1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 396 QualType Ty, CharUnits SlotSize, 397 CharUnits EltSize, const ComplexType *CTy) { 398 Address Addr = 399 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 400 SlotSize, SlotSize, /*AllowHigher*/ true); 401 402 Address RealAddr = Addr; 403 Address ImagAddr = RealAddr; 404 if (CGF.CGM.getDataLayout().isBigEndian()) { 405 RealAddr = 406 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 407 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 408 2 * SlotSize - EltSize); 409 } else { 410 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 411 } 412 413 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 414 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 415 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 416 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 417 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 418 419 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 420 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 421 /*init*/ true); 422 return Temp; 423 } 424 425 static Address emitMergePHI(CodeGenFunction &CGF, 426 Address Addr1, llvm::BasicBlock *Block1, 427 Address Addr2, llvm::BasicBlock *Block2, 428 const llvm::Twine &Name = "") { 429 assert(Addr1.getType() == Addr2.getType()); 430 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 431 PHI->addIncoming(Addr1.getPointer(), Block1); 432 PHI->addIncoming(Addr2.getPointer(), Block2); 433 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 434 return Address(PHI, Align); 435 } 436 437 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 438 439 // If someone can figure out a general rule for this, that would be great. 440 // It's probably just doomed to be platform-dependent, though. 441 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 442 // Verified for: 443 // x86-64 FreeBSD, Linux, Darwin 444 // x86-32 FreeBSD, Linux, Darwin 445 // PowerPC Linux, Darwin 446 // ARM Darwin (*not* EABI) 447 // AArch64 Linux 448 return 32; 449 } 450 451 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 452 const FunctionNoProtoType *fnType) const { 453 // The following conventions are known to require this to be false: 454 // x86_stdcall 455 // MIPS 456 // For everything else, we just prefer false unless we opt out. 457 return false; 458 } 459 460 void 461 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 462 llvm::SmallString<24> &Opt) const { 463 // This assumes the user is passing a library name like "rt" instead of a 464 // filename like "librt.a/so", and that they don't care whether it's static or 465 // dynamic. 466 Opt = "-l"; 467 Opt += Lib; 468 } 469 470 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 471 // OpenCL kernels are called via an explicit runtime API with arguments 472 // set with clSetKernelArg(), not as normal sub-functions. 473 // Return SPIR_KERNEL by default as the kernel calling convention to 474 // ensure the fingerprint is fixed such way that each OpenCL argument 475 // gets one matching argument in the produced kernel function argument 476 // list to enable feasible implementation of clSetKernelArg() with 477 // aggregates etc. In case we would use the default C calling conv here, 478 // clSetKernelArg() might break depending on the target-specific 479 // conventions; different targets might split structs passed as values 480 // to multiple function arguments etc. 481 return llvm::CallingConv::SPIR_KERNEL; 482 } 483 484 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 485 llvm::PointerType *T, QualType QT) const { 486 return llvm::ConstantPointerNull::get(T); 487 } 488 489 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 490 const VarDecl *D) const { 491 assert(!CGM.getLangOpts().OpenCL && 492 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 493 "Address space agnostic languages only"); 494 return D ? D->getType().getAddressSpace() : LangAS::Default; 495 } 496 497 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 498 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 499 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 500 // Since target may map different address spaces in AST to the same address 501 // space, an address space conversion may end up as a bitcast. 502 if (auto *C = dyn_cast<llvm::Constant>(Src)) 503 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 504 // Try to preserve the source's name to make IR more readable. 505 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 506 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 507 } 508 509 llvm::Constant * 510 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 511 LangAS SrcAddr, LangAS DestAddr, 512 llvm::Type *DestTy) const { 513 // Since target may map different address spaces in AST to the same address 514 // space, an address space conversion may end up as a bitcast. 515 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 516 } 517 518 llvm::SyncScope::ID 519 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 520 SyncScope Scope, 521 llvm::AtomicOrdering Ordering, 522 llvm::LLVMContext &Ctx) const { 523 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 524 } 525 526 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 527 528 /// isEmptyField - Return true iff a the field is "empty", that is it 529 /// is an unnamed bit-field or an (array of) empty record(s). 530 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 531 bool AllowArrays) { 532 if (FD->isUnnamedBitfield()) 533 return true; 534 535 QualType FT = FD->getType(); 536 537 // Constant arrays of empty records count as empty, strip them off. 538 // Constant arrays of zero length always count as empty. 539 bool WasArray = false; 540 if (AllowArrays) 541 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 542 if (AT->getSize() == 0) 543 return true; 544 FT = AT->getElementType(); 545 // The [[no_unique_address]] special case below does not apply to 546 // arrays of C++ empty records, so we need to remember this fact. 547 WasArray = true; 548 } 549 550 const RecordType *RT = FT->getAs<RecordType>(); 551 if (!RT) 552 return false; 553 554 // C++ record fields are never empty, at least in the Itanium ABI. 555 // 556 // FIXME: We should use a predicate for whether this behavior is true in the 557 // current ABI. 558 // 559 // The exception to the above rule are fields marked with the 560 // [[no_unique_address]] attribute (since C++20). Those do count as empty 561 // according to the Itanium ABI. The exception applies only to records, 562 // not arrays of records, so we must also check whether we stripped off an 563 // array type above. 564 if (isa<CXXRecordDecl>(RT->getDecl()) && 565 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 566 return false; 567 568 return isEmptyRecord(Context, FT, AllowArrays); 569 } 570 571 /// isEmptyRecord - Return true iff a structure contains only empty 572 /// fields. Note that a structure with a flexible array member is not 573 /// considered empty. 574 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 575 const RecordType *RT = T->getAs<RecordType>(); 576 if (!RT) 577 return false; 578 const RecordDecl *RD = RT->getDecl(); 579 if (RD->hasFlexibleArrayMember()) 580 return false; 581 582 // If this is a C++ record, check the bases first. 583 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 584 for (const auto &I : CXXRD->bases()) 585 if (!isEmptyRecord(Context, I.getType(), true)) 586 return false; 587 588 for (const auto *I : RD->fields()) 589 if (!isEmptyField(Context, I, AllowArrays)) 590 return false; 591 return true; 592 } 593 594 /// isSingleElementStruct - Determine if a structure is a "single 595 /// element struct", i.e. it has exactly one non-empty field or 596 /// exactly one field which is itself a single element 597 /// struct. Structures with flexible array members are never 598 /// considered single element structs. 599 /// 600 /// \return The field declaration for the single non-empty field, if 601 /// it exists. 602 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 603 const RecordType *RT = T->getAs<RecordType>(); 604 if (!RT) 605 return nullptr; 606 607 const RecordDecl *RD = RT->getDecl(); 608 if (RD->hasFlexibleArrayMember()) 609 return nullptr; 610 611 const Type *Found = nullptr; 612 613 // If this is a C++ record, check the bases first. 614 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 615 for (const auto &I : CXXRD->bases()) { 616 // Ignore empty records. 617 if (isEmptyRecord(Context, I.getType(), true)) 618 continue; 619 620 // If we already found an element then this isn't a single-element struct. 621 if (Found) 622 return nullptr; 623 624 // If this is non-empty and not a single element struct, the composite 625 // cannot be a single element struct. 626 Found = isSingleElementStruct(I.getType(), Context); 627 if (!Found) 628 return nullptr; 629 } 630 } 631 632 // Check for single element. 633 for (const auto *FD : RD->fields()) { 634 QualType FT = FD->getType(); 635 636 // Ignore empty fields. 637 if (isEmptyField(Context, FD, true)) 638 continue; 639 640 // If we already found an element then this isn't a single-element 641 // struct. 642 if (Found) 643 return nullptr; 644 645 // Treat single element arrays as the element. 646 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 647 if (AT->getSize().getZExtValue() != 1) 648 break; 649 FT = AT->getElementType(); 650 } 651 652 if (!isAggregateTypeForABI(FT)) { 653 Found = FT.getTypePtr(); 654 } else { 655 Found = isSingleElementStruct(FT, Context); 656 if (!Found) 657 return nullptr; 658 } 659 } 660 661 // We don't consider a struct a single-element struct if it has 662 // padding beyond the element type. 663 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 664 return nullptr; 665 666 return Found; 667 } 668 669 namespace { 670 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 671 const ABIArgInfo &AI) { 672 // This default implementation defers to the llvm backend's va_arg 673 // instruction. It can handle only passing arguments directly 674 // (typically only handled in the backend for primitive types), or 675 // aggregates passed indirectly by pointer (NOTE: if the "byval" 676 // flag has ABI impact in the callee, this implementation cannot 677 // work.) 678 679 // Only a few cases are covered here at the moment -- those needed 680 // by the default abi. 681 llvm::Value *Val; 682 683 if (AI.isIndirect()) { 684 assert(!AI.getPaddingType() && 685 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 686 assert( 687 !AI.getIndirectRealign() && 688 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 689 690 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 691 CharUnits TyAlignForABI = TyInfo.Align; 692 693 llvm::Type *BaseTy = 694 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 695 llvm::Value *Addr = 696 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 697 return Address(Addr, TyAlignForABI); 698 } else { 699 assert((AI.isDirect() || AI.isExtend()) && 700 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 701 702 assert(!AI.getInReg() && 703 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 704 assert(!AI.getPaddingType() && 705 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 706 assert(!AI.getDirectOffset() && 707 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 708 assert(!AI.getCoerceToType() && 709 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 710 711 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 712 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 713 CGF.Builder.CreateStore(Val, Temp); 714 return Temp; 715 } 716 } 717 718 /// DefaultABIInfo - The default implementation for ABI specific 719 /// details. This implementation provides information which results in 720 /// self-consistent and sensible LLVM IR generation, but does not 721 /// conform to any particular ABI. 722 class DefaultABIInfo : public ABIInfo { 723 public: 724 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 725 726 ABIArgInfo classifyReturnType(QualType RetTy) const; 727 ABIArgInfo classifyArgumentType(QualType RetTy) const; 728 729 void computeInfo(CGFunctionInfo &FI) const override { 730 if (!getCXXABI().classifyReturnType(FI)) 731 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 732 for (auto &I : FI.arguments()) 733 I.info = classifyArgumentType(I.type); 734 } 735 736 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 737 QualType Ty) const override { 738 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 739 } 740 }; 741 742 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 743 public: 744 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 745 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 746 }; 747 748 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 749 Ty = useFirstFieldIfTransparentUnion(Ty); 750 751 if (isAggregateTypeForABI(Ty)) { 752 // Records with non-trivial destructors/copy-constructors should not be 753 // passed by value. 754 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 755 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 756 757 return getNaturalAlignIndirect(Ty); 758 } 759 760 // Treat an enum type as its underlying type. 761 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 762 Ty = EnumTy->getDecl()->getIntegerType(); 763 764 ASTContext &Context = getContext(); 765 if (const auto *EIT = Ty->getAs<ExtIntType>()) 766 if (EIT->getNumBits() > 767 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 768 ? Context.Int128Ty 769 : Context.LongLongTy)) 770 return getNaturalAlignIndirect(Ty); 771 772 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 773 : ABIArgInfo::getDirect()); 774 } 775 776 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 777 if (RetTy->isVoidType()) 778 return ABIArgInfo::getIgnore(); 779 780 if (isAggregateTypeForABI(RetTy)) 781 return getNaturalAlignIndirect(RetTy); 782 783 // Treat an enum type as its underlying type. 784 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 785 RetTy = EnumTy->getDecl()->getIntegerType(); 786 787 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 788 if (EIT->getNumBits() > 789 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 790 ? getContext().Int128Ty 791 : getContext().LongLongTy)) 792 return getNaturalAlignIndirect(RetTy); 793 794 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 795 : ABIArgInfo::getDirect()); 796 } 797 798 //===----------------------------------------------------------------------===// 799 // WebAssembly ABI Implementation 800 // 801 // This is a very simple ABI that relies a lot on DefaultABIInfo. 802 //===----------------------------------------------------------------------===// 803 804 class WebAssemblyABIInfo final : public SwiftABIInfo { 805 public: 806 enum ABIKind { 807 MVP = 0, 808 ExperimentalMV = 1, 809 }; 810 811 private: 812 DefaultABIInfo defaultInfo; 813 ABIKind Kind; 814 815 public: 816 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 817 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 818 819 private: 820 ABIArgInfo classifyReturnType(QualType RetTy) const; 821 ABIArgInfo classifyArgumentType(QualType Ty) const; 822 823 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 824 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 825 // overload them. 826 void computeInfo(CGFunctionInfo &FI) const override { 827 if (!getCXXABI().classifyReturnType(FI)) 828 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 829 for (auto &Arg : FI.arguments()) 830 Arg.info = classifyArgumentType(Arg.type); 831 } 832 833 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 834 QualType Ty) const override; 835 836 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 837 bool asReturnValue) const override { 838 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 839 } 840 841 bool isSwiftErrorInRegister() const override { 842 return false; 843 } 844 }; 845 846 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 847 public: 848 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 849 WebAssemblyABIInfo::ABIKind K) 850 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 851 852 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 853 CodeGen::CodeGenModule &CGM) const override { 854 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 855 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 856 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 857 llvm::Function *Fn = cast<llvm::Function>(GV); 858 llvm::AttrBuilder B; 859 B.addAttribute("wasm-import-module", Attr->getImportModule()); 860 Fn->addFnAttrs(B); 861 } 862 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 863 llvm::Function *Fn = cast<llvm::Function>(GV); 864 llvm::AttrBuilder B; 865 B.addAttribute("wasm-import-name", Attr->getImportName()); 866 Fn->addFnAttrs(B); 867 } 868 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 869 llvm::Function *Fn = cast<llvm::Function>(GV); 870 llvm::AttrBuilder B; 871 B.addAttribute("wasm-export-name", Attr->getExportName()); 872 Fn->addFnAttrs(B); 873 } 874 } 875 876 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 877 llvm::Function *Fn = cast<llvm::Function>(GV); 878 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 879 Fn->addFnAttr("no-prototype"); 880 } 881 } 882 }; 883 884 /// Classify argument of given type \p Ty. 885 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 886 Ty = useFirstFieldIfTransparentUnion(Ty); 887 888 if (isAggregateTypeForABI(Ty)) { 889 // Records with non-trivial destructors/copy-constructors should not be 890 // passed by value. 891 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 892 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 893 // Ignore empty structs/unions. 894 if (isEmptyRecord(getContext(), Ty, true)) 895 return ABIArgInfo::getIgnore(); 896 // Lower single-element structs to just pass a regular value. TODO: We 897 // could do reasonable-size multiple-element structs too, using getExpand(), 898 // though watch out for things like bitfields. 899 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 900 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 901 // For the experimental multivalue ABI, fully expand all other aggregates 902 if (Kind == ABIKind::ExperimentalMV) { 903 const RecordType *RT = Ty->getAs<RecordType>(); 904 assert(RT); 905 bool HasBitField = false; 906 for (auto *Field : RT->getDecl()->fields()) { 907 if (Field->isBitField()) { 908 HasBitField = true; 909 break; 910 } 911 } 912 if (!HasBitField) 913 return ABIArgInfo::getExpand(); 914 } 915 } 916 917 // Otherwise just do the default thing. 918 return defaultInfo.classifyArgumentType(Ty); 919 } 920 921 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 922 if (isAggregateTypeForABI(RetTy)) { 923 // Records with non-trivial destructors/copy-constructors should not be 924 // returned by value. 925 if (!getRecordArgABI(RetTy, getCXXABI())) { 926 // Ignore empty structs/unions. 927 if (isEmptyRecord(getContext(), RetTy, true)) 928 return ABIArgInfo::getIgnore(); 929 // Lower single-element structs to just return a regular value. TODO: We 930 // could do reasonable-size multiple-element structs too, using 931 // ABIArgInfo::getDirect(). 932 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 933 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 934 // For the experimental multivalue ABI, return all other aggregates 935 if (Kind == ABIKind::ExperimentalMV) 936 return ABIArgInfo::getDirect(); 937 } 938 } 939 940 // Otherwise just do the default thing. 941 return defaultInfo.classifyReturnType(RetTy); 942 } 943 944 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 945 QualType Ty) const { 946 bool IsIndirect = isAggregateTypeForABI(Ty) && 947 !isEmptyRecord(getContext(), Ty, true) && 948 !isSingleElementStruct(Ty, getContext()); 949 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 950 getContext().getTypeInfoInChars(Ty), 951 CharUnits::fromQuantity(4), 952 /*AllowHigherAlign=*/true); 953 } 954 955 //===----------------------------------------------------------------------===// 956 // le32/PNaCl bitcode ABI Implementation 957 // 958 // This is a simplified version of the x86_32 ABI. Arguments and return values 959 // are always passed on the stack. 960 //===----------------------------------------------------------------------===// 961 962 class PNaClABIInfo : public ABIInfo { 963 public: 964 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 965 966 ABIArgInfo classifyReturnType(QualType RetTy) const; 967 ABIArgInfo classifyArgumentType(QualType RetTy) const; 968 969 void computeInfo(CGFunctionInfo &FI) const override; 970 Address EmitVAArg(CodeGenFunction &CGF, 971 Address VAListAddr, QualType Ty) const override; 972 }; 973 974 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 975 public: 976 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 977 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 978 }; 979 980 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 981 if (!getCXXABI().classifyReturnType(FI)) 982 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 983 984 for (auto &I : FI.arguments()) 985 I.info = classifyArgumentType(I.type); 986 } 987 988 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 989 QualType Ty) const { 990 // The PNaCL ABI is a bit odd, in that varargs don't use normal 991 // function classification. Structs get passed directly for varargs 992 // functions, through a rewriting transform in 993 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 994 // this target to actually support a va_arg instructions with an 995 // aggregate type, unlike other targets. 996 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 997 } 998 999 /// Classify argument of given type \p Ty. 1000 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1001 if (isAggregateTypeForABI(Ty)) { 1002 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1003 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1004 return getNaturalAlignIndirect(Ty); 1005 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1006 // Treat an enum type as its underlying type. 1007 Ty = EnumTy->getDecl()->getIntegerType(); 1008 } else if (Ty->isFloatingType()) { 1009 // Floating-point types don't go inreg. 1010 return ABIArgInfo::getDirect(); 1011 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 1012 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1013 if (EIT->getNumBits() > 64) 1014 return getNaturalAlignIndirect(Ty); 1015 return ABIArgInfo::getDirect(); 1016 } 1017 1018 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1019 : ABIArgInfo::getDirect()); 1020 } 1021 1022 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1023 if (RetTy->isVoidType()) 1024 return ABIArgInfo::getIgnore(); 1025 1026 // In the PNaCl ABI we always return records/structures on the stack. 1027 if (isAggregateTypeForABI(RetTy)) 1028 return getNaturalAlignIndirect(RetTy); 1029 1030 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1031 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1032 if (EIT->getNumBits() > 64) 1033 return getNaturalAlignIndirect(RetTy); 1034 return ABIArgInfo::getDirect(); 1035 } 1036 1037 // Treat an enum type as its underlying type. 1038 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1039 RetTy = EnumTy->getDecl()->getIntegerType(); 1040 1041 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1042 : ABIArgInfo::getDirect()); 1043 } 1044 1045 /// IsX86_MMXType - Return true if this is an MMX type. 1046 bool IsX86_MMXType(llvm::Type *IRType) { 1047 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1048 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1049 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1050 IRType->getScalarSizeInBits() != 64; 1051 } 1052 1053 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1054 StringRef Constraint, 1055 llvm::Type* Ty) { 1056 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1057 .Cases("y", "&y", "^Ym", true) 1058 .Default(false); 1059 if (IsMMXCons && Ty->isVectorTy()) { 1060 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1061 64) { 1062 // Invalid MMX constraint 1063 return nullptr; 1064 } 1065 1066 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1067 } 1068 1069 // No operation needed 1070 return Ty; 1071 } 1072 1073 /// Returns true if this type can be passed in SSE registers with the 1074 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1075 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1076 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1077 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1078 if (BT->getKind() == BuiltinType::LongDouble) { 1079 if (&Context.getTargetInfo().getLongDoubleFormat() == 1080 &llvm::APFloat::x87DoubleExtended()) 1081 return false; 1082 } 1083 return true; 1084 } 1085 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1086 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1087 // registers specially. 1088 unsigned VecSize = Context.getTypeSize(VT); 1089 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1090 return true; 1091 } 1092 return false; 1093 } 1094 1095 /// Returns true if this aggregate is small enough to be passed in SSE registers 1096 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1097 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1098 return NumMembers <= 4; 1099 } 1100 1101 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1102 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1103 auto AI = ABIArgInfo::getDirect(T); 1104 AI.setInReg(true); 1105 AI.setCanBeFlattened(false); 1106 return AI; 1107 } 1108 1109 //===----------------------------------------------------------------------===// 1110 // X86-32 ABI Implementation 1111 //===----------------------------------------------------------------------===// 1112 1113 /// Similar to llvm::CCState, but for Clang. 1114 struct CCState { 1115 CCState(CGFunctionInfo &FI) 1116 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1117 1118 llvm::SmallBitVector IsPreassigned; 1119 unsigned CC = CallingConv::CC_C; 1120 unsigned FreeRegs = 0; 1121 unsigned FreeSSERegs = 0; 1122 }; 1123 1124 /// X86_32ABIInfo - The X86-32 ABI information. 1125 class X86_32ABIInfo : public SwiftABIInfo { 1126 enum Class { 1127 Integer, 1128 Float 1129 }; 1130 1131 static const unsigned MinABIStackAlignInBytes = 4; 1132 1133 bool IsDarwinVectorABI; 1134 bool IsRetSmallStructInRegABI; 1135 bool IsWin32StructABI; 1136 bool IsSoftFloatABI; 1137 bool IsMCUABI; 1138 bool IsLinuxABI; 1139 unsigned DefaultNumRegisterParameters; 1140 1141 static bool isRegisterSize(unsigned Size) { 1142 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1143 } 1144 1145 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1146 // FIXME: Assumes vectorcall is in use. 1147 return isX86VectorTypeForVectorCall(getContext(), Ty); 1148 } 1149 1150 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1151 uint64_t NumMembers) const override { 1152 // FIXME: Assumes vectorcall is in use. 1153 return isX86VectorCallAggregateSmallEnough(NumMembers); 1154 } 1155 1156 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1157 1158 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1159 /// such that the argument will be passed in memory. 1160 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1161 1162 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1163 1164 /// Return the alignment to use for the given type on the stack. 1165 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1166 1167 Class classify(QualType Ty) const; 1168 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1169 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1170 1171 /// Updates the number of available free registers, returns 1172 /// true if any registers were allocated. 1173 bool updateFreeRegs(QualType Ty, CCState &State) const; 1174 1175 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1176 bool &NeedsPadding) const; 1177 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1178 1179 bool canExpandIndirectArgument(QualType Ty) const; 1180 1181 /// Rewrite the function info so that all memory arguments use 1182 /// inalloca. 1183 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1184 1185 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1186 CharUnits &StackOffset, ABIArgInfo &Info, 1187 QualType Type) const; 1188 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1189 1190 public: 1191 1192 void computeInfo(CGFunctionInfo &FI) const override; 1193 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1194 QualType Ty) const override; 1195 1196 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1197 bool RetSmallStructInRegABI, bool Win32StructABI, 1198 unsigned NumRegisterParameters, bool SoftFloatABI) 1199 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1200 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1201 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1202 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1203 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1204 CGT.getTarget().getTriple().isOSCygMing()), 1205 DefaultNumRegisterParameters(NumRegisterParameters) {} 1206 1207 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1208 bool asReturnValue) const override { 1209 // LLVM's x86-32 lowering currently only assigns up to three 1210 // integer registers and three fp registers. Oddly, it'll use up to 1211 // four vector registers for vectors, but those can overlap with the 1212 // scalar registers. 1213 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1214 } 1215 1216 bool isSwiftErrorInRegister() const override { 1217 // x86-32 lowering does not support passing swifterror in a register. 1218 return false; 1219 } 1220 }; 1221 1222 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1223 public: 1224 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1225 bool RetSmallStructInRegABI, bool Win32StructABI, 1226 unsigned NumRegisterParameters, bool SoftFloatABI) 1227 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1228 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1229 NumRegisterParameters, SoftFloatABI)) {} 1230 1231 static bool isStructReturnInRegABI( 1232 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1233 1234 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1235 CodeGen::CodeGenModule &CGM) const override; 1236 1237 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1238 // Darwin uses different dwarf register numbers for EH. 1239 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1240 return 4; 1241 } 1242 1243 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1244 llvm::Value *Address) const override; 1245 1246 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1247 StringRef Constraint, 1248 llvm::Type* Ty) const override { 1249 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1250 } 1251 1252 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1253 std::string &Constraints, 1254 std::vector<llvm::Type *> &ResultRegTypes, 1255 std::vector<llvm::Type *> &ResultTruncRegTypes, 1256 std::vector<LValue> &ResultRegDests, 1257 std::string &AsmString, 1258 unsigned NumOutputs) const override; 1259 1260 llvm::Constant * 1261 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1262 unsigned Sig = (0xeb << 0) | // jmp rel8 1263 (0x06 << 8) | // .+0x08 1264 ('v' << 16) | 1265 ('2' << 24); 1266 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1267 } 1268 1269 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1270 return "movl\t%ebp, %ebp" 1271 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1272 } 1273 }; 1274 1275 } 1276 1277 /// Rewrite input constraint references after adding some output constraints. 1278 /// In the case where there is one output and one input and we add one output, 1279 /// we need to replace all operand references greater than or equal to 1: 1280 /// mov $0, $1 1281 /// mov eax, $1 1282 /// The result will be: 1283 /// mov $0, $2 1284 /// mov eax, $2 1285 static void rewriteInputConstraintReferences(unsigned FirstIn, 1286 unsigned NumNewOuts, 1287 std::string &AsmString) { 1288 std::string Buf; 1289 llvm::raw_string_ostream OS(Buf); 1290 size_t Pos = 0; 1291 while (Pos < AsmString.size()) { 1292 size_t DollarStart = AsmString.find('$', Pos); 1293 if (DollarStart == std::string::npos) 1294 DollarStart = AsmString.size(); 1295 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1296 if (DollarEnd == std::string::npos) 1297 DollarEnd = AsmString.size(); 1298 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1299 Pos = DollarEnd; 1300 size_t NumDollars = DollarEnd - DollarStart; 1301 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1302 // We have an operand reference. 1303 size_t DigitStart = Pos; 1304 if (AsmString[DigitStart] == '{') { 1305 OS << '{'; 1306 ++DigitStart; 1307 } 1308 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1309 if (DigitEnd == std::string::npos) 1310 DigitEnd = AsmString.size(); 1311 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1312 unsigned OperandIndex; 1313 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1314 if (OperandIndex >= FirstIn) 1315 OperandIndex += NumNewOuts; 1316 OS << OperandIndex; 1317 } else { 1318 OS << OperandStr; 1319 } 1320 Pos = DigitEnd; 1321 } 1322 } 1323 AsmString = std::move(OS.str()); 1324 } 1325 1326 /// Add output constraints for EAX:EDX because they are return registers. 1327 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1328 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1329 std::vector<llvm::Type *> &ResultRegTypes, 1330 std::vector<llvm::Type *> &ResultTruncRegTypes, 1331 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1332 unsigned NumOutputs) const { 1333 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1334 1335 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1336 // larger. 1337 if (!Constraints.empty()) 1338 Constraints += ','; 1339 if (RetWidth <= 32) { 1340 Constraints += "={eax}"; 1341 ResultRegTypes.push_back(CGF.Int32Ty); 1342 } else { 1343 // Use the 'A' constraint for EAX:EDX. 1344 Constraints += "=A"; 1345 ResultRegTypes.push_back(CGF.Int64Ty); 1346 } 1347 1348 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1349 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1350 ResultTruncRegTypes.push_back(CoerceTy); 1351 1352 // Coerce the integer by bitcasting the return slot pointer. 1353 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1354 CoerceTy->getPointerTo())); 1355 ResultRegDests.push_back(ReturnSlot); 1356 1357 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1358 } 1359 1360 /// shouldReturnTypeInRegister - Determine if the given type should be 1361 /// returned in a register (for the Darwin and MCU ABI). 1362 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1363 ASTContext &Context) const { 1364 uint64_t Size = Context.getTypeSize(Ty); 1365 1366 // For i386, type must be register sized. 1367 // For the MCU ABI, it only needs to be <= 8-byte 1368 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1369 return false; 1370 1371 if (Ty->isVectorType()) { 1372 // 64- and 128- bit vectors inside structures are not returned in 1373 // registers. 1374 if (Size == 64 || Size == 128) 1375 return false; 1376 1377 return true; 1378 } 1379 1380 // If this is a builtin, pointer, enum, complex type, member pointer, or 1381 // member function pointer it is ok. 1382 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1383 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1384 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1385 return true; 1386 1387 // Arrays are treated like records. 1388 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1389 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1390 1391 // Otherwise, it must be a record type. 1392 const RecordType *RT = Ty->getAs<RecordType>(); 1393 if (!RT) return false; 1394 1395 // FIXME: Traverse bases here too. 1396 1397 // Structure types are passed in register if all fields would be 1398 // passed in a register. 1399 for (const auto *FD : RT->getDecl()->fields()) { 1400 // Empty fields are ignored. 1401 if (isEmptyField(Context, FD, true)) 1402 continue; 1403 1404 // Check fields recursively. 1405 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1406 return false; 1407 } 1408 return true; 1409 } 1410 1411 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1412 // Treat complex types as the element type. 1413 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1414 Ty = CTy->getElementType(); 1415 1416 // Check for a type which we know has a simple scalar argument-passing 1417 // convention without any padding. (We're specifically looking for 32 1418 // and 64-bit integer and integer-equivalents, float, and double.) 1419 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1420 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1421 return false; 1422 1423 uint64_t Size = Context.getTypeSize(Ty); 1424 return Size == 32 || Size == 64; 1425 } 1426 1427 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1428 uint64_t &Size) { 1429 for (const auto *FD : RD->fields()) { 1430 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1431 // argument is smaller than 32-bits, expanding the struct will create 1432 // alignment padding. 1433 if (!is32Or64BitBasicType(FD->getType(), Context)) 1434 return false; 1435 1436 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1437 // how to expand them yet, and the predicate for telling if a bitfield still 1438 // counts as "basic" is more complicated than what we were doing previously. 1439 if (FD->isBitField()) 1440 return false; 1441 1442 Size += Context.getTypeSize(FD->getType()); 1443 } 1444 return true; 1445 } 1446 1447 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1448 uint64_t &Size) { 1449 // Don't do this if there are any non-empty bases. 1450 for (const CXXBaseSpecifier &Base : RD->bases()) { 1451 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1452 Size)) 1453 return false; 1454 } 1455 if (!addFieldSizes(Context, RD, Size)) 1456 return false; 1457 return true; 1458 } 1459 1460 /// Test whether an argument type which is to be passed indirectly (on the 1461 /// stack) would have the equivalent layout if it was expanded into separate 1462 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1463 /// optimizations. 1464 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1465 // We can only expand structure types. 1466 const RecordType *RT = Ty->getAs<RecordType>(); 1467 if (!RT) 1468 return false; 1469 const RecordDecl *RD = RT->getDecl(); 1470 uint64_t Size = 0; 1471 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1472 if (!IsWin32StructABI) { 1473 // On non-Windows, we have to conservatively match our old bitcode 1474 // prototypes in order to be ABI-compatible at the bitcode level. 1475 if (!CXXRD->isCLike()) 1476 return false; 1477 } else { 1478 // Don't do this for dynamic classes. 1479 if (CXXRD->isDynamicClass()) 1480 return false; 1481 } 1482 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1483 return false; 1484 } else { 1485 if (!addFieldSizes(getContext(), RD, Size)) 1486 return false; 1487 } 1488 1489 // We can do this if there was no alignment padding. 1490 return Size == getContext().getTypeSize(Ty); 1491 } 1492 1493 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1494 // If the return value is indirect, then the hidden argument is consuming one 1495 // integer register. 1496 if (State.FreeRegs) { 1497 --State.FreeRegs; 1498 if (!IsMCUABI) 1499 return getNaturalAlignIndirectInReg(RetTy); 1500 } 1501 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1502 } 1503 1504 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1505 CCState &State) const { 1506 if (RetTy->isVoidType()) 1507 return ABIArgInfo::getIgnore(); 1508 1509 const Type *Base = nullptr; 1510 uint64_t NumElts = 0; 1511 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1512 State.CC == llvm::CallingConv::X86_RegCall) && 1513 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1514 // The LLVM struct type for such an aggregate should lower properly. 1515 return ABIArgInfo::getDirect(); 1516 } 1517 1518 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1519 // On Darwin, some vectors are returned in registers. 1520 if (IsDarwinVectorABI) { 1521 uint64_t Size = getContext().getTypeSize(RetTy); 1522 1523 // 128-bit vectors are a special case; they are returned in 1524 // registers and we need to make sure to pick a type the LLVM 1525 // backend will like. 1526 if (Size == 128) 1527 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1528 llvm::Type::getInt64Ty(getVMContext()), 2)); 1529 1530 // Always return in register if it fits in a general purpose 1531 // register, or if it is 64 bits and has a single element. 1532 if ((Size == 8 || Size == 16 || Size == 32) || 1533 (Size == 64 && VT->getNumElements() == 1)) 1534 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1535 Size)); 1536 1537 return getIndirectReturnResult(RetTy, State); 1538 } 1539 1540 return ABIArgInfo::getDirect(); 1541 } 1542 1543 if (isAggregateTypeForABI(RetTy)) { 1544 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1545 // Structures with flexible arrays are always indirect. 1546 if (RT->getDecl()->hasFlexibleArrayMember()) 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // If specified, structs and unions are always indirect. 1551 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1552 return getIndirectReturnResult(RetTy, State); 1553 1554 // Ignore empty structs/unions. 1555 if (isEmptyRecord(getContext(), RetTy, true)) 1556 return ABIArgInfo::getIgnore(); 1557 1558 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1559 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1560 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1561 if (ET->isFloat16Type()) 1562 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1563 llvm::Type::getHalfTy(getVMContext()), 2)); 1564 } 1565 1566 // Small structures which are register sized are generally returned 1567 // in a register. 1568 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1569 uint64_t Size = getContext().getTypeSize(RetTy); 1570 1571 // As a special-case, if the struct is a "single-element" struct, and 1572 // the field is of type "float" or "double", return it in a 1573 // floating-point register. (MSVC does not apply this special case.) 1574 // We apply a similar transformation for pointer types to improve the 1575 // quality of the generated IR. 1576 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1577 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1578 || SeltTy->hasPointerRepresentation()) 1579 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1580 1581 // FIXME: We should be able to narrow this integer in cases with dead 1582 // padding. 1583 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1584 } 1585 1586 return getIndirectReturnResult(RetTy, State); 1587 } 1588 1589 // Treat an enum type as its underlying type. 1590 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1591 RetTy = EnumTy->getDecl()->getIntegerType(); 1592 1593 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1594 if (EIT->getNumBits() > 64) 1595 return getIndirectReturnResult(RetTy, State); 1596 1597 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1598 : ABIArgInfo::getDirect()); 1599 } 1600 1601 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1602 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1603 } 1604 1605 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1606 const RecordType *RT = Ty->getAs<RecordType>(); 1607 if (!RT) 1608 return 0; 1609 const RecordDecl *RD = RT->getDecl(); 1610 1611 // If this is a C++ record, check the bases first. 1612 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1613 for (const auto &I : CXXRD->bases()) 1614 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1615 return false; 1616 1617 for (const auto *i : RD->fields()) { 1618 QualType FT = i->getType(); 1619 1620 if (isSIMDVectorType(Context, FT)) 1621 return true; 1622 1623 if (isRecordWithSIMDVectorType(Context, FT)) 1624 return true; 1625 } 1626 1627 return false; 1628 } 1629 1630 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1631 unsigned Align) const { 1632 // Otherwise, if the alignment is less than or equal to the minimum ABI 1633 // alignment, just use the default; the backend will handle this. 1634 if (Align <= MinABIStackAlignInBytes) 1635 return 0; // Use default alignment. 1636 1637 if (IsLinuxABI) { 1638 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1639 // want to spend any effort dealing with the ramifications of ABI breaks. 1640 // 1641 // If the vector type is __m128/__m256/__m512, return the default alignment. 1642 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1643 return Align; 1644 } 1645 // On non-Darwin, the stack type alignment is always 4. 1646 if (!IsDarwinVectorABI) { 1647 // Set explicit alignment, since we may need to realign the top. 1648 return MinABIStackAlignInBytes; 1649 } 1650 1651 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1652 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1653 isRecordWithSIMDVectorType(getContext(), Ty))) 1654 return 16; 1655 1656 return MinABIStackAlignInBytes; 1657 } 1658 1659 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1660 CCState &State) const { 1661 if (!ByVal) { 1662 if (State.FreeRegs) { 1663 --State.FreeRegs; // Non-byval indirects just use one pointer. 1664 if (!IsMCUABI) 1665 return getNaturalAlignIndirectInReg(Ty); 1666 } 1667 return getNaturalAlignIndirect(Ty, false); 1668 } 1669 1670 // Compute the byval alignment. 1671 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1672 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1673 if (StackAlign == 0) 1674 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1675 1676 // If the stack alignment is less than the type alignment, realign the 1677 // argument. 1678 bool Realign = TypeAlign > StackAlign; 1679 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1680 /*ByVal=*/true, Realign); 1681 } 1682 1683 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1684 const Type *T = isSingleElementStruct(Ty, getContext()); 1685 if (!T) 1686 T = Ty.getTypePtr(); 1687 1688 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1689 BuiltinType::Kind K = BT->getKind(); 1690 if (K == BuiltinType::Float || K == BuiltinType::Double) 1691 return Float; 1692 } 1693 return Integer; 1694 } 1695 1696 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1697 if (!IsSoftFloatABI) { 1698 Class C = classify(Ty); 1699 if (C == Float) 1700 return false; 1701 } 1702 1703 unsigned Size = getContext().getTypeSize(Ty); 1704 unsigned SizeInRegs = (Size + 31) / 32; 1705 1706 if (SizeInRegs == 0) 1707 return false; 1708 1709 if (!IsMCUABI) { 1710 if (SizeInRegs > State.FreeRegs) { 1711 State.FreeRegs = 0; 1712 return false; 1713 } 1714 } else { 1715 // The MCU psABI allows passing parameters in-reg even if there are 1716 // earlier parameters that are passed on the stack. Also, 1717 // it does not allow passing >8-byte structs in-register, 1718 // even if there are 3 free registers available. 1719 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1720 return false; 1721 } 1722 1723 State.FreeRegs -= SizeInRegs; 1724 return true; 1725 } 1726 1727 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1728 bool &InReg, 1729 bool &NeedsPadding) const { 1730 // On Windows, aggregates other than HFAs are never passed in registers, and 1731 // they do not consume register slots. Homogenous floating-point aggregates 1732 // (HFAs) have already been dealt with at this point. 1733 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1734 return false; 1735 1736 NeedsPadding = false; 1737 InReg = !IsMCUABI; 1738 1739 if (!updateFreeRegs(Ty, State)) 1740 return false; 1741 1742 if (IsMCUABI) 1743 return true; 1744 1745 if (State.CC == llvm::CallingConv::X86_FastCall || 1746 State.CC == llvm::CallingConv::X86_VectorCall || 1747 State.CC == llvm::CallingConv::X86_RegCall) { 1748 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1749 NeedsPadding = true; 1750 1751 return false; 1752 } 1753 1754 return true; 1755 } 1756 1757 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1758 if (!updateFreeRegs(Ty, State)) 1759 return false; 1760 1761 if (IsMCUABI) 1762 return false; 1763 1764 if (State.CC == llvm::CallingConv::X86_FastCall || 1765 State.CC == llvm::CallingConv::X86_VectorCall || 1766 State.CC == llvm::CallingConv::X86_RegCall) { 1767 if (getContext().getTypeSize(Ty) > 32) 1768 return false; 1769 1770 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1771 Ty->isReferenceType()); 1772 } 1773 1774 return true; 1775 } 1776 1777 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1778 // Vectorcall x86 works subtly different than in x64, so the format is 1779 // a bit different than the x64 version. First, all vector types (not HVAs) 1780 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1781 // This differs from the x64 implementation, where the first 6 by INDEX get 1782 // registers. 1783 // In the second pass over the arguments, HVAs are passed in the remaining 1784 // vector registers if possible, or indirectly by address. The address will be 1785 // passed in ECX/EDX if available. Any other arguments are passed according to 1786 // the usual fastcall rules. 1787 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1788 for (int I = 0, E = Args.size(); I < E; ++I) { 1789 const Type *Base = nullptr; 1790 uint64_t NumElts = 0; 1791 const QualType &Ty = Args[I].type; 1792 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1793 isHomogeneousAggregate(Ty, Base, NumElts)) { 1794 if (State.FreeSSERegs >= NumElts) { 1795 State.FreeSSERegs -= NumElts; 1796 Args[I].info = ABIArgInfo::getDirectInReg(); 1797 State.IsPreassigned.set(I); 1798 } 1799 } 1800 } 1801 } 1802 1803 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1804 CCState &State) const { 1805 // FIXME: Set alignment on indirect arguments. 1806 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1807 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1808 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1809 1810 Ty = useFirstFieldIfTransparentUnion(Ty); 1811 TypeInfo TI = getContext().getTypeInfo(Ty); 1812 1813 // Check with the C++ ABI first. 1814 const RecordType *RT = Ty->getAs<RecordType>(); 1815 if (RT) { 1816 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1817 if (RAA == CGCXXABI::RAA_Indirect) { 1818 return getIndirectResult(Ty, false, State); 1819 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1820 // The field index doesn't matter, we'll fix it up later. 1821 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1822 } 1823 } 1824 1825 // Regcall uses the concept of a homogenous vector aggregate, similar 1826 // to other targets. 1827 const Type *Base = nullptr; 1828 uint64_t NumElts = 0; 1829 if ((IsRegCall || IsVectorCall) && 1830 isHomogeneousAggregate(Ty, Base, NumElts)) { 1831 if (State.FreeSSERegs >= NumElts) { 1832 State.FreeSSERegs -= NumElts; 1833 1834 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1835 // does. 1836 if (IsVectorCall) 1837 return getDirectX86Hva(); 1838 1839 if (Ty->isBuiltinType() || Ty->isVectorType()) 1840 return ABIArgInfo::getDirect(); 1841 return ABIArgInfo::getExpand(); 1842 } 1843 return getIndirectResult(Ty, /*ByVal=*/false, State); 1844 } 1845 1846 if (isAggregateTypeForABI(Ty)) { 1847 // Structures with flexible arrays are always indirect. 1848 // FIXME: This should not be byval! 1849 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1850 return getIndirectResult(Ty, true, State); 1851 1852 // Ignore empty structs/unions on non-Windows. 1853 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1854 return ABIArgInfo::getIgnore(); 1855 1856 llvm::LLVMContext &LLVMContext = getVMContext(); 1857 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1858 bool NeedsPadding = false; 1859 bool InReg; 1860 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1861 unsigned SizeInRegs = (TI.Width + 31) / 32; 1862 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1863 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1864 if (InReg) 1865 return ABIArgInfo::getDirectInReg(Result); 1866 else 1867 return ABIArgInfo::getDirect(Result); 1868 } 1869 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1870 1871 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1872 // added in MSVC 2015. 1873 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1874 return getIndirectResult(Ty, /*ByVal=*/false, State); 1875 1876 // Expand small (<= 128-bit) record types when we know that the stack layout 1877 // of those arguments will match the struct. This is important because the 1878 // LLVM backend isn't smart enough to remove byval, which inhibits many 1879 // optimizations. 1880 // Don't do this for the MCU if there are still free integer registers 1881 // (see X86_64 ABI for full explanation). 1882 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1883 canExpandIndirectArgument(Ty)) 1884 return ABIArgInfo::getExpandWithPadding( 1885 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1886 1887 return getIndirectResult(Ty, true, State); 1888 } 1889 1890 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1891 // On Windows, vectors are passed directly if registers are available, or 1892 // indirectly if not. This avoids the need to align argument memory. Pass 1893 // user-defined vector types larger than 512 bits indirectly for simplicity. 1894 if (IsWin32StructABI) { 1895 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1896 --State.FreeSSERegs; 1897 return ABIArgInfo::getDirectInReg(); 1898 } 1899 return getIndirectResult(Ty, /*ByVal=*/false, State); 1900 } 1901 1902 // On Darwin, some vectors are passed in memory, we handle this by passing 1903 // it as an i8/i16/i32/i64. 1904 if (IsDarwinVectorABI) { 1905 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1906 (TI.Width == 64 && VT->getNumElements() == 1)) 1907 return ABIArgInfo::getDirect( 1908 llvm::IntegerType::get(getVMContext(), TI.Width)); 1909 } 1910 1911 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1912 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1913 1914 return ABIArgInfo::getDirect(); 1915 } 1916 1917 1918 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1919 Ty = EnumTy->getDecl()->getIntegerType(); 1920 1921 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1922 1923 if (isPromotableIntegerTypeForABI(Ty)) { 1924 if (InReg) 1925 return ABIArgInfo::getExtendInReg(Ty); 1926 return ABIArgInfo::getExtend(Ty); 1927 } 1928 1929 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1930 if (EIT->getNumBits() <= 64) { 1931 if (InReg) 1932 return ABIArgInfo::getDirectInReg(); 1933 return ABIArgInfo::getDirect(); 1934 } 1935 return getIndirectResult(Ty, /*ByVal=*/false, State); 1936 } 1937 1938 if (InReg) 1939 return ABIArgInfo::getDirectInReg(); 1940 return ABIArgInfo::getDirect(); 1941 } 1942 1943 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1944 CCState State(FI); 1945 if (IsMCUABI) 1946 State.FreeRegs = 3; 1947 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1948 State.FreeRegs = 2; 1949 State.FreeSSERegs = 3; 1950 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1951 State.FreeRegs = 2; 1952 State.FreeSSERegs = 6; 1953 } else if (FI.getHasRegParm()) 1954 State.FreeRegs = FI.getRegParm(); 1955 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1956 State.FreeRegs = 5; 1957 State.FreeSSERegs = 8; 1958 } else if (IsWin32StructABI) { 1959 // Since MSVC 2015, the first three SSE vectors have been passed in 1960 // registers. The rest are passed indirectly. 1961 State.FreeRegs = DefaultNumRegisterParameters; 1962 State.FreeSSERegs = 3; 1963 } else 1964 State.FreeRegs = DefaultNumRegisterParameters; 1965 1966 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1967 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1968 } else if (FI.getReturnInfo().isIndirect()) { 1969 // The C++ ABI is not aware of register usage, so we have to check if the 1970 // return value was sret and put it in a register ourselves if appropriate. 1971 if (State.FreeRegs) { 1972 --State.FreeRegs; // The sret parameter consumes a register. 1973 if (!IsMCUABI) 1974 FI.getReturnInfo().setInReg(true); 1975 } 1976 } 1977 1978 // The chain argument effectively gives us another free register. 1979 if (FI.isChainCall()) 1980 ++State.FreeRegs; 1981 1982 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1983 // arguments to XMM registers as available. 1984 if (State.CC == llvm::CallingConv::X86_VectorCall) 1985 runVectorCallFirstPass(FI, State); 1986 1987 bool UsedInAlloca = false; 1988 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1989 for (int I = 0, E = Args.size(); I < E; ++I) { 1990 // Skip arguments that have already been assigned. 1991 if (State.IsPreassigned.test(I)) 1992 continue; 1993 1994 Args[I].info = classifyArgumentType(Args[I].type, State); 1995 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1996 } 1997 1998 // If we needed to use inalloca for any argument, do a second pass and rewrite 1999 // all the memory arguments to use inalloca. 2000 if (UsedInAlloca) 2001 rewriteWithInAlloca(FI); 2002 } 2003 2004 void 2005 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2006 CharUnits &StackOffset, ABIArgInfo &Info, 2007 QualType Type) const { 2008 // Arguments are always 4-byte-aligned. 2009 CharUnits WordSize = CharUnits::fromQuantity(4); 2010 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2011 2012 // sret pointers and indirect things will require an extra pointer 2013 // indirection, unless they are byval. Most things are byval, and will not 2014 // require this indirection. 2015 bool IsIndirect = false; 2016 if (Info.isIndirect() && !Info.getIndirectByVal()) 2017 IsIndirect = true; 2018 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2019 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2020 if (IsIndirect) 2021 LLTy = LLTy->getPointerTo(0); 2022 FrameFields.push_back(LLTy); 2023 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2024 2025 // Insert padding bytes to respect alignment. 2026 CharUnits FieldEnd = StackOffset; 2027 StackOffset = FieldEnd.alignTo(WordSize); 2028 if (StackOffset != FieldEnd) { 2029 CharUnits NumBytes = StackOffset - FieldEnd; 2030 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2031 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2032 FrameFields.push_back(Ty); 2033 } 2034 } 2035 2036 static bool isArgInAlloca(const ABIArgInfo &Info) { 2037 // Leave ignored and inreg arguments alone. 2038 switch (Info.getKind()) { 2039 case ABIArgInfo::InAlloca: 2040 return true; 2041 case ABIArgInfo::Ignore: 2042 case ABIArgInfo::IndirectAliased: 2043 return false; 2044 case ABIArgInfo::Indirect: 2045 case ABIArgInfo::Direct: 2046 case ABIArgInfo::Extend: 2047 return !Info.getInReg(); 2048 case ABIArgInfo::Expand: 2049 case ABIArgInfo::CoerceAndExpand: 2050 // These are aggregate types which are never passed in registers when 2051 // inalloca is involved. 2052 return true; 2053 } 2054 llvm_unreachable("invalid enum"); 2055 } 2056 2057 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2058 assert(IsWin32StructABI && "inalloca only supported on win32"); 2059 2060 // Build a packed struct type for all of the arguments in memory. 2061 SmallVector<llvm::Type *, 6> FrameFields; 2062 2063 // The stack alignment is always 4. 2064 CharUnits StackAlign = CharUnits::fromQuantity(4); 2065 2066 CharUnits StackOffset; 2067 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2068 2069 // Put 'this' into the struct before 'sret', if necessary. 2070 bool IsThisCall = 2071 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2072 ABIArgInfo &Ret = FI.getReturnInfo(); 2073 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2074 isArgInAlloca(I->info)) { 2075 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2076 ++I; 2077 } 2078 2079 // Put the sret parameter into the inalloca struct if it's in memory. 2080 if (Ret.isIndirect() && !Ret.getInReg()) { 2081 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2082 // On Windows, the hidden sret parameter is always returned in eax. 2083 Ret.setInAllocaSRet(IsWin32StructABI); 2084 } 2085 2086 // Skip the 'this' parameter in ecx. 2087 if (IsThisCall) 2088 ++I; 2089 2090 // Put arguments passed in memory into the struct. 2091 for (; I != E; ++I) { 2092 if (isArgInAlloca(I->info)) 2093 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2094 } 2095 2096 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2097 /*isPacked=*/true), 2098 StackAlign); 2099 } 2100 2101 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2102 Address VAListAddr, QualType Ty) const { 2103 2104 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2105 2106 // x86-32 changes the alignment of certain arguments on the stack. 2107 // 2108 // Just messing with TypeInfo like this works because we never pass 2109 // anything indirectly. 2110 TypeInfo.Align = CharUnits::fromQuantity( 2111 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2112 2113 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2114 TypeInfo, CharUnits::fromQuantity(4), 2115 /*AllowHigherAlign*/ true); 2116 } 2117 2118 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2119 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2120 assert(Triple.getArch() == llvm::Triple::x86); 2121 2122 switch (Opts.getStructReturnConvention()) { 2123 case CodeGenOptions::SRCK_Default: 2124 break; 2125 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2126 return false; 2127 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2128 return true; 2129 } 2130 2131 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2132 return true; 2133 2134 switch (Triple.getOS()) { 2135 case llvm::Triple::DragonFly: 2136 case llvm::Triple::FreeBSD: 2137 case llvm::Triple::OpenBSD: 2138 case llvm::Triple::Win32: 2139 return true; 2140 default: 2141 return false; 2142 } 2143 } 2144 2145 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2146 CodeGen::CodeGenModule &CGM) { 2147 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2148 return; 2149 2150 llvm::Function *Fn = cast<llvm::Function>(GV); 2151 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2152 if (FD->getNumParams() == 0) 2153 return; 2154 2155 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2156 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2157 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2158 Fn->getContext(), ByValTy); 2159 Fn->addParamAttr(0, NewAttr); 2160 } 2161 2162 void X86_32TargetCodeGenInfo::setTargetAttributes( 2163 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2164 if (GV->isDeclaration()) 2165 return; 2166 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2167 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2168 llvm::Function *Fn = cast<llvm::Function>(GV); 2169 Fn->addFnAttr("stackrealign"); 2170 } 2171 2172 addX86InterruptAttrs(FD, GV, CGM); 2173 } 2174 } 2175 2176 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2177 CodeGen::CodeGenFunction &CGF, 2178 llvm::Value *Address) const { 2179 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2180 2181 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2182 2183 // 0-7 are the eight integer registers; the order is different 2184 // on Darwin (for EH), but the range is the same. 2185 // 8 is %eip. 2186 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2187 2188 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2189 // 12-16 are st(0..4). Not sure why we stop at 4. 2190 // These have size 16, which is sizeof(long double) on 2191 // platforms with 8-byte alignment for that type. 2192 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2193 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2194 2195 } else { 2196 // 9 is %eflags, which doesn't get a size on Darwin for some 2197 // reason. 2198 Builder.CreateAlignedStore( 2199 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2200 CharUnits::One()); 2201 2202 // 11-16 are st(0..5). Not sure why we stop at 5. 2203 // These have size 12, which is sizeof(long double) on 2204 // platforms with 4-byte alignment for that type. 2205 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2206 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2207 } 2208 2209 return false; 2210 } 2211 2212 //===----------------------------------------------------------------------===// 2213 // X86-64 ABI Implementation 2214 //===----------------------------------------------------------------------===// 2215 2216 2217 namespace { 2218 /// The AVX ABI level for X86 targets. 2219 enum class X86AVXABILevel { 2220 None, 2221 AVX, 2222 AVX512 2223 }; 2224 2225 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2226 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2227 switch (AVXLevel) { 2228 case X86AVXABILevel::AVX512: 2229 return 512; 2230 case X86AVXABILevel::AVX: 2231 return 256; 2232 case X86AVXABILevel::None: 2233 return 128; 2234 } 2235 llvm_unreachable("Unknown AVXLevel"); 2236 } 2237 2238 /// X86_64ABIInfo - The X86_64 ABI information. 2239 class X86_64ABIInfo : public SwiftABIInfo { 2240 enum Class { 2241 Integer = 0, 2242 SSE, 2243 SSEUp, 2244 X87, 2245 X87Up, 2246 ComplexX87, 2247 NoClass, 2248 Memory 2249 }; 2250 2251 /// merge - Implement the X86_64 ABI merging algorithm. 2252 /// 2253 /// Merge an accumulating classification \arg Accum with a field 2254 /// classification \arg Field. 2255 /// 2256 /// \param Accum - The accumulating classification. This should 2257 /// always be either NoClass or the result of a previous merge 2258 /// call. In addition, this should never be Memory (the caller 2259 /// should just return Memory for the aggregate). 2260 static Class merge(Class Accum, Class Field); 2261 2262 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2263 /// 2264 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2265 /// final MEMORY or SSE classes when necessary. 2266 /// 2267 /// \param AggregateSize - The size of the current aggregate in 2268 /// the classification process. 2269 /// 2270 /// \param Lo - The classification for the parts of the type 2271 /// residing in the low word of the containing object. 2272 /// 2273 /// \param Hi - The classification for the parts of the type 2274 /// residing in the higher words of the containing object. 2275 /// 2276 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2277 2278 /// classify - Determine the x86_64 register classes in which the 2279 /// given type T should be passed. 2280 /// 2281 /// \param Lo - The classification for the parts of the type 2282 /// residing in the low word of the containing object. 2283 /// 2284 /// \param Hi - The classification for the parts of the type 2285 /// residing in the high word of the containing object. 2286 /// 2287 /// \param OffsetBase - The bit offset of this type in the 2288 /// containing object. Some parameters are classified different 2289 /// depending on whether they straddle an eightbyte boundary. 2290 /// 2291 /// \param isNamedArg - Whether the argument in question is a "named" 2292 /// argument, as used in AMD64-ABI 3.5.7. 2293 /// 2294 /// If a word is unused its result will be NoClass; if a type should 2295 /// be passed in Memory then at least the classification of \arg Lo 2296 /// will be Memory. 2297 /// 2298 /// The \arg Lo class will be NoClass iff the argument is ignored. 2299 /// 2300 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2301 /// also be ComplexX87. 2302 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2303 bool isNamedArg) const; 2304 2305 llvm::Type *GetByteVectorType(QualType Ty) const; 2306 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2307 unsigned IROffset, QualType SourceTy, 2308 unsigned SourceOffset) const; 2309 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2310 unsigned IROffset, QualType SourceTy, 2311 unsigned SourceOffset) const; 2312 2313 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2314 /// such that the argument will be returned in memory. 2315 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2316 2317 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2318 /// such that the argument will be passed in memory. 2319 /// 2320 /// \param freeIntRegs - The number of free integer registers remaining 2321 /// available. 2322 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2323 2324 ABIArgInfo classifyReturnType(QualType RetTy) const; 2325 2326 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2327 unsigned &neededInt, unsigned &neededSSE, 2328 bool isNamedArg) const; 2329 2330 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2331 unsigned &NeededSSE) const; 2332 2333 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2334 unsigned &NeededSSE) const; 2335 2336 bool IsIllegalVectorType(QualType Ty) const; 2337 2338 /// The 0.98 ABI revision clarified a lot of ambiguities, 2339 /// unfortunately in ways that were not always consistent with 2340 /// certain previous compilers. In particular, platforms which 2341 /// required strict binary compatibility with older versions of GCC 2342 /// may need to exempt themselves. 2343 bool honorsRevision0_98() const { 2344 return !getTarget().getTriple().isOSDarwin(); 2345 } 2346 2347 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2348 /// classify it as INTEGER (for compatibility with older clang compilers). 2349 bool classifyIntegerMMXAsSSE() const { 2350 // Clang <= 3.8 did not do this. 2351 if (getContext().getLangOpts().getClangABICompat() <= 2352 LangOptions::ClangABI::Ver3_8) 2353 return false; 2354 2355 const llvm::Triple &Triple = getTarget().getTriple(); 2356 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2357 return false; 2358 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2359 return false; 2360 return true; 2361 } 2362 2363 // GCC classifies vectors of __int128 as memory. 2364 bool passInt128VectorsInMem() const { 2365 // Clang <= 9.0 did not do this. 2366 if (getContext().getLangOpts().getClangABICompat() <= 2367 LangOptions::ClangABI::Ver9) 2368 return false; 2369 2370 const llvm::Triple &T = getTarget().getTriple(); 2371 return T.isOSLinux() || T.isOSNetBSD(); 2372 } 2373 2374 X86AVXABILevel AVXLevel; 2375 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2376 // 64-bit hardware. 2377 bool Has64BitPointers; 2378 2379 public: 2380 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2381 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2382 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2383 } 2384 2385 bool isPassedUsingAVXType(QualType type) const { 2386 unsigned neededInt, neededSSE; 2387 // The freeIntRegs argument doesn't matter here. 2388 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2389 /*isNamedArg*/true); 2390 if (info.isDirect()) { 2391 llvm::Type *ty = info.getCoerceToType(); 2392 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2393 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2394 } 2395 return false; 2396 } 2397 2398 void computeInfo(CGFunctionInfo &FI) const override; 2399 2400 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2401 QualType Ty) const override; 2402 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2403 QualType Ty) const override; 2404 2405 bool has64BitPointers() const { 2406 return Has64BitPointers; 2407 } 2408 2409 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2410 bool asReturnValue) const override { 2411 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2412 } 2413 bool isSwiftErrorInRegister() const override { 2414 return true; 2415 } 2416 }; 2417 2418 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2419 class WinX86_64ABIInfo : public SwiftABIInfo { 2420 public: 2421 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2422 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2423 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2424 2425 void computeInfo(CGFunctionInfo &FI) const override; 2426 2427 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2428 QualType Ty) const override; 2429 2430 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2431 // FIXME: Assumes vectorcall is in use. 2432 return isX86VectorTypeForVectorCall(getContext(), Ty); 2433 } 2434 2435 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2436 uint64_t NumMembers) const override { 2437 // FIXME: Assumes vectorcall is in use. 2438 return isX86VectorCallAggregateSmallEnough(NumMembers); 2439 } 2440 2441 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2442 bool asReturnValue) const override { 2443 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2444 } 2445 2446 bool isSwiftErrorInRegister() const override { 2447 return true; 2448 } 2449 2450 private: 2451 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2452 bool IsVectorCall, bool IsRegCall) const; 2453 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2454 const ABIArgInfo ¤t) const; 2455 2456 X86AVXABILevel AVXLevel; 2457 2458 bool IsMingw64; 2459 }; 2460 2461 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2462 public: 2463 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2464 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2465 2466 const X86_64ABIInfo &getABIInfo() const { 2467 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2468 } 2469 2470 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2471 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2472 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2473 2474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2475 return 7; 2476 } 2477 2478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2479 llvm::Value *Address) const override { 2480 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2481 2482 // 0-15 are the 16 integer registers. 2483 // 16 is %rip. 2484 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2485 return false; 2486 } 2487 2488 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2489 StringRef Constraint, 2490 llvm::Type* Ty) const override { 2491 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2492 } 2493 2494 bool isNoProtoCallVariadic(const CallArgList &args, 2495 const FunctionNoProtoType *fnType) const override { 2496 // The default CC on x86-64 sets %al to the number of SSA 2497 // registers used, and GCC sets this when calling an unprototyped 2498 // function, so we override the default behavior. However, don't do 2499 // that when AVX types are involved: the ABI explicitly states it is 2500 // undefined, and it doesn't work in practice because of how the ABI 2501 // defines varargs anyway. 2502 if (fnType->getCallConv() == CC_C) { 2503 bool HasAVXType = false; 2504 for (CallArgList::const_iterator 2505 it = args.begin(), ie = args.end(); it != ie; ++it) { 2506 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2507 HasAVXType = true; 2508 break; 2509 } 2510 } 2511 2512 if (!HasAVXType) 2513 return true; 2514 } 2515 2516 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2517 } 2518 2519 llvm::Constant * 2520 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2521 unsigned Sig = (0xeb << 0) | // jmp rel8 2522 (0x06 << 8) | // .+0x08 2523 ('v' << 16) | 2524 ('2' << 24); 2525 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2526 } 2527 2528 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2529 CodeGen::CodeGenModule &CGM) const override { 2530 if (GV->isDeclaration()) 2531 return; 2532 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2533 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2534 llvm::Function *Fn = cast<llvm::Function>(GV); 2535 Fn->addFnAttr("stackrealign"); 2536 } 2537 2538 addX86InterruptAttrs(FD, GV, CGM); 2539 } 2540 } 2541 2542 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2543 const FunctionDecl *Caller, 2544 const FunctionDecl *Callee, 2545 const CallArgList &Args) const override; 2546 }; 2547 2548 static void initFeatureMaps(const ASTContext &Ctx, 2549 llvm::StringMap<bool> &CallerMap, 2550 const FunctionDecl *Caller, 2551 llvm::StringMap<bool> &CalleeMap, 2552 const FunctionDecl *Callee) { 2553 if (CalleeMap.empty() && CallerMap.empty()) { 2554 // The caller is potentially nullptr in the case where the call isn't in a 2555 // function. In this case, the getFunctionFeatureMap ensures we just get 2556 // the TU level setting (since it cannot be modified by 'target'.. 2557 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2558 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2559 } 2560 } 2561 2562 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2563 SourceLocation CallLoc, 2564 const llvm::StringMap<bool> &CallerMap, 2565 const llvm::StringMap<bool> &CalleeMap, 2566 QualType Ty, StringRef Feature, 2567 bool IsArgument) { 2568 bool CallerHasFeat = CallerMap.lookup(Feature); 2569 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2570 if (!CallerHasFeat && !CalleeHasFeat) 2571 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2572 << IsArgument << Ty << Feature; 2573 2574 // Mixing calling conventions here is very clearly an error. 2575 if (!CallerHasFeat || !CalleeHasFeat) 2576 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2577 << IsArgument << Ty << Feature; 2578 2579 // Else, both caller and callee have the required feature, so there is no need 2580 // to diagnose. 2581 return false; 2582 } 2583 2584 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2585 SourceLocation CallLoc, 2586 const llvm::StringMap<bool> &CallerMap, 2587 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2588 bool IsArgument) { 2589 uint64_t Size = Ctx.getTypeSize(Ty); 2590 if (Size > 256) 2591 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2592 "avx512f", IsArgument); 2593 2594 if (Size > 128) 2595 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2596 IsArgument); 2597 2598 return false; 2599 } 2600 2601 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2602 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2603 const FunctionDecl *Callee, const CallArgList &Args) const { 2604 llvm::StringMap<bool> CallerMap; 2605 llvm::StringMap<bool> CalleeMap; 2606 unsigned ArgIndex = 0; 2607 2608 // We need to loop through the actual call arguments rather than the the 2609 // function's parameters, in case this variadic. 2610 for (const CallArg &Arg : Args) { 2611 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2612 // additionally changes how vectors >256 in size are passed. Like GCC, we 2613 // warn when a function is called with an argument where this will change. 2614 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2615 // the caller and callee features are mismatched. 2616 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2617 // change its ABI with attribute-target after this call. 2618 if (Arg.getType()->isVectorType() && 2619 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2620 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2621 QualType Ty = Arg.getType(); 2622 // The CallArg seems to have desugared the type already, so for clearer 2623 // diagnostics, replace it with the type in the FunctionDecl if possible. 2624 if (ArgIndex < Callee->getNumParams()) 2625 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2626 2627 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2628 CalleeMap, Ty, /*IsArgument*/ true)) 2629 return; 2630 } 2631 ++ArgIndex; 2632 } 2633 2634 // Check return always, as we don't have a good way of knowing in codegen 2635 // whether this value is used, tail-called, etc. 2636 if (Callee->getReturnType()->isVectorType() && 2637 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2638 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2639 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2640 CalleeMap, Callee->getReturnType(), 2641 /*IsArgument*/ false); 2642 } 2643 } 2644 2645 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2646 // If the argument does not end in .lib, automatically add the suffix. 2647 // If the argument contains a space, enclose it in quotes. 2648 // This matches the behavior of MSVC. 2649 bool Quote = Lib.contains(' '); 2650 std::string ArgStr = Quote ? "\"" : ""; 2651 ArgStr += Lib; 2652 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2653 ArgStr += ".lib"; 2654 ArgStr += Quote ? "\"" : ""; 2655 return ArgStr; 2656 } 2657 2658 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2659 public: 2660 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2661 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2662 unsigned NumRegisterParameters) 2663 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2664 Win32StructABI, NumRegisterParameters, false) {} 2665 2666 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2667 CodeGen::CodeGenModule &CGM) const override; 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2683 CodeGen::CodeGenModule &CGM) { 2684 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2685 2686 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2687 Fn->addFnAttr("stack-probe-size", 2688 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2689 if (CGM.getCodeGenOpts().NoStackArgProbe) 2690 Fn->addFnAttr("no-stack-arg-probe"); 2691 } 2692 } 2693 2694 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2695 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2696 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2697 if (GV->isDeclaration()) 2698 return; 2699 addStackProbeTargetAttributes(D, GV, CGM); 2700 } 2701 2702 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2703 public: 2704 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2705 X86AVXABILevel AVXLevel) 2706 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2707 2708 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2709 CodeGen::CodeGenModule &CGM) const override; 2710 2711 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2712 return 7; 2713 } 2714 2715 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2716 llvm::Value *Address) const override { 2717 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2718 2719 // 0-15 are the 16 integer registers. 2720 // 16 is %rip. 2721 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2722 return false; 2723 } 2724 2725 void getDependentLibraryOption(llvm::StringRef Lib, 2726 llvm::SmallString<24> &Opt) const override { 2727 Opt = "/DEFAULTLIB:"; 2728 Opt += qualifyWindowsLibrary(Lib); 2729 } 2730 2731 void getDetectMismatchOption(llvm::StringRef Name, 2732 llvm::StringRef Value, 2733 llvm::SmallString<32> &Opt) const override { 2734 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2735 } 2736 }; 2737 2738 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2739 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2740 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2741 if (GV->isDeclaration()) 2742 return; 2743 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2744 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2745 llvm::Function *Fn = cast<llvm::Function>(GV); 2746 Fn->addFnAttr("stackrealign"); 2747 } 2748 2749 addX86InterruptAttrs(FD, GV, CGM); 2750 } 2751 2752 addStackProbeTargetAttributes(D, GV, CGM); 2753 } 2754 } 2755 2756 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2757 Class &Hi) const { 2758 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2759 // 2760 // (a) If one of the classes is Memory, the whole argument is passed in 2761 // memory. 2762 // 2763 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2764 // memory. 2765 // 2766 // (c) If the size of the aggregate exceeds two eightbytes and the first 2767 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2768 // argument is passed in memory. NOTE: This is necessary to keep the 2769 // ABI working for processors that don't support the __m256 type. 2770 // 2771 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2772 // 2773 // Some of these are enforced by the merging logic. Others can arise 2774 // only with unions; for example: 2775 // union { _Complex double; unsigned; } 2776 // 2777 // Note that clauses (b) and (c) were added in 0.98. 2778 // 2779 if (Hi == Memory) 2780 Lo = Memory; 2781 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2782 Lo = Memory; 2783 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2784 Lo = Memory; 2785 if (Hi == SSEUp && Lo != SSE) 2786 Hi = SSE; 2787 } 2788 2789 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2790 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2791 // classified recursively so that always two fields are 2792 // considered. The resulting class is calculated according to 2793 // the classes of the fields in the eightbyte: 2794 // 2795 // (a) If both classes are equal, this is the resulting class. 2796 // 2797 // (b) If one of the classes is NO_CLASS, the resulting class is 2798 // the other class. 2799 // 2800 // (c) If one of the classes is MEMORY, the result is the MEMORY 2801 // class. 2802 // 2803 // (d) If one of the classes is INTEGER, the result is the 2804 // INTEGER. 2805 // 2806 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2807 // MEMORY is used as class. 2808 // 2809 // (f) Otherwise class SSE is used. 2810 2811 // Accum should never be memory (we should have returned) or 2812 // ComplexX87 (because this cannot be passed in a structure). 2813 assert((Accum != Memory && Accum != ComplexX87) && 2814 "Invalid accumulated classification during merge."); 2815 if (Accum == Field || Field == NoClass) 2816 return Accum; 2817 if (Field == Memory) 2818 return Memory; 2819 if (Accum == NoClass) 2820 return Field; 2821 if (Accum == Integer || Field == Integer) 2822 return Integer; 2823 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2824 Accum == X87 || Accum == X87Up) 2825 return Memory; 2826 return SSE; 2827 } 2828 2829 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2830 Class &Lo, Class &Hi, bool isNamedArg) const { 2831 // FIXME: This code can be simplified by introducing a simple value class for 2832 // Class pairs with appropriate constructor methods for the various 2833 // situations. 2834 2835 // FIXME: Some of the split computations are wrong; unaligned vectors 2836 // shouldn't be passed in registers for example, so there is no chance they 2837 // can straddle an eightbyte. Verify & simplify. 2838 2839 Lo = Hi = NoClass; 2840 2841 Class &Current = OffsetBase < 64 ? Lo : Hi; 2842 Current = Memory; 2843 2844 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2845 BuiltinType::Kind k = BT->getKind(); 2846 2847 if (k == BuiltinType::Void) { 2848 Current = NoClass; 2849 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2850 Lo = Integer; 2851 Hi = Integer; 2852 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2853 Current = Integer; 2854 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2855 k == BuiltinType::Float16) { 2856 Current = SSE; 2857 } else if (k == BuiltinType::LongDouble) { 2858 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2859 if (LDF == &llvm::APFloat::IEEEquad()) { 2860 Lo = SSE; 2861 Hi = SSEUp; 2862 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2863 Lo = X87; 2864 Hi = X87Up; 2865 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2866 Current = SSE; 2867 } else 2868 llvm_unreachable("unexpected long double representation!"); 2869 } 2870 // FIXME: _Decimal32 and _Decimal64 are SSE. 2871 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2872 return; 2873 } 2874 2875 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2876 // Classify the underlying integer type. 2877 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2878 return; 2879 } 2880 2881 if (Ty->hasPointerRepresentation()) { 2882 Current = Integer; 2883 return; 2884 } 2885 2886 if (Ty->isMemberPointerType()) { 2887 if (Ty->isMemberFunctionPointerType()) { 2888 if (Has64BitPointers) { 2889 // If Has64BitPointers, this is an {i64, i64}, so classify both 2890 // Lo and Hi now. 2891 Lo = Hi = Integer; 2892 } else { 2893 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2894 // straddles an eightbyte boundary, Hi should be classified as well. 2895 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2896 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2897 if (EB_FuncPtr != EB_ThisAdj) { 2898 Lo = Hi = Integer; 2899 } else { 2900 Current = Integer; 2901 } 2902 } 2903 } else { 2904 Current = Integer; 2905 } 2906 return; 2907 } 2908 2909 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2910 uint64_t Size = getContext().getTypeSize(VT); 2911 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2912 // gcc passes the following as integer: 2913 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2914 // 2 bytes - <2 x char>, <1 x short> 2915 // 1 byte - <1 x char> 2916 Current = Integer; 2917 2918 // If this type crosses an eightbyte boundary, it should be 2919 // split. 2920 uint64_t EB_Lo = (OffsetBase) / 64; 2921 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2922 if (EB_Lo != EB_Hi) 2923 Hi = Lo; 2924 } else if (Size == 64) { 2925 QualType ElementType = VT->getElementType(); 2926 2927 // gcc passes <1 x double> in memory. :( 2928 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2929 return; 2930 2931 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2932 // pass them as integer. For platforms where clang is the de facto 2933 // platform compiler, we must continue to use integer. 2934 if (!classifyIntegerMMXAsSSE() && 2935 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2936 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2937 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2938 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2939 Current = Integer; 2940 else 2941 Current = SSE; 2942 2943 // If this type crosses an eightbyte boundary, it should be 2944 // split. 2945 if (OffsetBase && OffsetBase != 64) 2946 Hi = Lo; 2947 } else if (Size == 128 || 2948 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2949 QualType ElementType = VT->getElementType(); 2950 2951 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2952 if (passInt128VectorsInMem() && Size != 128 && 2953 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2954 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2955 return; 2956 2957 // Arguments of 256-bits are split into four eightbyte chunks. The 2958 // least significant one belongs to class SSE and all the others to class 2959 // SSEUP. The original Lo and Hi design considers that types can't be 2960 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2961 // This design isn't correct for 256-bits, but since there're no cases 2962 // where the upper parts would need to be inspected, avoid adding 2963 // complexity and just consider Hi to match the 64-256 part. 2964 // 2965 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2966 // registers if they are "named", i.e. not part of the "..." of a 2967 // variadic function. 2968 // 2969 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2970 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2971 Lo = SSE; 2972 Hi = SSEUp; 2973 } 2974 return; 2975 } 2976 2977 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2978 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2979 2980 uint64_t Size = getContext().getTypeSize(Ty); 2981 if (ET->isIntegralOrEnumerationType()) { 2982 if (Size <= 64) 2983 Current = Integer; 2984 else if (Size <= 128) 2985 Lo = Hi = Integer; 2986 } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { 2987 Current = SSE; 2988 } else if (ET == getContext().DoubleTy) { 2989 Lo = Hi = SSE; 2990 } else if (ET == getContext().LongDoubleTy) { 2991 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2992 if (LDF == &llvm::APFloat::IEEEquad()) 2993 Current = Memory; 2994 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2995 Current = ComplexX87; 2996 else if (LDF == &llvm::APFloat::IEEEdouble()) 2997 Lo = Hi = SSE; 2998 else 2999 llvm_unreachable("unexpected long double representation!"); 3000 } 3001 3002 // If this complex type crosses an eightbyte boundary then it 3003 // should be split. 3004 uint64_t EB_Real = (OffsetBase) / 64; 3005 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3006 if (Hi == NoClass && EB_Real != EB_Imag) 3007 Hi = Lo; 3008 3009 return; 3010 } 3011 3012 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 3013 if (EITy->getNumBits() <= 64) 3014 Current = Integer; 3015 else if (EITy->getNumBits() <= 128) 3016 Lo = Hi = Integer; 3017 // Larger values need to get passed in memory. 3018 return; 3019 } 3020 3021 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3022 // Arrays are treated like structures. 3023 3024 uint64_t Size = getContext().getTypeSize(Ty); 3025 3026 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3027 // than eight eightbytes, ..., it has class MEMORY. 3028 if (Size > 512) 3029 return; 3030 3031 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3032 // fields, it has class MEMORY. 3033 // 3034 // Only need to check alignment of array base. 3035 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3036 return; 3037 3038 // Otherwise implement simplified merge. We could be smarter about 3039 // this, but it isn't worth it and would be harder to verify. 3040 Current = NoClass; 3041 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3042 uint64_t ArraySize = AT->getSize().getZExtValue(); 3043 3044 // The only case a 256-bit wide vector could be used is when the array 3045 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3046 // to work for sizes wider than 128, early check and fallback to memory. 3047 // 3048 if (Size > 128 && 3049 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3050 return; 3051 3052 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3053 Class FieldLo, FieldHi; 3054 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3055 Lo = merge(Lo, FieldLo); 3056 Hi = merge(Hi, FieldHi); 3057 if (Lo == Memory || Hi == Memory) 3058 break; 3059 } 3060 3061 postMerge(Size, Lo, Hi); 3062 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3063 return; 3064 } 3065 3066 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3067 uint64_t Size = getContext().getTypeSize(Ty); 3068 3069 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3070 // than eight eightbytes, ..., it has class MEMORY. 3071 if (Size > 512) 3072 return; 3073 3074 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3075 // copy constructor or a non-trivial destructor, it is passed by invisible 3076 // reference. 3077 if (getRecordArgABI(RT, getCXXABI())) 3078 return; 3079 3080 const RecordDecl *RD = RT->getDecl(); 3081 3082 // Assume variable sized types are passed in memory. 3083 if (RD->hasFlexibleArrayMember()) 3084 return; 3085 3086 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3087 3088 // Reset Lo class, this will be recomputed. 3089 Current = NoClass; 3090 3091 // If this is a C++ record, classify the bases first. 3092 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3093 for (const auto &I : CXXRD->bases()) { 3094 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3095 "Unexpected base class!"); 3096 const auto *Base = 3097 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3098 3099 // Classify this field. 3100 // 3101 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3102 // single eightbyte, each is classified separately. Each eightbyte gets 3103 // initialized to class NO_CLASS. 3104 Class FieldLo, FieldHi; 3105 uint64_t Offset = 3106 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3107 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3108 Lo = merge(Lo, FieldLo); 3109 Hi = merge(Hi, FieldHi); 3110 if (Lo == Memory || Hi == Memory) { 3111 postMerge(Size, Lo, Hi); 3112 return; 3113 } 3114 } 3115 } 3116 3117 // Classify the fields one at a time, merging the results. 3118 unsigned idx = 0; 3119 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3120 LangOptions::ClangABI::Ver11 || 3121 getContext().getTargetInfo().getTriple().isPS4(); 3122 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3123 3124 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3125 i != e; ++i, ++idx) { 3126 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3127 bool BitField = i->isBitField(); 3128 3129 // Ignore padding bit-fields. 3130 if (BitField && i->isUnnamedBitfield()) 3131 continue; 3132 3133 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3134 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3135 // 3136 // The only case a 256-bit or a 512-bit wide vector could be used is when 3137 // the struct contains a single 256-bit or 512-bit element. Early check 3138 // and fallback to memory. 3139 // 3140 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3141 // than 128. 3142 if (Size > 128 && 3143 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3144 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3145 Lo = Memory; 3146 postMerge(Size, Lo, Hi); 3147 return; 3148 } 3149 // Note, skip this test for bit-fields, see below. 3150 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3151 Lo = Memory; 3152 postMerge(Size, Lo, Hi); 3153 return; 3154 } 3155 3156 // Classify this field. 3157 // 3158 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3159 // exceeds a single eightbyte, each is classified 3160 // separately. Each eightbyte gets initialized to class 3161 // NO_CLASS. 3162 Class FieldLo, FieldHi; 3163 3164 // Bit-fields require special handling, they do not force the 3165 // structure to be passed in memory even if unaligned, and 3166 // therefore they can straddle an eightbyte. 3167 if (BitField) { 3168 assert(!i->isUnnamedBitfield()); 3169 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3170 uint64_t Size = i->getBitWidthValue(getContext()); 3171 3172 uint64_t EB_Lo = Offset / 64; 3173 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3174 3175 if (EB_Lo) { 3176 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3177 FieldLo = NoClass; 3178 FieldHi = Integer; 3179 } else { 3180 FieldLo = Integer; 3181 FieldHi = EB_Hi ? Integer : NoClass; 3182 } 3183 } else 3184 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3185 Lo = merge(Lo, FieldLo); 3186 Hi = merge(Hi, FieldHi); 3187 if (Lo == Memory || Hi == Memory) 3188 break; 3189 } 3190 3191 postMerge(Size, Lo, Hi); 3192 } 3193 } 3194 3195 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3196 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3197 // place naturally. 3198 if (!isAggregateTypeForABI(Ty)) { 3199 // Treat an enum type as its underlying type. 3200 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3201 Ty = EnumTy->getDecl()->getIntegerType(); 3202 3203 if (Ty->isExtIntType()) 3204 return getNaturalAlignIndirect(Ty); 3205 3206 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3207 : ABIArgInfo::getDirect()); 3208 } 3209 3210 return getNaturalAlignIndirect(Ty); 3211 } 3212 3213 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3214 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3215 uint64_t Size = getContext().getTypeSize(VecTy); 3216 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3217 if (Size <= 64 || Size > LargestVector) 3218 return true; 3219 QualType EltTy = VecTy->getElementType(); 3220 if (passInt128VectorsInMem() && 3221 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3222 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3230 unsigned freeIntRegs) const { 3231 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3232 // place naturally. 3233 // 3234 // This assumption is optimistic, as there could be free registers available 3235 // when we need to pass this argument in memory, and LLVM could try to pass 3236 // the argument in the free register. This does not seem to happen currently, 3237 // but this code would be much safer if we could mark the argument with 3238 // 'onstack'. See PR12193. 3239 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3240 !Ty->isExtIntType()) { 3241 // Treat an enum type as its underlying type. 3242 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3243 Ty = EnumTy->getDecl()->getIntegerType(); 3244 3245 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3246 : ABIArgInfo::getDirect()); 3247 } 3248 3249 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3250 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3251 3252 // Compute the byval alignment. We specify the alignment of the byval in all 3253 // cases so that the mid-level optimizer knows the alignment of the byval. 3254 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3255 3256 // Attempt to avoid passing indirect results using byval when possible. This 3257 // is important for good codegen. 3258 // 3259 // We do this by coercing the value into a scalar type which the backend can 3260 // handle naturally (i.e., without using byval). 3261 // 3262 // For simplicity, we currently only do this when we have exhausted all of the 3263 // free integer registers. Doing this when there are free integer registers 3264 // would require more care, as we would have to ensure that the coerced value 3265 // did not claim the unused register. That would require either reording the 3266 // arguments to the function (so that any subsequent inreg values came first), 3267 // or only doing this optimization when there were no following arguments that 3268 // might be inreg. 3269 // 3270 // We currently expect it to be rare (particularly in well written code) for 3271 // arguments to be passed on the stack when there are still free integer 3272 // registers available (this would typically imply large structs being passed 3273 // by value), so this seems like a fair tradeoff for now. 3274 // 3275 // We can revisit this if the backend grows support for 'onstack' parameter 3276 // attributes. See PR12193. 3277 if (freeIntRegs == 0) { 3278 uint64_t Size = getContext().getTypeSize(Ty); 3279 3280 // If this type fits in an eightbyte, coerce it into the matching integral 3281 // type, which will end up on the stack (with alignment 8). 3282 if (Align == 8 && Size <= 64) 3283 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3284 Size)); 3285 } 3286 3287 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3288 } 3289 3290 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3291 /// register. Pick an LLVM IR type that will be passed as a vector register. 3292 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3293 // Wrapper structs/arrays that only contain vectors are passed just like 3294 // vectors; strip them off if present. 3295 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3296 Ty = QualType(InnerTy, 0); 3297 3298 llvm::Type *IRType = CGT.ConvertType(Ty); 3299 if (isa<llvm::VectorType>(IRType)) { 3300 // Don't pass vXi128 vectors in their native type, the backend can't 3301 // legalize them. 3302 if (passInt128VectorsInMem() && 3303 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3304 // Use a vXi64 vector. 3305 uint64_t Size = getContext().getTypeSize(Ty); 3306 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3307 Size / 64); 3308 } 3309 3310 return IRType; 3311 } 3312 3313 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3314 return IRType; 3315 3316 // We couldn't find the preferred IR vector type for 'Ty'. 3317 uint64_t Size = getContext().getTypeSize(Ty); 3318 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3319 3320 3321 // Return a LLVM IR vector type based on the size of 'Ty'. 3322 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3323 Size / 64); 3324 } 3325 3326 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3327 /// is known to either be off the end of the specified type or being in 3328 /// alignment padding. The user type specified is known to be at most 128 bits 3329 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3330 /// classification that put one of the two halves in the INTEGER class. 3331 /// 3332 /// It is conservatively correct to return false. 3333 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3334 unsigned EndBit, ASTContext &Context) { 3335 // If the bytes being queried are off the end of the type, there is no user 3336 // data hiding here. This handles analysis of builtins, vectors and other 3337 // types that don't contain interesting padding. 3338 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3339 if (TySize <= StartBit) 3340 return true; 3341 3342 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3343 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3344 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3345 3346 // Check each element to see if the element overlaps with the queried range. 3347 for (unsigned i = 0; i != NumElts; ++i) { 3348 // If the element is after the span we care about, then we're done.. 3349 unsigned EltOffset = i*EltSize; 3350 if (EltOffset >= EndBit) break; 3351 3352 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3353 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3354 EndBit-EltOffset, Context)) 3355 return false; 3356 } 3357 // If it overlaps no elements, then it is safe to process as padding. 3358 return true; 3359 } 3360 3361 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3362 const RecordDecl *RD = RT->getDecl(); 3363 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3364 3365 // If this is a C++ record, check the bases first. 3366 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3367 for (const auto &I : CXXRD->bases()) { 3368 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3369 "Unexpected base class!"); 3370 const auto *Base = 3371 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3372 3373 // If the base is after the span we care about, ignore it. 3374 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3375 if (BaseOffset >= EndBit) continue; 3376 3377 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3378 if (!BitsContainNoUserData(I.getType(), BaseStart, 3379 EndBit-BaseOffset, Context)) 3380 return false; 3381 } 3382 } 3383 3384 // Verify that no field has data that overlaps the region of interest. Yes 3385 // this could be sped up a lot by being smarter about queried fields, 3386 // however we're only looking at structs up to 16 bytes, so we don't care 3387 // much. 3388 unsigned idx = 0; 3389 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3390 i != e; ++i, ++idx) { 3391 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3392 3393 // If we found a field after the region we care about, then we're done. 3394 if (FieldOffset >= EndBit) break; 3395 3396 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3397 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3398 Context)) 3399 return false; 3400 } 3401 3402 // If nothing in this record overlapped the area of interest, then we're 3403 // clean. 3404 return true; 3405 } 3406 3407 return false; 3408 } 3409 3410 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3411 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3412 const llvm::DataLayout &TD) { 3413 if (IROffset == 0 && IRType->isFloatingPointTy()) 3414 return IRType; 3415 3416 // If this is a struct, recurse into the field at the specified offset. 3417 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3418 if (!STy->getNumContainedTypes()) 3419 return nullptr; 3420 3421 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3422 unsigned Elt = SL->getElementContainingOffset(IROffset); 3423 IROffset -= SL->getElementOffset(Elt); 3424 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3425 } 3426 3427 // If this is an array, recurse into the field at the specified offset. 3428 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3429 llvm::Type *EltTy = ATy->getElementType(); 3430 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3431 IROffset -= IROffset / EltSize * EltSize; 3432 return getFPTypeAtOffset(EltTy, IROffset, TD); 3433 } 3434 3435 return nullptr; 3436 } 3437 3438 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3439 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3440 llvm::Type *X86_64ABIInfo:: 3441 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3442 QualType SourceTy, unsigned SourceOffset) const { 3443 const llvm::DataLayout &TD = getDataLayout(); 3444 unsigned SourceSize = 3445 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3446 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3447 if (!T0 || T0->isDoubleTy()) 3448 return llvm::Type::getDoubleTy(getVMContext()); 3449 3450 // Get the adjacent FP type. 3451 llvm::Type *T1 = nullptr; 3452 unsigned T0Size = TD.getTypeAllocSize(T0); 3453 if (SourceSize > T0Size) 3454 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3455 if (T1 == nullptr) { 3456 // Check if IRType is a half + float. float type will be in IROffset+4 due 3457 // to its alignment. 3458 if (T0->isHalfTy() && SourceSize > 4) 3459 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3460 // If we can't get a second FP type, return a simple half or float. 3461 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3462 // {float, i8} too. 3463 if (T1 == nullptr) 3464 return T0; 3465 } 3466 3467 if (T0->isFloatTy() && T1->isFloatTy()) 3468 return llvm::FixedVectorType::get(T0, 2); 3469 3470 if (T0->isHalfTy() && T1->isHalfTy()) { 3471 llvm::Type *T2 = nullptr; 3472 if (SourceSize > 4) 3473 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3474 if (T2 == nullptr) 3475 return llvm::FixedVectorType::get(T0, 2); 3476 return llvm::FixedVectorType::get(T0, 4); 3477 } 3478 3479 if (T0->isHalfTy() || T1->isHalfTy()) 3480 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3481 3482 return llvm::Type::getDoubleTy(getVMContext()); 3483 } 3484 3485 3486 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3487 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3488 /// about the high or low part of an up-to-16-byte struct. This routine picks 3489 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3490 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3491 /// etc). 3492 /// 3493 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3494 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3495 /// the 8-byte value references. PrefType may be null. 3496 /// 3497 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3498 /// an offset into this that we're processing (which is always either 0 or 8). 3499 /// 3500 llvm::Type *X86_64ABIInfo:: 3501 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3502 QualType SourceTy, unsigned SourceOffset) const { 3503 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3504 // returning an 8-byte unit starting with it. See if we can safely use it. 3505 if (IROffset == 0) { 3506 // Pointers and int64's always fill the 8-byte unit. 3507 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3508 IRType->isIntegerTy(64)) 3509 return IRType; 3510 3511 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3512 // goodness in the source type is just tail padding. This is allowed to 3513 // kick in for struct {double,int} on the int, but not on 3514 // struct{double,int,int} because we wouldn't return the second int. We 3515 // have to do this analysis on the source type because we can't depend on 3516 // unions being lowered a specific way etc. 3517 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3518 IRType->isIntegerTy(32) || 3519 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3520 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3521 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3522 3523 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3524 SourceOffset*8+64, getContext())) 3525 return IRType; 3526 } 3527 } 3528 3529 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3530 // If this is a struct, recurse into the field at the specified offset. 3531 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3532 if (IROffset < SL->getSizeInBytes()) { 3533 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3534 IROffset -= SL->getElementOffset(FieldIdx); 3535 3536 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3537 SourceTy, SourceOffset); 3538 } 3539 } 3540 3541 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3542 llvm::Type *EltTy = ATy->getElementType(); 3543 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3544 unsigned EltOffset = IROffset/EltSize*EltSize; 3545 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3546 SourceOffset); 3547 } 3548 3549 // Okay, we don't have any better idea of what to pass, so we pass this in an 3550 // integer register that isn't too big to fit the rest of the struct. 3551 unsigned TySizeInBytes = 3552 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3553 3554 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3555 3556 // It is always safe to classify this as an integer type up to i64 that 3557 // isn't larger than the structure. 3558 return llvm::IntegerType::get(getVMContext(), 3559 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3560 } 3561 3562 3563 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3564 /// be used as elements of a two register pair to pass or return, return a 3565 /// first class aggregate to represent them. For example, if the low part of 3566 /// a by-value argument should be passed as i32* and the high part as float, 3567 /// return {i32*, float}. 3568 static llvm::Type * 3569 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3570 const llvm::DataLayout &TD) { 3571 // In order to correctly satisfy the ABI, we need to the high part to start 3572 // at offset 8. If the high and low parts we inferred are both 4-byte types 3573 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3574 // the second element at offset 8. Check for this: 3575 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3576 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3577 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3578 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3579 3580 // To handle this, we have to increase the size of the low part so that the 3581 // second element will start at an 8 byte offset. We can't increase the size 3582 // of the second element because it might make us access off the end of the 3583 // struct. 3584 if (HiStart != 8) { 3585 // There are usually two sorts of types the ABI generation code can produce 3586 // for the low part of a pair that aren't 8 bytes in size: half, float or 3587 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3588 // NaCl). 3589 // Promote these to a larger type. 3590 if (Lo->isHalfTy() || Lo->isFloatTy()) 3591 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3592 else { 3593 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3594 && "Invalid/unknown lo type"); 3595 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3596 } 3597 } 3598 3599 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3600 3601 // Verify that the second element is at an 8-byte offset. 3602 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3603 "Invalid x86-64 argument pair!"); 3604 return Result; 3605 } 3606 3607 ABIArgInfo X86_64ABIInfo:: 3608 classifyReturnType(QualType RetTy) const { 3609 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3610 // classification algorithm. 3611 X86_64ABIInfo::Class Lo, Hi; 3612 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3613 3614 // Check some invariants. 3615 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3616 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3617 3618 llvm::Type *ResType = nullptr; 3619 switch (Lo) { 3620 case NoClass: 3621 if (Hi == NoClass) 3622 return ABIArgInfo::getIgnore(); 3623 // If the low part is just padding, it takes no register, leave ResType 3624 // null. 3625 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3626 "Unknown missing lo part"); 3627 break; 3628 3629 case SSEUp: 3630 case X87Up: 3631 llvm_unreachable("Invalid classification for lo word."); 3632 3633 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3634 // hidden argument. 3635 case Memory: 3636 return getIndirectReturnResult(RetTy); 3637 3638 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3639 // available register of the sequence %rax, %rdx is used. 3640 case Integer: 3641 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3642 3643 // If we have a sign or zero extended integer, make sure to return Extend 3644 // so that the parameter gets the right LLVM IR attributes. 3645 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3646 // Treat an enum type as its underlying type. 3647 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3648 RetTy = EnumTy->getDecl()->getIntegerType(); 3649 3650 if (RetTy->isIntegralOrEnumerationType() && 3651 isPromotableIntegerTypeForABI(RetTy)) 3652 return ABIArgInfo::getExtend(RetTy); 3653 } 3654 break; 3655 3656 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3657 // available SSE register of the sequence %xmm0, %xmm1 is used. 3658 case SSE: 3659 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3660 break; 3661 3662 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3663 // returned on the X87 stack in %st0 as 80-bit x87 number. 3664 case X87: 3665 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3666 break; 3667 3668 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3669 // part of the value is returned in %st0 and the imaginary part in 3670 // %st1. 3671 case ComplexX87: 3672 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3673 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3674 llvm::Type::getX86_FP80Ty(getVMContext())); 3675 break; 3676 } 3677 3678 llvm::Type *HighPart = nullptr; 3679 switch (Hi) { 3680 // Memory was handled previously and X87 should 3681 // never occur as a hi class. 3682 case Memory: 3683 case X87: 3684 llvm_unreachable("Invalid classification for hi word."); 3685 3686 case ComplexX87: // Previously handled. 3687 case NoClass: 3688 break; 3689 3690 case Integer: 3691 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3692 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3693 return ABIArgInfo::getDirect(HighPart, 8); 3694 break; 3695 case SSE: 3696 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3697 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3698 return ABIArgInfo::getDirect(HighPart, 8); 3699 break; 3700 3701 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3702 // is passed in the next available eightbyte chunk if the last used 3703 // vector register. 3704 // 3705 // SSEUP should always be preceded by SSE, just widen. 3706 case SSEUp: 3707 assert(Lo == SSE && "Unexpected SSEUp classification."); 3708 ResType = GetByteVectorType(RetTy); 3709 break; 3710 3711 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3712 // returned together with the previous X87 value in %st0. 3713 case X87Up: 3714 // If X87Up is preceded by X87, we don't need to do 3715 // anything. However, in some cases with unions it may not be 3716 // preceded by X87. In such situations we follow gcc and pass the 3717 // extra bits in an SSE reg. 3718 if (Lo != X87) { 3719 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3720 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3721 return ABIArgInfo::getDirect(HighPart, 8); 3722 } 3723 break; 3724 } 3725 3726 // If a high part was specified, merge it together with the low part. It is 3727 // known to pass in the high eightbyte of the result. We do this by forming a 3728 // first class struct aggregate with the high and low part: {low, high} 3729 if (HighPart) 3730 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3731 3732 return ABIArgInfo::getDirect(ResType); 3733 } 3734 3735 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3736 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3737 bool isNamedArg) 3738 const 3739 { 3740 Ty = useFirstFieldIfTransparentUnion(Ty); 3741 3742 X86_64ABIInfo::Class Lo, Hi; 3743 classify(Ty, 0, Lo, Hi, isNamedArg); 3744 3745 // Check some invariants. 3746 // FIXME: Enforce these by construction. 3747 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3748 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3749 3750 neededInt = 0; 3751 neededSSE = 0; 3752 llvm::Type *ResType = nullptr; 3753 switch (Lo) { 3754 case NoClass: 3755 if (Hi == NoClass) 3756 return ABIArgInfo::getIgnore(); 3757 // If the low part is just padding, it takes no register, leave ResType 3758 // null. 3759 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3760 "Unknown missing lo part"); 3761 break; 3762 3763 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3764 // on the stack. 3765 case Memory: 3766 3767 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3768 // COMPLEX_X87, it is passed in memory. 3769 case X87: 3770 case ComplexX87: 3771 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3772 ++neededInt; 3773 return getIndirectResult(Ty, freeIntRegs); 3774 3775 case SSEUp: 3776 case X87Up: 3777 llvm_unreachable("Invalid classification for lo word."); 3778 3779 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3780 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3781 // and %r9 is used. 3782 case Integer: 3783 ++neededInt; 3784 3785 // Pick an 8-byte type based on the preferred type. 3786 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3787 3788 // If we have a sign or zero extended integer, make sure to return Extend 3789 // so that the parameter gets the right LLVM IR attributes. 3790 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3791 // Treat an enum type as its underlying type. 3792 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3793 Ty = EnumTy->getDecl()->getIntegerType(); 3794 3795 if (Ty->isIntegralOrEnumerationType() && 3796 isPromotableIntegerTypeForABI(Ty)) 3797 return ABIArgInfo::getExtend(Ty); 3798 } 3799 3800 break; 3801 3802 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3803 // available SSE register is used, the registers are taken in the 3804 // order from %xmm0 to %xmm7. 3805 case SSE: { 3806 llvm::Type *IRType = CGT.ConvertType(Ty); 3807 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3808 ++neededSSE; 3809 break; 3810 } 3811 } 3812 3813 llvm::Type *HighPart = nullptr; 3814 switch (Hi) { 3815 // Memory was handled previously, ComplexX87 and X87 should 3816 // never occur as hi classes, and X87Up must be preceded by X87, 3817 // which is passed in memory. 3818 case Memory: 3819 case X87: 3820 case ComplexX87: 3821 llvm_unreachable("Invalid classification for hi word."); 3822 3823 case NoClass: break; 3824 3825 case Integer: 3826 ++neededInt; 3827 // Pick an 8-byte type based on the preferred type. 3828 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3829 3830 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3831 return ABIArgInfo::getDirect(HighPart, 8); 3832 break; 3833 3834 // X87Up generally doesn't occur here (long double is passed in 3835 // memory), except in situations involving unions. 3836 case X87Up: 3837 case SSE: 3838 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3839 3840 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3841 return ABIArgInfo::getDirect(HighPart, 8); 3842 3843 ++neededSSE; 3844 break; 3845 3846 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3847 // eightbyte is passed in the upper half of the last used SSE 3848 // register. This only happens when 128-bit vectors are passed. 3849 case SSEUp: 3850 assert(Lo == SSE && "Unexpected SSEUp classification"); 3851 ResType = GetByteVectorType(Ty); 3852 break; 3853 } 3854 3855 // If a high part was specified, merge it together with the low part. It is 3856 // known to pass in the high eightbyte of the result. We do this by forming a 3857 // first class struct aggregate with the high and low part: {low, high} 3858 if (HighPart) 3859 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3860 3861 return ABIArgInfo::getDirect(ResType); 3862 } 3863 3864 ABIArgInfo 3865 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3866 unsigned &NeededSSE) const { 3867 auto RT = Ty->getAs<RecordType>(); 3868 assert(RT && "classifyRegCallStructType only valid with struct types"); 3869 3870 if (RT->getDecl()->hasFlexibleArrayMember()) 3871 return getIndirectReturnResult(Ty); 3872 3873 // Sum up bases 3874 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3875 if (CXXRD->isDynamicClass()) { 3876 NeededInt = NeededSSE = 0; 3877 return getIndirectReturnResult(Ty); 3878 } 3879 3880 for (const auto &I : CXXRD->bases()) 3881 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3882 .isIndirect()) { 3883 NeededInt = NeededSSE = 0; 3884 return getIndirectReturnResult(Ty); 3885 } 3886 } 3887 3888 // Sum up members 3889 for (const auto *FD : RT->getDecl()->fields()) { 3890 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3891 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3892 .isIndirect()) { 3893 NeededInt = NeededSSE = 0; 3894 return getIndirectReturnResult(Ty); 3895 } 3896 } else { 3897 unsigned LocalNeededInt, LocalNeededSSE; 3898 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3899 LocalNeededSSE, true) 3900 .isIndirect()) { 3901 NeededInt = NeededSSE = 0; 3902 return getIndirectReturnResult(Ty); 3903 } 3904 NeededInt += LocalNeededInt; 3905 NeededSSE += LocalNeededSSE; 3906 } 3907 } 3908 3909 return ABIArgInfo::getDirect(); 3910 } 3911 3912 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3913 unsigned &NeededInt, 3914 unsigned &NeededSSE) const { 3915 3916 NeededInt = 0; 3917 NeededSSE = 0; 3918 3919 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3920 } 3921 3922 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3923 3924 const unsigned CallingConv = FI.getCallingConvention(); 3925 // It is possible to force Win64 calling convention on any x86_64 target by 3926 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3927 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3928 if (CallingConv == llvm::CallingConv::Win64) { 3929 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3930 Win64ABIInfo.computeInfo(FI); 3931 return; 3932 } 3933 3934 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3935 3936 // Keep track of the number of assigned registers. 3937 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3938 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3939 unsigned NeededInt, NeededSSE; 3940 3941 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3942 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3943 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3944 FI.getReturnInfo() = 3945 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3946 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3947 FreeIntRegs -= NeededInt; 3948 FreeSSERegs -= NeededSSE; 3949 } else { 3950 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3951 } 3952 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3953 getContext().getCanonicalType(FI.getReturnType() 3954 ->getAs<ComplexType>() 3955 ->getElementType()) == 3956 getContext().LongDoubleTy) 3957 // Complex Long Double Type is passed in Memory when Regcall 3958 // calling convention is used. 3959 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3960 else 3961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3962 } 3963 3964 // If the return value is indirect, then the hidden argument is consuming one 3965 // integer register. 3966 if (FI.getReturnInfo().isIndirect()) 3967 --FreeIntRegs; 3968 3969 // The chain argument effectively gives us another free register. 3970 if (FI.isChainCall()) 3971 ++FreeIntRegs; 3972 3973 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3974 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3975 // get assigned (in left-to-right order) for passing as follows... 3976 unsigned ArgNo = 0; 3977 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3978 it != ie; ++it, ++ArgNo) { 3979 bool IsNamedArg = ArgNo < NumRequiredArgs; 3980 3981 if (IsRegCall && it->type->isStructureOrClassType()) 3982 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3983 else 3984 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3985 NeededSSE, IsNamedArg); 3986 3987 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3988 // eightbyte of an argument, the whole argument is passed on the 3989 // stack. If registers have already been assigned for some 3990 // eightbytes of such an argument, the assignments get reverted. 3991 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3992 FreeIntRegs -= NeededInt; 3993 FreeSSERegs -= NeededSSE; 3994 } else { 3995 it->info = getIndirectResult(it->type, FreeIntRegs); 3996 } 3997 } 3998 } 3999 4000 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4001 Address VAListAddr, QualType Ty) { 4002 Address overflow_arg_area_p = 4003 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4004 llvm::Value *overflow_arg_area = 4005 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4006 4007 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4008 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4009 // It isn't stated explicitly in the standard, but in practice we use 4010 // alignment greater than 16 where necessary. 4011 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4012 if (Align > CharUnits::fromQuantity(8)) { 4013 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4014 Align); 4015 } 4016 4017 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4018 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4019 llvm::Value *Res = 4020 CGF.Builder.CreateBitCast(overflow_arg_area, 4021 llvm::PointerType::getUnqual(LTy)); 4022 4023 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4024 // l->overflow_arg_area + sizeof(type). 4025 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4026 // an 8 byte boundary. 4027 4028 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4029 llvm::Value *Offset = 4030 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4031 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4032 Offset, "overflow_arg_area.next"); 4033 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4034 4035 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4036 return Address(Res, Align); 4037 } 4038 4039 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4040 QualType Ty) const { 4041 // Assume that va_list type is correct; should be pointer to LLVM type: 4042 // struct { 4043 // i32 gp_offset; 4044 // i32 fp_offset; 4045 // i8* overflow_arg_area; 4046 // i8* reg_save_area; 4047 // }; 4048 unsigned neededInt, neededSSE; 4049 4050 Ty = getContext().getCanonicalType(Ty); 4051 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4052 /*isNamedArg*/false); 4053 4054 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4055 // in the registers. If not go to step 7. 4056 if (!neededInt && !neededSSE) 4057 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4058 4059 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4060 // general purpose registers needed to pass type and num_fp to hold 4061 // the number of floating point registers needed. 4062 4063 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4064 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4065 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4066 // 4067 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4068 // register save space). 4069 4070 llvm::Value *InRegs = nullptr; 4071 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4072 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4073 if (neededInt) { 4074 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4075 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4076 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4077 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4078 } 4079 4080 if (neededSSE) { 4081 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4082 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4083 llvm::Value *FitsInFP = 4084 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4085 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4086 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4087 } 4088 4089 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4090 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4091 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4092 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4093 4094 // Emit code to load the value if it was passed in registers. 4095 4096 CGF.EmitBlock(InRegBlock); 4097 4098 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4099 // an offset of l->gp_offset and/or l->fp_offset. This may require 4100 // copying to a temporary location in case the parameter is passed 4101 // in different register classes or requires an alignment greater 4102 // than 8 for general purpose registers and 16 for XMM registers. 4103 // 4104 // FIXME: This really results in shameful code when we end up needing to 4105 // collect arguments from different places; often what should result in a 4106 // simple assembling of a structure from scattered addresses has many more 4107 // loads than necessary. Can we clean this up? 4108 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4109 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4110 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4111 4112 Address RegAddr = Address::invalid(); 4113 if (neededInt && neededSSE) { 4114 // FIXME: Cleanup. 4115 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4116 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4117 Address Tmp = CGF.CreateMemTemp(Ty); 4118 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4119 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4120 llvm::Type *TyLo = ST->getElementType(0); 4121 llvm::Type *TyHi = ST->getElementType(1); 4122 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4123 "Unexpected ABI info for mixed regs"); 4124 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4125 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4126 llvm::Value *GPAddr = 4127 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4128 llvm::Value *FPAddr = 4129 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4130 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4131 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4132 4133 // Copy the first element. 4134 // FIXME: Our choice of alignment here and below is probably pessimistic. 4135 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4136 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4137 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4138 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4139 4140 // Copy the second element. 4141 V = CGF.Builder.CreateAlignedLoad( 4142 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4143 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4144 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4145 4146 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4147 } else if (neededInt) { 4148 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4149 CharUnits::fromQuantity(8)); 4150 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4151 4152 // Copy to a temporary if necessary to ensure the appropriate alignment. 4153 auto TInfo = getContext().getTypeInfoInChars(Ty); 4154 uint64_t TySize = TInfo.Width.getQuantity(); 4155 CharUnits TyAlign = TInfo.Align; 4156 4157 // Copy into a temporary if the type is more aligned than the 4158 // register save area. 4159 if (TyAlign.getQuantity() > 8) { 4160 Address Tmp = CGF.CreateMemTemp(Ty); 4161 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4162 RegAddr = Tmp; 4163 } 4164 4165 } else if (neededSSE == 1) { 4166 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4167 CharUnits::fromQuantity(16)); 4168 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4169 } else { 4170 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4171 // SSE registers are spaced 16 bytes apart in the register save 4172 // area, we need to collect the two eightbytes together. 4173 // The ABI isn't explicit about this, but it seems reasonable 4174 // to assume that the slots are 16-byte aligned, since the stack is 4175 // naturally 16-byte aligned and the prologue is expected to store 4176 // all the SSE registers to the RSA. 4177 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4178 fp_offset), 4179 CharUnits::fromQuantity(16)); 4180 Address RegAddrHi = 4181 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4182 CharUnits::fromQuantity(16)); 4183 llvm::Type *ST = AI.canHaveCoerceToType() 4184 ? AI.getCoerceToType() 4185 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4186 llvm::Value *V; 4187 Address Tmp = CGF.CreateMemTemp(Ty); 4188 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4189 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4190 RegAddrLo, ST->getStructElementType(0))); 4191 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4192 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4193 RegAddrHi, ST->getStructElementType(1))); 4194 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4195 4196 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4197 } 4198 4199 // AMD64-ABI 3.5.7p5: Step 5. Set: 4200 // l->gp_offset = l->gp_offset + num_gp * 8 4201 // l->fp_offset = l->fp_offset + num_fp * 16. 4202 if (neededInt) { 4203 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4204 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4205 gp_offset_p); 4206 } 4207 if (neededSSE) { 4208 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4209 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4210 fp_offset_p); 4211 } 4212 CGF.EmitBranch(ContBlock); 4213 4214 // Emit code to load the value if it was passed in memory. 4215 4216 CGF.EmitBlock(InMemBlock); 4217 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4218 4219 // Return the appropriate result. 4220 4221 CGF.EmitBlock(ContBlock); 4222 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4223 "vaarg.addr"); 4224 return ResAddr; 4225 } 4226 4227 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4228 QualType Ty) const { 4229 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4230 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4231 uint64_t Width = getContext().getTypeSize(Ty); 4232 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4233 4234 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4235 CGF.getContext().getTypeInfoInChars(Ty), 4236 CharUnits::fromQuantity(8), 4237 /*allowHigherAlign*/ false); 4238 } 4239 4240 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4241 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4242 const Type *Base = nullptr; 4243 uint64_t NumElts = 0; 4244 4245 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4246 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4247 FreeSSERegs -= NumElts; 4248 return getDirectX86Hva(); 4249 } 4250 return current; 4251 } 4252 4253 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4254 bool IsReturnType, bool IsVectorCall, 4255 bool IsRegCall) const { 4256 4257 if (Ty->isVoidType()) 4258 return ABIArgInfo::getIgnore(); 4259 4260 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4261 Ty = EnumTy->getDecl()->getIntegerType(); 4262 4263 TypeInfo Info = getContext().getTypeInfo(Ty); 4264 uint64_t Width = Info.Width; 4265 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4266 4267 const RecordType *RT = Ty->getAs<RecordType>(); 4268 if (RT) { 4269 if (!IsReturnType) { 4270 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4271 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4272 } 4273 4274 if (RT->getDecl()->hasFlexibleArrayMember()) 4275 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4276 4277 } 4278 4279 const Type *Base = nullptr; 4280 uint64_t NumElts = 0; 4281 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4282 // other targets. 4283 if ((IsVectorCall || IsRegCall) && 4284 isHomogeneousAggregate(Ty, Base, NumElts)) { 4285 if (IsRegCall) { 4286 if (FreeSSERegs >= NumElts) { 4287 FreeSSERegs -= NumElts; 4288 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4289 return ABIArgInfo::getDirect(); 4290 return ABIArgInfo::getExpand(); 4291 } 4292 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4293 } else if (IsVectorCall) { 4294 if (FreeSSERegs >= NumElts && 4295 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4296 FreeSSERegs -= NumElts; 4297 return ABIArgInfo::getDirect(); 4298 } else if (IsReturnType) { 4299 return ABIArgInfo::getExpand(); 4300 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4301 // HVAs are delayed and reclassified in the 2nd step. 4302 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4303 } 4304 } 4305 } 4306 4307 if (Ty->isMemberPointerType()) { 4308 // If the member pointer is represented by an LLVM int or ptr, pass it 4309 // directly. 4310 llvm::Type *LLTy = CGT.ConvertType(Ty); 4311 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4312 return ABIArgInfo::getDirect(); 4313 } 4314 4315 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4316 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4317 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4318 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4319 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4320 4321 // Otherwise, coerce it to a small integer. 4322 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4323 } 4324 4325 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4326 switch (BT->getKind()) { 4327 case BuiltinType::Bool: 4328 // Bool type is always extended to the ABI, other builtin types are not 4329 // extended. 4330 return ABIArgInfo::getExtend(Ty); 4331 4332 case BuiltinType::LongDouble: 4333 // Mingw64 GCC uses the old 80 bit extended precision floating point 4334 // unit. It passes them indirectly through memory. 4335 if (IsMingw64) { 4336 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4337 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4338 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4339 } 4340 break; 4341 4342 case BuiltinType::Int128: 4343 case BuiltinType::UInt128: 4344 // If it's a parameter type, the normal ABI rule is that arguments larger 4345 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4346 // even though it isn't particularly efficient. 4347 if (!IsReturnType) 4348 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4349 4350 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4351 // Clang matches them for compatibility. 4352 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4353 llvm::Type::getInt64Ty(getVMContext()), 2)); 4354 4355 default: 4356 break; 4357 } 4358 } 4359 4360 if (Ty->isExtIntType()) { 4361 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4362 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4363 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4364 // anyway as long is it fits in them, so we don't have to check the power of 4365 // 2. 4366 if (Width <= 64) 4367 return ABIArgInfo::getDirect(); 4368 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4369 } 4370 4371 return ABIArgInfo::getDirect(); 4372 } 4373 4374 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4375 const unsigned CC = FI.getCallingConvention(); 4376 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4377 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4378 4379 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4380 // classification rules. 4381 if (CC == llvm::CallingConv::X86_64_SysV) { 4382 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4383 SysVABIInfo.computeInfo(FI); 4384 return; 4385 } 4386 4387 unsigned FreeSSERegs = 0; 4388 if (IsVectorCall) { 4389 // We can use up to 4 SSE return registers with vectorcall. 4390 FreeSSERegs = 4; 4391 } else if (IsRegCall) { 4392 // RegCall gives us 16 SSE registers. 4393 FreeSSERegs = 16; 4394 } 4395 4396 if (!getCXXABI().classifyReturnType(FI)) 4397 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4398 IsVectorCall, IsRegCall); 4399 4400 if (IsVectorCall) { 4401 // We can use up to 6 SSE register parameters with vectorcall. 4402 FreeSSERegs = 6; 4403 } else if (IsRegCall) { 4404 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4405 FreeSSERegs = 16; 4406 } 4407 4408 unsigned ArgNum = 0; 4409 unsigned ZeroSSERegs = 0; 4410 for (auto &I : FI.arguments()) { 4411 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4412 // XMM/YMM registers. After the sixth argument, pretend no vector 4413 // registers are left. 4414 unsigned *MaybeFreeSSERegs = 4415 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4416 I.info = 4417 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4418 ++ArgNum; 4419 } 4420 4421 if (IsVectorCall) { 4422 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4423 // second pass. 4424 for (auto &I : FI.arguments()) 4425 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4426 } 4427 } 4428 4429 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4430 QualType Ty) const { 4431 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4432 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4433 uint64_t Width = getContext().getTypeSize(Ty); 4434 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4435 4436 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4437 CGF.getContext().getTypeInfoInChars(Ty), 4438 CharUnits::fromQuantity(8), 4439 /*allowHigherAlign*/ false); 4440 } 4441 4442 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4443 llvm::Value *Address, bool Is64Bit, 4444 bool IsAIX) { 4445 // This is calculated from the LLVM and GCC tables and verified 4446 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4447 4448 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4449 4450 llvm::IntegerType *i8 = CGF.Int8Ty; 4451 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4452 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4453 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4454 4455 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4456 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4457 4458 // 32-63: fp0-31, the 8-byte floating-point registers 4459 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4460 4461 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4462 // 64: mq 4463 // 65: lr 4464 // 66: ctr 4465 // 67: ap 4466 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4467 4468 // 68-76 are various 4-byte special-purpose registers: 4469 // 68-75 cr0-7 4470 // 76: xer 4471 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4472 4473 // 77-108: v0-31, the 16-byte vector registers 4474 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4475 4476 // 109: vrsave 4477 // 110: vscr 4478 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4479 4480 // AIX does not utilize the rest of the registers. 4481 if (IsAIX) 4482 return false; 4483 4484 // 111: spe_acc 4485 // 112: spefscr 4486 // 113: sfp 4487 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4488 4489 if (!Is64Bit) 4490 return false; 4491 4492 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4493 // or above CPU. 4494 // 64-bit only registers: 4495 // 114: tfhar 4496 // 115: tfiar 4497 // 116: texasr 4498 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4499 4500 return false; 4501 } 4502 4503 // AIX 4504 namespace { 4505 /// AIXABIInfo - The AIX XCOFF ABI information. 4506 class AIXABIInfo : public ABIInfo { 4507 const bool Is64Bit; 4508 const unsigned PtrByteSize; 4509 CharUnits getParamTypeAlignment(QualType Ty) const; 4510 4511 public: 4512 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4513 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4514 4515 bool isPromotableTypeForABI(QualType Ty) const; 4516 4517 ABIArgInfo classifyReturnType(QualType RetTy) const; 4518 ABIArgInfo classifyArgumentType(QualType Ty) const; 4519 4520 void computeInfo(CGFunctionInfo &FI) const override { 4521 if (!getCXXABI().classifyReturnType(FI)) 4522 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4523 4524 for (auto &I : FI.arguments()) 4525 I.info = classifyArgumentType(I.type); 4526 } 4527 4528 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4529 QualType Ty) const override; 4530 }; 4531 4532 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4533 const bool Is64Bit; 4534 4535 public: 4536 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4537 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4538 Is64Bit(Is64Bit) {} 4539 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4540 return 1; // r1 is the dedicated stack pointer 4541 } 4542 4543 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4544 llvm::Value *Address) const override; 4545 }; 4546 } // namespace 4547 4548 // Return true if the ABI requires Ty to be passed sign- or zero- 4549 // extended to 32/64 bits. 4550 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4551 // Treat an enum type as its underlying type. 4552 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4553 Ty = EnumTy->getDecl()->getIntegerType(); 4554 4555 // Promotable integer types are required to be promoted by the ABI. 4556 if (Ty->isPromotableIntegerType()) 4557 return true; 4558 4559 if (!Is64Bit) 4560 return false; 4561 4562 // For 64 bit mode, in addition to the usual promotable integer types, we also 4563 // need to extend all 32-bit types, since the ABI requires promotion to 64 4564 // bits. 4565 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4566 switch (BT->getKind()) { 4567 case BuiltinType::Int: 4568 case BuiltinType::UInt: 4569 return true; 4570 default: 4571 break; 4572 } 4573 4574 return false; 4575 } 4576 4577 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4578 if (RetTy->isAnyComplexType()) 4579 return ABIArgInfo::getDirect(); 4580 4581 if (RetTy->isVectorType()) 4582 return ABIArgInfo::getDirect(); 4583 4584 if (RetTy->isVoidType()) 4585 return ABIArgInfo::getIgnore(); 4586 4587 if (isAggregateTypeForABI(RetTy)) 4588 return getNaturalAlignIndirect(RetTy); 4589 4590 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4591 : ABIArgInfo::getDirect()); 4592 } 4593 4594 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4595 Ty = useFirstFieldIfTransparentUnion(Ty); 4596 4597 if (Ty->isAnyComplexType()) 4598 return ABIArgInfo::getDirect(); 4599 4600 if (Ty->isVectorType()) 4601 return ABIArgInfo::getDirect(); 4602 4603 if (isAggregateTypeForABI(Ty)) { 4604 // Records with non-trivial destructors/copy-constructors should not be 4605 // passed by value. 4606 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4607 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4608 4609 CharUnits CCAlign = getParamTypeAlignment(Ty); 4610 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4611 4612 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4613 /*Realign*/ TyAlign > CCAlign); 4614 } 4615 4616 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4617 : ABIArgInfo::getDirect()); 4618 } 4619 4620 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4621 // Complex types are passed just like their elements. 4622 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4623 Ty = CTy->getElementType(); 4624 4625 if (Ty->isVectorType()) 4626 return CharUnits::fromQuantity(16); 4627 4628 // If the structure contains a vector type, the alignment is 16. 4629 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4630 return CharUnits::fromQuantity(16); 4631 4632 return CharUnits::fromQuantity(PtrByteSize); 4633 } 4634 4635 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4636 QualType Ty) const { 4637 4638 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4639 TypeInfo.Align = getParamTypeAlignment(Ty); 4640 4641 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4642 4643 // If we have a complex type and the base type is smaller than the register 4644 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4645 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4646 // Clang expects us to produce a pointer to a structure with the two parts 4647 // packed tightly. So generate loads of the real and imaginary parts relative 4648 // to the va_list pointer, and store them to a temporary structure. We do the 4649 // same as the PPC64ABI here. 4650 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4651 CharUnits EltSize = TypeInfo.Width / 2; 4652 if (EltSize < SlotSize) 4653 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4654 } 4655 4656 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4657 SlotSize, /*AllowHigher*/ true); 4658 } 4659 4660 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4661 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4662 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4663 } 4664 4665 // PowerPC-32 4666 namespace { 4667 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4668 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4669 bool IsSoftFloatABI; 4670 bool IsRetSmallStructInRegABI; 4671 4672 CharUnits getParamTypeAlignment(QualType Ty) const; 4673 4674 public: 4675 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4676 bool RetSmallStructInRegABI) 4677 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4678 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4679 4680 ABIArgInfo classifyReturnType(QualType RetTy) const; 4681 4682 void computeInfo(CGFunctionInfo &FI) const override { 4683 if (!getCXXABI().classifyReturnType(FI)) 4684 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4685 for (auto &I : FI.arguments()) 4686 I.info = classifyArgumentType(I.type); 4687 } 4688 4689 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4690 QualType Ty) const override; 4691 }; 4692 4693 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4694 public: 4695 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4696 bool RetSmallStructInRegABI) 4697 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4698 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4699 4700 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4701 const CodeGenOptions &Opts); 4702 4703 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4704 // This is recovered from gcc output. 4705 return 1; // r1 is the dedicated stack pointer 4706 } 4707 4708 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4709 llvm::Value *Address) const override; 4710 }; 4711 } 4712 4713 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4714 // Complex types are passed just like their elements. 4715 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4716 Ty = CTy->getElementType(); 4717 4718 if (Ty->isVectorType()) 4719 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4720 : 4); 4721 4722 // For single-element float/vector structs, we consider the whole type 4723 // to have the same alignment requirements as its single element. 4724 const Type *AlignTy = nullptr; 4725 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4726 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4727 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4728 (BT && BT->isFloatingPoint())) 4729 AlignTy = EltType; 4730 } 4731 4732 if (AlignTy) 4733 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4734 return CharUnits::fromQuantity(4); 4735 } 4736 4737 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4738 uint64_t Size; 4739 4740 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4741 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4742 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4743 // System V ABI (1995), page 3-22, specified: 4744 // > A structure or union whose size is less than or equal to 8 bytes 4745 // > shall be returned in r3 and r4, as if it were first stored in the 4746 // > 8-byte aligned memory area and then the low addressed word were 4747 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4748 // > the last member of the structure or union are not defined. 4749 // 4750 // GCC for big-endian PPC32 inserts the pad before the first member, 4751 // not "beyond the last member" of the struct. To stay compatible 4752 // with GCC, we coerce the struct to an integer of the same size. 4753 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4754 if (Size == 0) 4755 return ABIArgInfo::getIgnore(); 4756 else { 4757 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4758 return ABIArgInfo::getDirect(CoerceTy); 4759 } 4760 } 4761 4762 return DefaultABIInfo::classifyReturnType(RetTy); 4763 } 4764 4765 // TODO: this implementation is now likely redundant with 4766 // DefaultABIInfo::EmitVAArg. 4767 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4768 QualType Ty) const { 4769 if (getTarget().getTriple().isOSDarwin()) { 4770 auto TI = getContext().getTypeInfoInChars(Ty); 4771 TI.Align = getParamTypeAlignment(Ty); 4772 4773 CharUnits SlotSize = CharUnits::fromQuantity(4); 4774 return emitVoidPtrVAArg(CGF, VAList, Ty, 4775 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4776 /*AllowHigherAlign=*/true); 4777 } 4778 4779 const unsigned OverflowLimit = 8; 4780 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4781 // TODO: Implement this. For now ignore. 4782 (void)CTy; 4783 return Address::invalid(); // FIXME? 4784 } 4785 4786 // struct __va_list_tag { 4787 // unsigned char gpr; 4788 // unsigned char fpr; 4789 // unsigned short reserved; 4790 // void *overflow_arg_area; 4791 // void *reg_save_area; 4792 // }; 4793 4794 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4795 bool isInt = !Ty->isFloatingType(); 4796 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4797 4798 // All aggregates are passed indirectly? That doesn't seem consistent 4799 // with the argument-lowering code. 4800 bool isIndirect = isAggregateTypeForABI(Ty); 4801 4802 CGBuilderTy &Builder = CGF.Builder; 4803 4804 // The calling convention either uses 1-2 GPRs or 1 FPR. 4805 Address NumRegsAddr = Address::invalid(); 4806 if (isInt || IsSoftFloatABI) { 4807 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4808 } else { 4809 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4810 } 4811 4812 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4813 4814 // "Align" the register count when TY is i64. 4815 if (isI64 || (isF64 && IsSoftFloatABI)) { 4816 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4817 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4818 } 4819 4820 llvm::Value *CC = 4821 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4822 4823 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4824 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4825 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4826 4827 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4828 4829 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4830 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4831 4832 // Case 1: consume registers. 4833 Address RegAddr = Address::invalid(); 4834 { 4835 CGF.EmitBlock(UsingRegs); 4836 4837 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4838 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4839 CharUnits::fromQuantity(8)); 4840 assert(RegAddr.getElementType() == CGF.Int8Ty); 4841 4842 // Floating-point registers start after the general-purpose registers. 4843 if (!(isInt || IsSoftFloatABI)) { 4844 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4845 CharUnits::fromQuantity(32)); 4846 } 4847 4848 // Get the address of the saved value by scaling the number of 4849 // registers we've used by the number of 4850 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4851 llvm::Value *RegOffset = 4852 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4853 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4854 RegAddr.getPointer(), RegOffset), 4855 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4856 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4857 4858 // Increase the used-register count. 4859 NumRegs = 4860 Builder.CreateAdd(NumRegs, 4861 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4862 Builder.CreateStore(NumRegs, NumRegsAddr); 4863 4864 CGF.EmitBranch(Cont); 4865 } 4866 4867 // Case 2: consume space in the overflow area. 4868 Address MemAddr = Address::invalid(); 4869 { 4870 CGF.EmitBlock(UsingOverflow); 4871 4872 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4873 4874 // Everything in the overflow area is rounded up to a size of at least 4. 4875 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4876 4877 CharUnits Size; 4878 if (!isIndirect) { 4879 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4880 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4881 } else { 4882 Size = CGF.getPointerSize(); 4883 } 4884 4885 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4886 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4887 OverflowAreaAlign); 4888 // Round up address of argument to alignment 4889 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4890 if (Align > OverflowAreaAlign) { 4891 llvm::Value *Ptr = OverflowArea.getPointer(); 4892 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4893 Align); 4894 } 4895 4896 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4897 4898 // Increase the overflow area. 4899 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4900 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4901 CGF.EmitBranch(Cont); 4902 } 4903 4904 CGF.EmitBlock(Cont); 4905 4906 // Merge the cases with a phi. 4907 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4908 "vaarg.addr"); 4909 4910 // Load the pointer if the argument was passed indirectly. 4911 if (isIndirect) { 4912 Result = Address(Builder.CreateLoad(Result, "aggr"), 4913 getContext().getTypeAlignInChars(Ty)); 4914 } 4915 4916 return Result; 4917 } 4918 4919 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4920 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4921 assert(Triple.isPPC32()); 4922 4923 switch (Opts.getStructReturnConvention()) { 4924 case CodeGenOptions::SRCK_Default: 4925 break; 4926 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4927 return false; 4928 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4929 return true; 4930 } 4931 4932 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4933 return true; 4934 4935 return false; 4936 } 4937 4938 bool 4939 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4940 llvm::Value *Address) const { 4941 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4942 /*IsAIX*/ false); 4943 } 4944 4945 // PowerPC-64 4946 4947 namespace { 4948 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4949 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4950 public: 4951 enum ABIKind { 4952 ELFv1 = 0, 4953 ELFv2 4954 }; 4955 4956 private: 4957 static const unsigned GPRBits = 64; 4958 ABIKind Kind; 4959 bool IsSoftFloatABI; 4960 4961 public: 4962 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4963 bool SoftFloatABI) 4964 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4965 4966 bool isPromotableTypeForABI(QualType Ty) const; 4967 CharUnits getParamTypeAlignment(QualType Ty) const; 4968 4969 ABIArgInfo classifyReturnType(QualType RetTy) const; 4970 ABIArgInfo classifyArgumentType(QualType Ty) const; 4971 4972 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4973 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4974 uint64_t Members) const override; 4975 4976 // TODO: We can add more logic to computeInfo to improve performance. 4977 // Example: For aggregate arguments that fit in a register, we could 4978 // use getDirectInReg (as is done below for structs containing a single 4979 // floating-point value) to avoid pushing them to memory on function 4980 // entry. This would require changing the logic in PPCISelLowering 4981 // when lowering the parameters in the caller and args in the callee. 4982 void computeInfo(CGFunctionInfo &FI) const override { 4983 if (!getCXXABI().classifyReturnType(FI)) 4984 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4985 for (auto &I : FI.arguments()) { 4986 // We rely on the default argument classification for the most part. 4987 // One exception: An aggregate containing a single floating-point 4988 // or vector item must be passed in a register if one is available. 4989 const Type *T = isSingleElementStruct(I.type, getContext()); 4990 if (T) { 4991 const BuiltinType *BT = T->getAs<BuiltinType>(); 4992 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4993 (BT && BT->isFloatingPoint())) { 4994 QualType QT(T, 0); 4995 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4996 continue; 4997 } 4998 } 4999 I.info = classifyArgumentType(I.type); 5000 } 5001 } 5002 5003 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5004 QualType Ty) const override; 5005 5006 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5007 bool asReturnValue) const override { 5008 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5009 } 5010 5011 bool isSwiftErrorInRegister() const override { 5012 return false; 5013 } 5014 }; 5015 5016 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5017 5018 public: 5019 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5020 PPC64_SVR4_ABIInfo::ABIKind Kind, 5021 bool SoftFloatABI) 5022 : TargetCodeGenInfo( 5023 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5024 5025 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5026 // This is recovered from gcc output. 5027 return 1; // r1 is the dedicated stack pointer 5028 } 5029 5030 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5031 llvm::Value *Address) const override; 5032 }; 5033 5034 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5035 public: 5036 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5037 5038 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5039 // This is recovered from gcc output. 5040 return 1; // r1 is the dedicated stack pointer 5041 } 5042 5043 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5044 llvm::Value *Address) const override; 5045 }; 5046 5047 } 5048 5049 // Return true if the ABI requires Ty to be passed sign- or zero- 5050 // extended to 64 bits. 5051 bool 5052 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5053 // Treat an enum type as its underlying type. 5054 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5055 Ty = EnumTy->getDecl()->getIntegerType(); 5056 5057 // Promotable integer types are required to be promoted by the ABI. 5058 if (isPromotableIntegerTypeForABI(Ty)) 5059 return true; 5060 5061 // In addition to the usual promotable integer types, we also need to 5062 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5063 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5064 switch (BT->getKind()) { 5065 case BuiltinType::Int: 5066 case BuiltinType::UInt: 5067 return true; 5068 default: 5069 break; 5070 } 5071 5072 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5073 if (EIT->getNumBits() < 64) 5074 return true; 5075 5076 return false; 5077 } 5078 5079 /// isAlignedParamType - Determine whether a type requires 16-byte or 5080 /// higher alignment in the parameter area. Always returns at least 8. 5081 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5082 // Complex types are passed just like their elements. 5083 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5084 Ty = CTy->getElementType(); 5085 5086 // Only vector types of size 16 bytes need alignment (larger types are 5087 // passed via reference, smaller types are not aligned). 5088 if (Ty->isVectorType()) { 5089 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5090 } else if (Ty->isRealFloatingType() && 5091 &getContext().getFloatTypeSemantics(Ty) == 5092 &llvm::APFloat::IEEEquad()) { 5093 // According to ABI document section 'Optional Save Areas': If extended 5094 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5095 // format are supported, map them to a single quadword, quadword aligned. 5096 return CharUnits::fromQuantity(16); 5097 } 5098 5099 // For single-element float/vector structs, we consider the whole type 5100 // to have the same alignment requirements as its single element. 5101 const Type *AlignAsType = nullptr; 5102 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5103 if (EltType) { 5104 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5105 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5106 (BT && BT->isFloatingPoint())) 5107 AlignAsType = EltType; 5108 } 5109 5110 // Likewise for ELFv2 homogeneous aggregates. 5111 const Type *Base = nullptr; 5112 uint64_t Members = 0; 5113 if (!AlignAsType && Kind == ELFv2 && 5114 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5115 AlignAsType = Base; 5116 5117 // With special case aggregates, only vector base types need alignment. 5118 if (AlignAsType) { 5119 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5120 } 5121 5122 // Otherwise, we only need alignment for any aggregate type that 5123 // has an alignment requirement of >= 16 bytes. 5124 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5125 return CharUnits::fromQuantity(16); 5126 } 5127 5128 return CharUnits::fromQuantity(8); 5129 } 5130 5131 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5132 /// aggregate. Base is set to the base element type, and Members is set 5133 /// to the number of base elements. 5134 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5135 uint64_t &Members) const { 5136 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5137 uint64_t NElements = AT->getSize().getZExtValue(); 5138 if (NElements == 0) 5139 return false; 5140 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5141 return false; 5142 Members *= NElements; 5143 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5144 const RecordDecl *RD = RT->getDecl(); 5145 if (RD->hasFlexibleArrayMember()) 5146 return false; 5147 5148 Members = 0; 5149 5150 // If this is a C++ record, check the properties of the record such as 5151 // bases and ABI specific restrictions 5152 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5153 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5154 return false; 5155 5156 for (const auto &I : CXXRD->bases()) { 5157 // Ignore empty records. 5158 if (isEmptyRecord(getContext(), I.getType(), true)) 5159 continue; 5160 5161 uint64_t FldMembers; 5162 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5163 return false; 5164 5165 Members += FldMembers; 5166 } 5167 } 5168 5169 for (const auto *FD : RD->fields()) { 5170 // Ignore (non-zero arrays of) empty records. 5171 QualType FT = FD->getType(); 5172 while (const ConstantArrayType *AT = 5173 getContext().getAsConstantArrayType(FT)) { 5174 if (AT->getSize().getZExtValue() == 0) 5175 return false; 5176 FT = AT->getElementType(); 5177 } 5178 if (isEmptyRecord(getContext(), FT, true)) 5179 continue; 5180 5181 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5182 if (getContext().getLangOpts().CPlusPlus && 5183 FD->isZeroLengthBitField(getContext())) 5184 continue; 5185 5186 uint64_t FldMembers; 5187 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5188 return false; 5189 5190 Members = (RD->isUnion() ? 5191 std::max(Members, FldMembers) : Members + FldMembers); 5192 } 5193 5194 if (!Base) 5195 return false; 5196 5197 // Ensure there is no padding. 5198 if (getContext().getTypeSize(Base) * Members != 5199 getContext().getTypeSize(Ty)) 5200 return false; 5201 } else { 5202 Members = 1; 5203 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5204 Members = 2; 5205 Ty = CT->getElementType(); 5206 } 5207 5208 // Most ABIs only support float, double, and some vector type widths. 5209 if (!isHomogeneousAggregateBaseType(Ty)) 5210 return false; 5211 5212 // The base type must be the same for all members. Types that 5213 // agree in both total size and mode (float vs. vector) are 5214 // treated as being equivalent here. 5215 const Type *TyPtr = Ty.getTypePtr(); 5216 if (!Base) { 5217 Base = TyPtr; 5218 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5219 // so make sure to widen it explicitly. 5220 if (const VectorType *VT = Base->getAs<VectorType>()) { 5221 QualType EltTy = VT->getElementType(); 5222 unsigned NumElements = 5223 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5224 Base = getContext() 5225 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5226 .getTypePtr(); 5227 } 5228 } 5229 5230 if (Base->isVectorType() != TyPtr->isVectorType() || 5231 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5232 return false; 5233 } 5234 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5235 } 5236 5237 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5238 // Homogeneous aggregates for ELFv2 must have base types of float, 5239 // double, long double, or 128-bit vectors. 5240 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5241 if (BT->getKind() == BuiltinType::Float || 5242 BT->getKind() == BuiltinType::Double || 5243 BT->getKind() == BuiltinType::LongDouble || 5244 BT->getKind() == BuiltinType::Ibm128 || 5245 (getContext().getTargetInfo().hasFloat128Type() && 5246 (BT->getKind() == BuiltinType::Float128))) { 5247 if (IsSoftFloatABI) 5248 return false; 5249 return true; 5250 } 5251 } 5252 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5253 if (getContext().getTypeSize(VT) == 128) 5254 return true; 5255 } 5256 return false; 5257 } 5258 5259 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5260 const Type *Base, uint64_t Members) const { 5261 // Vector and fp128 types require one register, other floating point types 5262 // require one or two registers depending on their size. 5263 uint32_t NumRegs = 5264 ((getContext().getTargetInfo().hasFloat128Type() && 5265 Base->isFloat128Type()) || 5266 Base->isVectorType()) ? 1 5267 : (getContext().getTypeSize(Base) + 63) / 64; 5268 5269 // Homogeneous Aggregates may occupy at most 8 registers. 5270 return Members * NumRegs <= 8; 5271 } 5272 5273 ABIArgInfo 5274 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5275 Ty = useFirstFieldIfTransparentUnion(Ty); 5276 5277 if (Ty->isAnyComplexType()) 5278 return ABIArgInfo::getDirect(); 5279 5280 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5281 // or via reference (larger than 16 bytes). 5282 if (Ty->isVectorType()) { 5283 uint64_t Size = getContext().getTypeSize(Ty); 5284 if (Size > 128) 5285 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5286 else if (Size < 128) { 5287 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5288 return ABIArgInfo::getDirect(CoerceTy); 5289 } 5290 } 5291 5292 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5293 if (EIT->getNumBits() > 128) 5294 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5295 5296 if (isAggregateTypeForABI(Ty)) { 5297 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5298 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5299 5300 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5301 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5302 5303 // ELFv2 homogeneous aggregates are passed as array types. 5304 const Type *Base = nullptr; 5305 uint64_t Members = 0; 5306 if (Kind == ELFv2 && 5307 isHomogeneousAggregate(Ty, Base, Members)) { 5308 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5309 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5310 return ABIArgInfo::getDirect(CoerceTy); 5311 } 5312 5313 // If an aggregate may end up fully in registers, we do not 5314 // use the ByVal method, but pass the aggregate as array. 5315 // This is usually beneficial since we avoid forcing the 5316 // back-end to store the argument to memory. 5317 uint64_t Bits = getContext().getTypeSize(Ty); 5318 if (Bits > 0 && Bits <= 8 * GPRBits) { 5319 llvm::Type *CoerceTy; 5320 5321 // Types up to 8 bytes are passed as integer type (which will be 5322 // properly aligned in the argument save area doubleword). 5323 if (Bits <= GPRBits) 5324 CoerceTy = 5325 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5326 // Larger types are passed as arrays, with the base type selected 5327 // according to the required alignment in the save area. 5328 else { 5329 uint64_t RegBits = ABIAlign * 8; 5330 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5331 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5332 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5333 } 5334 5335 return ABIArgInfo::getDirect(CoerceTy); 5336 } 5337 5338 // All other aggregates are passed ByVal. 5339 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5340 /*ByVal=*/true, 5341 /*Realign=*/TyAlign > ABIAlign); 5342 } 5343 5344 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5345 : ABIArgInfo::getDirect()); 5346 } 5347 5348 ABIArgInfo 5349 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5350 if (RetTy->isVoidType()) 5351 return ABIArgInfo::getIgnore(); 5352 5353 if (RetTy->isAnyComplexType()) 5354 return ABIArgInfo::getDirect(); 5355 5356 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5357 // or via reference (larger than 16 bytes). 5358 if (RetTy->isVectorType()) { 5359 uint64_t Size = getContext().getTypeSize(RetTy); 5360 if (Size > 128) 5361 return getNaturalAlignIndirect(RetTy); 5362 else if (Size < 128) { 5363 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5364 return ABIArgInfo::getDirect(CoerceTy); 5365 } 5366 } 5367 5368 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5369 if (EIT->getNumBits() > 128) 5370 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5371 5372 if (isAggregateTypeForABI(RetTy)) { 5373 // ELFv2 homogeneous aggregates are returned as array types. 5374 const Type *Base = nullptr; 5375 uint64_t Members = 0; 5376 if (Kind == ELFv2 && 5377 isHomogeneousAggregate(RetTy, Base, Members)) { 5378 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5379 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5380 return ABIArgInfo::getDirect(CoerceTy); 5381 } 5382 5383 // ELFv2 small aggregates are returned in up to two registers. 5384 uint64_t Bits = getContext().getTypeSize(RetTy); 5385 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5386 if (Bits == 0) 5387 return ABIArgInfo::getIgnore(); 5388 5389 llvm::Type *CoerceTy; 5390 if (Bits > GPRBits) { 5391 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5392 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5393 } else 5394 CoerceTy = 5395 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5396 return ABIArgInfo::getDirect(CoerceTy); 5397 } 5398 5399 // All other aggregates are returned indirectly. 5400 return getNaturalAlignIndirect(RetTy); 5401 } 5402 5403 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5404 : ABIArgInfo::getDirect()); 5405 } 5406 5407 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5408 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5409 QualType Ty) const { 5410 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5411 TypeInfo.Align = getParamTypeAlignment(Ty); 5412 5413 CharUnits SlotSize = CharUnits::fromQuantity(8); 5414 5415 // If we have a complex type and the base type is smaller than 8 bytes, 5416 // the ABI calls for the real and imaginary parts to be right-adjusted 5417 // in separate doublewords. However, Clang expects us to produce a 5418 // pointer to a structure with the two parts packed tightly. So generate 5419 // loads of the real and imaginary parts relative to the va_list pointer, 5420 // and store them to a temporary structure. 5421 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5422 CharUnits EltSize = TypeInfo.Width / 2; 5423 if (EltSize < SlotSize) 5424 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5425 } 5426 5427 // Otherwise, just use the general rule. 5428 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5429 TypeInfo, SlotSize, /*AllowHigher*/ true); 5430 } 5431 5432 bool 5433 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5434 CodeGen::CodeGenFunction &CGF, 5435 llvm::Value *Address) const { 5436 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5437 /*IsAIX*/ false); 5438 } 5439 5440 bool 5441 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5442 llvm::Value *Address) const { 5443 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5444 /*IsAIX*/ false); 5445 } 5446 5447 //===----------------------------------------------------------------------===// 5448 // AArch64 ABI Implementation 5449 //===----------------------------------------------------------------------===// 5450 5451 namespace { 5452 5453 class AArch64ABIInfo : public SwiftABIInfo { 5454 public: 5455 enum ABIKind { 5456 AAPCS = 0, 5457 DarwinPCS, 5458 Win64 5459 }; 5460 5461 private: 5462 ABIKind Kind; 5463 5464 public: 5465 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5466 : SwiftABIInfo(CGT), Kind(Kind) {} 5467 5468 private: 5469 ABIKind getABIKind() const { return Kind; } 5470 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5471 5472 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5473 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5474 unsigned CallingConvention) const; 5475 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5476 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5477 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5478 uint64_t Members) const override; 5479 5480 bool isIllegalVectorType(QualType Ty) const; 5481 5482 void computeInfo(CGFunctionInfo &FI) const override { 5483 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5484 FI.getReturnInfo() = 5485 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5486 5487 for (auto &it : FI.arguments()) 5488 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5489 FI.getCallingConvention()); 5490 } 5491 5492 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5493 CodeGenFunction &CGF) const; 5494 5495 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5496 CodeGenFunction &CGF) const; 5497 5498 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5499 QualType Ty) const override { 5500 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5501 if (isa<llvm::ScalableVectorType>(BaseTy)) 5502 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5503 "currently not supported"); 5504 5505 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5506 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5507 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5508 } 5509 5510 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5511 QualType Ty) const override; 5512 5513 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5514 bool asReturnValue) const override { 5515 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5516 } 5517 bool isSwiftErrorInRegister() const override { 5518 return true; 5519 } 5520 5521 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5522 unsigned elts) const override; 5523 5524 bool allowBFloatArgsAndRet() const override { 5525 return getTarget().hasBFloat16Type(); 5526 } 5527 }; 5528 5529 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5530 public: 5531 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5532 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5533 5534 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5535 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5536 } 5537 5538 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5539 return 31; 5540 } 5541 5542 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5543 5544 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5545 CodeGen::CodeGenModule &CGM) const override { 5546 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5547 if (!FD) 5548 return; 5549 5550 const auto *TA = FD->getAttr<TargetAttr>(); 5551 if (TA == nullptr) 5552 return; 5553 5554 ParsedTargetAttr Attr = TA->parse(); 5555 if (Attr.BranchProtection.empty()) 5556 return; 5557 5558 TargetInfo::BranchProtectionInfo BPI; 5559 StringRef Error; 5560 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5561 BPI, Error); 5562 assert(Error.empty()); 5563 5564 auto *Fn = cast<llvm::Function>(GV); 5565 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5566 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5567 5568 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5569 Fn->addFnAttr("sign-return-address-key", 5570 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5571 ? "a_key" 5572 : "b_key"); 5573 } 5574 5575 Fn->addFnAttr("branch-target-enforcement", 5576 BPI.BranchTargetEnforcement ? "true" : "false"); 5577 } 5578 5579 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5580 llvm::Type *Ty) const override { 5581 if (CGF.getTarget().hasFeature("ls64")) { 5582 auto *ST = dyn_cast<llvm::StructType>(Ty); 5583 if (ST && ST->getNumElements() == 1) { 5584 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5585 if (AT && AT->getNumElements() == 8 && 5586 AT->getElementType()->isIntegerTy(64)) 5587 return true; 5588 } 5589 } 5590 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5591 } 5592 }; 5593 5594 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5595 public: 5596 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5597 : AArch64TargetCodeGenInfo(CGT, K) {} 5598 5599 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5600 CodeGen::CodeGenModule &CGM) const override; 5601 5602 void getDependentLibraryOption(llvm::StringRef Lib, 5603 llvm::SmallString<24> &Opt) const override { 5604 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5605 } 5606 5607 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5608 llvm::SmallString<32> &Opt) const override { 5609 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5610 } 5611 }; 5612 5613 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5614 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5615 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5616 if (GV->isDeclaration()) 5617 return; 5618 addStackProbeTargetAttributes(D, GV, CGM); 5619 } 5620 } 5621 5622 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5623 assert(Ty->isVectorType() && "expected vector type!"); 5624 5625 const auto *VT = Ty->castAs<VectorType>(); 5626 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5627 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5628 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5629 BuiltinType::UChar && 5630 "unexpected builtin type for SVE predicate!"); 5631 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5632 llvm::Type::getInt1Ty(getVMContext()), 16)); 5633 } 5634 5635 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5636 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5637 5638 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5639 llvm::ScalableVectorType *ResType = nullptr; 5640 switch (BT->getKind()) { 5641 default: 5642 llvm_unreachable("unexpected builtin type for SVE vector!"); 5643 case BuiltinType::SChar: 5644 case BuiltinType::UChar: 5645 ResType = llvm::ScalableVectorType::get( 5646 llvm::Type::getInt8Ty(getVMContext()), 16); 5647 break; 5648 case BuiltinType::Short: 5649 case BuiltinType::UShort: 5650 ResType = llvm::ScalableVectorType::get( 5651 llvm::Type::getInt16Ty(getVMContext()), 8); 5652 break; 5653 case BuiltinType::Int: 5654 case BuiltinType::UInt: 5655 ResType = llvm::ScalableVectorType::get( 5656 llvm::Type::getInt32Ty(getVMContext()), 4); 5657 break; 5658 case BuiltinType::Long: 5659 case BuiltinType::ULong: 5660 ResType = llvm::ScalableVectorType::get( 5661 llvm::Type::getInt64Ty(getVMContext()), 2); 5662 break; 5663 case BuiltinType::Half: 5664 ResType = llvm::ScalableVectorType::get( 5665 llvm::Type::getHalfTy(getVMContext()), 8); 5666 break; 5667 case BuiltinType::Float: 5668 ResType = llvm::ScalableVectorType::get( 5669 llvm::Type::getFloatTy(getVMContext()), 4); 5670 break; 5671 case BuiltinType::Double: 5672 ResType = llvm::ScalableVectorType::get( 5673 llvm::Type::getDoubleTy(getVMContext()), 2); 5674 break; 5675 case BuiltinType::BFloat16: 5676 ResType = llvm::ScalableVectorType::get( 5677 llvm::Type::getBFloatTy(getVMContext()), 8); 5678 break; 5679 } 5680 return ABIArgInfo::getDirect(ResType); 5681 } 5682 5683 uint64_t Size = getContext().getTypeSize(Ty); 5684 // Android promotes <2 x i8> to i16, not i32 5685 if (isAndroid() && (Size <= 16)) { 5686 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5687 return ABIArgInfo::getDirect(ResType); 5688 } 5689 if (Size <= 32) { 5690 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5691 return ABIArgInfo::getDirect(ResType); 5692 } 5693 if (Size == 64) { 5694 auto *ResType = 5695 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5696 return ABIArgInfo::getDirect(ResType); 5697 } 5698 if (Size == 128) { 5699 auto *ResType = 5700 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5701 return ABIArgInfo::getDirect(ResType); 5702 } 5703 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5704 } 5705 5706 ABIArgInfo 5707 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5708 unsigned CallingConvention) const { 5709 Ty = useFirstFieldIfTransparentUnion(Ty); 5710 5711 // Handle illegal vector types here. 5712 if (isIllegalVectorType(Ty)) 5713 return coerceIllegalVector(Ty); 5714 5715 if (!isAggregateTypeForABI(Ty)) { 5716 // Treat an enum type as its underlying type. 5717 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5718 Ty = EnumTy->getDecl()->getIntegerType(); 5719 5720 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5721 if (EIT->getNumBits() > 128) 5722 return getNaturalAlignIndirect(Ty); 5723 5724 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5725 ? ABIArgInfo::getExtend(Ty) 5726 : ABIArgInfo::getDirect()); 5727 } 5728 5729 // Structures with either a non-trivial destructor or a non-trivial 5730 // copy constructor are always indirect. 5731 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5732 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5733 CGCXXABI::RAA_DirectInMemory); 5734 } 5735 5736 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5737 // elsewhere for GNU compatibility. 5738 uint64_t Size = getContext().getTypeSize(Ty); 5739 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5740 if (IsEmpty || Size == 0) { 5741 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5742 return ABIArgInfo::getIgnore(); 5743 5744 // GNU C mode. The only argument that gets ignored is an empty one with size 5745 // 0. 5746 if (IsEmpty && Size == 0) 5747 return ABIArgInfo::getIgnore(); 5748 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5749 } 5750 5751 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5752 const Type *Base = nullptr; 5753 uint64_t Members = 0; 5754 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5755 bool IsWinVariadic = IsWin64 && IsVariadic; 5756 // In variadic functions on Windows, all composite types are treated alike, 5757 // no special handling of HFAs/HVAs. 5758 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5759 if (Kind != AArch64ABIInfo::AAPCS) 5760 return ABIArgInfo::getDirect( 5761 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5762 5763 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5764 // default otherwise. 5765 unsigned Align = 5766 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5767 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5768 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5769 return ABIArgInfo::getDirect( 5770 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5771 nullptr, true, Align); 5772 } 5773 5774 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5775 if (Size <= 128) { 5776 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5777 // same size and alignment. 5778 if (getTarget().isRenderScriptTarget()) { 5779 return coerceToIntArray(Ty, getContext(), getVMContext()); 5780 } 5781 unsigned Alignment; 5782 if (Kind == AArch64ABIInfo::AAPCS) { 5783 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5784 Alignment = Alignment < 128 ? 64 : 128; 5785 } else { 5786 Alignment = std::max(getContext().getTypeAlign(Ty), 5787 (unsigned)getTarget().getPointerWidth(0)); 5788 } 5789 Size = llvm::alignTo(Size, Alignment); 5790 5791 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5792 // For aggregates with 16-byte alignment, we use i128. 5793 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5794 return ABIArgInfo::getDirect( 5795 Size == Alignment ? BaseTy 5796 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5797 } 5798 5799 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5800 } 5801 5802 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5803 bool IsVariadic) const { 5804 if (RetTy->isVoidType()) 5805 return ABIArgInfo::getIgnore(); 5806 5807 if (const auto *VT = RetTy->getAs<VectorType>()) { 5808 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5809 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5810 return coerceIllegalVector(RetTy); 5811 } 5812 5813 // Large vector types should be returned via memory. 5814 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5815 return getNaturalAlignIndirect(RetTy); 5816 5817 if (!isAggregateTypeForABI(RetTy)) { 5818 // Treat an enum type as its underlying type. 5819 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5820 RetTy = EnumTy->getDecl()->getIntegerType(); 5821 5822 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5823 if (EIT->getNumBits() > 128) 5824 return getNaturalAlignIndirect(RetTy); 5825 5826 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5827 ? ABIArgInfo::getExtend(RetTy) 5828 : ABIArgInfo::getDirect()); 5829 } 5830 5831 uint64_t Size = getContext().getTypeSize(RetTy); 5832 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5833 return ABIArgInfo::getIgnore(); 5834 5835 const Type *Base = nullptr; 5836 uint64_t Members = 0; 5837 if (isHomogeneousAggregate(RetTy, Base, Members) && 5838 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5839 IsVariadic)) 5840 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5841 return ABIArgInfo::getDirect(); 5842 5843 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5844 if (Size <= 128) { 5845 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5846 // same size and alignment. 5847 if (getTarget().isRenderScriptTarget()) { 5848 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5849 } 5850 5851 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5852 // Composite types are returned in lower bits of a 64-bit register for LE, 5853 // and in higher bits for BE. However, integer types are always returned 5854 // in lower bits for both LE and BE, and they are not rounded up to 5855 // 64-bits. We can skip rounding up of composite types for LE, but not for 5856 // BE, otherwise composite types will be indistinguishable from integer 5857 // types. 5858 return ABIArgInfo::getDirect( 5859 llvm::IntegerType::get(getVMContext(), Size)); 5860 } 5861 5862 unsigned Alignment = getContext().getTypeAlign(RetTy); 5863 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5864 5865 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5866 // For aggregates with 16-byte alignment, we use i128. 5867 if (Alignment < 128 && Size == 128) { 5868 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5869 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5870 } 5871 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5872 } 5873 5874 return getNaturalAlignIndirect(RetTy); 5875 } 5876 5877 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5878 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5879 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5880 // Check whether VT is a fixed-length SVE vector. These types are 5881 // represented as scalable vectors in function args/return and must be 5882 // coerced from fixed vectors. 5883 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5884 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5885 return true; 5886 5887 // Check whether VT is legal. 5888 unsigned NumElements = VT->getNumElements(); 5889 uint64_t Size = getContext().getTypeSize(VT); 5890 // NumElements should be power of 2. 5891 if (!llvm::isPowerOf2_32(NumElements)) 5892 return true; 5893 5894 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5895 // vectors for some reason. 5896 llvm::Triple Triple = getTarget().getTriple(); 5897 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5898 Triple.isOSBinFormatMachO()) 5899 return Size <= 32; 5900 5901 return Size != 64 && (Size != 128 || NumElements == 1); 5902 } 5903 return false; 5904 } 5905 5906 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5907 llvm::Type *eltTy, 5908 unsigned elts) const { 5909 if (!llvm::isPowerOf2_32(elts)) 5910 return false; 5911 if (totalSize.getQuantity() != 8 && 5912 (totalSize.getQuantity() != 16 || elts == 1)) 5913 return false; 5914 return true; 5915 } 5916 5917 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5918 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5919 // point type or a short-vector type. This is the same as the 32-bit ABI, 5920 // but with the difference that any floating-point type is allowed, 5921 // including __fp16. 5922 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5923 if (BT->isFloatingPoint()) 5924 return true; 5925 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5926 unsigned VecSize = getContext().getTypeSize(VT); 5927 if (VecSize == 64 || VecSize == 128) 5928 return true; 5929 } 5930 return false; 5931 } 5932 5933 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5934 uint64_t Members) const { 5935 return Members <= 4; 5936 } 5937 5938 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5939 CodeGenFunction &CGF) const { 5940 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5941 CGF.CurFnInfo->getCallingConvention()); 5942 bool IsIndirect = AI.isIndirect(); 5943 5944 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5945 if (IsIndirect) 5946 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5947 else if (AI.getCoerceToType()) 5948 BaseTy = AI.getCoerceToType(); 5949 5950 unsigned NumRegs = 1; 5951 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5952 BaseTy = ArrTy->getElementType(); 5953 NumRegs = ArrTy->getNumElements(); 5954 } 5955 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5956 5957 // The AArch64 va_list type and handling is specified in the Procedure Call 5958 // Standard, section B.4: 5959 // 5960 // struct { 5961 // void *__stack; 5962 // void *__gr_top; 5963 // void *__vr_top; 5964 // int __gr_offs; 5965 // int __vr_offs; 5966 // }; 5967 5968 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5969 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5970 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5971 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5972 5973 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5974 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5975 5976 Address reg_offs_p = Address::invalid(); 5977 llvm::Value *reg_offs = nullptr; 5978 int reg_top_index; 5979 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5980 if (!IsFPR) { 5981 // 3 is the field number of __gr_offs 5982 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5983 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5984 reg_top_index = 1; // field number for __gr_top 5985 RegSize = llvm::alignTo(RegSize, 8); 5986 } else { 5987 // 4 is the field number of __vr_offs. 5988 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5989 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5990 reg_top_index = 2; // field number for __vr_top 5991 RegSize = 16 * NumRegs; 5992 } 5993 5994 //======================================= 5995 // Find out where argument was passed 5996 //======================================= 5997 5998 // If reg_offs >= 0 we're already using the stack for this type of 5999 // argument. We don't want to keep updating reg_offs (in case it overflows, 6000 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6001 // whatever they get). 6002 llvm::Value *UsingStack = nullptr; 6003 UsingStack = CGF.Builder.CreateICmpSGE( 6004 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6005 6006 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6007 6008 // Otherwise, at least some kind of argument could go in these registers, the 6009 // question is whether this particular type is too big. 6010 CGF.EmitBlock(MaybeRegBlock); 6011 6012 // Integer arguments may need to correct register alignment (for example a 6013 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6014 // align __gr_offs to calculate the potential address. 6015 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6016 int Align = TyAlign.getQuantity(); 6017 6018 reg_offs = CGF.Builder.CreateAdd( 6019 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6020 "align_regoffs"); 6021 reg_offs = CGF.Builder.CreateAnd( 6022 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6023 "aligned_regoffs"); 6024 } 6025 6026 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6027 // The fact that this is done unconditionally reflects the fact that 6028 // allocating an argument to the stack also uses up all the remaining 6029 // registers of the appropriate kind. 6030 llvm::Value *NewOffset = nullptr; 6031 NewOffset = CGF.Builder.CreateAdd( 6032 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6033 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6034 6035 // Now we're in a position to decide whether this argument really was in 6036 // registers or not. 6037 llvm::Value *InRegs = nullptr; 6038 InRegs = CGF.Builder.CreateICmpSLE( 6039 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6040 6041 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6042 6043 //======================================= 6044 // Argument was in registers 6045 //======================================= 6046 6047 // Now we emit the code for if the argument was originally passed in 6048 // registers. First start the appropriate block: 6049 CGF.EmitBlock(InRegBlock); 6050 6051 llvm::Value *reg_top = nullptr; 6052 Address reg_top_p = 6053 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6054 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6055 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6056 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6057 Address RegAddr = Address::invalid(); 6058 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 6059 6060 if (IsIndirect) { 6061 // If it's been passed indirectly (actually a struct), whatever we find from 6062 // stored registers or on the stack will actually be a struct **. 6063 MemTy = llvm::PointerType::getUnqual(MemTy); 6064 } 6065 6066 const Type *Base = nullptr; 6067 uint64_t NumMembers = 0; 6068 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6069 if (IsHFA && NumMembers > 1) { 6070 // Homogeneous aggregates passed in registers will have their elements split 6071 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6072 // qN+1, ...). We reload and store into a temporary local variable 6073 // contiguously. 6074 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6075 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6076 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6077 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6078 Address Tmp = CGF.CreateTempAlloca(HFATy, 6079 std::max(TyAlign, BaseTyInfo.Align)); 6080 6081 // On big-endian platforms, the value will be right-aligned in its slot. 6082 int Offset = 0; 6083 if (CGF.CGM.getDataLayout().isBigEndian() && 6084 BaseTyInfo.Width.getQuantity() < 16) 6085 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6086 6087 for (unsigned i = 0; i < NumMembers; ++i) { 6088 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6089 Address LoadAddr = 6090 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6091 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6092 6093 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6094 6095 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6096 CGF.Builder.CreateStore(Elem, StoreAddr); 6097 } 6098 6099 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6100 } else { 6101 // Otherwise the object is contiguous in memory. 6102 6103 // It might be right-aligned in its slot. 6104 CharUnits SlotSize = BaseAddr.getAlignment(); 6105 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6106 (IsHFA || !isAggregateTypeForABI(Ty)) && 6107 TySize < SlotSize) { 6108 CharUnits Offset = SlotSize - TySize; 6109 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6110 } 6111 6112 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6113 } 6114 6115 CGF.EmitBranch(ContBlock); 6116 6117 //======================================= 6118 // Argument was on the stack 6119 //======================================= 6120 CGF.EmitBlock(OnStackBlock); 6121 6122 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6123 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6124 6125 // Again, stack arguments may need realignment. In this case both integer and 6126 // floating-point ones might be affected. 6127 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6128 int Align = TyAlign.getQuantity(); 6129 6130 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6131 6132 OnStackPtr = CGF.Builder.CreateAdd( 6133 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6134 "align_stack"); 6135 OnStackPtr = CGF.Builder.CreateAnd( 6136 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6137 "align_stack"); 6138 6139 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6140 } 6141 Address OnStackAddr(OnStackPtr, 6142 std::max(CharUnits::fromQuantity(8), TyAlign)); 6143 6144 // All stack slots are multiples of 8 bytes. 6145 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6146 CharUnits StackSize; 6147 if (IsIndirect) 6148 StackSize = StackSlotSize; 6149 else 6150 StackSize = TySize.alignTo(StackSlotSize); 6151 6152 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6153 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6154 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6155 6156 // Write the new value of __stack for the next call to va_arg 6157 CGF.Builder.CreateStore(NewStack, stack_p); 6158 6159 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6160 TySize < StackSlotSize) { 6161 CharUnits Offset = StackSlotSize - TySize; 6162 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6163 } 6164 6165 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6166 6167 CGF.EmitBranch(ContBlock); 6168 6169 //======================================= 6170 // Tidy up 6171 //======================================= 6172 CGF.EmitBlock(ContBlock); 6173 6174 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6175 OnStackAddr, OnStackBlock, "vaargs.addr"); 6176 6177 if (IsIndirect) 6178 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6179 TyAlign); 6180 6181 return ResAddr; 6182 } 6183 6184 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6185 CodeGenFunction &CGF) const { 6186 // The backend's lowering doesn't support va_arg for aggregates or 6187 // illegal vector types. Lower VAArg here for these cases and use 6188 // the LLVM va_arg instruction for everything else. 6189 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6190 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6191 6192 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6193 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6194 6195 // Empty records are ignored for parameter passing purposes. 6196 if (isEmptyRecord(getContext(), Ty, true)) { 6197 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6198 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6199 return Addr; 6200 } 6201 6202 // The size of the actual thing passed, which might end up just 6203 // being a pointer for indirect types. 6204 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6205 6206 // Arguments bigger than 16 bytes which aren't homogeneous 6207 // aggregates should be passed indirectly. 6208 bool IsIndirect = false; 6209 if (TyInfo.Width.getQuantity() > 16) { 6210 const Type *Base = nullptr; 6211 uint64_t Members = 0; 6212 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6213 } 6214 6215 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6216 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6217 } 6218 6219 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6220 QualType Ty) const { 6221 bool IsIndirect = false; 6222 6223 // Composites larger than 16 bytes are passed by reference. 6224 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6225 IsIndirect = true; 6226 6227 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6228 CGF.getContext().getTypeInfoInChars(Ty), 6229 CharUnits::fromQuantity(8), 6230 /*allowHigherAlign*/ false); 6231 } 6232 6233 //===----------------------------------------------------------------------===// 6234 // ARM ABI Implementation 6235 //===----------------------------------------------------------------------===// 6236 6237 namespace { 6238 6239 class ARMABIInfo : public SwiftABIInfo { 6240 public: 6241 enum ABIKind { 6242 APCS = 0, 6243 AAPCS = 1, 6244 AAPCS_VFP = 2, 6245 AAPCS16_VFP = 3, 6246 }; 6247 6248 private: 6249 ABIKind Kind; 6250 bool IsFloatABISoftFP; 6251 6252 public: 6253 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6254 : SwiftABIInfo(CGT), Kind(_Kind) { 6255 setCCs(); 6256 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6257 CGT.getCodeGenOpts().FloatABI == ""; // default 6258 } 6259 6260 bool isEABI() const { 6261 switch (getTarget().getTriple().getEnvironment()) { 6262 case llvm::Triple::Android: 6263 case llvm::Triple::EABI: 6264 case llvm::Triple::EABIHF: 6265 case llvm::Triple::GNUEABI: 6266 case llvm::Triple::GNUEABIHF: 6267 case llvm::Triple::MuslEABI: 6268 case llvm::Triple::MuslEABIHF: 6269 return true; 6270 default: 6271 return false; 6272 } 6273 } 6274 6275 bool isEABIHF() const { 6276 switch (getTarget().getTriple().getEnvironment()) { 6277 case llvm::Triple::EABIHF: 6278 case llvm::Triple::GNUEABIHF: 6279 case llvm::Triple::MuslEABIHF: 6280 return true; 6281 default: 6282 return false; 6283 } 6284 } 6285 6286 ABIKind getABIKind() const { return Kind; } 6287 6288 bool allowBFloatArgsAndRet() const override { 6289 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6290 } 6291 6292 private: 6293 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6294 unsigned functionCallConv) const; 6295 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6296 unsigned functionCallConv) const; 6297 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6298 uint64_t Members) const; 6299 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6300 bool isIllegalVectorType(QualType Ty) const; 6301 bool containsAnyFP16Vectors(QualType Ty) const; 6302 6303 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6304 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6305 uint64_t Members) const override; 6306 6307 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6308 6309 void computeInfo(CGFunctionInfo &FI) const override; 6310 6311 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6312 QualType Ty) const override; 6313 6314 llvm::CallingConv::ID getLLVMDefaultCC() const; 6315 llvm::CallingConv::ID getABIDefaultCC() const; 6316 void setCCs(); 6317 6318 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6319 bool asReturnValue) const override { 6320 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6321 } 6322 bool isSwiftErrorInRegister() const override { 6323 return true; 6324 } 6325 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6326 unsigned elts) const override; 6327 }; 6328 6329 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6330 public: 6331 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6332 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6333 6334 const ARMABIInfo &getABIInfo() const { 6335 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6336 } 6337 6338 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6339 return 13; 6340 } 6341 6342 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6343 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6344 } 6345 6346 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6347 llvm::Value *Address) const override { 6348 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6349 6350 // 0-15 are the 16 integer registers. 6351 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6352 return false; 6353 } 6354 6355 unsigned getSizeOfUnwindException() const override { 6356 if (getABIInfo().isEABI()) return 88; 6357 return TargetCodeGenInfo::getSizeOfUnwindException(); 6358 } 6359 6360 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6361 CodeGen::CodeGenModule &CGM) const override { 6362 if (GV->isDeclaration()) 6363 return; 6364 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6365 if (!FD) 6366 return; 6367 auto *Fn = cast<llvm::Function>(GV); 6368 6369 if (const auto *TA = FD->getAttr<TargetAttr>()) { 6370 ParsedTargetAttr Attr = TA->parse(); 6371 if (!Attr.BranchProtection.empty()) { 6372 TargetInfo::BranchProtectionInfo BPI; 6373 StringRef DiagMsg; 6374 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 6375 BPI, DiagMsg); 6376 6377 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 6378 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 && 6379 "Unexpected SignReturnAddressScopeKind"); 6380 Fn->addFnAttr("sign-return-address", 6381 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 6382 6383 Fn->addFnAttr("branch-target-enforcement", 6384 BPI.BranchTargetEnforcement ? "true" : "false"); 6385 } 6386 } 6387 6388 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6389 if (!Attr) 6390 return; 6391 6392 const char *Kind; 6393 switch (Attr->getInterrupt()) { 6394 case ARMInterruptAttr::Generic: Kind = ""; break; 6395 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6396 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6397 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6398 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6399 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6400 } 6401 6402 Fn->addFnAttr("interrupt", Kind); 6403 6404 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6405 if (ABI == ARMABIInfo::APCS) 6406 return; 6407 6408 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6409 // however this is not necessarily true on taking any interrupt. Instruct 6410 // the backend to perform a realignment as part of the function prologue. 6411 llvm::AttrBuilder B; 6412 B.addStackAlignmentAttr(8); 6413 Fn->addFnAttrs(B); 6414 } 6415 }; 6416 6417 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6418 public: 6419 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6420 : ARMTargetCodeGenInfo(CGT, K) {} 6421 6422 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6423 CodeGen::CodeGenModule &CGM) const override; 6424 6425 void getDependentLibraryOption(llvm::StringRef Lib, 6426 llvm::SmallString<24> &Opt) const override { 6427 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6428 } 6429 6430 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6431 llvm::SmallString<32> &Opt) const override { 6432 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6433 } 6434 }; 6435 6436 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6437 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6438 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6439 if (GV->isDeclaration()) 6440 return; 6441 addStackProbeTargetAttributes(D, GV, CGM); 6442 } 6443 } 6444 6445 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6446 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6447 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6448 FI.getCallingConvention()); 6449 6450 for (auto &I : FI.arguments()) 6451 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6452 FI.getCallingConvention()); 6453 6454 6455 // Always honor user-specified calling convention. 6456 if (FI.getCallingConvention() != llvm::CallingConv::C) 6457 return; 6458 6459 llvm::CallingConv::ID cc = getRuntimeCC(); 6460 if (cc != llvm::CallingConv::C) 6461 FI.setEffectiveCallingConvention(cc); 6462 } 6463 6464 /// Return the default calling convention that LLVM will use. 6465 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6466 // The default calling convention that LLVM will infer. 6467 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6468 return llvm::CallingConv::ARM_AAPCS_VFP; 6469 else if (isEABI()) 6470 return llvm::CallingConv::ARM_AAPCS; 6471 else 6472 return llvm::CallingConv::ARM_APCS; 6473 } 6474 6475 /// Return the calling convention that our ABI would like us to use 6476 /// as the C calling convention. 6477 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6478 switch (getABIKind()) { 6479 case APCS: return llvm::CallingConv::ARM_APCS; 6480 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6481 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6482 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6483 } 6484 llvm_unreachable("bad ABI kind"); 6485 } 6486 6487 void ARMABIInfo::setCCs() { 6488 assert(getRuntimeCC() == llvm::CallingConv::C); 6489 6490 // Don't muddy up the IR with a ton of explicit annotations if 6491 // they'd just match what LLVM will infer from the triple. 6492 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6493 if (abiCC != getLLVMDefaultCC()) 6494 RuntimeCC = abiCC; 6495 } 6496 6497 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6498 uint64_t Size = getContext().getTypeSize(Ty); 6499 if (Size <= 32) { 6500 llvm::Type *ResType = 6501 llvm::Type::getInt32Ty(getVMContext()); 6502 return ABIArgInfo::getDirect(ResType); 6503 } 6504 if (Size == 64 || Size == 128) { 6505 auto *ResType = llvm::FixedVectorType::get( 6506 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6507 return ABIArgInfo::getDirect(ResType); 6508 } 6509 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6510 } 6511 6512 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6513 const Type *Base, 6514 uint64_t Members) const { 6515 assert(Base && "Base class should be set for homogeneous aggregate"); 6516 // Base can be a floating-point or a vector. 6517 if (const VectorType *VT = Base->getAs<VectorType>()) { 6518 // FP16 vectors should be converted to integer vectors 6519 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6520 uint64_t Size = getContext().getTypeSize(VT); 6521 auto *NewVecTy = llvm::FixedVectorType::get( 6522 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6523 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6524 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6525 } 6526 } 6527 unsigned Align = 0; 6528 if (getABIKind() == ARMABIInfo::AAPCS || 6529 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6530 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6531 // default otherwise. 6532 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6533 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6534 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6535 } 6536 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6537 } 6538 6539 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6540 unsigned functionCallConv) const { 6541 // 6.1.2.1 The following argument types are VFP CPRCs: 6542 // A single-precision floating-point type (including promoted 6543 // half-precision types); A double-precision floating-point type; 6544 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6545 // with a Base Type of a single- or double-precision floating-point type, 6546 // 64-bit containerized vectors or 128-bit containerized vectors with one 6547 // to four Elements. 6548 // Variadic functions should always marshal to the base standard. 6549 bool IsAAPCS_VFP = 6550 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6551 6552 Ty = useFirstFieldIfTransparentUnion(Ty); 6553 6554 // Handle illegal vector types here. 6555 if (isIllegalVectorType(Ty)) 6556 return coerceIllegalVector(Ty); 6557 6558 if (!isAggregateTypeForABI(Ty)) { 6559 // Treat an enum type as its underlying type. 6560 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6561 Ty = EnumTy->getDecl()->getIntegerType(); 6562 } 6563 6564 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6565 if (EIT->getNumBits() > 64) 6566 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6567 6568 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6569 : ABIArgInfo::getDirect()); 6570 } 6571 6572 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6573 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6574 } 6575 6576 // Ignore empty records. 6577 if (isEmptyRecord(getContext(), Ty, true)) 6578 return ABIArgInfo::getIgnore(); 6579 6580 if (IsAAPCS_VFP) { 6581 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6582 // into VFP registers. 6583 const Type *Base = nullptr; 6584 uint64_t Members = 0; 6585 if (isHomogeneousAggregate(Ty, Base, Members)) 6586 return classifyHomogeneousAggregate(Ty, Base, Members); 6587 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6588 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6589 // this convention even for a variadic function: the backend will use GPRs 6590 // if needed. 6591 const Type *Base = nullptr; 6592 uint64_t Members = 0; 6593 if (isHomogeneousAggregate(Ty, Base, Members)) { 6594 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6595 llvm::Type *Ty = 6596 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6597 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6598 } 6599 } 6600 6601 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6602 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6603 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6604 // bigger than 128-bits, they get placed in space allocated by the caller, 6605 // and a pointer is passed. 6606 return ABIArgInfo::getIndirect( 6607 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6608 } 6609 6610 // Support byval for ARM. 6611 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6612 // most 8-byte. We realign the indirect argument if type alignment is bigger 6613 // than ABI alignment. 6614 uint64_t ABIAlign = 4; 6615 uint64_t TyAlign; 6616 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6617 getABIKind() == ARMABIInfo::AAPCS) { 6618 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6619 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6620 } else { 6621 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6622 } 6623 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6624 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6625 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6626 /*ByVal=*/true, 6627 /*Realign=*/TyAlign > ABIAlign); 6628 } 6629 6630 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6631 // same size and alignment. 6632 if (getTarget().isRenderScriptTarget()) { 6633 return coerceToIntArray(Ty, getContext(), getVMContext()); 6634 } 6635 6636 // Otherwise, pass by coercing to a structure of the appropriate size. 6637 llvm::Type* ElemTy; 6638 unsigned SizeRegs; 6639 // FIXME: Try to match the types of the arguments more accurately where 6640 // we can. 6641 if (TyAlign <= 4) { 6642 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6643 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6644 } else { 6645 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6646 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6647 } 6648 6649 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6650 } 6651 6652 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6653 llvm::LLVMContext &VMContext) { 6654 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6655 // is called integer-like if its size is less than or equal to one word, and 6656 // the offset of each of its addressable sub-fields is zero. 6657 6658 uint64_t Size = Context.getTypeSize(Ty); 6659 6660 // Check that the type fits in a word. 6661 if (Size > 32) 6662 return false; 6663 6664 // FIXME: Handle vector types! 6665 if (Ty->isVectorType()) 6666 return false; 6667 6668 // Float types are never treated as "integer like". 6669 if (Ty->isRealFloatingType()) 6670 return false; 6671 6672 // If this is a builtin or pointer type then it is ok. 6673 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6674 return true; 6675 6676 // Small complex integer types are "integer like". 6677 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6678 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6679 6680 // Single element and zero sized arrays should be allowed, by the definition 6681 // above, but they are not. 6682 6683 // Otherwise, it must be a record type. 6684 const RecordType *RT = Ty->getAs<RecordType>(); 6685 if (!RT) return false; 6686 6687 // Ignore records with flexible arrays. 6688 const RecordDecl *RD = RT->getDecl(); 6689 if (RD->hasFlexibleArrayMember()) 6690 return false; 6691 6692 // Check that all sub-fields are at offset 0, and are themselves "integer 6693 // like". 6694 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6695 6696 bool HadField = false; 6697 unsigned idx = 0; 6698 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6699 i != e; ++i, ++idx) { 6700 const FieldDecl *FD = *i; 6701 6702 // Bit-fields are not addressable, we only need to verify they are "integer 6703 // like". We still have to disallow a subsequent non-bitfield, for example: 6704 // struct { int : 0; int x } 6705 // is non-integer like according to gcc. 6706 if (FD->isBitField()) { 6707 if (!RD->isUnion()) 6708 HadField = true; 6709 6710 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6711 return false; 6712 6713 continue; 6714 } 6715 6716 // Check if this field is at offset 0. 6717 if (Layout.getFieldOffset(idx) != 0) 6718 return false; 6719 6720 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6721 return false; 6722 6723 // Only allow at most one field in a structure. This doesn't match the 6724 // wording above, but follows gcc in situations with a field following an 6725 // empty structure. 6726 if (!RD->isUnion()) { 6727 if (HadField) 6728 return false; 6729 6730 HadField = true; 6731 } 6732 } 6733 6734 return true; 6735 } 6736 6737 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6738 unsigned functionCallConv) const { 6739 6740 // Variadic functions should always marshal to the base standard. 6741 bool IsAAPCS_VFP = 6742 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6743 6744 if (RetTy->isVoidType()) 6745 return ABIArgInfo::getIgnore(); 6746 6747 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6748 // Large vector types should be returned via memory. 6749 if (getContext().getTypeSize(RetTy) > 128) 6750 return getNaturalAlignIndirect(RetTy); 6751 // TODO: FP16/BF16 vectors should be converted to integer vectors 6752 // This check is similar to isIllegalVectorType - refactor? 6753 if ((!getTarget().hasLegalHalfType() && 6754 (VT->getElementType()->isFloat16Type() || 6755 VT->getElementType()->isHalfType())) || 6756 (IsFloatABISoftFP && 6757 VT->getElementType()->isBFloat16Type())) 6758 return coerceIllegalVector(RetTy); 6759 } 6760 6761 if (!isAggregateTypeForABI(RetTy)) { 6762 // Treat an enum type as its underlying type. 6763 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6764 RetTy = EnumTy->getDecl()->getIntegerType(); 6765 6766 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6767 if (EIT->getNumBits() > 64) 6768 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6769 6770 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6771 : ABIArgInfo::getDirect(); 6772 } 6773 6774 // Are we following APCS? 6775 if (getABIKind() == APCS) { 6776 if (isEmptyRecord(getContext(), RetTy, false)) 6777 return ABIArgInfo::getIgnore(); 6778 6779 // Complex types are all returned as packed integers. 6780 // 6781 // FIXME: Consider using 2 x vector types if the back end handles them 6782 // correctly. 6783 if (RetTy->isAnyComplexType()) 6784 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6785 getVMContext(), getContext().getTypeSize(RetTy))); 6786 6787 // Integer like structures are returned in r0. 6788 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6789 // Return in the smallest viable integer type. 6790 uint64_t Size = getContext().getTypeSize(RetTy); 6791 if (Size <= 8) 6792 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6793 if (Size <= 16) 6794 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6795 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6796 } 6797 6798 // Otherwise return in memory. 6799 return getNaturalAlignIndirect(RetTy); 6800 } 6801 6802 // Otherwise this is an AAPCS variant. 6803 6804 if (isEmptyRecord(getContext(), RetTy, true)) 6805 return ABIArgInfo::getIgnore(); 6806 6807 // Check for homogeneous aggregates with AAPCS-VFP. 6808 if (IsAAPCS_VFP) { 6809 const Type *Base = nullptr; 6810 uint64_t Members = 0; 6811 if (isHomogeneousAggregate(RetTy, Base, Members)) 6812 return classifyHomogeneousAggregate(RetTy, Base, Members); 6813 } 6814 6815 // Aggregates <= 4 bytes are returned in r0; other aggregates 6816 // are returned indirectly. 6817 uint64_t Size = getContext().getTypeSize(RetTy); 6818 if (Size <= 32) { 6819 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6820 // same size and alignment. 6821 if (getTarget().isRenderScriptTarget()) { 6822 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6823 } 6824 if (getDataLayout().isBigEndian()) 6825 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6826 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6827 6828 // Return in the smallest viable integer type. 6829 if (Size <= 8) 6830 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6831 if (Size <= 16) 6832 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6833 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6834 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6835 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6836 llvm::Type *CoerceTy = 6837 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6838 return ABIArgInfo::getDirect(CoerceTy); 6839 } 6840 6841 return getNaturalAlignIndirect(RetTy); 6842 } 6843 6844 /// isIllegalVector - check whether Ty is an illegal vector type. 6845 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6846 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6847 // On targets that don't support half, fp16 or bfloat, they are expanded 6848 // into float, and we don't want the ABI to depend on whether or not they 6849 // are supported in hardware. Thus return false to coerce vectors of these 6850 // types into integer vectors. 6851 // We do not depend on hasLegalHalfType for bfloat as it is a 6852 // separate IR type. 6853 if ((!getTarget().hasLegalHalfType() && 6854 (VT->getElementType()->isFloat16Type() || 6855 VT->getElementType()->isHalfType())) || 6856 (IsFloatABISoftFP && 6857 VT->getElementType()->isBFloat16Type())) 6858 return true; 6859 if (isAndroid()) { 6860 // Android shipped using Clang 3.1, which supported a slightly different 6861 // vector ABI. The primary differences were that 3-element vector types 6862 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6863 // accepts that legacy behavior for Android only. 6864 // Check whether VT is legal. 6865 unsigned NumElements = VT->getNumElements(); 6866 // NumElements should be power of 2 or equal to 3. 6867 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6868 return true; 6869 } else { 6870 // Check whether VT is legal. 6871 unsigned NumElements = VT->getNumElements(); 6872 uint64_t Size = getContext().getTypeSize(VT); 6873 // NumElements should be power of 2. 6874 if (!llvm::isPowerOf2_32(NumElements)) 6875 return true; 6876 // Size should be greater than 32 bits. 6877 return Size <= 32; 6878 } 6879 } 6880 return false; 6881 } 6882 6883 /// Return true if a type contains any 16-bit floating point vectors 6884 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6885 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6886 uint64_t NElements = AT->getSize().getZExtValue(); 6887 if (NElements == 0) 6888 return false; 6889 return containsAnyFP16Vectors(AT->getElementType()); 6890 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6891 const RecordDecl *RD = RT->getDecl(); 6892 6893 // If this is a C++ record, check the bases first. 6894 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6895 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6896 return containsAnyFP16Vectors(B.getType()); 6897 })) 6898 return true; 6899 6900 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6901 return FD && containsAnyFP16Vectors(FD->getType()); 6902 })) 6903 return true; 6904 6905 return false; 6906 } else { 6907 if (const VectorType *VT = Ty->getAs<VectorType>()) 6908 return (VT->getElementType()->isFloat16Type() || 6909 VT->getElementType()->isBFloat16Type() || 6910 VT->getElementType()->isHalfType()); 6911 return false; 6912 } 6913 } 6914 6915 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6916 llvm::Type *eltTy, 6917 unsigned numElts) const { 6918 if (!llvm::isPowerOf2_32(numElts)) 6919 return false; 6920 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6921 if (size > 64) 6922 return false; 6923 if (vectorSize.getQuantity() != 8 && 6924 (vectorSize.getQuantity() != 16 || numElts == 1)) 6925 return false; 6926 return true; 6927 } 6928 6929 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6930 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6931 // double, or 64-bit or 128-bit vectors. 6932 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6933 if (BT->getKind() == BuiltinType::Float || 6934 BT->getKind() == BuiltinType::Double || 6935 BT->getKind() == BuiltinType::LongDouble) 6936 return true; 6937 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6938 unsigned VecSize = getContext().getTypeSize(VT); 6939 if (VecSize == 64 || VecSize == 128) 6940 return true; 6941 } 6942 return false; 6943 } 6944 6945 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6946 uint64_t Members) const { 6947 return Members <= 4; 6948 } 6949 6950 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6951 bool acceptHalf) const { 6952 // Give precedence to user-specified calling conventions. 6953 if (callConvention != llvm::CallingConv::C) 6954 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6955 else 6956 return (getABIKind() == AAPCS_VFP) || 6957 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6958 } 6959 6960 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6961 QualType Ty) const { 6962 CharUnits SlotSize = CharUnits::fromQuantity(4); 6963 6964 // Empty records are ignored for parameter passing purposes. 6965 if (isEmptyRecord(getContext(), Ty, true)) { 6966 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6967 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6968 return Addr; 6969 } 6970 6971 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6972 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6973 6974 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6975 bool IsIndirect = false; 6976 const Type *Base = nullptr; 6977 uint64_t Members = 0; 6978 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6979 IsIndirect = true; 6980 6981 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6982 // allocated by the caller. 6983 } else if (TySize > CharUnits::fromQuantity(16) && 6984 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6985 !isHomogeneousAggregate(Ty, Base, Members)) { 6986 IsIndirect = true; 6987 6988 // Otherwise, bound the type's ABI alignment. 6989 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6990 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6991 // Our callers should be prepared to handle an under-aligned address. 6992 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6993 getABIKind() == ARMABIInfo::AAPCS) { 6994 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6995 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6996 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6997 // ARMv7k allows type alignment up to 16 bytes. 6998 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6999 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 7000 } else { 7001 TyAlignForABI = CharUnits::fromQuantity(4); 7002 } 7003 7004 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 7005 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 7006 SlotSize, /*AllowHigherAlign*/ true); 7007 } 7008 7009 //===----------------------------------------------------------------------===// 7010 // NVPTX ABI Implementation 7011 //===----------------------------------------------------------------------===// 7012 7013 namespace { 7014 7015 class NVPTXTargetCodeGenInfo; 7016 7017 class NVPTXABIInfo : public ABIInfo { 7018 NVPTXTargetCodeGenInfo &CGInfo; 7019 7020 public: 7021 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7022 : ABIInfo(CGT), CGInfo(Info) {} 7023 7024 ABIArgInfo classifyReturnType(QualType RetTy) const; 7025 ABIArgInfo classifyArgumentType(QualType Ty) const; 7026 7027 void computeInfo(CGFunctionInfo &FI) const override; 7028 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7029 QualType Ty) const override; 7030 bool isUnsupportedType(QualType T) const; 7031 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7032 }; 7033 7034 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7035 public: 7036 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7037 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7038 7039 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7040 CodeGen::CodeGenModule &M) const override; 7041 bool shouldEmitStaticExternCAliases() const override; 7042 7043 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7044 // On the device side, surface reference is represented as an object handle 7045 // in 64-bit integer. 7046 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7047 } 7048 7049 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7050 // On the device side, texture reference is represented as an object handle 7051 // in 64-bit integer. 7052 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7053 } 7054 7055 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7056 LValue Src) const override { 7057 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7058 return true; 7059 } 7060 7061 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7062 LValue Src) const override { 7063 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7064 return true; 7065 } 7066 7067 private: 7068 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7069 // resulting MDNode to the nvvm.annotations MDNode. 7070 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7071 int Operand); 7072 7073 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7074 LValue Src) { 7075 llvm::Value *Handle = nullptr; 7076 llvm::Constant *C = 7077 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7078 // Lookup `addrspacecast` through the constant pointer if any. 7079 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7080 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7081 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7082 // Load the handle from the specific global variable using 7083 // `nvvm.texsurf.handle.internal` intrinsic. 7084 Handle = CGF.EmitRuntimeCall( 7085 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7086 {GV->getType()}), 7087 {GV}, "texsurf_handle"); 7088 } else 7089 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7090 CGF.EmitStoreOfScalar(Handle, Dst); 7091 } 7092 }; 7093 7094 /// Checks if the type is unsupported directly by the current target. 7095 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7096 ASTContext &Context = getContext(); 7097 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7098 return true; 7099 if (!Context.getTargetInfo().hasFloat128Type() && 7100 (T->isFloat128Type() || 7101 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7102 return true; 7103 if (const auto *EIT = T->getAs<ExtIntType>()) 7104 return EIT->getNumBits() > 7105 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7106 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7107 Context.getTypeSize(T) > 64U) 7108 return true; 7109 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7110 return isUnsupportedType(AT->getElementType()); 7111 const auto *RT = T->getAs<RecordType>(); 7112 if (!RT) 7113 return false; 7114 const RecordDecl *RD = RT->getDecl(); 7115 7116 // If this is a C++ record, check the bases first. 7117 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7118 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7119 if (isUnsupportedType(I.getType())) 7120 return true; 7121 7122 for (const FieldDecl *I : RD->fields()) 7123 if (isUnsupportedType(I->getType())) 7124 return true; 7125 return false; 7126 } 7127 7128 /// Coerce the given type into an array with maximum allowed size of elements. 7129 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7130 unsigned MaxSize) const { 7131 // Alignment and Size are measured in bits. 7132 const uint64_t Size = getContext().getTypeSize(Ty); 7133 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7134 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7135 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7136 const uint64_t NumElements = (Size + Div - 1) / Div; 7137 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7138 } 7139 7140 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7141 if (RetTy->isVoidType()) 7142 return ABIArgInfo::getIgnore(); 7143 7144 if (getContext().getLangOpts().OpenMP && 7145 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7146 return coerceToIntArrayWithLimit(RetTy, 64); 7147 7148 // note: this is different from default ABI 7149 if (!RetTy->isScalarType()) 7150 return ABIArgInfo::getDirect(); 7151 7152 // Treat an enum type as its underlying type. 7153 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7154 RetTy = EnumTy->getDecl()->getIntegerType(); 7155 7156 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7157 : ABIArgInfo::getDirect()); 7158 } 7159 7160 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7161 // Treat an enum type as its underlying type. 7162 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7163 Ty = EnumTy->getDecl()->getIntegerType(); 7164 7165 // Return aggregates type as indirect by value 7166 if (isAggregateTypeForABI(Ty)) { 7167 // Under CUDA device compilation, tex/surf builtin types are replaced with 7168 // object types and passed directly. 7169 if (getContext().getLangOpts().CUDAIsDevice) { 7170 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7171 return ABIArgInfo::getDirect( 7172 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7173 if (Ty->isCUDADeviceBuiltinTextureType()) 7174 return ABIArgInfo::getDirect( 7175 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7176 } 7177 return getNaturalAlignIndirect(Ty, /* byval */ true); 7178 } 7179 7180 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7181 if ((EIT->getNumBits() > 128) || 7182 (!getContext().getTargetInfo().hasInt128Type() && 7183 EIT->getNumBits() > 64)) 7184 return getNaturalAlignIndirect(Ty, /* byval */ true); 7185 } 7186 7187 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7188 : ABIArgInfo::getDirect()); 7189 } 7190 7191 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7192 if (!getCXXABI().classifyReturnType(FI)) 7193 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7194 for (auto &I : FI.arguments()) 7195 I.info = classifyArgumentType(I.type); 7196 7197 // Always honor user-specified calling convention. 7198 if (FI.getCallingConvention() != llvm::CallingConv::C) 7199 return; 7200 7201 FI.setEffectiveCallingConvention(getRuntimeCC()); 7202 } 7203 7204 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7205 QualType Ty) const { 7206 llvm_unreachable("NVPTX does not support varargs"); 7207 } 7208 7209 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7210 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7211 if (GV->isDeclaration()) 7212 return; 7213 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7214 if (VD) { 7215 if (M.getLangOpts().CUDA) { 7216 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7217 addNVVMMetadata(GV, "surface", 1); 7218 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7219 addNVVMMetadata(GV, "texture", 1); 7220 return; 7221 } 7222 } 7223 7224 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7225 if (!FD) return; 7226 7227 llvm::Function *F = cast<llvm::Function>(GV); 7228 7229 // Perform special handling in OpenCL mode 7230 if (M.getLangOpts().OpenCL) { 7231 // Use OpenCL function attributes to check for kernel functions 7232 // By default, all functions are device functions 7233 if (FD->hasAttr<OpenCLKernelAttr>()) { 7234 // OpenCL __kernel functions get kernel metadata 7235 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7236 addNVVMMetadata(F, "kernel", 1); 7237 // And kernel functions are not subject to inlining 7238 F->addFnAttr(llvm::Attribute::NoInline); 7239 } 7240 } 7241 7242 // Perform special handling in CUDA mode. 7243 if (M.getLangOpts().CUDA) { 7244 // CUDA __global__ functions get a kernel metadata entry. Since 7245 // __global__ functions cannot be called from the device, we do not 7246 // need to set the noinline attribute. 7247 if (FD->hasAttr<CUDAGlobalAttr>()) { 7248 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7249 addNVVMMetadata(F, "kernel", 1); 7250 } 7251 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7252 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7253 llvm::APSInt MaxThreads(32); 7254 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7255 if (MaxThreads > 0) 7256 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7257 7258 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7259 // not specified in __launch_bounds__ or if the user specified a 0 value, 7260 // we don't have to add a PTX directive. 7261 if (Attr->getMinBlocks()) { 7262 llvm::APSInt MinBlocks(32); 7263 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7264 if (MinBlocks > 0) 7265 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7266 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7267 } 7268 } 7269 } 7270 } 7271 7272 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7273 StringRef Name, int Operand) { 7274 llvm::Module *M = GV->getParent(); 7275 llvm::LLVMContext &Ctx = M->getContext(); 7276 7277 // Get "nvvm.annotations" metadata node 7278 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7279 7280 llvm::Metadata *MDVals[] = { 7281 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7282 llvm::ConstantAsMetadata::get( 7283 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7284 // Append metadata to nvvm.annotations 7285 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7286 } 7287 7288 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7289 return false; 7290 } 7291 } 7292 7293 //===----------------------------------------------------------------------===// 7294 // SystemZ ABI Implementation 7295 //===----------------------------------------------------------------------===// 7296 7297 namespace { 7298 7299 class SystemZABIInfo : public SwiftABIInfo { 7300 bool HasVector; 7301 bool IsSoftFloatABI; 7302 7303 public: 7304 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7305 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7306 7307 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7308 bool isCompoundType(QualType Ty) const; 7309 bool isVectorArgumentType(QualType Ty) const; 7310 bool isFPArgumentType(QualType Ty) const; 7311 QualType GetSingleElementType(QualType Ty) const; 7312 7313 ABIArgInfo classifyReturnType(QualType RetTy) const; 7314 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7315 7316 void computeInfo(CGFunctionInfo &FI) const override { 7317 if (!getCXXABI().classifyReturnType(FI)) 7318 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7319 for (auto &I : FI.arguments()) 7320 I.info = classifyArgumentType(I.type); 7321 } 7322 7323 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7324 QualType Ty) const override; 7325 7326 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7327 bool asReturnValue) const override { 7328 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7329 } 7330 bool isSwiftErrorInRegister() const override { 7331 return false; 7332 } 7333 }; 7334 7335 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7336 public: 7337 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7338 : TargetCodeGenInfo( 7339 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7340 7341 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7342 CGBuilderTy &Builder, 7343 CodeGenModule &CGM) const override { 7344 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7345 // Only use TDC in constrained FP mode. 7346 if (!Builder.getIsFPConstrained()) 7347 return nullptr; 7348 7349 llvm::Type *Ty = V->getType(); 7350 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7351 llvm::Module &M = CGM.getModule(); 7352 auto &Ctx = M.getContext(); 7353 llvm::Function *TDCFunc = 7354 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7355 unsigned TDCBits = 0; 7356 switch (BuiltinID) { 7357 case Builtin::BI__builtin_isnan: 7358 TDCBits = 0xf; 7359 break; 7360 case Builtin::BIfinite: 7361 case Builtin::BI__finite: 7362 case Builtin::BIfinitef: 7363 case Builtin::BI__finitef: 7364 case Builtin::BIfinitel: 7365 case Builtin::BI__finitel: 7366 case Builtin::BI__builtin_isfinite: 7367 TDCBits = 0xfc0; 7368 break; 7369 case Builtin::BI__builtin_isinf: 7370 TDCBits = 0x30; 7371 break; 7372 default: 7373 break; 7374 } 7375 if (TDCBits) 7376 return Builder.CreateCall( 7377 TDCFunc, 7378 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7379 } 7380 return nullptr; 7381 } 7382 }; 7383 } 7384 7385 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7386 // Treat an enum type as its underlying type. 7387 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7388 Ty = EnumTy->getDecl()->getIntegerType(); 7389 7390 // Promotable integer types are required to be promoted by the ABI. 7391 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7392 return true; 7393 7394 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7395 if (EIT->getNumBits() < 64) 7396 return true; 7397 7398 // 32-bit values must also be promoted. 7399 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7400 switch (BT->getKind()) { 7401 case BuiltinType::Int: 7402 case BuiltinType::UInt: 7403 return true; 7404 default: 7405 return false; 7406 } 7407 return false; 7408 } 7409 7410 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7411 return (Ty->isAnyComplexType() || 7412 Ty->isVectorType() || 7413 isAggregateTypeForABI(Ty)); 7414 } 7415 7416 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7417 return (HasVector && 7418 Ty->isVectorType() && 7419 getContext().getTypeSize(Ty) <= 128); 7420 } 7421 7422 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7423 if (IsSoftFloatABI) 7424 return false; 7425 7426 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7427 switch (BT->getKind()) { 7428 case BuiltinType::Float: 7429 case BuiltinType::Double: 7430 return true; 7431 default: 7432 return false; 7433 } 7434 7435 return false; 7436 } 7437 7438 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7439 const RecordType *RT = Ty->getAs<RecordType>(); 7440 7441 if (RT && RT->isStructureOrClassType()) { 7442 const RecordDecl *RD = RT->getDecl(); 7443 QualType Found; 7444 7445 // If this is a C++ record, check the bases first. 7446 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7447 for (const auto &I : CXXRD->bases()) { 7448 QualType Base = I.getType(); 7449 7450 // Empty bases don't affect things either way. 7451 if (isEmptyRecord(getContext(), Base, true)) 7452 continue; 7453 7454 if (!Found.isNull()) 7455 return Ty; 7456 Found = GetSingleElementType(Base); 7457 } 7458 7459 // Check the fields. 7460 for (const auto *FD : RD->fields()) { 7461 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7462 // Unlike isSingleElementStruct(), empty structure and array fields 7463 // do count. So do anonymous bitfields that aren't zero-sized. 7464 if (getContext().getLangOpts().CPlusPlus && 7465 FD->isZeroLengthBitField(getContext())) 7466 continue; 7467 // Like isSingleElementStruct(), ignore C++20 empty data members. 7468 if (FD->hasAttr<NoUniqueAddressAttr>() && 7469 isEmptyRecord(getContext(), FD->getType(), true)) 7470 continue; 7471 7472 // Unlike isSingleElementStruct(), arrays do not count. 7473 // Nested structures still do though. 7474 if (!Found.isNull()) 7475 return Ty; 7476 Found = GetSingleElementType(FD->getType()); 7477 } 7478 7479 // Unlike isSingleElementStruct(), trailing padding is allowed. 7480 // An 8-byte aligned struct s { float f; } is passed as a double. 7481 if (!Found.isNull()) 7482 return Found; 7483 } 7484 7485 return Ty; 7486 } 7487 7488 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7489 QualType Ty) const { 7490 // Assume that va_list type is correct; should be pointer to LLVM type: 7491 // struct { 7492 // i64 __gpr; 7493 // i64 __fpr; 7494 // i8 *__overflow_arg_area; 7495 // i8 *__reg_save_area; 7496 // }; 7497 7498 // Every non-vector argument occupies 8 bytes and is passed by preference 7499 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7500 // always passed on the stack. 7501 Ty = getContext().getCanonicalType(Ty); 7502 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7503 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7504 llvm::Type *DirectTy = ArgTy; 7505 ABIArgInfo AI = classifyArgumentType(Ty); 7506 bool IsIndirect = AI.isIndirect(); 7507 bool InFPRs = false; 7508 bool IsVector = false; 7509 CharUnits UnpaddedSize; 7510 CharUnits DirectAlign; 7511 if (IsIndirect) { 7512 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7513 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7514 } else { 7515 if (AI.getCoerceToType()) 7516 ArgTy = AI.getCoerceToType(); 7517 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7518 IsVector = ArgTy->isVectorTy(); 7519 UnpaddedSize = TyInfo.Width; 7520 DirectAlign = TyInfo.Align; 7521 } 7522 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7523 if (IsVector && UnpaddedSize > PaddedSize) 7524 PaddedSize = CharUnits::fromQuantity(16); 7525 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7526 7527 CharUnits Padding = (PaddedSize - UnpaddedSize); 7528 7529 llvm::Type *IndexTy = CGF.Int64Ty; 7530 llvm::Value *PaddedSizeV = 7531 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7532 7533 if (IsVector) { 7534 // Work out the address of a vector argument on the stack. 7535 // Vector arguments are always passed in the high bits of a 7536 // single (8 byte) or double (16 byte) stack slot. 7537 Address OverflowArgAreaPtr = 7538 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7539 Address OverflowArgArea = 7540 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7541 TyInfo.Align); 7542 Address MemAddr = 7543 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7544 7545 // Update overflow_arg_area_ptr pointer 7546 llvm::Value *NewOverflowArgArea = 7547 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7548 OverflowArgArea.getPointer(), PaddedSizeV, 7549 "overflow_arg_area"); 7550 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7551 7552 return MemAddr; 7553 } 7554 7555 assert(PaddedSize.getQuantity() == 8); 7556 7557 unsigned MaxRegs, RegCountField, RegSaveIndex; 7558 CharUnits RegPadding; 7559 if (InFPRs) { 7560 MaxRegs = 4; // Maximum of 4 FPR arguments 7561 RegCountField = 1; // __fpr 7562 RegSaveIndex = 16; // save offset for f0 7563 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7564 } else { 7565 MaxRegs = 5; // Maximum of 5 GPR arguments 7566 RegCountField = 0; // __gpr 7567 RegSaveIndex = 2; // save offset for r2 7568 RegPadding = Padding; // values are passed in the low bits of a GPR 7569 } 7570 7571 Address RegCountPtr = 7572 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7573 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7574 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7575 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7576 "fits_in_regs"); 7577 7578 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7579 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7580 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7581 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7582 7583 // Emit code to load the value if it was passed in registers. 7584 CGF.EmitBlock(InRegBlock); 7585 7586 // Work out the address of an argument register. 7587 llvm::Value *ScaledRegCount = 7588 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7589 llvm::Value *RegBase = 7590 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7591 + RegPadding.getQuantity()); 7592 llvm::Value *RegOffset = 7593 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7594 Address RegSaveAreaPtr = 7595 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7596 llvm::Value *RegSaveArea = 7597 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7598 Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, 7599 "raw_reg_addr"), 7600 PaddedSize); 7601 Address RegAddr = 7602 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7603 7604 // Update the register count 7605 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7606 llvm::Value *NewRegCount = 7607 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7608 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7609 CGF.EmitBranch(ContBlock); 7610 7611 // Emit code to load the value if it was passed in memory. 7612 CGF.EmitBlock(InMemBlock); 7613 7614 // Work out the address of a stack argument. 7615 Address OverflowArgAreaPtr = 7616 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7617 Address OverflowArgArea = 7618 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7619 PaddedSize); 7620 Address RawMemAddr = 7621 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7622 Address MemAddr = 7623 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7624 7625 // Update overflow_arg_area_ptr pointer 7626 llvm::Value *NewOverflowArgArea = 7627 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7628 OverflowArgArea.getPointer(), PaddedSizeV, 7629 "overflow_arg_area"); 7630 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7631 CGF.EmitBranch(ContBlock); 7632 7633 // Return the appropriate result. 7634 CGF.EmitBlock(ContBlock); 7635 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7636 MemAddr, InMemBlock, "va_arg.addr"); 7637 7638 if (IsIndirect) 7639 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7640 TyInfo.Align); 7641 7642 return ResAddr; 7643 } 7644 7645 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7646 if (RetTy->isVoidType()) 7647 return ABIArgInfo::getIgnore(); 7648 if (isVectorArgumentType(RetTy)) 7649 return ABIArgInfo::getDirect(); 7650 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7651 return getNaturalAlignIndirect(RetTy); 7652 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7653 : ABIArgInfo::getDirect()); 7654 } 7655 7656 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7657 // Handle the generic C++ ABI. 7658 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7659 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7660 7661 // Integers and enums are extended to full register width. 7662 if (isPromotableIntegerTypeForABI(Ty)) 7663 return ABIArgInfo::getExtend(Ty); 7664 7665 // Handle vector types and vector-like structure types. Note that 7666 // as opposed to float-like structure types, we do not allow any 7667 // padding for vector-like structures, so verify the sizes match. 7668 uint64_t Size = getContext().getTypeSize(Ty); 7669 QualType SingleElementTy = GetSingleElementType(Ty); 7670 if (isVectorArgumentType(SingleElementTy) && 7671 getContext().getTypeSize(SingleElementTy) == Size) 7672 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7673 7674 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7675 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7676 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7677 7678 // Handle small structures. 7679 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7680 // Structures with flexible arrays have variable length, so really 7681 // fail the size test above. 7682 const RecordDecl *RD = RT->getDecl(); 7683 if (RD->hasFlexibleArrayMember()) 7684 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7685 7686 // The structure is passed as an unextended integer, a float, or a double. 7687 llvm::Type *PassTy; 7688 if (isFPArgumentType(SingleElementTy)) { 7689 assert(Size == 32 || Size == 64); 7690 if (Size == 32) 7691 PassTy = llvm::Type::getFloatTy(getVMContext()); 7692 else 7693 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7694 } else 7695 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7696 return ABIArgInfo::getDirect(PassTy); 7697 } 7698 7699 // Non-structure compounds are passed indirectly. 7700 if (isCompoundType(Ty)) 7701 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7702 7703 return ABIArgInfo::getDirect(nullptr); 7704 } 7705 7706 //===----------------------------------------------------------------------===// 7707 // MSP430 ABI Implementation 7708 //===----------------------------------------------------------------------===// 7709 7710 namespace { 7711 7712 class MSP430ABIInfo : public DefaultABIInfo { 7713 static ABIArgInfo complexArgInfo() { 7714 ABIArgInfo Info = ABIArgInfo::getDirect(); 7715 Info.setCanBeFlattened(false); 7716 return Info; 7717 } 7718 7719 public: 7720 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7721 7722 ABIArgInfo classifyReturnType(QualType RetTy) const { 7723 if (RetTy->isAnyComplexType()) 7724 return complexArgInfo(); 7725 7726 return DefaultABIInfo::classifyReturnType(RetTy); 7727 } 7728 7729 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7730 if (RetTy->isAnyComplexType()) 7731 return complexArgInfo(); 7732 7733 return DefaultABIInfo::classifyArgumentType(RetTy); 7734 } 7735 7736 // Just copy the original implementations because 7737 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7738 void computeInfo(CGFunctionInfo &FI) const override { 7739 if (!getCXXABI().classifyReturnType(FI)) 7740 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7741 for (auto &I : FI.arguments()) 7742 I.info = classifyArgumentType(I.type); 7743 } 7744 7745 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7746 QualType Ty) const override { 7747 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7748 } 7749 }; 7750 7751 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7752 public: 7753 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7754 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7755 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7756 CodeGen::CodeGenModule &M) const override; 7757 }; 7758 7759 } 7760 7761 void MSP430TargetCodeGenInfo::setTargetAttributes( 7762 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7763 if (GV->isDeclaration()) 7764 return; 7765 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7766 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7767 if (!InterruptAttr) 7768 return; 7769 7770 // Handle 'interrupt' attribute: 7771 llvm::Function *F = cast<llvm::Function>(GV); 7772 7773 // Step 1: Set ISR calling convention. 7774 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7775 7776 // Step 2: Add attributes goodness. 7777 F->addFnAttr(llvm::Attribute::NoInline); 7778 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7779 } 7780 } 7781 7782 //===----------------------------------------------------------------------===// 7783 // MIPS ABI Implementation. This works for both little-endian and 7784 // big-endian variants. 7785 //===----------------------------------------------------------------------===// 7786 7787 namespace { 7788 class MipsABIInfo : public ABIInfo { 7789 bool IsO32; 7790 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7791 void CoerceToIntArgs(uint64_t TySize, 7792 SmallVectorImpl<llvm::Type *> &ArgList) const; 7793 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7794 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7795 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7796 public: 7797 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7798 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7799 StackAlignInBytes(IsO32 ? 8 : 16) {} 7800 7801 ABIArgInfo classifyReturnType(QualType RetTy) const; 7802 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7803 void computeInfo(CGFunctionInfo &FI) const override; 7804 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7805 QualType Ty) const override; 7806 ABIArgInfo extendType(QualType Ty) const; 7807 }; 7808 7809 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7810 unsigned SizeOfUnwindException; 7811 public: 7812 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7813 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7814 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7815 7816 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7817 return 29; 7818 } 7819 7820 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7821 CodeGen::CodeGenModule &CGM) const override { 7822 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7823 if (!FD) return; 7824 llvm::Function *Fn = cast<llvm::Function>(GV); 7825 7826 if (FD->hasAttr<MipsLongCallAttr>()) 7827 Fn->addFnAttr("long-call"); 7828 else if (FD->hasAttr<MipsShortCallAttr>()) 7829 Fn->addFnAttr("short-call"); 7830 7831 // Other attributes do not have a meaning for declarations. 7832 if (GV->isDeclaration()) 7833 return; 7834 7835 if (FD->hasAttr<Mips16Attr>()) { 7836 Fn->addFnAttr("mips16"); 7837 } 7838 else if (FD->hasAttr<NoMips16Attr>()) { 7839 Fn->addFnAttr("nomips16"); 7840 } 7841 7842 if (FD->hasAttr<MicroMipsAttr>()) 7843 Fn->addFnAttr("micromips"); 7844 else if (FD->hasAttr<NoMicroMipsAttr>()) 7845 Fn->addFnAttr("nomicromips"); 7846 7847 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7848 if (!Attr) 7849 return; 7850 7851 const char *Kind; 7852 switch (Attr->getInterrupt()) { 7853 case MipsInterruptAttr::eic: Kind = "eic"; break; 7854 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7855 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7856 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7857 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7858 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7859 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7860 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7861 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7862 } 7863 7864 Fn->addFnAttr("interrupt", Kind); 7865 7866 } 7867 7868 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7869 llvm::Value *Address) const override; 7870 7871 unsigned getSizeOfUnwindException() const override { 7872 return SizeOfUnwindException; 7873 } 7874 }; 7875 } 7876 7877 void MipsABIInfo::CoerceToIntArgs( 7878 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7879 llvm::IntegerType *IntTy = 7880 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7881 7882 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7883 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7884 ArgList.push_back(IntTy); 7885 7886 // If necessary, add one more integer type to ArgList. 7887 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7888 7889 if (R) 7890 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7891 } 7892 7893 // In N32/64, an aligned double precision floating point field is passed in 7894 // a register. 7895 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7896 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7897 7898 if (IsO32) { 7899 CoerceToIntArgs(TySize, ArgList); 7900 return llvm::StructType::get(getVMContext(), ArgList); 7901 } 7902 7903 if (Ty->isComplexType()) 7904 return CGT.ConvertType(Ty); 7905 7906 const RecordType *RT = Ty->getAs<RecordType>(); 7907 7908 // Unions/vectors are passed in integer registers. 7909 if (!RT || !RT->isStructureOrClassType()) { 7910 CoerceToIntArgs(TySize, ArgList); 7911 return llvm::StructType::get(getVMContext(), ArgList); 7912 } 7913 7914 const RecordDecl *RD = RT->getDecl(); 7915 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7916 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7917 7918 uint64_t LastOffset = 0; 7919 unsigned idx = 0; 7920 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7921 7922 // Iterate over fields in the struct/class and check if there are any aligned 7923 // double fields. 7924 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7925 i != e; ++i, ++idx) { 7926 const QualType Ty = i->getType(); 7927 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7928 7929 if (!BT || BT->getKind() != BuiltinType::Double) 7930 continue; 7931 7932 uint64_t Offset = Layout.getFieldOffset(idx); 7933 if (Offset % 64) // Ignore doubles that are not aligned. 7934 continue; 7935 7936 // Add ((Offset - LastOffset) / 64) args of type i64. 7937 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7938 ArgList.push_back(I64); 7939 7940 // Add double type. 7941 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7942 LastOffset = Offset + 64; 7943 } 7944 7945 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7946 ArgList.append(IntArgList.begin(), IntArgList.end()); 7947 7948 return llvm::StructType::get(getVMContext(), ArgList); 7949 } 7950 7951 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7952 uint64_t Offset) const { 7953 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7954 return nullptr; 7955 7956 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7957 } 7958 7959 ABIArgInfo 7960 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7961 Ty = useFirstFieldIfTransparentUnion(Ty); 7962 7963 uint64_t OrigOffset = Offset; 7964 uint64_t TySize = getContext().getTypeSize(Ty); 7965 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7966 7967 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7968 (uint64_t)StackAlignInBytes); 7969 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7970 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7971 7972 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7973 // Ignore empty aggregates. 7974 if (TySize == 0) 7975 return ABIArgInfo::getIgnore(); 7976 7977 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7978 Offset = OrigOffset + MinABIStackAlignInBytes; 7979 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7980 } 7981 7982 // If we have reached here, aggregates are passed directly by coercing to 7983 // another structure type. Padding is inserted if the offset of the 7984 // aggregate is unaligned. 7985 ABIArgInfo ArgInfo = 7986 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7987 getPaddingType(OrigOffset, CurrOffset)); 7988 ArgInfo.setInReg(true); 7989 return ArgInfo; 7990 } 7991 7992 // Treat an enum type as its underlying type. 7993 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7994 Ty = EnumTy->getDecl()->getIntegerType(); 7995 7996 // Make sure we pass indirectly things that are too large. 7997 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7998 if (EIT->getNumBits() > 128 || 7999 (EIT->getNumBits() > 64 && 8000 !getContext().getTargetInfo().hasInt128Type())) 8001 return getNaturalAlignIndirect(Ty); 8002 8003 // All integral types are promoted to the GPR width. 8004 if (Ty->isIntegralOrEnumerationType()) 8005 return extendType(Ty); 8006 8007 return ABIArgInfo::getDirect( 8008 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 8009 } 8010 8011 llvm::Type* 8012 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 8013 const RecordType *RT = RetTy->getAs<RecordType>(); 8014 SmallVector<llvm::Type*, 8> RTList; 8015 8016 if (RT && RT->isStructureOrClassType()) { 8017 const RecordDecl *RD = RT->getDecl(); 8018 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8019 unsigned FieldCnt = Layout.getFieldCount(); 8020 8021 // N32/64 returns struct/classes in floating point registers if the 8022 // following conditions are met: 8023 // 1. The size of the struct/class is no larger than 128-bit. 8024 // 2. The struct/class has one or two fields all of which are floating 8025 // point types. 8026 // 3. The offset of the first field is zero (this follows what gcc does). 8027 // 8028 // Any other composite results are returned in integer registers. 8029 // 8030 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8031 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8032 for (; b != e; ++b) { 8033 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8034 8035 if (!BT || !BT->isFloatingPoint()) 8036 break; 8037 8038 RTList.push_back(CGT.ConvertType(b->getType())); 8039 } 8040 8041 if (b == e) 8042 return llvm::StructType::get(getVMContext(), RTList, 8043 RD->hasAttr<PackedAttr>()); 8044 8045 RTList.clear(); 8046 } 8047 } 8048 8049 CoerceToIntArgs(Size, RTList); 8050 return llvm::StructType::get(getVMContext(), RTList); 8051 } 8052 8053 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8054 uint64_t Size = getContext().getTypeSize(RetTy); 8055 8056 if (RetTy->isVoidType()) 8057 return ABIArgInfo::getIgnore(); 8058 8059 // O32 doesn't treat zero-sized structs differently from other structs. 8060 // However, N32/N64 ignores zero sized return values. 8061 if (!IsO32 && Size == 0) 8062 return ABIArgInfo::getIgnore(); 8063 8064 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8065 if (Size <= 128) { 8066 if (RetTy->isAnyComplexType()) 8067 return ABIArgInfo::getDirect(); 8068 8069 // O32 returns integer vectors in registers and N32/N64 returns all small 8070 // aggregates in registers. 8071 if (!IsO32 || 8072 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8073 ABIArgInfo ArgInfo = 8074 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8075 ArgInfo.setInReg(true); 8076 return ArgInfo; 8077 } 8078 } 8079 8080 return getNaturalAlignIndirect(RetTy); 8081 } 8082 8083 // Treat an enum type as its underlying type. 8084 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8085 RetTy = EnumTy->getDecl()->getIntegerType(); 8086 8087 // Make sure we pass indirectly things that are too large. 8088 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 8089 if (EIT->getNumBits() > 128 || 8090 (EIT->getNumBits() > 64 && 8091 !getContext().getTargetInfo().hasInt128Type())) 8092 return getNaturalAlignIndirect(RetTy); 8093 8094 if (isPromotableIntegerTypeForABI(RetTy)) 8095 return ABIArgInfo::getExtend(RetTy); 8096 8097 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8098 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8099 return ABIArgInfo::getSignExtend(RetTy); 8100 8101 return ABIArgInfo::getDirect(); 8102 } 8103 8104 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8105 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8106 if (!getCXXABI().classifyReturnType(FI)) 8107 RetInfo = classifyReturnType(FI.getReturnType()); 8108 8109 // Check if a pointer to an aggregate is passed as a hidden argument. 8110 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8111 8112 for (auto &I : FI.arguments()) 8113 I.info = classifyArgumentType(I.type, Offset); 8114 } 8115 8116 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8117 QualType OrigTy) const { 8118 QualType Ty = OrigTy; 8119 8120 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8121 // Pointers are also promoted in the same way but this only matters for N32. 8122 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8123 unsigned PtrWidth = getTarget().getPointerWidth(0); 8124 bool DidPromote = false; 8125 if ((Ty->isIntegerType() && 8126 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8127 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8128 DidPromote = true; 8129 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8130 Ty->isSignedIntegerType()); 8131 } 8132 8133 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8134 8135 // The alignment of things in the argument area is never larger than 8136 // StackAlignInBytes. 8137 TyInfo.Align = 8138 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8139 8140 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8141 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8142 8143 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8144 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8145 8146 8147 // If there was a promotion, "unpromote" into a temporary. 8148 // TODO: can we just use a pointer into a subset of the original slot? 8149 if (DidPromote) { 8150 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8151 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8152 8153 // Truncate down to the right width. 8154 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8155 : CGF.IntPtrTy); 8156 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8157 if (OrigTy->isPointerType()) 8158 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8159 8160 CGF.Builder.CreateStore(V, Temp); 8161 Addr = Temp; 8162 } 8163 8164 return Addr; 8165 } 8166 8167 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8168 int TySize = getContext().getTypeSize(Ty); 8169 8170 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8171 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8172 return ABIArgInfo::getSignExtend(Ty); 8173 8174 return ABIArgInfo::getExtend(Ty); 8175 } 8176 8177 bool 8178 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8179 llvm::Value *Address) const { 8180 // This information comes from gcc's implementation, which seems to 8181 // as canonical as it gets. 8182 8183 // Everything on MIPS is 4 bytes. Double-precision FP registers 8184 // are aliased to pairs of single-precision FP registers. 8185 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8186 8187 // 0-31 are the general purpose registers, $0 - $31. 8188 // 32-63 are the floating-point registers, $f0 - $f31. 8189 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8190 // 66 is the (notional, I think) register for signal-handler return. 8191 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8192 8193 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8194 // They are one bit wide and ignored here. 8195 8196 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8197 // (coprocessor 1 is the FP unit) 8198 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8199 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8200 // 176-181 are the DSP accumulator registers. 8201 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8202 return false; 8203 } 8204 8205 //===----------------------------------------------------------------------===// 8206 // M68k ABI Implementation 8207 //===----------------------------------------------------------------------===// 8208 8209 namespace { 8210 8211 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8212 public: 8213 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8214 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8215 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8216 CodeGen::CodeGenModule &M) const override; 8217 }; 8218 8219 } // namespace 8220 8221 void M68kTargetCodeGenInfo::setTargetAttributes( 8222 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8223 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8224 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8225 // Handle 'interrupt' attribute: 8226 llvm::Function *F = cast<llvm::Function>(GV); 8227 8228 // Step 1: Set ISR calling convention. 8229 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8230 8231 // Step 2: Add attributes goodness. 8232 F->addFnAttr(llvm::Attribute::NoInline); 8233 8234 // Step 3: Emit ISR vector alias. 8235 unsigned Num = attr->getNumber() / 2; 8236 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8237 "__isr_" + Twine(Num), F); 8238 } 8239 } 8240 } 8241 8242 //===----------------------------------------------------------------------===// 8243 // AVR ABI Implementation. Documented at 8244 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8245 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8246 //===----------------------------------------------------------------------===// 8247 8248 namespace { 8249 class AVRABIInfo : public DefaultABIInfo { 8250 public: 8251 AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8252 8253 ABIArgInfo classifyReturnType(QualType Ty) const { 8254 // A return struct with size less than or equal to 8 bytes is returned 8255 // directly via registers R18-R25. 8256 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64) 8257 return ABIArgInfo::getDirect(); 8258 else 8259 return DefaultABIInfo::classifyReturnType(Ty); 8260 } 8261 8262 // Just copy the original implementation of DefaultABIInfo::computeInfo(), 8263 // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual. 8264 void computeInfo(CGFunctionInfo &FI) const override { 8265 if (!getCXXABI().classifyReturnType(FI)) 8266 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8267 for (auto &I : FI.arguments()) 8268 I.info = classifyArgumentType(I.type); 8269 } 8270 }; 8271 8272 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8273 public: 8274 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8275 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {} 8276 8277 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8278 const VarDecl *D) const override { 8279 // Check if a global/static variable is defined within address space 1 8280 // but not constant. 8281 LangAS AS = D->getType().getAddressSpace(); 8282 if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 && 8283 !D->getType().isConstQualified()) 8284 CGM.getDiags().Report(D->getLocation(), 8285 diag::err_verify_nonconst_addrspace) 8286 << "__flash"; 8287 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8288 } 8289 8290 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8291 CodeGen::CodeGenModule &CGM) const override { 8292 if (GV->isDeclaration()) 8293 return; 8294 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8295 if (!FD) return; 8296 auto *Fn = cast<llvm::Function>(GV); 8297 8298 if (FD->getAttr<AVRInterruptAttr>()) 8299 Fn->addFnAttr("interrupt"); 8300 8301 if (FD->getAttr<AVRSignalAttr>()) 8302 Fn->addFnAttr("signal"); 8303 } 8304 }; 8305 } 8306 8307 //===----------------------------------------------------------------------===// 8308 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8309 // Currently subclassed only to implement custom OpenCL C function attribute 8310 // handling. 8311 //===----------------------------------------------------------------------===// 8312 8313 namespace { 8314 8315 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8316 public: 8317 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8318 : DefaultTargetCodeGenInfo(CGT) {} 8319 8320 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8321 CodeGen::CodeGenModule &M) const override; 8322 }; 8323 8324 void TCETargetCodeGenInfo::setTargetAttributes( 8325 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8326 if (GV->isDeclaration()) 8327 return; 8328 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8329 if (!FD) return; 8330 8331 llvm::Function *F = cast<llvm::Function>(GV); 8332 8333 if (M.getLangOpts().OpenCL) { 8334 if (FD->hasAttr<OpenCLKernelAttr>()) { 8335 // OpenCL C Kernel functions are not subject to inlining 8336 F->addFnAttr(llvm::Attribute::NoInline); 8337 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8338 if (Attr) { 8339 // Convert the reqd_work_group_size() attributes to metadata. 8340 llvm::LLVMContext &Context = F->getContext(); 8341 llvm::NamedMDNode *OpenCLMetadata = 8342 M.getModule().getOrInsertNamedMetadata( 8343 "opencl.kernel_wg_size_info"); 8344 8345 SmallVector<llvm::Metadata *, 5> Operands; 8346 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8347 8348 Operands.push_back( 8349 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8350 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8351 Operands.push_back( 8352 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8353 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8354 Operands.push_back( 8355 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8356 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8357 8358 // Add a boolean constant operand for "required" (true) or "hint" 8359 // (false) for implementing the work_group_size_hint attr later. 8360 // Currently always true as the hint is not yet implemented. 8361 Operands.push_back( 8362 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8363 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8364 } 8365 } 8366 } 8367 } 8368 8369 } 8370 8371 //===----------------------------------------------------------------------===// 8372 // Hexagon ABI Implementation 8373 //===----------------------------------------------------------------------===// 8374 8375 namespace { 8376 8377 class HexagonABIInfo : public DefaultABIInfo { 8378 public: 8379 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8380 8381 private: 8382 ABIArgInfo classifyReturnType(QualType RetTy) const; 8383 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8384 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8385 8386 void computeInfo(CGFunctionInfo &FI) const override; 8387 8388 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8389 QualType Ty) const override; 8390 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8391 QualType Ty) const; 8392 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8393 QualType Ty) const; 8394 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8395 QualType Ty) const; 8396 }; 8397 8398 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8399 public: 8400 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8401 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8402 8403 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8404 return 29; 8405 } 8406 8407 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8408 CodeGen::CodeGenModule &GCM) const override { 8409 if (GV->isDeclaration()) 8410 return; 8411 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8412 if (!FD) 8413 return; 8414 } 8415 }; 8416 8417 } // namespace 8418 8419 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8420 unsigned RegsLeft = 6; 8421 if (!getCXXABI().classifyReturnType(FI)) 8422 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8423 for (auto &I : FI.arguments()) 8424 I.info = classifyArgumentType(I.type, &RegsLeft); 8425 } 8426 8427 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8428 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8429 " through registers"); 8430 8431 if (*RegsLeft == 0) 8432 return false; 8433 8434 if (Size <= 32) { 8435 (*RegsLeft)--; 8436 return true; 8437 } 8438 8439 if (2 <= (*RegsLeft & (~1U))) { 8440 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8441 return true; 8442 } 8443 8444 // Next available register was r5 but candidate was greater than 32-bits so it 8445 // has to go on the stack. However we still consume r5 8446 if (*RegsLeft == 1) 8447 *RegsLeft = 0; 8448 8449 return false; 8450 } 8451 8452 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8453 unsigned *RegsLeft) const { 8454 if (!isAggregateTypeForABI(Ty)) { 8455 // Treat an enum type as its underlying type. 8456 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8457 Ty = EnumTy->getDecl()->getIntegerType(); 8458 8459 uint64_t Size = getContext().getTypeSize(Ty); 8460 if (Size <= 64) 8461 HexagonAdjustRegsLeft(Size, RegsLeft); 8462 8463 if (Size > 64 && Ty->isExtIntType()) 8464 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8465 8466 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8467 : ABIArgInfo::getDirect(); 8468 } 8469 8470 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8471 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8472 8473 // Ignore empty records. 8474 if (isEmptyRecord(getContext(), Ty, true)) 8475 return ABIArgInfo::getIgnore(); 8476 8477 uint64_t Size = getContext().getTypeSize(Ty); 8478 unsigned Align = getContext().getTypeAlign(Ty); 8479 8480 if (Size > 64) 8481 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8482 8483 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8484 Align = Size <= 32 ? 32 : 64; 8485 if (Size <= Align) { 8486 // Pass in the smallest viable integer type. 8487 if (!llvm::isPowerOf2_64(Size)) 8488 Size = llvm::NextPowerOf2(Size); 8489 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8490 } 8491 return DefaultABIInfo::classifyArgumentType(Ty); 8492 } 8493 8494 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8495 if (RetTy->isVoidType()) 8496 return ABIArgInfo::getIgnore(); 8497 8498 const TargetInfo &T = CGT.getTarget(); 8499 uint64_t Size = getContext().getTypeSize(RetTy); 8500 8501 if (RetTy->getAs<VectorType>()) { 8502 // HVX vectors are returned in vector registers or register pairs. 8503 if (T.hasFeature("hvx")) { 8504 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8505 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8506 if (Size == VecSize || Size == 2*VecSize) 8507 return ABIArgInfo::getDirectInReg(); 8508 } 8509 // Large vector types should be returned via memory. 8510 if (Size > 64) 8511 return getNaturalAlignIndirect(RetTy); 8512 } 8513 8514 if (!isAggregateTypeForABI(RetTy)) { 8515 // Treat an enum type as its underlying type. 8516 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8517 RetTy = EnumTy->getDecl()->getIntegerType(); 8518 8519 if (Size > 64 && RetTy->isExtIntType()) 8520 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8521 8522 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8523 : ABIArgInfo::getDirect(); 8524 } 8525 8526 if (isEmptyRecord(getContext(), RetTy, true)) 8527 return ABIArgInfo::getIgnore(); 8528 8529 // Aggregates <= 8 bytes are returned in registers, other aggregates 8530 // are returned indirectly. 8531 if (Size <= 64) { 8532 // Return in the smallest viable integer type. 8533 if (!llvm::isPowerOf2_64(Size)) 8534 Size = llvm::NextPowerOf2(Size); 8535 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8536 } 8537 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8538 } 8539 8540 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8541 Address VAListAddr, 8542 QualType Ty) const { 8543 // Load the overflow area pointer. 8544 Address __overflow_area_pointer_p = 8545 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8546 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8547 __overflow_area_pointer_p, "__overflow_area_pointer"); 8548 8549 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8550 if (Align > 4) { 8551 // Alignment should be a power of 2. 8552 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8553 8554 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8555 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8556 8557 // Add offset to the current pointer to access the argument. 8558 __overflow_area_pointer = 8559 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8560 llvm::Value *AsInt = 8561 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8562 8563 // Create a mask which should be "AND"ed 8564 // with (overflow_arg_area + align - 1) 8565 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8566 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8567 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8568 "__overflow_area_pointer.align"); 8569 } 8570 8571 // Get the type of the argument from memory and bitcast 8572 // overflow area pointer to the argument type. 8573 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8574 Address AddrTyped = CGF.Builder.CreateBitCast( 8575 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8576 llvm::PointerType::getUnqual(PTy)); 8577 8578 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8579 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8580 8581 __overflow_area_pointer = CGF.Builder.CreateGEP( 8582 CGF.Int8Ty, __overflow_area_pointer, 8583 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8584 "__overflow_area_pointer.next"); 8585 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8586 8587 return AddrTyped; 8588 } 8589 8590 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8591 Address VAListAddr, 8592 QualType Ty) const { 8593 // FIXME: Need to handle alignment 8594 llvm::Type *BP = CGF.Int8PtrTy; 8595 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8596 CGBuilderTy &Builder = CGF.Builder; 8597 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8598 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8599 // Handle address alignment for type alignment > 32 bits 8600 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8601 if (TyAlign > 4) { 8602 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8603 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8604 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8605 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8606 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8607 } 8608 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8609 Address AddrTyped = Builder.CreateBitCast( 8610 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8611 8612 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8613 llvm::Value *NextAddr = Builder.CreateGEP( 8614 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8615 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8616 8617 return AddrTyped; 8618 } 8619 8620 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8621 Address VAListAddr, 8622 QualType Ty) const { 8623 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8624 8625 if (ArgSize > 8) 8626 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8627 8628 // Here we have check if the argument is in register area or 8629 // in overflow area. 8630 // If the saved register area pointer + argsize rounded up to alignment > 8631 // saved register area end pointer, argument is in overflow area. 8632 unsigned RegsLeft = 6; 8633 Ty = CGF.getContext().getCanonicalType(Ty); 8634 (void)classifyArgumentType(Ty, &RegsLeft); 8635 8636 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8637 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8638 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8639 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8640 8641 // Get rounded size of the argument.GCC does not allow vararg of 8642 // size < 4 bytes. We follow the same logic here. 8643 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8644 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8645 8646 // Argument may be in saved register area 8647 CGF.EmitBlock(MaybeRegBlock); 8648 8649 // Load the current saved register area pointer. 8650 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8651 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8652 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8653 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8654 8655 // Load the saved register area end pointer. 8656 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8657 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8658 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8659 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8660 8661 // If the size of argument is > 4 bytes, check if the stack 8662 // location is aligned to 8 bytes 8663 if (ArgAlign > 4) { 8664 8665 llvm::Value *__current_saved_reg_area_pointer_int = 8666 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8667 CGF.Int32Ty); 8668 8669 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8670 __current_saved_reg_area_pointer_int, 8671 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8672 "align_current_saved_reg_area_pointer"); 8673 8674 __current_saved_reg_area_pointer_int = 8675 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8676 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8677 "align_current_saved_reg_area_pointer"); 8678 8679 __current_saved_reg_area_pointer = 8680 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8681 __current_saved_reg_area_pointer->getType(), 8682 "align_current_saved_reg_area_pointer"); 8683 } 8684 8685 llvm::Value *__new_saved_reg_area_pointer = 8686 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8687 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8688 "__new_saved_reg_area_pointer"); 8689 8690 llvm::Value *UsingStack = 0; 8691 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8692 __saved_reg_area_end_pointer); 8693 8694 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8695 8696 // Argument in saved register area 8697 // Implement the block where argument is in register saved area 8698 CGF.EmitBlock(InRegBlock); 8699 8700 llvm::Type *PTy = CGF.ConvertType(Ty); 8701 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8702 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8703 8704 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8705 __current_saved_reg_area_pointer_p); 8706 8707 CGF.EmitBranch(ContBlock); 8708 8709 // Argument in overflow area 8710 // Implement the block where the argument is in overflow area. 8711 CGF.EmitBlock(OnStackBlock); 8712 8713 // Load the overflow area pointer 8714 Address __overflow_area_pointer_p = 8715 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8716 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8717 __overflow_area_pointer_p, "__overflow_area_pointer"); 8718 8719 // Align the overflow area pointer according to the alignment of the argument 8720 if (ArgAlign > 4) { 8721 llvm::Value *__overflow_area_pointer_int = 8722 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8723 8724 __overflow_area_pointer_int = 8725 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8726 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8727 "align_overflow_area_pointer"); 8728 8729 __overflow_area_pointer_int = 8730 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8731 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8732 "align_overflow_area_pointer"); 8733 8734 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8735 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8736 "align_overflow_area_pointer"); 8737 } 8738 8739 // Get the pointer for next argument in overflow area and store it 8740 // to overflow area pointer. 8741 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8742 CGF.Int8Ty, __overflow_area_pointer, 8743 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8744 "__overflow_area_pointer.next"); 8745 8746 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8747 __overflow_area_pointer_p); 8748 8749 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8750 __current_saved_reg_area_pointer_p); 8751 8752 // Bitcast the overflow area pointer to the type of argument. 8753 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8754 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8755 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8756 8757 CGF.EmitBranch(ContBlock); 8758 8759 // Get the correct pointer to load the variable argument 8760 // Implement the ContBlock 8761 CGF.EmitBlock(ContBlock); 8762 8763 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8764 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8765 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8766 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8767 8768 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8769 } 8770 8771 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8772 QualType Ty) const { 8773 8774 if (getTarget().getTriple().isMusl()) 8775 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8776 8777 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8778 } 8779 8780 //===----------------------------------------------------------------------===// 8781 // Lanai ABI Implementation 8782 //===----------------------------------------------------------------------===// 8783 8784 namespace { 8785 class LanaiABIInfo : public DefaultABIInfo { 8786 public: 8787 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8788 8789 bool shouldUseInReg(QualType Ty, CCState &State) const; 8790 8791 void computeInfo(CGFunctionInfo &FI) const override { 8792 CCState State(FI); 8793 // Lanai uses 4 registers to pass arguments unless the function has the 8794 // regparm attribute set. 8795 if (FI.getHasRegParm()) { 8796 State.FreeRegs = FI.getRegParm(); 8797 } else { 8798 State.FreeRegs = 4; 8799 } 8800 8801 if (!getCXXABI().classifyReturnType(FI)) 8802 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8803 for (auto &I : FI.arguments()) 8804 I.info = classifyArgumentType(I.type, State); 8805 } 8806 8807 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8808 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8809 }; 8810 } // end anonymous namespace 8811 8812 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8813 unsigned Size = getContext().getTypeSize(Ty); 8814 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8815 8816 if (SizeInRegs == 0) 8817 return false; 8818 8819 if (SizeInRegs > State.FreeRegs) { 8820 State.FreeRegs = 0; 8821 return false; 8822 } 8823 8824 State.FreeRegs -= SizeInRegs; 8825 8826 return true; 8827 } 8828 8829 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8830 CCState &State) const { 8831 if (!ByVal) { 8832 if (State.FreeRegs) { 8833 --State.FreeRegs; // Non-byval indirects just use one pointer. 8834 return getNaturalAlignIndirectInReg(Ty); 8835 } 8836 return getNaturalAlignIndirect(Ty, false); 8837 } 8838 8839 // Compute the byval alignment. 8840 const unsigned MinABIStackAlignInBytes = 4; 8841 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8842 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8843 /*Realign=*/TypeAlign > 8844 MinABIStackAlignInBytes); 8845 } 8846 8847 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8848 CCState &State) const { 8849 // Check with the C++ ABI first. 8850 const RecordType *RT = Ty->getAs<RecordType>(); 8851 if (RT) { 8852 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8853 if (RAA == CGCXXABI::RAA_Indirect) { 8854 return getIndirectResult(Ty, /*ByVal=*/false, State); 8855 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8856 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8857 } 8858 } 8859 8860 if (isAggregateTypeForABI(Ty)) { 8861 // Structures with flexible arrays are always indirect. 8862 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8863 return getIndirectResult(Ty, /*ByVal=*/true, State); 8864 8865 // Ignore empty structs/unions. 8866 if (isEmptyRecord(getContext(), Ty, true)) 8867 return ABIArgInfo::getIgnore(); 8868 8869 llvm::LLVMContext &LLVMContext = getVMContext(); 8870 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8871 if (SizeInRegs <= State.FreeRegs) { 8872 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8873 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8874 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8875 State.FreeRegs -= SizeInRegs; 8876 return ABIArgInfo::getDirectInReg(Result); 8877 } else { 8878 State.FreeRegs = 0; 8879 } 8880 return getIndirectResult(Ty, true, State); 8881 } 8882 8883 // Treat an enum type as its underlying type. 8884 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8885 Ty = EnumTy->getDecl()->getIntegerType(); 8886 8887 bool InReg = shouldUseInReg(Ty, State); 8888 8889 // Don't pass >64 bit integers in registers. 8890 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8891 if (EIT->getNumBits() > 64) 8892 return getIndirectResult(Ty, /*ByVal=*/true, State); 8893 8894 if (isPromotableIntegerTypeForABI(Ty)) { 8895 if (InReg) 8896 return ABIArgInfo::getDirectInReg(); 8897 return ABIArgInfo::getExtend(Ty); 8898 } 8899 if (InReg) 8900 return ABIArgInfo::getDirectInReg(); 8901 return ABIArgInfo::getDirect(); 8902 } 8903 8904 namespace { 8905 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8906 public: 8907 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8908 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8909 }; 8910 } 8911 8912 //===----------------------------------------------------------------------===// 8913 // AMDGPU ABI Implementation 8914 //===----------------------------------------------------------------------===// 8915 8916 namespace { 8917 8918 class AMDGPUABIInfo final : public DefaultABIInfo { 8919 private: 8920 static const unsigned MaxNumRegsForArgsRet = 16; 8921 8922 unsigned numRegsForType(QualType Ty) const; 8923 8924 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8925 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8926 uint64_t Members) const override; 8927 8928 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8929 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8930 unsigned ToAS) const { 8931 // Single value types. 8932 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8933 return llvm::PointerType::get( 8934 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8935 return Ty; 8936 } 8937 8938 public: 8939 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8940 DefaultABIInfo(CGT) {} 8941 8942 ABIArgInfo classifyReturnType(QualType RetTy) const; 8943 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8944 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8945 8946 void computeInfo(CGFunctionInfo &FI) const override; 8947 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8948 QualType Ty) const override; 8949 }; 8950 8951 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8952 return true; 8953 } 8954 8955 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8956 const Type *Base, uint64_t Members) const { 8957 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8958 8959 // Homogeneous Aggregates may occupy at most 16 registers. 8960 return Members * NumRegs <= MaxNumRegsForArgsRet; 8961 } 8962 8963 /// Estimate number of registers the type will use when passed in registers. 8964 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8965 unsigned NumRegs = 0; 8966 8967 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8968 // Compute from the number of elements. The reported size is based on the 8969 // in-memory size, which includes the padding 4th element for 3-vectors. 8970 QualType EltTy = VT->getElementType(); 8971 unsigned EltSize = getContext().getTypeSize(EltTy); 8972 8973 // 16-bit element vectors should be passed as packed. 8974 if (EltSize == 16) 8975 return (VT->getNumElements() + 1) / 2; 8976 8977 unsigned EltNumRegs = (EltSize + 31) / 32; 8978 return EltNumRegs * VT->getNumElements(); 8979 } 8980 8981 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8982 const RecordDecl *RD = RT->getDecl(); 8983 assert(!RD->hasFlexibleArrayMember()); 8984 8985 for (const FieldDecl *Field : RD->fields()) { 8986 QualType FieldTy = Field->getType(); 8987 NumRegs += numRegsForType(FieldTy); 8988 } 8989 8990 return NumRegs; 8991 } 8992 8993 return (getContext().getTypeSize(Ty) + 31) / 32; 8994 } 8995 8996 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8997 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8998 8999 if (!getCXXABI().classifyReturnType(FI)) 9000 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9001 9002 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 9003 for (auto &Arg : FI.arguments()) { 9004 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 9005 Arg.info = classifyKernelArgumentType(Arg.type); 9006 } else { 9007 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 9008 } 9009 } 9010 } 9011 9012 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9013 QualType Ty) const { 9014 llvm_unreachable("AMDGPU does not support varargs"); 9015 } 9016 9017 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9018 if (isAggregateTypeForABI(RetTy)) { 9019 // Records with non-trivial destructors/copy-constructors should not be 9020 // returned by value. 9021 if (!getRecordArgABI(RetTy, getCXXABI())) { 9022 // Ignore empty structs/unions. 9023 if (isEmptyRecord(getContext(), RetTy, true)) 9024 return ABIArgInfo::getIgnore(); 9025 9026 // Lower single-element structs to just return a regular value. 9027 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9028 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9029 9030 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9031 const RecordDecl *RD = RT->getDecl(); 9032 if (RD->hasFlexibleArrayMember()) 9033 return DefaultABIInfo::classifyReturnType(RetTy); 9034 } 9035 9036 // Pack aggregates <= 4 bytes into single VGPR or pair. 9037 uint64_t Size = getContext().getTypeSize(RetTy); 9038 if (Size <= 16) 9039 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9040 9041 if (Size <= 32) 9042 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9043 9044 if (Size <= 64) { 9045 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9046 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9047 } 9048 9049 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9050 return ABIArgInfo::getDirect(); 9051 } 9052 } 9053 9054 // Otherwise just do the default thing. 9055 return DefaultABIInfo::classifyReturnType(RetTy); 9056 } 9057 9058 /// For kernels all parameters are really passed in a special buffer. It doesn't 9059 /// make sense to pass anything byval, so everything must be direct. 9060 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9061 Ty = useFirstFieldIfTransparentUnion(Ty); 9062 9063 // TODO: Can we omit empty structs? 9064 9065 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9066 Ty = QualType(SeltTy, 0); 9067 9068 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9069 llvm::Type *LTy = OrigLTy; 9070 if (getContext().getLangOpts().HIP) { 9071 LTy = coerceKernelArgumentType( 9072 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9073 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9074 } 9075 9076 // FIXME: Should also use this for OpenCL, but it requires addressing the 9077 // problem of kernels being called. 9078 // 9079 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9080 // to global address space when using byref. This would require implementing a 9081 // new kind of coercion of the in-memory type when for indirect arguments. 9082 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9083 isAggregateTypeForABI(Ty)) { 9084 return ABIArgInfo::getIndirectAliased( 9085 getContext().getTypeAlignInChars(Ty), 9086 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9087 false /*Realign*/, nullptr /*Padding*/); 9088 } 9089 9090 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9091 // individual elements, which confuses the Clover OpenCL backend; therefore we 9092 // have to set it to false here. Other args of getDirect() are just defaults. 9093 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9094 } 9095 9096 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9097 unsigned &NumRegsLeft) const { 9098 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9099 9100 Ty = useFirstFieldIfTransparentUnion(Ty); 9101 9102 if (isAggregateTypeForABI(Ty)) { 9103 // Records with non-trivial destructors/copy-constructors should not be 9104 // passed by value. 9105 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9106 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9107 9108 // Ignore empty structs/unions. 9109 if (isEmptyRecord(getContext(), Ty, true)) 9110 return ABIArgInfo::getIgnore(); 9111 9112 // Lower single-element structs to just pass a regular value. TODO: We 9113 // could do reasonable-size multiple-element structs too, using getExpand(), 9114 // though watch out for things like bitfields. 9115 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9116 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9117 9118 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9119 const RecordDecl *RD = RT->getDecl(); 9120 if (RD->hasFlexibleArrayMember()) 9121 return DefaultABIInfo::classifyArgumentType(Ty); 9122 } 9123 9124 // Pack aggregates <= 8 bytes into single VGPR or pair. 9125 uint64_t Size = getContext().getTypeSize(Ty); 9126 if (Size <= 64) { 9127 unsigned NumRegs = (Size + 31) / 32; 9128 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9129 9130 if (Size <= 16) 9131 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9132 9133 if (Size <= 32) 9134 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9135 9136 // XXX: Should this be i64 instead, and should the limit increase? 9137 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9138 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9139 } 9140 9141 if (NumRegsLeft > 0) { 9142 unsigned NumRegs = numRegsForType(Ty); 9143 if (NumRegsLeft >= NumRegs) { 9144 NumRegsLeft -= NumRegs; 9145 return ABIArgInfo::getDirect(); 9146 } 9147 } 9148 } 9149 9150 // Otherwise just do the default thing. 9151 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9152 if (!ArgInfo.isIndirect()) { 9153 unsigned NumRegs = numRegsForType(Ty); 9154 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9155 } 9156 9157 return ArgInfo; 9158 } 9159 9160 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9161 public: 9162 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9163 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9164 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9165 CodeGen::CodeGenModule &M) const override; 9166 unsigned getOpenCLKernelCallingConv() const override; 9167 9168 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9169 llvm::PointerType *T, QualType QT) const override; 9170 9171 LangAS getASTAllocaAddressSpace() const override { 9172 return getLangASFromTargetAS( 9173 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9174 } 9175 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9176 const VarDecl *D) const override; 9177 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9178 SyncScope Scope, 9179 llvm::AtomicOrdering Ordering, 9180 llvm::LLVMContext &Ctx) const override; 9181 llvm::Function * 9182 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9183 llvm::Function *BlockInvokeFunc, 9184 llvm::Value *BlockLiteral) const override; 9185 bool shouldEmitStaticExternCAliases() const override; 9186 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9187 }; 9188 } 9189 9190 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9191 llvm::GlobalValue *GV) { 9192 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9193 return false; 9194 9195 return D->hasAttr<OpenCLKernelAttr>() || 9196 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9197 (isa<VarDecl>(D) && 9198 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9199 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9200 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9201 } 9202 9203 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9204 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9205 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9206 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9207 GV->setDSOLocal(true); 9208 } 9209 9210 if (GV->isDeclaration()) 9211 return; 9212 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9213 if (!FD) 9214 return; 9215 9216 llvm::Function *F = cast<llvm::Function>(GV); 9217 9218 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9219 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9220 9221 9222 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9223 FD->hasAttr<OpenCLKernelAttr>(); 9224 const bool IsHIPKernel = M.getLangOpts().HIP && 9225 FD->hasAttr<CUDAGlobalAttr>(); 9226 if ((IsOpenCLKernel || IsHIPKernel) && 9227 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9228 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9229 9230 if (IsHIPKernel) 9231 F->addFnAttr("uniform-work-group-size", "true"); 9232 9233 9234 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9235 if (ReqdWGS || FlatWGS) { 9236 unsigned Min = 0; 9237 unsigned Max = 0; 9238 if (FlatWGS) { 9239 Min = FlatWGS->getMin() 9240 ->EvaluateKnownConstInt(M.getContext()) 9241 .getExtValue(); 9242 Max = FlatWGS->getMax() 9243 ->EvaluateKnownConstInt(M.getContext()) 9244 .getExtValue(); 9245 } 9246 if (ReqdWGS && Min == 0 && Max == 0) 9247 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9248 9249 if (Min != 0) { 9250 assert(Min <= Max && "Min must be less than or equal Max"); 9251 9252 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9253 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9254 } else 9255 assert(Max == 0 && "Max must be zero"); 9256 } else if (IsOpenCLKernel || IsHIPKernel) { 9257 // By default, restrict the maximum size to a value specified by 9258 // --gpu-max-threads-per-block=n or its default value for HIP. 9259 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9260 const unsigned DefaultMaxWorkGroupSize = 9261 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9262 : M.getLangOpts().GPUMaxThreadsPerBlock; 9263 std::string AttrVal = 9264 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9265 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9266 } 9267 9268 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9269 unsigned Min = 9270 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9271 unsigned Max = Attr->getMax() ? Attr->getMax() 9272 ->EvaluateKnownConstInt(M.getContext()) 9273 .getExtValue() 9274 : 0; 9275 9276 if (Min != 0) { 9277 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9278 9279 std::string AttrVal = llvm::utostr(Min); 9280 if (Max != 0) 9281 AttrVal = AttrVal + "," + llvm::utostr(Max); 9282 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9283 } else 9284 assert(Max == 0 && "Max must be zero"); 9285 } 9286 9287 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9288 unsigned NumSGPR = Attr->getNumSGPR(); 9289 9290 if (NumSGPR != 0) 9291 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9292 } 9293 9294 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9295 uint32_t NumVGPR = Attr->getNumVGPR(); 9296 9297 if (NumVGPR != 0) 9298 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9299 } 9300 9301 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9302 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9303 9304 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9305 F->addFnAttr("amdgpu-ieee", "false"); 9306 } 9307 9308 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9309 return llvm::CallingConv::AMDGPU_KERNEL; 9310 } 9311 9312 // Currently LLVM assumes null pointers always have value 0, 9313 // which results in incorrectly transformed IR. Therefore, instead of 9314 // emitting null pointers in private and local address spaces, a null 9315 // pointer in generic address space is emitted which is casted to a 9316 // pointer in local or private address space. 9317 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9318 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9319 QualType QT) const { 9320 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9321 return llvm::ConstantPointerNull::get(PT); 9322 9323 auto &Ctx = CGM.getContext(); 9324 auto NPT = llvm::PointerType::get(PT->getElementType(), 9325 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9326 return llvm::ConstantExpr::getAddrSpaceCast( 9327 llvm::ConstantPointerNull::get(NPT), PT); 9328 } 9329 9330 LangAS 9331 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9332 const VarDecl *D) const { 9333 assert(!CGM.getLangOpts().OpenCL && 9334 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9335 "Address space agnostic languages only"); 9336 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9337 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9338 if (!D) 9339 return DefaultGlobalAS; 9340 9341 LangAS AddrSpace = D->getType().getAddressSpace(); 9342 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9343 if (AddrSpace != LangAS::Default) 9344 return AddrSpace; 9345 9346 if (CGM.isTypeConstant(D->getType(), false)) { 9347 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9348 return ConstAS.getValue(); 9349 } 9350 return DefaultGlobalAS; 9351 } 9352 9353 llvm::SyncScope::ID 9354 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9355 SyncScope Scope, 9356 llvm::AtomicOrdering Ordering, 9357 llvm::LLVMContext &Ctx) const { 9358 std::string Name; 9359 switch (Scope) { 9360 case SyncScope::HIPSingleThread: 9361 Name = "singlethread"; 9362 break; 9363 case SyncScope::HIPWavefront: 9364 case SyncScope::OpenCLSubGroup: 9365 Name = "wavefront"; 9366 break; 9367 case SyncScope::HIPWorkgroup: 9368 case SyncScope::OpenCLWorkGroup: 9369 Name = "workgroup"; 9370 break; 9371 case SyncScope::HIPAgent: 9372 case SyncScope::OpenCLDevice: 9373 Name = "agent"; 9374 break; 9375 case SyncScope::HIPSystem: 9376 case SyncScope::OpenCLAllSVMDevices: 9377 Name = ""; 9378 break; 9379 } 9380 9381 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9382 if (!Name.empty()) 9383 Name = Twine(Twine(Name) + Twine("-")).str(); 9384 9385 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9386 } 9387 9388 return Ctx.getOrInsertSyncScopeID(Name); 9389 } 9390 9391 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9392 return false; 9393 } 9394 9395 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9396 const FunctionType *&FT) const { 9397 FT = getABIInfo().getContext().adjustFunctionType( 9398 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9399 } 9400 9401 //===----------------------------------------------------------------------===// 9402 // SPARC v8 ABI Implementation. 9403 // Based on the SPARC Compliance Definition version 2.4.1. 9404 // 9405 // Ensures that complex values are passed in registers. 9406 // 9407 namespace { 9408 class SparcV8ABIInfo : public DefaultABIInfo { 9409 public: 9410 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9411 9412 private: 9413 ABIArgInfo classifyReturnType(QualType RetTy) const; 9414 void computeInfo(CGFunctionInfo &FI) const override; 9415 }; 9416 } // end anonymous namespace 9417 9418 9419 ABIArgInfo 9420 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9421 if (Ty->isAnyComplexType()) { 9422 return ABIArgInfo::getDirect(); 9423 } 9424 else { 9425 return DefaultABIInfo::classifyReturnType(Ty); 9426 } 9427 } 9428 9429 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9430 9431 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9432 for (auto &Arg : FI.arguments()) 9433 Arg.info = classifyArgumentType(Arg.type); 9434 } 9435 9436 namespace { 9437 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9438 public: 9439 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9440 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9441 }; 9442 } // end anonymous namespace 9443 9444 //===----------------------------------------------------------------------===// 9445 // SPARC v9 ABI Implementation. 9446 // Based on the SPARC Compliance Definition version 2.4.1. 9447 // 9448 // Function arguments a mapped to a nominal "parameter array" and promoted to 9449 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9450 // the array, structs larger than 16 bytes are passed indirectly. 9451 // 9452 // One case requires special care: 9453 // 9454 // struct mixed { 9455 // int i; 9456 // float f; 9457 // }; 9458 // 9459 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9460 // parameter array, but the int is passed in an integer register, and the float 9461 // is passed in a floating point register. This is represented as two arguments 9462 // with the LLVM IR inreg attribute: 9463 // 9464 // declare void f(i32 inreg %i, float inreg %f) 9465 // 9466 // The code generator will only allocate 4 bytes from the parameter array for 9467 // the inreg arguments. All other arguments are allocated a multiple of 8 9468 // bytes. 9469 // 9470 namespace { 9471 class SparcV9ABIInfo : public ABIInfo { 9472 public: 9473 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9474 9475 private: 9476 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9477 void computeInfo(CGFunctionInfo &FI) const override; 9478 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9479 QualType Ty) const override; 9480 9481 // Coercion type builder for structs passed in registers. The coercion type 9482 // serves two purposes: 9483 // 9484 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9485 // in registers. 9486 // 2. Expose aligned floating point elements as first-level elements, so the 9487 // code generator knows to pass them in floating point registers. 9488 // 9489 // We also compute the InReg flag which indicates that the struct contains 9490 // aligned 32-bit floats. 9491 // 9492 struct CoerceBuilder { 9493 llvm::LLVMContext &Context; 9494 const llvm::DataLayout &DL; 9495 SmallVector<llvm::Type*, 8> Elems; 9496 uint64_t Size; 9497 bool InReg; 9498 9499 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9500 : Context(c), DL(dl), Size(0), InReg(false) {} 9501 9502 // Pad Elems with integers until Size is ToSize. 9503 void pad(uint64_t ToSize) { 9504 assert(ToSize >= Size && "Cannot remove elements"); 9505 if (ToSize == Size) 9506 return; 9507 9508 // Finish the current 64-bit word. 9509 uint64_t Aligned = llvm::alignTo(Size, 64); 9510 if (Aligned > Size && Aligned <= ToSize) { 9511 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9512 Size = Aligned; 9513 } 9514 9515 // Add whole 64-bit words. 9516 while (Size + 64 <= ToSize) { 9517 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9518 Size += 64; 9519 } 9520 9521 // Final in-word padding. 9522 if (Size < ToSize) { 9523 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9524 Size = ToSize; 9525 } 9526 } 9527 9528 // Add a floating point element at Offset. 9529 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9530 // Unaligned floats are treated as integers. 9531 if (Offset % Bits) 9532 return; 9533 // The InReg flag is only required if there are any floats < 64 bits. 9534 if (Bits < 64) 9535 InReg = true; 9536 pad(Offset); 9537 Elems.push_back(Ty); 9538 Size = Offset + Bits; 9539 } 9540 9541 // Add a struct type to the coercion type, starting at Offset (in bits). 9542 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9543 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9544 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9545 llvm::Type *ElemTy = StrTy->getElementType(i); 9546 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9547 switch (ElemTy->getTypeID()) { 9548 case llvm::Type::StructTyID: 9549 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9550 break; 9551 case llvm::Type::FloatTyID: 9552 addFloat(ElemOffset, ElemTy, 32); 9553 break; 9554 case llvm::Type::DoubleTyID: 9555 addFloat(ElemOffset, ElemTy, 64); 9556 break; 9557 case llvm::Type::FP128TyID: 9558 addFloat(ElemOffset, ElemTy, 128); 9559 break; 9560 case llvm::Type::PointerTyID: 9561 if (ElemOffset % 64 == 0) { 9562 pad(ElemOffset); 9563 Elems.push_back(ElemTy); 9564 Size += 64; 9565 } 9566 break; 9567 default: 9568 break; 9569 } 9570 } 9571 } 9572 9573 // Check if Ty is a usable substitute for the coercion type. 9574 bool isUsableType(llvm::StructType *Ty) const { 9575 return llvm::makeArrayRef(Elems) == Ty->elements(); 9576 } 9577 9578 // Get the coercion type as a literal struct type. 9579 llvm::Type *getType() const { 9580 if (Elems.size() == 1) 9581 return Elems.front(); 9582 else 9583 return llvm::StructType::get(Context, Elems); 9584 } 9585 }; 9586 }; 9587 } // end anonymous namespace 9588 9589 ABIArgInfo 9590 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9591 if (Ty->isVoidType()) 9592 return ABIArgInfo::getIgnore(); 9593 9594 uint64_t Size = getContext().getTypeSize(Ty); 9595 9596 // Anything too big to fit in registers is passed with an explicit indirect 9597 // pointer / sret pointer. 9598 if (Size > SizeLimit) 9599 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9600 9601 // Treat an enum type as its underlying type. 9602 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9603 Ty = EnumTy->getDecl()->getIntegerType(); 9604 9605 // Integer types smaller than a register are extended. 9606 if (Size < 64 && Ty->isIntegerType()) 9607 return ABIArgInfo::getExtend(Ty); 9608 9609 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9610 if (EIT->getNumBits() < 64) 9611 return ABIArgInfo::getExtend(Ty); 9612 9613 // Other non-aggregates go in registers. 9614 if (!isAggregateTypeForABI(Ty)) 9615 return ABIArgInfo::getDirect(); 9616 9617 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9618 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9619 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9620 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9621 9622 // This is a small aggregate type that should be passed in registers. 9623 // Build a coercion type from the LLVM struct type. 9624 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9625 if (!StrTy) 9626 return ABIArgInfo::getDirect(); 9627 9628 CoerceBuilder CB(getVMContext(), getDataLayout()); 9629 CB.addStruct(0, StrTy); 9630 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9631 9632 // Try to use the original type for coercion. 9633 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9634 9635 if (CB.InReg) 9636 return ABIArgInfo::getDirectInReg(CoerceTy); 9637 else 9638 return ABIArgInfo::getDirect(CoerceTy); 9639 } 9640 9641 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9642 QualType Ty) const { 9643 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9644 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9645 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9646 AI.setCoerceToType(ArgTy); 9647 9648 CharUnits SlotSize = CharUnits::fromQuantity(8); 9649 9650 CGBuilderTy &Builder = CGF.Builder; 9651 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9652 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9653 9654 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9655 9656 Address ArgAddr = Address::invalid(); 9657 CharUnits Stride; 9658 switch (AI.getKind()) { 9659 case ABIArgInfo::Expand: 9660 case ABIArgInfo::CoerceAndExpand: 9661 case ABIArgInfo::InAlloca: 9662 llvm_unreachable("Unsupported ABI kind for va_arg"); 9663 9664 case ABIArgInfo::Extend: { 9665 Stride = SlotSize; 9666 CharUnits Offset = SlotSize - TypeInfo.Width; 9667 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9668 break; 9669 } 9670 9671 case ABIArgInfo::Direct: { 9672 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9673 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9674 ArgAddr = Addr; 9675 break; 9676 } 9677 9678 case ABIArgInfo::Indirect: 9679 case ABIArgInfo::IndirectAliased: 9680 Stride = SlotSize; 9681 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9682 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9683 TypeInfo.Align); 9684 break; 9685 9686 case ABIArgInfo::Ignore: 9687 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9688 } 9689 9690 // Update VAList. 9691 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9692 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9693 9694 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9695 } 9696 9697 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9698 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9699 for (auto &I : FI.arguments()) 9700 I.info = classifyType(I.type, 16 * 8); 9701 } 9702 9703 namespace { 9704 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9705 public: 9706 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9707 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9708 9709 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9710 return 14; 9711 } 9712 9713 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9714 llvm::Value *Address) const override; 9715 }; 9716 } // end anonymous namespace 9717 9718 bool 9719 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9720 llvm::Value *Address) const { 9721 // This is calculated from the LLVM and GCC tables and verified 9722 // against gcc output. AFAIK all ABIs use the same encoding. 9723 9724 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9725 9726 llvm::IntegerType *i8 = CGF.Int8Ty; 9727 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9728 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9729 9730 // 0-31: the 8-byte general-purpose registers 9731 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9732 9733 // 32-63: f0-31, the 4-byte floating-point registers 9734 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9735 9736 // Y = 64 9737 // PSR = 65 9738 // WIM = 66 9739 // TBR = 67 9740 // PC = 68 9741 // NPC = 69 9742 // FSR = 70 9743 // CSR = 71 9744 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9745 9746 // 72-87: d0-15, the 8-byte floating-point registers 9747 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9748 9749 return false; 9750 } 9751 9752 // ARC ABI implementation. 9753 namespace { 9754 9755 class ARCABIInfo : public DefaultABIInfo { 9756 public: 9757 using DefaultABIInfo::DefaultABIInfo; 9758 9759 private: 9760 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9761 QualType Ty) const override; 9762 9763 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9764 if (!State.FreeRegs) 9765 return; 9766 if (Info.isIndirect() && Info.getInReg()) 9767 State.FreeRegs--; 9768 else if (Info.isDirect() && Info.getInReg()) { 9769 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9770 if (sz < State.FreeRegs) 9771 State.FreeRegs -= sz; 9772 else 9773 State.FreeRegs = 0; 9774 } 9775 } 9776 9777 void computeInfo(CGFunctionInfo &FI) const override { 9778 CCState State(FI); 9779 // ARC uses 8 registers to pass arguments. 9780 State.FreeRegs = 8; 9781 9782 if (!getCXXABI().classifyReturnType(FI)) 9783 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9784 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9785 for (auto &I : FI.arguments()) { 9786 I.info = classifyArgumentType(I.type, State.FreeRegs); 9787 updateState(I.info, I.type, State); 9788 } 9789 } 9790 9791 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9792 ABIArgInfo getIndirectByValue(QualType Ty) const; 9793 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9794 ABIArgInfo classifyReturnType(QualType RetTy) const; 9795 }; 9796 9797 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9798 public: 9799 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9800 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9801 }; 9802 9803 9804 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9805 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9806 getNaturalAlignIndirect(Ty, false); 9807 } 9808 9809 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9810 // Compute the byval alignment. 9811 const unsigned MinABIStackAlignInBytes = 4; 9812 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9813 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9814 TypeAlign > MinABIStackAlignInBytes); 9815 } 9816 9817 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9818 QualType Ty) const { 9819 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9820 getContext().getTypeInfoInChars(Ty), 9821 CharUnits::fromQuantity(4), true); 9822 } 9823 9824 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9825 uint8_t FreeRegs) const { 9826 // Handle the generic C++ ABI. 9827 const RecordType *RT = Ty->getAs<RecordType>(); 9828 if (RT) { 9829 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9830 if (RAA == CGCXXABI::RAA_Indirect) 9831 return getIndirectByRef(Ty, FreeRegs > 0); 9832 9833 if (RAA == CGCXXABI::RAA_DirectInMemory) 9834 return getIndirectByValue(Ty); 9835 } 9836 9837 // Treat an enum type as its underlying type. 9838 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9839 Ty = EnumTy->getDecl()->getIntegerType(); 9840 9841 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9842 9843 if (isAggregateTypeForABI(Ty)) { 9844 // Structures with flexible arrays are always indirect. 9845 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9846 return getIndirectByValue(Ty); 9847 9848 // Ignore empty structs/unions. 9849 if (isEmptyRecord(getContext(), Ty, true)) 9850 return ABIArgInfo::getIgnore(); 9851 9852 llvm::LLVMContext &LLVMContext = getVMContext(); 9853 9854 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9855 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9856 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9857 9858 return FreeRegs >= SizeInRegs ? 9859 ABIArgInfo::getDirectInReg(Result) : 9860 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9861 } 9862 9863 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9864 if (EIT->getNumBits() > 64) 9865 return getIndirectByValue(Ty); 9866 9867 return isPromotableIntegerTypeForABI(Ty) 9868 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9869 : ABIArgInfo::getExtend(Ty)) 9870 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9871 : ABIArgInfo::getDirect()); 9872 } 9873 9874 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9875 if (RetTy->isAnyComplexType()) 9876 return ABIArgInfo::getDirectInReg(); 9877 9878 // Arguments of size > 4 registers are indirect. 9879 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9880 if (RetSize > 4) 9881 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9882 9883 return DefaultABIInfo::classifyReturnType(RetTy); 9884 } 9885 9886 } // End anonymous namespace. 9887 9888 //===----------------------------------------------------------------------===// 9889 // XCore ABI Implementation 9890 //===----------------------------------------------------------------------===// 9891 9892 namespace { 9893 9894 /// A SmallStringEnc instance is used to build up the TypeString by passing 9895 /// it by reference between functions that append to it. 9896 typedef llvm::SmallString<128> SmallStringEnc; 9897 9898 /// TypeStringCache caches the meta encodings of Types. 9899 /// 9900 /// The reason for caching TypeStrings is two fold: 9901 /// 1. To cache a type's encoding for later uses; 9902 /// 2. As a means to break recursive member type inclusion. 9903 /// 9904 /// A cache Entry can have a Status of: 9905 /// NonRecursive: The type encoding is not recursive; 9906 /// Recursive: The type encoding is recursive; 9907 /// Incomplete: An incomplete TypeString; 9908 /// IncompleteUsed: An incomplete TypeString that has been used in a 9909 /// Recursive type encoding. 9910 /// 9911 /// A NonRecursive entry will have all of its sub-members expanded as fully 9912 /// as possible. Whilst it may contain types which are recursive, the type 9913 /// itself is not recursive and thus its encoding may be safely used whenever 9914 /// the type is encountered. 9915 /// 9916 /// A Recursive entry will have all of its sub-members expanded as fully as 9917 /// possible. The type itself is recursive and it may contain other types which 9918 /// are recursive. The Recursive encoding must not be used during the expansion 9919 /// of a recursive type's recursive branch. For simplicity the code uses 9920 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9921 /// 9922 /// An Incomplete entry is always a RecordType and only encodes its 9923 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9924 /// are placed into the cache during type expansion as a means to identify and 9925 /// handle recursive inclusion of types as sub-members. If there is recursion 9926 /// the entry becomes IncompleteUsed. 9927 /// 9928 /// During the expansion of a RecordType's members: 9929 /// 9930 /// If the cache contains a NonRecursive encoding for the member type, the 9931 /// cached encoding is used; 9932 /// 9933 /// If the cache contains a Recursive encoding for the member type, the 9934 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9935 /// 9936 /// If the member is a RecordType, an Incomplete encoding is placed into the 9937 /// cache to break potential recursive inclusion of itself as a sub-member; 9938 /// 9939 /// Once a member RecordType has been expanded, its temporary incomplete 9940 /// entry is removed from the cache. If a Recursive encoding was swapped out 9941 /// it is swapped back in; 9942 /// 9943 /// If an incomplete entry is used to expand a sub-member, the incomplete 9944 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9945 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9946 /// 9947 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9948 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9949 /// Else the member is part of a recursive type and thus the recursion has 9950 /// been exited too soon for the encoding to be correct for the member. 9951 /// 9952 class TypeStringCache { 9953 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9954 struct Entry { 9955 std::string Str; // The encoded TypeString for the type. 9956 enum Status State; // Information about the encoding in 'Str'. 9957 std::string Swapped; // A temporary place holder for a Recursive encoding 9958 // during the expansion of RecordType's members. 9959 }; 9960 std::map<const IdentifierInfo *, struct Entry> Map; 9961 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9962 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9963 public: 9964 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9965 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9966 bool removeIncomplete(const IdentifierInfo *ID); 9967 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9968 bool IsRecursive); 9969 StringRef lookupStr(const IdentifierInfo *ID); 9970 }; 9971 9972 /// TypeString encodings for enum & union fields must be order. 9973 /// FieldEncoding is a helper for this ordering process. 9974 class FieldEncoding { 9975 bool HasName; 9976 std::string Enc; 9977 public: 9978 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9979 StringRef str() { return Enc; } 9980 bool operator<(const FieldEncoding &rhs) const { 9981 if (HasName != rhs.HasName) return HasName; 9982 return Enc < rhs.Enc; 9983 } 9984 }; 9985 9986 class XCoreABIInfo : public DefaultABIInfo { 9987 public: 9988 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9989 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9990 QualType Ty) const override; 9991 }; 9992 9993 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9994 mutable TypeStringCache TSC; 9995 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9996 const CodeGen::CodeGenModule &M) const; 9997 9998 public: 9999 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 10000 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 10001 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 10002 const llvm::MapVector<GlobalDecl, StringRef> 10003 &MangledDeclNames) const override; 10004 }; 10005 10006 } // End anonymous namespace. 10007 10008 // TODO: this implementation is likely now redundant with the default 10009 // EmitVAArg. 10010 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10011 QualType Ty) const { 10012 CGBuilderTy &Builder = CGF.Builder; 10013 10014 // Get the VAList. 10015 CharUnits SlotSize = CharUnits::fromQuantity(4); 10016 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 10017 10018 // Handle the argument. 10019 ABIArgInfo AI = classifyArgumentType(Ty); 10020 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 10021 llvm::Type *ArgTy = CGT.ConvertType(Ty); 10022 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 10023 AI.setCoerceToType(ArgTy); 10024 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 10025 10026 Address Val = Address::invalid(); 10027 CharUnits ArgSize = CharUnits::Zero(); 10028 switch (AI.getKind()) { 10029 case ABIArgInfo::Expand: 10030 case ABIArgInfo::CoerceAndExpand: 10031 case ABIArgInfo::InAlloca: 10032 llvm_unreachable("Unsupported ABI kind for va_arg"); 10033 case ABIArgInfo::Ignore: 10034 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 10035 ArgSize = CharUnits::Zero(); 10036 break; 10037 case ABIArgInfo::Extend: 10038 case ABIArgInfo::Direct: 10039 Val = Builder.CreateBitCast(AP, ArgPtrTy); 10040 ArgSize = CharUnits::fromQuantity( 10041 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10042 ArgSize = ArgSize.alignTo(SlotSize); 10043 break; 10044 case ABIArgInfo::Indirect: 10045 case ABIArgInfo::IndirectAliased: 10046 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10047 Val = Address(Builder.CreateLoad(Val), TypeAlign); 10048 ArgSize = SlotSize; 10049 break; 10050 } 10051 10052 // Increment the VAList. 10053 if (!ArgSize.isZero()) { 10054 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10055 Builder.CreateStore(APN.getPointer(), VAListAddr); 10056 } 10057 10058 return Val; 10059 } 10060 10061 /// During the expansion of a RecordType, an incomplete TypeString is placed 10062 /// into the cache as a means to identify and break recursion. 10063 /// If there is a Recursive encoding in the cache, it is swapped out and will 10064 /// be reinserted by removeIncomplete(). 10065 /// All other types of encoding should have been used rather than arriving here. 10066 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10067 std::string StubEnc) { 10068 if (!ID) 10069 return; 10070 Entry &E = Map[ID]; 10071 assert( (E.Str.empty() || E.State == Recursive) && 10072 "Incorrectly use of addIncomplete"); 10073 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10074 E.Swapped.swap(E.Str); // swap out the Recursive 10075 E.Str.swap(StubEnc); 10076 E.State = Incomplete; 10077 ++IncompleteCount; 10078 } 10079 10080 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10081 /// must be removed from the cache. 10082 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10083 /// Returns true if the RecordType was defined recursively. 10084 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10085 if (!ID) 10086 return false; 10087 auto I = Map.find(ID); 10088 assert(I != Map.end() && "Entry not present"); 10089 Entry &E = I->second; 10090 assert( (E.State == Incomplete || 10091 E.State == IncompleteUsed) && 10092 "Entry must be an incomplete type"); 10093 bool IsRecursive = false; 10094 if (E.State == IncompleteUsed) { 10095 // We made use of our Incomplete encoding, thus we are recursive. 10096 IsRecursive = true; 10097 --IncompleteUsedCount; 10098 } 10099 if (E.Swapped.empty()) 10100 Map.erase(I); 10101 else { 10102 // Swap the Recursive back. 10103 E.Swapped.swap(E.Str); 10104 E.Swapped.clear(); 10105 E.State = Recursive; 10106 } 10107 --IncompleteCount; 10108 return IsRecursive; 10109 } 10110 10111 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10112 /// Recursive (viz: all sub-members were expanded as fully as possible). 10113 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10114 bool IsRecursive) { 10115 if (!ID || IncompleteUsedCount) 10116 return; // No key or it is is an incomplete sub-type so don't add. 10117 Entry &E = Map[ID]; 10118 if (IsRecursive && !E.Str.empty()) { 10119 assert(E.State==Recursive && E.Str.size() == Str.size() && 10120 "This is not the same Recursive entry"); 10121 // The parent container was not recursive after all, so we could have used 10122 // this Recursive sub-member entry after all, but we assumed the worse when 10123 // we started viz: IncompleteCount!=0. 10124 return; 10125 } 10126 assert(E.Str.empty() && "Entry already present"); 10127 E.Str = Str.str(); 10128 E.State = IsRecursive? Recursive : NonRecursive; 10129 } 10130 10131 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10132 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10133 /// encoding is Recursive, return an empty StringRef. 10134 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10135 if (!ID) 10136 return StringRef(); // We have no key. 10137 auto I = Map.find(ID); 10138 if (I == Map.end()) 10139 return StringRef(); // We have no encoding. 10140 Entry &E = I->second; 10141 if (E.State == Recursive && IncompleteCount) 10142 return StringRef(); // We don't use Recursive encodings for member types. 10143 10144 if (E.State == Incomplete) { 10145 // The incomplete type is being used to break out of recursion. 10146 E.State = IncompleteUsed; 10147 ++IncompleteUsedCount; 10148 } 10149 return E.Str; 10150 } 10151 10152 /// The XCore ABI includes a type information section that communicates symbol 10153 /// type information to the linker. The linker uses this information to verify 10154 /// safety/correctness of things such as array bound and pointers et al. 10155 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10156 /// This type information (TypeString) is emitted into meta data for all global 10157 /// symbols: definitions, declarations, functions & variables. 10158 /// 10159 /// The TypeString carries type, qualifier, name, size & value details. 10160 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10161 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10162 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10163 /// 10164 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10165 const CodeGen::CodeGenModule &CGM, 10166 TypeStringCache &TSC); 10167 10168 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10169 void XCoreTargetCodeGenInfo::emitTargetMD( 10170 const Decl *D, llvm::GlobalValue *GV, 10171 const CodeGen::CodeGenModule &CGM) const { 10172 SmallStringEnc Enc; 10173 if (getTypeString(Enc, D, CGM, TSC)) { 10174 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10175 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10176 llvm::MDString::get(Ctx, Enc.str())}; 10177 llvm::NamedMDNode *MD = 10178 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10179 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10180 } 10181 } 10182 10183 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10184 CodeGen::CodeGenModule &CGM, 10185 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10186 // Warning, new MangledDeclNames may be appended within this loop. 10187 // We rely on MapVector insertions adding new elements to the end 10188 // of the container. 10189 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10190 auto Val = *(MangledDeclNames.begin() + I); 10191 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10192 if (GV) { 10193 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10194 emitTargetMD(D, GV, CGM); 10195 } 10196 } 10197 } 10198 10199 //===----------------------------------------------------------------------===// 10200 // Base ABI and target codegen info implementation common between SPIR and 10201 // SPIR-V. 10202 //===----------------------------------------------------------------------===// 10203 10204 namespace { 10205 class CommonSPIRABIInfo : public DefaultABIInfo { 10206 public: 10207 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10208 10209 private: 10210 void setCCs(); 10211 }; 10212 } // end anonymous namespace 10213 namespace { 10214 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10215 public: 10216 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10217 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10218 10219 LangAS getASTAllocaAddressSpace() const override { 10220 return getLangASFromTargetAS( 10221 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10222 } 10223 10224 unsigned getOpenCLKernelCallingConv() const override; 10225 }; 10226 10227 } // End anonymous namespace. 10228 void CommonSPIRABIInfo::setCCs() { 10229 assert(getRuntimeCC() == llvm::CallingConv::C); 10230 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10231 } 10232 10233 namespace clang { 10234 namespace CodeGen { 10235 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10236 DefaultABIInfo SPIRABI(CGM.getTypes()); 10237 SPIRABI.computeInfo(FI); 10238 } 10239 } 10240 } 10241 10242 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10243 return llvm::CallingConv::SPIR_KERNEL; 10244 } 10245 10246 static bool appendType(SmallStringEnc &Enc, QualType QType, 10247 const CodeGen::CodeGenModule &CGM, 10248 TypeStringCache &TSC); 10249 10250 /// Helper function for appendRecordType(). 10251 /// Builds a SmallVector containing the encoded field types in declaration 10252 /// order. 10253 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10254 const RecordDecl *RD, 10255 const CodeGen::CodeGenModule &CGM, 10256 TypeStringCache &TSC) { 10257 for (const auto *Field : RD->fields()) { 10258 SmallStringEnc Enc; 10259 Enc += "m("; 10260 Enc += Field->getName(); 10261 Enc += "){"; 10262 if (Field->isBitField()) { 10263 Enc += "b("; 10264 llvm::raw_svector_ostream OS(Enc); 10265 OS << Field->getBitWidthValue(CGM.getContext()); 10266 Enc += ':'; 10267 } 10268 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10269 return false; 10270 if (Field->isBitField()) 10271 Enc += ')'; 10272 Enc += '}'; 10273 FE.emplace_back(!Field->getName().empty(), Enc); 10274 } 10275 return true; 10276 } 10277 10278 /// Appends structure and union types to Enc and adds encoding to cache. 10279 /// Recursively calls appendType (via extractFieldType) for each field. 10280 /// Union types have their fields ordered according to the ABI. 10281 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10282 const CodeGen::CodeGenModule &CGM, 10283 TypeStringCache &TSC, const IdentifierInfo *ID) { 10284 // Append the cached TypeString if we have one. 10285 StringRef TypeString = TSC.lookupStr(ID); 10286 if (!TypeString.empty()) { 10287 Enc += TypeString; 10288 return true; 10289 } 10290 10291 // Start to emit an incomplete TypeString. 10292 size_t Start = Enc.size(); 10293 Enc += (RT->isUnionType()? 'u' : 's'); 10294 Enc += '('; 10295 if (ID) 10296 Enc += ID->getName(); 10297 Enc += "){"; 10298 10299 // We collect all encoded fields and order as necessary. 10300 bool IsRecursive = false; 10301 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10302 if (RD && !RD->field_empty()) { 10303 // An incomplete TypeString stub is placed in the cache for this RecordType 10304 // so that recursive calls to this RecordType will use it whilst building a 10305 // complete TypeString for this RecordType. 10306 SmallVector<FieldEncoding, 16> FE; 10307 std::string StubEnc(Enc.substr(Start).str()); 10308 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10309 TSC.addIncomplete(ID, std::move(StubEnc)); 10310 if (!extractFieldType(FE, RD, CGM, TSC)) { 10311 (void) TSC.removeIncomplete(ID); 10312 return false; 10313 } 10314 IsRecursive = TSC.removeIncomplete(ID); 10315 // The ABI requires unions to be sorted but not structures. 10316 // See FieldEncoding::operator< for sort algorithm. 10317 if (RT->isUnionType()) 10318 llvm::sort(FE); 10319 // We can now complete the TypeString. 10320 unsigned E = FE.size(); 10321 for (unsigned I = 0; I != E; ++I) { 10322 if (I) 10323 Enc += ','; 10324 Enc += FE[I].str(); 10325 } 10326 } 10327 Enc += '}'; 10328 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10329 return true; 10330 } 10331 10332 /// Appends enum types to Enc and adds the encoding to the cache. 10333 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10334 TypeStringCache &TSC, 10335 const IdentifierInfo *ID) { 10336 // Append the cached TypeString if we have one. 10337 StringRef TypeString = TSC.lookupStr(ID); 10338 if (!TypeString.empty()) { 10339 Enc += TypeString; 10340 return true; 10341 } 10342 10343 size_t Start = Enc.size(); 10344 Enc += "e("; 10345 if (ID) 10346 Enc += ID->getName(); 10347 Enc += "){"; 10348 10349 // We collect all encoded enumerations and order them alphanumerically. 10350 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10351 SmallVector<FieldEncoding, 16> FE; 10352 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10353 ++I) { 10354 SmallStringEnc EnumEnc; 10355 EnumEnc += "m("; 10356 EnumEnc += I->getName(); 10357 EnumEnc += "){"; 10358 I->getInitVal().toString(EnumEnc); 10359 EnumEnc += '}'; 10360 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10361 } 10362 llvm::sort(FE); 10363 unsigned E = FE.size(); 10364 for (unsigned I = 0; I != E; ++I) { 10365 if (I) 10366 Enc += ','; 10367 Enc += FE[I].str(); 10368 } 10369 } 10370 Enc += '}'; 10371 TSC.addIfComplete(ID, Enc.substr(Start), false); 10372 return true; 10373 } 10374 10375 /// Appends type's qualifier to Enc. 10376 /// This is done prior to appending the type's encoding. 10377 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10378 // Qualifiers are emitted in alphabetical order. 10379 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10380 int Lookup = 0; 10381 if (QT.isConstQualified()) 10382 Lookup += 1<<0; 10383 if (QT.isRestrictQualified()) 10384 Lookup += 1<<1; 10385 if (QT.isVolatileQualified()) 10386 Lookup += 1<<2; 10387 Enc += Table[Lookup]; 10388 } 10389 10390 /// Appends built-in types to Enc. 10391 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10392 const char *EncType; 10393 switch (BT->getKind()) { 10394 case BuiltinType::Void: 10395 EncType = "0"; 10396 break; 10397 case BuiltinType::Bool: 10398 EncType = "b"; 10399 break; 10400 case BuiltinType::Char_U: 10401 EncType = "uc"; 10402 break; 10403 case BuiltinType::UChar: 10404 EncType = "uc"; 10405 break; 10406 case BuiltinType::SChar: 10407 EncType = "sc"; 10408 break; 10409 case BuiltinType::UShort: 10410 EncType = "us"; 10411 break; 10412 case BuiltinType::Short: 10413 EncType = "ss"; 10414 break; 10415 case BuiltinType::UInt: 10416 EncType = "ui"; 10417 break; 10418 case BuiltinType::Int: 10419 EncType = "si"; 10420 break; 10421 case BuiltinType::ULong: 10422 EncType = "ul"; 10423 break; 10424 case BuiltinType::Long: 10425 EncType = "sl"; 10426 break; 10427 case BuiltinType::ULongLong: 10428 EncType = "ull"; 10429 break; 10430 case BuiltinType::LongLong: 10431 EncType = "sll"; 10432 break; 10433 case BuiltinType::Float: 10434 EncType = "ft"; 10435 break; 10436 case BuiltinType::Double: 10437 EncType = "d"; 10438 break; 10439 case BuiltinType::LongDouble: 10440 EncType = "ld"; 10441 break; 10442 default: 10443 return false; 10444 } 10445 Enc += EncType; 10446 return true; 10447 } 10448 10449 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10450 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10451 const CodeGen::CodeGenModule &CGM, 10452 TypeStringCache &TSC) { 10453 Enc += "p("; 10454 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10455 return false; 10456 Enc += ')'; 10457 return true; 10458 } 10459 10460 /// Appends array encoding to Enc before calling appendType for the element. 10461 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10462 const ArrayType *AT, 10463 const CodeGen::CodeGenModule &CGM, 10464 TypeStringCache &TSC, StringRef NoSizeEnc) { 10465 if (AT->getSizeModifier() != ArrayType::Normal) 10466 return false; 10467 Enc += "a("; 10468 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10469 CAT->getSize().toStringUnsigned(Enc); 10470 else 10471 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10472 Enc += ':'; 10473 // The Qualifiers should be attached to the type rather than the array. 10474 appendQualifier(Enc, QT); 10475 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10476 return false; 10477 Enc += ')'; 10478 return true; 10479 } 10480 10481 /// Appends a function encoding to Enc, calling appendType for the return type 10482 /// and the arguments. 10483 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10484 const CodeGen::CodeGenModule &CGM, 10485 TypeStringCache &TSC) { 10486 Enc += "f{"; 10487 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10488 return false; 10489 Enc += "}("; 10490 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10491 // N.B. we are only interested in the adjusted param types. 10492 auto I = FPT->param_type_begin(); 10493 auto E = FPT->param_type_end(); 10494 if (I != E) { 10495 do { 10496 if (!appendType(Enc, *I, CGM, TSC)) 10497 return false; 10498 ++I; 10499 if (I != E) 10500 Enc += ','; 10501 } while (I != E); 10502 if (FPT->isVariadic()) 10503 Enc += ",va"; 10504 } else { 10505 if (FPT->isVariadic()) 10506 Enc += "va"; 10507 else 10508 Enc += '0'; 10509 } 10510 } 10511 Enc += ')'; 10512 return true; 10513 } 10514 10515 /// Handles the type's qualifier before dispatching a call to handle specific 10516 /// type encodings. 10517 static bool appendType(SmallStringEnc &Enc, QualType QType, 10518 const CodeGen::CodeGenModule &CGM, 10519 TypeStringCache &TSC) { 10520 10521 QualType QT = QType.getCanonicalType(); 10522 10523 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10524 // The Qualifiers should be attached to the type rather than the array. 10525 // Thus we don't call appendQualifier() here. 10526 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10527 10528 appendQualifier(Enc, QT); 10529 10530 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10531 return appendBuiltinType(Enc, BT); 10532 10533 if (const PointerType *PT = QT->getAs<PointerType>()) 10534 return appendPointerType(Enc, PT, CGM, TSC); 10535 10536 if (const EnumType *ET = QT->getAs<EnumType>()) 10537 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10538 10539 if (const RecordType *RT = QT->getAsStructureType()) 10540 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10541 10542 if (const RecordType *RT = QT->getAsUnionType()) 10543 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10544 10545 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10546 return appendFunctionType(Enc, FT, CGM, TSC); 10547 10548 return false; 10549 } 10550 10551 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10552 const CodeGen::CodeGenModule &CGM, 10553 TypeStringCache &TSC) { 10554 if (!D) 10555 return false; 10556 10557 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10558 if (FD->getLanguageLinkage() != CLanguageLinkage) 10559 return false; 10560 return appendType(Enc, FD->getType(), CGM, TSC); 10561 } 10562 10563 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10564 if (VD->getLanguageLinkage() != CLanguageLinkage) 10565 return false; 10566 QualType QT = VD->getType().getCanonicalType(); 10567 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10568 // Global ArrayTypes are given a size of '*' if the size is unknown. 10569 // The Qualifiers should be attached to the type rather than the array. 10570 // Thus we don't call appendQualifier() here. 10571 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10572 } 10573 return appendType(Enc, QT, CGM, TSC); 10574 } 10575 return false; 10576 } 10577 10578 //===----------------------------------------------------------------------===// 10579 // RISCV ABI Implementation 10580 //===----------------------------------------------------------------------===// 10581 10582 namespace { 10583 class RISCVABIInfo : public DefaultABIInfo { 10584 private: 10585 // Size of the integer ('x') registers in bits. 10586 unsigned XLen; 10587 // Size of the floating point ('f') registers in bits. Note that the target 10588 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10589 // with soft float ABI has FLen==0). 10590 unsigned FLen; 10591 static const int NumArgGPRs = 8; 10592 static const int NumArgFPRs = 8; 10593 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10594 llvm::Type *&Field1Ty, 10595 CharUnits &Field1Off, 10596 llvm::Type *&Field2Ty, 10597 CharUnits &Field2Off) const; 10598 10599 public: 10600 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10601 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10602 10603 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10604 // non-virtual, but computeInfo is virtual, so we overload it. 10605 void computeInfo(CGFunctionInfo &FI) const override; 10606 10607 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10608 int &ArgFPRsLeft) const; 10609 ABIArgInfo classifyReturnType(QualType RetTy) const; 10610 10611 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10612 QualType Ty) const override; 10613 10614 ABIArgInfo extendType(QualType Ty) const; 10615 10616 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10617 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10618 CharUnits &Field2Off, int &NeededArgGPRs, 10619 int &NeededArgFPRs) const; 10620 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10621 CharUnits Field1Off, 10622 llvm::Type *Field2Ty, 10623 CharUnits Field2Off) const; 10624 }; 10625 } // end anonymous namespace 10626 10627 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10628 QualType RetTy = FI.getReturnType(); 10629 if (!getCXXABI().classifyReturnType(FI)) 10630 FI.getReturnInfo() = classifyReturnType(RetTy); 10631 10632 // IsRetIndirect is true if classifyArgumentType indicated the value should 10633 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10634 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10635 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10636 // list and pass indirectly on RV32. 10637 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10638 if (!IsRetIndirect && RetTy->isScalarType() && 10639 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10640 if (RetTy->isComplexType() && FLen) { 10641 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10642 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10643 } else { 10644 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10645 IsRetIndirect = true; 10646 } 10647 } 10648 10649 // We must track the number of GPRs used in order to conform to the RISC-V 10650 // ABI, as integer scalars passed in registers should have signext/zeroext 10651 // when promoted, but are anyext if passed on the stack. As GPR usage is 10652 // different for variadic arguments, we must also track whether we are 10653 // examining a vararg or not. 10654 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10655 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10656 int NumFixedArgs = FI.getNumRequiredArgs(); 10657 10658 int ArgNum = 0; 10659 for (auto &ArgInfo : FI.arguments()) { 10660 bool IsFixed = ArgNum < NumFixedArgs; 10661 ArgInfo.info = 10662 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10663 ArgNum++; 10664 } 10665 } 10666 10667 // Returns true if the struct is a potential candidate for the floating point 10668 // calling convention. If this function returns true, the caller is 10669 // responsible for checking that if there is only a single field then that 10670 // field is a float. 10671 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10672 llvm::Type *&Field1Ty, 10673 CharUnits &Field1Off, 10674 llvm::Type *&Field2Ty, 10675 CharUnits &Field2Off) const { 10676 bool IsInt = Ty->isIntegralOrEnumerationType(); 10677 bool IsFloat = Ty->isRealFloatingType(); 10678 10679 if (IsInt || IsFloat) { 10680 uint64_t Size = getContext().getTypeSize(Ty); 10681 if (IsInt && Size > XLen) 10682 return false; 10683 // Can't be eligible if larger than the FP registers. Half precision isn't 10684 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10685 // default to the integer ABI in that case. 10686 if (IsFloat && (Size > FLen || Size < 32)) 10687 return false; 10688 // Can't be eligible if an integer type was already found (int+int pairs 10689 // are not eligible). 10690 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10691 return false; 10692 if (!Field1Ty) { 10693 Field1Ty = CGT.ConvertType(Ty); 10694 Field1Off = CurOff; 10695 return true; 10696 } 10697 if (!Field2Ty) { 10698 Field2Ty = CGT.ConvertType(Ty); 10699 Field2Off = CurOff; 10700 return true; 10701 } 10702 return false; 10703 } 10704 10705 if (auto CTy = Ty->getAs<ComplexType>()) { 10706 if (Field1Ty) 10707 return false; 10708 QualType EltTy = CTy->getElementType(); 10709 if (getContext().getTypeSize(EltTy) > FLen) 10710 return false; 10711 Field1Ty = CGT.ConvertType(EltTy); 10712 Field1Off = CurOff; 10713 Field2Ty = Field1Ty; 10714 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10715 return true; 10716 } 10717 10718 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10719 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10720 QualType EltTy = ATy->getElementType(); 10721 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10722 for (uint64_t i = 0; i < ArraySize; ++i) { 10723 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10724 Field1Off, Field2Ty, Field2Off); 10725 if (!Ret) 10726 return false; 10727 CurOff += EltSize; 10728 } 10729 return true; 10730 } 10731 10732 if (const auto *RTy = Ty->getAs<RecordType>()) { 10733 // Structures with either a non-trivial destructor or a non-trivial 10734 // copy constructor are not eligible for the FP calling convention. 10735 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10736 return false; 10737 if (isEmptyRecord(getContext(), Ty, true)) 10738 return true; 10739 const RecordDecl *RD = RTy->getDecl(); 10740 // Unions aren't eligible unless they're empty (which is caught above). 10741 if (RD->isUnion()) 10742 return false; 10743 int ZeroWidthBitFieldCount = 0; 10744 for (const FieldDecl *FD : RD->fields()) { 10745 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10746 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10747 QualType QTy = FD->getType(); 10748 if (FD->isBitField()) { 10749 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10750 // Allow a bitfield with a type greater than XLen as long as the 10751 // bitwidth is XLen or less. 10752 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10753 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10754 if (BitWidth == 0) { 10755 ZeroWidthBitFieldCount++; 10756 continue; 10757 } 10758 } 10759 10760 bool Ret = detectFPCCEligibleStructHelper( 10761 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10762 Field1Ty, Field1Off, Field2Ty, Field2Off); 10763 if (!Ret) 10764 return false; 10765 10766 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10767 // or int+fp structs, but are ignored for a struct with an fp field and 10768 // any number of zero-width bitfields. 10769 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10770 return false; 10771 } 10772 return Field1Ty != nullptr; 10773 } 10774 10775 return false; 10776 } 10777 10778 // Determine if a struct is eligible for passing according to the floating 10779 // point calling convention (i.e., when flattened it contains a single fp 10780 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10781 // NeededArgGPRs are incremented appropriately. 10782 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10783 CharUnits &Field1Off, 10784 llvm::Type *&Field2Ty, 10785 CharUnits &Field2Off, 10786 int &NeededArgGPRs, 10787 int &NeededArgFPRs) const { 10788 Field1Ty = nullptr; 10789 Field2Ty = nullptr; 10790 NeededArgGPRs = 0; 10791 NeededArgFPRs = 0; 10792 bool IsCandidate = detectFPCCEligibleStructHelper( 10793 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10794 // Not really a candidate if we have a single int but no float. 10795 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10796 return false; 10797 if (!IsCandidate) 10798 return false; 10799 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10800 NeededArgFPRs++; 10801 else if (Field1Ty) 10802 NeededArgGPRs++; 10803 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10804 NeededArgFPRs++; 10805 else if (Field2Ty) 10806 NeededArgGPRs++; 10807 return true; 10808 } 10809 10810 // Call getCoerceAndExpand for the two-element flattened struct described by 10811 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10812 // appropriate coerceToType and unpaddedCoerceToType. 10813 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10814 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10815 CharUnits Field2Off) const { 10816 SmallVector<llvm::Type *, 3> CoerceElts; 10817 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10818 if (!Field1Off.isZero()) 10819 CoerceElts.push_back(llvm::ArrayType::get( 10820 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10821 10822 CoerceElts.push_back(Field1Ty); 10823 UnpaddedCoerceElts.push_back(Field1Ty); 10824 10825 if (!Field2Ty) { 10826 return ABIArgInfo::getCoerceAndExpand( 10827 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10828 UnpaddedCoerceElts[0]); 10829 } 10830 10831 CharUnits Field2Align = 10832 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10833 CharUnits Field1End = Field1Off + 10834 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10835 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10836 10837 CharUnits Padding = CharUnits::Zero(); 10838 if (Field2Off > Field2OffNoPadNoPack) 10839 Padding = Field2Off - Field2OffNoPadNoPack; 10840 else if (Field2Off != Field2Align && Field2Off > Field1End) 10841 Padding = Field2Off - Field1End; 10842 10843 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10844 10845 if (!Padding.isZero()) 10846 CoerceElts.push_back(llvm::ArrayType::get( 10847 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10848 10849 CoerceElts.push_back(Field2Ty); 10850 UnpaddedCoerceElts.push_back(Field2Ty); 10851 10852 auto CoerceToType = 10853 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10854 auto UnpaddedCoerceToType = 10855 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10856 10857 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10858 } 10859 10860 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10861 int &ArgGPRsLeft, 10862 int &ArgFPRsLeft) const { 10863 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10864 Ty = useFirstFieldIfTransparentUnion(Ty); 10865 10866 // Structures with either a non-trivial destructor or a non-trivial 10867 // copy constructor are always passed indirectly. 10868 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10869 if (ArgGPRsLeft) 10870 ArgGPRsLeft -= 1; 10871 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10872 CGCXXABI::RAA_DirectInMemory); 10873 } 10874 10875 // Ignore empty structs/unions. 10876 if (isEmptyRecord(getContext(), Ty, true)) 10877 return ABIArgInfo::getIgnore(); 10878 10879 uint64_t Size = getContext().getTypeSize(Ty); 10880 10881 // Pass floating point values via FPRs if possible. 10882 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10883 FLen >= Size && ArgFPRsLeft) { 10884 ArgFPRsLeft--; 10885 return ABIArgInfo::getDirect(); 10886 } 10887 10888 // Complex types for the hard float ABI must be passed direct rather than 10889 // using CoerceAndExpand. 10890 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10891 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10892 if (getContext().getTypeSize(EltTy) <= FLen) { 10893 ArgFPRsLeft -= 2; 10894 return ABIArgInfo::getDirect(); 10895 } 10896 } 10897 10898 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10899 llvm::Type *Field1Ty = nullptr; 10900 llvm::Type *Field2Ty = nullptr; 10901 CharUnits Field1Off = CharUnits::Zero(); 10902 CharUnits Field2Off = CharUnits::Zero(); 10903 int NeededArgGPRs = 0; 10904 int NeededArgFPRs = 0; 10905 bool IsCandidate = 10906 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10907 NeededArgGPRs, NeededArgFPRs); 10908 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10909 NeededArgFPRs <= ArgFPRsLeft) { 10910 ArgGPRsLeft -= NeededArgGPRs; 10911 ArgFPRsLeft -= NeededArgFPRs; 10912 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10913 Field2Off); 10914 } 10915 } 10916 10917 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10918 bool MustUseStack = false; 10919 // Determine the number of GPRs needed to pass the current argument 10920 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10921 // register pairs, so may consume 3 registers. 10922 int NeededArgGPRs = 1; 10923 if (!IsFixed && NeededAlign == 2 * XLen) 10924 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10925 else if (Size > XLen && Size <= 2 * XLen) 10926 NeededArgGPRs = 2; 10927 10928 if (NeededArgGPRs > ArgGPRsLeft) { 10929 MustUseStack = true; 10930 NeededArgGPRs = ArgGPRsLeft; 10931 } 10932 10933 ArgGPRsLeft -= NeededArgGPRs; 10934 10935 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10936 // Treat an enum type as its underlying type. 10937 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10938 Ty = EnumTy->getDecl()->getIntegerType(); 10939 10940 // All integral types are promoted to XLen width, unless passed on the 10941 // stack. 10942 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10943 return extendType(Ty); 10944 } 10945 10946 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10947 if (EIT->getNumBits() < XLen && !MustUseStack) 10948 return extendType(Ty); 10949 if (EIT->getNumBits() > 128 || 10950 (!getContext().getTargetInfo().hasInt128Type() && 10951 EIT->getNumBits() > 64)) 10952 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10953 } 10954 10955 return ABIArgInfo::getDirect(); 10956 } 10957 10958 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10959 // so coerce to integers. 10960 if (Size <= 2 * XLen) { 10961 unsigned Alignment = getContext().getTypeAlign(Ty); 10962 10963 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10964 // required, and a 2-element XLen array if only XLen alignment is required. 10965 if (Size <= XLen) { 10966 return ABIArgInfo::getDirect( 10967 llvm::IntegerType::get(getVMContext(), XLen)); 10968 } else if (Alignment == 2 * XLen) { 10969 return ABIArgInfo::getDirect( 10970 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10971 } else { 10972 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10973 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10974 } 10975 } 10976 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10977 } 10978 10979 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10980 if (RetTy->isVoidType()) 10981 return ABIArgInfo::getIgnore(); 10982 10983 int ArgGPRsLeft = 2; 10984 int ArgFPRsLeft = FLen ? 2 : 0; 10985 10986 // The rules for return and argument types are the same, so defer to 10987 // classifyArgumentType. 10988 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10989 ArgFPRsLeft); 10990 } 10991 10992 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10993 QualType Ty) const { 10994 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10995 10996 // Empty records are ignored for parameter passing purposes. 10997 if (isEmptyRecord(getContext(), Ty, true)) { 10998 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10999 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11000 return Addr; 11001 } 11002 11003 auto TInfo = getContext().getTypeInfoInChars(Ty); 11004 11005 // Arguments bigger than 2*Xlen bytes are passed indirectly. 11006 bool IsIndirect = TInfo.Width > 2 * SlotSize; 11007 11008 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 11009 SlotSize, /*AllowHigherAlign=*/true); 11010 } 11011 11012 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 11013 int TySize = getContext().getTypeSize(Ty); 11014 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 11015 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 11016 return ABIArgInfo::getSignExtend(Ty); 11017 return ABIArgInfo::getExtend(Ty); 11018 } 11019 11020 namespace { 11021 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 11022 public: 11023 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 11024 unsigned FLen) 11025 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11026 11027 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11028 CodeGen::CodeGenModule &CGM) const override { 11029 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11030 if (!FD) return; 11031 11032 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11033 if (!Attr) 11034 return; 11035 11036 const char *Kind; 11037 switch (Attr->getInterrupt()) { 11038 case RISCVInterruptAttr::user: Kind = "user"; break; 11039 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11040 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11041 } 11042 11043 auto *Fn = cast<llvm::Function>(GV); 11044 11045 Fn->addFnAttr("interrupt", Kind); 11046 } 11047 }; 11048 } // namespace 11049 11050 //===----------------------------------------------------------------------===// 11051 // VE ABI Implementation. 11052 // 11053 namespace { 11054 class VEABIInfo : public DefaultABIInfo { 11055 public: 11056 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11057 11058 private: 11059 ABIArgInfo classifyReturnType(QualType RetTy) const; 11060 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11061 void computeInfo(CGFunctionInfo &FI) const override; 11062 }; 11063 } // end anonymous namespace 11064 11065 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11066 if (Ty->isAnyComplexType()) 11067 return ABIArgInfo::getDirect(); 11068 uint64_t Size = getContext().getTypeSize(Ty); 11069 if (Size < 64 && Ty->isIntegerType()) 11070 return ABIArgInfo::getExtend(Ty); 11071 return DefaultABIInfo::classifyReturnType(Ty); 11072 } 11073 11074 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11075 if (Ty->isAnyComplexType()) 11076 return ABIArgInfo::getDirect(); 11077 uint64_t Size = getContext().getTypeSize(Ty); 11078 if (Size < 64 && Ty->isIntegerType()) 11079 return ABIArgInfo::getExtend(Ty); 11080 return DefaultABIInfo::classifyArgumentType(Ty); 11081 } 11082 11083 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11084 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11085 for (auto &Arg : FI.arguments()) 11086 Arg.info = classifyArgumentType(Arg.type); 11087 } 11088 11089 namespace { 11090 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11091 public: 11092 VETargetCodeGenInfo(CodeGenTypes &CGT) 11093 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11094 // VE ABI requires the arguments of variadic and prototype-less functions 11095 // are passed in both registers and memory. 11096 bool isNoProtoCallVariadic(const CallArgList &args, 11097 const FunctionNoProtoType *fnType) const override { 11098 return true; 11099 } 11100 }; 11101 } // end anonymous namespace 11102 11103 //===----------------------------------------------------------------------===// 11104 // Driver code 11105 //===----------------------------------------------------------------------===// 11106 11107 bool CodeGenModule::supportsCOMDAT() const { 11108 return getTriple().supportsCOMDAT(); 11109 } 11110 11111 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11112 if (TheTargetCodeGenInfo) 11113 return *TheTargetCodeGenInfo; 11114 11115 // Helper to set the unique_ptr while still keeping the return value. 11116 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11117 this->TheTargetCodeGenInfo.reset(P); 11118 return *P; 11119 }; 11120 11121 const llvm::Triple &Triple = getTarget().getTriple(); 11122 switch (Triple.getArch()) { 11123 default: 11124 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11125 11126 case llvm::Triple::le32: 11127 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11128 case llvm::Triple::m68k: 11129 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11130 case llvm::Triple::mips: 11131 case llvm::Triple::mipsel: 11132 if (Triple.getOS() == llvm::Triple::NaCl) 11133 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11134 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11135 11136 case llvm::Triple::mips64: 11137 case llvm::Triple::mips64el: 11138 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11139 11140 case llvm::Triple::avr: 11141 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11142 11143 case llvm::Triple::aarch64: 11144 case llvm::Triple::aarch64_32: 11145 case llvm::Triple::aarch64_be: { 11146 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11147 if (getTarget().getABI() == "darwinpcs") 11148 Kind = AArch64ABIInfo::DarwinPCS; 11149 else if (Triple.isOSWindows()) 11150 return SetCGInfo( 11151 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11152 11153 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11154 } 11155 11156 case llvm::Triple::wasm32: 11157 case llvm::Triple::wasm64: { 11158 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11159 if (getTarget().getABI() == "experimental-mv") 11160 Kind = WebAssemblyABIInfo::ExperimentalMV; 11161 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11162 } 11163 11164 case llvm::Triple::arm: 11165 case llvm::Triple::armeb: 11166 case llvm::Triple::thumb: 11167 case llvm::Triple::thumbeb: { 11168 if (Triple.getOS() == llvm::Triple::Win32) { 11169 return SetCGInfo( 11170 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11171 } 11172 11173 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11174 StringRef ABIStr = getTarget().getABI(); 11175 if (ABIStr == "apcs-gnu") 11176 Kind = ARMABIInfo::APCS; 11177 else if (ABIStr == "aapcs16") 11178 Kind = ARMABIInfo::AAPCS16_VFP; 11179 else if (CodeGenOpts.FloatABI == "hard" || 11180 (CodeGenOpts.FloatABI != "soft" && 11181 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11182 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11183 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11184 Kind = ARMABIInfo::AAPCS_VFP; 11185 11186 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11187 } 11188 11189 case llvm::Triple::ppc: { 11190 if (Triple.isOSAIX()) 11191 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11192 11193 bool IsSoftFloat = 11194 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11195 bool RetSmallStructInRegABI = 11196 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11197 return SetCGInfo( 11198 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11199 } 11200 case llvm::Triple::ppcle: { 11201 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11202 bool RetSmallStructInRegABI = 11203 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11204 return SetCGInfo( 11205 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11206 } 11207 case llvm::Triple::ppc64: 11208 if (Triple.isOSAIX()) 11209 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11210 11211 if (Triple.isOSBinFormatELF()) { 11212 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11213 if (getTarget().getABI() == "elfv2") 11214 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11215 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11216 11217 return SetCGInfo( 11218 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11219 } 11220 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11221 case llvm::Triple::ppc64le: { 11222 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11223 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11224 if (getTarget().getABI() == "elfv1") 11225 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11226 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11227 11228 return SetCGInfo( 11229 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11230 } 11231 11232 case llvm::Triple::nvptx: 11233 case llvm::Triple::nvptx64: 11234 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11235 11236 case llvm::Triple::msp430: 11237 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11238 11239 case llvm::Triple::riscv32: 11240 case llvm::Triple::riscv64: { 11241 StringRef ABIStr = getTarget().getABI(); 11242 unsigned XLen = getTarget().getPointerWidth(0); 11243 unsigned ABIFLen = 0; 11244 if (ABIStr.endswith("f")) 11245 ABIFLen = 32; 11246 else if (ABIStr.endswith("d")) 11247 ABIFLen = 64; 11248 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11249 } 11250 11251 case llvm::Triple::systemz: { 11252 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11253 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11254 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11255 } 11256 11257 case llvm::Triple::tce: 11258 case llvm::Triple::tcele: 11259 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11260 11261 case llvm::Triple::x86: { 11262 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11263 bool RetSmallStructInRegABI = 11264 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11265 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11266 11267 if (Triple.getOS() == llvm::Triple::Win32) { 11268 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11269 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11270 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11271 } else { 11272 return SetCGInfo(new X86_32TargetCodeGenInfo( 11273 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11274 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11275 CodeGenOpts.FloatABI == "soft")); 11276 } 11277 } 11278 11279 case llvm::Triple::x86_64: { 11280 StringRef ABI = getTarget().getABI(); 11281 X86AVXABILevel AVXLevel = 11282 (ABI == "avx512" 11283 ? X86AVXABILevel::AVX512 11284 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11285 11286 switch (Triple.getOS()) { 11287 case llvm::Triple::Win32: 11288 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11289 default: 11290 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11291 } 11292 } 11293 case llvm::Triple::hexagon: 11294 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11295 case llvm::Triple::lanai: 11296 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11297 case llvm::Triple::r600: 11298 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11299 case llvm::Triple::amdgcn: 11300 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11301 case llvm::Triple::sparc: 11302 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11303 case llvm::Triple::sparcv9: 11304 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11305 case llvm::Triple::xcore: 11306 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11307 case llvm::Triple::arc: 11308 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11309 case llvm::Triple::spir: 11310 case llvm::Triple::spir64: 11311 case llvm::Triple::spirv32: 11312 case llvm::Triple::spirv64: 11313 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 11314 case llvm::Triple::ve: 11315 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11316 } 11317 } 11318 11319 /// Create an OpenCL kernel for an enqueued block. 11320 /// 11321 /// The kernel has the same function type as the block invoke function. Its 11322 /// name is the name of the block invoke function postfixed with "_kernel". 11323 /// It simply calls the block invoke function then returns. 11324 llvm::Function * 11325 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11326 llvm::Function *Invoke, 11327 llvm::Value *BlockLiteral) const { 11328 auto *InvokeFT = Invoke->getFunctionType(); 11329 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11330 for (auto &P : InvokeFT->params()) 11331 ArgTys.push_back(P); 11332 auto &C = CGF.getLLVMContext(); 11333 std::string Name = Invoke->getName().str() + "_kernel"; 11334 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11335 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11336 &CGF.CGM.getModule()); 11337 auto IP = CGF.Builder.saveIP(); 11338 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11339 auto &Builder = CGF.Builder; 11340 Builder.SetInsertPoint(BB); 11341 llvm::SmallVector<llvm::Value *, 2> Args; 11342 for (auto &A : F->args()) 11343 Args.push_back(&A); 11344 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11345 call->setCallingConv(Invoke->getCallingConv()); 11346 Builder.CreateRetVoid(); 11347 Builder.restoreIP(IP); 11348 return F; 11349 } 11350 11351 /// Create an OpenCL kernel for an enqueued block. 11352 /// 11353 /// The type of the first argument (the block literal) is the struct type 11354 /// of the block literal instead of a pointer type. The first argument 11355 /// (block literal) is passed directly by value to the kernel. The kernel 11356 /// allocates the same type of struct on stack and stores the block literal 11357 /// to it and passes its pointer to the block invoke function. The kernel 11358 /// has "enqueued-block" function attribute and kernel argument metadata. 11359 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11360 CodeGenFunction &CGF, llvm::Function *Invoke, 11361 llvm::Value *BlockLiteral) const { 11362 auto &Builder = CGF.Builder; 11363 auto &C = CGF.getLLVMContext(); 11364 11365 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11366 auto *InvokeFT = Invoke->getFunctionType(); 11367 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11368 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11369 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11370 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11371 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11372 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11373 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11374 11375 ArgTys.push_back(BlockTy); 11376 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11377 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11378 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11379 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11380 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11381 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11382 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11383 ArgTys.push_back(InvokeFT->getParamType(I)); 11384 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11385 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11386 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11387 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11388 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11389 ArgNames.push_back( 11390 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11391 } 11392 std::string Name = Invoke->getName().str() + "_kernel"; 11393 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11394 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11395 &CGF.CGM.getModule()); 11396 F->addFnAttr("enqueued-block"); 11397 auto IP = CGF.Builder.saveIP(); 11398 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11399 Builder.SetInsertPoint(BB); 11400 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11401 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11402 BlockPtr->setAlignment(BlockAlign); 11403 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11404 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11405 llvm::SmallVector<llvm::Value *, 2> Args; 11406 Args.push_back(Cast); 11407 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11408 Args.push_back(I); 11409 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11410 call->setCallingConv(Invoke->getCallingConv()); 11411 Builder.CreateRetVoid(); 11412 Builder.restoreIP(IP); 11413 11414 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11415 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11416 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11417 F->setMetadata("kernel_arg_base_type", 11418 llvm::MDNode::get(C, ArgBaseTypeNames)); 11419 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11420 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11421 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11422 11423 return F; 11424 } 11425