy->getAddressSpace() == FromAS) 9076 return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS); 9077 return Ty; 9078 } 9079 9080 public: 9081 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 9082 DefaultABIInfo(CGT) {} 9083 9084 ABIArgInfo classifyReturnType(QualType RetTy) const; 9085 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 9086 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 9087 9088 void computeInfo(CGFunctionInfo &FI) const override; 9089 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9090 QualType Ty) const override; 9091 }; 9092 9093 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 9094 return true; 9095 } 9096 9097 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 9098 const Type *Base, uint64_t Members) const { 9099 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 9100 9101 // Homogeneous Aggregates may occupy at most 16 registers. 9102 return Members * NumRegs <= MaxNumRegsForArgsRet; 9103 } 9104 9105 /// Estimate number of registers the type will use when passed in registers. 9106 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 9107 unsigned NumRegs = 0; 9108 9109 if (const VectorType *VT = Ty->getAs<VectorType>()) { 9110 // Compute from the number of elements. The reported size is based on the 9111 // in-memory size, which includes the padding 4th element for 3-vectors. 9112 QualType EltTy = VT->getElementType(); 9113 unsigned EltSize = getContext().getTypeSize(EltTy); 9114 9115 // 16-bit element vectors should be passed as packed. 9116 if (EltSize == 16) 9117 return (VT->getNumElements() + 1) / 2; 9118 9119 unsigned EltNumRegs = (EltSize + 31) / 32; 9120 return EltNumRegs * VT->getNumElements(); 9121 } 9122 9123 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9124 const RecordDecl *RD = RT->getDecl(); 9125 assert(!RD->hasFlexibleArrayMember()); 9126 9127 for (const FieldDecl *Field : RD->fields()) { 9128 QualType FieldTy = Field->getType(); 9129 NumRegs += numRegsForType(FieldTy); 9130 } 9131 9132 return NumRegs; 9133 } 9134 9135 return (getContext().getTypeSize(Ty) + 31) / 32; 9136 } 9137 9138 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 9139 llvm::CallingConv::ID CC = FI.getCallingConvention(); 9140 9141 if (!getCXXABI().classifyReturnType(FI)) 9142 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9143 9144 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 9145 for (auto &Arg : FI.arguments()) { 9146 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 9147 Arg.info = classifyKernelArgumentType(Arg.type); 9148 } else { 9149 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 9150 } 9151 } 9152 } 9153 9154 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9155 QualType Ty) const { 9156 llvm_unreachable("AMDGPU does not support varargs"); 9157 } 9158 9159 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9160 if (isAggregateTypeForABI(RetTy)) { 9161 // Records with non-trivial destructors/copy-constructors should not be 9162 // returned by value. 9163 if (!getRecordArgABI(RetTy, getCXXABI())) { 9164 // Ignore empty structs/unions. 9165 if (isEmptyRecord(getContext(), RetTy, true)) 9166 return ABIArgInfo::getIgnore(); 9167 9168 // Lower single-element structs to just return a regular value. 9169 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9170 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9171 9172 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9173 const RecordDecl *RD = RT->getDecl(); 9174 if (RD->hasFlexibleArrayMember()) 9175 return DefaultABIInfo::classifyReturnType(RetTy); 9176 } 9177 9178 // Pack aggregates <= 4 bytes into single VGPR or pair. 9179 uint64_t Size = getContext().getTypeSize(RetTy); 9180 if (Size <= 16) 9181 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9182 9183 if (Size <= 32) 9184 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9185 9186 if (Size <= 64) { 9187 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9188 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9189 } 9190 9191 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9192 return ABIArgInfo::getDirect(); 9193 } 9194 } 9195 9196 // Otherwise just do the default thing. 9197 return DefaultABIInfo::classifyReturnType(RetTy); 9198 } 9199 9200 /// For kernels all parameters are really passed in a special buffer. It doesn't 9201 /// make sense to pass anything byval, so everything must be direct. 9202 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9203 Ty = useFirstFieldIfTransparentUnion(Ty); 9204 9205 // TODO: Can we omit empty structs? 9206 9207 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9208 Ty = QualType(SeltTy, 0); 9209 9210 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9211 llvm::Type *LTy = OrigLTy; 9212 if (getContext().getLangOpts().HIP) { 9213 LTy = coerceKernelArgumentType( 9214 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9215 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9216 } 9217 9218 // FIXME: Should also use this for OpenCL, but it requires addressing the 9219 // problem of kernels being called. 9220 // 9221 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9222 // to global address space when using byref. This would require implementing a 9223 // new kind of coercion of the in-memory type when for indirect arguments. 9224 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9225 isAggregateTypeForABI(Ty)) { 9226 return ABIArgInfo::getIndirectAliased( 9227 getContext().getTypeAlignInChars(Ty), 9228 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9229 false /*Realign*/, nullptr /*Padding*/); 9230 } 9231 9232 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9233 // individual elements, which confuses the Clover OpenCL backend; therefore we 9234 // have to set it to false here. Other args of getDirect() are just defaults. 9235 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9236 } 9237 9238 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9239 unsigned &NumRegsLeft) const { 9240 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9241 9242 Ty = useFirstFieldIfTransparentUnion(Ty); 9243 9244 if (isAggregateTypeForABI(Ty)) { 9245 // Records with non-trivial destructors/copy-constructors should not be 9246 // passed by value. 9247 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9248 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9249 9250 // Ignore empty structs/unions. 9251 if (isEmptyRecord(getContext(), Ty, true)) 9252 return ABIArgInfo::getIgnore(); 9253 9254 // Lower single-element structs to just pass a regular value. TODO: We 9255 // could do reasonable-size multiple-element structs too, using getExpand(), 9256 // though watch out for things like bitfields. 9257 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9258 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9259 9260 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9261 const RecordDecl *RD = RT->getDecl(); 9262 if (RD->hasFlexibleArrayMember()) 9263 return DefaultABIInfo::classifyArgumentType(Ty); 9264 } 9265 9266 // Pack aggregates <= 8 bytes into single VGPR or pair. 9267 uint64_t Size = getContext().getTypeSize(Ty); 9268 if (Size <= 64) { 9269 unsigned NumRegs = (Size + 31) / 32; 9270 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9271 9272 if (Size <= 16) 9273 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9274 9275 if (Size <= 32) 9276 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9277 9278 // XXX: Should this be i64 instead, and should the limit increase? 9279 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9280 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9281 } 9282 9283 if (NumRegsLeft > 0) { 9284 unsigned NumRegs = numRegsForType(Ty); 9285 if (NumRegsLeft >= NumRegs) { 9286 NumRegsLeft -= NumRegs; 9287 return ABIArgInfo::getDirect(); 9288 } 9289 } 9290 } 9291 9292 // Otherwise just do the default thing. 9293 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9294 if (!ArgInfo.isIndirect()) { 9295 unsigned NumRegs = numRegsForType(Ty); 9296 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9297 } 9298 9299 return ArgInfo; 9300 } 9301 9302 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9303 public: 9304 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9305 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9306 9307 void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F, 9308 CodeGenModule &CGM) const; 9309 9310 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9311 CodeGen::CodeGenModule &M) const override; 9312 unsigned getOpenCLKernelCallingConv() const override; 9313 9314 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9315 llvm::PointerType *T, QualType QT) const override; 9316 9317 LangAS getASTAllocaAddressSpace() const override { 9318 return getLangASFromTargetAS( 9319 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9320 } 9321 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9322 const VarDecl *D) const override; 9323 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9324 SyncScope Scope, 9325 llvm::AtomicOrdering Ordering, 9326 llvm::LLVMContext &Ctx) const override; 9327 llvm::Function * 9328 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9329 llvm::Function *BlockInvokeFunc, 9330 llvm::Type *BlockTy) const override; 9331 bool shouldEmitStaticExternCAliases() const override; 9332 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9333 }; 9334 } 9335 9336 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9337 llvm::GlobalValue *GV) { 9338 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9339 return false; 9340 9341 return D->hasAttr<OpenCLKernelAttr>() || 9342 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9343 (isa<VarDecl>(D) && 9344 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9345 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9346 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9347 } 9348 9349 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes( 9350 const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const { 9351 const auto *ReqdWGS = 9352 M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9353 const bool IsOpenCLKernel = 9354 M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>(); 9355 const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>(); 9356 9357 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9358 if (ReqdWGS || FlatWGS) { 9359 unsigned Min = 0; 9360 unsigned Max = 0; 9361 if (FlatWGS) { 9362 Min = FlatWGS->getMin() 9363 ->EvaluateKnownConstInt(M.getContext()) 9364 .getExtValue(); 9365 Max = FlatWGS->getMax() 9366 ->EvaluateKnownConstInt(M.getContext()) 9367 .getExtValue(); 9368 } 9369 if (ReqdWGS && Min == 0 && Max == 0) 9370 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9371 9372 if (Min != 0) { 9373 assert(Min <= Max && "Min must be less than or equal Max"); 9374 9375 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9376 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9377 } else 9378 assert(Max == 0 && "Max must be zero"); 9379 } else if (IsOpenCLKernel || IsHIPKernel) { 9380 // By default, restrict the maximum size to a value specified by 9381 // --gpu-max-threads-per-block=n or its default value for HIP. 9382 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9383 const unsigned DefaultMaxWorkGroupSize = 9384 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9385 : M.getLangOpts().GPUMaxThreadsPerBlock; 9386 std::string AttrVal = 9387 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9388 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9389 } 9390 9391 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9392 unsigned Min = 9393 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9394 unsigned Max = Attr->getMax() ? Attr->getMax() 9395 ->EvaluateKnownConstInt(M.getContext()) 9396 .getExtValue() 9397 : 0; 9398 9399 if (Min != 0) { 9400 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9401 9402 std::string AttrVal = llvm::utostr(Min); 9403 if (Max != 0) 9404 AttrVal = AttrVal + "," + llvm::utostr(Max); 9405 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9406 } else 9407 assert(Max == 0 && "Max must be zero"); 9408 } 9409 9410 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9411 unsigned NumSGPR = Attr->getNumSGPR(); 9412 9413 if (NumSGPR != 0) 9414 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9415 } 9416 9417 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9418 uint32_t NumVGPR = Attr->getNumVGPR(); 9419 9420 if (NumVGPR != 0) 9421 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9422 } 9423 } 9424 9425 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9426 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9427 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9428 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9429 GV->setDSOLocal(true); 9430 } 9431 9432 if (GV->isDeclaration()) 9433 return; 9434 9435 llvm::Function *F = dyn_cast<llvm::Function>(GV); 9436 if (!F) 9437 return; 9438 9439 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9440 if (FD) 9441 setFunctionDeclAttributes(FD, F, M); 9442 9443 const bool IsHIPKernel = 9444 M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>(); 9445 9446 if (IsHIPKernel) 9447 F->addFnAttr("uniform-work-group-size", "true"); 9448 9449 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9450 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9451 9452 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9453 F->addFnAttr("amdgpu-ieee", "false"); 9454 } 9455 9456 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9457 return llvm::CallingConv::AMDGPU_KERNEL; 9458 } 9459 9460 // Currently LLVM assumes null pointers always have value 0, 9461 // which results in incorrectly transformed IR. Therefore, instead of 9462 // emitting null pointers in private and local address spaces, a null 9463 // pointer in generic address space is emitted which is casted to a 9464 // pointer in local or private address space. 9465 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9466 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9467 QualType QT) const { 9468 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9469 return llvm::ConstantPointerNull::get(PT); 9470 9471 auto &Ctx = CGM.getContext(); 9472 auto NPT = llvm::PointerType::getWithSamePointeeType( 9473 PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9474 return llvm::ConstantExpr::getAddrSpaceCast( 9475 llvm::ConstantPointerNull::get(NPT), PT); 9476 } 9477 9478 LangAS 9479 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9480 const VarDecl *D) const { 9481 assert(!CGM.getLangOpts().OpenCL && 9482 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9483 "Address space agnostic languages only"); 9484 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9485 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9486 if (!D) 9487 return DefaultGlobalAS; 9488 9489 LangAS AddrSpace = D->getType().getAddressSpace(); 9490 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9491 if (AddrSpace != LangAS::Default) 9492 return AddrSpace; 9493 9494 // Only promote to address space 4 if VarDecl has constant initialization. 9495 if (CGM.isTypeConstant(D->getType(), false) && 9496 D->hasConstantInitialization()) { 9497 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9498 return *ConstAS; 9499 } 9500 return DefaultGlobalAS; 9501 } 9502 9503 llvm::SyncScope::ID 9504 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9505 SyncScope Scope, 9506 llvm::AtomicOrdering Ordering, 9507 llvm::LLVMContext &Ctx) const { 9508 std::string Name; 9509 switch (Scope) { 9510 case SyncScope::HIPSingleThread: 9511 Name = "singlethread"; 9512 break; 9513 case SyncScope::HIPWavefront: 9514 case SyncScope::OpenCLSubGroup: 9515 Name = "wavefront"; 9516 break; 9517 case SyncScope::HIPWorkgroup: 9518 case SyncScope::OpenCLWorkGroup: 9519 Name = "workgroup"; 9520 break; 9521 case SyncScope::HIPAgent: 9522 case SyncScope::OpenCLDevice: 9523 Name = "agent"; 9524 break; 9525 case SyncScope::HIPSystem: 9526 case SyncScope::OpenCLAllSVMDevices: 9527 Name = ""; 9528 break; 9529 } 9530 9531 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9532 if (!Name.empty()) 9533 Name = Twine(Twine(Name) + Twine("-")).str(); 9534 9535 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9536 } 9537 9538 return Ctx.getOrInsertSyncScopeID(Name); 9539 } 9540 9541 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9542 return false; 9543 } 9544 9545 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9546 const FunctionType *&FT) const { 9547 FT = getABIInfo().getContext().adjustFunctionType( 9548 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9549 } 9550 9551 //===----------------------------------------------------------------------===// 9552 // SPARC v8 ABI Implementation. 9553 // Based on the SPARC Compliance Definition version 2.4.1. 9554 // 9555 // Ensures that complex values are passed in registers. 9556 // 9557 namespace { 9558 class SparcV8ABIInfo : public DefaultABIInfo { 9559 public: 9560 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9561 9562 private: 9563 ABIArgInfo classifyReturnType(QualType RetTy) const; 9564 void computeInfo(CGFunctionInfo &FI) const override; 9565 }; 9566 } // end anonymous namespace 9567 9568 9569 ABIArgInfo 9570 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9571 if (Ty->isAnyComplexType()) { 9572 return ABIArgInfo::getDirect(); 9573 } 9574 else { 9575 return DefaultABIInfo::classifyReturnType(Ty); 9576 } 9577 } 9578 9579 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9580 9581 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9582 for (auto &Arg : FI.arguments()) 9583 Arg.info = classifyArgumentType(Arg.type); 9584 } 9585 9586 namespace { 9587 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9588 public: 9589 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9590 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9591 9592 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9593 llvm::Value *Address) const override { 9594 int Offset; 9595 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9596 Offset = 12; 9597 else 9598 Offset = 8; 9599 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9600 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9601 } 9602 9603 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9604 llvm::Value *Address) const override { 9605 int Offset; 9606 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9607 Offset = -12; 9608 else 9609 Offset = -8; 9610 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9611 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9612 } 9613 }; 9614 } // end anonymous namespace 9615 9616 //===----------------------------------------------------------------------===// 9617 // SPARC v9 ABI Implementation. 9618 // Based on the SPARC Compliance Definition version 2.4.1. 9619 // 9620 // Function arguments a mapped to a nominal "parameter array" and promoted to 9621 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9622 // the array, structs larger than 16 bytes are passed indirectly. 9623 // 9624 // One case requires special care: 9625 // 9626 // struct mixed { 9627 // int i; 9628 // float f; 9629 // }; 9630 // 9631 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9632 // parameter array, but the int is passed in an integer register, and the float 9633 // is passed in a floating point register. This is represented as two arguments 9634 // with the LLVM IR inreg attribute: 9635 // 9636 // declare void f(i32 inreg %i, float inreg %f) 9637 // 9638 // The code generator will only allocate 4 bytes from the parameter array for 9639 // the inreg arguments. All other arguments are allocated a multiple of 8 9640 // bytes. 9641 // 9642 namespace { 9643 class SparcV9ABIInfo : public ABIInfo { 9644 public: 9645 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9646 9647 private: 9648 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9649 void computeInfo(CGFunctionInfo &FI) const override; 9650 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9651 QualType Ty) const override; 9652 9653 // Coercion type builder for structs passed in registers. The coercion type 9654 // serves two purposes: 9655 // 9656 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9657 // in registers. 9658 // 2. Expose aligned floating point elements as first-level elements, so the 9659 // code generator knows to pass them in floating point registers. 9660 // 9661 // We also compute the InReg flag which indicates that the struct contains 9662 // aligned 32-bit floats. 9663 // 9664 struct CoerceBuilder { 9665 llvm::LLVMContext &Context; 9666 const llvm::DataLayout &DL; 9667 SmallVector<llvm::Type*, 8> Elems; 9668 uint64_t Size; 9669 bool InReg; 9670 9671 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9672 : Context(c), DL(dl), Size(0), InReg(false) {} 9673 9674 // Pad Elems with integers until Size is ToSize. 9675 void pad(uint64_t ToSize) { 9676 assert(ToSize >= Size && "Cannot remove elements"); 9677 if (ToSize == Size) 9678 return; 9679 9680 // Finish the current 64-bit word. 9681 uint64_t Aligned = llvm::alignTo(Size, 64); 9682 if (Aligned > Size && Aligned <= ToSize) { 9683 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9684 Size = Aligned; 9685 } 9686 9687 // Add whole 64-bit words. 9688 while (Size + 64 <= ToSize) { 9689 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9690 Size += 64; 9691 } 9692 9693 // Final in-word padding. 9694 if (Size < ToSize) { 9695 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9696 Size = ToSize; 9697 } 9698 } 9699 9700 // Add a floating point element at Offset. 9701 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9702 // Unaligned floats are treated as integers. 9703 if (Offset % Bits) 9704 return; 9705 // The InReg flag is only required if there are any floats < 64 bits. 9706 if (Bits < 64) 9707 InReg = true; 9708 pad(Offset); 9709 Elems.push_back(Ty); 9710 Size = Offset + Bits; 9711 } 9712 9713 // Add a struct type to the coercion type, starting at Offset (in bits). 9714 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9715 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9716 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9717 llvm::Type *ElemTy = StrTy->getElementType(i); 9718 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9719 switch (ElemTy->getTypeID()) { 9720 case llvm::Type::StructTyID: 9721 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9722 break; 9723 case llvm::Type::FloatTyID: 9724 addFloat(ElemOffset, ElemTy, 32); 9725 break; 9726 case llvm::Type::DoubleTyID: 9727 addFloat(ElemOffset, ElemTy, 64); 9728 break; 9729 case llvm::Type::FP128TyID: 9730 addFloat(ElemOffset, ElemTy, 128); 9731 break; 9732 case llvm::Type::PointerTyID: 9733 if (ElemOffset % 64 == 0) { 9734 pad(ElemOffset); 9735 Elems.push_back(ElemTy); 9736 Size += 64; 9737 } 9738 break; 9739 default: 9740 break; 9741 } 9742 } 9743 } 9744 9745 // Check if Ty is a usable substitute for the coercion type. 9746 bool isUsableType(llvm::StructType *Ty) const { 9747 return llvm::makeArrayRef(Elems) == Ty->elements(); 9748 } 9749 9750 // Get the coercion type as a literal struct type. 9751 llvm::Type *getType() const { 9752 if (Elems.size() == 1) 9753 return Elems.front(); 9754 else 9755 return llvm::StructType::get(Context, Elems); 9756 } 9757 }; 9758 }; 9759 } // end anonymous namespace 9760 9761 ABIArgInfo 9762 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9763 if (Ty->isVoidType()) 9764 return ABIArgInfo::getIgnore(); 9765 9766 uint64_t Size = getContext().getTypeSize(Ty); 9767 9768 // Anything too big to fit in registers is passed with an explicit indirect 9769 // pointer / sret pointer. 9770 if (Size > SizeLimit) 9771 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9772 9773 // Treat an enum type as its underlying type. 9774 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9775 Ty = EnumTy->getDecl()->getIntegerType(); 9776 9777 // Integer types smaller than a register are extended. 9778 if (Size < 64 && Ty->isIntegerType()) 9779 return ABIArgInfo::getExtend(Ty); 9780 9781 if (const auto *EIT = Ty->getAs<BitIntType>()) 9782 if (EIT->getNumBits() < 64) 9783 return ABIArgInfo::getExtend(Ty); 9784 9785 // Other non-aggregates go in registers. 9786 if (!isAggregateTypeForABI(Ty)) 9787 return ABIArgInfo::getDirect(); 9788 9789 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9790 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9791 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9792 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9793 9794 // This is a small aggregate type that should be passed in registers. 9795 // Build a coercion type from the LLVM struct type. 9796 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9797 if (!StrTy) 9798 return ABIArgInfo::getDirect(); 9799 9800 CoerceBuilder CB(getVMContext(), getDataLayout()); 9801 CB.addStruct(0, StrTy); 9802 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9803 9804 // Try to use the original type for coercion. 9805 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9806 9807 if (CB.InReg) 9808 return ABIArgInfo::getDirectInReg(CoerceTy); 9809 else 9810 return ABIArgInfo::getDirect(CoerceTy); 9811 } 9812 9813 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9814 QualType Ty) const { 9815 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9816 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9817 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9818 AI.setCoerceToType(ArgTy); 9819 9820 CharUnits SlotSize = CharUnits::fromQuantity(8); 9821 9822 CGBuilderTy &Builder = CGF.Builder; 9823 Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"), 9824 getVAListElementType(CGF), SlotSize); 9825 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9826 9827 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9828 9829 Address ArgAddr = Address::invalid(); 9830 CharUnits Stride; 9831 switch (AI.getKind()) { 9832 case ABIArgInfo::Expand: 9833 case ABIArgInfo::CoerceAndExpand: 9834 case ABIArgInfo::InAlloca: 9835 llvm_unreachable("Unsupported ABI kind for va_arg"); 9836 9837 case ABIArgInfo::Extend: { 9838 Stride = SlotSize; 9839 CharUnits Offset = SlotSize - TypeInfo.Width; 9840 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9841 break; 9842 } 9843 9844 case ABIArgInfo::Direct: { 9845 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9846 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9847 ArgAddr = Addr; 9848 break; 9849 } 9850 9851 case ABIArgInfo::Indirect: 9852 case ABIArgInfo::IndirectAliased: 9853 Stride = SlotSize; 9854 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9855 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy, 9856 TypeInfo.Align); 9857 break; 9858 9859 case ABIArgInfo::Ignore: 9860 return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align); 9861 } 9862 9863 // Update VAList. 9864 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9865 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9866 9867 return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr"); 9868 } 9869 9870 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9871 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9872 for (auto &I : FI.arguments()) 9873 I.info = classifyType(I.type, 16 * 8); 9874 } 9875 9876 namespace { 9877 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9878 public: 9879 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9880 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9881 9882 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9883 return 14; 9884 } 9885 9886 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9887 llvm::Value *Address) const override; 9888 9889 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9890 llvm::Value *Address) const override { 9891 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9892 llvm::ConstantInt::get(CGF.Int32Ty, 8)); 9893 } 9894 9895 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9896 llvm::Value *Address) const override { 9897 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9898 llvm::ConstantInt::get(CGF.Int32Ty, -8)); 9899 } 9900 }; 9901 } // end anonymous namespace 9902 9903 bool 9904 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9905 llvm::Value *Address) const { 9906 // This is calculated from the LLVM and GCC tables and verified 9907 // against gcc output. AFAIK all ABIs use the same encoding. 9908 9909 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9910 9911 llvm::IntegerType *i8 = CGF.Int8Ty; 9912 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9913 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9914 9915 // 0-31: the 8-byte general-purpose registers 9916 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9917 9918 // 32-63: f0-31, the 4-byte floating-point registers 9919 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9920 9921 // Y = 64 9922 // PSR = 65 9923 // WIM = 66 9924 // TBR = 67 9925 // PC = 68 9926 // NPC = 69 9927 // FSR = 70 9928 // CSR = 71 9929 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9930 9931 // 72-87: d0-15, the 8-byte floating-point registers 9932 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9933 9934 return false; 9935 } 9936 9937 // ARC ABI implementation. 9938 namespace { 9939 9940 class ARCABIInfo : public DefaultABIInfo { 9941 public: 9942 using DefaultABIInfo::DefaultABIInfo; 9943 9944 private: 9945 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9946 QualType Ty) const override; 9947 9948 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9949 if (!State.FreeRegs) 9950 return; 9951 if (Info.isIndirect() && Info.getInReg()) 9952 State.FreeRegs--; 9953 else if (Info.isDirect() && Info.getInReg()) { 9954 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9955 if (sz < State.FreeRegs) 9956 State.FreeRegs -= sz; 9957 else 9958 State.FreeRegs = 0; 9959 } 9960 } 9961 9962 void computeInfo(CGFunctionInfo &FI) const override { 9963 CCState State(FI); 9964 // ARC uses 8 registers to pass arguments. 9965 State.FreeRegs = 8; 9966 9967 if (!getCXXABI().classifyReturnType(FI)) 9968 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9969 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9970 for (auto &I : FI.arguments()) { 9971 I.info = classifyArgumentType(I.type, State.FreeRegs); 9972 updateState(I.info, I.type, State); 9973 } 9974 } 9975 9976 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9977 ABIArgInfo getIndirectByValue(QualType Ty) const; 9978 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9979 ABIArgInfo classifyReturnType(QualType RetTy) const; 9980 }; 9981 9982 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9983 public: 9984 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9985 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9986 }; 9987 9988 9989 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9990 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9991 getNaturalAlignIndirect(Ty, false); 9992 } 9993 9994 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9995 // Compute the byval alignment. 9996 const unsigned MinABIStackAlignInBytes = 4; 9997 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9998 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9999 TypeAlign > MinABIStackAlignInBytes); 10000 } 10001 10002 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10003 QualType Ty) const { 10004 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 10005 getContext().getTypeInfoInChars(Ty), 10006 CharUnits::fromQuantity(4), true); 10007 } 10008 10009 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 10010 uint8_t FreeRegs) const { 10011 // Handle the generic C++ ABI. 10012 const RecordType *RT = Ty->getAs<RecordType>(); 10013 if (RT) { 10014 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 10015 if (RAA == CGCXXABI::RAA_Indirect) 10016 return getIndirectByRef(Ty, FreeRegs > 0); 10017 10018 if (RAA == CGCXXABI::RAA_DirectInMemory) 10019 return getIndirectByValue(Ty); 10020 } 10021 10022 // Treat an enum type as its underlying type. 10023 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10024 Ty = EnumTy->getDecl()->getIntegerType(); 10025 10026 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 10027 10028 if (isAggregateTypeForABI(Ty)) { 10029 // Structures with flexible arrays are always indirect. 10030 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 10031 return getIndirectByValue(Ty); 10032 10033 // Ignore empty structs/unions. 10034 if (isEmptyRecord(getContext(), Ty, true)) 10035 return ABIArgInfo::getIgnore(); 10036 10037 llvm::LLVMContext &LLVMContext = getVMContext(); 10038 10039 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 10040 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 10041 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 10042 10043 return FreeRegs >= SizeInRegs ? 10044 ABIArgInfo::getDirectInReg(Result) : 10045 ABIArgInfo::getDirect(Result, 0, nullptr, false); 10046 } 10047 10048 if (const auto *EIT = Ty->getAs<BitIntType>()) 10049 if (EIT->getNumBits() > 64) 10050 return getIndirectByValue(Ty); 10051 10052 return isPromotableIntegerTypeForABI(Ty) 10053 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 10054 : ABIArgInfo::getExtend(Ty)) 10055 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 10056 : ABIArgInfo::getDirect()); 10057 } 10058 10059 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 10060 if (RetTy->isAnyComplexType()) 10061 return ABIArgInfo::getDirectInReg(); 10062 10063 // Arguments of size > 4 registers are indirect. 10064 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 10065 if (RetSize > 4) 10066 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 10067 10068 return DefaultABIInfo::classifyReturnType(RetTy); 10069 } 10070 10071 } // End anonymous namespace. 10072 10073 //===----------------------------------------------------------------------===// 10074 // XCore ABI Implementation 10075 //===----------------------------------------------------------------------===// 10076 10077 namespace { 10078 10079 /// A SmallStringEnc instance is used to build up the TypeString by passing 10080 /// it by reference between functions that append to it. 10081 typedef llvm::SmallString<128> SmallStringEnc; 10082 10083 /// TypeStringCache caches the meta encodings of Types. 10084 /// 10085 /// The reason for caching TypeStrings is two fold: 10086 /// 1. To cache a type's encoding for later uses; 10087 /// 2. As a means to break recursive member type inclusion. 10088 /// 10089 /// A cache Entry can have a Status of: 10090 /// NonRecursive: The type encoding is not recursive; 10091 /// Recursive: The type encoding is recursive; 10092 /// Incomplete: An incomplete TypeString; 10093 /// IncompleteUsed: An incomplete TypeString that has been used in a 10094 /// Recursive type encoding. 10095 /// 10096 /// A NonRecursive entry will have all of its sub-members expanded as fully 10097 /// as possible. Whilst it may contain types which are recursive, the type 10098 /// itself is not recursive and thus its encoding may be safely used whenever 10099 /// the type is encountered. 10100 /// 10101 /// A Recursive entry will have all of its sub-members expanded as fully as 10102 /// possible. The type itself is recursive and it may contain other types which 10103 /// are recursive. The Recursive encoding must not be used during the expansion 10104 /// of a recursive type's recursive branch. For simplicity the code uses 10105 /// IncompleteCount to reject all usage of Recursive encodings for member types. 10106 /// 10107 /// An Incomplete entry is always a RecordType and only encodes its 10108 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 10109 /// are placed into the cache during type expansion as a means to identify and 10110 /// handle recursive inclusion of types as sub-members. If there is recursion 10111 /// the entry becomes IncompleteUsed. 10112 /// 10113 /// During the expansion of a RecordType's members: 10114 /// 10115 /// If the cache contains a NonRecursive encoding for the member type, the 10116 /// cached encoding is used; 10117 /// 10118 /// If the cache contains a Recursive encoding for the member type, the 10119 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 10120 /// 10121 /// If the member is a RecordType, an Incomplete encoding is placed into the 10122 /// cache to break potential recursive inclusion of itself as a sub-member; 10123 /// 10124 /// Once a member RecordType has been expanded, its temporary incomplete 10125 /// entry is removed from the cache. If a Recursive encoding was swapped out 10126 /// it is swapped back in; 10127 /// 10128 /// If an incomplete entry is used to expand a sub-member, the incomplete 10129 /// entry is marked as IncompleteUsed. The cache keeps count of how many 10130 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 10131 /// 10132 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 10133 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 10134 /// Else the member is part of a recursive type and thus the recursion has 10135 /// been exited too soon for the encoding to be correct for the member. 10136 /// 10137 class TypeStringCache { 10138 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 10139 struct Entry { 10140 std::string Str; // The encoded TypeString for the type. 10141 enum Status State; // Information about the encoding in 'Str'. 10142 std::string Swapped; // A temporary place holder for a Recursive encoding 10143 // during the expansion of RecordType's members. 10144 }; 10145 std::map<const IdentifierInfo *, struct Entry> Map; 10146 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 10147 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 10148 public: 10149 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 10150 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 10151 bool removeIncomplete(const IdentifierInfo *ID); 10152 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 10153 bool IsRecursive); 10154 StringRef lookupStr(const IdentifierInfo *ID); 10155 }; 10156 10157 /// TypeString encodings for enum & union fields must be order. 10158 /// FieldEncoding is a helper for this ordering process. 10159 class FieldEncoding { 10160 bool HasName; 10161 std::string Enc; 10162 public: 10163 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 10164 StringRef str() { return Enc; } 10165 bool operator<(const FieldEncoding &rhs) const { 10166 if (HasName != rhs.HasName) return HasName; 10167 return Enc < rhs.Enc; 10168 } 10169 }; 10170 10171 class XCoreABIInfo : public DefaultABIInfo { 10172 public: 10173 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10174 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10175 QualType Ty) const override; 10176 }; 10177 10178 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 10179 mutable TypeStringCache TSC; 10180 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 10181 const CodeGen::CodeGenModule &M) const; 10182 10183 public: 10184 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 10185 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 10186 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 10187 const llvm::MapVector<GlobalDecl, StringRef> 10188 &MangledDeclNames) const override; 10189 }; 10190 10191 } // End anonymous namespace. 10192 10193 // TODO: this implementation is likely now redundant with the default 10194 // EmitVAArg. 10195 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10196 QualType Ty) const { 10197 CGBuilderTy &Builder = CGF.Builder; 10198 10199 // Get the VAList. 10200 CharUnits SlotSize = CharUnits::fromQuantity(4); 10201 Address AP = Address(Builder.CreateLoad(VAListAddr), 10202 getVAListElementType(CGF), SlotSize); 10203 10204 // Handle the argument. 10205 ABIArgInfo AI = classifyArgumentType(Ty); 10206 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 10207 llvm::Type *ArgTy = CGT.ConvertType(Ty); 10208 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 10209 AI.setCoerceToType(ArgTy); 10210 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 10211 10212 Address Val = Address::invalid(); 10213 CharUnits ArgSize = CharUnits::Zero(); 10214 switch (AI.getKind()) { 10215 case ABIArgInfo::Expand: 10216 case ABIArgInfo::CoerceAndExpand: 10217 case ABIArgInfo::InAlloca: 10218 llvm_unreachable("Unsupported ABI kind for va_arg"); 10219 case ABIArgInfo::Ignore: 10220 Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign); 10221 ArgSize = CharUnits::Zero(); 10222 break; 10223 case ABIArgInfo::Extend: 10224 case ABIArgInfo::Direct: 10225 Val = Builder.CreateElementBitCast(AP, ArgTy); 10226 ArgSize = CharUnits::fromQuantity( 10227 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10228 ArgSize = ArgSize.alignTo(SlotSize); 10229 break; 10230 case ABIArgInfo::Indirect: 10231 case ABIArgInfo::IndirectAliased: 10232 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10233 Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign); 10234 ArgSize = SlotSize; 10235 break; 10236 } 10237 10238 // Increment the VAList. 10239 if (!ArgSize.isZero()) { 10240 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10241 Builder.CreateStore(APN.getPointer(), VAListAddr); 10242 } 10243 10244 return Val; 10245 } 10246 10247 /// During the expansion of a RecordType, an incomplete TypeString is placed 10248 /// into the cache as a means to identify and break recursion. 10249 /// If there is a Recursive encoding in the cache, it is swapped out and will 10250 /// be reinserted by removeIncomplete(). 10251 /// All other types of encoding should have been used rather than arriving here. 10252 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10253 std::string StubEnc) { 10254 if (!ID) 10255 return; 10256 Entry &E = Map[ID]; 10257 assert( (E.Str.empty() || E.State == Recursive) && 10258 "Incorrectly use of addIncomplete"); 10259 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10260 E.Swapped.swap(E.Str); // swap out the Recursive 10261 E.Str.swap(StubEnc); 10262 E.State = Incomplete; 10263 ++IncompleteCount; 10264 } 10265 10266 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10267 /// must be removed from the cache. 10268 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10269 /// Returns true if the RecordType was defined recursively. 10270 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10271 if (!ID) 10272 return false; 10273 auto I = Map.find(ID); 10274 assert(I != Map.end() && "Entry not present"); 10275 Entry &E = I->second; 10276 assert( (E.State == Incomplete || 10277 E.State == IncompleteUsed) && 10278 "Entry must be an incomplete type"); 10279 bool IsRecursive = false; 10280 if (E.State == IncompleteUsed) { 10281 // We made use of our Incomplete encoding, thus we are recursive. 10282 IsRecursive = true; 10283 --IncompleteUsedCount; 10284 } 10285 if (E.Swapped.empty()) 10286 Map.erase(I); 10287 else { 10288 // Swap the Recursive back. 10289 E.Swapped.swap(E.Str); 10290 E.Swapped.clear(); 10291 E.State = Recursive; 10292 } 10293 --IncompleteCount; 10294 return IsRecursive; 10295 } 10296 10297 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10298 /// Recursive (viz: all sub-members were expanded as fully as possible). 10299 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10300 bool IsRecursive) { 10301 if (!ID || IncompleteUsedCount) 10302 return; // No key or it is is an incomplete sub-type so don't add. 10303 Entry &E = Map[ID]; 10304 if (IsRecursive && !E.Str.empty()) { 10305 assert(E.State==Recursive && E.Str.size() == Str.size() && 10306 "This is not the same Recursive entry"); 10307 // The parent container was not recursive after all, so we could have used 10308 // this Recursive sub-member entry after all, but we assumed the worse when 10309 // we started viz: IncompleteCount!=0. 10310 return; 10311 } 10312 assert(E.Str.empty() && "Entry already present"); 10313 E.Str = Str.str(); 10314 E.State = IsRecursive? Recursive : NonRecursive; 10315 } 10316 10317 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10318 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10319 /// encoding is Recursive, return an empty StringRef. 10320 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10321 if (!ID) 10322 return StringRef(); // We have no key. 10323 auto I = Map.find(ID); 10324 if (I == Map.end()) 10325 return StringRef(); // We have no encoding. 10326 Entry &E = I->second; 10327 if (E.State == Recursive && IncompleteCount) 10328 return StringRef(); // We don't use Recursive encodings for member types. 10329 10330 if (E.State == Incomplete) { 10331 // The incomplete type is being used to break out of recursion. 10332 E.State = IncompleteUsed; 10333 ++IncompleteUsedCount; 10334 } 10335 return E.Str; 10336 } 10337 10338 /// The XCore ABI includes a type information section that communicates symbol 10339 /// type information to the linker. The linker uses this information to verify 10340 /// safety/correctness of things such as array bound and pointers et al. 10341 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10342 /// This type information (TypeString) is emitted into meta data for all global 10343 /// symbols: definitions, declarations, functions & variables. 10344 /// 10345 /// The TypeString carries type, qualifier, name, size & value details. 10346 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10347 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10348 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10349 /// 10350 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10351 const CodeGen::CodeGenModule &CGM, 10352 TypeStringCache &TSC); 10353 10354 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10355 void XCoreTargetCodeGenInfo::emitTargetMD( 10356 const Decl *D, llvm::GlobalValue *GV, 10357 const CodeGen::CodeGenModule &CGM) const { 10358 SmallStringEnc Enc; 10359 if (getTypeString(Enc, D, CGM, TSC)) { 10360 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10361 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10362 llvm::MDString::get(Ctx, Enc.str())}; 10363 llvm::NamedMDNode *MD = 10364 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10365 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10366 } 10367 } 10368 10369 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10370 CodeGen::CodeGenModule &CGM, 10371 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10372 // Warning, new MangledDeclNames may be appended within this loop. 10373 // We rely on MapVector insertions adding new elements to the end 10374 // of the container. 10375 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10376 auto Val = *(MangledDeclNames.begin() + I); 10377 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10378 if (GV) { 10379 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10380 emitTargetMD(D, GV, CGM); 10381 } 10382 } 10383 } 10384 10385 //===----------------------------------------------------------------------===// 10386 // Base ABI and target codegen info implementation common between SPIR and 10387 // SPIR-V. 10388 //===----------------------------------------------------------------------===// 10389 10390 namespace { 10391 class CommonSPIRABIInfo : public DefaultABIInfo { 10392 public: 10393 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10394 10395 private: 10396 void setCCs(); 10397 }; 10398 10399 class SPIRVABIInfo : public CommonSPIRABIInfo { 10400 public: 10401 SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {} 10402 void computeInfo(CGFunctionInfo &FI) const override; 10403 10404 private: 10405 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 10406 }; 10407 } // end anonymous namespace 10408 namespace { 10409 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10410 public: 10411 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10412 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10413 CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo) 10414 : TargetCodeGenInfo(std::move(ABIInfo)) {} 10415 10416 LangAS getASTAllocaAddressSpace() const override { 10417 return getLangASFromTargetAS( 10418 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10419 } 10420 10421 unsigned getOpenCLKernelCallingConv() const override; 10422 }; 10423 class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo { 10424 public: 10425 SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10426 : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {} 10427 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 10428 }; 10429 } // End anonymous namespace. 10430 10431 void CommonSPIRABIInfo::setCCs() { 10432 assert(getRuntimeCC() == llvm::CallingConv::C); 10433 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10434 } 10435 10436 ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const { 10437 if (getContext().getLangOpts().CUDAIsDevice) { 10438 // Coerce pointer arguments with default address space to CrossWorkGroup 10439 // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the 10440 // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space. 10441 llvm::Type *LTy = CGT.ConvertType(Ty); 10442 auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default); 10443 auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device); 10444 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy); 10445 if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) { 10446 LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS); 10447 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 10448 } 10449 } 10450 return classifyArgumentType(Ty); 10451 } 10452 10453 void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10454 // The logic is same as in DefaultABIInfo with an exception on the kernel 10455 // arguments handling. 10456 llvm::CallingConv::ID CC = FI.getCallingConvention(); 10457 10458 if (!getCXXABI().classifyReturnType(FI)) 10459 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10460 10461 for (auto &I : FI.arguments()) { 10462 if (CC == llvm::CallingConv::SPIR_KERNEL) { 10463 I.info = classifyKernelArgumentType(I.type); 10464 } else { 10465 I.info = classifyArgumentType(I.type); 10466 } 10467 } 10468 } 10469 10470 namespace clang { 10471 namespace CodeGen { 10472 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10473 if (CGM.getTarget().getTriple().isSPIRV()) 10474 SPIRVABIInfo(CGM.getTypes()).computeInfo(FI); 10475 else 10476 CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI); 10477 } 10478 } 10479 } 10480 10481 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10482 return llvm::CallingConv::SPIR_KERNEL; 10483 } 10484 10485 void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention( 10486 const FunctionType *&FT) const { 10487 // Convert HIP kernels to SPIR-V kernels. 10488 if (getABIInfo().getContext().getLangOpts().HIP) { 10489 FT = getABIInfo().getContext().adjustFunctionType( 10490 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 10491 return; 10492 } 10493 } 10494 10495 static bool appendType(SmallStringEnc &Enc, QualType QType, 10496 const CodeGen::CodeGenModule &CGM, 10497 TypeStringCache &TSC); 10498 10499 /// Helper function for appendRecordType(). 10500 /// Builds a SmallVector containing the encoded field types in declaration 10501 /// order. 10502 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10503 const RecordDecl *RD, 10504 const CodeGen::CodeGenModule &CGM, 10505 TypeStringCache &TSC) { 10506 for (const auto *Field : RD->fields()) { 10507 SmallStringEnc Enc; 10508 Enc += "m("; 10509 Enc += Field->getName(); 10510 Enc += "){"; 10511 if (Field->isBitField()) { 10512 Enc += "b("; 10513 llvm::raw_svector_ostream OS(Enc); 10514 OS << Field->getBitWidthValue(CGM.getContext()); 10515 Enc += ':'; 10516 } 10517 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10518 return false; 10519 if (Field->isBitField()) 10520 Enc += ')'; 10521 Enc += '}'; 10522 FE.emplace_back(!Field->getName().empty(), Enc); 10523 } 10524 return true; 10525 } 10526 10527 /// Appends structure and union types to Enc and adds encoding to cache. 10528 /// Recursively calls appendType (via extractFieldType) for each field. 10529 /// Union types have their fields ordered according to the ABI. 10530 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10531 const CodeGen::CodeGenModule &CGM, 10532 TypeStringCache &TSC, const IdentifierInfo *ID) { 10533 // Append the cached TypeString if we have one. 10534 StringRef TypeString = TSC.lookupStr(ID); 10535 if (!TypeString.empty()) { 10536 Enc += TypeString; 10537 return true; 10538 } 10539 10540 // Start to emit an incomplete TypeString. 10541 size_t Start = Enc.size(); 10542 Enc += (RT->isUnionType()? 'u' : 's'); 10543 Enc += '('; 10544 if (ID) 10545 Enc += ID->getName(); 10546 Enc += "){"; 10547 10548 // We collect all encoded fields and order as necessary. 10549 bool IsRecursive = false; 10550 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10551 if (RD && !RD->field_empty()) { 10552 // An incomplete TypeString stub is placed in the cache for this RecordType 10553 // so that recursive calls to this RecordType will use it whilst building a 10554 // complete TypeString for this RecordType. 10555 SmallVector<FieldEncoding, 16> FE; 10556 std::string StubEnc(Enc.substr(Start).str()); 10557 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10558 TSC.addIncomplete(ID, std::move(StubEnc)); 10559 if (!extractFieldType(FE, RD, CGM, TSC)) { 10560 (void) TSC.removeIncomplete(ID); 10561 return false; 10562 } 10563 IsRecursive = TSC.removeIncomplete(ID); 10564 // The ABI requires unions to be sorted but not structures. 10565 // See FieldEncoding::operator< for sort algorithm. 10566 if (RT->isUnionType()) 10567 llvm::sort(FE); 10568 // We can now complete the TypeString. 10569 unsigned E = FE.size(); 10570 for (unsigned I = 0; I != E; ++I) { 10571 if (I) 10572 Enc += ','; 10573 Enc += FE[I].str(); 10574 } 10575 } 10576 Enc += '}'; 10577 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10578 return true; 10579 } 10580 10581 /// Appends enum types to Enc and adds the encoding to the cache. 10582 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10583 TypeStringCache &TSC, 10584 const IdentifierInfo *ID) { 10585 // Append the cached TypeString if we have one. 10586 StringRef TypeString = TSC.lookupStr(ID); 10587 if (!TypeString.empty()) { 10588 Enc += TypeString; 10589 return true; 10590 } 10591 10592 size_t Start = Enc.size(); 10593 Enc += "e("; 10594 if (ID) 10595 Enc += ID->getName(); 10596 Enc += "){"; 10597 10598 // We collect all encoded enumerations and order them alphanumerically. 10599 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10600 SmallVector<FieldEncoding, 16> FE; 10601 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10602 ++I) { 10603 SmallStringEnc EnumEnc; 10604 EnumEnc += "m("; 10605 EnumEnc += I->getName(); 10606 EnumEnc += "){"; 10607 I->getInitVal().toString(EnumEnc); 10608 EnumEnc += '}'; 10609 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10610 } 10611 llvm::sort(FE); 10612 unsigned E = FE.size(); 10613 for (unsigned I = 0; I != E; ++I) { 10614 if (I) 10615 Enc += ','; 10616 Enc += FE[I].str(); 10617 } 10618 } 10619 Enc += '}'; 10620 TSC.addIfComplete(ID, Enc.substr(Start), false); 10621 return true; 10622 } 10623 10624 /// Appends type's qualifier to Enc. 10625 /// This is done prior to appending the type's encoding. 10626 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10627 // Qualifiers are emitted in alphabetical order. 10628 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10629 int Lookup = 0; 10630 if (QT.isConstQualified()) 10631 Lookup += 1<<0; 10632 if (QT.isRestrictQualified()) 10633 Lookup += 1<<1; 10634 if (QT.isVolatileQualified()) 10635 Lookup += 1<<2; 10636 Enc += Table[Lookup]; 10637 } 10638 10639 /// Appends built-in types to Enc. 10640 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10641 const char *EncType; 10642 switch (BT->getKind()) { 10643 case BuiltinType::Void: 10644 EncType = "0"; 10645 break; 10646 case BuiltinType::Bool: 10647 EncType = "b"; 10648 break; 10649 case BuiltinType::Char_U: 10650 EncType = "uc"; 10651 break; 10652 case BuiltinType::UChar: 10653 EncType = "uc"; 10654 break; 10655 case BuiltinType::SChar: 10656 EncType = "sc"; 10657 break; 10658 case BuiltinType::UShort: 10659 EncType = "us"; 10660 break; 10661 case BuiltinType::Short: 10662 EncType = "ss"; 10663 break; 10664 case BuiltinType::UInt: 10665 EncType = "ui"; 10666 break; 10667 case BuiltinType::Int: 10668 EncType = "si"; 10669 break; 10670 case BuiltinType::ULong: 10671 EncType = "ul"; 10672 break; 10673 case BuiltinType::Long: 10674 EncType = "sl"; 10675 break; 10676 case BuiltinType::ULongLong: 10677 EncType = "ull"; 10678 break; 10679 case BuiltinType::LongLong: 10680 EncType = "sll"; 10681 break; 10682 case BuiltinType::Float: 10683 EncType = "ft"; 10684 break; 10685 case BuiltinType::Double: 10686 EncType = "d"; 10687 break; 10688 case BuiltinType::LongDouble: 10689 EncType = "ld"; 10690 break; 10691 default: 10692 return false; 10693 } 10694 Enc += EncType; 10695 return true; 10696 } 10697 10698 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10699 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10700 const CodeGen::CodeGenModule &CGM, 10701 TypeStringCache &TSC) { 10702 Enc += "p("; 10703 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10704 return false; 10705 Enc += ')'; 10706 return true; 10707 } 10708 10709 /// Appends array encoding to Enc before calling appendType for the element. 10710 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10711 const ArrayType *AT, 10712 const CodeGen::CodeGenModule &CGM, 10713 TypeStringCache &TSC, StringRef NoSizeEnc) { 10714 if (AT->getSizeModifier() != ArrayType::Normal) 10715 return false; 10716 Enc += "a("; 10717 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10718 CAT->getSize().toStringUnsigned(Enc); 10719 else 10720 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10721 Enc += ':'; 10722 // The Qualifiers should be attached to the type rather than the array. 10723 appendQualifier(Enc, QT); 10724 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10725 return false; 10726 Enc += ')'; 10727 return true; 10728 } 10729 10730 /// Appends a function encoding to Enc, calling appendType for the return type 10731 /// and the arguments. 10732 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10733 const CodeGen::CodeGenModule &CGM, 10734 TypeStringCache &TSC) { 10735 Enc += "f{"; 10736 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10737 return false; 10738 Enc += "}("; 10739 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10740 // N.B. we are only interested in the adjusted param types. 10741 auto I = FPT->param_type_begin(); 10742 auto E = FPT->param_type_end(); 10743 if (I != E) { 10744 do { 10745 if (!appendType(Enc, *I, CGM, TSC)) 10746 return false; 10747 ++I; 10748 if (I != E) 10749 Enc += ','; 10750 } while (I != E); 10751 if (FPT->isVariadic()) 10752 Enc += ",va"; 10753 } else { 10754 if (FPT->isVariadic()) 10755 Enc += "va"; 10756 else 10757 Enc += '0'; 10758 } 10759 } 10760 Enc += ')'; 10761 return true; 10762 } 10763 10764 /// Handles the type's qualifier before dispatching a call to handle specific 10765 /// type encodings. 10766 static bool appendType(SmallStringEnc &Enc, QualType QType, 10767 const CodeGen::CodeGenModule &CGM, 10768 TypeStringCache &TSC) { 10769 10770 QualType QT = QType.getCanonicalType(); 10771 10772 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10773 // The Qualifiers should be attached to the type rather than the array. 10774 // Thus we don't call appendQualifier() here. 10775 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10776 10777 appendQualifier(Enc, QT); 10778 10779 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10780 return appendBuiltinType(Enc, BT); 10781 10782 if (const PointerType *PT = QT->getAs<PointerType>()) 10783 return appendPointerType(Enc, PT, CGM, TSC); 10784 10785 if (const EnumType *ET = QT->getAs<EnumType>()) 10786 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10787 10788 if (const RecordType *RT = QT->getAsStructureType()) 10789 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10790 10791 if (const RecordType *RT = QT->getAsUnionType()) 10792 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10793 10794 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10795 return appendFunctionType(Enc, FT, CGM, TSC); 10796 10797 return false; 10798 } 10799 10800 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10801 const CodeGen::CodeGenModule &CGM, 10802 TypeStringCache &TSC) { 10803 if (!D) 10804 return false; 10805 10806 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10807 if (FD->getLanguageLinkage() != CLanguageLinkage) 10808 return false; 10809 return appendType(Enc, FD->getType(), CGM, TSC); 10810 } 10811 10812 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10813 if (VD->getLanguageLinkage() != CLanguageLinkage) 10814 return false; 10815 QualType QT = VD->getType().getCanonicalType(); 10816 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10817 // Global ArrayTypes are given a size of '*' if the size is unknown. 10818 // The Qualifiers should be attached to the type rather than the array. 10819 // Thus we don't call appendQualifier() here. 10820 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10821 } 10822 return appendType(Enc, QT, CGM, TSC); 10823 } 10824 return false; 10825 } 10826 10827 //===----------------------------------------------------------------------===// 10828 // RISCV ABI Implementation 10829 //===----------------------------------------------------------------------===// 10830 10831 namespace { 10832 class RISCVABIInfo : public DefaultABIInfo { 10833 private: 10834 // Size of the integer ('x') registers in bits. 10835 unsigned XLen; 10836 // Size of the floating point ('f') registers in bits. Note that the target 10837 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10838 // with soft float ABI has FLen==0). 10839 unsigned FLen; 10840 static const int NumArgGPRs = 8; 10841 static const int NumArgFPRs = 8; 10842 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10843 llvm::Type *&Field1Ty, 10844 CharUnits &Field1Off, 10845 llvm::Type *&Field2Ty, 10846 CharUnits &Field2Off) const; 10847 10848 public: 10849 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10850 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10851 10852 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10853 // non-virtual, but computeInfo is virtual, so we overload it. 10854 void computeInfo(CGFunctionInfo &FI) const override; 10855 10856 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10857 int &ArgFPRsLeft) const; 10858 ABIArgInfo classifyReturnType(QualType RetTy) const; 10859 10860 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10861 QualType Ty) const override; 10862 10863 ABIArgInfo extendType(QualType Ty) const; 10864 10865 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10866 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10867 CharUnits &Field2Off, int &NeededArgGPRs, 10868 int &NeededArgFPRs) const; 10869 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10870 CharUnits Field1Off, 10871 llvm::Type *Field2Ty, 10872 CharUnits Field2Off) const; 10873 }; 10874 } // end anonymous namespace 10875 10876 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10877 QualType RetTy = FI.getReturnType(); 10878 if (!getCXXABI().classifyReturnType(FI)) 10879 FI.getReturnInfo() = classifyReturnType(RetTy); 10880 10881 // IsRetIndirect is true if classifyArgumentType indicated the value should 10882 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10883 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10884 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10885 // list and pass indirectly on RV32. 10886 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10887 if (!IsRetIndirect && RetTy->isScalarType() && 10888 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10889 if (RetTy->isComplexType() && FLen) { 10890 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10891 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10892 } else { 10893 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10894 IsRetIndirect = true; 10895 } 10896 } 10897 10898 // We must track the number of GPRs used in order to conform to the RISC-V 10899 // ABI, as integer scalars passed in registers should have signext/zeroext 10900 // when promoted, but are anyext if passed on the stack. As GPR usage is 10901 // different for variadic arguments, we must also track whether we are 10902 // examining a vararg or not. 10903 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10904 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10905 int NumFixedArgs = FI.getNumRequiredArgs(); 10906 10907 int ArgNum = 0; 10908 for (auto &ArgInfo : FI.arguments()) { 10909 bool IsFixed = ArgNum < NumFixedArgs; 10910 ArgInfo.info = 10911 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10912 ArgNum++; 10913 } 10914 } 10915 10916 // Returns true if the struct is a potential candidate for the floating point 10917 // calling convention. If this function returns true, the caller is 10918 // responsible for checking that if there is only a single field then that 10919 // field is a float. 10920 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10921 llvm::Type *&Field1Ty, 10922 CharUnits &Field1Off, 10923 llvm::Type *&Field2Ty, 10924 CharUnits &Field2Off) const { 10925 bool IsInt = Ty->isIntegralOrEnumerationType(); 10926 bool IsFloat = Ty->isRealFloatingType(); 10927 10928 if (IsInt || IsFloat) { 10929 uint64_t Size = getContext().getTypeSize(Ty); 10930 if (IsInt && Size > XLen) 10931 return false; 10932 // Can't be eligible if larger than the FP registers. Half precision isn't 10933 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10934 // default to the integer ABI in that case. 10935 if (IsFloat && (Size > FLen || Size < 32)) 10936 return false; 10937 // Can't be eligible if an integer type was already found (int+int pairs 10938 // are not eligible). 10939 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10940 return false; 10941 if (!Field1Ty) { 10942 Field1Ty = CGT.ConvertType(Ty); 10943 Field1Off = CurOff; 10944 return true; 10945 } 10946 if (!Field2Ty) { 10947 Field2Ty = CGT.ConvertType(Ty); 10948 Field2Off = CurOff; 10949 return true; 10950 } 10951 return false; 10952 } 10953 10954 if (auto CTy = Ty->getAs<ComplexType>()) { 10955 if (Field1Ty) 10956 return false; 10957 QualType EltTy = CTy->getElementType(); 10958 if (getContext().getTypeSize(EltTy) > FLen) 10959 return false; 10960 Field1Ty = CGT.ConvertType(EltTy); 10961 Field1Off = CurOff; 10962 Field2Ty = Field1Ty; 10963 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10964 return true; 10965 } 10966 10967 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10968 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10969 QualType EltTy = ATy->getElementType(); 10970 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10971 for (uint64_t i = 0; i < ArraySize; ++i) { 10972 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10973 Field1Off, Field2Ty, Field2Off); 10974 if (!Ret) 10975 return false; 10976 CurOff += EltSize; 10977 } 10978 return true; 10979 } 10980 10981 if (const auto *RTy = Ty->getAs<RecordType>()) { 10982 // Structures with either a non-trivial destructor or a non-trivial 10983 // copy constructor are not eligible for the FP calling convention. 10984 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10985 return false; 10986 if (isEmptyRecord(getContext(), Ty, true)) 10987 return true; 10988 const RecordDecl *RD = RTy->getDecl(); 10989 // Unions aren't eligible unless they're empty (which is caught above). 10990 if (RD->isUnion()) 10991 return false; 10992 int ZeroWidthBitFieldCount = 0; 10993 for (const FieldDecl *FD : RD->fields()) { 10994 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10995 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10996 QualType QTy = FD->getType(); 10997 if (FD->isBitField()) { 10998 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10999 // Allow a bitfield with a type greater than XLen as long as the 11000 // bitwidth is XLen or less. 11001 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 11002 QTy = getContext().getIntTypeForBitwidth(XLen, false); 11003 if (BitWidth == 0) { 11004 ZeroWidthBitFieldCount++; 11005 continue; 11006 } 11007 } 11008 11009 bool Ret = detectFPCCEligibleStructHelper( 11010 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 11011 Field1Ty, Field1Off, Field2Ty, Field2Off); 11012 if (!Ret) 11013 return false; 11014 11015 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 11016 // or int+fp structs, but are ignored for a struct with an fp field and 11017 // any number of zero-width bitfields. 11018 if (Field2Ty && ZeroWidthBitFieldCount > 0) 11019 return false; 11020 } 11021 return Field1Ty != nullptr; 11022 } 11023 11024 return false; 11025 } 11026 11027 // Determine if a struct is eligible for passing according to the floating 11028 // point calling convention (i.e., when flattened it contains a single fp 11029 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 11030 // NeededArgGPRs are incremented appropriately. 11031 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 11032 CharUnits &Field1Off, 11033 llvm::Type *&Field2Ty, 11034 CharUnits &Field2Off, 11035 int &NeededArgGPRs, 11036 int &NeededArgFPRs) const { 11037 Field1Ty = nullptr; 11038 Field2Ty = nullptr; 11039 NeededArgGPRs = 0; 11040 NeededArgFPRs = 0; 11041 bool IsCandidate = detectFPCCEligibleStructHelper( 11042 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 11043 // Not really a candidate if we have a single int but no float. 11044 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 11045 return false; 11046 if (!IsCandidate) 11047 return false; 11048 if (Field1Ty && Field1Ty->isFloatingPointTy()) 11049 NeededArgFPRs++; 11050 else if (Field1Ty) 11051 NeededArgGPRs++; 11052 if (Field2Ty && Field2Ty->isFloatingPointTy()) 11053 NeededArgFPRs++; 11054 else if (Field2Ty) 11055 NeededArgGPRs++; 11056 return true; 11057 } 11058 11059 // Call getCoerceAndExpand for the two-element flattened struct described by 11060 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 11061 // appropriate coerceToType and unpaddedCoerceToType. 11062 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 11063 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 11064 CharUnits Field2Off) const { 11065 SmallVector<llvm::Type *, 3> CoerceElts; 11066 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 11067 if (!Field1Off.isZero()) 11068 CoerceElts.push_back(llvm::ArrayType::get( 11069 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 11070 11071 CoerceElts.push_back(Field1Ty); 11072 UnpaddedCoerceElts.push_back(Field1Ty); 11073 11074 if (!Field2Ty) { 11075 return ABIArgInfo::getCoerceAndExpand( 11076 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 11077 UnpaddedCoerceElts[0]); 11078 } 11079 11080 CharUnits Field2Align = 11081 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 11082 CharUnits Field1End = Field1Off + 11083 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 11084 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 11085 11086 CharUnits Padding = CharUnits::Zero(); 11087 if (Field2Off > Field2OffNoPadNoPack) 11088 Padding = Field2Off - Field2OffNoPadNoPack; 11089 else if (Field2Off != Field2Align && Field2Off > Field1End) 11090 Padding = Field2Off - Field1End; 11091 11092 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 11093 11094 if (!Padding.isZero()) 11095 CoerceElts.push_back(llvm::ArrayType::get( 11096 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 11097 11098 CoerceElts.push_back(Field2Ty); 11099 UnpaddedCoerceElts.push_back(Field2Ty); 11100 11101 auto CoerceToType = 11102 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 11103 auto UnpaddedCoerceToType = 11104 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 11105 11106 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 11107 } 11108 11109 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 11110 int &ArgGPRsLeft, 11111 int &ArgFPRsLeft) const { 11112 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 11113 Ty = useFirstFieldIfTransparentUnion(Ty); 11114 11115 // Structures with either a non-trivial destructor or a non-trivial 11116 // copy constructor are always passed indirectly. 11117 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 11118 if (ArgGPRsLeft) 11119 ArgGPRsLeft -= 1; 11120 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 11121 CGCXXABI::RAA_DirectInMemory); 11122 } 11123 11124 // Ignore empty structs/unions. 11125 if (isEmptyRecord(getContext(), Ty, true)) 11126 return ABIArgInfo::getIgnore(); 11127 11128 uint64_t Size = getContext().getTypeSize(Ty); 11129 11130 // Pass floating point values via FPRs if possible. 11131 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 11132 FLen >= Size && ArgFPRsLeft) { 11133 ArgFPRsLeft--; 11134 return ABIArgInfo::getDirect(); 11135 } 11136 11137 // Complex types for the hard float ABI must be passed direct rather than 11138 // using CoerceAndExpand. 11139 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 11140 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 11141 if (getContext().getTypeSize(EltTy) <= FLen) { 11142 ArgFPRsLeft -= 2; 11143 return ABIArgInfo::getDirect(); 11144 } 11145 } 11146 11147 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 11148 llvm::Type *Field1Ty = nullptr; 11149 llvm::Type *Field2Ty = nullptr; 11150 CharUnits Field1Off = CharUnits::Zero(); 11151 CharUnits Field2Off = CharUnits::Zero(); 11152 int NeededArgGPRs = 0; 11153 int NeededArgFPRs = 0; 11154 bool IsCandidate = 11155 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 11156 NeededArgGPRs, NeededArgFPRs); 11157 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 11158 NeededArgFPRs <= ArgFPRsLeft) { 11159 ArgGPRsLeft -= NeededArgGPRs; 11160 ArgFPRsLeft -= NeededArgFPRs; 11161 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 11162 Field2Off); 11163 } 11164 } 11165 11166 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 11167 bool MustUseStack = false; 11168 // Determine the number of GPRs needed to pass the current argument 11169 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 11170 // register pairs, so may consume 3 registers. 11171 int NeededArgGPRs = 1; 11172 if (!IsFixed && NeededAlign == 2 * XLen) 11173 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 11174 else if (Size > XLen && Size <= 2 * XLen) 11175 NeededArgGPRs = 2; 11176 11177 if (NeededArgGPRs > ArgGPRsLeft) { 11178 MustUseStack = true; 11179 NeededArgGPRs = ArgGPRsLeft; 11180 } 11181 11182 ArgGPRsLeft -= NeededArgGPRs; 11183 11184 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 11185 // Treat an enum type as its underlying type. 11186 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11187 Ty = EnumTy->getDecl()->getIntegerType(); 11188 11189 // All integral types are promoted to XLen width, unless passed on the 11190 // stack. 11191 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 11192 return extendType(Ty); 11193 } 11194 11195 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11196 if (EIT->getNumBits() < XLen && !MustUseStack) 11197 return extendType(Ty); 11198 if (EIT->getNumBits() > 128 || 11199 (!getContext().getTargetInfo().hasInt128Type() && 11200 EIT->getNumBits() > 64)) 11201 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11202 } 11203 11204 return ABIArgInfo::getDirect(); 11205 } 11206 11207 // Aggregates which are <= 2*XLen will be passed in registers if possible, 11208 // so coerce to integers. 11209 if (Size <= 2 * XLen) { 11210 unsigned Alignment = getContext().getTypeAlign(Ty); 11211 11212 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 11213 // required, and a 2-element XLen array if only XLen alignment is required. 11214 if (Size <= XLen) { 11215 return ABIArgInfo::getDirect( 11216 llvm::IntegerType::get(getVMContext(), XLen)); 11217 } else if (Alignment == 2 * XLen) { 11218 return ABIArgInfo::getDirect( 11219 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 11220 } else { 11221 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11222 llvm::IntegerType::get(getVMContext(), XLen), 2)); 11223 } 11224 } 11225 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11226 } 11227 11228 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 11229 if (RetTy->isVoidType()) 11230 return ABIArgInfo::getIgnore(); 11231 11232 int ArgGPRsLeft = 2; 11233 int ArgFPRsLeft = FLen ? 2 : 0; 11234 11235 // The rules for return and argument types are the same, so defer to 11236 // classifyArgumentType. 11237 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 11238 ArgFPRsLeft); 11239 } 11240 11241 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11242 QualType Ty) const { 11243 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11244 11245 // Empty records are ignored for parameter passing purposes. 11246 if (isEmptyRecord(getContext(), Ty, true)) { 11247 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 11248 getVAListElementType(CGF), SlotSize); 11249 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11250 return Addr; 11251 } 11252 11253 auto TInfo = getContext().getTypeInfoInChars(Ty); 11254 11255 // Arguments bigger than 2*Xlen bytes are passed indirectly. 11256 bool IsIndirect = TInfo.Width > 2 * SlotSize; 11257 11258 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 11259 SlotSize, /*AllowHigherAlign=*/true); 11260 } 11261 11262 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 11263 int TySize = getContext().getTypeSize(Ty); 11264 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 11265 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 11266 return ABIArgInfo::getSignExtend(Ty); 11267 return ABIArgInfo::getExtend(Ty); 11268 } 11269 11270 namespace { 11271 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 11272 public: 11273 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 11274 unsigned FLen) 11275 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11276 11277 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11278 CodeGen::CodeGenModule &CGM) const override { 11279 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11280 if (!FD) return; 11281 11282 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11283 if (!Attr) 11284 return; 11285 11286 const char *Kind; 11287 switch (Attr->getInterrupt()) { 11288 case RISCVInterruptAttr::user: Kind = "user"; break; 11289 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11290 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11291 } 11292 11293 auto *Fn = cast<llvm::Function>(GV); 11294 11295 Fn->addFnAttr("interrupt", Kind); 11296 } 11297 }; 11298 } // namespace 11299 11300 //===----------------------------------------------------------------------===// 11301 // VE ABI Implementation. 11302 // 11303 namespace { 11304 class VEABIInfo : public DefaultABIInfo { 11305 public: 11306 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11307 11308 private: 11309 ABIArgInfo classifyReturnType(QualType RetTy) const; 11310 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11311 void computeInfo(CGFunctionInfo &FI) const override; 11312 }; 11313 } // end anonymous namespace 11314 11315 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11316 if (Ty->isAnyComplexType()) 11317 return ABIArgInfo::getDirect(); 11318 uint64_t Size = getContext().getTypeSize(Ty); 11319 if (Size < 64 && Ty->isIntegerType()) 11320 return ABIArgInfo::getExtend(Ty); 11321 return DefaultABIInfo::classifyReturnType(Ty); 11322 } 11323 11324 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11325 if (Ty->isAnyComplexType()) 11326 return ABIArgInfo::getDirect(); 11327 uint64_t Size = getContext().getTypeSize(Ty); 11328 if (Size < 64 && Ty->isIntegerType()) 11329 return ABIArgInfo::getExtend(Ty); 11330 return DefaultABIInfo::classifyArgumentType(Ty); 11331 } 11332 11333 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11334 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11335 for (auto &Arg : FI.arguments()) 11336 Arg.info = classifyArgumentType(Arg.type); 11337 } 11338 11339 namespace { 11340 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11341 public: 11342 VETargetCodeGenInfo(CodeGenTypes &CGT) 11343 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11344 // VE ABI requires the arguments of variadic and prototype-less functions 11345 // are passed in both registers and memory. 11346 bool isNoProtoCallVariadic(const CallArgList &args, 11347 const FunctionNoProtoType *fnType) const override { 11348 return true; 11349 } 11350 }; 11351 } // end anonymous namespace 11352 11353 //===----------------------------------------------------------------------===// 11354 // CSKY ABI Implementation 11355 //===----------------------------------------------------------------------===// 11356 namespace { 11357 class CSKYABIInfo : public DefaultABIInfo { 11358 static const int NumArgGPRs = 4; 11359 static const int NumArgFPRs = 4; 11360 11361 static const unsigned XLen = 32; 11362 unsigned FLen; 11363 11364 public: 11365 CSKYABIInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen) 11366 : DefaultABIInfo(CGT), FLen(FLen) {} 11367 11368 void computeInfo(CGFunctionInfo &FI) const override; 11369 ABIArgInfo classifyArgumentType(QualType Ty, int &ArgGPRsLeft, 11370 int &ArgFPRsLeft, 11371 bool isReturnType = false) const; 11372 ABIArgInfo classifyReturnType(QualType RetTy) const; 11373 11374 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11375 QualType Ty) const override; 11376 }; 11377 11378 } // end anonymous namespace 11379 11380 void CSKYABIInfo::computeInfo(CGFunctionInfo &FI) const { 11381 QualType RetTy = FI.getReturnType(); 11382 if (!getCXXABI().classifyReturnType(FI)) 11383 FI.getReturnInfo() = classifyReturnType(RetTy); 11384 11385 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 11386 11387 // We must track the number of GPRs used in order to conform to the CSKY 11388 // ABI, as integer scalars passed in registers should have signext/zeroext 11389 // when promoted. 11390 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 11391 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 11392 11393 for (auto &ArgInfo : FI.arguments()) { 11394 ArgInfo.info = classifyArgumentType(ArgInfo.type, ArgGPRsLeft, ArgFPRsLeft); 11395 } 11396 } 11397 11398 Address CSKYABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11399 QualType Ty) const { 11400 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11401 11402 // Empty records are ignored for parameter passing purposes. 11403 if (isEmptyRecord(getContext(), Ty, true)) { 11404 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 11405 getVAListElementType(CGF), SlotSize); 11406 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11407 return Addr; 11408 } 11409 11410 auto TInfo = getContext().getTypeInfoInChars(Ty); 11411 11412 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, false, TInfo, SlotSize, 11413 /*AllowHigherAlign=*/true); 11414 } 11415 11416 ABIArgInfo CSKYABIInfo::classifyArgumentType(QualType Ty, int &ArgGPRsLeft, 11417 int &ArgFPRsLeft, 11418 bool isReturnType) const { 11419 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 11420 Ty = useFirstFieldIfTransparentUnion(Ty); 11421 11422 // Structures with either a non-trivial destructor or a non-trivial 11423 // copy constructor are always passed indirectly. 11424 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 11425 if (ArgGPRsLeft) 11426 ArgGPRsLeft -= 1; 11427 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 11428 CGCXXABI::RAA_DirectInMemory); 11429 } 11430 11431 // Ignore empty structs/unions. 11432 if (isEmptyRecord(getContext(), Ty, true)) 11433 return ABIArgInfo::getIgnore(); 11434 11435 if (!Ty->getAsUnionType()) 11436 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 11437 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 11438 11439 uint64_t Size = getContext().getTypeSize(Ty); 11440 // Pass floating point values via FPRs if possible. 11441 if (Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size && 11442 ArgFPRsLeft) { 11443 ArgFPRsLeft--; 11444 return ABIArgInfo::getDirect(); 11445 } 11446 11447 // Complex types for the hard float ABI must be passed direct rather than 11448 // using CoerceAndExpand. 11449 if (Ty->isComplexType() && FLen && !isReturnType) { 11450 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 11451 if (getContext().getTypeSize(EltTy) <= FLen) { 11452 ArgFPRsLeft -= 2; 11453 return ABIArgInfo::getDirect(); 11454 } 11455 } 11456 11457 if (!isAggregateTypeForABI(Ty)) { 11458 // Treat an enum type as its underlying type. 11459 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11460 Ty = EnumTy->getDecl()->getIntegerType(); 11461 11462 // All integral types are promoted to XLen width, unless passed on the 11463 // stack. 11464 if (Size < XLen && Ty->isIntegralOrEnumerationType()) 11465 return ABIArgInfo::getExtend(Ty); 11466 11467 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11468 if (EIT->getNumBits() < XLen) 11469 return ABIArgInfo::getExtend(Ty); 11470 } 11471 11472 return ABIArgInfo::getDirect(); 11473 } 11474 11475 // For argument type, the first 4*XLen parts of aggregate will be passed 11476 // in registers, and the rest will be passed in stack. 11477 // So we can coerce to integers directly and let backend handle it correctly. 11478 // For return type, aggregate which <= 2*XLen will be returned in registers. 11479 // Otherwise, aggregate will be returned indirectly. 11480 if (!isReturnType || (isReturnType && Size <= 2 * XLen)) { 11481 if (Size <= XLen) { 11482 return ABIArgInfo::getDirect( 11483 llvm::IntegerType::get(getVMContext(), XLen)); 11484 } else { 11485 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11486 llvm::IntegerType::get(getVMContext(), XLen), (Size + 31) / XLen)); 11487 } 11488 } 11489 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11490 } 11491 11492 ABIArgInfo CSKYABIInfo::classifyReturnType(QualType RetTy) const { 11493 if (RetTy->isVoidType()) 11494 return ABIArgInfo::getIgnore(); 11495 11496 int ArgGPRsLeft = 2; 11497 int ArgFPRsLeft = FLen ? 1 : 0; 11498 11499 // The rules for return and argument types are the same, so defer to 11500 // classifyArgumentType. 11501 return classifyArgumentType(RetTy, ArgGPRsLeft, ArgFPRsLeft, true); 11502 } 11503 11504 namespace { 11505 class CSKYTargetCodeGenInfo : public TargetCodeGenInfo { 11506 public: 11507 CSKYTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen) 11508 : TargetCodeGenInfo(std::make_unique<CSKYABIInfo>(CGT, FLen)) {} 11509 }; 11510 } // end anonymous namespace 11511 11512 //===----------------------------------------------------------------------===// 11513 // Driver code 11514 //===----------------------------------------------------------------------===// 11515 11516 bool CodeGenModule::supportsCOMDAT() const { 11517 return getTriple().supportsCOMDAT(); 11518 } 11519 11520 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11521 if (TheTargetCodeGenInfo) 11522 return *TheTargetCodeGenInfo; 11523 11524 // Helper to set the unique_ptr while still keeping the return value. 11525 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11526 this->TheTargetCodeGenInfo.reset(P); 11527 return *P; 11528 }; 11529 11530 const llvm::Triple &Triple = getTarget().getTriple(); 11531 switch (Triple.getArch()) { 11532 default: 11533 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11534 11535 case llvm::Triple::le32: 11536 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11537 case llvm::Triple::m68k: 11538 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11539 case llvm::Triple::mips: 11540 case llvm::Triple::mipsel: 11541 if (Triple.getOS() == llvm::Triple::NaCl) 11542 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11543 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11544 11545 case llvm::Triple::mips64: 11546 case llvm::Triple::mips64el: 11547 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11548 11549 case llvm::Triple::avr: { 11550 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 11551 // on avrtiny. For passing return value, R18~R25 are used on avr, and 11552 // R22~R25 are used on avrtiny. 11553 unsigned NPR = getTarget().getABI() == "avrtiny" ? 6 : 18; 11554 unsigned NRR = getTarget().getABI() == "avrtiny" ? 4 : 8; 11555 return SetCGInfo(new AVRTargetCodeGenInfo(Types, NPR, NRR)); 11556 } 11557 11558 case llvm::Triple::aarch64: 11559 case llvm::Triple::aarch64_32: 11560 case llvm::Triple::aarch64_be: { 11561 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11562 if (getTarget().getABI() == "darwinpcs") 11563 Kind = AArch64ABIInfo::DarwinPCS; 11564 else if (Triple.isOSWindows()) 11565 return SetCGInfo( 11566 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11567 11568 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11569 } 11570 11571 case llvm::Triple::wasm32: 11572 case llvm::Triple::wasm64: { 11573 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11574 if (getTarget().getABI() == "experimental-mv") 11575 Kind = WebAssemblyABIInfo::ExperimentalMV; 11576 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11577 } 11578 11579 case llvm::Triple::arm: 11580 case llvm::Triple::armeb: 11581 case llvm::Triple::thumb: 11582 case llvm::Triple::thumbeb: { 11583 if (Triple.getOS() == llvm::Triple::Win32) { 11584 return SetCGInfo( 11585 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11586 } 11587 11588 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11589 StringRef ABIStr = getTarget().getABI(); 11590 if (ABIStr == "apcs-gnu") 11591 Kind = ARMABIInfo::APCS; 11592 else if (ABIStr == "aapcs16") 11593 Kind = ARMABIInfo::AAPCS16_VFP; 11594 else if (CodeGenOpts.FloatABI == "hard" || 11595 (CodeGenOpts.FloatABI != "soft" && 11596 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11597 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11598 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11599 Kind = ARMABIInfo::AAPCS_VFP; 11600 11601 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11602 } 11603 11604 case llvm::Triple::ppc: { 11605 if (Triple.isOSAIX()) 11606 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11607 11608 bool IsSoftFloat = 11609 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11610 bool RetSmallStructInRegABI = 11611 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11612 return SetCGInfo( 11613 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11614 } 11615 case llvm::Triple::ppcle: { 11616 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11617 bool RetSmallStructInRegABI = 11618 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11619 return SetCGInfo( 11620 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11621 } 11622 case llvm::Triple::ppc64: 11623 if (Triple.isOSAIX()) 11624 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11625 11626 if (Triple.isOSBinFormatELF()) { 11627 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11628 if (getTarget().getABI() == "elfv2") 11629 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11630 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11631 11632 return SetCGInfo( 11633 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11634 } 11635 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11636 case llvm::Triple::ppc64le: { 11637 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11638 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11639 if (getTarget().getABI() == "elfv1") 11640 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11641 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11642 11643 return SetCGInfo( 11644 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11645 } 11646 11647 case llvm::Triple::nvptx: 11648 case llvm::Triple::nvptx64: 11649 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11650 11651 case llvm::Triple::msp430: 11652 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11653 11654 case llvm::Triple::riscv32: 11655 case llvm::Triple::riscv64: { 11656 StringRef ABIStr = getTarget().getABI(); 11657 unsigned XLen = getTarget().getPointerWidth(0); 11658 unsigned ABIFLen = 0; 11659 if (ABIStr.endswith("f")) 11660 ABIFLen = 32; 11661 else if (ABIStr.endswith("d")) 11662 ABIFLen = 64; 11663 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11664 } 11665 11666 case llvm::Triple::systemz: { 11667 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11668 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11669 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11670 } 11671 11672 case llvm::Triple::tce: 11673 case llvm::Triple::tcele: 11674 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11675 11676 case llvm::Triple::x86: { 11677 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11678 bool RetSmallStructInRegABI = 11679 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11680 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11681 11682 if (Triple.getOS() == llvm::Triple::Win32) { 11683 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11684 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11685 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11686 } else { 11687 return SetCGInfo(new X86_32TargetCodeGenInfo( 11688 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11689 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11690 CodeGenOpts.FloatABI == "soft")); 11691 } 11692 } 11693 11694 case llvm::Triple::x86_64: { 11695 StringRef ABI = getTarget().getABI(); 11696 X86AVXABILevel AVXLevel = 11697 (ABI == "avx512" 11698 ? X86AVXABILevel::AVX512 11699 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11700 11701 switch (Triple.getOS()) { 11702 case llvm::Triple::Win32: 11703 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11704 default: 11705 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11706 } 11707 } 11708 case llvm::Triple::hexagon: 11709 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11710 case llvm::Triple::lanai: 11711 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11712 case llvm::Triple::r600: 11713 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11714 case llvm::Triple::amdgcn: 11715 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11716 case llvm::Triple::sparc: 11717 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11718 case llvm::Triple::sparcv9: 11719 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11720 case llvm::Triple::xcore: 11721 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11722 case llvm::Triple::arc: 11723 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11724 case llvm::Triple::spir: 11725 case llvm::Triple::spir64: 11726 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 11727 case llvm::Triple::spirv32: 11728 case llvm::Triple::spirv64: 11729 return SetCGInfo(new SPIRVTargetCodeGenInfo(Types)); 11730 case llvm::Triple::ve: 11731 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11732 case llvm::Triple::csky: { 11733 bool IsSoftFloat = !getTarget().hasFeature("hard-float-abi"); 11734 bool hasFP64 = getTarget().hasFeature("fpuv2_df") || 11735 getTarget().hasFeature("fpuv3_df"); 11736 return SetCGInfo(new CSKYTargetCodeGenInfo(Types, IsSoftFloat ? 0 11737 : hasFP64 ? 64 11738 : 32)); 11739 } 11740 } 11741 } 11742 11743 /// Create an OpenCL kernel for an enqueued block. 11744 /// 11745 /// The kernel has the same function type as the block invoke function. Its 11746 /// name is the name of the block invoke function postfixed with "_kernel". 11747 /// It simply calls the block invoke function then returns. 11748 llvm::Function * 11749 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11750 llvm::Function *Invoke, 11751 llvm::Type *BlockTy) const { 11752 auto *InvokeFT = Invoke->getFunctionType(); 11753 auto &C = CGF.getLLVMContext(); 11754 std::string Name = Invoke->getName().str() + "_kernel"; 11755 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), 11756 InvokeFT->params(), false); 11757 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name, 11758 &CGF.CGM.getModule()); 11759 auto IP = CGF.Builder.saveIP(); 11760 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11761 auto &Builder = CGF.Builder; 11762 Builder.SetInsertPoint(BB); 11763 llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args())); 11764 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11765 call->setCallingConv(Invoke->getCallingConv()); 11766 Builder.CreateRetVoid(); 11767 Builder.restoreIP(IP); 11768 return F; 11769 } 11770 11771 /// Create an OpenCL kernel for an enqueued block. 11772 /// 11773 /// The type of the first argument (the block literal) is the struct type 11774 /// of the block literal instead of a pointer type. The first argument 11775 /// (block literal) is passed directly by value to the kernel. The kernel 11776 /// allocates the same type of struct on stack and stores the block literal 11777 /// to it and passes its pointer to the block invoke function. The kernel 11778 /// has "enqueued-block" function attribute and kernel argument metadata. 11779 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11780 CodeGenFunction &CGF, llvm::Function *Invoke, 11781 llvm::Type *BlockTy) const { 11782 auto &Builder = CGF.Builder; 11783 auto &C = CGF.getLLVMContext(); 11784 11785 auto *InvokeFT = Invoke->getFunctionType(); 11786 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11787 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11788 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11789 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11790 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11791 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11792 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11793 11794 ArgTys.push_back(BlockTy); 11795 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11796 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11797 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11798 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11799 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11800 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11801 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11802 ArgTys.push_back(InvokeFT->getParamType(I)); 11803 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11804 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11805 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11806 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11807 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11808 ArgNames.push_back( 11809 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11810 } 11811 std::string Name = Invoke->getName().str() + "_kernel"; 11812 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11813 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11814 &CGF.CGM.getModule()); 11815 F->addFnAttr("enqueued-block"); 11816 auto IP = CGF.Builder.saveIP(); 11817 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11818 Builder.SetInsertPoint(BB); 11819 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11820 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11821 BlockPtr->setAlignment(BlockAlign); 11822 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11823 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11824 llvm::SmallVector<llvm::Value *, 2> Args; 11825 Args.push_back(Cast); 11826 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11827 Args.push_back(I); 11828 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11829 call->setCallingConv(Invoke->getCallingConv()); 11830 Builder.CreateRetVoid(); 11831 Builder.restoreIP(IP); 11832 11833 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11834 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11835 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11836 F->setMetadata("kernel_arg_base_type", 11837 llvm::MDNode::get(C, ArgBaseTypeNames)); 11838 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11839 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11840 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11841 11842 return F; 11843 } 11844