xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/TargetInfo.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/CodeGen/SwiftCallingConv.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/IntrinsicsNVPTX.h"
34 #include "llvm/IR/IntrinsicsS390.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm> // std::sort
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 // Helper for coercing an aggregate argument or return value into an integer
43 // array of the same size (including padding) and alignment.  This alternate
44 // coercion happens only for the RenderScript ABI and can be removed after
45 // runtimes that rely on it are no longer supported.
46 //
47 // RenderScript assumes that the size of the argument / return value in the IR
48 // is the same as the size of the corresponding qualified type. This helper
49 // coerces the aggregate type into an array of the same size (including
50 // padding).  This coercion is used in lieu of expansion of struct members or
51 // other canonical coercions that return a coerced-type of larger size.
52 //
53 // Ty          - The argument / return value type
54 // Context     - The associated ASTContext
55 // LLVMContext - The associated LLVMContext
56 static ABIArgInfo coerceToIntArray(QualType Ty,
57                                    ASTContext &Context,
58                                    llvm::LLVMContext &LLVMContext) {
59   // Alignment and Size are measured in bits.
60   const uint64_t Size = Context.getTypeSize(Ty);
61   const uint64_t Alignment = Context.getTypeAlign(Ty);
62   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
63   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
64   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
65 }
66 
67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
68                                llvm::Value *Array,
69                                llvm::Value *Value,
70                                unsigned FirstIndex,
71                                unsigned LastIndex) {
72   // Alternatively, we could emit this as a loop in the source.
73   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
74     llvm::Value *Cell =
75         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
76     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
77   }
78 }
79 
80 static bool isAggregateTypeForABI(QualType T) {
81   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
82          T->isMemberFunctionPointerType();
83 }
84 
85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
86                                             bool Realign,
87                                             llvm::Type *Padding) const {
88   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
89                                  Realign, Padding);
90 }
91 
92 ABIArgInfo
93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
94   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
95                                       /*ByVal*/ false, Realign);
96 }
97 
98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
99                              QualType Ty) const {
100   return Address::invalid();
101 }
102 
103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
104   if (Ty->isPromotableIntegerType())
105     return true;
106 
107   if (const auto *EIT = Ty->getAs<ExtIntType>())
108     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
109       return true;
110 
111   return false;
112 }
113 
114 ABIInfo::~ABIInfo() {}
115 
116 /// Does the given lowering require more than the given number of
117 /// registers when expanded?
118 ///
119 /// This is intended to be the basis of a reasonable basic implementation
120 /// of should{Pass,Return}IndirectlyForSwift.
121 ///
122 /// For most targets, a limit of four total registers is reasonable; this
123 /// limits the amount of code required in order to move around the value
124 /// in case it wasn't produced immediately prior to the call by the caller
125 /// (or wasn't produced in exactly the right registers) or isn't used
126 /// immediately within the callee.  But some targets may need to further
127 /// limit the register count due to an inability to support that many
128 /// return registers.
129 static bool occupiesMoreThan(CodeGenTypes &cgt,
130                              ArrayRef<llvm::Type*> scalarTypes,
131                              unsigned maxAllRegisters) {
132   unsigned intCount = 0, fpCount = 0;
133   for (llvm::Type *type : scalarTypes) {
134     if (type->isPointerTy()) {
135       intCount++;
136     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
137       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
138       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
139     } else {
140       assert(type->isVectorTy() || type->isFloatingPointTy());
141       fpCount++;
142     }
143   }
144 
145   return (intCount + fpCount > maxAllRegisters);
146 }
147 
148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
149                                              llvm::Type *eltTy,
150                                              unsigned numElts) const {
151   // The default implementation of this assumes that the target guarantees
152   // 128-bit SIMD support but nothing more.
153   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
154 }
155 
156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
157                                               CGCXXABI &CXXABI) {
158   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
159   if (!RD) {
160     if (!RT->getDecl()->canPassInRegisters())
161       return CGCXXABI::RAA_Indirect;
162     return CGCXXABI::RAA_Default;
163   }
164   return CXXABI.getRecordArgABI(RD);
165 }
166 
167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
168                                               CGCXXABI &CXXABI) {
169   const RecordType *RT = T->getAs<RecordType>();
170   if (!RT)
171     return CGCXXABI::RAA_Default;
172   return getRecordArgABI(RT, CXXABI);
173 }
174 
175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
176                                const ABIInfo &Info) {
177   QualType Ty = FI.getReturnType();
178 
179   if (const auto *RT = Ty->getAs<RecordType>())
180     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
181         !RT->getDecl()->canPassInRegisters()) {
182       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
183       return true;
184     }
185 
186   return CXXABI.classifyReturnType(FI);
187 }
188 
189 /// Pass transparent unions as if they were the type of the first element. Sema
190 /// should ensure that all elements of the union have the same "machine type".
191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
192   if (const RecordType *UT = Ty->getAsUnionType()) {
193     const RecordDecl *UD = UT->getDecl();
194     if (UD->hasAttr<TransparentUnionAttr>()) {
195       assert(!UD->field_empty() && "sema created an empty transparent union");
196       return UD->field_begin()->getType();
197     }
198   }
199   return Ty;
200 }
201 
202 CGCXXABI &ABIInfo::getCXXABI() const {
203   return CGT.getCXXABI();
204 }
205 
206 ASTContext &ABIInfo::getContext() const {
207   return CGT.getContext();
208 }
209 
210 llvm::LLVMContext &ABIInfo::getVMContext() const {
211   return CGT.getLLVMContext();
212 }
213 
214 const llvm::DataLayout &ABIInfo::getDataLayout() const {
215   return CGT.getDataLayout();
216 }
217 
218 const TargetInfo &ABIInfo::getTarget() const {
219   return CGT.getTarget();
220 }
221 
222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
223   return CGT.getCodeGenOpts();
224 }
225 
226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
227 
228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
229   return false;
230 }
231 
232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
233                                                 uint64_t Members) const {
234   return false;
235 }
236 
237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
238   raw_ostream &OS = llvm::errs();
239   OS << "(ABIArgInfo Kind=";
240   switch (TheKind) {
241   case Direct:
242     OS << "Direct Type=";
243     if (llvm::Type *Ty = getCoerceToType())
244       Ty->print(OS);
245     else
246       OS << "null";
247     break;
248   case Extend:
249     OS << "Extend";
250     break;
251   case Ignore:
252     OS << "Ignore";
253     break;
254   case InAlloca:
255     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
256     break;
257   case Indirect:
258     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
259        << " ByVal=" << getIndirectByVal()
260        << " Realign=" << getIndirectRealign();
261     break;
262   case IndirectAliased:
263     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
264        << " AadrSpace=" << getIndirectAddrSpace()
265        << " Realign=" << getIndirectRealign();
266     break;
267   case Expand:
268     OS << "Expand";
269     break;
270   case CoerceAndExpand:
271     OS << "CoerceAndExpand Type=";
272     getCoerceAndExpandType()->print(OS);
273     break;
274   }
275   OS << ")\n";
276 }
277 
278 // Dynamically round a pointer up to a multiple of the given alignment.
279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
280                                                   llvm::Value *Ptr,
281                                                   CharUnits Align) {
282   llvm::Value *PtrAsInt = Ptr;
283   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
284   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
285   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
286         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
287   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
288            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
289   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
290                                         Ptr->getType(),
291                                         Ptr->getName() + ".aligned");
292   return PtrAsInt;
293 }
294 
295 /// Emit va_arg for a platform using the common void* representation,
296 /// where arguments are simply emitted in an array of slots on the stack.
297 ///
298 /// This version implements the core direct-value passing rules.
299 ///
300 /// \param SlotSize - The size and alignment of a stack slot.
301 ///   Each argument will be allocated to a multiple of this number of
302 ///   slots, and all the slots will be aligned to this value.
303 /// \param AllowHigherAlign - The slot alignment is not a cap;
304 ///   an argument type with an alignment greater than the slot size
305 ///   will be emitted on a higher-alignment address, potentially
306 ///   leaving one or more empty slots behind as padding.  If this
307 ///   is false, the returned address might be less-aligned than
308 ///   DirectAlign.
309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
310                                       Address VAListAddr,
311                                       llvm::Type *DirectTy,
312                                       CharUnits DirectSize,
313                                       CharUnits DirectAlign,
314                                       CharUnits SlotSize,
315                                       bool AllowHigherAlign) {
316   // Cast the element type to i8* if necessary.  Some platforms define
317   // va_list as a struct containing an i8* instead of just an i8*.
318   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
319     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
320 
321   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
322 
323   // If the CC aligns values higher than the slot size, do so if needed.
324   Address Addr = Address::invalid();
325   if (AllowHigherAlign && DirectAlign > SlotSize) {
326     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
327                                                  DirectAlign);
328   } else {
329     Addr = Address(Ptr, SlotSize);
330   }
331 
332   // Advance the pointer past the argument, then store that back.
333   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
334   Address NextPtr =
335       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
336   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
337 
338   // If the argument is smaller than a slot, and this is a big-endian
339   // target, the argument will be right-adjusted in its slot.
340   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
341       !DirectTy->isStructTy()) {
342     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
343   }
344 
345   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
346   return Addr;
347 }
348 
349 /// Emit va_arg for a platform using the common void* representation,
350 /// where arguments are simply emitted in an array of slots on the stack.
351 ///
352 /// \param IsIndirect - Values of this type are passed indirectly.
353 /// \param ValueInfo - The size and alignment of this type, generally
354 ///   computed with getContext().getTypeInfoInChars(ValueTy).
355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
356 ///   Each argument will be allocated to a multiple of this number of
357 ///   slots, and all the slots will be aligned to this value.
358 /// \param AllowHigherAlign - The slot alignment is not a cap;
359 ///   an argument type with an alignment greater than the slot size
360 ///   will be emitted on a higher-alignment address, potentially
361 ///   leaving one or more empty slots behind as padding.
362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
363                                 QualType ValueTy, bool IsIndirect,
364                                 TypeInfoChars ValueInfo,
365                                 CharUnits SlotSizeAndAlign,
366                                 bool AllowHigherAlign) {
367   // The size and alignment of the value that was passed directly.
368   CharUnits DirectSize, DirectAlign;
369   if (IsIndirect) {
370     DirectSize = CGF.getPointerSize();
371     DirectAlign = CGF.getPointerAlign();
372   } else {
373     DirectSize = ValueInfo.Width;
374     DirectAlign = ValueInfo.Align;
375   }
376 
377   // Cast the address we've calculated to the right type.
378   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
379   if (IsIndirect)
380     DirectTy = DirectTy->getPointerTo(0);
381 
382   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
383                                         DirectSize, DirectAlign,
384                                         SlotSizeAndAlign,
385                                         AllowHigherAlign);
386 
387   if (IsIndirect) {
388     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
389   }
390 
391   return Addr;
392 
393 }
394 
395 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr,
396                                     QualType Ty, CharUnits SlotSize,
397                                     CharUnits EltSize, const ComplexType *CTy) {
398   Address Addr =
399       emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2,
400                              SlotSize, SlotSize, /*AllowHigher*/ true);
401 
402   Address RealAddr = Addr;
403   Address ImagAddr = RealAddr;
404   if (CGF.CGM.getDataLayout().isBigEndian()) {
405     RealAddr =
406         CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize);
407     ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
408                                                       2 * SlotSize - EltSize);
409   } else {
410     ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
411   }
412 
413   llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
414   RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
415   ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
416   llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
417   llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
418 
419   Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
420   CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
421                          /*init*/ true);
422   return Temp;
423 }
424 
425 static Address emitMergePHI(CodeGenFunction &CGF,
426                             Address Addr1, llvm::BasicBlock *Block1,
427                             Address Addr2, llvm::BasicBlock *Block2,
428                             const llvm::Twine &Name = "") {
429   assert(Addr1.getType() == Addr2.getType());
430   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
431   PHI->addIncoming(Addr1.getPointer(), Block1);
432   PHI->addIncoming(Addr2.getPointer(), Block2);
433   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
434   return Address(PHI, Align);
435 }
436 
437 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
438 
439 // If someone can figure out a general rule for this, that would be great.
440 // It's probably just doomed to be platform-dependent, though.
441 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
442   // Verified for:
443   //   x86-64     FreeBSD, Linux, Darwin
444   //   x86-32     FreeBSD, Linux, Darwin
445   //   PowerPC    Linux, Darwin
446   //   ARM        Darwin (*not* EABI)
447   //   AArch64    Linux
448   return 32;
449 }
450 
451 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
452                                      const FunctionNoProtoType *fnType) const {
453   // The following conventions are known to require this to be false:
454   //   x86_stdcall
455   //   MIPS
456   // For everything else, we just prefer false unless we opt out.
457   return false;
458 }
459 
460 void
461 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
462                                              llvm::SmallString<24> &Opt) const {
463   // This assumes the user is passing a library name like "rt" instead of a
464   // filename like "librt.a/so", and that they don't care whether it's static or
465   // dynamic.
466   Opt = "-l";
467   Opt += Lib;
468 }
469 
470 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
471   // OpenCL kernels are called via an explicit runtime API with arguments
472   // set with clSetKernelArg(), not as normal sub-functions.
473   // Return SPIR_KERNEL by default as the kernel calling convention to
474   // ensure the fingerprint is fixed such way that each OpenCL argument
475   // gets one matching argument in the produced kernel function argument
476   // list to enable feasible implementation of clSetKernelArg() with
477   // aggregates etc. In case we would use the default C calling conv here,
478   // clSetKernelArg() might break depending on the target-specific
479   // conventions; different targets might split structs passed as values
480   // to multiple function arguments etc.
481   return llvm::CallingConv::SPIR_KERNEL;
482 }
483 
484 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
485     llvm::PointerType *T, QualType QT) const {
486   return llvm::ConstantPointerNull::get(T);
487 }
488 
489 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
490                                                    const VarDecl *D) const {
491   assert(!CGM.getLangOpts().OpenCL &&
492          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
493          "Address space agnostic languages only");
494   return D ? D->getType().getAddressSpace() : LangAS::Default;
495 }
496 
497 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
498     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
499     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
500   // Since target may map different address spaces in AST to the same address
501   // space, an address space conversion may end up as a bitcast.
502   if (auto *C = dyn_cast<llvm::Constant>(Src))
503     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
504   // Try to preserve the source's name to make IR more readable.
505   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
506       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
507 }
508 
509 llvm::Constant *
510 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
511                                         LangAS SrcAddr, LangAS DestAddr,
512                                         llvm::Type *DestTy) const {
513   // Since target may map different address spaces in AST to the same address
514   // space, an address space conversion may end up as a bitcast.
515   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
516 }
517 
518 llvm::SyncScope::ID
519 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
520                                       SyncScope Scope,
521                                       llvm::AtomicOrdering Ordering,
522                                       llvm::LLVMContext &Ctx) const {
523   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
524 }
525 
526 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
527 
528 /// isEmptyField - Return true iff a the field is "empty", that is it
529 /// is an unnamed bit-field or an (array of) empty record(s).
530 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
531                          bool AllowArrays) {
532   if (FD->isUnnamedBitfield())
533     return true;
534 
535   QualType FT = FD->getType();
536 
537   // Constant arrays of empty records count as empty, strip them off.
538   // Constant arrays of zero length always count as empty.
539   bool WasArray = false;
540   if (AllowArrays)
541     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
542       if (AT->getSize() == 0)
543         return true;
544       FT = AT->getElementType();
545       // The [[no_unique_address]] special case below does not apply to
546       // arrays of C++ empty records, so we need to remember this fact.
547       WasArray = true;
548     }
549 
550   const RecordType *RT = FT->getAs<RecordType>();
551   if (!RT)
552     return false;
553 
554   // C++ record fields are never empty, at least in the Itanium ABI.
555   //
556   // FIXME: We should use a predicate for whether this behavior is true in the
557   // current ABI.
558   //
559   // The exception to the above rule are fields marked with the
560   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
561   // according to the Itanium ABI.  The exception applies only to records,
562   // not arrays of records, so we must also check whether we stripped off an
563   // array type above.
564   if (isa<CXXRecordDecl>(RT->getDecl()) &&
565       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
566     return false;
567 
568   return isEmptyRecord(Context, FT, AllowArrays);
569 }
570 
571 /// isEmptyRecord - Return true iff a structure contains only empty
572 /// fields. Note that a structure with a flexible array member is not
573 /// considered empty.
574 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
575   const RecordType *RT = T->getAs<RecordType>();
576   if (!RT)
577     return false;
578   const RecordDecl *RD = RT->getDecl();
579   if (RD->hasFlexibleArrayMember())
580     return false;
581 
582   // If this is a C++ record, check the bases first.
583   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
584     for (const auto &I : CXXRD->bases())
585       if (!isEmptyRecord(Context, I.getType(), true))
586         return false;
587 
588   for (const auto *I : RD->fields())
589     if (!isEmptyField(Context, I, AllowArrays))
590       return false;
591   return true;
592 }
593 
594 /// isSingleElementStruct - Determine if a structure is a "single
595 /// element struct", i.e. it has exactly one non-empty field or
596 /// exactly one field which is itself a single element
597 /// struct. Structures with flexible array members are never
598 /// considered single element structs.
599 ///
600 /// \return The field declaration for the single non-empty field, if
601 /// it exists.
602 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
603   const RecordType *RT = T->getAs<RecordType>();
604   if (!RT)
605     return nullptr;
606 
607   const RecordDecl *RD = RT->getDecl();
608   if (RD->hasFlexibleArrayMember())
609     return nullptr;
610 
611   const Type *Found = nullptr;
612 
613   // If this is a C++ record, check the bases first.
614   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
615     for (const auto &I : CXXRD->bases()) {
616       // Ignore empty records.
617       if (isEmptyRecord(Context, I.getType(), true))
618         continue;
619 
620       // If we already found an element then this isn't a single-element struct.
621       if (Found)
622         return nullptr;
623 
624       // If this is non-empty and not a single element struct, the composite
625       // cannot be a single element struct.
626       Found = isSingleElementStruct(I.getType(), Context);
627       if (!Found)
628         return nullptr;
629     }
630   }
631 
632   // Check for single element.
633   for (const auto *FD : RD->fields()) {
634     QualType FT = FD->getType();
635 
636     // Ignore empty fields.
637     if (isEmptyField(Context, FD, true))
638       continue;
639 
640     // If we already found an element then this isn't a single-element
641     // struct.
642     if (Found)
643       return nullptr;
644 
645     // Treat single element arrays as the element.
646     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
647       if (AT->getSize().getZExtValue() != 1)
648         break;
649       FT = AT->getElementType();
650     }
651 
652     if (!isAggregateTypeForABI(FT)) {
653       Found = FT.getTypePtr();
654     } else {
655       Found = isSingleElementStruct(FT, Context);
656       if (!Found)
657         return nullptr;
658     }
659   }
660 
661   // We don't consider a struct a single-element struct if it has
662   // padding beyond the element type.
663   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
664     return nullptr;
665 
666   return Found;
667 }
668 
669 namespace {
670 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
671                        const ABIArgInfo &AI) {
672   // This default implementation defers to the llvm backend's va_arg
673   // instruction. It can handle only passing arguments directly
674   // (typically only handled in the backend for primitive types), or
675   // aggregates passed indirectly by pointer (NOTE: if the "byval"
676   // flag has ABI impact in the callee, this implementation cannot
677   // work.)
678 
679   // Only a few cases are covered here at the moment -- those needed
680   // by the default abi.
681   llvm::Value *Val;
682 
683   if (AI.isIndirect()) {
684     assert(!AI.getPaddingType() &&
685            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
686     assert(
687         !AI.getIndirectRealign() &&
688         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
689 
690     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
691     CharUnits TyAlignForABI = TyInfo.Align;
692 
693     llvm::Type *BaseTy =
694         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
695     llvm::Value *Addr =
696         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
697     return Address(Addr, TyAlignForABI);
698   } else {
699     assert((AI.isDirect() || AI.isExtend()) &&
700            "Unexpected ArgInfo Kind in generic VAArg emitter!");
701 
702     assert(!AI.getInReg() &&
703            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
704     assert(!AI.getPaddingType() &&
705            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
706     assert(!AI.getDirectOffset() &&
707            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
708     assert(!AI.getCoerceToType() &&
709            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
710 
711     Address Temp = CGF.CreateMemTemp(Ty, "varet");
712     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
713     CGF.Builder.CreateStore(Val, Temp);
714     return Temp;
715   }
716 }
717 
718 /// DefaultABIInfo - The default implementation for ABI specific
719 /// details. This implementation provides information which results in
720 /// self-consistent and sensible LLVM IR generation, but does not
721 /// conform to any particular ABI.
722 class DefaultABIInfo : public ABIInfo {
723 public:
724   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
725 
726   ABIArgInfo classifyReturnType(QualType RetTy) const;
727   ABIArgInfo classifyArgumentType(QualType RetTy) const;
728 
729   void computeInfo(CGFunctionInfo &FI) const override {
730     if (!getCXXABI().classifyReturnType(FI))
731       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
732     for (auto &I : FI.arguments())
733       I.info = classifyArgumentType(I.type);
734   }
735 
736   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
737                     QualType Ty) const override {
738     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
739   }
740 };
741 
742 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
743 public:
744   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
745       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
746 };
747 
748 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
749   Ty = useFirstFieldIfTransparentUnion(Ty);
750 
751   if (isAggregateTypeForABI(Ty)) {
752     // Records with non-trivial destructors/copy-constructors should not be
753     // passed by value.
754     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
755       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
756 
757     return getNaturalAlignIndirect(Ty);
758   }
759 
760   // Treat an enum type as its underlying type.
761   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
762     Ty = EnumTy->getDecl()->getIntegerType();
763 
764   ASTContext &Context = getContext();
765   if (const auto *EIT = Ty->getAs<ExtIntType>())
766     if (EIT->getNumBits() >
767         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
768                                 ? Context.Int128Ty
769                                 : Context.LongLongTy))
770       return getNaturalAlignIndirect(Ty);
771 
772   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
773                                             : ABIArgInfo::getDirect());
774 }
775 
776 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
777   if (RetTy->isVoidType())
778     return ABIArgInfo::getIgnore();
779 
780   if (isAggregateTypeForABI(RetTy))
781     return getNaturalAlignIndirect(RetTy);
782 
783   // Treat an enum type as its underlying type.
784   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
785     RetTy = EnumTy->getDecl()->getIntegerType();
786 
787   if (const auto *EIT = RetTy->getAs<ExtIntType>())
788     if (EIT->getNumBits() >
789         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
790                                      ? getContext().Int128Ty
791                                      : getContext().LongLongTy))
792       return getNaturalAlignIndirect(RetTy);
793 
794   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
795                                                : ABIArgInfo::getDirect());
796 }
797 
798 //===----------------------------------------------------------------------===//
799 // WebAssembly ABI Implementation
800 //
801 // This is a very simple ABI that relies a lot on DefaultABIInfo.
802 //===----------------------------------------------------------------------===//
803 
804 class WebAssemblyABIInfo final : public SwiftABIInfo {
805 public:
806   enum ABIKind {
807     MVP = 0,
808     ExperimentalMV = 1,
809   };
810 
811 private:
812   DefaultABIInfo defaultInfo;
813   ABIKind Kind;
814 
815 public:
816   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
817       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
818 
819 private:
820   ABIArgInfo classifyReturnType(QualType RetTy) const;
821   ABIArgInfo classifyArgumentType(QualType Ty) const;
822 
823   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
824   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
825   // overload them.
826   void computeInfo(CGFunctionInfo &FI) const override {
827     if (!getCXXABI().classifyReturnType(FI))
828       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
829     for (auto &Arg : FI.arguments())
830       Arg.info = classifyArgumentType(Arg.type);
831   }
832 
833   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
834                     QualType Ty) const override;
835 
836   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
837                                     bool asReturnValue) const override {
838     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
839   }
840 
841   bool isSwiftErrorInRegister() const override {
842     return false;
843   }
844 };
845 
846 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
847 public:
848   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
849                                         WebAssemblyABIInfo::ABIKind K)
850       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
851 
852   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
853                            CodeGen::CodeGenModule &CGM) const override {
854     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
855     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
856       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
857         llvm::Function *Fn = cast<llvm::Function>(GV);
858         llvm::AttrBuilder B;
859         B.addAttribute("wasm-import-module", Attr->getImportModule());
860         Fn->addFnAttrs(B);
861       }
862       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
863         llvm::Function *Fn = cast<llvm::Function>(GV);
864         llvm::AttrBuilder B;
865         B.addAttribute("wasm-import-name", Attr->getImportName());
866         Fn->addFnAttrs(B);
867       }
868       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
869         llvm::Function *Fn = cast<llvm::Function>(GV);
870         llvm::AttrBuilder B;
871         B.addAttribute("wasm-export-name", Attr->getExportName());
872         Fn->addFnAttrs(B);
873       }
874     }
875 
876     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
877       llvm::Function *Fn = cast<llvm::Function>(GV);
878       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
879         Fn->addFnAttr("no-prototype");
880     }
881   }
882 };
883 
884 /// Classify argument of given type \p Ty.
885 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
886   Ty = useFirstFieldIfTransparentUnion(Ty);
887 
888   if (isAggregateTypeForABI(Ty)) {
889     // Records with non-trivial destructors/copy-constructors should not be
890     // passed by value.
891     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
892       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
893     // Ignore empty structs/unions.
894     if (isEmptyRecord(getContext(), Ty, true))
895       return ABIArgInfo::getIgnore();
896     // Lower single-element structs to just pass a regular value. TODO: We
897     // could do reasonable-size multiple-element structs too, using getExpand(),
898     // though watch out for things like bitfields.
899     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
900       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
901     // For the experimental multivalue ABI, fully expand all other aggregates
902     if (Kind == ABIKind::ExperimentalMV) {
903       const RecordType *RT = Ty->getAs<RecordType>();
904       assert(RT);
905       bool HasBitField = false;
906       for (auto *Field : RT->getDecl()->fields()) {
907         if (Field->isBitField()) {
908           HasBitField = true;
909           break;
910         }
911       }
912       if (!HasBitField)
913         return ABIArgInfo::getExpand();
914     }
915   }
916 
917   // Otherwise just do the default thing.
918   return defaultInfo.classifyArgumentType(Ty);
919 }
920 
921 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
922   if (isAggregateTypeForABI(RetTy)) {
923     // Records with non-trivial destructors/copy-constructors should not be
924     // returned by value.
925     if (!getRecordArgABI(RetTy, getCXXABI())) {
926       // Ignore empty structs/unions.
927       if (isEmptyRecord(getContext(), RetTy, true))
928         return ABIArgInfo::getIgnore();
929       // Lower single-element structs to just return a regular value. TODO: We
930       // could do reasonable-size multiple-element structs too, using
931       // ABIArgInfo::getDirect().
932       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
933         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
934       // For the experimental multivalue ABI, return all other aggregates
935       if (Kind == ABIKind::ExperimentalMV)
936         return ABIArgInfo::getDirect();
937     }
938   }
939 
940   // Otherwise just do the default thing.
941   return defaultInfo.classifyReturnType(RetTy);
942 }
943 
944 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
945                                       QualType Ty) const {
946   bool IsIndirect = isAggregateTypeForABI(Ty) &&
947                     !isEmptyRecord(getContext(), Ty, true) &&
948                     !isSingleElementStruct(Ty, getContext());
949   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
950                           getContext().getTypeInfoInChars(Ty),
951                           CharUnits::fromQuantity(4),
952                           /*AllowHigherAlign=*/true);
953 }
954 
955 //===----------------------------------------------------------------------===//
956 // le32/PNaCl bitcode ABI Implementation
957 //
958 // This is a simplified version of the x86_32 ABI.  Arguments and return values
959 // are always passed on the stack.
960 //===----------------------------------------------------------------------===//
961 
962 class PNaClABIInfo : public ABIInfo {
963  public:
964   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
965 
966   ABIArgInfo classifyReturnType(QualType RetTy) const;
967   ABIArgInfo classifyArgumentType(QualType RetTy) const;
968 
969   void computeInfo(CGFunctionInfo &FI) const override;
970   Address EmitVAArg(CodeGenFunction &CGF,
971                     Address VAListAddr, QualType Ty) const override;
972 };
973 
974 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
975  public:
976    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
977        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
978 };
979 
980 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
981   if (!getCXXABI().classifyReturnType(FI))
982     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
983 
984   for (auto &I : FI.arguments())
985     I.info = classifyArgumentType(I.type);
986 }
987 
988 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
989                                 QualType Ty) const {
990   // The PNaCL ABI is a bit odd, in that varargs don't use normal
991   // function classification. Structs get passed directly for varargs
992   // functions, through a rewriting transform in
993   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
994   // this target to actually support a va_arg instructions with an
995   // aggregate type, unlike other targets.
996   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
997 }
998 
999 /// Classify argument of given type \p Ty.
1000 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
1001   if (isAggregateTypeForABI(Ty)) {
1002     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1003       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
1004     return getNaturalAlignIndirect(Ty);
1005   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
1006     // Treat an enum type as its underlying type.
1007     Ty = EnumTy->getDecl()->getIntegerType();
1008   } else if (Ty->isFloatingType()) {
1009     // Floating-point types don't go inreg.
1010     return ABIArgInfo::getDirect();
1011   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
1012     // Treat extended integers as integers if <=64, otherwise pass indirectly.
1013     if (EIT->getNumBits() > 64)
1014       return getNaturalAlignIndirect(Ty);
1015     return ABIArgInfo::getDirect();
1016   }
1017 
1018   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
1019                                             : ABIArgInfo::getDirect());
1020 }
1021 
1022 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
1023   if (RetTy->isVoidType())
1024     return ABIArgInfo::getIgnore();
1025 
1026   // In the PNaCl ABI we always return records/structures on the stack.
1027   if (isAggregateTypeForABI(RetTy))
1028     return getNaturalAlignIndirect(RetTy);
1029 
1030   // Treat extended integers as integers if <=64, otherwise pass indirectly.
1031   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1032     if (EIT->getNumBits() > 64)
1033       return getNaturalAlignIndirect(RetTy);
1034     return ABIArgInfo::getDirect();
1035   }
1036 
1037   // Treat an enum type as its underlying type.
1038   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1039     RetTy = EnumTy->getDecl()->getIntegerType();
1040 
1041   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1042                                                : ABIArgInfo::getDirect());
1043 }
1044 
1045 /// IsX86_MMXType - Return true if this is an MMX type.
1046 bool IsX86_MMXType(llvm::Type *IRType) {
1047   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1048   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1049     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1050     IRType->getScalarSizeInBits() != 64;
1051 }
1052 
1053 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1054                                           StringRef Constraint,
1055                                           llvm::Type* Ty) {
1056   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1057                      .Cases("y", "&y", "^Ym", true)
1058                      .Default(false);
1059   if (IsMMXCons && Ty->isVectorTy()) {
1060     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1061         64) {
1062       // Invalid MMX constraint
1063       return nullptr;
1064     }
1065 
1066     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1067   }
1068 
1069   // No operation needed
1070   return Ty;
1071 }
1072 
1073 /// Returns true if this type can be passed in SSE registers with the
1074 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1075 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1076   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1077     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1078       if (BT->getKind() == BuiltinType::LongDouble) {
1079         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1080             &llvm::APFloat::x87DoubleExtended())
1081           return false;
1082       }
1083       return true;
1084     }
1085   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1086     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1087     // registers specially.
1088     unsigned VecSize = Context.getTypeSize(VT);
1089     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1090       return true;
1091   }
1092   return false;
1093 }
1094 
1095 /// Returns true if this aggregate is small enough to be passed in SSE registers
1096 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1097 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1098   return NumMembers <= 4;
1099 }
1100 
1101 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1102 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1103   auto AI = ABIArgInfo::getDirect(T);
1104   AI.setInReg(true);
1105   AI.setCanBeFlattened(false);
1106   return AI;
1107 }
1108 
1109 //===----------------------------------------------------------------------===//
1110 // X86-32 ABI Implementation
1111 //===----------------------------------------------------------------------===//
1112 
1113 /// Similar to llvm::CCState, but for Clang.
1114 struct CCState {
1115   CCState(CGFunctionInfo &FI)
1116       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1117 
1118   llvm::SmallBitVector IsPreassigned;
1119   unsigned CC = CallingConv::CC_C;
1120   unsigned FreeRegs = 0;
1121   unsigned FreeSSERegs = 0;
1122 };
1123 
1124 /// X86_32ABIInfo - The X86-32 ABI information.
1125 class X86_32ABIInfo : public SwiftABIInfo {
1126   enum Class {
1127     Integer,
1128     Float
1129   };
1130 
1131   static const unsigned MinABIStackAlignInBytes = 4;
1132 
1133   bool IsDarwinVectorABI;
1134   bool IsRetSmallStructInRegABI;
1135   bool IsWin32StructABI;
1136   bool IsSoftFloatABI;
1137   bool IsMCUABI;
1138   bool IsLinuxABI;
1139   unsigned DefaultNumRegisterParameters;
1140 
1141   static bool isRegisterSize(unsigned Size) {
1142     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1143   }
1144 
1145   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1146     // FIXME: Assumes vectorcall is in use.
1147     return isX86VectorTypeForVectorCall(getContext(), Ty);
1148   }
1149 
1150   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1151                                          uint64_t NumMembers) const override {
1152     // FIXME: Assumes vectorcall is in use.
1153     return isX86VectorCallAggregateSmallEnough(NumMembers);
1154   }
1155 
1156   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1157 
1158   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1159   /// such that the argument will be passed in memory.
1160   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1161 
1162   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1163 
1164   /// Return the alignment to use for the given type on the stack.
1165   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1166 
1167   Class classify(QualType Ty) const;
1168   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1169   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1170 
1171   /// Updates the number of available free registers, returns
1172   /// true if any registers were allocated.
1173   bool updateFreeRegs(QualType Ty, CCState &State) const;
1174 
1175   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1176                                 bool &NeedsPadding) const;
1177   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1178 
1179   bool canExpandIndirectArgument(QualType Ty) const;
1180 
1181   /// Rewrite the function info so that all memory arguments use
1182   /// inalloca.
1183   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1184 
1185   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1186                            CharUnits &StackOffset, ABIArgInfo &Info,
1187                            QualType Type) const;
1188   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1189 
1190 public:
1191 
1192   void computeInfo(CGFunctionInfo &FI) const override;
1193   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1194                     QualType Ty) const override;
1195 
1196   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1197                 bool RetSmallStructInRegABI, bool Win32StructABI,
1198                 unsigned NumRegisterParameters, bool SoftFloatABI)
1199     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1200       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1201       IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
1202       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1203       IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
1204                  CGT.getTarget().getTriple().isOSCygMing()),
1205       DefaultNumRegisterParameters(NumRegisterParameters) {}
1206 
1207   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1208                                     bool asReturnValue) const override {
1209     // LLVM's x86-32 lowering currently only assigns up to three
1210     // integer registers and three fp registers.  Oddly, it'll use up to
1211     // four vector registers for vectors, but those can overlap with the
1212     // scalar registers.
1213     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1214   }
1215 
1216   bool isSwiftErrorInRegister() const override {
1217     // x86-32 lowering does not support passing swifterror in a register.
1218     return false;
1219   }
1220 };
1221 
1222 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1223 public:
1224   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1225                           bool RetSmallStructInRegABI, bool Win32StructABI,
1226                           unsigned NumRegisterParameters, bool SoftFloatABI)
1227       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1228             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1229             NumRegisterParameters, SoftFloatABI)) {}
1230 
1231   static bool isStructReturnInRegABI(
1232       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1233 
1234   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1235                            CodeGen::CodeGenModule &CGM) const override;
1236 
1237   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1238     // Darwin uses different dwarf register numbers for EH.
1239     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1240     return 4;
1241   }
1242 
1243   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1244                                llvm::Value *Address) const override;
1245 
1246   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1247                                   StringRef Constraint,
1248                                   llvm::Type* Ty) const override {
1249     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1250   }
1251 
1252   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1253                                 std::string &Constraints,
1254                                 std::vector<llvm::Type *> &ResultRegTypes,
1255                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1256                                 std::vector<LValue> &ResultRegDests,
1257                                 std::string &AsmString,
1258                                 unsigned NumOutputs) const override;
1259 
1260   llvm::Constant *
1261   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1262     unsigned Sig = (0xeb << 0) |  // jmp rel8
1263                    (0x06 << 8) |  //           .+0x08
1264                    ('v' << 16) |
1265                    ('2' << 24);
1266     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1267   }
1268 
1269   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1270     return "movl\t%ebp, %ebp"
1271            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1272   }
1273 };
1274 
1275 }
1276 
1277 /// Rewrite input constraint references after adding some output constraints.
1278 /// In the case where there is one output and one input and we add one output,
1279 /// we need to replace all operand references greater than or equal to 1:
1280 ///     mov $0, $1
1281 ///     mov eax, $1
1282 /// The result will be:
1283 ///     mov $0, $2
1284 ///     mov eax, $2
1285 static void rewriteInputConstraintReferences(unsigned FirstIn,
1286                                              unsigned NumNewOuts,
1287                                              std::string &AsmString) {
1288   std::string Buf;
1289   llvm::raw_string_ostream OS(Buf);
1290   size_t Pos = 0;
1291   while (Pos < AsmString.size()) {
1292     size_t DollarStart = AsmString.find('$', Pos);
1293     if (DollarStart == std::string::npos)
1294       DollarStart = AsmString.size();
1295     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1296     if (DollarEnd == std::string::npos)
1297       DollarEnd = AsmString.size();
1298     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1299     Pos = DollarEnd;
1300     size_t NumDollars = DollarEnd - DollarStart;
1301     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1302       // We have an operand reference.
1303       size_t DigitStart = Pos;
1304       if (AsmString[DigitStart] == '{') {
1305         OS << '{';
1306         ++DigitStart;
1307       }
1308       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1309       if (DigitEnd == std::string::npos)
1310         DigitEnd = AsmString.size();
1311       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1312       unsigned OperandIndex;
1313       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1314         if (OperandIndex >= FirstIn)
1315           OperandIndex += NumNewOuts;
1316         OS << OperandIndex;
1317       } else {
1318         OS << OperandStr;
1319       }
1320       Pos = DigitEnd;
1321     }
1322   }
1323   AsmString = std::move(OS.str());
1324 }
1325 
1326 /// Add output constraints for EAX:EDX because they are return registers.
1327 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1328     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1329     std::vector<llvm::Type *> &ResultRegTypes,
1330     std::vector<llvm::Type *> &ResultTruncRegTypes,
1331     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1332     unsigned NumOutputs) const {
1333   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1334 
1335   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1336   // larger.
1337   if (!Constraints.empty())
1338     Constraints += ',';
1339   if (RetWidth <= 32) {
1340     Constraints += "={eax}";
1341     ResultRegTypes.push_back(CGF.Int32Ty);
1342   } else {
1343     // Use the 'A' constraint for EAX:EDX.
1344     Constraints += "=A";
1345     ResultRegTypes.push_back(CGF.Int64Ty);
1346   }
1347 
1348   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1349   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1350   ResultTruncRegTypes.push_back(CoerceTy);
1351 
1352   // Coerce the integer by bitcasting the return slot pointer.
1353   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1354                                                   CoerceTy->getPointerTo()));
1355   ResultRegDests.push_back(ReturnSlot);
1356 
1357   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1358 }
1359 
1360 /// shouldReturnTypeInRegister - Determine if the given type should be
1361 /// returned in a register (for the Darwin and MCU ABI).
1362 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1363                                                ASTContext &Context) const {
1364   uint64_t Size = Context.getTypeSize(Ty);
1365 
1366   // For i386, type must be register sized.
1367   // For the MCU ABI, it only needs to be <= 8-byte
1368   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1369    return false;
1370 
1371   if (Ty->isVectorType()) {
1372     // 64- and 128- bit vectors inside structures are not returned in
1373     // registers.
1374     if (Size == 64 || Size == 128)
1375       return false;
1376 
1377     return true;
1378   }
1379 
1380   // If this is a builtin, pointer, enum, complex type, member pointer, or
1381   // member function pointer it is ok.
1382   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1383       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1384       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1385     return true;
1386 
1387   // Arrays are treated like records.
1388   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1389     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1390 
1391   // Otherwise, it must be a record type.
1392   const RecordType *RT = Ty->getAs<RecordType>();
1393   if (!RT) return false;
1394 
1395   // FIXME: Traverse bases here too.
1396 
1397   // Structure types are passed in register if all fields would be
1398   // passed in a register.
1399   for (const auto *FD : RT->getDecl()->fields()) {
1400     // Empty fields are ignored.
1401     if (isEmptyField(Context, FD, true))
1402       continue;
1403 
1404     // Check fields recursively.
1405     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1406       return false;
1407   }
1408   return true;
1409 }
1410 
1411 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1412   // Treat complex types as the element type.
1413   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1414     Ty = CTy->getElementType();
1415 
1416   // Check for a type which we know has a simple scalar argument-passing
1417   // convention without any padding.  (We're specifically looking for 32
1418   // and 64-bit integer and integer-equivalents, float, and double.)
1419   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1420       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1421     return false;
1422 
1423   uint64_t Size = Context.getTypeSize(Ty);
1424   return Size == 32 || Size == 64;
1425 }
1426 
1427 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1428                           uint64_t &Size) {
1429   for (const auto *FD : RD->fields()) {
1430     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1431     // argument is smaller than 32-bits, expanding the struct will create
1432     // alignment padding.
1433     if (!is32Or64BitBasicType(FD->getType(), Context))
1434       return false;
1435 
1436     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1437     // how to expand them yet, and the predicate for telling if a bitfield still
1438     // counts as "basic" is more complicated than what we were doing previously.
1439     if (FD->isBitField())
1440       return false;
1441 
1442     Size += Context.getTypeSize(FD->getType());
1443   }
1444   return true;
1445 }
1446 
1447 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1448                                  uint64_t &Size) {
1449   // Don't do this if there are any non-empty bases.
1450   for (const CXXBaseSpecifier &Base : RD->bases()) {
1451     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1452                               Size))
1453       return false;
1454   }
1455   if (!addFieldSizes(Context, RD, Size))
1456     return false;
1457   return true;
1458 }
1459 
1460 /// Test whether an argument type which is to be passed indirectly (on the
1461 /// stack) would have the equivalent layout if it was expanded into separate
1462 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1463 /// optimizations.
1464 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1465   // We can only expand structure types.
1466   const RecordType *RT = Ty->getAs<RecordType>();
1467   if (!RT)
1468     return false;
1469   const RecordDecl *RD = RT->getDecl();
1470   uint64_t Size = 0;
1471   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1472     if (!IsWin32StructABI) {
1473       // On non-Windows, we have to conservatively match our old bitcode
1474       // prototypes in order to be ABI-compatible at the bitcode level.
1475       if (!CXXRD->isCLike())
1476         return false;
1477     } else {
1478       // Don't do this for dynamic classes.
1479       if (CXXRD->isDynamicClass())
1480         return false;
1481     }
1482     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1483       return false;
1484   } else {
1485     if (!addFieldSizes(getContext(), RD, Size))
1486       return false;
1487   }
1488 
1489   // We can do this if there was no alignment padding.
1490   return Size == getContext().getTypeSize(Ty);
1491 }
1492 
1493 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1494   // If the return value is indirect, then the hidden argument is consuming one
1495   // integer register.
1496   if (State.FreeRegs) {
1497     --State.FreeRegs;
1498     if (!IsMCUABI)
1499       return getNaturalAlignIndirectInReg(RetTy);
1500   }
1501   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1502 }
1503 
1504 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1505                                              CCState &State) const {
1506   if (RetTy->isVoidType())
1507     return ABIArgInfo::getIgnore();
1508 
1509   const Type *Base = nullptr;
1510   uint64_t NumElts = 0;
1511   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1512        State.CC == llvm::CallingConv::X86_RegCall) &&
1513       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1514     // The LLVM struct type for such an aggregate should lower properly.
1515     return ABIArgInfo::getDirect();
1516   }
1517 
1518   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1519     // On Darwin, some vectors are returned in registers.
1520     if (IsDarwinVectorABI) {
1521       uint64_t Size = getContext().getTypeSize(RetTy);
1522 
1523       // 128-bit vectors are a special case; they are returned in
1524       // registers and we need to make sure to pick a type the LLVM
1525       // backend will like.
1526       if (Size == 128)
1527         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1528             llvm::Type::getInt64Ty(getVMContext()), 2));
1529 
1530       // Always return in register if it fits in a general purpose
1531       // register, or if it is 64 bits and has a single element.
1532       if ((Size == 8 || Size == 16 || Size == 32) ||
1533           (Size == 64 && VT->getNumElements() == 1))
1534         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1535                                                             Size));
1536 
1537       return getIndirectReturnResult(RetTy, State);
1538     }
1539 
1540     return ABIArgInfo::getDirect();
1541   }
1542 
1543   if (isAggregateTypeForABI(RetTy)) {
1544     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1545       // Structures with flexible arrays are always indirect.
1546       if (RT->getDecl()->hasFlexibleArrayMember())
1547         return getIndirectReturnResult(RetTy, State);
1548     }
1549 
1550     // If specified, structs and unions are always indirect.
1551     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1552       return getIndirectReturnResult(RetTy, State);
1553 
1554     // Ignore empty structs/unions.
1555     if (isEmptyRecord(getContext(), RetTy, true))
1556       return ABIArgInfo::getIgnore();
1557 
1558     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
1559     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
1560       QualType ET = getContext().getCanonicalType(CT->getElementType());
1561       if (ET->isFloat16Type())
1562         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1563             llvm::Type::getHalfTy(getVMContext()), 2));
1564     }
1565 
1566     // Small structures which are register sized are generally returned
1567     // in a register.
1568     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1569       uint64_t Size = getContext().getTypeSize(RetTy);
1570 
1571       // As a special-case, if the struct is a "single-element" struct, and
1572       // the field is of type "float" or "double", return it in a
1573       // floating-point register. (MSVC does not apply this special case.)
1574       // We apply a similar transformation for pointer types to improve the
1575       // quality of the generated IR.
1576       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1577         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1578             || SeltTy->hasPointerRepresentation())
1579           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1580 
1581       // FIXME: We should be able to narrow this integer in cases with dead
1582       // padding.
1583       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1584     }
1585 
1586     return getIndirectReturnResult(RetTy, State);
1587   }
1588 
1589   // Treat an enum type as its underlying type.
1590   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1591     RetTy = EnumTy->getDecl()->getIntegerType();
1592 
1593   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1594     if (EIT->getNumBits() > 64)
1595       return getIndirectReturnResult(RetTy, State);
1596 
1597   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1598                                                : ABIArgInfo::getDirect());
1599 }
1600 
1601 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1602   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1603 }
1604 
1605 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1606   const RecordType *RT = Ty->getAs<RecordType>();
1607   if (!RT)
1608     return 0;
1609   const RecordDecl *RD = RT->getDecl();
1610 
1611   // If this is a C++ record, check the bases first.
1612   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1613     for (const auto &I : CXXRD->bases())
1614       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1615         return false;
1616 
1617   for (const auto *i : RD->fields()) {
1618     QualType FT = i->getType();
1619 
1620     if (isSIMDVectorType(Context, FT))
1621       return true;
1622 
1623     if (isRecordWithSIMDVectorType(Context, FT))
1624       return true;
1625   }
1626 
1627   return false;
1628 }
1629 
1630 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1631                                                  unsigned Align) const {
1632   // Otherwise, if the alignment is less than or equal to the minimum ABI
1633   // alignment, just use the default; the backend will handle this.
1634   if (Align <= MinABIStackAlignInBytes)
1635     return 0; // Use default alignment.
1636 
1637   if (IsLinuxABI) {
1638     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
1639     // want to spend any effort dealing with the ramifications of ABI breaks.
1640     //
1641     // If the vector type is __m128/__m256/__m512, return the default alignment.
1642     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
1643       return Align;
1644   }
1645   // On non-Darwin, the stack type alignment is always 4.
1646   if (!IsDarwinVectorABI) {
1647     // Set explicit alignment, since we may need to realign the top.
1648     return MinABIStackAlignInBytes;
1649   }
1650 
1651   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1652   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1653                       isRecordWithSIMDVectorType(getContext(), Ty)))
1654     return 16;
1655 
1656   return MinABIStackAlignInBytes;
1657 }
1658 
1659 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1660                                             CCState &State) const {
1661   if (!ByVal) {
1662     if (State.FreeRegs) {
1663       --State.FreeRegs; // Non-byval indirects just use one pointer.
1664       if (!IsMCUABI)
1665         return getNaturalAlignIndirectInReg(Ty);
1666     }
1667     return getNaturalAlignIndirect(Ty, false);
1668   }
1669 
1670   // Compute the byval alignment.
1671   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1672   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1673   if (StackAlign == 0)
1674     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1675 
1676   // If the stack alignment is less than the type alignment, realign the
1677   // argument.
1678   bool Realign = TypeAlign > StackAlign;
1679   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1680                                  /*ByVal=*/true, Realign);
1681 }
1682 
1683 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1684   const Type *T = isSingleElementStruct(Ty, getContext());
1685   if (!T)
1686     T = Ty.getTypePtr();
1687 
1688   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1689     BuiltinType::Kind K = BT->getKind();
1690     if (K == BuiltinType::Float || K == BuiltinType::Double)
1691       return Float;
1692   }
1693   return Integer;
1694 }
1695 
1696 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1697   if (!IsSoftFloatABI) {
1698     Class C = classify(Ty);
1699     if (C == Float)
1700       return false;
1701   }
1702 
1703   unsigned Size = getContext().getTypeSize(Ty);
1704   unsigned SizeInRegs = (Size + 31) / 32;
1705 
1706   if (SizeInRegs == 0)
1707     return false;
1708 
1709   if (!IsMCUABI) {
1710     if (SizeInRegs > State.FreeRegs) {
1711       State.FreeRegs = 0;
1712       return false;
1713     }
1714   } else {
1715     // The MCU psABI allows passing parameters in-reg even if there are
1716     // earlier parameters that are passed on the stack. Also,
1717     // it does not allow passing >8-byte structs in-register,
1718     // even if there are 3 free registers available.
1719     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1720       return false;
1721   }
1722 
1723   State.FreeRegs -= SizeInRegs;
1724   return true;
1725 }
1726 
1727 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1728                                              bool &InReg,
1729                                              bool &NeedsPadding) const {
1730   // On Windows, aggregates other than HFAs are never passed in registers, and
1731   // they do not consume register slots. Homogenous floating-point aggregates
1732   // (HFAs) have already been dealt with at this point.
1733   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1734     return false;
1735 
1736   NeedsPadding = false;
1737   InReg = !IsMCUABI;
1738 
1739   if (!updateFreeRegs(Ty, State))
1740     return false;
1741 
1742   if (IsMCUABI)
1743     return true;
1744 
1745   if (State.CC == llvm::CallingConv::X86_FastCall ||
1746       State.CC == llvm::CallingConv::X86_VectorCall ||
1747       State.CC == llvm::CallingConv::X86_RegCall) {
1748     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1749       NeedsPadding = true;
1750 
1751     return false;
1752   }
1753 
1754   return true;
1755 }
1756 
1757 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1758   if (!updateFreeRegs(Ty, State))
1759     return false;
1760 
1761   if (IsMCUABI)
1762     return false;
1763 
1764   if (State.CC == llvm::CallingConv::X86_FastCall ||
1765       State.CC == llvm::CallingConv::X86_VectorCall ||
1766       State.CC == llvm::CallingConv::X86_RegCall) {
1767     if (getContext().getTypeSize(Ty) > 32)
1768       return false;
1769 
1770     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1771         Ty->isReferenceType());
1772   }
1773 
1774   return true;
1775 }
1776 
1777 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1778   // Vectorcall x86 works subtly different than in x64, so the format is
1779   // a bit different than the x64 version.  First, all vector types (not HVAs)
1780   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1781   // This differs from the x64 implementation, where the first 6 by INDEX get
1782   // registers.
1783   // In the second pass over the arguments, HVAs are passed in the remaining
1784   // vector registers if possible, or indirectly by address. The address will be
1785   // passed in ECX/EDX if available. Any other arguments are passed according to
1786   // the usual fastcall rules.
1787   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1788   for (int I = 0, E = Args.size(); I < E; ++I) {
1789     const Type *Base = nullptr;
1790     uint64_t NumElts = 0;
1791     const QualType &Ty = Args[I].type;
1792     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1793         isHomogeneousAggregate(Ty, Base, NumElts)) {
1794       if (State.FreeSSERegs >= NumElts) {
1795         State.FreeSSERegs -= NumElts;
1796         Args[I].info = ABIArgInfo::getDirectInReg();
1797         State.IsPreassigned.set(I);
1798       }
1799     }
1800   }
1801 }
1802 
1803 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1804                                                CCState &State) const {
1805   // FIXME: Set alignment on indirect arguments.
1806   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1807   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1808   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1809 
1810   Ty = useFirstFieldIfTransparentUnion(Ty);
1811   TypeInfo TI = getContext().getTypeInfo(Ty);
1812 
1813   // Check with the C++ ABI first.
1814   const RecordType *RT = Ty->getAs<RecordType>();
1815   if (RT) {
1816     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1817     if (RAA == CGCXXABI::RAA_Indirect) {
1818       return getIndirectResult(Ty, false, State);
1819     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1820       // The field index doesn't matter, we'll fix it up later.
1821       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1822     }
1823   }
1824 
1825   // Regcall uses the concept of a homogenous vector aggregate, similar
1826   // to other targets.
1827   const Type *Base = nullptr;
1828   uint64_t NumElts = 0;
1829   if ((IsRegCall || IsVectorCall) &&
1830       isHomogeneousAggregate(Ty, Base, NumElts)) {
1831     if (State.FreeSSERegs >= NumElts) {
1832       State.FreeSSERegs -= NumElts;
1833 
1834       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1835       // does.
1836       if (IsVectorCall)
1837         return getDirectX86Hva();
1838 
1839       if (Ty->isBuiltinType() || Ty->isVectorType())
1840         return ABIArgInfo::getDirect();
1841       return ABIArgInfo::getExpand();
1842     }
1843     return getIndirectResult(Ty, /*ByVal=*/false, State);
1844   }
1845 
1846   if (isAggregateTypeForABI(Ty)) {
1847     // Structures with flexible arrays are always indirect.
1848     // FIXME: This should not be byval!
1849     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1850       return getIndirectResult(Ty, true, State);
1851 
1852     // Ignore empty structs/unions on non-Windows.
1853     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1854       return ABIArgInfo::getIgnore();
1855 
1856     llvm::LLVMContext &LLVMContext = getVMContext();
1857     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1858     bool NeedsPadding = false;
1859     bool InReg;
1860     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1861       unsigned SizeInRegs = (TI.Width + 31) / 32;
1862       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1863       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1864       if (InReg)
1865         return ABIArgInfo::getDirectInReg(Result);
1866       else
1867         return ABIArgInfo::getDirect(Result);
1868     }
1869     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1870 
1871     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1872     // added in MSVC 2015.
1873     if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32)
1874       return getIndirectResult(Ty, /*ByVal=*/false, State);
1875 
1876     // Expand small (<= 128-bit) record types when we know that the stack layout
1877     // of those arguments will match the struct. This is important because the
1878     // LLVM backend isn't smart enough to remove byval, which inhibits many
1879     // optimizations.
1880     // Don't do this for the MCU if there are still free integer registers
1881     // (see X86_64 ABI for full explanation).
1882     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1883         canExpandIndirectArgument(Ty))
1884       return ABIArgInfo::getExpandWithPadding(
1885           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1886 
1887     return getIndirectResult(Ty, true, State);
1888   }
1889 
1890   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1891     // On Windows, vectors are passed directly if registers are available, or
1892     // indirectly if not. This avoids the need to align argument memory. Pass
1893     // user-defined vector types larger than 512 bits indirectly for simplicity.
1894     if (IsWin32StructABI) {
1895       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1896         --State.FreeSSERegs;
1897         return ABIArgInfo::getDirectInReg();
1898       }
1899       return getIndirectResult(Ty, /*ByVal=*/false, State);
1900     }
1901 
1902     // On Darwin, some vectors are passed in memory, we handle this by passing
1903     // it as an i8/i16/i32/i64.
1904     if (IsDarwinVectorABI) {
1905       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1906           (TI.Width == 64 && VT->getNumElements() == 1))
1907         return ABIArgInfo::getDirect(
1908             llvm::IntegerType::get(getVMContext(), TI.Width));
1909     }
1910 
1911     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1912       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1913 
1914     return ABIArgInfo::getDirect();
1915   }
1916 
1917 
1918   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1919     Ty = EnumTy->getDecl()->getIntegerType();
1920 
1921   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1922 
1923   if (isPromotableIntegerTypeForABI(Ty)) {
1924     if (InReg)
1925       return ABIArgInfo::getExtendInReg(Ty);
1926     return ABIArgInfo::getExtend(Ty);
1927   }
1928 
1929   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1930     if (EIT->getNumBits() <= 64) {
1931       if (InReg)
1932         return ABIArgInfo::getDirectInReg();
1933       return ABIArgInfo::getDirect();
1934     }
1935     return getIndirectResult(Ty, /*ByVal=*/false, State);
1936   }
1937 
1938   if (InReg)
1939     return ABIArgInfo::getDirectInReg();
1940   return ABIArgInfo::getDirect();
1941 }
1942 
1943 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1944   CCState State(FI);
1945   if (IsMCUABI)
1946     State.FreeRegs = 3;
1947   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1948     State.FreeRegs = 2;
1949     State.FreeSSERegs = 3;
1950   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1951     State.FreeRegs = 2;
1952     State.FreeSSERegs = 6;
1953   } else if (FI.getHasRegParm())
1954     State.FreeRegs = FI.getRegParm();
1955   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1956     State.FreeRegs = 5;
1957     State.FreeSSERegs = 8;
1958   } else if (IsWin32StructABI) {
1959     // Since MSVC 2015, the first three SSE vectors have been passed in
1960     // registers. The rest are passed indirectly.
1961     State.FreeRegs = DefaultNumRegisterParameters;
1962     State.FreeSSERegs = 3;
1963   } else
1964     State.FreeRegs = DefaultNumRegisterParameters;
1965 
1966   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1967     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1968   } else if (FI.getReturnInfo().isIndirect()) {
1969     // The C++ ABI is not aware of register usage, so we have to check if the
1970     // return value was sret and put it in a register ourselves if appropriate.
1971     if (State.FreeRegs) {
1972       --State.FreeRegs;  // The sret parameter consumes a register.
1973       if (!IsMCUABI)
1974         FI.getReturnInfo().setInReg(true);
1975     }
1976   }
1977 
1978   // The chain argument effectively gives us another free register.
1979   if (FI.isChainCall())
1980     ++State.FreeRegs;
1981 
1982   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1983   // arguments to XMM registers as available.
1984   if (State.CC == llvm::CallingConv::X86_VectorCall)
1985     runVectorCallFirstPass(FI, State);
1986 
1987   bool UsedInAlloca = false;
1988   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1989   for (int I = 0, E = Args.size(); I < E; ++I) {
1990     // Skip arguments that have already been assigned.
1991     if (State.IsPreassigned.test(I))
1992       continue;
1993 
1994     Args[I].info = classifyArgumentType(Args[I].type, State);
1995     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1996   }
1997 
1998   // If we needed to use inalloca for any argument, do a second pass and rewrite
1999   // all the memory arguments to use inalloca.
2000   if (UsedInAlloca)
2001     rewriteWithInAlloca(FI);
2002 }
2003 
2004 void
2005 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
2006                                    CharUnits &StackOffset, ABIArgInfo &Info,
2007                                    QualType Type) const {
2008   // Arguments are always 4-byte-aligned.
2009   CharUnits WordSize = CharUnits::fromQuantity(4);
2010   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
2011 
2012   // sret pointers and indirect things will require an extra pointer
2013   // indirection, unless they are byval. Most things are byval, and will not
2014   // require this indirection.
2015   bool IsIndirect = false;
2016   if (Info.isIndirect() && !Info.getIndirectByVal())
2017     IsIndirect = true;
2018   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
2019   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
2020   if (IsIndirect)
2021     LLTy = LLTy->getPointerTo(0);
2022   FrameFields.push_back(LLTy);
2023   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
2024 
2025   // Insert padding bytes to respect alignment.
2026   CharUnits FieldEnd = StackOffset;
2027   StackOffset = FieldEnd.alignTo(WordSize);
2028   if (StackOffset != FieldEnd) {
2029     CharUnits NumBytes = StackOffset - FieldEnd;
2030     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
2031     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
2032     FrameFields.push_back(Ty);
2033   }
2034 }
2035 
2036 static bool isArgInAlloca(const ABIArgInfo &Info) {
2037   // Leave ignored and inreg arguments alone.
2038   switch (Info.getKind()) {
2039   case ABIArgInfo::InAlloca:
2040     return true;
2041   case ABIArgInfo::Ignore:
2042   case ABIArgInfo::IndirectAliased:
2043     return false;
2044   case ABIArgInfo::Indirect:
2045   case ABIArgInfo::Direct:
2046   case ABIArgInfo::Extend:
2047     return !Info.getInReg();
2048   case ABIArgInfo::Expand:
2049   case ABIArgInfo::CoerceAndExpand:
2050     // These are aggregate types which are never passed in registers when
2051     // inalloca is involved.
2052     return true;
2053   }
2054   llvm_unreachable("invalid enum");
2055 }
2056 
2057 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2058   assert(IsWin32StructABI && "inalloca only supported on win32");
2059 
2060   // Build a packed struct type for all of the arguments in memory.
2061   SmallVector<llvm::Type *, 6> FrameFields;
2062 
2063   // The stack alignment is always 4.
2064   CharUnits StackAlign = CharUnits::fromQuantity(4);
2065 
2066   CharUnits StackOffset;
2067   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2068 
2069   // Put 'this' into the struct before 'sret', if necessary.
2070   bool IsThisCall =
2071       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2072   ABIArgInfo &Ret = FI.getReturnInfo();
2073   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2074       isArgInAlloca(I->info)) {
2075     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2076     ++I;
2077   }
2078 
2079   // Put the sret parameter into the inalloca struct if it's in memory.
2080   if (Ret.isIndirect() && !Ret.getInReg()) {
2081     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2082     // On Windows, the hidden sret parameter is always returned in eax.
2083     Ret.setInAllocaSRet(IsWin32StructABI);
2084   }
2085 
2086   // Skip the 'this' parameter in ecx.
2087   if (IsThisCall)
2088     ++I;
2089 
2090   // Put arguments passed in memory into the struct.
2091   for (; I != E; ++I) {
2092     if (isArgInAlloca(I->info))
2093       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2094   }
2095 
2096   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2097                                         /*isPacked=*/true),
2098                   StackAlign);
2099 }
2100 
2101 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2102                                  Address VAListAddr, QualType Ty) const {
2103 
2104   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2105 
2106   // x86-32 changes the alignment of certain arguments on the stack.
2107   //
2108   // Just messing with TypeInfo like this works because we never pass
2109   // anything indirectly.
2110   TypeInfo.Align = CharUnits::fromQuantity(
2111                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2112 
2113   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2114                           TypeInfo, CharUnits::fromQuantity(4),
2115                           /*AllowHigherAlign*/ true);
2116 }
2117 
2118 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2119     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2120   assert(Triple.getArch() == llvm::Triple::x86);
2121 
2122   switch (Opts.getStructReturnConvention()) {
2123   case CodeGenOptions::SRCK_Default:
2124     break;
2125   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2126     return false;
2127   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2128     return true;
2129   }
2130 
2131   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2132     return true;
2133 
2134   switch (Triple.getOS()) {
2135   case llvm::Triple::DragonFly:
2136   case llvm::Triple::FreeBSD:
2137   case llvm::Triple::OpenBSD:
2138   case llvm::Triple::Win32:
2139     return true;
2140   default:
2141     return false;
2142   }
2143 }
2144 
2145 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
2146                                  CodeGen::CodeGenModule &CGM) {
2147   if (!FD->hasAttr<AnyX86InterruptAttr>())
2148     return;
2149 
2150   llvm::Function *Fn = cast<llvm::Function>(GV);
2151   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2152   if (FD->getNumParams() == 0)
2153     return;
2154 
2155   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
2156   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
2157   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
2158     Fn->getContext(), ByValTy);
2159   Fn->addParamAttr(0, NewAttr);
2160 }
2161 
2162 void X86_32TargetCodeGenInfo::setTargetAttributes(
2163     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2164   if (GV->isDeclaration())
2165     return;
2166   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2167     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2168       llvm::Function *Fn = cast<llvm::Function>(GV);
2169       Fn->addFnAttr("stackrealign");
2170     }
2171 
2172     addX86InterruptAttrs(FD, GV, CGM);
2173   }
2174 }
2175 
2176 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2177                                                CodeGen::CodeGenFunction &CGF,
2178                                                llvm::Value *Address) const {
2179   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2180 
2181   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2182 
2183   // 0-7 are the eight integer registers;  the order is different
2184   //   on Darwin (for EH), but the range is the same.
2185   // 8 is %eip.
2186   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2187 
2188   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2189     // 12-16 are st(0..4).  Not sure why we stop at 4.
2190     // These have size 16, which is sizeof(long double) on
2191     // platforms with 8-byte alignment for that type.
2192     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2193     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2194 
2195   } else {
2196     // 9 is %eflags, which doesn't get a size on Darwin for some
2197     // reason.
2198     Builder.CreateAlignedStore(
2199         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2200                                CharUnits::One());
2201 
2202     // 11-16 are st(0..5).  Not sure why we stop at 5.
2203     // These have size 12, which is sizeof(long double) on
2204     // platforms with 4-byte alignment for that type.
2205     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2206     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2207   }
2208 
2209   return false;
2210 }
2211 
2212 //===----------------------------------------------------------------------===//
2213 // X86-64 ABI Implementation
2214 //===----------------------------------------------------------------------===//
2215 
2216 
2217 namespace {
2218 /// The AVX ABI level for X86 targets.
2219 enum class X86AVXABILevel {
2220   None,
2221   AVX,
2222   AVX512
2223 };
2224 
2225 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2226 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2227   switch (AVXLevel) {
2228   case X86AVXABILevel::AVX512:
2229     return 512;
2230   case X86AVXABILevel::AVX:
2231     return 256;
2232   case X86AVXABILevel::None:
2233     return 128;
2234   }
2235   llvm_unreachable("Unknown AVXLevel");
2236 }
2237 
2238 /// X86_64ABIInfo - The X86_64 ABI information.
2239 class X86_64ABIInfo : public SwiftABIInfo {
2240   enum Class {
2241     Integer = 0,
2242     SSE,
2243     SSEUp,
2244     X87,
2245     X87Up,
2246     ComplexX87,
2247     NoClass,
2248     Memory
2249   };
2250 
2251   /// merge - Implement the X86_64 ABI merging algorithm.
2252   ///
2253   /// Merge an accumulating classification \arg Accum with a field
2254   /// classification \arg Field.
2255   ///
2256   /// \param Accum - The accumulating classification. This should
2257   /// always be either NoClass or the result of a previous merge
2258   /// call. In addition, this should never be Memory (the caller
2259   /// should just return Memory for the aggregate).
2260   static Class merge(Class Accum, Class Field);
2261 
2262   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2263   ///
2264   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2265   /// final MEMORY or SSE classes when necessary.
2266   ///
2267   /// \param AggregateSize - The size of the current aggregate in
2268   /// the classification process.
2269   ///
2270   /// \param Lo - The classification for the parts of the type
2271   /// residing in the low word of the containing object.
2272   ///
2273   /// \param Hi - The classification for the parts of the type
2274   /// residing in the higher words of the containing object.
2275   ///
2276   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2277 
2278   /// classify - Determine the x86_64 register classes in which the
2279   /// given type T should be passed.
2280   ///
2281   /// \param Lo - The classification for the parts of the type
2282   /// residing in the low word of the containing object.
2283   ///
2284   /// \param Hi - The classification for the parts of the type
2285   /// residing in the high word of the containing object.
2286   ///
2287   /// \param OffsetBase - The bit offset of this type in the
2288   /// containing object.  Some parameters are classified different
2289   /// depending on whether they straddle an eightbyte boundary.
2290   ///
2291   /// \param isNamedArg - Whether the argument in question is a "named"
2292   /// argument, as used in AMD64-ABI 3.5.7.
2293   ///
2294   /// If a word is unused its result will be NoClass; if a type should
2295   /// be passed in Memory then at least the classification of \arg Lo
2296   /// will be Memory.
2297   ///
2298   /// The \arg Lo class will be NoClass iff the argument is ignored.
2299   ///
2300   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2301   /// also be ComplexX87.
2302   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2303                 bool isNamedArg) const;
2304 
2305   llvm::Type *GetByteVectorType(QualType Ty) const;
2306   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2307                                  unsigned IROffset, QualType SourceTy,
2308                                  unsigned SourceOffset) const;
2309   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2310                                      unsigned IROffset, QualType SourceTy,
2311                                      unsigned SourceOffset) const;
2312 
2313   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2314   /// such that the argument will be returned in memory.
2315   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2316 
2317   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2318   /// such that the argument will be passed in memory.
2319   ///
2320   /// \param freeIntRegs - The number of free integer registers remaining
2321   /// available.
2322   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2323 
2324   ABIArgInfo classifyReturnType(QualType RetTy) const;
2325 
2326   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2327                                   unsigned &neededInt, unsigned &neededSSE,
2328                                   bool isNamedArg) const;
2329 
2330   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2331                                        unsigned &NeededSSE) const;
2332 
2333   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2334                                            unsigned &NeededSSE) const;
2335 
2336   bool IsIllegalVectorType(QualType Ty) const;
2337 
2338   /// The 0.98 ABI revision clarified a lot of ambiguities,
2339   /// unfortunately in ways that were not always consistent with
2340   /// certain previous compilers.  In particular, platforms which
2341   /// required strict binary compatibility with older versions of GCC
2342   /// may need to exempt themselves.
2343   bool honorsRevision0_98() const {
2344     return !getTarget().getTriple().isOSDarwin();
2345   }
2346 
2347   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2348   /// classify it as INTEGER (for compatibility with older clang compilers).
2349   bool classifyIntegerMMXAsSSE() const {
2350     // Clang <= 3.8 did not do this.
2351     if (getContext().getLangOpts().getClangABICompat() <=
2352         LangOptions::ClangABI::Ver3_8)
2353       return false;
2354 
2355     const llvm::Triple &Triple = getTarget().getTriple();
2356     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2357       return false;
2358     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2359       return false;
2360     return true;
2361   }
2362 
2363   // GCC classifies vectors of __int128 as memory.
2364   bool passInt128VectorsInMem() const {
2365     // Clang <= 9.0 did not do this.
2366     if (getContext().getLangOpts().getClangABICompat() <=
2367         LangOptions::ClangABI::Ver9)
2368       return false;
2369 
2370     const llvm::Triple &T = getTarget().getTriple();
2371     return T.isOSLinux() || T.isOSNetBSD();
2372   }
2373 
2374   X86AVXABILevel AVXLevel;
2375   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2376   // 64-bit hardware.
2377   bool Has64BitPointers;
2378 
2379 public:
2380   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2381       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2382       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2383   }
2384 
2385   bool isPassedUsingAVXType(QualType type) const {
2386     unsigned neededInt, neededSSE;
2387     // The freeIntRegs argument doesn't matter here.
2388     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2389                                            /*isNamedArg*/true);
2390     if (info.isDirect()) {
2391       llvm::Type *ty = info.getCoerceToType();
2392       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2393         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2394     }
2395     return false;
2396   }
2397 
2398   void computeInfo(CGFunctionInfo &FI) const override;
2399 
2400   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2401                     QualType Ty) const override;
2402   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2403                       QualType Ty) const override;
2404 
2405   bool has64BitPointers() const {
2406     return Has64BitPointers;
2407   }
2408 
2409   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2410                                     bool asReturnValue) const override {
2411     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2412   }
2413   bool isSwiftErrorInRegister() const override {
2414     return true;
2415   }
2416 };
2417 
2418 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2419 class WinX86_64ABIInfo : public SwiftABIInfo {
2420 public:
2421   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2422       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2423         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2424 
2425   void computeInfo(CGFunctionInfo &FI) const override;
2426 
2427   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2428                     QualType Ty) const override;
2429 
2430   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2431     // FIXME: Assumes vectorcall is in use.
2432     return isX86VectorTypeForVectorCall(getContext(), Ty);
2433   }
2434 
2435   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2436                                          uint64_t NumMembers) const override {
2437     // FIXME: Assumes vectorcall is in use.
2438     return isX86VectorCallAggregateSmallEnough(NumMembers);
2439   }
2440 
2441   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2442                                     bool asReturnValue) const override {
2443     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2444   }
2445 
2446   bool isSwiftErrorInRegister() const override {
2447     return true;
2448   }
2449 
2450 private:
2451   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2452                       bool IsVectorCall, bool IsRegCall) const;
2453   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
2454                                            const ABIArgInfo &current) const;
2455 
2456   X86AVXABILevel AVXLevel;
2457 
2458   bool IsMingw64;
2459 };
2460 
2461 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2462 public:
2463   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2464       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2465 
2466   const X86_64ABIInfo &getABIInfo() const {
2467     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2468   }
2469 
2470   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2471   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2472   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2473 
2474   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2475     return 7;
2476   }
2477 
2478   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2479                                llvm::Value *Address) const override {
2480     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2481 
2482     // 0-15 are the 16 integer registers.
2483     // 16 is %rip.
2484     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2485     return false;
2486   }
2487 
2488   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2489                                   StringRef Constraint,
2490                                   llvm::Type* Ty) const override {
2491     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2492   }
2493 
2494   bool isNoProtoCallVariadic(const CallArgList &args,
2495                              const FunctionNoProtoType *fnType) const override {
2496     // The default CC on x86-64 sets %al to the number of SSA
2497     // registers used, and GCC sets this when calling an unprototyped
2498     // function, so we override the default behavior.  However, don't do
2499     // that when AVX types are involved: the ABI explicitly states it is
2500     // undefined, and it doesn't work in practice because of how the ABI
2501     // defines varargs anyway.
2502     if (fnType->getCallConv() == CC_C) {
2503       bool HasAVXType = false;
2504       for (CallArgList::const_iterator
2505              it = args.begin(), ie = args.end(); it != ie; ++it) {
2506         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2507           HasAVXType = true;
2508           break;
2509         }
2510       }
2511 
2512       if (!HasAVXType)
2513         return true;
2514     }
2515 
2516     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2517   }
2518 
2519   llvm::Constant *
2520   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2521     unsigned Sig = (0xeb << 0) | // jmp rel8
2522                    (0x06 << 8) | //           .+0x08
2523                    ('v' << 16) |
2524                    ('2' << 24);
2525     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2526   }
2527 
2528   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2529                            CodeGen::CodeGenModule &CGM) const override {
2530     if (GV->isDeclaration())
2531       return;
2532     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2533       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2534         llvm::Function *Fn = cast<llvm::Function>(GV);
2535         Fn->addFnAttr("stackrealign");
2536       }
2537 
2538       addX86InterruptAttrs(FD, GV, CGM);
2539     }
2540   }
2541 
2542   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2543                             const FunctionDecl *Caller,
2544                             const FunctionDecl *Callee,
2545                             const CallArgList &Args) const override;
2546 };
2547 
2548 static void initFeatureMaps(const ASTContext &Ctx,
2549                             llvm::StringMap<bool> &CallerMap,
2550                             const FunctionDecl *Caller,
2551                             llvm::StringMap<bool> &CalleeMap,
2552                             const FunctionDecl *Callee) {
2553   if (CalleeMap.empty() && CallerMap.empty()) {
2554     // The caller is potentially nullptr in the case where the call isn't in a
2555     // function.  In this case, the getFunctionFeatureMap ensures we just get
2556     // the TU level setting (since it cannot be modified by 'target'..
2557     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2558     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2559   }
2560 }
2561 
2562 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2563                                  SourceLocation CallLoc,
2564                                  const llvm::StringMap<bool> &CallerMap,
2565                                  const llvm::StringMap<bool> &CalleeMap,
2566                                  QualType Ty, StringRef Feature,
2567                                  bool IsArgument) {
2568   bool CallerHasFeat = CallerMap.lookup(Feature);
2569   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2570   if (!CallerHasFeat && !CalleeHasFeat)
2571     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2572            << IsArgument << Ty << Feature;
2573 
2574   // Mixing calling conventions here is very clearly an error.
2575   if (!CallerHasFeat || !CalleeHasFeat)
2576     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2577            << IsArgument << Ty << Feature;
2578 
2579   // Else, both caller and callee have the required feature, so there is no need
2580   // to diagnose.
2581   return false;
2582 }
2583 
2584 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2585                           SourceLocation CallLoc,
2586                           const llvm::StringMap<bool> &CallerMap,
2587                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2588                           bool IsArgument) {
2589   uint64_t Size = Ctx.getTypeSize(Ty);
2590   if (Size > 256)
2591     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2592                                 "avx512f", IsArgument);
2593 
2594   if (Size > 128)
2595     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2596                                 IsArgument);
2597 
2598   return false;
2599 }
2600 
2601 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2602     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2603     const FunctionDecl *Callee, const CallArgList &Args) const {
2604   llvm::StringMap<bool> CallerMap;
2605   llvm::StringMap<bool> CalleeMap;
2606   unsigned ArgIndex = 0;
2607 
2608   // We need to loop through the actual call arguments rather than the the
2609   // function's parameters, in case this variadic.
2610   for (const CallArg &Arg : Args) {
2611     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2612     // additionally changes how vectors >256 in size are passed. Like GCC, we
2613     // warn when a function is called with an argument where this will change.
2614     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2615     // the caller and callee features are mismatched.
2616     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2617     // change its ABI with attribute-target after this call.
2618     if (Arg.getType()->isVectorType() &&
2619         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2620       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2621       QualType Ty = Arg.getType();
2622       // The CallArg seems to have desugared the type already, so for clearer
2623       // diagnostics, replace it with the type in the FunctionDecl if possible.
2624       if (ArgIndex < Callee->getNumParams())
2625         Ty = Callee->getParamDecl(ArgIndex)->getType();
2626 
2627       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2628                         CalleeMap, Ty, /*IsArgument*/ true))
2629         return;
2630     }
2631     ++ArgIndex;
2632   }
2633 
2634   // Check return always, as we don't have a good way of knowing in codegen
2635   // whether this value is used, tail-called, etc.
2636   if (Callee->getReturnType()->isVectorType() &&
2637       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2638     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2639     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2640                   CalleeMap, Callee->getReturnType(),
2641                   /*IsArgument*/ false);
2642   }
2643 }
2644 
2645 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2646   // If the argument does not end in .lib, automatically add the suffix.
2647   // If the argument contains a space, enclose it in quotes.
2648   // This matches the behavior of MSVC.
2649   bool Quote = Lib.contains(' ');
2650   std::string ArgStr = Quote ? "\"" : "";
2651   ArgStr += Lib;
2652   if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a"))
2653     ArgStr += ".lib";
2654   ArgStr += Quote ? "\"" : "";
2655   return ArgStr;
2656 }
2657 
2658 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2659 public:
2660   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2661         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2662         unsigned NumRegisterParameters)
2663     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2664         Win32StructABI, NumRegisterParameters, false) {}
2665 
2666   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2667                            CodeGen::CodeGenModule &CGM) const override;
2668 
2669   void getDependentLibraryOption(llvm::StringRef Lib,
2670                                  llvm::SmallString<24> &Opt) const override {
2671     Opt = "/DEFAULTLIB:";
2672     Opt += qualifyWindowsLibrary(Lib);
2673   }
2674 
2675   void getDetectMismatchOption(llvm::StringRef Name,
2676                                llvm::StringRef Value,
2677                                llvm::SmallString<32> &Opt) const override {
2678     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2679   }
2680 };
2681 
2682 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2683                                           CodeGen::CodeGenModule &CGM) {
2684   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2685 
2686     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2687       Fn->addFnAttr("stack-probe-size",
2688                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2689     if (CGM.getCodeGenOpts().NoStackArgProbe)
2690       Fn->addFnAttr("no-stack-arg-probe");
2691   }
2692 }
2693 
2694 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2695     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2696   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2697   if (GV->isDeclaration())
2698     return;
2699   addStackProbeTargetAttributes(D, GV, CGM);
2700 }
2701 
2702 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2703 public:
2704   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2705                              X86AVXABILevel AVXLevel)
2706       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2707 
2708   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2709                            CodeGen::CodeGenModule &CGM) const override;
2710 
2711   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2712     return 7;
2713   }
2714 
2715   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2716                                llvm::Value *Address) const override {
2717     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2718 
2719     // 0-15 are the 16 integer registers.
2720     // 16 is %rip.
2721     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2722     return false;
2723   }
2724 
2725   void getDependentLibraryOption(llvm::StringRef Lib,
2726                                  llvm::SmallString<24> &Opt) const override {
2727     Opt = "/DEFAULTLIB:";
2728     Opt += qualifyWindowsLibrary(Lib);
2729   }
2730 
2731   void getDetectMismatchOption(llvm::StringRef Name,
2732                                llvm::StringRef Value,
2733                                llvm::SmallString<32> &Opt) const override {
2734     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2735   }
2736 };
2737 
2738 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2739     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2740   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2741   if (GV->isDeclaration())
2742     return;
2743   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2744     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2745       llvm::Function *Fn = cast<llvm::Function>(GV);
2746       Fn->addFnAttr("stackrealign");
2747     }
2748 
2749     addX86InterruptAttrs(FD, GV, CGM);
2750   }
2751 
2752   addStackProbeTargetAttributes(D, GV, CGM);
2753 }
2754 }
2755 
2756 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2757                               Class &Hi) const {
2758   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2759   //
2760   // (a) If one of the classes is Memory, the whole argument is passed in
2761   //     memory.
2762   //
2763   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2764   //     memory.
2765   //
2766   // (c) If the size of the aggregate exceeds two eightbytes and the first
2767   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2768   //     argument is passed in memory. NOTE: This is necessary to keep the
2769   //     ABI working for processors that don't support the __m256 type.
2770   //
2771   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2772   //
2773   // Some of these are enforced by the merging logic.  Others can arise
2774   // only with unions; for example:
2775   //   union { _Complex double; unsigned; }
2776   //
2777   // Note that clauses (b) and (c) were added in 0.98.
2778   //
2779   if (Hi == Memory)
2780     Lo = Memory;
2781   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2782     Lo = Memory;
2783   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2784     Lo = Memory;
2785   if (Hi == SSEUp && Lo != SSE)
2786     Hi = SSE;
2787 }
2788 
2789 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2790   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2791   // classified recursively so that always two fields are
2792   // considered. The resulting class is calculated according to
2793   // the classes of the fields in the eightbyte:
2794   //
2795   // (a) If both classes are equal, this is the resulting class.
2796   //
2797   // (b) If one of the classes is NO_CLASS, the resulting class is
2798   // the other class.
2799   //
2800   // (c) If one of the classes is MEMORY, the result is the MEMORY
2801   // class.
2802   //
2803   // (d) If one of the classes is INTEGER, the result is the
2804   // INTEGER.
2805   //
2806   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2807   // MEMORY is used as class.
2808   //
2809   // (f) Otherwise class SSE is used.
2810 
2811   // Accum should never be memory (we should have returned) or
2812   // ComplexX87 (because this cannot be passed in a structure).
2813   assert((Accum != Memory && Accum != ComplexX87) &&
2814          "Invalid accumulated classification during merge.");
2815   if (Accum == Field || Field == NoClass)
2816     return Accum;
2817   if (Field == Memory)
2818     return Memory;
2819   if (Accum == NoClass)
2820     return Field;
2821   if (Accum == Integer || Field == Integer)
2822     return Integer;
2823   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2824       Accum == X87 || Accum == X87Up)
2825     return Memory;
2826   return SSE;
2827 }
2828 
2829 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2830                              Class &Lo, Class &Hi, bool isNamedArg) const {
2831   // FIXME: This code can be simplified by introducing a simple value class for
2832   // Class pairs with appropriate constructor methods for the various
2833   // situations.
2834 
2835   // FIXME: Some of the split computations are wrong; unaligned vectors
2836   // shouldn't be passed in registers for example, so there is no chance they
2837   // can straddle an eightbyte. Verify & simplify.
2838 
2839   Lo = Hi = NoClass;
2840 
2841   Class &Current = OffsetBase < 64 ? Lo : Hi;
2842   Current = Memory;
2843 
2844   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2845     BuiltinType::Kind k = BT->getKind();
2846 
2847     if (k == BuiltinType::Void) {
2848       Current = NoClass;
2849     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2850       Lo = Integer;
2851       Hi = Integer;
2852     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2853       Current = Integer;
2854     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
2855                k == BuiltinType::Float16) {
2856       Current = SSE;
2857     } else if (k == BuiltinType::LongDouble) {
2858       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2859       if (LDF == &llvm::APFloat::IEEEquad()) {
2860         Lo = SSE;
2861         Hi = SSEUp;
2862       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2863         Lo = X87;
2864         Hi = X87Up;
2865       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2866         Current = SSE;
2867       } else
2868         llvm_unreachable("unexpected long double representation!");
2869     }
2870     // FIXME: _Decimal32 and _Decimal64 are SSE.
2871     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2872     return;
2873   }
2874 
2875   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2876     // Classify the underlying integer type.
2877     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2878     return;
2879   }
2880 
2881   if (Ty->hasPointerRepresentation()) {
2882     Current = Integer;
2883     return;
2884   }
2885 
2886   if (Ty->isMemberPointerType()) {
2887     if (Ty->isMemberFunctionPointerType()) {
2888       if (Has64BitPointers) {
2889         // If Has64BitPointers, this is an {i64, i64}, so classify both
2890         // Lo and Hi now.
2891         Lo = Hi = Integer;
2892       } else {
2893         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2894         // straddles an eightbyte boundary, Hi should be classified as well.
2895         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2896         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2897         if (EB_FuncPtr != EB_ThisAdj) {
2898           Lo = Hi = Integer;
2899         } else {
2900           Current = Integer;
2901         }
2902       }
2903     } else {
2904       Current = Integer;
2905     }
2906     return;
2907   }
2908 
2909   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2910     uint64_t Size = getContext().getTypeSize(VT);
2911     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2912       // gcc passes the following as integer:
2913       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2914       // 2 bytes - <2 x char>, <1 x short>
2915       // 1 byte  - <1 x char>
2916       Current = Integer;
2917 
2918       // If this type crosses an eightbyte boundary, it should be
2919       // split.
2920       uint64_t EB_Lo = (OffsetBase) / 64;
2921       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2922       if (EB_Lo != EB_Hi)
2923         Hi = Lo;
2924     } else if (Size == 64) {
2925       QualType ElementType = VT->getElementType();
2926 
2927       // gcc passes <1 x double> in memory. :(
2928       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2929         return;
2930 
2931       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2932       // pass them as integer.  For platforms where clang is the de facto
2933       // platform compiler, we must continue to use integer.
2934       if (!classifyIntegerMMXAsSSE() &&
2935           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2936            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2937            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2938            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2939         Current = Integer;
2940       else
2941         Current = SSE;
2942 
2943       // If this type crosses an eightbyte boundary, it should be
2944       // split.
2945       if (OffsetBase && OffsetBase != 64)
2946         Hi = Lo;
2947     } else if (Size == 128 ||
2948                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2949       QualType ElementType = VT->getElementType();
2950 
2951       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2952       if (passInt128VectorsInMem() && Size != 128 &&
2953           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2954            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2955         return;
2956 
2957       // Arguments of 256-bits are split into four eightbyte chunks. The
2958       // least significant one belongs to class SSE and all the others to class
2959       // SSEUP. The original Lo and Hi design considers that types can't be
2960       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2961       // This design isn't correct for 256-bits, but since there're no cases
2962       // where the upper parts would need to be inspected, avoid adding
2963       // complexity and just consider Hi to match the 64-256 part.
2964       //
2965       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2966       // registers if they are "named", i.e. not part of the "..." of a
2967       // variadic function.
2968       //
2969       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2970       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2971       Lo = SSE;
2972       Hi = SSEUp;
2973     }
2974     return;
2975   }
2976 
2977   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2978     QualType ET = getContext().getCanonicalType(CT->getElementType());
2979 
2980     uint64_t Size = getContext().getTypeSize(Ty);
2981     if (ET->isIntegralOrEnumerationType()) {
2982       if (Size <= 64)
2983         Current = Integer;
2984       else if (Size <= 128)
2985         Lo = Hi = Integer;
2986     } else if (ET->isFloat16Type() || ET == getContext().FloatTy) {
2987       Current = SSE;
2988     } else if (ET == getContext().DoubleTy) {
2989       Lo = Hi = SSE;
2990     } else if (ET == getContext().LongDoubleTy) {
2991       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2992       if (LDF == &llvm::APFloat::IEEEquad())
2993         Current = Memory;
2994       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2995         Current = ComplexX87;
2996       else if (LDF == &llvm::APFloat::IEEEdouble())
2997         Lo = Hi = SSE;
2998       else
2999         llvm_unreachable("unexpected long double representation!");
3000     }
3001 
3002     // If this complex type crosses an eightbyte boundary then it
3003     // should be split.
3004     uint64_t EB_Real = (OffsetBase) / 64;
3005     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
3006     if (Hi == NoClass && EB_Real != EB_Imag)
3007       Hi = Lo;
3008 
3009     return;
3010   }
3011 
3012   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
3013     if (EITy->getNumBits() <= 64)
3014       Current = Integer;
3015     else if (EITy->getNumBits() <= 128)
3016       Lo = Hi = Integer;
3017     // Larger values need to get passed in memory.
3018     return;
3019   }
3020 
3021   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3022     // Arrays are treated like structures.
3023 
3024     uint64_t Size = getContext().getTypeSize(Ty);
3025 
3026     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3027     // than eight eightbytes, ..., it has class MEMORY.
3028     if (Size > 512)
3029       return;
3030 
3031     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
3032     // fields, it has class MEMORY.
3033     //
3034     // Only need to check alignment of array base.
3035     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
3036       return;
3037 
3038     // Otherwise implement simplified merge. We could be smarter about
3039     // this, but it isn't worth it and would be harder to verify.
3040     Current = NoClass;
3041     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
3042     uint64_t ArraySize = AT->getSize().getZExtValue();
3043 
3044     // The only case a 256-bit wide vector could be used is when the array
3045     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3046     // to work for sizes wider than 128, early check and fallback to memory.
3047     //
3048     if (Size > 128 &&
3049         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
3050       return;
3051 
3052     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
3053       Class FieldLo, FieldHi;
3054       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3055       Lo = merge(Lo, FieldLo);
3056       Hi = merge(Hi, FieldHi);
3057       if (Lo == Memory || Hi == Memory)
3058         break;
3059     }
3060 
3061     postMerge(Size, Lo, Hi);
3062     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3063     return;
3064   }
3065 
3066   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3067     uint64_t Size = getContext().getTypeSize(Ty);
3068 
3069     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3070     // than eight eightbytes, ..., it has class MEMORY.
3071     if (Size > 512)
3072       return;
3073 
3074     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3075     // copy constructor or a non-trivial destructor, it is passed by invisible
3076     // reference.
3077     if (getRecordArgABI(RT, getCXXABI()))
3078       return;
3079 
3080     const RecordDecl *RD = RT->getDecl();
3081 
3082     // Assume variable sized types are passed in memory.
3083     if (RD->hasFlexibleArrayMember())
3084       return;
3085 
3086     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3087 
3088     // Reset Lo class, this will be recomputed.
3089     Current = NoClass;
3090 
3091     // If this is a C++ record, classify the bases first.
3092     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3093       for (const auto &I : CXXRD->bases()) {
3094         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3095                "Unexpected base class!");
3096         const auto *Base =
3097             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3098 
3099         // Classify this field.
3100         //
3101         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3102         // single eightbyte, each is classified separately. Each eightbyte gets
3103         // initialized to class NO_CLASS.
3104         Class FieldLo, FieldHi;
3105         uint64_t Offset =
3106           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3107         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3108         Lo = merge(Lo, FieldLo);
3109         Hi = merge(Hi, FieldHi);
3110         if (Lo == Memory || Hi == Memory) {
3111           postMerge(Size, Lo, Hi);
3112           return;
3113         }
3114       }
3115     }
3116 
3117     // Classify the fields one at a time, merging the results.
3118     unsigned idx = 0;
3119     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3120                                 LangOptions::ClangABI::Ver11 ||
3121                             getContext().getTargetInfo().getTriple().isPS4();
3122     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3123 
3124     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3125            i != e; ++i, ++idx) {
3126       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3127       bool BitField = i->isBitField();
3128 
3129       // Ignore padding bit-fields.
3130       if (BitField && i->isUnnamedBitfield())
3131         continue;
3132 
3133       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3134       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3135       //
3136       // The only case a 256-bit or a 512-bit wide vector could be used is when
3137       // the struct contains a single 256-bit or 512-bit element. Early check
3138       // and fallback to memory.
3139       //
3140       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3141       // than 128.
3142       if (Size > 128 &&
3143           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3144            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3145         Lo = Memory;
3146         postMerge(Size, Lo, Hi);
3147         return;
3148       }
3149       // Note, skip this test for bit-fields, see below.
3150       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3151         Lo = Memory;
3152         postMerge(Size, Lo, Hi);
3153         return;
3154       }
3155 
3156       // Classify this field.
3157       //
3158       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3159       // exceeds a single eightbyte, each is classified
3160       // separately. Each eightbyte gets initialized to class
3161       // NO_CLASS.
3162       Class FieldLo, FieldHi;
3163 
3164       // Bit-fields require special handling, they do not force the
3165       // structure to be passed in memory even if unaligned, and
3166       // therefore they can straddle an eightbyte.
3167       if (BitField) {
3168         assert(!i->isUnnamedBitfield());
3169         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3170         uint64_t Size = i->getBitWidthValue(getContext());
3171 
3172         uint64_t EB_Lo = Offset / 64;
3173         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3174 
3175         if (EB_Lo) {
3176           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3177           FieldLo = NoClass;
3178           FieldHi = Integer;
3179         } else {
3180           FieldLo = Integer;
3181           FieldHi = EB_Hi ? Integer : NoClass;
3182         }
3183       } else
3184         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3185       Lo = merge(Lo, FieldLo);
3186       Hi = merge(Hi, FieldHi);
3187       if (Lo == Memory || Hi == Memory)
3188         break;
3189     }
3190 
3191     postMerge(Size, Lo, Hi);
3192   }
3193 }
3194 
3195 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3196   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3197   // place naturally.
3198   if (!isAggregateTypeForABI(Ty)) {
3199     // Treat an enum type as its underlying type.
3200     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3201       Ty = EnumTy->getDecl()->getIntegerType();
3202 
3203     if (Ty->isExtIntType())
3204       return getNaturalAlignIndirect(Ty);
3205 
3206     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3207                                               : ABIArgInfo::getDirect());
3208   }
3209 
3210   return getNaturalAlignIndirect(Ty);
3211 }
3212 
3213 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3214   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3215     uint64_t Size = getContext().getTypeSize(VecTy);
3216     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3217     if (Size <= 64 || Size > LargestVector)
3218       return true;
3219     QualType EltTy = VecTy->getElementType();
3220     if (passInt128VectorsInMem() &&
3221         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3222          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3223       return true;
3224   }
3225 
3226   return false;
3227 }
3228 
3229 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3230                                             unsigned freeIntRegs) const {
3231   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3232   // place naturally.
3233   //
3234   // This assumption is optimistic, as there could be free registers available
3235   // when we need to pass this argument in memory, and LLVM could try to pass
3236   // the argument in the free register. This does not seem to happen currently,
3237   // but this code would be much safer if we could mark the argument with
3238   // 'onstack'. See PR12193.
3239   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3240       !Ty->isExtIntType()) {
3241     // Treat an enum type as its underlying type.
3242     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3243       Ty = EnumTy->getDecl()->getIntegerType();
3244 
3245     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3246                                               : ABIArgInfo::getDirect());
3247   }
3248 
3249   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3250     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3251 
3252   // Compute the byval alignment. We specify the alignment of the byval in all
3253   // cases so that the mid-level optimizer knows the alignment of the byval.
3254   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3255 
3256   // Attempt to avoid passing indirect results using byval when possible. This
3257   // is important for good codegen.
3258   //
3259   // We do this by coercing the value into a scalar type which the backend can
3260   // handle naturally (i.e., without using byval).
3261   //
3262   // For simplicity, we currently only do this when we have exhausted all of the
3263   // free integer registers. Doing this when there are free integer registers
3264   // would require more care, as we would have to ensure that the coerced value
3265   // did not claim the unused register. That would require either reording the
3266   // arguments to the function (so that any subsequent inreg values came first),
3267   // or only doing this optimization when there were no following arguments that
3268   // might be inreg.
3269   //
3270   // We currently expect it to be rare (particularly in well written code) for
3271   // arguments to be passed on the stack when there are still free integer
3272   // registers available (this would typically imply large structs being passed
3273   // by value), so this seems like a fair tradeoff for now.
3274   //
3275   // We can revisit this if the backend grows support for 'onstack' parameter
3276   // attributes. See PR12193.
3277   if (freeIntRegs == 0) {
3278     uint64_t Size = getContext().getTypeSize(Ty);
3279 
3280     // If this type fits in an eightbyte, coerce it into the matching integral
3281     // type, which will end up on the stack (with alignment 8).
3282     if (Align == 8 && Size <= 64)
3283       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3284                                                           Size));
3285   }
3286 
3287   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3288 }
3289 
3290 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3291 /// register. Pick an LLVM IR type that will be passed as a vector register.
3292 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3293   // Wrapper structs/arrays that only contain vectors are passed just like
3294   // vectors; strip them off if present.
3295   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3296     Ty = QualType(InnerTy, 0);
3297 
3298   llvm::Type *IRType = CGT.ConvertType(Ty);
3299   if (isa<llvm::VectorType>(IRType)) {
3300     // Don't pass vXi128 vectors in their native type, the backend can't
3301     // legalize them.
3302     if (passInt128VectorsInMem() &&
3303         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3304       // Use a vXi64 vector.
3305       uint64_t Size = getContext().getTypeSize(Ty);
3306       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3307                                         Size / 64);
3308     }
3309 
3310     return IRType;
3311   }
3312 
3313   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3314     return IRType;
3315 
3316   // We couldn't find the preferred IR vector type for 'Ty'.
3317   uint64_t Size = getContext().getTypeSize(Ty);
3318   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3319 
3320 
3321   // Return a LLVM IR vector type based on the size of 'Ty'.
3322   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3323                                     Size / 64);
3324 }
3325 
3326 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3327 /// is known to either be off the end of the specified type or being in
3328 /// alignment padding.  The user type specified is known to be at most 128 bits
3329 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3330 /// classification that put one of the two halves in the INTEGER class.
3331 ///
3332 /// It is conservatively correct to return false.
3333 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3334                                   unsigned EndBit, ASTContext &Context) {
3335   // If the bytes being queried are off the end of the type, there is no user
3336   // data hiding here.  This handles analysis of builtins, vectors and other
3337   // types that don't contain interesting padding.
3338   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3339   if (TySize <= StartBit)
3340     return true;
3341 
3342   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3343     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3344     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3345 
3346     // Check each element to see if the element overlaps with the queried range.
3347     for (unsigned i = 0; i != NumElts; ++i) {
3348       // If the element is after the span we care about, then we're done..
3349       unsigned EltOffset = i*EltSize;
3350       if (EltOffset >= EndBit) break;
3351 
3352       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3353       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3354                                  EndBit-EltOffset, Context))
3355         return false;
3356     }
3357     // If it overlaps no elements, then it is safe to process as padding.
3358     return true;
3359   }
3360 
3361   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3362     const RecordDecl *RD = RT->getDecl();
3363     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3364 
3365     // If this is a C++ record, check the bases first.
3366     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3367       for (const auto &I : CXXRD->bases()) {
3368         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3369                "Unexpected base class!");
3370         const auto *Base =
3371             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3372 
3373         // If the base is after the span we care about, ignore it.
3374         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3375         if (BaseOffset >= EndBit) continue;
3376 
3377         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3378         if (!BitsContainNoUserData(I.getType(), BaseStart,
3379                                    EndBit-BaseOffset, Context))
3380           return false;
3381       }
3382     }
3383 
3384     // Verify that no field has data that overlaps the region of interest.  Yes
3385     // this could be sped up a lot by being smarter about queried fields,
3386     // however we're only looking at structs up to 16 bytes, so we don't care
3387     // much.
3388     unsigned idx = 0;
3389     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3390          i != e; ++i, ++idx) {
3391       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3392 
3393       // If we found a field after the region we care about, then we're done.
3394       if (FieldOffset >= EndBit) break;
3395 
3396       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3397       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3398                                  Context))
3399         return false;
3400     }
3401 
3402     // If nothing in this record overlapped the area of interest, then we're
3403     // clean.
3404     return true;
3405   }
3406 
3407   return false;
3408 }
3409 
3410 /// getFPTypeAtOffset - Return a floating point type at the specified offset.
3411 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3412                                      const llvm::DataLayout &TD) {
3413   if (IROffset == 0 && IRType->isFloatingPointTy())
3414     return IRType;
3415 
3416   // If this is a struct, recurse into the field at the specified offset.
3417   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3418     if (!STy->getNumContainedTypes())
3419       return nullptr;
3420 
3421     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3422     unsigned Elt = SL->getElementContainingOffset(IROffset);
3423     IROffset -= SL->getElementOffset(Elt);
3424     return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
3425   }
3426 
3427   // If this is an array, recurse into the field at the specified offset.
3428   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3429     llvm::Type *EltTy = ATy->getElementType();
3430     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3431     IROffset -= IROffset / EltSize * EltSize;
3432     return getFPTypeAtOffset(EltTy, IROffset, TD);
3433   }
3434 
3435   return nullptr;
3436 }
3437 
3438 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3439 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3440 llvm::Type *X86_64ABIInfo::
3441 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3442                    QualType SourceTy, unsigned SourceOffset) const {
3443   const llvm::DataLayout &TD = getDataLayout();
3444   unsigned SourceSize =
3445       (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
3446   llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
3447   if (!T0 || T0->isDoubleTy())
3448     return llvm::Type::getDoubleTy(getVMContext());
3449 
3450   // Get the adjacent FP type.
3451   llvm::Type *T1 = nullptr;
3452   unsigned T0Size = TD.getTypeAllocSize(T0);
3453   if (SourceSize > T0Size)
3454       T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
3455   if (T1 == nullptr) {
3456     // Check if IRType is a half + float. float type will be in IROffset+4 due
3457     // to its alignment.
3458     if (T0->isHalfTy() && SourceSize > 4)
3459       T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3460     // If we can't get a second FP type, return a simple half or float.
3461     // avx512fp16-abi.c:pr51813_2 shows it works to return float for
3462     // {float, i8} too.
3463     if (T1 == nullptr)
3464       return T0;
3465   }
3466 
3467   if (T0->isFloatTy() && T1->isFloatTy())
3468     return llvm::FixedVectorType::get(T0, 2);
3469 
3470   if (T0->isHalfTy() && T1->isHalfTy()) {
3471     llvm::Type *T2 = nullptr;
3472     if (SourceSize > 4)
3473       T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3474     if (T2 == nullptr)
3475       return llvm::FixedVectorType::get(T0, 2);
3476     return llvm::FixedVectorType::get(T0, 4);
3477   }
3478 
3479   if (T0->isHalfTy() || T1->isHalfTy())
3480     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
3481 
3482   return llvm::Type::getDoubleTy(getVMContext());
3483 }
3484 
3485 
3486 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3487 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3488 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3489 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3490 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3491 /// etc).
3492 ///
3493 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3494 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3495 /// the 8-byte value references.  PrefType may be null.
3496 ///
3497 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3498 /// an offset into this that we're processing (which is always either 0 or 8).
3499 ///
3500 llvm::Type *X86_64ABIInfo::
3501 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3502                        QualType SourceTy, unsigned SourceOffset) const {
3503   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3504   // returning an 8-byte unit starting with it.  See if we can safely use it.
3505   if (IROffset == 0) {
3506     // Pointers and int64's always fill the 8-byte unit.
3507     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3508         IRType->isIntegerTy(64))
3509       return IRType;
3510 
3511     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3512     // goodness in the source type is just tail padding.  This is allowed to
3513     // kick in for struct {double,int} on the int, but not on
3514     // struct{double,int,int} because we wouldn't return the second int.  We
3515     // have to do this analysis on the source type because we can't depend on
3516     // unions being lowered a specific way etc.
3517     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3518         IRType->isIntegerTy(32) ||
3519         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3520       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3521           cast<llvm::IntegerType>(IRType)->getBitWidth();
3522 
3523       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3524                                 SourceOffset*8+64, getContext()))
3525         return IRType;
3526     }
3527   }
3528 
3529   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3530     // If this is a struct, recurse into the field at the specified offset.
3531     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3532     if (IROffset < SL->getSizeInBytes()) {
3533       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3534       IROffset -= SL->getElementOffset(FieldIdx);
3535 
3536       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3537                                     SourceTy, SourceOffset);
3538     }
3539   }
3540 
3541   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3542     llvm::Type *EltTy = ATy->getElementType();
3543     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3544     unsigned EltOffset = IROffset/EltSize*EltSize;
3545     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3546                                   SourceOffset);
3547   }
3548 
3549   // Okay, we don't have any better idea of what to pass, so we pass this in an
3550   // integer register that isn't too big to fit the rest of the struct.
3551   unsigned TySizeInBytes =
3552     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3553 
3554   assert(TySizeInBytes != SourceOffset && "Empty field?");
3555 
3556   // It is always safe to classify this as an integer type up to i64 that
3557   // isn't larger than the structure.
3558   return llvm::IntegerType::get(getVMContext(),
3559                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3560 }
3561 
3562 
3563 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3564 /// be used as elements of a two register pair to pass or return, return a
3565 /// first class aggregate to represent them.  For example, if the low part of
3566 /// a by-value argument should be passed as i32* and the high part as float,
3567 /// return {i32*, float}.
3568 static llvm::Type *
3569 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3570                            const llvm::DataLayout &TD) {
3571   // In order to correctly satisfy the ABI, we need to the high part to start
3572   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3573   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3574   // the second element at offset 8.  Check for this:
3575   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3576   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3577   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3578   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3579 
3580   // To handle this, we have to increase the size of the low part so that the
3581   // second element will start at an 8 byte offset.  We can't increase the size
3582   // of the second element because it might make us access off the end of the
3583   // struct.
3584   if (HiStart != 8) {
3585     // There are usually two sorts of types the ABI generation code can produce
3586     // for the low part of a pair that aren't 8 bytes in size: half, float or
3587     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3588     // NaCl).
3589     // Promote these to a larger type.
3590     if (Lo->isHalfTy() || Lo->isFloatTy())
3591       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3592     else {
3593       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3594              && "Invalid/unknown lo type");
3595       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3596     }
3597   }
3598 
3599   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3600 
3601   // Verify that the second element is at an 8-byte offset.
3602   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3603          "Invalid x86-64 argument pair!");
3604   return Result;
3605 }
3606 
3607 ABIArgInfo X86_64ABIInfo::
3608 classifyReturnType(QualType RetTy) const {
3609   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3610   // classification algorithm.
3611   X86_64ABIInfo::Class Lo, Hi;
3612   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3613 
3614   // Check some invariants.
3615   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3616   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3617 
3618   llvm::Type *ResType = nullptr;
3619   switch (Lo) {
3620   case NoClass:
3621     if (Hi == NoClass)
3622       return ABIArgInfo::getIgnore();
3623     // If the low part is just padding, it takes no register, leave ResType
3624     // null.
3625     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3626            "Unknown missing lo part");
3627     break;
3628 
3629   case SSEUp:
3630   case X87Up:
3631     llvm_unreachable("Invalid classification for lo word.");
3632 
3633     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3634     // hidden argument.
3635   case Memory:
3636     return getIndirectReturnResult(RetTy);
3637 
3638     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3639     // available register of the sequence %rax, %rdx is used.
3640   case Integer:
3641     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3642 
3643     // If we have a sign or zero extended integer, make sure to return Extend
3644     // so that the parameter gets the right LLVM IR attributes.
3645     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3646       // Treat an enum type as its underlying type.
3647       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3648         RetTy = EnumTy->getDecl()->getIntegerType();
3649 
3650       if (RetTy->isIntegralOrEnumerationType() &&
3651           isPromotableIntegerTypeForABI(RetTy))
3652         return ABIArgInfo::getExtend(RetTy);
3653     }
3654     break;
3655 
3656     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3657     // available SSE register of the sequence %xmm0, %xmm1 is used.
3658   case SSE:
3659     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3660     break;
3661 
3662     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3663     // returned on the X87 stack in %st0 as 80-bit x87 number.
3664   case X87:
3665     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3666     break;
3667 
3668     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3669     // part of the value is returned in %st0 and the imaginary part in
3670     // %st1.
3671   case ComplexX87:
3672     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3673     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3674                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3675     break;
3676   }
3677 
3678   llvm::Type *HighPart = nullptr;
3679   switch (Hi) {
3680     // Memory was handled previously and X87 should
3681     // never occur as a hi class.
3682   case Memory:
3683   case X87:
3684     llvm_unreachable("Invalid classification for hi word.");
3685 
3686   case ComplexX87: // Previously handled.
3687   case NoClass:
3688     break;
3689 
3690   case Integer:
3691     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3692     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3693       return ABIArgInfo::getDirect(HighPart, 8);
3694     break;
3695   case SSE:
3696     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3697     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3698       return ABIArgInfo::getDirect(HighPart, 8);
3699     break;
3700 
3701     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3702     // is passed in the next available eightbyte chunk if the last used
3703     // vector register.
3704     //
3705     // SSEUP should always be preceded by SSE, just widen.
3706   case SSEUp:
3707     assert(Lo == SSE && "Unexpected SSEUp classification.");
3708     ResType = GetByteVectorType(RetTy);
3709     break;
3710 
3711     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3712     // returned together with the previous X87 value in %st0.
3713   case X87Up:
3714     // If X87Up is preceded by X87, we don't need to do
3715     // anything. However, in some cases with unions it may not be
3716     // preceded by X87. In such situations we follow gcc and pass the
3717     // extra bits in an SSE reg.
3718     if (Lo != X87) {
3719       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3720       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3721         return ABIArgInfo::getDirect(HighPart, 8);
3722     }
3723     break;
3724   }
3725 
3726   // If a high part was specified, merge it together with the low part.  It is
3727   // known to pass in the high eightbyte of the result.  We do this by forming a
3728   // first class struct aggregate with the high and low part: {low, high}
3729   if (HighPart)
3730     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3731 
3732   return ABIArgInfo::getDirect(ResType);
3733 }
3734 
3735 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3736   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3737   bool isNamedArg)
3738   const
3739 {
3740   Ty = useFirstFieldIfTransparentUnion(Ty);
3741 
3742   X86_64ABIInfo::Class Lo, Hi;
3743   classify(Ty, 0, Lo, Hi, isNamedArg);
3744 
3745   // Check some invariants.
3746   // FIXME: Enforce these by construction.
3747   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3748   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3749 
3750   neededInt = 0;
3751   neededSSE = 0;
3752   llvm::Type *ResType = nullptr;
3753   switch (Lo) {
3754   case NoClass:
3755     if (Hi == NoClass)
3756       return ABIArgInfo::getIgnore();
3757     // If the low part is just padding, it takes no register, leave ResType
3758     // null.
3759     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3760            "Unknown missing lo part");
3761     break;
3762 
3763     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3764     // on the stack.
3765   case Memory:
3766 
3767     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3768     // COMPLEX_X87, it is passed in memory.
3769   case X87:
3770   case ComplexX87:
3771     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3772       ++neededInt;
3773     return getIndirectResult(Ty, freeIntRegs);
3774 
3775   case SSEUp:
3776   case X87Up:
3777     llvm_unreachable("Invalid classification for lo word.");
3778 
3779     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3780     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3781     // and %r9 is used.
3782   case Integer:
3783     ++neededInt;
3784 
3785     // Pick an 8-byte type based on the preferred type.
3786     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3787 
3788     // If we have a sign or zero extended integer, make sure to return Extend
3789     // so that the parameter gets the right LLVM IR attributes.
3790     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3791       // Treat an enum type as its underlying type.
3792       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3793         Ty = EnumTy->getDecl()->getIntegerType();
3794 
3795       if (Ty->isIntegralOrEnumerationType() &&
3796           isPromotableIntegerTypeForABI(Ty))
3797         return ABIArgInfo::getExtend(Ty);
3798     }
3799 
3800     break;
3801 
3802     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3803     // available SSE register is used, the registers are taken in the
3804     // order from %xmm0 to %xmm7.
3805   case SSE: {
3806     llvm::Type *IRType = CGT.ConvertType(Ty);
3807     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3808     ++neededSSE;
3809     break;
3810   }
3811   }
3812 
3813   llvm::Type *HighPart = nullptr;
3814   switch (Hi) {
3815     // Memory was handled previously, ComplexX87 and X87 should
3816     // never occur as hi classes, and X87Up must be preceded by X87,
3817     // which is passed in memory.
3818   case Memory:
3819   case X87:
3820   case ComplexX87:
3821     llvm_unreachable("Invalid classification for hi word.");
3822 
3823   case NoClass: break;
3824 
3825   case Integer:
3826     ++neededInt;
3827     // Pick an 8-byte type based on the preferred type.
3828     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3829 
3830     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3831       return ABIArgInfo::getDirect(HighPart, 8);
3832     break;
3833 
3834     // X87Up generally doesn't occur here (long double is passed in
3835     // memory), except in situations involving unions.
3836   case X87Up:
3837   case SSE:
3838     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3839 
3840     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3841       return ABIArgInfo::getDirect(HighPart, 8);
3842 
3843     ++neededSSE;
3844     break;
3845 
3846     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3847     // eightbyte is passed in the upper half of the last used SSE
3848     // register.  This only happens when 128-bit vectors are passed.
3849   case SSEUp:
3850     assert(Lo == SSE && "Unexpected SSEUp classification");
3851     ResType = GetByteVectorType(Ty);
3852     break;
3853   }
3854 
3855   // If a high part was specified, merge it together with the low part.  It is
3856   // known to pass in the high eightbyte of the result.  We do this by forming a
3857   // first class struct aggregate with the high and low part: {low, high}
3858   if (HighPart)
3859     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3860 
3861   return ABIArgInfo::getDirect(ResType);
3862 }
3863 
3864 ABIArgInfo
3865 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3866                                              unsigned &NeededSSE) const {
3867   auto RT = Ty->getAs<RecordType>();
3868   assert(RT && "classifyRegCallStructType only valid with struct types");
3869 
3870   if (RT->getDecl()->hasFlexibleArrayMember())
3871     return getIndirectReturnResult(Ty);
3872 
3873   // Sum up bases
3874   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3875     if (CXXRD->isDynamicClass()) {
3876       NeededInt = NeededSSE = 0;
3877       return getIndirectReturnResult(Ty);
3878     }
3879 
3880     for (const auto &I : CXXRD->bases())
3881       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3882               .isIndirect()) {
3883         NeededInt = NeededSSE = 0;
3884         return getIndirectReturnResult(Ty);
3885       }
3886   }
3887 
3888   // Sum up members
3889   for (const auto *FD : RT->getDecl()->fields()) {
3890     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3891       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3892               .isIndirect()) {
3893         NeededInt = NeededSSE = 0;
3894         return getIndirectReturnResult(Ty);
3895       }
3896     } else {
3897       unsigned LocalNeededInt, LocalNeededSSE;
3898       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3899                                LocalNeededSSE, true)
3900               .isIndirect()) {
3901         NeededInt = NeededSSE = 0;
3902         return getIndirectReturnResult(Ty);
3903       }
3904       NeededInt += LocalNeededInt;
3905       NeededSSE += LocalNeededSSE;
3906     }
3907   }
3908 
3909   return ABIArgInfo::getDirect();
3910 }
3911 
3912 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3913                                                     unsigned &NeededInt,
3914                                                     unsigned &NeededSSE) const {
3915 
3916   NeededInt = 0;
3917   NeededSSE = 0;
3918 
3919   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3920 }
3921 
3922 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3923 
3924   const unsigned CallingConv = FI.getCallingConvention();
3925   // It is possible to force Win64 calling convention on any x86_64 target by
3926   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3927   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3928   if (CallingConv == llvm::CallingConv::Win64) {
3929     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3930     Win64ABIInfo.computeInfo(FI);
3931     return;
3932   }
3933 
3934   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3935 
3936   // Keep track of the number of assigned registers.
3937   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3938   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3939   unsigned NeededInt, NeededSSE;
3940 
3941   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3942     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3943         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3944       FI.getReturnInfo() =
3945           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3946       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3947         FreeIntRegs -= NeededInt;
3948         FreeSSERegs -= NeededSSE;
3949       } else {
3950         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3951       }
3952     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3953                getContext().getCanonicalType(FI.getReturnType()
3954                                                  ->getAs<ComplexType>()
3955                                                  ->getElementType()) ==
3956                    getContext().LongDoubleTy)
3957       // Complex Long Double Type is passed in Memory when Regcall
3958       // calling convention is used.
3959       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3960     else
3961       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3962   }
3963 
3964   // If the return value is indirect, then the hidden argument is consuming one
3965   // integer register.
3966   if (FI.getReturnInfo().isIndirect())
3967     --FreeIntRegs;
3968 
3969   // The chain argument effectively gives us another free register.
3970   if (FI.isChainCall())
3971     ++FreeIntRegs;
3972 
3973   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3974   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3975   // get assigned (in left-to-right order) for passing as follows...
3976   unsigned ArgNo = 0;
3977   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3978        it != ie; ++it, ++ArgNo) {
3979     bool IsNamedArg = ArgNo < NumRequiredArgs;
3980 
3981     if (IsRegCall && it->type->isStructureOrClassType())
3982       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3983     else
3984       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3985                                       NeededSSE, IsNamedArg);
3986 
3987     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3988     // eightbyte of an argument, the whole argument is passed on the
3989     // stack. If registers have already been assigned for some
3990     // eightbytes of such an argument, the assignments get reverted.
3991     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3992       FreeIntRegs -= NeededInt;
3993       FreeSSERegs -= NeededSSE;
3994     } else {
3995       it->info = getIndirectResult(it->type, FreeIntRegs);
3996     }
3997   }
3998 }
3999 
4000 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
4001                                          Address VAListAddr, QualType Ty) {
4002   Address overflow_arg_area_p =
4003       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
4004   llvm::Value *overflow_arg_area =
4005     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
4006 
4007   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
4008   // byte boundary if alignment needed by type exceeds 8 byte boundary.
4009   // It isn't stated explicitly in the standard, but in practice we use
4010   // alignment greater than 16 where necessary.
4011   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4012   if (Align > CharUnits::fromQuantity(8)) {
4013     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
4014                                                       Align);
4015   }
4016 
4017   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
4018   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4019   llvm::Value *Res =
4020     CGF.Builder.CreateBitCast(overflow_arg_area,
4021                               llvm::PointerType::getUnqual(LTy));
4022 
4023   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
4024   // l->overflow_arg_area + sizeof(type).
4025   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
4026   // an 8 byte boundary.
4027 
4028   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
4029   llvm::Value *Offset =
4030       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
4031   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
4032                                             Offset, "overflow_arg_area.next");
4033   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
4034 
4035   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
4036   return Address(Res, Align);
4037 }
4038 
4039 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4040                                  QualType Ty) const {
4041   // Assume that va_list type is correct; should be pointer to LLVM type:
4042   // struct {
4043   //   i32 gp_offset;
4044   //   i32 fp_offset;
4045   //   i8* overflow_arg_area;
4046   //   i8* reg_save_area;
4047   // };
4048   unsigned neededInt, neededSSE;
4049 
4050   Ty = getContext().getCanonicalType(Ty);
4051   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
4052                                        /*isNamedArg*/false);
4053 
4054   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
4055   // in the registers. If not go to step 7.
4056   if (!neededInt && !neededSSE)
4057     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4058 
4059   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
4060   // general purpose registers needed to pass type and num_fp to hold
4061   // the number of floating point registers needed.
4062 
4063   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
4064   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
4065   // l->fp_offset > 304 - num_fp * 16 go to step 7.
4066   //
4067   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
4068   // register save space).
4069 
4070   llvm::Value *InRegs = nullptr;
4071   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
4072   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
4073   if (neededInt) {
4074     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
4075     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
4076     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4077     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4078   }
4079 
4080   if (neededSSE) {
4081     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4082     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4083     llvm::Value *FitsInFP =
4084       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4085     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4086     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4087   }
4088 
4089   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4090   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4091   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4092   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4093 
4094   // Emit code to load the value if it was passed in registers.
4095 
4096   CGF.EmitBlock(InRegBlock);
4097 
4098   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4099   // an offset of l->gp_offset and/or l->fp_offset. This may require
4100   // copying to a temporary location in case the parameter is passed
4101   // in different register classes or requires an alignment greater
4102   // than 8 for general purpose registers and 16 for XMM registers.
4103   //
4104   // FIXME: This really results in shameful code when we end up needing to
4105   // collect arguments from different places; often what should result in a
4106   // simple assembling of a structure from scattered addresses has many more
4107   // loads than necessary. Can we clean this up?
4108   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4109   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4110       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4111 
4112   Address RegAddr = Address::invalid();
4113   if (neededInt && neededSSE) {
4114     // FIXME: Cleanup.
4115     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4116     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4117     Address Tmp = CGF.CreateMemTemp(Ty);
4118     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4119     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4120     llvm::Type *TyLo = ST->getElementType(0);
4121     llvm::Type *TyHi = ST->getElementType(1);
4122     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4123            "Unexpected ABI info for mixed regs");
4124     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4125     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4126     llvm::Value *GPAddr =
4127         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
4128     llvm::Value *FPAddr =
4129         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
4130     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4131     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4132 
4133     // Copy the first element.
4134     // FIXME: Our choice of alignment here and below is probably pessimistic.
4135     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4136         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4137         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4138     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4139 
4140     // Copy the second element.
4141     V = CGF.Builder.CreateAlignedLoad(
4142         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4143         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4144     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4145 
4146     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4147   } else if (neededInt) {
4148     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
4149                       CharUnits::fromQuantity(8));
4150     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4151 
4152     // Copy to a temporary if necessary to ensure the appropriate alignment.
4153     auto TInfo = getContext().getTypeInfoInChars(Ty);
4154     uint64_t TySize = TInfo.Width.getQuantity();
4155     CharUnits TyAlign = TInfo.Align;
4156 
4157     // Copy into a temporary if the type is more aligned than the
4158     // register save area.
4159     if (TyAlign.getQuantity() > 8) {
4160       Address Tmp = CGF.CreateMemTemp(Ty);
4161       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4162       RegAddr = Tmp;
4163     }
4164 
4165   } else if (neededSSE == 1) {
4166     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
4167                       CharUnits::fromQuantity(16));
4168     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4169   } else {
4170     assert(neededSSE == 2 && "Invalid number of needed registers!");
4171     // SSE registers are spaced 16 bytes apart in the register save
4172     // area, we need to collect the two eightbytes together.
4173     // The ABI isn't explicit about this, but it seems reasonable
4174     // to assume that the slots are 16-byte aligned, since the stack is
4175     // naturally 16-byte aligned and the prologue is expected to store
4176     // all the SSE registers to the RSA.
4177     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
4178                                                       fp_offset),
4179                                 CharUnits::fromQuantity(16));
4180     Address RegAddrHi =
4181       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4182                                              CharUnits::fromQuantity(16));
4183     llvm::Type *ST = AI.canHaveCoerceToType()
4184                          ? AI.getCoerceToType()
4185                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4186     llvm::Value *V;
4187     Address Tmp = CGF.CreateMemTemp(Ty);
4188     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4189     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4190         RegAddrLo, ST->getStructElementType(0)));
4191     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4192     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4193         RegAddrHi, ST->getStructElementType(1)));
4194     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4195 
4196     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4197   }
4198 
4199   // AMD64-ABI 3.5.7p5: Step 5. Set:
4200   // l->gp_offset = l->gp_offset + num_gp * 8
4201   // l->fp_offset = l->fp_offset + num_fp * 16.
4202   if (neededInt) {
4203     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4204     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4205                             gp_offset_p);
4206   }
4207   if (neededSSE) {
4208     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4209     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4210                             fp_offset_p);
4211   }
4212   CGF.EmitBranch(ContBlock);
4213 
4214   // Emit code to load the value if it was passed in memory.
4215 
4216   CGF.EmitBlock(InMemBlock);
4217   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4218 
4219   // Return the appropriate result.
4220 
4221   CGF.EmitBlock(ContBlock);
4222   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4223                                  "vaarg.addr");
4224   return ResAddr;
4225 }
4226 
4227 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4228                                    QualType Ty) const {
4229   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4230   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4231   uint64_t Width = getContext().getTypeSize(Ty);
4232   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4233 
4234   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4235                           CGF.getContext().getTypeInfoInChars(Ty),
4236                           CharUnits::fromQuantity(8),
4237                           /*allowHigherAlign*/ false);
4238 }
4239 
4240 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
4241     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
4242   const Type *Base = nullptr;
4243   uint64_t NumElts = 0;
4244 
4245   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4246       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4247     FreeSSERegs -= NumElts;
4248     return getDirectX86Hva();
4249   }
4250   return current;
4251 }
4252 
4253 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4254                                       bool IsReturnType, bool IsVectorCall,
4255                                       bool IsRegCall) const {
4256 
4257   if (Ty->isVoidType())
4258     return ABIArgInfo::getIgnore();
4259 
4260   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4261     Ty = EnumTy->getDecl()->getIntegerType();
4262 
4263   TypeInfo Info = getContext().getTypeInfo(Ty);
4264   uint64_t Width = Info.Width;
4265   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4266 
4267   const RecordType *RT = Ty->getAs<RecordType>();
4268   if (RT) {
4269     if (!IsReturnType) {
4270       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4271         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4272     }
4273 
4274     if (RT->getDecl()->hasFlexibleArrayMember())
4275       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4276 
4277   }
4278 
4279   const Type *Base = nullptr;
4280   uint64_t NumElts = 0;
4281   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4282   // other targets.
4283   if ((IsVectorCall || IsRegCall) &&
4284       isHomogeneousAggregate(Ty, Base, NumElts)) {
4285     if (IsRegCall) {
4286       if (FreeSSERegs >= NumElts) {
4287         FreeSSERegs -= NumElts;
4288         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4289           return ABIArgInfo::getDirect();
4290         return ABIArgInfo::getExpand();
4291       }
4292       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4293     } else if (IsVectorCall) {
4294       if (FreeSSERegs >= NumElts &&
4295           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4296         FreeSSERegs -= NumElts;
4297         return ABIArgInfo::getDirect();
4298       } else if (IsReturnType) {
4299         return ABIArgInfo::getExpand();
4300       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4301         // HVAs are delayed and reclassified in the 2nd step.
4302         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4303       }
4304     }
4305   }
4306 
4307   if (Ty->isMemberPointerType()) {
4308     // If the member pointer is represented by an LLVM int or ptr, pass it
4309     // directly.
4310     llvm::Type *LLTy = CGT.ConvertType(Ty);
4311     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4312       return ABIArgInfo::getDirect();
4313   }
4314 
4315   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4316     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4317     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4318     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4319       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4320 
4321     // Otherwise, coerce it to a small integer.
4322     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4323   }
4324 
4325   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4326     switch (BT->getKind()) {
4327     case BuiltinType::Bool:
4328       // Bool type is always extended to the ABI, other builtin types are not
4329       // extended.
4330       return ABIArgInfo::getExtend(Ty);
4331 
4332     case BuiltinType::LongDouble:
4333       // Mingw64 GCC uses the old 80 bit extended precision floating point
4334       // unit. It passes them indirectly through memory.
4335       if (IsMingw64) {
4336         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4337         if (LDF == &llvm::APFloat::x87DoubleExtended())
4338           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4339       }
4340       break;
4341 
4342     case BuiltinType::Int128:
4343     case BuiltinType::UInt128:
4344       // If it's a parameter type, the normal ABI rule is that arguments larger
4345       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4346       // even though it isn't particularly efficient.
4347       if (!IsReturnType)
4348         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4349 
4350       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4351       // Clang matches them for compatibility.
4352       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4353           llvm::Type::getInt64Ty(getVMContext()), 2));
4354 
4355     default:
4356       break;
4357     }
4358   }
4359 
4360   if (Ty->isExtIntType()) {
4361     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4362     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4363     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4364     // anyway as long is it fits in them, so we don't have to check the power of
4365     // 2.
4366     if (Width <= 64)
4367       return ABIArgInfo::getDirect();
4368     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4369   }
4370 
4371   return ABIArgInfo::getDirect();
4372 }
4373 
4374 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4375   const unsigned CC = FI.getCallingConvention();
4376   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4377   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4378 
4379   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4380   // classification rules.
4381   if (CC == llvm::CallingConv::X86_64_SysV) {
4382     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4383     SysVABIInfo.computeInfo(FI);
4384     return;
4385   }
4386 
4387   unsigned FreeSSERegs = 0;
4388   if (IsVectorCall) {
4389     // We can use up to 4 SSE return registers with vectorcall.
4390     FreeSSERegs = 4;
4391   } else if (IsRegCall) {
4392     // RegCall gives us 16 SSE registers.
4393     FreeSSERegs = 16;
4394   }
4395 
4396   if (!getCXXABI().classifyReturnType(FI))
4397     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4398                                   IsVectorCall, IsRegCall);
4399 
4400   if (IsVectorCall) {
4401     // We can use up to 6 SSE register parameters with vectorcall.
4402     FreeSSERegs = 6;
4403   } else if (IsRegCall) {
4404     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4405     FreeSSERegs = 16;
4406   }
4407 
4408   unsigned ArgNum = 0;
4409   unsigned ZeroSSERegs = 0;
4410   for (auto &I : FI.arguments()) {
4411     // Vectorcall in x64 only permits the first 6 arguments to be passed as
4412     // XMM/YMM registers. After the sixth argument, pretend no vector
4413     // registers are left.
4414     unsigned *MaybeFreeSSERegs =
4415         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
4416     I.info =
4417         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
4418     ++ArgNum;
4419   }
4420 
4421   if (IsVectorCall) {
4422     // For vectorcall, assign aggregate HVAs to any free vector registers in a
4423     // second pass.
4424     for (auto &I : FI.arguments())
4425       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
4426   }
4427 }
4428 
4429 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4430                                     QualType Ty) const {
4431   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4432   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4433   uint64_t Width = getContext().getTypeSize(Ty);
4434   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4435 
4436   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4437                           CGF.getContext().getTypeInfoInChars(Ty),
4438                           CharUnits::fromQuantity(8),
4439                           /*allowHigherAlign*/ false);
4440 }
4441 
4442 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4443                                         llvm::Value *Address, bool Is64Bit,
4444                                         bool IsAIX) {
4445   // This is calculated from the LLVM and GCC tables and verified
4446   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4447 
4448   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4449 
4450   llvm::IntegerType *i8 = CGF.Int8Ty;
4451   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4452   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4453   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4454 
4455   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4456   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4457 
4458   // 32-63: fp0-31, the 8-byte floating-point registers
4459   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4460 
4461   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4462   // 64: mq
4463   // 65: lr
4464   // 66: ctr
4465   // 67: ap
4466   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4467 
4468   // 68-76 are various 4-byte special-purpose registers:
4469   // 68-75 cr0-7
4470   // 76: xer
4471   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4472 
4473   // 77-108: v0-31, the 16-byte vector registers
4474   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4475 
4476   // 109: vrsave
4477   // 110: vscr
4478   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4479 
4480   // AIX does not utilize the rest of the registers.
4481   if (IsAIX)
4482     return false;
4483 
4484   // 111: spe_acc
4485   // 112: spefscr
4486   // 113: sfp
4487   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4488 
4489   if (!Is64Bit)
4490     return false;
4491 
4492   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4493   // or above CPU.
4494   // 64-bit only registers:
4495   // 114: tfhar
4496   // 115: tfiar
4497   // 116: texasr
4498   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4499 
4500   return false;
4501 }
4502 
4503 // AIX
4504 namespace {
4505 /// AIXABIInfo - The AIX XCOFF ABI information.
4506 class AIXABIInfo : public ABIInfo {
4507   const bool Is64Bit;
4508   const unsigned PtrByteSize;
4509   CharUnits getParamTypeAlignment(QualType Ty) const;
4510 
4511 public:
4512   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4513       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4514 
4515   bool isPromotableTypeForABI(QualType Ty) const;
4516 
4517   ABIArgInfo classifyReturnType(QualType RetTy) const;
4518   ABIArgInfo classifyArgumentType(QualType Ty) const;
4519 
4520   void computeInfo(CGFunctionInfo &FI) const override {
4521     if (!getCXXABI().classifyReturnType(FI))
4522       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4523 
4524     for (auto &I : FI.arguments())
4525       I.info = classifyArgumentType(I.type);
4526   }
4527 
4528   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4529                     QualType Ty) const override;
4530 };
4531 
4532 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4533   const bool Is64Bit;
4534 
4535 public:
4536   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4537       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4538         Is64Bit(Is64Bit) {}
4539   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4540     return 1; // r1 is the dedicated stack pointer
4541   }
4542 
4543   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4544                                llvm::Value *Address) const override;
4545 };
4546 } // namespace
4547 
4548 // Return true if the ABI requires Ty to be passed sign- or zero-
4549 // extended to 32/64 bits.
4550 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4551   // Treat an enum type as its underlying type.
4552   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4553     Ty = EnumTy->getDecl()->getIntegerType();
4554 
4555   // Promotable integer types are required to be promoted by the ABI.
4556   if (Ty->isPromotableIntegerType())
4557     return true;
4558 
4559   if (!Is64Bit)
4560     return false;
4561 
4562   // For 64 bit mode, in addition to the usual promotable integer types, we also
4563   // need to extend all 32-bit types, since the ABI requires promotion to 64
4564   // bits.
4565   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4566     switch (BT->getKind()) {
4567     case BuiltinType::Int:
4568     case BuiltinType::UInt:
4569       return true;
4570     default:
4571       break;
4572     }
4573 
4574   return false;
4575 }
4576 
4577 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4578   if (RetTy->isAnyComplexType())
4579     return ABIArgInfo::getDirect();
4580 
4581   if (RetTy->isVectorType())
4582     return ABIArgInfo::getDirect();
4583 
4584   if (RetTy->isVoidType())
4585     return ABIArgInfo::getIgnore();
4586 
4587   if (isAggregateTypeForABI(RetTy))
4588     return getNaturalAlignIndirect(RetTy);
4589 
4590   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4591                                         : ABIArgInfo::getDirect());
4592 }
4593 
4594 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4595   Ty = useFirstFieldIfTransparentUnion(Ty);
4596 
4597   if (Ty->isAnyComplexType())
4598     return ABIArgInfo::getDirect();
4599 
4600   if (Ty->isVectorType())
4601     return ABIArgInfo::getDirect();
4602 
4603   if (isAggregateTypeForABI(Ty)) {
4604     // Records with non-trivial destructors/copy-constructors should not be
4605     // passed by value.
4606     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4607       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4608 
4609     CharUnits CCAlign = getParamTypeAlignment(Ty);
4610     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4611 
4612     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4613                                    /*Realign*/ TyAlign > CCAlign);
4614   }
4615 
4616   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4617                                      : ABIArgInfo::getDirect());
4618 }
4619 
4620 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4621   // Complex types are passed just like their elements.
4622   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4623     Ty = CTy->getElementType();
4624 
4625   if (Ty->isVectorType())
4626     return CharUnits::fromQuantity(16);
4627 
4628   // If the structure contains a vector type, the alignment is 16.
4629   if (isRecordWithSIMDVectorType(getContext(), Ty))
4630     return CharUnits::fromQuantity(16);
4631 
4632   return CharUnits::fromQuantity(PtrByteSize);
4633 }
4634 
4635 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4636                               QualType Ty) const {
4637 
4638   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4639   TypeInfo.Align = getParamTypeAlignment(Ty);
4640 
4641   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4642 
4643   // If we have a complex type and the base type is smaller than the register
4644   // size, the ABI calls for the real and imaginary parts to be right-adjusted
4645   // in separate words in 32bit mode or doublewords in 64bit mode. However,
4646   // Clang expects us to produce a pointer to a structure with the two parts
4647   // packed tightly. So generate loads of the real and imaginary parts relative
4648   // to the va_list pointer, and store them to a temporary structure. We do the
4649   // same as the PPC64ABI here.
4650   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4651     CharUnits EltSize = TypeInfo.Width / 2;
4652     if (EltSize < SlotSize)
4653       return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
4654   }
4655 
4656   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4657                           SlotSize, /*AllowHigher*/ true);
4658 }
4659 
4660 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4661     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4662   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4663 }
4664 
4665 // PowerPC-32
4666 namespace {
4667 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4668 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4669   bool IsSoftFloatABI;
4670   bool IsRetSmallStructInRegABI;
4671 
4672   CharUnits getParamTypeAlignment(QualType Ty) const;
4673 
4674 public:
4675   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4676                      bool RetSmallStructInRegABI)
4677       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4678         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4679 
4680   ABIArgInfo classifyReturnType(QualType RetTy) const;
4681 
4682   void computeInfo(CGFunctionInfo &FI) const override {
4683     if (!getCXXABI().classifyReturnType(FI))
4684       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4685     for (auto &I : FI.arguments())
4686       I.info = classifyArgumentType(I.type);
4687   }
4688 
4689   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4690                     QualType Ty) const override;
4691 };
4692 
4693 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4694 public:
4695   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4696                          bool RetSmallStructInRegABI)
4697       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4698             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4699 
4700   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4701                                      const CodeGenOptions &Opts);
4702 
4703   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4704     // This is recovered from gcc output.
4705     return 1; // r1 is the dedicated stack pointer
4706   }
4707 
4708   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4709                                llvm::Value *Address) const override;
4710 };
4711 }
4712 
4713 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4714   // Complex types are passed just like their elements.
4715   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4716     Ty = CTy->getElementType();
4717 
4718   if (Ty->isVectorType())
4719     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4720                                                                        : 4);
4721 
4722   // For single-element float/vector structs, we consider the whole type
4723   // to have the same alignment requirements as its single element.
4724   const Type *AlignTy = nullptr;
4725   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4726     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4727     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4728         (BT && BT->isFloatingPoint()))
4729       AlignTy = EltType;
4730   }
4731 
4732   if (AlignTy)
4733     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4734   return CharUnits::fromQuantity(4);
4735 }
4736 
4737 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4738   uint64_t Size;
4739 
4740   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4741   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4742       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4743     // System V ABI (1995), page 3-22, specified:
4744     // > A structure or union whose size is less than or equal to 8 bytes
4745     // > shall be returned in r3 and r4, as if it were first stored in the
4746     // > 8-byte aligned memory area and then the low addressed word were
4747     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4748     // > the last member of the structure or union are not defined.
4749     //
4750     // GCC for big-endian PPC32 inserts the pad before the first member,
4751     // not "beyond the last member" of the struct.  To stay compatible
4752     // with GCC, we coerce the struct to an integer of the same size.
4753     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4754     if (Size == 0)
4755       return ABIArgInfo::getIgnore();
4756     else {
4757       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4758       return ABIArgInfo::getDirect(CoerceTy);
4759     }
4760   }
4761 
4762   return DefaultABIInfo::classifyReturnType(RetTy);
4763 }
4764 
4765 // TODO: this implementation is now likely redundant with
4766 // DefaultABIInfo::EmitVAArg.
4767 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4768                                       QualType Ty) const {
4769   if (getTarget().getTriple().isOSDarwin()) {
4770     auto TI = getContext().getTypeInfoInChars(Ty);
4771     TI.Align = getParamTypeAlignment(Ty);
4772 
4773     CharUnits SlotSize = CharUnits::fromQuantity(4);
4774     return emitVoidPtrVAArg(CGF, VAList, Ty,
4775                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4776                             /*AllowHigherAlign=*/true);
4777   }
4778 
4779   const unsigned OverflowLimit = 8;
4780   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4781     // TODO: Implement this. For now ignore.
4782     (void)CTy;
4783     return Address::invalid(); // FIXME?
4784   }
4785 
4786   // struct __va_list_tag {
4787   //   unsigned char gpr;
4788   //   unsigned char fpr;
4789   //   unsigned short reserved;
4790   //   void *overflow_arg_area;
4791   //   void *reg_save_area;
4792   // };
4793 
4794   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4795   bool isInt = !Ty->isFloatingType();
4796   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4797 
4798   // All aggregates are passed indirectly?  That doesn't seem consistent
4799   // with the argument-lowering code.
4800   bool isIndirect = isAggregateTypeForABI(Ty);
4801 
4802   CGBuilderTy &Builder = CGF.Builder;
4803 
4804   // The calling convention either uses 1-2 GPRs or 1 FPR.
4805   Address NumRegsAddr = Address::invalid();
4806   if (isInt || IsSoftFloatABI) {
4807     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4808   } else {
4809     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4810   }
4811 
4812   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4813 
4814   // "Align" the register count when TY is i64.
4815   if (isI64 || (isF64 && IsSoftFloatABI)) {
4816     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4817     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4818   }
4819 
4820   llvm::Value *CC =
4821       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4822 
4823   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4824   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4825   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4826 
4827   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4828 
4829   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4830   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4831 
4832   // Case 1: consume registers.
4833   Address RegAddr = Address::invalid();
4834   {
4835     CGF.EmitBlock(UsingRegs);
4836 
4837     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4838     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4839                       CharUnits::fromQuantity(8));
4840     assert(RegAddr.getElementType() == CGF.Int8Ty);
4841 
4842     // Floating-point registers start after the general-purpose registers.
4843     if (!(isInt || IsSoftFloatABI)) {
4844       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4845                                                    CharUnits::fromQuantity(32));
4846     }
4847 
4848     // Get the address of the saved value by scaling the number of
4849     // registers we've used by the number of
4850     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4851     llvm::Value *RegOffset =
4852       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4853     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4854                                             RegAddr.getPointer(), RegOffset),
4855                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4856     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4857 
4858     // Increase the used-register count.
4859     NumRegs =
4860       Builder.CreateAdd(NumRegs,
4861                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4862     Builder.CreateStore(NumRegs, NumRegsAddr);
4863 
4864     CGF.EmitBranch(Cont);
4865   }
4866 
4867   // Case 2: consume space in the overflow area.
4868   Address MemAddr = Address::invalid();
4869   {
4870     CGF.EmitBlock(UsingOverflow);
4871 
4872     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4873 
4874     // Everything in the overflow area is rounded up to a size of at least 4.
4875     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4876 
4877     CharUnits Size;
4878     if (!isIndirect) {
4879       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4880       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4881     } else {
4882       Size = CGF.getPointerSize();
4883     }
4884 
4885     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4886     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4887                          OverflowAreaAlign);
4888     // Round up address of argument to alignment
4889     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4890     if (Align > OverflowAreaAlign) {
4891       llvm::Value *Ptr = OverflowArea.getPointer();
4892       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4893                                                            Align);
4894     }
4895 
4896     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4897 
4898     // Increase the overflow area.
4899     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4900     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4901     CGF.EmitBranch(Cont);
4902   }
4903 
4904   CGF.EmitBlock(Cont);
4905 
4906   // Merge the cases with a phi.
4907   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4908                                 "vaarg.addr");
4909 
4910   // Load the pointer if the argument was passed indirectly.
4911   if (isIndirect) {
4912     Result = Address(Builder.CreateLoad(Result, "aggr"),
4913                      getContext().getTypeAlignInChars(Ty));
4914   }
4915 
4916   return Result;
4917 }
4918 
4919 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4920     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4921   assert(Triple.isPPC32());
4922 
4923   switch (Opts.getStructReturnConvention()) {
4924   case CodeGenOptions::SRCK_Default:
4925     break;
4926   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4927     return false;
4928   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4929     return true;
4930   }
4931 
4932   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4933     return true;
4934 
4935   return false;
4936 }
4937 
4938 bool
4939 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4940                                                 llvm::Value *Address) const {
4941   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4942                                      /*IsAIX*/ false);
4943 }
4944 
4945 // PowerPC-64
4946 
4947 namespace {
4948 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4949 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4950 public:
4951   enum ABIKind {
4952     ELFv1 = 0,
4953     ELFv2
4954   };
4955 
4956 private:
4957   static const unsigned GPRBits = 64;
4958   ABIKind Kind;
4959   bool IsSoftFloatABI;
4960 
4961 public:
4962   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
4963                      bool SoftFloatABI)
4964       : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
4965 
4966   bool isPromotableTypeForABI(QualType Ty) const;
4967   CharUnits getParamTypeAlignment(QualType Ty) const;
4968 
4969   ABIArgInfo classifyReturnType(QualType RetTy) const;
4970   ABIArgInfo classifyArgumentType(QualType Ty) const;
4971 
4972   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4973   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4974                                          uint64_t Members) const override;
4975 
4976   // TODO: We can add more logic to computeInfo to improve performance.
4977   // Example: For aggregate arguments that fit in a register, we could
4978   // use getDirectInReg (as is done below for structs containing a single
4979   // floating-point value) to avoid pushing them to memory on function
4980   // entry.  This would require changing the logic in PPCISelLowering
4981   // when lowering the parameters in the caller and args in the callee.
4982   void computeInfo(CGFunctionInfo &FI) const override {
4983     if (!getCXXABI().classifyReturnType(FI))
4984       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4985     for (auto &I : FI.arguments()) {
4986       // We rely on the default argument classification for the most part.
4987       // One exception:  An aggregate containing a single floating-point
4988       // or vector item must be passed in a register if one is available.
4989       const Type *T = isSingleElementStruct(I.type, getContext());
4990       if (T) {
4991         const BuiltinType *BT = T->getAs<BuiltinType>();
4992         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4993             (BT && BT->isFloatingPoint())) {
4994           QualType QT(T, 0);
4995           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4996           continue;
4997         }
4998       }
4999       I.info = classifyArgumentType(I.type);
5000     }
5001   }
5002 
5003   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5004                     QualType Ty) const override;
5005 
5006   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5007                                     bool asReturnValue) const override {
5008     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5009   }
5010 
5011   bool isSwiftErrorInRegister() const override {
5012     return false;
5013   }
5014 };
5015 
5016 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
5017 
5018 public:
5019   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
5020                                PPC64_SVR4_ABIInfo::ABIKind Kind,
5021                                bool SoftFloatABI)
5022       : TargetCodeGenInfo(
5023             std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
5024 
5025   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5026     // This is recovered from gcc output.
5027     return 1; // r1 is the dedicated stack pointer
5028   }
5029 
5030   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5031                                llvm::Value *Address) const override;
5032 };
5033 
5034 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5035 public:
5036   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
5037 
5038   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5039     // This is recovered from gcc output.
5040     return 1; // r1 is the dedicated stack pointer
5041   }
5042 
5043   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5044                                llvm::Value *Address) const override;
5045 };
5046 
5047 }
5048 
5049 // Return true if the ABI requires Ty to be passed sign- or zero-
5050 // extended to 64 bits.
5051 bool
5052 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5053   // Treat an enum type as its underlying type.
5054   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5055     Ty = EnumTy->getDecl()->getIntegerType();
5056 
5057   // Promotable integer types are required to be promoted by the ABI.
5058   if (isPromotableIntegerTypeForABI(Ty))
5059     return true;
5060 
5061   // In addition to the usual promotable integer types, we also need to
5062   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5063   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5064     switch (BT->getKind()) {
5065     case BuiltinType::Int:
5066     case BuiltinType::UInt:
5067       return true;
5068     default:
5069       break;
5070     }
5071 
5072   if (const auto *EIT = Ty->getAs<ExtIntType>())
5073     if (EIT->getNumBits() < 64)
5074       return true;
5075 
5076   return false;
5077 }
5078 
5079 /// isAlignedParamType - Determine whether a type requires 16-byte or
5080 /// higher alignment in the parameter area.  Always returns at least 8.
5081 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5082   // Complex types are passed just like their elements.
5083   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5084     Ty = CTy->getElementType();
5085 
5086   // Only vector types of size 16 bytes need alignment (larger types are
5087   // passed via reference, smaller types are not aligned).
5088   if (Ty->isVectorType()) {
5089     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5090   } else if (Ty->isRealFloatingType() &&
5091              &getContext().getFloatTypeSemantics(Ty) ==
5092                  &llvm::APFloat::IEEEquad()) {
5093     // According to ABI document section 'Optional Save Areas': If extended
5094     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5095     // format are supported, map them to a single quadword, quadword aligned.
5096     return CharUnits::fromQuantity(16);
5097   }
5098 
5099   // For single-element float/vector structs, we consider the whole type
5100   // to have the same alignment requirements as its single element.
5101   const Type *AlignAsType = nullptr;
5102   const Type *EltType = isSingleElementStruct(Ty, getContext());
5103   if (EltType) {
5104     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5105     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5106         (BT && BT->isFloatingPoint()))
5107       AlignAsType = EltType;
5108   }
5109 
5110   // Likewise for ELFv2 homogeneous aggregates.
5111   const Type *Base = nullptr;
5112   uint64_t Members = 0;
5113   if (!AlignAsType && Kind == ELFv2 &&
5114       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5115     AlignAsType = Base;
5116 
5117   // With special case aggregates, only vector base types need alignment.
5118   if (AlignAsType) {
5119     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5120   }
5121 
5122   // Otherwise, we only need alignment for any aggregate type that
5123   // has an alignment requirement of >= 16 bytes.
5124   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5125     return CharUnits::fromQuantity(16);
5126   }
5127 
5128   return CharUnits::fromQuantity(8);
5129 }
5130 
5131 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5132 /// aggregate.  Base is set to the base element type, and Members is set
5133 /// to the number of base elements.
5134 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5135                                      uint64_t &Members) const {
5136   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5137     uint64_t NElements = AT->getSize().getZExtValue();
5138     if (NElements == 0)
5139       return false;
5140     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5141       return false;
5142     Members *= NElements;
5143   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5144     const RecordDecl *RD = RT->getDecl();
5145     if (RD->hasFlexibleArrayMember())
5146       return false;
5147 
5148     Members = 0;
5149 
5150     // If this is a C++ record, check the properties of the record such as
5151     // bases and ABI specific restrictions
5152     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5153       if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
5154         return false;
5155 
5156       for (const auto &I : CXXRD->bases()) {
5157         // Ignore empty records.
5158         if (isEmptyRecord(getContext(), I.getType(), true))
5159           continue;
5160 
5161         uint64_t FldMembers;
5162         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5163           return false;
5164 
5165         Members += FldMembers;
5166       }
5167     }
5168 
5169     for (const auto *FD : RD->fields()) {
5170       // Ignore (non-zero arrays of) empty records.
5171       QualType FT = FD->getType();
5172       while (const ConstantArrayType *AT =
5173              getContext().getAsConstantArrayType(FT)) {
5174         if (AT->getSize().getZExtValue() == 0)
5175           return false;
5176         FT = AT->getElementType();
5177       }
5178       if (isEmptyRecord(getContext(), FT, true))
5179         continue;
5180 
5181       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5182       if (getContext().getLangOpts().CPlusPlus &&
5183           FD->isZeroLengthBitField(getContext()))
5184         continue;
5185 
5186       uint64_t FldMembers;
5187       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5188         return false;
5189 
5190       Members = (RD->isUnion() ?
5191                  std::max(Members, FldMembers) : Members + FldMembers);
5192     }
5193 
5194     if (!Base)
5195       return false;
5196 
5197     // Ensure there is no padding.
5198     if (getContext().getTypeSize(Base) * Members !=
5199         getContext().getTypeSize(Ty))
5200       return false;
5201   } else {
5202     Members = 1;
5203     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5204       Members = 2;
5205       Ty = CT->getElementType();
5206     }
5207 
5208     // Most ABIs only support float, double, and some vector type widths.
5209     if (!isHomogeneousAggregateBaseType(Ty))
5210       return false;
5211 
5212     // The base type must be the same for all members.  Types that
5213     // agree in both total size and mode (float vs. vector) are
5214     // treated as being equivalent here.
5215     const Type *TyPtr = Ty.getTypePtr();
5216     if (!Base) {
5217       Base = TyPtr;
5218       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5219       // so make sure to widen it explicitly.
5220       if (const VectorType *VT = Base->getAs<VectorType>()) {
5221         QualType EltTy = VT->getElementType();
5222         unsigned NumElements =
5223             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5224         Base = getContext()
5225                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5226                    .getTypePtr();
5227       }
5228     }
5229 
5230     if (Base->isVectorType() != TyPtr->isVectorType() ||
5231         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5232       return false;
5233   }
5234   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5235 }
5236 
5237 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5238   // Homogeneous aggregates for ELFv2 must have base types of float,
5239   // double, long double, or 128-bit vectors.
5240   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5241     if (BT->getKind() == BuiltinType::Float ||
5242         BT->getKind() == BuiltinType::Double ||
5243         BT->getKind() == BuiltinType::LongDouble ||
5244         BT->getKind() == BuiltinType::Ibm128 ||
5245         (getContext().getTargetInfo().hasFloat128Type() &&
5246          (BT->getKind() == BuiltinType::Float128))) {
5247       if (IsSoftFloatABI)
5248         return false;
5249       return true;
5250     }
5251   }
5252   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5253     if (getContext().getTypeSize(VT) == 128)
5254       return true;
5255   }
5256   return false;
5257 }
5258 
5259 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5260     const Type *Base, uint64_t Members) const {
5261   // Vector and fp128 types require one register, other floating point types
5262   // require one or two registers depending on their size.
5263   uint32_t NumRegs =
5264       ((getContext().getTargetInfo().hasFloat128Type() &&
5265           Base->isFloat128Type()) ||
5266         Base->isVectorType()) ? 1
5267                               : (getContext().getTypeSize(Base) + 63) / 64;
5268 
5269   // Homogeneous Aggregates may occupy at most 8 registers.
5270   return Members * NumRegs <= 8;
5271 }
5272 
5273 ABIArgInfo
5274 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5275   Ty = useFirstFieldIfTransparentUnion(Ty);
5276 
5277   if (Ty->isAnyComplexType())
5278     return ABIArgInfo::getDirect();
5279 
5280   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5281   // or via reference (larger than 16 bytes).
5282   if (Ty->isVectorType()) {
5283     uint64_t Size = getContext().getTypeSize(Ty);
5284     if (Size > 128)
5285       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5286     else if (Size < 128) {
5287       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5288       return ABIArgInfo::getDirect(CoerceTy);
5289     }
5290   }
5291 
5292   if (const auto *EIT = Ty->getAs<ExtIntType>())
5293     if (EIT->getNumBits() > 128)
5294       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5295 
5296   if (isAggregateTypeForABI(Ty)) {
5297     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5298       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5299 
5300     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5301     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5302 
5303     // ELFv2 homogeneous aggregates are passed as array types.
5304     const Type *Base = nullptr;
5305     uint64_t Members = 0;
5306     if (Kind == ELFv2 &&
5307         isHomogeneousAggregate(Ty, Base, Members)) {
5308       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5309       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5310       return ABIArgInfo::getDirect(CoerceTy);
5311     }
5312 
5313     // If an aggregate may end up fully in registers, we do not
5314     // use the ByVal method, but pass the aggregate as array.
5315     // This is usually beneficial since we avoid forcing the
5316     // back-end to store the argument to memory.
5317     uint64_t Bits = getContext().getTypeSize(Ty);
5318     if (Bits > 0 && Bits <= 8 * GPRBits) {
5319       llvm::Type *CoerceTy;
5320 
5321       // Types up to 8 bytes are passed as integer type (which will be
5322       // properly aligned in the argument save area doubleword).
5323       if (Bits <= GPRBits)
5324         CoerceTy =
5325             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5326       // Larger types are passed as arrays, with the base type selected
5327       // according to the required alignment in the save area.
5328       else {
5329         uint64_t RegBits = ABIAlign * 8;
5330         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5331         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5332         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5333       }
5334 
5335       return ABIArgInfo::getDirect(CoerceTy);
5336     }
5337 
5338     // All other aggregates are passed ByVal.
5339     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5340                                    /*ByVal=*/true,
5341                                    /*Realign=*/TyAlign > ABIAlign);
5342   }
5343 
5344   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5345                                      : ABIArgInfo::getDirect());
5346 }
5347 
5348 ABIArgInfo
5349 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5350   if (RetTy->isVoidType())
5351     return ABIArgInfo::getIgnore();
5352 
5353   if (RetTy->isAnyComplexType())
5354     return ABIArgInfo::getDirect();
5355 
5356   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5357   // or via reference (larger than 16 bytes).
5358   if (RetTy->isVectorType()) {
5359     uint64_t Size = getContext().getTypeSize(RetTy);
5360     if (Size > 128)
5361       return getNaturalAlignIndirect(RetTy);
5362     else if (Size < 128) {
5363       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5364       return ABIArgInfo::getDirect(CoerceTy);
5365     }
5366   }
5367 
5368   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5369     if (EIT->getNumBits() > 128)
5370       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5371 
5372   if (isAggregateTypeForABI(RetTy)) {
5373     // ELFv2 homogeneous aggregates are returned as array types.
5374     const Type *Base = nullptr;
5375     uint64_t Members = 0;
5376     if (Kind == ELFv2 &&
5377         isHomogeneousAggregate(RetTy, Base, Members)) {
5378       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5379       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5380       return ABIArgInfo::getDirect(CoerceTy);
5381     }
5382 
5383     // ELFv2 small aggregates are returned in up to two registers.
5384     uint64_t Bits = getContext().getTypeSize(RetTy);
5385     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5386       if (Bits == 0)
5387         return ABIArgInfo::getIgnore();
5388 
5389       llvm::Type *CoerceTy;
5390       if (Bits > GPRBits) {
5391         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5392         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5393       } else
5394         CoerceTy =
5395             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5396       return ABIArgInfo::getDirect(CoerceTy);
5397     }
5398 
5399     // All other aggregates are returned indirectly.
5400     return getNaturalAlignIndirect(RetTy);
5401   }
5402 
5403   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5404                                         : ABIArgInfo::getDirect());
5405 }
5406 
5407 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5408 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5409                                       QualType Ty) const {
5410   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5411   TypeInfo.Align = getParamTypeAlignment(Ty);
5412 
5413   CharUnits SlotSize = CharUnits::fromQuantity(8);
5414 
5415   // If we have a complex type and the base type is smaller than 8 bytes,
5416   // the ABI calls for the real and imaginary parts to be right-adjusted
5417   // in separate doublewords.  However, Clang expects us to produce a
5418   // pointer to a structure with the two parts packed tightly.  So generate
5419   // loads of the real and imaginary parts relative to the va_list pointer,
5420   // and store them to a temporary structure.
5421   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5422     CharUnits EltSize = TypeInfo.Width / 2;
5423     if (EltSize < SlotSize)
5424       return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
5425   }
5426 
5427   // Otherwise, just use the general rule.
5428   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5429                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5430 }
5431 
5432 bool
5433 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5434   CodeGen::CodeGenFunction &CGF,
5435   llvm::Value *Address) const {
5436   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5437                                      /*IsAIX*/ false);
5438 }
5439 
5440 bool
5441 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5442                                                 llvm::Value *Address) const {
5443   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5444                                      /*IsAIX*/ false);
5445 }
5446 
5447 //===----------------------------------------------------------------------===//
5448 // AArch64 ABI Implementation
5449 //===----------------------------------------------------------------------===//
5450 
5451 namespace {
5452 
5453 class AArch64ABIInfo : public SwiftABIInfo {
5454 public:
5455   enum ABIKind {
5456     AAPCS = 0,
5457     DarwinPCS,
5458     Win64
5459   };
5460 
5461 private:
5462   ABIKind Kind;
5463 
5464 public:
5465   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5466     : SwiftABIInfo(CGT), Kind(Kind) {}
5467 
5468 private:
5469   ABIKind getABIKind() const { return Kind; }
5470   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5471 
5472   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5473   ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
5474                                   unsigned CallingConvention) const;
5475   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5476   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5477   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5478                                          uint64_t Members) const override;
5479 
5480   bool isIllegalVectorType(QualType Ty) const;
5481 
5482   void computeInfo(CGFunctionInfo &FI) const override {
5483     if (!::classifyReturnType(getCXXABI(), FI, *this))
5484       FI.getReturnInfo() =
5485           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5486 
5487     for (auto &it : FI.arguments())
5488       it.info = classifyArgumentType(it.type, FI.isVariadic(),
5489                                      FI.getCallingConvention());
5490   }
5491 
5492   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5493                           CodeGenFunction &CGF) const;
5494 
5495   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5496                          CodeGenFunction &CGF) const;
5497 
5498   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5499                     QualType Ty) const override {
5500     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5501     if (isa<llvm::ScalableVectorType>(BaseTy))
5502       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5503                                "currently not supported");
5504 
5505     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5506                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5507                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5508   }
5509 
5510   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5511                       QualType Ty) const override;
5512 
5513   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5514                                     bool asReturnValue) const override {
5515     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5516   }
5517   bool isSwiftErrorInRegister() const override {
5518     return true;
5519   }
5520 
5521   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5522                                  unsigned elts) const override;
5523 
5524   bool allowBFloatArgsAndRet() const override {
5525     return getTarget().hasBFloat16Type();
5526   }
5527 };
5528 
5529 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5530 public:
5531   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5532       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5533 
5534   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5535     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5536   }
5537 
5538   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5539     return 31;
5540   }
5541 
5542   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5543 
5544   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5545                            CodeGen::CodeGenModule &CGM) const override {
5546     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5547     if (!FD)
5548       return;
5549 
5550     const auto *TA = FD->getAttr<TargetAttr>();
5551     if (TA == nullptr)
5552       return;
5553 
5554     ParsedTargetAttr Attr = TA->parse();
5555     if (Attr.BranchProtection.empty())
5556       return;
5557 
5558     TargetInfo::BranchProtectionInfo BPI;
5559     StringRef Error;
5560     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5561                                                    BPI, Error);
5562     assert(Error.empty());
5563 
5564     auto *Fn = cast<llvm::Function>(GV);
5565     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5566     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5567 
5568     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5569       Fn->addFnAttr("sign-return-address-key",
5570                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5571                         ? "a_key"
5572                         : "b_key");
5573     }
5574 
5575     Fn->addFnAttr("branch-target-enforcement",
5576                   BPI.BranchTargetEnforcement ? "true" : "false");
5577   }
5578 
5579   bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
5580                                 llvm::Type *Ty) const override {
5581     if (CGF.getTarget().hasFeature("ls64")) {
5582       auto *ST = dyn_cast<llvm::StructType>(Ty);
5583       if (ST && ST->getNumElements() == 1) {
5584         auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
5585         if (AT && AT->getNumElements() == 8 &&
5586             AT->getElementType()->isIntegerTy(64))
5587           return true;
5588       }
5589     }
5590     return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
5591   }
5592 };
5593 
5594 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5595 public:
5596   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5597       : AArch64TargetCodeGenInfo(CGT, K) {}
5598 
5599   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5600                            CodeGen::CodeGenModule &CGM) const override;
5601 
5602   void getDependentLibraryOption(llvm::StringRef Lib,
5603                                  llvm::SmallString<24> &Opt) const override {
5604     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5605   }
5606 
5607   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5608                                llvm::SmallString<32> &Opt) const override {
5609     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5610   }
5611 };
5612 
5613 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5614     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5615   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5616   if (GV->isDeclaration())
5617     return;
5618   addStackProbeTargetAttributes(D, GV, CGM);
5619 }
5620 }
5621 
5622 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5623   assert(Ty->isVectorType() && "expected vector type!");
5624 
5625   const auto *VT = Ty->castAs<VectorType>();
5626   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5627     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5628     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5629                BuiltinType::UChar &&
5630            "unexpected builtin type for SVE predicate!");
5631     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5632         llvm::Type::getInt1Ty(getVMContext()), 16));
5633   }
5634 
5635   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5636     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5637 
5638     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5639     llvm::ScalableVectorType *ResType = nullptr;
5640     switch (BT->getKind()) {
5641     default:
5642       llvm_unreachable("unexpected builtin type for SVE vector!");
5643     case BuiltinType::SChar:
5644     case BuiltinType::UChar:
5645       ResType = llvm::ScalableVectorType::get(
5646           llvm::Type::getInt8Ty(getVMContext()), 16);
5647       break;
5648     case BuiltinType::Short:
5649     case BuiltinType::UShort:
5650       ResType = llvm::ScalableVectorType::get(
5651           llvm::Type::getInt16Ty(getVMContext()), 8);
5652       break;
5653     case BuiltinType::Int:
5654     case BuiltinType::UInt:
5655       ResType = llvm::ScalableVectorType::get(
5656           llvm::Type::getInt32Ty(getVMContext()), 4);
5657       break;
5658     case BuiltinType::Long:
5659     case BuiltinType::ULong:
5660       ResType = llvm::ScalableVectorType::get(
5661           llvm::Type::getInt64Ty(getVMContext()), 2);
5662       break;
5663     case BuiltinType::Half:
5664       ResType = llvm::ScalableVectorType::get(
5665           llvm::Type::getHalfTy(getVMContext()), 8);
5666       break;
5667     case BuiltinType::Float:
5668       ResType = llvm::ScalableVectorType::get(
5669           llvm::Type::getFloatTy(getVMContext()), 4);
5670       break;
5671     case BuiltinType::Double:
5672       ResType = llvm::ScalableVectorType::get(
5673           llvm::Type::getDoubleTy(getVMContext()), 2);
5674       break;
5675     case BuiltinType::BFloat16:
5676       ResType = llvm::ScalableVectorType::get(
5677           llvm::Type::getBFloatTy(getVMContext()), 8);
5678       break;
5679     }
5680     return ABIArgInfo::getDirect(ResType);
5681   }
5682 
5683   uint64_t Size = getContext().getTypeSize(Ty);
5684   // Android promotes <2 x i8> to i16, not i32
5685   if (isAndroid() && (Size <= 16)) {
5686     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5687     return ABIArgInfo::getDirect(ResType);
5688   }
5689   if (Size <= 32) {
5690     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5691     return ABIArgInfo::getDirect(ResType);
5692   }
5693   if (Size == 64) {
5694     auto *ResType =
5695         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5696     return ABIArgInfo::getDirect(ResType);
5697   }
5698   if (Size == 128) {
5699     auto *ResType =
5700         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5701     return ABIArgInfo::getDirect(ResType);
5702   }
5703   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5704 }
5705 
5706 ABIArgInfo
5707 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
5708                                      unsigned CallingConvention) const {
5709   Ty = useFirstFieldIfTransparentUnion(Ty);
5710 
5711   // Handle illegal vector types here.
5712   if (isIllegalVectorType(Ty))
5713     return coerceIllegalVector(Ty);
5714 
5715   if (!isAggregateTypeForABI(Ty)) {
5716     // Treat an enum type as its underlying type.
5717     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5718       Ty = EnumTy->getDecl()->getIntegerType();
5719 
5720     if (const auto *EIT = Ty->getAs<ExtIntType>())
5721       if (EIT->getNumBits() > 128)
5722         return getNaturalAlignIndirect(Ty);
5723 
5724     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5725                 ? ABIArgInfo::getExtend(Ty)
5726                 : ABIArgInfo::getDirect());
5727   }
5728 
5729   // Structures with either a non-trivial destructor or a non-trivial
5730   // copy constructor are always indirect.
5731   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5732     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5733                                      CGCXXABI::RAA_DirectInMemory);
5734   }
5735 
5736   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5737   // elsewhere for GNU compatibility.
5738   uint64_t Size = getContext().getTypeSize(Ty);
5739   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5740   if (IsEmpty || Size == 0) {
5741     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5742       return ABIArgInfo::getIgnore();
5743 
5744     // GNU C mode. The only argument that gets ignored is an empty one with size
5745     // 0.
5746     if (IsEmpty && Size == 0)
5747       return ABIArgInfo::getIgnore();
5748     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5749   }
5750 
5751   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5752   const Type *Base = nullptr;
5753   uint64_t Members = 0;
5754   bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64;
5755   bool IsWinVariadic = IsWin64 && IsVariadic;
5756   // In variadic functions on Windows, all composite types are treated alike,
5757   // no special handling of HFAs/HVAs.
5758   if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
5759     if (Kind != AArch64ABIInfo::AAPCS)
5760       return ABIArgInfo::getDirect(
5761           llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5762 
5763     // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
5764     // default otherwise.
5765     unsigned Align =
5766         getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5767     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
5768     Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
5769     return ABIArgInfo::getDirect(
5770         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
5771         nullptr, true, Align);
5772   }
5773 
5774   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5775   if (Size <= 128) {
5776     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5777     // same size and alignment.
5778     if (getTarget().isRenderScriptTarget()) {
5779       return coerceToIntArray(Ty, getContext(), getVMContext());
5780     }
5781     unsigned Alignment;
5782     if (Kind == AArch64ABIInfo::AAPCS) {
5783       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5784       Alignment = Alignment < 128 ? 64 : 128;
5785     } else {
5786       Alignment = std::max(getContext().getTypeAlign(Ty),
5787                            (unsigned)getTarget().getPointerWidth(0));
5788     }
5789     Size = llvm::alignTo(Size, Alignment);
5790 
5791     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5792     // For aggregates with 16-byte alignment, we use i128.
5793     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5794     return ABIArgInfo::getDirect(
5795         Size == Alignment ? BaseTy
5796                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5797   }
5798 
5799   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5800 }
5801 
5802 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5803                                               bool IsVariadic) const {
5804   if (RetTy->isVoidType())
5805     return ABIArgInfo::getIgnore();
5806 
5807   if (const auto *VT = RetTy->getAs<VectorType>()) {
5808     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5809         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5810       return coerceIllegalVector(RetTy);
5811   }
5812 
5813   // Large vector types should be returned via memory.
5814   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5815     return getNaturalAlignIndirect(RetTy);
5816 
5817   if (!isAggregateTypeForABI(RetTy)) {
5818     // Treat an enum type as its underlying type.
5819     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5820       RetTy = EnumTy->getDecl()->getIntegerType();
5821 
5822     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5823       if (EIT->getNumBits() > 128)
5824         return getNaturalAlignIndirect(RetTy);
5825 
5826     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5827                 ? ABIArgInfo::getExtend(RetTy)
5828                 : ABIArgInfo::getDirect());
5829   }
5830 
5831   uint64_t Size = getContext().getTypeSize(RetTy);
5832   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5833     return ABIArgInfo::getIgnore();
5834 
5835   const Type *Base = nullptr;
5836   uint64_t Members = 0;
5837   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5838       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5839         IsVariadic))
5840     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5841     return ABIArgInfo::getDirect();
5842 
5843   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5844   if (Size <= 128) {
5845     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5846     // same size and alignment.
5847     if (getTarget().isRenderScriptTarget()) {
5848       return coerceToIntArray(RetTy, getContext(), getVMContext());
5849     }
5850 
5851     if (Size <= 64 && getDataLayout().isLittleEndian()) {
5852       // Composite types are returned in lower bits of a 64-bit register for LE,
5853       // and in higher bits for BE. However, integer types are always returned
5854       // in lower bits for both LE and BE, and they are not rounded up to
5855       // 64-bits. We can skip rounding up of composite types for LE, but not for
5856       // BE, otherwise composite types will be indistinguishable from integer
5857       // types.
5858       return ABIArgInfo::getDirect(
5859           llvm::IntegerType::get(getVMContext(), Size));
5860     }
5861 
5862     unsigned Alignment = getContext().getTypeAlign(RetTy);
5863     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5864 
5865     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5866     // For aggregates with 16-byte alignment, we use i128.
5867     if (Alignment < 128 && Size == 128) {
5868       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5869       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5870     }
5871     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5872   }
5873 
5874   return getNaturalAlignIndirect(RetTy);
5875 }
5876 
5877 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5878 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5879   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5880     // Check whether VT is a fixed-length SVE vector. These types are
5881     // represented as scalable vectors in function args/return and must be
5882     // coerced from fixed vectors.
5883     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5884         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5885       return true;
5886 
5887     // Check whether VT is legal.
5888     unsigned NumElements = VT->getNumElements();
5889     uint64_t Size = getContext().getTypeSize(VT);
5890     // NumElements should be power of 2.
5891     if (!llvm::isPowerOf2_32(NumElements))
5892       return true;
5893 
5894     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5895     // vectors for some reason.
5896     llvm::Triple Triple = getTarget().getTriple();
5897     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5898         Triple.isOSBinFormatMachO())
5899       return Size <= 32;
5900 
5901     return Size != 64 && (Size != 128 || NumElements == 1);
5902   }
5903   return false;
5904 }
5905 
5906 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5907                                                llvm::Type *eltTy,
5908                                                unsigned elts) const {
5909   if (!llvm::isPowerOf2_32(elts))
5910     return false;
5911   if (totalSize.getQuantity() != 8 &&
5912       (totalSize.getQuantity() != 16 || elts == 1))
5913     return false;
5914   return true;
5915 }
5916 
5917 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5918   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5919   // point type or a short-vector type. This is the same as the 32-bit ABI,
5920   // but with the difference that any floating-point type is allowed,
5921   // including __fp16.
5922   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5923     if (BT->isFloatingPoint())
5924       return true;
5925   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5926     unsigned VecSize = getContext().getTypeSize(VT);
5927     if (VecSize == 64 || VecSize == 128)
5928       return true;
5929   }
5930   return false;
5931 }
5932 
5933 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5934                                                        uint64_t Members) const {
5935   return Members <= 4;
5936 }
5937 
5938 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5939                                        CodeGenFunction &CGF) const {
5940   ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
5941                                        CGF.CurFnInfo->getCallingConvention());
5942   bool IsIndirect = AI.isIndirect();
5943 
5944   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5945   if (IsIndirect)
5946     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5947   else if (AI.getCoerceToType())
5948     BaseTy = AI.getCoerceToType();
5949 
5950   unsigned NumRegs = 1;
5951   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5952     BaseTy = ArrTy->getElementType();
5953     NumRegs = ArrTy->getNumElements();
5954   }
5955   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5956 
5957   // The AArch64 va_list type and handling is specified in the Procedure Call
5958   // Standard, section B.4:
5959   //
5960   // struct {
5961   //   void *__stack;
5962   //   void *__gr_top;
5963   //   void *__vr_top;
5964   //   int __gr_offs;
5965   //   int __vr_offs;
5966   // };
5967 
5968   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5969   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5970   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5971   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5972 
5973   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5974   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5975 
5976   Address reg_offs_p = Address::invalid();
5977   llvm::Value *reg_offs = nullptr;
5978   int reg_top_index;
5979   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5980   if (!IsFPR) {
5981     // 3 is the field number of __gr_offs
5982     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5983     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5984     reg_top_index = 1; // field number for __gr_top
5985     RegSize = llvm::alignTo(RegSize, 8);
5986   } else {
5987     // 4 is the field number of __vr_offs.
5988     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5989     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5990     reg_top_index = 2; // field number for __vr_top
5991     RegSize = 16 * NumRegs;
5992   }
5993 
5994   //=======================================
5995   // Find out where argument was passed
5996   //=======================================
5997 
5998   // If reg_offs >= 0 we're already using the stack for this type of
5999   // argument. We don't want to keep updating reg_offs (in case it overflows,
6000   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
6001   // whatever they get).
6002   llvm::Value *UsingStack = nullptr;
6003   UsingStack = CGF.Builder.CreateICmpSGE(
6004       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
6005 
6006   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
6007 
6008   // Otherwise, at least some kind of argument could go in these registers, the
6009   // question is whether this particular type is too big.
6010   CGF.EmitBlock(MaybeRegBlock);
6011 
6012   // Integer arguments may need to correct register alignment (for example a
6013   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
6014   // align __gr_offs to calculate the potential address.
6015   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
6016     int Align = TyAlign.getQuantity();
6017 
6018     reg_offs = CGF.Builder.CreateAdd(
6019         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
6020         "align_regoffs");
6021     reg_offs = CGF.Builder.CreateAnd(
6022         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
6023         "aligned_regoffs");
6024   }
6025 
6026   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
6027   // The fact that this is done unconditionally reflects the fact that
6028   // allocating an argument to the stack also uses up all the remaining
6029   // registers of the appropriate kind.
6030   llvm::Value *NewOffset = nullptr;
6031   NewOffset = CGF.Builder.CreateAdd(
6032       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
6033   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
6034 
6035   // Now we're in a position to decide whether this argument really was in
6036   // registers or not.
6037   llvm::Value *InRegs = nullptr;
6038   InRegs = CGF.Builder.CreateICmpSLE(
6039       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
6040 
6041   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
6042 
6043   //=======================================
6044   // Argument was in registers
6045   //=======================================
6046 
6047   // Now we emit the code for if the argument was originally passed in
6048   // registers. First start the appropriate block:
6049   CGF.EmitBlock(InRegBlock);
6050 
6051   llvm::Value *reg_top = nullptr;
6052   Address reg_top_p =
6053       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
6054   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
6055   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
6056                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
6057   Address RegAddr = Address::invalid();
6058   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
6059 
6060   if (IsIndirect) {
6061     // If it's been passed indirectly (actually a struct), whatever we find from
6062     // stored registers or on the stack will actually be a struct **.
6063     MemTy = llvm::PointerType::getUnqual(MemTy);
6064   }
6065 
6066   const Type *Base = nullptr;
6067   uint64_t NumMembers = 0;
6068   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6069   if (IsHFA && NumMembers > 1) {
6070     // Homogeneous aggregates passed in registers will have their elements split
6071     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6072     // qN+1, ...). We reload and store into a temporary local variable
6073     // contiguously.
6074     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6075     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6076     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6077     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6078     Address Tmp = CGF.CreateTempAlloca(HFATy,
6079                                        std::max(TyAlign, BaseTyInfo.Align));
6080 
6081     // On big-endian platforms, the value will be right-aligned in its slot.
6082     int Offset = 0;
6083     if (CGF.CGM.getDataLayout().isBigEndian() &&
6084         BaseTyInfo.Width.getQuantity() < 16)
6085       Offset = 16 - BaseTyInfo.Width.getQuantity();
6086 
6087     for (unsigned i = 0; i < NumMembers; ++i) {
6088       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6089       Address LoadAddr =
6090         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6091       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6092 
6093       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6094 
6095       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6096       CGF.Builder.CreateStore(Elem, StoreAddr);
6097     }
6098 
6099     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6100   } else {
6101     // Otherwise the object is contiguous in memory.
6102 
6103     // It might be right-aligned in its slot.
6104     CharUnits SlotSize = BaseAddr.getAlignment();
6105     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6106         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6107         TySize < SlotSize) {
6108       CharUnits Offset = SlotSize - TySize;
6109       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6110     }
6111 
6112     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6113   }
6114 
6115   CGF.EmitBranch(ContBlock);
6116 
6117   //=======================================
6118   // Argument was on the stack
6119   //=======================================
6120   CGF.EmitBlock(OnStackBlock);
6121 
6122   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6123   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6124 
6125   // Again, stack arguments may need realignment. In this case both integer and
6126   // floating-point ones might be affected.
6127   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6128     int Align = TyAlign.getQuantity();
6129 
6130     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6131 
6132     OnStackPtr = CGF.Builder.CreateAdd(
6133         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6134         "align_stack");
6135     OnStackPtr = CGF.Builder.CreateAnd(
6136         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6137         "align_stack");
6138 
6139     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6140   }
6141   Address OnStackAddr(OnStackPtr,
6142                       std::max(CharUnits::fromQuantity(8), TyAlign));
6143 
6144   // All stack slots are multiples of 8 bytes.
6145   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6146   CharUnits StackSize;
6147   if (IsIndirect)
6148     StackSize = StackSlotSize;
6149   else
6150     StackSize = TySize.alignTo(StackSlotSize);
6151 
6152   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6153   llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
6154       CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
6155 
6156   // Write the new value of __stack for the next call to va_arg
6157   CGF.Builder.CreateStore(NewStack, stack_p);
6158 
6159   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6160       TySize < StackSlotSize) {
6161     CharUnits Offset = StackSlotSize - TySize;
6162     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6163   }
6164 
6165   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6166 
6167   CGF.EmitBranch(ContBlock);
6168 
6169   //=======================================
6170   // Tidy up
6171   //=======================================
6172   CGF.EmitBlock(ContBlock);
6173 
6174   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6175                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6176 
6177   if (IsIndirect)
6178     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6179                    TyAlign);
6180 
6181   return ResAddr;
6182 }
6183 
6184 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6185                                         CodeGenFunction &CGF) const {
6186   // The backend's lowering doesn't support va_arg for aggregates or
6187   // illegal vector types.  Lower VAArg here for these cases and use
6188   // the LLVM va_arg instruction for everything else.
6189   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6190     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6191 
6192   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6193   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6194 
6195   // Empty records are ignored for parameter passing purposes.
6196   if (isEmptyRecord(getContext(), Ty, true)) {
6197     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6198     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6199     return Addr;
6200   }
6201 
6202   // The size of the actual thing passed, which might end up just
6203   // being a pointer for indirect types.
6204   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6205 
6206   // Arguments bigger than 16 bytes which aren't homogeneous
6207   // aggregates should be passed indirectly.
6208   bool IsIndirect = false;
6209   if (TyInfo.Width.getQuantity() > 16) {
6210     const Type *Base = nullptr;
6211     uint64_t Members = 0;
6212     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6213   }
6214 
6215   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6216                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6217 }
6218 
6219 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6220                                     QualType Ty) const {
6221   bool IsIndirect = false;
6222 
6223   // Composites larger than 16 bytes are passed by reference.
6224   if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
6225     IsIndirect = true;
6226 
6227   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6228                           CGF.getContext().getTypeInfoInChars(Ty),
6229                           CharUnits::fromQuantity(8),
6230                           /*allowHigherAlign*/ false);
6231 }
6232 
6233 //===----------------------------------------------------------------------===//
6234 // ARM ABI Implementation
6235 //===----------------------------------------------------------------------===//
6236 
6237 namespace {
6238 
6239 class ARMABIInfo : public SwiftABIInfo {
6240 public:
6241   enum ABIKind {
6242     APCS = 0,
6243     AAPCS = 1,
6244     AAPCS_VFP = 2,
6245     AAPCS16_VFP = 3,
6246   };
6247 
6248 private:
6249   ABIKind Kind;
6250   bool IsFloatABISoftFP;
6251 
6252 public:
6253   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6254       : SwiftABIInfo(CGT), Kind(_Kind) {
6255     setCCs();
6256     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6257         CGT.getCodeGenOpts().FloatABI == ""; // default
6258   }
6259 
6260   bool isEABI() const {
6261     switch (getTarget().getTriple().getEnvironment()) {
6262     case llvm::Triple::Android:
6263     case llvm::Triple::EABI:
6264     case llvm::Triple::EABIHF:
6265     case llvm::Triple::GNUEABI:
6266     case llvm::Triple::GNUEABIHF:
6267     case llvm::Triple::MuslEABI:
6268     case llvm::Triple::MuslEABIHF:
6269       return true;
6270     default:
6271       return false;
6272     }
6273   }
6274 
6275   bool isEABIHF() const {
6276     switch (getTarget().getTriple().getEnvironment()) {
6277     case llvm::Triple::EABIHF:
6278     case llvm::Triple::GNUEABIHF:
6279     case llvm::Triple::MuslEABIHF:
6280       return true;
6281     default:
6282       return false;
6283     }
6284   }
6285 
6286   ABIKind getABIKind() const { return Kind; }
6287 
6288   bool allowBFloatArgsAndRet() const override {
6289     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6290   }
6291 
6292 private:
6293   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6294                                 unsigned functionCallConv) const;
6295   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6296                                   unsigned functionCallConv) const;
6297   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6298                                           uint64_t Members) const;
6299   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6300   bool isIllegalVectorType(QualType Ty) const;
6301   bool containsAnyFP16Vectors(QualType Ty) const;
6302 
6303   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6304   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6305                                          uint64_t Members) const override;
6306 
6307   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6308 
6309   void computeInfo(CGFunctionInfo &FI) const override;
6310 
6311   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6312                     QualType Ty) const override;
6313 
6314   llvm::CallingConv::ID getLLVMDefaultCC() const;
6315   llvm::CallingConv::ID getABIDefaultCC() const;
6316   void setCCs();
6317 
6318   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6319                                     bool asReturnValue) const override {
6320     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6321   }
6322   bool isSwiftErrorInRegister() const override {
6323     return true;
6324   }
6325   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6326                                  unsigned elts) const override;
6327 };
6328 
6329 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6330 public:
6331   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6332       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6333 
6334   const ARMABIInfo &getABIInfo() const {
6335     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6336   }
6337 
6338   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6339     return 13;
6340   }
6341 
6342   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6343     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6344   }
6345 
6346   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6347                                llvm::Value *Address) const override {
6348     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6349 
6350     // 0-15 are the 16 integer registers.
6351     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6352     return false;
6353   }
6354 
6355   unsigned getSizeOfUnwindException() const override {
6356     if (getABIInfo().isEABI()) return 88;
6357     return TargetCodeGenInfo::getSizeOfUnwindException();
6358   }
6359 
6360   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6361                            CodeGen::CodeGenModule &CGM) const override {
6362     if (GV->isDeclaration())
6363       return;
6364     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6365     if (!FD)
6366       return;
6367     auto *Fn = cast<llvm::Function>(GV);
6368 
6369     if (const auto *TA = FD->getAttr<TargetAttr>()) {
6370       ParsedTargetAttr Attr = TA->parse();
6371       if (!Attr.BranchProtection.empty()) {
6372         TargetInfo::BranchProtectionInfo BPI;
6373         StringRef DiagMsg;
6374         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
6375                                                        BPI, DiagMsg);
6376 
6377         static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
6378         assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 &&
6379                "Unexpected SignReturnAddressScopeKind");
6380         Fn->addFnAttr("sign-return-address",
6381                       SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
6382 
6383         Fn->addFnAttr("branch-target-enforcement",
6384                       BPI.BranchTargetEnforcement ? "true" : "false");
6385       }
6386     }
6387 
6388     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6389     if (!Attr)
6390       return;
6391 
6392     const char *Kind;
6393     switch (Attr->getInterrupt()) {
6394     case ARMInterruptAttr::Generic: Kind = ""; break;
6395     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6396     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6397     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6398     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6399     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6400     }
6401 
6402     Fn->addFnAttr("interrupt", Kind);
6403 
6404     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6405     if (ABI == ARMABIInfo::APCS)
6406       return;
6407 
6408     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6409     // however this is not necessarily true on taking any interrupt. Instruct
6410     // the backend to perform a realignment as part of the function prologue.
6411     llvm::AttrBuilder B;
6412     B.addStackAlignmentAttr(8);
6413     Fn->addFnAttrs(B);
6414   }
6415 };
6416 
6417 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6418 public:
6419   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6420       : ARMTargetCodeGenInfo(CGT, K) {}
6421 
6422   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6423                            CodeGen::CodeGenModule &CGM) const override;
6424 
6425   void getDependentLibraryOption(llvm::StringRef Lib,
6426                                  llvm::SmallString<24> &Opt) const override {
6427     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6428   }
6429 
6430   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6431                                llvm::SmallString<32> &Opt) const override {
6432     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6433   }
6434 };
6435 
6436 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6437     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6438   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6439   if (GV->isDeclaration())
6440     return;
6441   addStackProbeTargetAttributes(D, GV, CGM);
6442 }
6443 }
6444 
6445 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6446   if (!::classifyReturnType(getCXXABI(), FI, *this))
6447     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6448                                             FI.getCallingConvention());
6449 
6450   for (auto &I : FI.arguments())
6451     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6452                                   FI.getCallingConvention());
6453 
6454 
6455   // Always honor user-specified calling convention.
6456   if (FI.getCallingConvention() != llvm::CallingConv::C)
6457     return;
6458 
6459   llvm::CallingConv::ID cc = getRuntimeCC();
6460   if (cc != llvm::CallingConv::C)
6461     FI.setEffectiveCallingConvention(cc);
6462 }
6463 
6464 /// Return the default calling convention that LLVM will use.
6465 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6466   // The default calling convention that LLVM will infer.
6467   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6468     return llvm::CallingConv::ARM_AAPCS_VFP;
6469   else if (isEABI())
6470     return llvm::CallingConv::ARM_AAPCS;
6471   else
6472     return llvm::CallingConv::ARM_APCS;
6473 }
6474 
6475 /// Return the calling convention that our ABI would like us to use
6476 /// as the C calling convention.
6477 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6478   switch (getABIKind()) {
6479   case APCS: return llvm::CallingConv::ARM_APCS;
6480   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6481   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6482   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6483   }
6484   llvm_unreachable("bad ABI kind");
6485 }
6486 
6487 void ARMABIInfo::setCCs() {
6488   assert(getRuntimeCC() == llvm::CallingConv::C);
6489 
6490   // Don't muddy up the IR with a ton of explicit annotations if
6491   // they'd just match what LLVM will infer from the triple.
6492   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6493   if (abiCC != getLLVMDefaultCC())
6494     RuntimeCC = abiCC;
6495 }
6496 
6497 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6498   uint64_t Size = getContext().getTypeSize(Ty);
6499   if (Size <= 32) {
6500     llvm::Type *ResType =
6501         llvm::Type::getInt32Ty(getVMContext());
6502     return ABIArgInfo::getDirect(ResType);
6503   }
6504   if (Size == 64 || Size == 128) {
6505     auto *ResType = llvm::FixedVectorType::get(
6506         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6507     return ABIArgInfo::getDirect(ResType);
6508   }
6509   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6510 }
6511 
6512 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6513                                                     const Type *Base,
6514                                                     uint64_t Members) const {
6515   assert(Base && "Base class should be set for homogeneous aggregate");
6516   // Base can be a floating-point or a vector.
6517   if (const VectorType *VT = Base->getAs<VectorType>()) {
6518     // FP16 vectors should be converted to integer vectors
6519     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6520       uint64_t Size = getContext().getTypeSize(VT);
6521       auto *NewVecTy = llvm::FixedVectorType::get(
6522           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6523       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6524       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6525     }
6526   }
6527   unsigned Align = 0;
6528   if (getABIKind() == ARMABIInfo::AAPCS ||
6529       getABIKind() == ARMABIInfo::AAPCS_VFP) {
6530     // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
6531     // default otherwise.
6532     Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6533     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
6534     Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
6535   }
6536   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
6537 }
6538 
6539 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6540                                             unsigned functionCallConv) const {
6541   // 6.1.2.1 The following argument types are VFP CPRCs:
6542   //   A single-precision floating-point type (including promoted
6543   //   half-precision types); A double-precision floating-point type;
6544   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6545   //   with a Base Type of a single- or double-precision floating-point type,
6546   //   64-bit containerized vectors or 128-bit containerized vectors with one
6547   //   to four Elements.
6548   // Variadic functions should always marshal to the base standard.
6549   bool IsAAPCS_VFP =
6550       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6551 
6552   Ty = useFirstFieldIfTransparentUnion(Ty);
6553 
6554   // Handle illegal vector types here.
6555   if (isIllegalVectorType(Ty))
6556     return coerceIllegalVector(Ty);
6557 
6558   if (!isAggregateTypeForABI(Ty)) {
6559     // Treat an enum type as its underlying type.
6560     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6561       Ty = EnumTy->getDecl()->getIntegerType();
6562     }
6563 
6564     if (const auto *EIT = Ty->getAs<ExtIntType>())
6565       if (EIT->getNumBits() > 64)
6566         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6567 
6568     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6569                                               : ABIArgInfo::getDirect());
6570   }
6571 
6572   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6573     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6574   }
6575 
6576   // Ignore empty records.
6577   if (isEmptyRecord(getContext(), Ty, true))
6578     return ABIArgInfo::getIgnore();
6579 
6580   if (IsAAPCS_VFP) {
6581     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6582     // into VFP registers.
6583     const Type *Base = nullptr;
6584     uint64_t Members = 0;
6585     if (isHomogeneousAggregate(Ty, Base, Members))
6586       return classifyHomogeneousAggregate(Ty, Base, Members);
6587   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6588     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6589     // this convention even for a variadic function: the backend will use GPRs
6590     // if needed.
6591     const Type *Base = nullptr;
6592     uint64_t Members = 0;
6593     if (isHomogeneousAggregate(Ty, Base, Members)) {
6594       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6595       llvm::Type *Ty =
6596         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6597       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6598     }
6599   }
6600 
6601   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6602       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6603     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6604     // bigger than 128-bits, they get placed in space allocated by the caller,
6605     // and a pointer is passed.
6606     return ABIArgInfo::getIndirect(
6607         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6608   }
6609 
6610   // Support byval for ARM.
6611   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6612   // most 8-byte. We realign the indirect argument if type alignment is bigger
6613   // than ABI alignment.
6614   uint64_t ABIAlign = 4;
6615   uint64_t TyAlign;
6616   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6617       getABIKind() == ARMABIInfo::AAPCS) {
6618     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6619     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6620   } else {
6621     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6622   }
6623   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6624     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6625     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6626                                    /*ByVal=*/true,
6627                                    /*Realign=*/TyAlign > ABIAlign);
6628   }
6629 
6630   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6631   // same size and alignment.
6632   if (getTarget().isRenderScriptTarget()) {
6633     return coerceToIntArray(Ty, getContext(), getVMContext());
6634   }
6635 
6636   // Otherwise, pass by coercing to a structure of the appropriate size.
6637   llvm::Type* ElemTy;
6638   unsigned SizeRegs;
6639   // FIXME: Try to match the types of the arguments more accurately where
6640   // we can.
6641   if (TyAlign <= 4) {
6642     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6643     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6644   } else {
6645     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6646     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6647   }
6648 
6649   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6650 }
6651 
6652 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6653                               llvm::LLVMContext &VMContext) {
6654   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6655   // is called integer-like if its size is less than or equal to one word, and
6656   // the offset of each of its addressable sub-fields is zero.
6657 
6658   uint64_t Size = Context.getTypeSize(Ty);
6659 
6660   // Check that the type fits in a word.
6661   if (Size > 32)
6662     return false;
6663 
6664   // FIXME: Handle vector types!
6665   if (Ty->isVectorType())
6666     return false;
6667 
6668   // Float types are never treated as "integer like".
6669   if (Ty->isRealFloatingType())
6670     return false;
6671 
6672   // If this is a builtin or pointer type then it is ok.
6673   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6674     return true;
6675 
6676   // Small complex integer types are "integer like".
6677   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6678     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6679 
6680   // Single element and zero sized arrays should be allowed, by the definition
6681   // above, but they are not.
6682 
6683   // Otherwise, it must be a record type.
6684   const RecordType *RT = Ty->getAs<RecordType>();
6685   if (!RT) return false;
6686 
6687   // Ignore records with flexible arrays.
6688   const RecordDecl *RD = RT->getDecl();
6689   if (RD->hasFlexibleArrayMember())
6690     return false;
6691 
6692   // Check that all sub-fields are at offset 0, and are themselves "integer
6693   // like".
6694   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6695 
6696   bool HadField = false;
6697   unsigned idx = 0;
6698   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6699        i != e; ++i, ++idx) {
6700     const FieldDecl *FD = *i;
6701 
6702     // Bit-fields are not addressable, we only need to verify they are "integer
6703     // like". We still have to disallow a subsequent non-bitfield, for example:
6704     //   struct { int : 0; int x }
6705     // is non-integer like according to gcc.
6706     if (FD->isBitField()) {
6707       if (!RD->isUnion())
6708         HadField = true;
6709 
6710       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6711         return false;
6712 
6713       continue;
6714     }
6715 
6716     // Check if this field is at offset 0.
6717     if (Layout.getFieldOffset(idx) != 0)
6718       return false;
6719 
6720     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6721       return false;
6722 
6723     // Only allow at most one field in a structure. This doesn't match the
6724     // wording above, but follows gcc in situations with a field following an
6725     // empty structure.
6726     if (!RD->isUnion()) {
6727       if (HadField)
6728         return false;
6729 
6730       HadField = true;
6731     }
6732   }
6733 
6734   return true;
6735 }
6736 
6737 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6738                                           unsigned functionCallConv) const {
6739 
6740   // Variadic functions should always marshal to the base standard.
6741   bool IsAAPCS_VFP =
6742       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6743 
6744   if (RetTy->isVoidType())
6745     return ABIArgInfo::getIgnore();
6746 
6747   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6748     // Large vector types should be returned via memory.
6749     if (getContext().getTypeSize(RetTy) > 128)
6750       return getNaturalAlignIndirect(RetTy);
6751     // TODO: FP16/BF16 vectors should be converted to integer vectors
6752     // This check is similar  to isIllegalVectorType - refactor?
6753     if ((!getTarget().hasLegalHalfType() &&
6754         (VT->getElementType()->isFloat16Type() ||
6755          VT->getElementType()->isHalfType())) ||
6756         (IsFloatABISoftFP &&
6757          VT->getElementType()->isBFloat16Type()))
6758       return coerceIllegalVector(RetTy);
6759   }
6760 
6761   if (!isAggregateTypeForABI(RetTy)) {
6762     // Treat an enum type as its underlying type.
6763     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6764       RetTy = EnumTy->getDecl()->getIntegerType();
6765 
6766     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6767       if (EIT->getNumBits() > 64)
6768         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6769 
6770     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6771                                                 : ABIArgInfo::getDirect();
6772   }
6773 
6774   // Are we following APCS?
6775   if (getABIKind() == APCS) {
6776     if (isEmptyRecord(getContext(), RetTy, false))
6777       return ABIArgInfo::getIgnore();
6778 
6779     // Complex types are all returned as packed integers.
6780     //
6781     // FIXME: Consider using 2 x vector types if the back end handles them
6782     // correctly.
6783     if (RetTy->isAnyComplexType())
6784       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6785           getVMContext(), getContext().getTypeSize(RetTy)));
6786 
6787     // Integer like structures are returned in r0.
6788     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6789       // Return in the smallest viable integer type.
6790       uint64_t Size = getContext().getTypeSize(RetTy);
6791       if (Size <= 8)
6792         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6793       if (Size <= 16)
6794         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6795       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6796     }
6797 
6798     // Otherwise return in memory.
6799     return getNaturalAlignIndirect(RetTy);
6800   }
6801 
6802   // Otherwise this is an AAPCS variant.
6803 
6804   if (isEmptyRecord(getContext(), RetTy, true))
6805     return ABIArgInfo::getIgnore();
6806 
6807   // Check for homogeneous aggregates with AAPCS-VFP.
6808   if (IsAAPCS_VFP) {
6809     const Type *Base = nullptr;
6810     uint64_t Members = 0;
6811     if (isHomogeneousAggregate(RetTy, Base, Members))
6812       return classifyHomogeneousAggregate(RetTy, Base, Members);
6813   }
6814 
6815   // Aggregates <= 4 bytes are returned in r0; other aggregates
6816   // are returned indirectly.
6817   uint64_t Size = getContext().getTypeSize(RetTy);
6818   if (Size <= 32) {
6819     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6820     // same size and alignment.
6821     if (getTarget().isRenderScriptTarget()) {
6822       return coerceToIntArray(RetTy, getContext(), getVMContext());
6823     }
6824     if (getDataLayout().isBigEndian())
6825       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6826       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6827 
6828     // Return in the smallest viable integer type.
6829     if (Size <= 8)
6830       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6831     if (Size <= 16)
6832       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6833     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6834   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6835     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6836     llvm::Type *CoerceTy =
6837         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6838     return ABIArgInfo::getDirect(CoerceTy);
6839   }
6840 
6841   return getNaturalAlignIndirect(RetTy);
6842 }
6843 
6844 /// isIllegalVector - check whether Ty is an illegal vector type.
6845 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6846   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6847     // On targets that don't support half, fp16 or bfloat, they are expanded
6848     // into float, and we don't want the ABI to depend on whether or not they
6849     // are supported in hardware. Thus return false to coerce vectors of these
6850     // types into integer vectors.
6851     // We do not depend on hasLegalHalfType for bfloat as it is a
6852     // separate IR type.
6853     if ((!getTarget().hasLegalHalfType() &&
6854         (VT->getElementType()->isFloat16Type() ||
6855          VT->getElementType()->isHalfType())) ||
6856         (IsFloatABISoftFP &&
6857          VT->getElementType()->isBFloat16Type()))
6858       return true;
6859     if (isAndroid()) {
6860       // Android shipped using Clang 3.1, which supported a slightly different
6861       // vector ABI. The primary differences were that 3-element vector types
6862       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6863       // accepts that legacy behavior for Android only.
6864       // Check whether VT is legal.
6865       unsigned NumElements = VT->getNumElements();
6866       // NumElements should be power of 2 or equal to 3.
6867       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6868         return true;
6869     } else {
6870       // Check whether VT is legal.
6871       unsigned NumElements = VT->getNumElements();
6872       uint64_t Size = getContext().getTypeSize(VT);
6873       // NumElements should be power of 2.
6874       if (!llvm::isPowerOf2_32(NumElements))
6875         return true;
6876       // Size should be greater than 32 bits.
6877       return Size <= 32;
6878     }
6879   }
6880   return false;
6881 }
6882 
6883 /// Return true if a type contains any 16-bit floating point vectors
6884 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6885   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6886     uint64_t NElements = AT->getSize().getZExtValue();
6887     if (NElements == 0)
6888       return false;
6889     return containsAnyFP16Vectors(AT->getElementType());
6890   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6891     const RecordDecl *RD = RT->getDecl();
6892 
6893     // If this is a C++ record, check the bases first.
6894     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6895       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6896             return containsAnyFP16Vectors(B.getType());
6897           }))
6898         return true;
6899 
6900     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6901           return FD && containsAnyFP16Vectors(FD->getType());
6902         }))
6903       return true;
6904 
6905     return false;
6906   } else {
6907     if (const VectorType *VT = Ty->getAs<VectorType>())
6908       return (VT->getElementType()->isFloat16Type() ||
6909               VT->getElementType()->isBFloat16Type() ||
6910               VT->getElementType()->isHalfType());
6911     return false;
6912   }
6913 }
6914 
6915 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6916                                            llvm::Type *eltTy,
6917                                            unsigned numElts) const {
6918   if (!llvm::isPowerOf2_32(numElts))
6919     return false;
6920   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6921   if (size > 64)
6922     return false;
6923   if (vectorSize.getQuantity() != 8 &&
6924       (vectorSize.getQuantity() != 16 || numElts == 1))
6925     return false;
6926   return true;
6927 }
6928 
6929 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6930   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6931   // double, or 64-bit or 128-bit vectors.
6932   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6933     if (BT->getKind() == BuiltinType::Float ||
6934         BT->getKind() == BuiltinType::Double ||
6935         BT->getKind() == BuiltinType::LongDouble)
6936       return true;
6937   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6938     unsigned VecSize = getContext().getTypeSize(VT);
6939     if (VecSize == 64 || VecSize == 128)
6940       return true;
6941   }
6942   return false;
6943 }
6944 
6945 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6946                                                    uint64_t Members) const {
6947   return Members <= 4;
6948 }
6949 
6950 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6951                                         bool acceptHalf) const {
6952   // Give precedence to user-specified calling conventions.
6953   if (callConvention != llvm::CallingConv::C)
6954     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6955   else
6956     return (getABIKind() == AAPCS_VFP) ||
6957            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6958 }
6959 
6960 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6961                               QualType Ty) const {
6962   CharUnits SlotSize = CharUnits::fromQuantity(4);
6963 
6964   // Empty records are ignored for parameter passing purposes.
6965   if (isEmptyRecord(getContext(), Ty, true)) {
6966     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6967     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6968     return Addr;
6969   }
6970 
6971   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6972   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6973 
6974   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6975   bool IsIndirect = false;
6976   const Type *Base = nullptr;
6977   uint64_t Members = 0;
6978   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6979     IsIndirect = true;
6980 
6981   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6982   // allocated by the caller.
6983   } else if (TySize > CharUnits::fromQuantity(16) &&
6984              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6985              !isHomogeneousAggregate(Ty, Base, Members)) {
6986     IsIndirect = true;
6987 
6988   // Otherwise, bound the type's ABI alignment.
6989   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6990   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6991   // Our callers should be prepared to handle an under-aligned address.
6992   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6993              getABIKind() == ARMABIInfo::AAPCS) {
6994     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6995     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6996   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6997     // ARMv7k allows type alignment up to 16 bytes.
6998     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6999     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
7000   } else {
7001     TyAlignForABI = CharUnits::fromQuantity(4);
7002   }
7003 
7004   TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
7005   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
7006                           SlotSize, /*AllowHigherAlign*/ true);
7007 }
7008 
7009 //===----------------------------------------------------------------------===//
7010 // NVPTX ABI Implementation
7011 //===----------------------------------------------------------------------===//
7012 
7013 namespace {
7014 
7015 class NVPTXTargetCodeGenInfo;
7016 
7017 class NVPTXABIInfo : public ABIInfo {
7018   NVPTXTargetCodeGenInfo &CGInfo;
7019 
7020 public:
7021   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
7022       : ABIInfo(CGT), CGInfo(Info) {}
7023 
7024   ABIArgInfo classifyReturnType(QualType RetTy) const;
7025   ABIArgInfo classifyArgumentType(QualType Ty) const;
7026 
7027   void computeInfo(CGFunctionInfo &FI) const override;
7028   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7029                     QualType Ty) const override;
7030   bool isUnsupportedType(QualType T) const;
7031   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
7032 };
7033 
7034 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
7035 public:
7036   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
7037       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
7038 
7039   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7040                            CodeGen::CodeGenModule &M) const override;
7041   bool shouldEmitStaticExternCAliases() const override;
7042 
7043   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
7044     // On the device side, surface reference is represented as an object handle
7045     // in 64-bit integer.
7046     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7047   }
7048 
7049   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
7050     // On the device side, texture reference is represented as an object handle
7051     // in 64-bit integer.
7052     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7053   }
7054 
7055   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7056                                               LValue Src) const override {
7057     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7058     return true;
7059   }
7060 
7061   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7062                                               LValue Src) const override {
7063     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7064     return true;
7065   }
7066 
7067 private:
7068   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
7069   // resulting MDNode to the nvvm.annotations MDNode.
7070   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
7071                               int Operand);
7072 
7073   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7074                                            LValue Src) {
7075     llvm::Value *Handle = nullptr;
7076     llvm::Constant *C =
7077         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
7078     // Lookup `addrspacecast` through the constant pointer if any.
7079     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
7080       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
7081     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
7082       // Load the handle from the specific global variable using
7083       // `nvvm.texsurf.handle.internal` intrinsic.
7084       Handle = CGF.EmitRuntimeCall(
7085           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
7086                                {GV->getType()}),
7087           {GV}, "texsurf_handle");
7088     } else
7089       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7090     CGF.EmitStoreOfScalar(Handle, Dst);
7091   }
7092 };
7093 
7094 /// Checks if the type is unsupported directly by the current target.
7095 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7096   ASTContext &Context = getContext();
7097   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7098     return true;
7099   if (!Context.getTargetInfo().hasFloat128Type() &&
7100       (T->isFloat128Type() ||
7101        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7102     return true;
7103   if (const auto *EIT = T->getAs<ExtIntType>())
7104     return EIT->getNumBits() >
7105            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7106   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7107       Context.getTypeSize(T) > 64U)
7108     return true;
7109   if (const auto *AT = T->getAsArrayTypeUnsafe())
7110     return isUnsupportedType(AT->getElementType());
7111   const auto *RT = T->getAs<RecordType>();
7112   if (!RT)
7113     return false;
7114   const RecordDecl *RD = RT->getDecl();
7115 
7116   // If this is a C++ record, check the bases first.
7117   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7118     for (const CXXBaseSpecifier &I : CXXRD->bases())
7119       if (isUnsupportedType(I.getType()))
7120         return true;
7121 
7122   for (const FieldDecl *I : RD->fields())
7123     if (isUnsupportedType(I->getType()))
7124       return true;
7125   return false;
7126 }
7127 
7128 /// Coerce the given type into an array with maximum allowed size of elements.
7129 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7130                                                    unsigned MaxSize) const {
7131   // Alignment and Size are measured in bits.
7132   const uint64_t Size = getContext().getTypeSize(Ty);
7133   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7134   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7135   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7136   const uint64_t NumElements = (Size + Div - 1) / Div;
7137   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7138 }
7139 
7140 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7141   if (RetTy->isVoidType())
7142     return ABIArgInfo::getIgnore();
7143 
7144   if (getContext().getLangOpts().OpenMP &&
7145       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7146     return coerceToIntArrayWithLimit(RetTy, 64);
7147 
7148   // note: this is different from default ABI
7149   if (!RetTy->isScalarType())
7150     return ABIArgInfo::getDirect();
7151 
7152   // Treat an enum type as its underlying type.
7153   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7154     RetTy = EnumTy->getDecl()->getIntegerType();
7155 
7156   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7157                                                : ABIArgInfo::getDirect());
7158 }
7159 
7160 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7161   // Treat an enum type as its underlying type.
7162   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7163     Ty = EnumTy->getDecl()->getIntegerType();
7164 
7165   // Return aggregates type as indirect by value
7166   if (isAggregateTypeForABI(Ty)) {
7167     // Under CUDA device compilation, tex/surf builtin types are replaced with
7168     // object types and passed directly.
7169     if (getContext().getLangOpts().CUDAIsDevice) {
7170       if (Ty->isCUDADeviceBuiltinSurfaceType())
7171         return ABIArgInfo::getDirect(
7172             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7173       if (Ty->isCUDADeviceBuiltinTextureType())
7174         return ABIArgInfo::getDirect(
7175             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7176     }
7177     return getNaturalAlignIndirect(Ty, /* byval */ true);
7178   }
7179 
7180   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7181     if ((EIT->getNumBits() > 128) ||
7182         (!getContext().getTargetInfo().hasInt128Type() &&
7183          EIT->getNumBits() > 64))
7184       return getNaturalAlignIndirect(Ty, /* byval */ true);
7185   }
7186 
7187   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7188                                             : ABIArgInfo::getDirect());
7189 }
7190 
7191 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7192   if (!getCXXABI().classifyReturnType(FI))
7193     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7194   for (auto &I : FI.arguments())
7195     I.info = classifyArgumentType(I.type);
7196 
7197   // Always honor user-specified calling convention.
7198   if (FI.getCallingConvention() != llvm::CallingConv::C)
7199     return;
7200 
7201   FI.setEffectiveCallingConvention(getRuntimeCC());
7202 }
7203 
7204 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7205                                 QualType Ty) const {
7206   llvm_unreachable("NVPTX does not support varargs");
7207 }
7208 
7209 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7210     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7211   if (GV->isDeclaration())
7212     return;
7213   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7214   if (VD) {
7215     if (M.getLangOpts().CUDA) {
7216       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7217         addNVVMMetadata(GV, "surface", 1);
7218       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7219         addNVVMMetadata(GV, "texture", 1);
7220       return;
7221     }
7222   }
7223 
7224   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7225   if (!FD) return;
7226 
7227   llvm::Function *F = cast<llvm::Function>(GV);
7228 
7229   // Perform special handling in OpenCL mode
7230   if (M.getLangOpts().OpenCL) {
7231     // Use OpenCL function attributes to check for kernel functions
7232     // By default, all functions are device functions
7233     if (FD->hasAttr<OpenCLKernelAttr>()) {
7234       // OpenCL __kernel functions get kernel metadata
7235       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7236       addNVVMMetadata(F, "kernel", 1);
7237       // And kernel functions are not subject to inlining
7238       F->addFnAttr(llvm::Attribute::NoInline);
7239     }
7240   }
7241 
7242   // Perform special handling in CUDA mode.
7243   if (M.getLangOpts().CUDA) {
7244     // CUDA __global__ functions get a kernel metadata entry.  Since
7245     // __global__ functions cannot be called from the device, we do not
7246     // need to set the noinline attribute.
7247     if (FD->hasAttr<CUDAGlobalAttr>()) {
7248       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7249       addNVVMMetadata(F, "kernel", 1);
7250     }
7251     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7252       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7253       llvm::APSInt MaxThreads(32);
7254       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7255       if (MaxThreads > 0)
7256         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7257 
7258       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7259       // not specified in __launch_bounds__ or if the user specified a 0 value,
7260       // we don't have to add a PTX directive.
7261       if (Attr->getMinBlocks()) {
7262         llvm::APSInt MinBlocks(32);
7263         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7264         if (MinBlocks > 0)
7265           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7266           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7267       }
7268     }
7269   }
7270 }
7271 
7272 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7273                                              StringRef Name, int Operand) {
7274   llvm::Module *M = GV->getParent();
7275   llvm::LLVMContext &Ctx = M->getContext();
7276 
7277   // Get "nvvm.annotations" metadata node
7278   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7279 
7280   llvm::Metadata *MDVals[] = {
7281       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7282       llvm::ConstantAsMetadata::get(
7283           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7284   // Append metadata to nvvm.annotations
7285   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7286 }
7287 
7288 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7289   return false;
7290 }
7291 }
7292 
7293 //===----------------------------------------------------------------------===//
7294 // SystemZ ABI Implementation
7295 //===----------------------------------------------------------------------===//
7296 
7297 namespace {
7298 
7299 class SystemZABIInfo : public SwiftABIInfo {
7300   bool HasVector;
7301   bool IsSoftFloatABI;
7302 
7303 public:
7304   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7305     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7306 
7307   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7308   bool isCompoundType(QualType Ty) const;
7309   bool isVectorArgumentType(QualType Ty) const;
7310   bool isFPArgumentType(QualType Ty) const;
7311   QualType GetSingleElementType(QualType Ty) const;
7312 
7313   ABIArgInfo classifyReturnType(QualType RetTy) const;
7314   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7315 
7316   void computeInfo(CGFunctionInfo &FI) const override {
7317     if (!getCXXABI().classifyReturnType(FI))
7318       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7319     for (auto &I : FI.arguments())
7320       I.info = classifyArgumentType(I.type);
7321   }
7322 
7323   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7324                     QualType Ty) const override;
7325 
7326   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7327                                     bool asReturnValue) const override {
7328     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7329   }
7330   bool isSwiftErrorInRegister() const override {
7331     return false;
7332   }
7333 };
7334 
7335 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7336 public:
7337   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7338       : TargetCodeGenInfo(
7339             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7340 
7341   llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
7342                           CGBuilderTy &Builder,
7343                           CodeGenModule &CGM) const override {
7344     assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
7345     // Only use TDC in constrained FP mode.
7346     if (!Builder.getIsFPConstrained())
7347       return nullptr;
7348 
7349     llvm::Type *Ty = V->getType();
7350     if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
7351       llvm::Module &M = CGM.getModule();
7352       auto &Ctx = M.getContext();
7353       llvm::Function *TDCFunc =
7354           llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
7355       unsigned TDCBits = 0;
7356       switch (BuiltinID) {
7357       case Builtin::BI__builtin_isnan:
7358         TDCBits = 0xf;
7359         break;
7360       case Builtin::BIfinite:
7361       case Builtin::BI__finite:
7362       case Builtin::BIfinitef:
7363       case Builtin::BI__finitef:
7364       case Builtin::BIfinitel:
7365       case Builtin::BI__finitel:
7366       case Builtin::BI__builtin_isfinite:
7367         TDCBits = 0xfc0;
7368         break;
7369       case Builtin::BI__builtin_isinf:
7370         TDCBits = 0x30;
7371         break;
7372       default:
7373         break;
7374       }
7375       if (TDCBits)
7376         return Builder.CreateCall(
7377             TDCFunc,
7378             {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
7379     }
7380     return nullptr;
7381   }
7382 };
7383 }
7384 
7385 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7386   // Treat an enum type as its underlying type.
7387   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7388     Ty = EnumTy->getDecl()->getIntegerType();
7389 
7390   // Promotable integer types are required to be promoted by the ABI.
7391   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7392     return true;
7393 
7394   if (const auto *EIT = Ty->getAs<ExtIntType>())
7395     if (EIT->getNumBits() < 64)
7396       return true;
7397 
7398   // 32-bit values must also be promoted.
7399   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7400     switch (BT->getKind()) {
7401     case BuiltinType::Int:
7402     case BuiltinType::UInt:
7403       return true;
7404     default:
7405       return false;
7406     }
7407   return false;
7408 }
7409 
7410 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7411   return (Ty->isAnyComplexType() ||
7412           Ty->isVectorType() ||
7413           isAggregateTypeForABI(Ty));
7414 }
7415 
7416 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7417   return (HasVector &&
7418           Ty->isVectorType() &&
7419           getContext().getTypeSize(Ty) <= 128);
7420 }
7421 
7422 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7423   if (IsSoftFloatABI)
7424     return false;
7425 
7426   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7427     switch (BT->getKind()) {
7428     case BuiltinType::Float:
7429     case BuiltinType::Double:
7430       return true;
7431     default:
7432       return false;
7433     }
7434 
7435   return false;
7436 }
7437 
7438 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7439   const RecordType *RT = Ty->getAs<RecordType>();
7440 
7441   if (RT && RT->isStructureOrClassType()) {
7442     const RecordDecl *RD = RT->getDecl();
7443     QualType Found;
7444 
7445     // If this is a C++ record, check the bases first.
7446     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7447       for (const auto &I : CXXRD->bases()) {
7448         QualType Base = I.getType();
7449 
7450         // Empty bases don't affect things either way.
7451         if (isEmptyRecord(getContext(), Base, true))
7452           continue;
7453 
7454         if (!Found.isNull())
7455           return Ty;
7456         Found = GetSingleElementType(Base);
7457       }
7458 
7459     // Check the fields.
7460     for (const auto *FD : RD->fields()) {
7461       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7462       // Unlike isSingleElementStruct(), empty structure and array fields
7463       // do count.  So do anonymous bitfields that aren't zero-sized.
7464       if (getContext().getLangOpts().CPlusPlus &&
7465           FD->isZeroLengthBitField(getContext()))
7466         continue;
7467       // Like isSingleElementStruct(), ignore C++20 empty data members.
7468       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7469           isEmptyRecord(getContext(), FD->getType(), true))
7470         continue;
7471 
7472       // Unlike isSingleElementStruct(), arrays do not count.
7473       // Nested structures still do though.
7474       if (!Found.isNull())
7475         return Ty;
7476       Found = GetSingleElementType(FD->getType());
7477     }
7478 
7479     // Unlike isSingleElementStruct(), trailing padding is allowed.
7480     // An 8-byte aligned struct s { float f; } is passed as a double.
7481     if (!Found.isNull())
7482       return Found;
7483   }
7484 
7485   return Ty;
7486 }
7487 
7488 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7489                                   QualType Ty) const {
7490   // Assume that va_list type is correct; should be pointer to LLVM type:
7491   // struct {
7492   //   i64 __gpr;
7493   //   i64 __fpr;
7494   //   i8 *__overflow_arg_area;
7495   //   i8 *__reg_save_area;
7496   // };
7497 
7498   // Every non-vector argument occupies 8 bytes and is passed by preference
7499   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7500   // always passed on the stack.
7501   Ty = getContext().getCanonicalType(Ty);
7502   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7503   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7504   llvm::Type *DirectTy = ArgTy;
7505   ABIArgInfo AI = classifyArgumentType(Ty);
7506   bool IsIndirect = AI.isIndirect();
7507   bool InFPRs = false;
7508   bool IsVector = false;
7509   CharUnits UnpaddedSize;
7510   CharUnits DirectAlign;
7511   if (IsIndirect) {
7512     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7513     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7514   } else {
7515     if (AI.getCoerceToType())
7516       ArgTy = AI.getCoerceToType();
7517     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7518     IsVector = ArgTy->isVectorTy();
7519     UnpaddedSize = TyInfo.Width;
7520     DirectAlign = TyInfo.Align;
7521   }
7522   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7523   if (IsVector && UnpaddedSize > PaddedSize)
7524     PaddedSize = CharUnits::fromQuantity(16);
7525   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7526 
7527   CharUnits Padding = (PaddedSize - UnpaddedSize);
7528 
7529   llvm::Type *IndexTy = CGF.Int64Ty;
7530   llvm::Value *PaddedSizeV =
7531     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7532 
7533   if (IsVector) {
7534     // Work out the address of a vector argument on the stack.
7535     // Vector arguments are always passed in the high bits of a
7536     // single (8 byte) or double (16 byte) stack slot.
7537     Address OverflowArgAreaPtr =
7538         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7539     Address OverflowArgArea =
7540       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7541               TyInfo.Align);
7542     Address MemAddr =
7543       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7544 
7545     // Update overflow_arg_area_ptr pointer
7546     llvm::Value *NewOverflowArgArea =
7547       CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7548                             OverflowArgArea.getPointer(), PaddedSizeV,
7549                             "overflow_arg_area");
7550     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7551 
7552     return MemAddr;
7553   }
7554 
7555   assert(PaddedSize.getQuantity() == 8);
7556 
7557   unsigned MaxRegs, RegCountField, RegSaveIndex;
7558   CharUnits RegPadding;
7559   if (InFPRs) {
7560     MaxRegs = 4; // Maximum of 4 FPR arguments
7561     RegCountField = 1; // __fpr
7562     RegSaveIndex = 16; // save offset for f0
7563     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7564   } else {
7565     MaxRegs = 5; // Maximum of 5 GPR arguments
7566     RegCountField = 0; // __gpr
7567     RegSaveIndex = 2; // save offset for r2
7568     RegPadding = Padding; // values are passed in the low bits of a GPR
7569   }
7570 
7571   Address RegCountPtr =
7572       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7573   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7574   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7575   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7576                                                  "fits_in_regs");
7577 
7578   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7579   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7580   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7581   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7582 
7583   // Emit code to load the value if it was passed in registers.
7584   CGF.EmitBlock(InRegBlock);
7585 
7586   // Work out the address of an argument register.
7587   llvm::Value *ScaledRegCount =
7588     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7589   llvm::Value *RegBase =
7590     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7591                                       + RegPadding.getQuantity());
7592   llvm::Value *RegOffset =
7593     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7594   Address RegSaveAreaPtr =
7595       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7596   llvm::Value *RegSaveArea =
7597     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7598   Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset,
7599                                            "raw_reg_addr"),
7600                      PaddedSize);
7601   Address RegAddr =
7602     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7603 
7604   // Update the register count
7605   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7606   llvm::Value *NewRegCount =
7607     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7608   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7609   CGF.EmitBranch(ContBlock);
7610 
7611   // Emit code to load the value if it was passed in memory.
7612   CGF.EmitBlock(InMemBlock);
7613 
7614   // Work out the address of a stack argument.
7615   Address OverflowArgAreaPtr =
7616       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7617   Address OverflowArgArea =
7618     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7619             PaddedSize);
7620   Address RawMemAddr =
7621     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7622   Address MemAddr =
7623     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7624 
7625   // Update overflow_arg_area_ptr pointer
7626   llvm::Value *NewOverflowArgArea =
7627     CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7628                           OverflowArgArea.getPointer(), PaddedSizeV,
7629                           "overflow_arg_area");
7630   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7631   CGF.EmitBranch(ContBlock);
7632 
7633   // Return the appropriate result.
7634   CGF.EmitBlock(ContBlock);
7635   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7636                                  MemAddr, InMemBlock, "va_arg.addr");
7637 
7638   if (IsIndirect)
7639     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7640                       TyInfo.Align);
7641 
7642   return ResAddr;
7643 }
7644 
7645 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7646   if (RetTy->isVoidType())
7647     return ABIArgInfo::getIgnore();
7648   if (isVectorArgumentType(RetTy))
7649     return ABIArgInfo::getDirect();
7650   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7651     return getNaturalAlignIndirect(RetTy);
7652   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7653                                                : ABIArgInfo::getDirect());
7654 }
7655 
7656 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7657   // Handle the generic C++ ABI.
7658   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7659     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7660 
7661   // Integers and enums are extended to full register width.
7662   if (isPromotableIntegerTypeForABI(Ty))
7663     return ABIArgInfo::getExtend(Ty);
7664 
7665   // Handle vector types and vector-like structure types.  Note that
7666   // as opposed to float-like structure types, we do not allow any
7667   // padding for vector-like structures, so verify the sizes match.
7668   uint64_t Size = getContext().getTypeSize(Ty);
7669   QualType SingleElementTy = GetSingleElementType(Ty);
7670   if (isVectorArgumentType(SingleElementTy) &&
7671       getContext().getTypeSize(SingleElementTy) == Size)
7672     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7673 
7674   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7675   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7676     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7677 
7678   // Handle small structures.
7679   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7680     // Structures with flexible arrays have variable length, so really
7681     // fail the size test above.
7682     const RecordDecl *RD = RT->getDecl();
7683     if (RD->hasFlexibleArrayMember())
7684       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7685 
7686     // The structure is passed as an unextended integer, a float, or a double.
7687     llvm::Type *PassTy;
7688     if (isFPArgumentType(SingleElementTy)) {
7689       assert(Size == 32 || Size == 64);
7690       if (Size == 32)
7691         PassTy = llvm::Type::getFloatTy(getVMContext());
7692       else
7693         PassTy = llvm::Type::getDoubleTy(getVMContext());
7694     } else
7695       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7696     return ABIArgInfo::getDirect(PassTy);
7697   }
7698 
7699   // Non-structure compounds are passed indirectly.
7700   if (isCompoundType(Ty))
7701     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7702 
7703   return ABIArgInfo::getDirect(nullptr);
7704 }
7705 
7706 //===----------------------------------------------------------------------===//
7707 // MSP430 ABI Implementation
7708 //===----------------------------------------------------------------------===//
7709 
7710 namespace {
7711 
7712 class MSP430ABIInfo : public DefaultABIInfo {
7713   static ABIArgInfo complexArgInfo() {
7714     ABIArgInfo Info = ABIArgInfo::getDirect();
7715     Info.setCanBeFlattened(false);
7716     return Info;
7717   }
7718 
7719 public:
7720   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7721 
7722   ABIArgInfo classifyReturnType(QualType RetTy) const {
7723     if (RetTy->isAnyComplexType())
7724       return complexArgInfo();
7725 
7726     return DefaultABIInfo::classifyReturnType(RetTy);
7727   }
7728 
7729   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7730     if (RetTy->isAnyComplexType())
7731       return complexArgInfo();
7732 
7733     return DefaultABIInfo::classifyArgumentType(RetTy);
7734   }
7735 
7736   // Just copy the original implementations because
7737   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7738   void computeInfo(CGFunctionInfo &FI) const override {
7739     if (!getCXXABI().classifyReturnType(FI))
7740       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7741     for (auto &I : FI.arguments())
7742       I.info = classifyArgumentType(I.type);
7743   }
7744 
7745   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7746                     QualType Ty) const override {
7747     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7748   }
7749 };
7750 
7751 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7752 public:
7753   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7754       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7755   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7756                            CodeGen::CodeGenModule &M) const override;
7757 };
7758 
7759 }
7760 
7761 void MSP430TargetCodeGenInfo::setTargetAttributes(
7762     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7763   if (GV->isDeclaration())
7764     return;
7765   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7766     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7767     if (!InterruptAttr)
7768       return;
7769 
7770     // Handle 'interrupt' attribute:
7771     llvm::Function *F = cast<llvm::Function>(GV);
7772 
7773     // Step 1: Set ISR calling convention.
7774     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7775 
7776     // Step 2: Add attributes goodness.
7777     F->addFnAttr(llvm::Attribute::NoInline);
7778     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7779   }
7780 }
7781 
7782 //===----------------------------------------------------------------------===//
7783 // MIPS ABI Implementation.  This works for both little-endian and
7784 // big-endian variants.
7785 //===----------------------------------------------------------------------===//
7786 
7787 namespace {
7788 class MipsABIInfo : public ABIInfo {
7789   bool IsO32;
7790   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7791   void CoerceToIntArgs(uint64_t TySize,
7792                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7793   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7794   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7795   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7796 public:
7797   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7798     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7799     StackAlignInBytes(IsO32 ? 8 : 16) {}
7800 
7801   ABIArgInfo classifyReturnType(QualType RetTy) const;
7802   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7803   void computeInfo(CGFunctionInfo &FI) const override;
7804   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7805                     QualType Ty) const override;
7806   ABIArgInfo extendType(QualType Ty) const;
7807 };
7808 
7809 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7810   unsigned SizeOfUnwindException;
7811 public:
7812   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7813       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7814         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7815 
7816   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7817     return 29;
7818   }
7819 
7820   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7821                            CodeGen::CodeGenModule &CGM) const override {
7822     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7823     if (!FD) return;
7824     llvm::Function *Fn = cast<llvm::Function>(GV);
7825 
7826     if (FD->hasAttr<MipsLongCallAttr>())
7827       Fn->addFnAttr("long-call");
7828     else if (FD->hasAttr<MipsShortCallAttr>())
7829       Fn->addFnAttr("short-call");
7830 
7831     // Other attributes do not have a meaning for declarations.
7832     if (GV->isDeclaration())
7833       return;
7834 
7835     if (FD->hasAttr<Mips16Attr>()) {
7836       Fn->addFnAttr("mips16");
7837     }
7838     else if (FD->hasAttr<NoMips16Attr>()) {
7839       Fn->addFnAttr("nomips16");
7840     }
7841 
7842     if (FD->hasAttr<MicroMipsAttr>())
7843       Fn->addFnAttr("micromips");
7844     else if (FD->hasAttr<NoMicroMipsAttr>())
7845       Fn->addFnAttr("nomicromips");
7846 
7847     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7848     if (!Attr)
7849       return;
7850 
7851     const char *Kind;
7852     switch (Attr->getInterrupt()) {
7853     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7854     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7855     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7856     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7857     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7858     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7859     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7860     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7861     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7862     }
7863 
7864     Fn->addFnAttr("interrupt", Kind);
7865 
7866   }
7867 
7868   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7869                                llvm::Value *Address) const override;
7870 
7871   unsigned getSizeOfUnwindException() const override {
7872     return SizeOfUnwindException;
7873   }
7874 };
7875 }
7876 
7877 void MipsABIInfo::CoerceToIntArgs(
7878     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7879   llvm::IntegerType *IntTy =
7880     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7881 
7882   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7883   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7884     ArgList.push_back(IntTy);
7885 
7886   // If necessary, add one more integer type to ArgList.
7887   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7888 
7889   if (R)
7890     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7891 }
7892 
7893 // In N32/64, an aligned double precision floating point field is passed in
7894 // a register.
7895 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7896   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7897 
7898   if (IsO32) {
7899     CoerceToIntArgs(TySize, ArgList);
7900     return llvm::StructType::get(getVMContext(), ArgList);
7901   }
7902 
7903   if (Ty->isComplexType())
7904     return CGT.ConvertType(Ty);
7905 
7906   const RecordType *RT = Ty->getAs<RecordType>();
7907 
7908   // Unions/vectors are passed in integer registers.
7909   if (!RT || !RT->isStructureOrClassType()) {
7910     CoerceToIntArgs(TySize, ArgList);
7911     return llvm::StructType::get(getVMContext(), ArgList);
7912   }
7913 
7914   const RecordDecl *RD = RT->getDecl();
7915   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7916   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7917 
7918   uint64_t LastOffset = 0;
7919   unsigned idx = 0;
7920   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7921 
7922   // Iterate over fields in the struct/class and check if there are any aligned
7923   // double fields.
7924   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7925        i != e; ++i, ++idx) {
7926     const QualType Ty = i->getType();
7927     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7928 
7929     if (!BT || BT->getKind() != BuiltinType::Double)
7930       continue;
7931 
7932     uint64_t Offset = Layout.getFieldOffset(idx);
7933     if (Offset % 64) // Ignore doubles that are not aligned.
7934       continue;
7935 
7936     // Add ((Offset - LastOffset) / 64) args of type i64.
7937     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7938       ArgList.push_back(I64);
7939 
7940     // Add double type.
7941     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7942     LastOffset = Offset + 64;
7943   }
7944 
7945   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7946   ArgList.append(IntArgList.begin(), IntArgList.end());
7947 
7948   return llvm::StructType::get(getVMContext(), ArgList);
7949 }
7950 
7951 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7952                                         uint64_t Offset) const {
7953   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7954     return nullptr;
7955 
7956   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7957 }
7958 
7959 ABIArgInfo
7960 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7961   Ty = useFirstFieldIfTransparentUnion(Ty);
7962 
7963   uint64_t OrigOffset = Offset;
7964   uint64_t TySize = getContext().getTypeSize(Ty);
7965   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7966 
7967   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7968                    (uint64_t)StackAlignInBytes);
7969   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7970   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7971 
7972   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7973     // Ignore empty aggregates.
7974     if (TySize == 0)
7975       return ABIArgInfo::getIgnore();
7976 
7977     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7978       Offset = OrigOffset + MinABIStackAlignInBytes;
7979       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7980     }
7981 
7982     // If we have reached here, aggregates are passed directly by coercing to
7983     // another structure type. Padding is inserted if the offset of the
7984     // aggregate is unaligned.
7985     ABIArgInfo ArgInfo =
7986         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7987                               getPaddingType(OrigOffset, CurrOffset));
7988     ArgInfo.setInReg(true);
7989     return ArgInfo;
7990   }
7991 
7992   // Treat an enum type as its underlying type.
7993   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7994     Ty = EnumTy->getDecl()->getIntegerType();
7995 
7996   // Make sure we pass indirectly things that are too large.
7997   if (const auto *EIT = Ty->getAs<ExtIntType>())
7998     if (EIT->getNumBits() > 128 ||
7999         (EIT->getNumBits() > 64 &&
8000          !getContext().getTargetInfo().hasInt128Type()))
8001       return getNaturalAlignIndirect(Ty);
8002 
8003   // All integral types are promoted to the GPR width.
8004   if (Ty->isIntegralOrEnumerationType())
8005     return extendType(Ty);
8006 
8007   return ABIArgInfo::getDirect(
8008       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
8009 }
8010 
8011 llvm::Type*
8012 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
8013   const RecordType *RT = RetTy->getAs<RecordType>();
8014   SmallVector<llvm::Type*, 8> RTList;
8015 
8016   if (RT && RT->isStructureOrClassType()) {
8017     const RecordDecl *RD = RT->getDecl();
8018     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
8019     unsigned FieldCnt = Layout.getFieldCount();
8020 
8021     // N32/64 returns struct/classes in floating point registers if the
8022     // following conditions are met:
8023     // 1. The size of the struct/class is no larger than 128-bit.
8024     // 2. The struct/class has one or two fields all of which are floating
8025     //    point types.
8026     // 3. The offset of the first field is zero (this follows what gcc does).
8027     //
8028     // Any other composite results are returned in integer registers.
8029     //
8030     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
8031       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
8032       for (; b != e; ++b) {
8033         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
8034 
8035         if (!BT || !BT->isFloatingPoint())
8036           break;
8037 
8038         RTList.push_back(CGT.ConvertType(b->getType()));
8039       }
8040 
8041       if (b == e)
8042         return llvm::StructType::get(getVMContext(), RTList,
8043                                      RD->hasAttr<PackedAttr>());
8044 
8045       RTList.clear();
8046     }
8047   }
8048 
8049   CoerceToIntArgs(Size, RTList);
8050   return llvm::StructType::get(getVMContext(), RTList);
8051 }
8052 
8053 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
8054   uint64_t Size = getContext().getTypeSize(RetTy);
8055 
8056   if (RetTy->isVoidType())
8057     return ABIArgInfo::getIgnore();
8058 
8059   // O32 doesn't treat zero-sized structs differently from other structs.
8060   // However, N32/N64 ignores zero sized return values.
8061   if (!IsO32 && Size == 0)
8062     return ABIArgInfo::getIgnore();
8063 
8064   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
8065     if (Size <= 128) {
8066       if (RetTy->isAnyComplexType())
8067         return ABIArgInfo::getDirect();
8068 
8069       // O32 returns integer vectors in registers and N32/N64 returns all small
8070       // aggregates in registers.
8071       if (!IsO32 ||
8072           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
8073         ABIArgInfo ArgInfo =
8074             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
8075         ArgInfo.setInReg(true);
8076         return ArgInfo;
8077       }
8078     }
8079 
8080     return getNaturalAlignIndirect(RetTy);
8081   }
8082 
8083   // Treat an enum type as its underlying type.
8084   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8085     RetTy = EnumTy->getDecl()->getIntegerType();
8086 
8087   // Make sure we pass indirectly things that are too large.
8088   if (const auto *EIT = RetTy->getAs<ExtIntType>())
8089     if (EIT->getNumBits() > 128 ||
8090         (EIT->getNumBits() > 64 &&
8091          !getContext().getTargetInfo().hasInt128Type()))
8092       return getNaturalAlignIndirect(RetTy);
8093 
8094   if (isPromotableIntegerTypeForABI(RetTy))
8095     return ABIArgInfo::getExtend(RetTy);
8096 
8097   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
8098       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
8099     return ABIArgInfo::getSignExtend(RetTy);
8100 
8101   return ABIArgInfo::getDirect();
8102 }
8103 
8104 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
8105   ABIArgInfo &RetInfo = FI.getReturnInfo();
8106   if (!getCXXABI().classifyReturnType(FI))
8107     RetInfo = classifyReturnType(FI.getReturnType());
8108 
8109   // Check if a pointer to an aggregate is passed as a hidden argument.
8110   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
8111 
8112   for (auto &I : FI.arguments())
8113     I.info = classifyArgumentType(I.type, Offset);
8114 }
8115 
8116 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8117                                QualType OrigTy) const {
8118   QualType Ty = OrigTy;
8119 
8120   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
8121   // Pointers are also promoted in the same way but this only matters for N32.
8122   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
8123   unsigned PtrWidth = getTarget().getPointerWidth(0);
8124   bool DidPromote = false;
8125   if ((Ty->isIntegerType() &&
8126           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
8127       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
8128     DidPromote = true;
8129     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
8130                                             Ty->isSignedIntegerType());
8131   }
8132 
8133   auto TyInfo = getContext().getTypeInfoInChars(Ty);
8134 
8135   // The alignment of things in the argument area is never larger than
8136   // StackAlignInBytes.
8137   TyInfo.Align =
8138     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8139 
8140   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8141   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8142 
8143   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8144                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8145 
8146 
8147   // If there was a promotion, "unpromote" into a temporary.
8148   // TODO: can we just use a pointer into a subset of the original slot?
8149   if (DidPromote) {
8150     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8151     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8152 
8153     // Truncate down to the right width.
8154     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8155                                                  : CGF.IntPtrTy);
8156     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8157     if (OrigTy->isPointerType())
8158       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8159 
8160     CGF.Builder.CreateStore(V, Temp);
8161     Addr = Temp;
8162   }
8163 
8164   return Addr;
8165 }
8166 
8167 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8168   int TySize = getContext().getTypeSize(Ty);
8169 
8170   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8171   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8172     return ABIArgInfo::getSignExtend(Ty);
8173 
8174   return ABIArgInfo::getExtend(Ty);
8175 }
8176 
8177 bool
8178 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8179                                                llvm::Value *Address) const {
8180   // This information comes from gcc's implementation, which seems to
8181   // as canonical as it gets.
8182 
8183   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8184   // are aliased to pairs of single-precision FP registers.
8185   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8186 
8187   // 0-31 are the general purpose registers, $0 - $31.
8188   // 32-63 are the floating-point registers, $f0 - $f31.
8189   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8190   // 66 is the (notional, I think) register for signal-handler return.
8191   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8192 
8193   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8194   // They are one bit wide and ignored here.
8195 
8196   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8197   // (coprocessor 1 is the FP unit)
8198   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8199   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8200   // 176-181 are the DSP accumulator registers.
8201   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8202   return false;
8203 }
8204 
8205 //===----------------------------------------------------------------------===//
8206 // M68k ABI Implementation
8207 //===----------------------------------------------------------------------===//
8208 
8209 namespace {
8210 
8211 class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
8212 public:
8213   M68kTargetCodeGenInfo(CodeGenTypes &CGT)
8214       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8215   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8216                            CodeGen::CodeGenModule &M) const override;
8217 };
8218 
8219 } // namespace
8220 
8221 void M68kTargetCodeGenInfo::setTargetAttributes(
8222     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8223   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
8224     if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
8225       // Handle 'interrupt' attribute:
8226       llvm::Function *F = cast<llvm::Function>(GV);
8227 
8228       // Step 1: Set ISR calling convention.
8229       F->setCallingConv(llvm::CallingConv::M68k_INTR);
8230 
8231       // Step 2: Add attributes goodness.
8232       F->addFnAttr(llvm::Attribute::NoInline);
8233 
8234       // Step 3: Emit ISR vector alias.
8235       unsigned Num = attr->getNumber() / 2;
8236       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
8237                                 "__isr_" + Twine(Num), F);
8238     }
8239   }
8240 }
8241 
8242 //===----------------------------------------------------------------------===//
8243 // AVR ABI Implementation. Documented at
8244 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
8245 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
8246 //===----------------------------------------------------------------------===//
8247 
8248 namespace {
8249 class AVRABIInfo : public DefaultABIInfo {
8250 public:
8251   AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8252 
8253   ABIArgInfo classifyReturnType(QualType Ty) const {
8254     // A return struct with size less than or equal to 8 bytes is returned
8255     // directly via registers R18-R25.
8256     if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64)
8257       return ABIArgInfo::getDirect();
8258     else
8259       return DefaultABIInfo::classifyReturnType(Ty);
8260   }
8261 
8262   // Just copy the original implementation of DefaultABIInfo::computeInfo(),
8263   // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual.
8264   void computeInfo(CGFunctionInfo &FI) const override {
8265     if (!getCXXABI().classifyReturnType(FI))
8266       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8267     for (auto &I : FI.arguments())
8268       I.info = classifyArgumentType(I.type);
8269   }
8270 };
8271 
8272 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8273 public:
8274   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8275       : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {}
8276 
8277   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8278                                   const VarDecl *D) const override {
8279     // Check if a global/static variable is defined within address space 1
8280     // but not constant.
8281     LangAS AS = D->getType().getAddressSpace();
8282     if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 &&
8283         !D->getType().isConstQualified())
8284       CGM.getDiags().Report(D->getLocation(),
8285                             diag::err_verify_nonconst_addrspace)
8286           << "__flash";
8287     return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
8288   }
8289 
8290   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8291                            CodeGen::CodeGenModule &CGM) const override {
8292     if (GV->isDeclaration())
8293       return;
8294     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8295     if (!FD) return;
8296     auto *Fn = cast<llvm::Function>(GV);
8297 
8298     if (FD->getAttr<AVRInterruptAttr>())
8299       Fn->addFnAttr("interrupt");
8300 
8301     if (FD->getAttr<AVRSignalAttr>())
8302       Fn->addFnAttr("signal");
8303   }
8304 };
8305 }
8306 
8307 //===----------------------------------------------------------------------===//
8308 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8309 // Currently subclassed only to implement custom OpenCL C function attribute
8310 // handling.
8311 //===----------------------------------------------------------------------===//
8312 
8313 namespace {
8314 
8315 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8316 public:
8317   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8318     : DefaultTargetCodeGenInfo(CGT) {}
8319 
8320   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8321                            CodeGen::CodeGenModule &M) const override;
8322 };
8323 
8324 void TCETargetCodeGenInfo::setTargetAttributes(
8325     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8326   if (GV->isDeclaration())
8327     return;
8328   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8329   if (!FD) return;
8330 
8331   llvm::Function *F = cast<llvm::Function>(GV);
8332 
8333   if (M.getLangOpts().OpenCL) {
8334     if (FD->hasAttr<OpenCLKernelAttr>()) {
8335       // OpenCL C Kernel functions are not subject to inlining
8336       F->addFnAttr(llvm::Attribute::NoInline);
8337       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8338       if (Attr) {
8339         // Convert the reqd_work_group_size() attributes to metadata.
8340         llvm::LLVMContext &Context = F->getContext();
8341         llvm::NamedMDNode *OpenCLMetadata =
8342             M.getModule().getOrInsertNamedMetadata(
8343                 "opencl.kernel_wg_size_info");
8344 
8345         SmallVector<llvm::Metadata *, 5> Operands;
8346         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8347 
8348         Operands.push_back(
8349             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8350                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8351         Operands.push_back(
8352             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8353                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8354         Operands.push_back(
8355             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8356                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8357 
8358         // Add a boolean constant operand for "required" (true) or "hint"
8359         // (false) for implementing the work_group_size_hint attr later.
8360         // Currently always true as the hint is not yet implemented.
8361         Operands.push_back(
8362             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8363         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8364       }
8365     }
8366   }
8367 }
8368 
8369 }
8370 
8371 //===----------------------------------------------------------------------===//
8372 // Hexagon ABI Implementation
8373 //===----------------------------------------------------------------------===//
8374 
8375 namespace {
8376 
8377 class HexagonABIInfo : public DefaultABIInfo {
8378 public:
8379   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8380 
8381 private:
8382   ABIArgInfo classifyReturnType(QualType RetTy) const;
8383   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8384   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8385 
8386   void computeInfo(CGFunctionInfo &FI) const override;
8387 
8388   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8389                     QualType Ty) const override;
8390   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8391                               QualType Ty) const;
8392   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8393                               QualType Ty) const;
8394   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8395                                    QualType Ty) const;
8396 };
8397 
8398 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8399 public:
8400   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8401       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8402 
8403   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8404     return 29;
8405   }
8406 
8407   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8408                            CodeGen::CodeGenModule &GCM) const override {
8409     if (GV->isDeclaration())
8410       return;
8411     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8412     if (!FD)
8413       return;
8414   }
8415 };
8416 
8417 } // namespace
8418 
8419 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8420   unsigned RegsLeft = 6;
8421   if (!getCXXABI().classifyReturnType(FI))
8422     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8423   for (auto &I : FI.arguments())
8424     I.info = classifyArgumentType(I.type, &RegsLeft);
8425 }
8426 
8427 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8428   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8429                        " through registers");
8430 
8431   if (*RegsLeft == 0)
8432     return false;
8433 
8434   if (Size <= 32) {
8435     (*RegsLeft)--;
8436     return true;
8437   }
8438 
8439   if (2 <= (*RegsLeft & (~1U))) {
8440     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8441     return true;
8442   }
8443 
8444   // Next available register was r5 but candidate was greater than 32-bits so it
8445   // has to go on the stack. However we still consume r5
8446   if (*RegsLeft == 1)
8447     *RegsLeft = 0;
8448 
8449   return false;
8450 }
8451 
8452 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8453                                                 unsigned *RegsLeft) const {
8454   if (!isAggregateTypeForABI(Ty)) {
8455     // Treat an enum type as its underlying type.
8456     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8457       Ty = EnumTy->getDecl()->getIntegerType();
8458 
8459     uint64_t Size = getContext().getTypeSize(Ty);
8460     if (Size <= 64)
8461       HexagonAdjustRegsLeft(Size, RegsLeft);
8462 
8463     if (Size > 64 && Ty->isExtIntType())
8464       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8465 
8466     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8467                                              : ABIArgInfo::getDirect();
8468   }
8469 
8470   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8471     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8472 
8473   // Ignore empty records.
8474   if (isEmptyRecord(getContext(), Ty, true))
8475     return ABIArgInfo::getIgnore();
8476 
8477   uint64_t Size = getContext().getTypeSize(Ty);
8478   unsigned Align = getContext().getTypeAlign(Ty);
8479 
8480   if (Size > 64)
8481     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8482 
8483   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8484     Align = Size <= 32 ? 32 : 64;
8485   if (Size <= Align) {
8486     // Pass in the smallest viable integer type.
8487     if (!llvm::isPowerOf2_64(Size))
8488       Size = llvm::NextPowerOf2(Size);
8489     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8490   }
8491   return DefaultABIInfo::classifyArgumentType(Ty);
8492 }
8493 
8494 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8495   if (RetTy->isVoidType())
8496     return ABIArgInfo::getIgnore();
8497 
8498   const TargetInfo &T = CGT.getTarget();
8499   uint64_t Size = getContext().getTypeSize(RetTy);
8500 
8501   if (RetTy->getAs<VectorType>()) {
8502     // HVX vectors are returned in vector registers or register pairs.
8503     if (T.hasFeature("hvx")) {
8504       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8505       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8506       if (Size == VecSize || Size == 2*VecSize)
8507         return ABIArgInfo::getDirectInReg();
8508     }
8509     // Large vector types should be returned via memory.
8510     if (Size > 64)
8511       return getNaturalAlignIndirect(RetTy);
8512   }
8513 
8514   if (!isAggregateTypeForABI(RetTy)) {
8515     // Treat an enum type as its underlying type.
8516     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8517       RetTy = EnumTy->getDecl()->getIntegerType();
8518 
8519     if (Size > 64 && RetTy->isExtIntType())
8520       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8521 
8522     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8523                                                 : ABIArgInfo::getDirect();
8524   }
8525 
8526   if (isEmptyRecord(getContext(), RetTy, true))
8527     return ABIArgInfo::getIgnore();
8528 
8529   // Aggregates <= 8 bytes are returned in registers, other aggregates
8530   // are returned indirectly.
8531   if (Size <= 64) {
8532     // Return in the smallest viable integer type.
8533     if (!llvm::isPowerOf2_64(Size))
8534       Size = llvm::NextPowerOf2(Size);
8535     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8536   }
8537   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8538 }
8539 
8540 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8541                                             Address VAListAddr,
8542                                             QualType Ty) const {
8543   // Load the overflow area pointer.
8544   Address __overflow_area_pointer_p =
8545       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8546   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8547       __overflow_area_pointer_p, "__overflow_area_pointer");
8548 
8549   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8550   if (Align > 4) {
8551     // Alignment should be a power of 2.
8552     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8553 
8554     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8555     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8556 
8557     // Add offset to the current pointer to access the argument.
8558     __overflow_area_pointer =
8559         CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
8560     llvm::Value *AsInt =
8561         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8562 
8563     // Create a mask which should be "AND"ed
8564     // with (overflow_arg_area + align - 1)
8565     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8566     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8567         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8568         "__overflow_area_pointer.align");
8569   }
8570 
8571   // Get the type of the argument from memory and bitcast
8572   // overflow area pointer to the argument type.
8573   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8574   Address AddrTyped = CGF.Builder.CreateBitCast(
8575       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8576       llvm::PointerType::getUnqual(PTy));
8577 
8578   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8579   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8580 
8581   __overflow_area_pointer = CGF.Builder.CreateGEP(
8582       CGF.Int8Ty, __overflow_area_pointer,
8583       llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8584       "__overflow_area_pointer.next");
8585   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8586 
8587   return AddrTyped;
8588 }
8589 
8590 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8591                                             Address VAListAddr,
8592                                             QualType Ty) const {
8593   // FIXME: Need to handle alignment
8594   llvm::Type *BP = CGF.Int8PtrTy;
8595   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8596   CGBuilderTy &Builder = CGF.Builder;
8597   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8598   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8599   // Handle address alignment for type alignment > 32 bits
8600   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8601   if (TyAlign > 4) {
8602     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8603     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8604     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8605     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8606     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8607   }
8608   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8609   Address AddrTyped = Builder.CreateBitCast(
8610       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8611 
8612   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8613   llvm::Value *NextAddr = Builder.CreateGEP(
8614       CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8615   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8616 
8617   return AddrTyped;
8618 }
8619 
8620 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8621                                                  Address VAListAddr,
8622                                                  QualType Ty) const {
8623   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8624 
8625   if (ArgSize > 8)
8626     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8627 
8628   // Here we have check if the argument is in register area or
8629   // in overflow area.
8630   // If the saved register area pointer + argsize rounded up to alignment >
8631   // saved register area end pointer, argument is in overflow area.
8632   unsigned RegsLeft = 6;
8633   Ty = CGF.getContext().getCanonicalType(Ty);
8634   (void)classifyArgumentType(Ty, &RegsLeft);
8635 
8636   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8637   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8638   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8639   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8640 
8641   // Get rounded size of the argument.GCC does not allow vararg of
8642   // size < 4 bytes. We follow the same logic here.
8643   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8644   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8645 
8646   // Argument may be in saved register area
8647   CGF.EmitBlock(MaybeRegBlock);
8648 
8649   // Load the current saved register area pointer.
8650   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8651       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8652   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8653       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8654 
8655   // Load the saved register area end pointer.
8656   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8657       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8658   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8659       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8660 
8661   // If the size of argument is > 4 bytes, check if the stack
8662   // location is aligned to 8 bytes
8663   if (ArgAlign > 4) {
8664 
8665     llvm::Value *__current_saved_reg_area_pointer_int =
8666         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8667                                    CGF.Int32Ty);
8668 
8669     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8670         __current_saved_reg_area_pointer_int,
8671         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8672         "align_current_saved_reg_area_pointer");
8673 
8674     __current_saved_reg_area_pointer_int =
8675         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8676                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8677                               "align_current_saved_reg_area_pointer");
8678 
8679     __current_saved_reg_area_pointer =
8680         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8681                                    __current_saved_reg_area_pointer->getType(),
8682                                    "align_current_saved_reg_area_pointer");
8683   }
8684 
8685   llvm::Value *__new_saved_reg_area_pointer =
8686       CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
8687                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8688                             "__new_saved_reg_area_pointer");
8689 
8690   llvm::Value *UsingStack = 0;
8691   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8692                                          __saved_reg_area_end_pointer);
8693 
8694   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8695 
8696   // Argument in saved register area
8697   // Implement the block where argument is in register saved area
8698   CGF.EmitBlock(InRegBlock);
8699 
8700   llvm::Type *PTy = CGF.ConvertType(Ty);
8701   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8702       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8703 
8704   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8705                           __current_saved_reg_area_pointer_p);
8706 
8707   CGF.EmitBranch(ContBlock);
8708 
8709   // Argument in overflow area
8710   // Implement the block where the argument is in overflow area.
8711   CGF.EmitBlock(OnStackBlock);
8712 
8713   // Load the overflow area pointer
8714   Address __overflow_area_pointer_p =
8715       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8716   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8717       __overflow_area_pointer_p, "__overflow_area_pointer");
8718 
8719   // Align the overflow area pointer according to the alignment of the argument
8720   if (ArgAlign > 4) {
8721     llvm::Value *__overflow_area_pointer_int =
8722         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8723 
8724     __overflow_area_pointer_int =
8725         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8726                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8727                               "align_overflow_area_pointer");
8728 
8729     __overflow_area_pointer_int =
8730         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8731                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8732                               "align_overflow_area_pointer");
8733 
8734     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8735         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8736         "align_overflow_area_pointer");
8737   }
8738 
8739   // Get the pointer for next argument in overflow area and store it
8740   // to overflow area pointer.
8741   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8742       CGF.Int8Ty, __overflow_area_pointer,
8743       llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8744       "__overflow_area_pointer.next");
8745 
8746   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8747                           __overflow_area_pointer_p);
8748 
8749   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8750                           __current_saved_reg_area_pointer_p);
8751 
8752   // Bitcast the overflow area pointer to the type of argument.
8753   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8754   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8755       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8756 
8757   CGF.EmitBranch(ContBlock);
8758 
8759   // Get the correct pointer to load the variable argument
8760   // Implement the ContBlock
8761   CGF.EmitBlock(ContBlock);
8762 
8763   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8764   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8765   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8766   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8767 
8768   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8769 }
8770 
8771 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8772                                   QualType Ty) const {
8773 
8774   if (getTarget().getTriple().isMusl())
8775     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8776 
8777   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8778 }
8779 
8780 //===----------------------------------------------------------------------===//
8781 // Lanai ABI Implementation
8782 //===----------------------------------------------------------------------===//
8783 
8784 namespace {
8785 class LanaiABIInfo : public DefaultABIInfo {
8786 public:
8787   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8788 
8789   bool shouldUseInReg(QualType Ty, CCState &State) const;
8790 
8791   void computeInfo(CGFunctionInfo &FI) const override {
8792     CCState State(FI);
8793     // Lanai uses 4 registers to pass arguments unless the function has the
8794     // regparm attribute set.
8795     if (FI.getHasRegParm()) {
8796       State.FreeRegs = FI.getRegParm();
8797     } else {
8798       State.FreeRegs = 4;
8799     }
8800 
8801     if (!getCXXABI().classifyReturnType(FI))
8802       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8803     for (auto &I : FI.arguments())
8804       I.info = classifyArgumentType(I.type, State);
8805   }
8806 
8807   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8808   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8809 };
8810 } // end anonymous namespace
8811 
8812 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8813   unsigned Size = getContext().getTypeSize(Ty);
8814   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8815 
8816   if (SizeInRegs == 0)
8817     return false;
8818 
8819   if (SizeInRegs > State.FreeRegs) {
8820     State.FreeRegs = 0;
8821     return false;
8822   }
8823 
8824   State.FreeRegs -= SizeInRegs;
8825 
8826   return true;
8827 }
8828 
8829 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8830                                            CCState &State) const {
8831   if (!ByVal) {
8832     if (State.FreeRegs) {
8833       --State.FreeRegs; // Non-byval indirects just use one pointer.
8834       return getNaturalAlignIndirectInReg(Ty);
8835     }
8836     return getNaturalAlignIndirect(Ty, false);
8837   }
8838 
8839   // Compute the byval alignment.
8840   const unsigned MinABIStackAlignInBytes = 4;
8841   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8842   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8843                                  /*Realign=*/TypeAlign >
8844                                      MinABIStackAlignInBytes);
8845 }
8846 
8847 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8848                                               CCState &State) const {
8849   // Check with the C++ ABI first.
8850   const RecordType *RT = Ty->getAs<RecordType>();
8851   if (RT) {
8852     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8853     if (RAA == CGCXXABI::RAA_Indirect) {
8854       return getIndirectResult(Ty, /*ByVal=*/false, State);
8855     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8856       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8857     }
8858   }
8859 
8860   if (isAggregateTypeForABI(Ty)) {
8861     // Structures with flexible arrays are always indirect.
8862     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8863       return getIndirectResult(Ty, /*ByVal=*/true, State);
8864 
8865     // Ignore empty structs/unions.
8866     if (isEmptyRecord(getContext(), Ty, true))
8867       return ABIArgInfo::getIgnore();
8868 
8869     llvm::LLVMContext &LLVMContext = getVMContext();
8870     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8871     if (SizeInRegs <= State.FreeRegs) {
8872       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8873       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8874       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8875       State.FreeRegs -= SizeInRegs;
8876       return ABIArgInfo::getDirectInReg(Result);
8877     } else {
8878       State.FreeRegs = 0;
8879     }
8880     return getIndirectResult(Ty, true, State);
8881   }
8882 
8883   // Treat an enum type as its underlying type.
8884   if (const auto *EnumTy = Ty->getAs<EnumType>())
8885     Ty = EnumTy->getDecl()->getIntegerType();
8886 
8887   bool InReg = shouldUseInReg(Ty, State);
8888 
8889   // Don't pass >64 bit integers in registers.
8890   if (const auto *EIT = Ty->getAs<ExtIntType>())
8891     if (EIT->getNumBits() > 64)
8892       return getIndirectResult(Ty, /*ByVal=*/true, State);
8893 
8894   if (isPromotableIntegerTypeForABI(Ty)) {
8895     if (InReg)
8896       return ABIArgInfo::getDirectInReg();
8897     return ABIArgInfo::getExtend(Ty);
8898   }
8899   if (InReg)
8900     return ABIArgInfo::getDirectInReg();
8901   return ABIArgInfo::getDirect();
8902 }
8903 
8904 namespace {
8905 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8906 public:
8907   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8908       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8909 };
8910 }
8911 
8912 //===----------------------------------------------------------------------===//
8913 // AMDGPU ABI Implementation
8914 //===----------------------------------------------------------------------===//
8915 
8916 namespace {
8917 
8918 class AMDGPUABIInfo final : public DefaultABIInfo {
8919 private:
8920   static const unsigned MaxNumRegsForArgsRet = 16;
8921 
8922   unsigned numRegsForType(QualType Ty) const;
8923 
8924   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8925   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8926                                          uint64_t Members) const override;
8927 
8928   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
8929   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8930                                        unsigned ToAS) const {
8931     // Single value types.
8932     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8933       return llvm::PointerType::get(
8934           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8935     return Ty;
8936   }
8937 
8938 public:
8939   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8940     DefaultABIInfo(CGT) {}
8941 
8942   ABIArgInfo classifyReturnType(QualType RetTy) const;
8943   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8944   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8945 
8946   void computeInfo(CGFunctionInfo &FI) const override;
8947   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8948                     QualType Ty) const override;
8949 };
8950 
8951 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8952   return true;
8953 }
8954 
8955 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8956   const Type *Base, uint64_t Members) const {
8957   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8958 
8959   // Homogeneous Aggregates may occupy at most 16 registers.
8960   return Members * NumRegs <= MaxNumRegsForArgsRet;
8961 }
8962 
8963 /// Estimate number of registers the type will use when passed in registers.
8964 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8965   unsigned NumRegs = 0;
8966 
8967   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8968     // Compute from the number of elements. The reported size is based on the
8969     // in-memory size, which includes the padding 4th element for 3-vectors.
8970     QualType EltTy = VT->getElementType();
8971     unsigned EltSize = getContext().getTypeSize(EltTy);
8972 
8973     // 16-bit element vectors should be passed as packed.
8974     if (EltSize == 16)
8975       return (VT->getNumElements() + 1) / 2;
8976 
8977     unsigned EltNumRegs = (EltSize + 31) / 32;
8978     return EltNumRegs * VT->getNumElements();
8979   }
8980 
8981   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8982     const RecordDecl *RD = RT->getDecl();
8983     assert(!RD->hasFlexibleArrayMember());
8984 
8985     for (const FieldDecl *Field : RD->fields()) {
8986       QualType FieldTy = Field->getType();
8987       NumRegs += numRegsForType(FieldTy);
8988     }
8989 
8990     return NumRegs;
8991   }
8992 
8993   return (getContext().getTypeSize(Ty) + 31) / 32;
8994 }
8995 
8996 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8997   llvm::CallingConv::ID CC = FI.getCallingConvention();
8998 
8999   if (!getCXXABI().classifyReturnType(FI))
9000     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9001 
9002   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
9003   for (auto &Arg : FI.arguments()) {
9004     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
9005       Arg.info = classifyKernelArgumentType(Arg.type);
9006     } else {
9007       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
9008     }
9009   }
9010 }
9011 
9012 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9013                                  QualType Ty) const {
9014   llvm_unreachable("AMDGPU does not support varargs");
9015 }
9016 
9017 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
9018   if (isAggregateTypeForABI(RetTy)) {
9019     // Records with non-trivial destructors/copy-constructors should not be
9020     // returned by value.
9021     if (!getRecordArgABI(RetTy, getCXXABI())) {
9022       // Ignore empty structs/unions.
9023       if (isEmptyRecord(getContext(), RetTy, true))
9024         return ABIArgInfo::getIgnore();
9025 
9026       // Lower single-element structs to just return a regular value.
9027       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
9028         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9029 
9030       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
9031         const RecordDecl *RD = RT->getDecl();
9032         if (RD->hasFlexibleArrayMember())
9033           return DefaultABIInfo::classifyReturnType(RetTy);
9034       }
9035 
9036       // Pack aggregates <= 4 bytes into single VGPR or pair.
9037       uint64_t Size = getContext().getTypeSize(RetTy);
9038       if (Size <= 16)
9039         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9040 
9041       if (Size <= 32)
9042         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9043 
9044       if (Size <= 64) {
9045         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9046         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9047       }
9048 
9049       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
9050         return ABIArgInfo::getDirect();
9051     }
9052   }
9053 
9054   // Otherwise just do the default thing.
9055   return DefaultABIInfo::classifyReturnType(RetTy);
9056 }
9057 
9058 /// For kernels all parameters are really passed in a special buffer. It doesn't
9059 /// make sense to pass anything byval, so everything must be direct.
9060 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
9061   Ty = useFirstFieldIfTransparentUnion(Ty);
9062 
9063   // TODO: Can we omit empty structs?
9064 
9065   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9066     Ty = QualType(SeltTy, 0);
9067 
9068   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
9069   llvm::Type *LTy = OrigLTy;
9070   if (getContext().getLangOpts().HIP) {
9071     LTy = coerceKernelArgumentType(
9072         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
9073         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
9074   }
9075 
9076   // FIXME: Should also use this for OpenCL, but it requires addressing the
9077   // problem of kernels being called.
9078   //
9079   // FIXME: This doesn't apply the optimization of coercing pointers in structs
9080   // to global address space when using byref. This would require implementing a
9081   // new kind of coercion of the in-memory type when for indirect arguments.
9082   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
9083       isAggregateTypeForABI(Ty)) {
9084     return ABIArgInfo::getIndirectAliased(
9085         getContext().getTypeAlignInChars(Ty),
9086         getContext().getTargetAddressSpace(LangAS::opencl_constant),
9087         false /*Realign*/, nullptr /*Padding*/);
9088   }
9089 
9090   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
9091   // individual elements, which confuses the Clover OpenCL backend; therefore we
9092   // have to set it to false here. Other args of getDirect() are just defaults.
9093   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
9094 }
9095 
9096 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
9097                                                unsigned &NumRegsLeft) const {
9098   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
9099 
9100   Ty = useFirstFieldIfTransparentUnion(Ty);
9101 
9102   if (isAggregateTypeForABI(Ty)) {
9103     // Records with non-trivial destructors/copy-constructors should not be
9104     // passed by value.
9105     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
9106       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9107 
9108     // Ignore empty structs/unions.
9109     if (isEmptyRecord(getContext(), Ty, true))
9110       return ABIArgInfo::getIgnore();
9111 
9112     // Lower single-element structs to just pass a regular value. TODO: We
9113     // could do reasonable-size multiple-element structs too, using getExpand(),
9114     // though watch out for things like bitfields.
9115     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9116       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9117 
9118     if (const RecordType *RT = Ty->getAs<RecordType>()) {
9119       const RecordDecl *RD = RT->getDecl();
9120       if (RD->hasFlexibleArrayMember())
9121         return DefaultABIInfo::classifyArgumentType(Ty);
9122     }
9123 
9124     // Pack aggregates <= 8 bytes into single VGPR or pair.
9125     uint64_t Size = getContext().getTypeSize(Ty);
9126     if (Size <= 64) {
9127       unsigned NumRegs = (Size + 31) / 32;
9128       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
9129 
9130       if (Size <= 16)
9131         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9132 
9133       if (Size <= 32)
9134         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9135 
9136       // XXX: Should this be i64 instead, and should the limit increase?
9137       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9138       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9139     }
9140 
9141     if (NumRegsLeft > 0) {
9142       unsigned NumRegs = numRegsForType(Ty);
9143       if (NumRegsLeft >= NumRegs) {
9144         NumRegsLeft -= NumRegs;
9145         return ABIArgInfo::getDirect();
9146       }
9147     }
9148   }
9149 
9150   // Otherwise just do the default thing.
9151   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
9152   if (!ArgInfo.isIndirect()) {
9153     unsigned NumRegs = numRegsForType(Ty);
9154     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
9155   }
9156 
9157   return ArgInfo;
9158 }
9159 
9160 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
9161 public:
9162   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
9163       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
9164   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9165                            CodeGen::CodeGenModule &M) const override;
9166   unsigned getOpenCLKernelCallingConv() const override;
9167 
9168   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
9169       llvm::PointerType *T, QualType QT) const override;
9170 
9171   LangAS getASTAllocaAddressSpace() const override {
9172     return getLangASFromTargetAS(
9173         getABIInfo().getDataLayout().getAllocaAddrSpace());
9174   }
9175   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
9176                                   const VarDecl *D) const override;
9177   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
9178                                          SyncScope Scope,
9179                                          llvm::AtomicOrdering Ordering,
9180                                          llvm::LLVMContext &Ctx) const override;
9181   llvm::Function *
9182   createEnqueuedBlockKernel(CodeGenFunction &CGF,
9183                             llvm::Function *BlockInvokeFunc,
9184                             llvm::Value *BlockLiteral) const override;
9185   bool shouldEmitStaticExternCAliases() const override;
9186   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
9187 };
9188 }
9189 
9190 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
9191                                               llvm::GlobalValue *GV) {
9192   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
9193     return false;
9194 
9195   return D->hasAttr<OpenCLKernelAttr>() ||
9196          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9197          (isa<VarDecl>(D) &&
9198           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9199            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9200            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9201 }
9202 
9203 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9204     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9205   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9206     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9207     GV->setDSOLocal(true);
9208   }
9209 
9210   if (GV->isDeclaration())
9211     return;
9212   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9213   if (!FD)
9214     return;
9215 
9216   llvm::Function *F = cast<llvm::Function>(GV);
9217 
9218   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9219     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9220 
9221 
9222   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9223                               FD->hasAttr<OpenCLKernelAttr>();
9224   const bool IsHIPKernel = M.getLangOpts().HIP &&
9225                            FD->hasAttr<CUDAGlobalAttr>();
9226   if ((IsOpenCLKernel || IsHIPKernel) &&
9227       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9228     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9229 
9230   if (IsHIPKernel)
9231     F->addFnAttr("uniform-work-group-size", "true");
9232 
9233 
9234   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9235   if (ReqdWGS || FlatWGS) {
9236     unsigned Min = 0;
9237     unsigned Max = 0;
9238     if (FlatWGS) {
9239       Min = FlatWGS->getMin()
9240                 ->EvaluateKnownConstInt(M.getContext())
9241                 .getExtValue();
9242       Max = FlatWGS->getMax()
9243                 ->EvaluateKnownConstInt(M.getContext())
9244                 .getExtValue();
9245     }
9246     if (ReqdWGS && Min == 0 && Max == 0)
9247       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9248 
9249     if (Min != 0) {
9250       assert(Min <= Max && "Min must be less than or equal Max");
9251 
9252       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9253       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9254     } else
9255       assert(Max == 0 && "Max must be zero");
9256   } else if (IsOpenCLKernel || IsHIPKernel) {
9257     // By default, restrict the maximum size to a value specified by
9258     // --gpu-max-threads-per-block=n or its default value for HIP.
9259     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
9260     const unsigned DefaultMaxWorkGroupSize =
9261         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
9262                        : M.getLangOpts().GPUMaxThreadsPerBlock;
9263     std::string AttrVal =
9264         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
9265     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9266   }
9267 
9268   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9269     unsigned Min =
9270         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9271     unsigned Max = Attr->getMax() ? Attr->getMax()
9272                                         ->EvaluateKnownConstInt(M.getContext())
9273                                         .getExtValue()
9274                                   : 0;
9275 
9276     if (Min != 0) {
9277       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9278 
9279       std::string AttrVal = llvm::utostr(Min);
9280       if (Max != 0)
9281         AttrVal = AttrVal + "," + llvm::utostr(Max);
9282       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9283     } else
9284       assert(Max == 0 && "Max must be zero");
9285   }
9286 
9287   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9288     unsigned NumSGPR = Attr->getNumSGPR();
9289 
9290     if (NumSGPR != 0)
9291       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9292   }
9293 
9294   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9295     uint32_t NumVGPR = Attr->getNumVGPR();
9296 
9297     if (NumVGPR != 0)
9298       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9299   }
9300 
9301   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9302     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9303 
9304   if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
9305     F->addFnAttr("amdgpu-ieee", "false");
9306 }
9307 
9308 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9309   return llvm::CallingConv::AMDGPU_KERNEL;
9310 }
9311 
9312 // Currently LLVM assumes null pointers always have value 0,
9313 // which results in incorrectly transformed IR. Therefore, instead of
9314 // emitting null pointers in private and local address spaces, a null
9315 // pointer in generic address space is emitted which is casted to a
9316 // pointer in local or private address space.
9317 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9318     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9319     QualType QT) const {
9320   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9321     return llvm::ConstantPointerNull::get(PT);
9322 
9323   auto &Ctx = CGM.getContext();
9324   auto NPT = llvm::PointerType::get(PT->getElementType(),
9325       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9326   return llvm::ConstantExpr::getAddrSpaceCast(
9327       llvm::ConstantPointerNull::get(NPT), PT);
9328 }
9329 
9330 LangAS
9331 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9332                                                   const VarDecl *D) const {
9333   assert(!CGM.getLangOpts().OpenCL &&
9334          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9335          "Address space agnostic languages only");
9336   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9337       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9338   if (!D)
9339     return DefaultGlobalAS;
9340 
9341   LangAS AddrSpace = D->getType().getAddressSpace();
9342   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9343   if (AddrSpace != LangAS::Default)
9344     return AddrSpace;
9345 
9346   if (CGM.isTypeConstant(D->getType(), false)) {
9347     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9348       return ConstAS.getValue();
9349   }
9350   return DefaultGlobalAS;
9351 }
9352 
9353 llvm::SyncScope::ID
9354 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9355                                             SyncScope Scope,
9356                                             llvm::AtomicOrdering Ordering,
9357                                             llvm::LLVMContext &Ctx) const {
9358   std::string Name;
9359   switch (Scope) {
9360   case SyncScope::HIPSingleThread:
9361     Name = "singlethread";
9362     break;
9363   case SyncScope::HIPWavefront:
9364   case SyncScope::OpenCLSubGroup:
9365     Name = "wavefront";
9366     break;
9367   case SyncScope::HIPWorkgroup:
9368   case SyncScope::OpenCLWorkGroup:
9369     Name = "workgroup";
9370     break;
9371   case SyncScope::HIPAgent:
9372   case SyncScope::OpenCLDevice:
9373     Name = "agent";
9374     break;
9375   case SyncScope::HIPSystem:
9376   case SyncScope::OpenCLAllSVMDevices:
9377     Name = "";
9378     break;
9379   }
9380 
9381   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9382     if (!Name.empty())
9383       Name = Twine(Twine(Name) + Twine("-")).str();
9384 
9385     Name = Twine(Twine(Name) + Twine("one-as")).str();
9386   }
9387 
9388   return Ctx.getOrInsertSyncScopeID(Name);
9389 }
9390 
9391 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9392   return false;
9393 }
9394 
9395 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9396     const FunctionType *&FT) const {
9397   FT = getABIInfo().getContext().adjustFunctionType(
9398       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9399 }
9400 
9401 //===----------------------------------------------------------------------===//
9402 // SPARC v8 ABI Implementation.
9403 // Based on the SPARC Compliance Definition version 2.4.1.
9404 //
9405 // Ensures that complex values are passed in registers.
9406 //
9407 namespace {
9408 class SparcV8ABIInfo : public DefaultABIInfo {
9409 public:
9410   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9411 
9412 private:
9413   ABIArgInfo classifyReturnType(QualType RetTy) const;
9414   void computeInfo(CGFunctionInfo &FI) const override;
9415 };
9416 } // end anonymous namespace
9417 
9418 
9419 ABIArgInfo
9420 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9421   if (Ty->isAnyComplexType()) {
9422     return ABIArgInfo::getDirect();
9423   }
9424   else {
9425     return DefaultABIInfo::classifyReturnType(Ty);
9426   }
9427 }
9428 
9429 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9430 
9431   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9432   for (auto &Arg : FI.arguments())
9433     Arg.info = classifyArgumentType(Arg.type);
9434 }
9435 
9436 namespace {
9437 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9438 public:
9439   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9440       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9441 };
9442 } // end anonymous namespace
9443 
9444 //===----------------------------------------------------------------------===//
9445 // SPARC v9 ABI Implementation.
9446 // Based on the SPARC Compliance Definition version 2.4.1.
9447 //
9448 // Function arguments a mapped to a nominal "parameter array" and promoted to
9449 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9450 // the array, structs larger than 16 bytes are passed indirectly.
9451 //
9452 // One case requires special care:
9453 //
9454 //   struct mixed {
9455 //     int i;
9456 //     float f;
9457 //   };
9458 //
9459 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9460 // parameter array, but the int is passed in an integer register, and the float
9461 // is passed in a floating point register. This is represented as two arguments
9462 // with the LLVM IR inreg attribute:
9463 //
9464 //   declare void f(i32 inreg %i, float inreg %f)
9465 //
9466 // The code generator will only allocate 4 bytes from the parameter array for
9467 // the inreg arguments. All other arguments are allocated a multiple of 8
9468 // bytes.
9469 //
9470 namespace {
9471 class SparcV9ABIInfo : public ABIInfo {
9472 public:
9473   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9474 
9475 private:
9476   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9477   void computeInfo(CGFunctionInfo &FI) const override;
9478   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9479                     QualType Ty) const override;
9480 
9481   // Coercion type builder for structs passed in registers. The coercion type
9482   // serves two purposes:
9483   //
9484   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9485   //    in registers.
9486   // 2. Expose aligned floating point elements as first-level elements, so the
9487   //    code generator knows to pass them in floating point registers.
9488   //
9489   // We also compute the InReg flag which indicates that the struct contains
9490   // aligned 32-bit floats.
9491   //
9492   struct CoerceBuilder {
9493     llvm::LLVMContext &Context;
9494     const llvm::DataLayout &DL;
9495     SmallVector<llvm::Type*, 8> Elems;
9496     uint64_t Size;
9497     bool InReg;
9498 
9499     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9500       : Context(c), DL(dl), Size(0), InReg(false) {}
9501 
9502     // Pad Elems with integers until Size is ToSize.
9503     void pad(uint64_t ToSize) {
9504       assert(ToSize >= Size && "Cannot remove elements");
9505       if (ToSize == Size)
9506         return;
9507 
9508       // Finish the current 64-bit word.
9509       uint64_t Aligned = llvm::alignTo(Size, 64);
9510       if (Aligned > Size && Aligned <= ToSize) {
9511         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9512         Size = Aligned;
9513       }
9514 
9515       // Add whole 64-bit words.
9516       while (Size + 64 <= ToSize) {
9517         Elems.push_back(llvm::Type::getInt64Ty(Context));
9518         Size += 64;
9519       }
9520 
9521       // Final in-word padding.
9522       if (Size < ToSize) {
9523         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9524         Size = ToSize;
9525       }
9526     }
9527 
9528     // Add a floating point element at Offset.
9529     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9530       // Unaligned floats are treated as integers.
9531       if (Offset % Bits)
9532         return;
9533       // The InReg flag is only required if there are any floats < 64 bits.
9534       if (Bits < 64)
9535         InReg = true;
9536       pad(Offset);
9537       Elems.push_back(Ty);
9538       Size = Offset + Bits;
9539     }
9540 
9541     // Add a struct type to the coercion type, starting at Offset (in bits).
9542     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9543       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9544       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9545         llvm::Type *ElemTy = StrTy->getElementType(i);
9546         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9547         switch (ElemTy->getTypeID()) {
9548         case llvm::Type::StructTyID:
9549           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9550           break;
9551         case llvm::Type::FloatTyID:
9552           addFloat(ElemOffset, ElemTy, 32);
9553           break;
9554         case llvm::Type::DoubleTyID:
9555           addFloat(ElemOffset, ElemTy, 64);
9556           break;
9557         case llvm::Type::FP128TyID:
9558           addFloat(ElemOffset, ElemTy, 128);
9559           break;
9560         case llvm::Type::PointerTyID:
9561           if (ElemOffset % 64 == 0) {
9562             pad(ElemOffset);
9563             Elems.push_back(ElemTy);
9564             Size += 64;
9565           }
9566           break;
9567         default:
9568           break;
9569         }
9570       }
9571     }
9572 
9573     // Check if Ty is a usable substitute for the coercion type.
9574     bool isUsableType(llvm::StructType *Ty) const {
9575       return llvm::makeArrayRef(Elems) == Ty->elements();
9576     }
9577 
9578     // Get the coercion type as a literal struct type.
9579     llvm::Type *getType() const {
9580       if (Elems.size() == 1)
9581         return Elems.front();
9582       else
9583         return llvm::StructType::get(Context, Elems);
9584     }
9585   };
9586 };
9587 } // end anonymous namespace
9588 
9589 ABIArgInfo
9590 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9591   if (Ty->isVoidType())
9592     return ABIArgInfo::getIgnore();
9593 
9594   uint64_t Size = getContext().getTypeSize(Ty);
9595 
9596   // Anything too big to fit in registers is passed with an explicit indirect
9597   // pointer / sret pointer.
9598   if (Size > SizeLimit)
9599     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9600 
9601   // Treat an enum type as its underlying type.
9602   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9603     Ty = EnumTy->getDecl()->getIntegerType();
9604 
9605   // Integer types smaller than a register are extended.
9606   if (Size < 64 && Ty->isIntegerType())
9607     return ABIArgInfo::getExtend(Ty);
9608 
9609   if (const auto *EIT = Ty->getAs<ExtIntType>())
9610     if (EIT->getNumBits() < 64)
9611       return ABIArgInfo::getExtend(Ty);
9612 
9613   // Other non-aggregates go in registers.
9614   if (!isAggregateTypeForABI(Ty))
9615     return ABIArgInfo::getDirect();
9616 
9617   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9618   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9619   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9620     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9621 
9622   // This is a small aggregate type that should be passed in registers.
9623   // Build a coercion type from the LLVM struct type.
9624   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9625   if (!StrTy)
9626     return ABIArgInfo::getDirect();
9627 
9628   CoerceBuilder CB(getVMContext(), getDataLayout());
9629   CB.addStruct(0, StrTy);
9630   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9631 
9632   // Try to use the original type for coercion.
9633   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9634 
9635   if (CB.InReg)
9636     return ABIArgInfo::getDirectInReg(CoerceTy);
9637   else
9638     return ABIArgInfo::getDirect(CoerceTy);
9639 }
9640 
9641 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9642                                   QualType Ty) const {
9643   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9644   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9645   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9646     AI.setCoerceToType(ArgTy);
9647 
9648   CharUnits SlotSize = CharUnits::fromQuantity(8);
9649 
9650   CGBuilderTy &Builder = CGF.Builder;
9651   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9652   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9653 
9654   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9655 
9656   Address ArgAddr = Address::invalid();
9657   CharUnits Stride;
9658   switch (AI.getKind()) {
9659   case ABIArgInfo::Expand:
9660   case ABIArgInfo::CoerceAndExpand:
9661   case ABIArgInfo::InAlloca:
9662     llvm_unreachable("Unsupported ABI kind for va_arg");
9663 
9664   case ABIArgInfo::Extend: {
9665     Stride = SlotSize;
9666     CharUnits Offset = SlotSize - TypeInfo.Width;
9667     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9668     break;
9669   }
9670 
9671   case ABIArgInfo::Direct: {
9672     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9673     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9674     ArgAddr = Addr;
9675     break;
9676   }
9677 
9678   case ABIArgInfo::Indirect:
9679   case ABIArgInfo::IndirectAliased:
9680     Stride = SlotSize;
9681     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9682     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9683                       TypeInfo.Align);
9684     break;
9685 
9686   case ABIArgInfo::Ignore:
9687     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9688   }
9689 
9690   // Update VAList.
9691   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9692   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9693 
9694   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9695 }
9696 
9697 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9698   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9699   for (auto &I : FI.arguments())
9700     I.info = classifyType(I.type, 16 * 8);
9701 }
9702 
9703 namespace {
9704 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9705 public:
9706   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9707       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9708 
9709   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9710     return 14;
9711   }
9712 
9713   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9714                                llvm::Value *Address) const override;
9715 };
9716 } // end anonymous namespace
9717 
9718 bool
9719 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9720                                                 llvm::Value *Address) const {
9721   // This is calculated from the LLVM and GCC tables and verified
9722   // against gcc output.  AFAIK all ABIs use the same encoding.
9723 
9724   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9725 
9726   llvm::IntegerType *i8 = CGF.Int8Ty;
9727   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9728   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9729 
9730   // 0-31: the 8-byte general-purpose registers
9731   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9732 
9733   // 32-63: f0-31, the 4-byte floating-point registers
9734   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9735 
9736   //   Y   = 64
9737   //   PSR = 65
9738   //   WIM = 66
9739   //   TBR = 67
9740   //   PC  = 68
9741   //   NPC = 69
9742   //   FSR = 70
9743   //   CSR = 71
9744   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9745 
9746   // 72-87: d0-15, the 8-byte floating-point registers
9747   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9748 
9749   return false;
9750 }
9751 
9752 // ARC ABI implementation.
9753 namespace {
9754 
9755 class ARCABIInfo : public DefaultABIInfo {
9756 public:
9757   using DefaultABIInfo::DefaultABIInfo;
9758 
9759 private:
9760   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9761                     QualType Ty) const override;
9762 
9763   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9764     if (!State.FreeRegs)
9765       return;
9766     if (Info.isIndirect() && Info.getInReg())
9767       State.FreeRegs--;
9768     else if (Info.isDirect() && Info.getInReg()) {
9769       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9770       if (sz < State.FreeRegs)
9771         State.FreeRegs -= sz;
9772       else
9773         State.FreeRegs = 0;
9774     }
9775   }
9776 
9777   void computeInfo(CGFunctionInfo &FI) const override {
9778     CCState State(FI);
9779     // ARC uses 8 registers to pass arguments.
9780     State.FreeRegs = 8;
9781 
9782     if (!getCXXABI().classifyReturnType(FI))
9783       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9784     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9785     for (auto &I : FI.arguments()) {
9786       I.info = classifyArgumentType(I.type, State.FreeRegs);
9787       updateState(I.info, I.type, State);
9788     }
9789   }
9790 
9791   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9792   ABIArgInfo getIndirectByValue(QualType Ty) const;
9793   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9794   ABIArgInfo classifyReturnType(QualType RetTy) const;
9795 };
9796 
9797 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9798 public:
9799   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9800       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9801 };
9802 
9803 
9804 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9805   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9806                        getNaturalAlignIndirect(Ty, false);
9807 }
9808 
9809 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9810   // Compute the byval alignment.
9811   const unsigned MinABIStackAlignInBytes = 4;
9812   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9813   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9814                                  TypeAlign > MinABIStackAlignInBytes);
9815 }
9816 
9817 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9818                               QualType Ty) const {
9819   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9820                           getContext().getTypeInfoInChars(Ty),
9821                           CharUnits::fromQuantity(4), true);
9822 }
9823 
9824 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9825                                             uint8_t FreeRegs) const {
9826   // Handle the generic C++ ABI.
9827   const RecordType *RT = Ty->getAs<RecordType>();
9828   if (RT) {
9829     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9830     if (RAA == CGCXXABI::RAA_Indirect)
9831       return getIndirectByRef(Ty, FreeRegs > 0);
9832 
9833     if (RAA == CGCXXABI::RAA_DirectInMemory)
9834       return getIndirectByValue(Ty);
9835   }
9836 
9837   // Treat an enum type as its underlying type.
9838   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9839     Ty = EnumTy->getDecl()->getIntegerType();
9840 
9841   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9842 
9843   if (isAggregateTypeForABI(Ty)) {
9844     // Structures with flexible arrays are always indirect.
9845     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9846       return getIndirectByValue(Ty);
9847 
9848     // Ignore empty structs/unions.
9849     if (isEmptyRecord(getContext(), Ty, true))
9850       return ABIArgInfo::getIgnore();
9851 
9852     llvm::LLVMContext &LLVMContext = getVMContext();
9853 
9854     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9855     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9856     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9857 
9858     return FreeRegs >= SizeInRegs ?
9859         ABIArgInfo::getDirectInReg(Result) :
9860         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9861   }
9862 
9863   if (const auto *EIT = Ty->getAs<ExtIntType>())
9864     if (EIT->getNumBits() > 64)
9865       return getIndirectByValue(Ty);
9866 
9867   return isPromotableIntegerTypeForABI(Ty)
9868              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9869                                        : ABIArgInfo::getExtend(Ty))
9870              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9871                                        : ABIArgInfo::getDirect());
9872 }
9873 
9874 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9875   if (RetTy->isAnyComplexType())
9876     return ABIArgInfo::getDirectInReg();
9877 
9878   // Arguments of size > 4 registers are indirect.
9879   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9880   if (RetSize > 4)
9881     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9882 
9883   return DefaultABIInfo::classifyReturnType(RetTy);
9884 }
9885 
9886 } // End anonymous namespace.
9887 
9888 //===----------------------------------------------------------------------===//
9889 // XCore ABI Implementation
9890 //===----------------------------------------------------------------------===//
9891 
9892 namespace {
9893 
9894 /// A SmallStringEnc instance is used to build up the TypeString by passing
9895 /// it by reference between functions that append to it.
9896 typedef llvm::SmallString<128> SmallStringEnc;
9897 
9898 /// TypeStringCache caches the meta encodings of Types.
9899 ///
9900 /// The reason for caching TypeStrings is two fold:
9901 ///   1. To cache a type's encoding for later uses;
9902 ///   2. As a means to break recursive member type inclusion.
9903 ///
9904 /// A cache Entry can have a Status of:
9905 ///   NonRecursive:   The type encoding is not recursive;
9906 ///   Recursive:      The type encoding is recursive;
9907 ///   Incomplete:     An incomplete TypeString;
9908 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9909 ///                   Recursive type encoding.
9910 ///
9911 /// A NonRecursive entry will have all of its sub-members expanded as fully
9912 /// as possible. Whilst it may contain types which are recursive, the type
9913 /// itself is not recursive and thus its encoding may be safely used whenever
9914 /// the type is encountered.
9915 ///
9916 /// A Recursive entry will have all of its sub-members expanded as fully as
9917 /// possible. The type itself is recursive and it may contain other types which
9918 /// are recursive. The Recursive encoding must not be used during the expansion
9919 /// of a recursive type's recursive branch. For simplicity the code uses
9920 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9921 ///
9922 /// An Incomplete entry is always a RecordType and only encodes its
9923 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9924 /// are placed into the cache during type expansion as a means to identify and
9925 /// handle recursive inclusion of types as sub-members. If there is recursion
9926 /// the entry becomes IncompleteUsed.
9927 ///
9928 /// During the expansion of a RecordType's members:
9929 ///
9930 ///   If the cache contains a NonRecursive encoding for the member type, the
9931 ///   cached encoding is used;
9932 ///
9933 ///   If the cache contains a Recursive encoding for the member type, the
9934 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9935 ///
9936 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9937 ///   cache to break potential recursive inclusion of itself as a sub-member;
9938 ///
9939 ///   Once a member RecordType has been expanded, its temporary incomplete
9940 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9941 ///   it is swapped back in;
9942 ///
9943 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9944 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9945 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9946 ///
9947 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9948 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9949 ///   Else the member is part of a recursive type and thus the recursion has
9950 ///   been exited too soon for the encoding to be correct for the member.
9951 ///
9952 class TypeStringCache {
9953   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9954   struct Entry {
9955     std::string Str;     // The encoded TypeString for the type.
9956     enum Status State;   // Information about the encoding in 'Str'.
9957     std::string Swapped; // A temporary place holder for a Recursive encoding
9958                          // during the expansion of RecordType's members.
9959   };
9960   std::map<const IdentifierInfo *, struct Entry> Map;
9961   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9962   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9963 public:
9964   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9965   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9966   bool removeIncomplete(const IdentifierInfo *ID);
9967   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9968                      bool IsRecursive);
9969   StringRef lookupStr(const IdentifierInfo *ID);
9970 };
9971 
9972 /// TypeString encodings for enum & union fields must be order.
9973 /// FieldEncoding is a helper for this ordering process.
9974 class FieldEncoding {
9975   bool HasName;
9976   std::string Enc;
9977 public:
9978   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9979   StringRef str() { return Enc; }
9980   bool operator<(const FieldEncoding &rhs) const {
9981     if (HasName != rhs.HasName) return HasName;
9982     return Enc < rhs.Enc;
9983   }
9984 };
9985 
9986 class XCoreABIInfo : public DefaultABIInfo {
9987 public:
9988   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9989   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9990                     QualType Ty) const override;
9991 };
9992 
9993 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9994   mutable TypeStringCache TSC;
9995   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9996                     const CodeGen::CodeGenModule &M) const;
9997 
9998 public:
9999   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
10000       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
10001   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
10002                           const llvm::MapVector<GlobalDecl, StringRef>
10003                               &MangledDeclNames) const override;
10004 };
10005 
10006 } // End anonymous namespace.
10007 
10008 // TODO: this implementation is likely now redundant with the default
10009 // EmitVAArg.
10010 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10011                                 QualType Ty) const {
10012   CGBuilderTy &Builder = CGF.Builder;
10013 
10014   // Get the VAList.
10015   CharUnits SlotSize = CharUnits::fromQuantity(4);
10016   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
10017 
10018   // Handle the argument.
10019   ABIArgInfo AI = classifyArgumentType(Ty);
10020   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
10021   llvm::Type *ArgTy = CGT.ConvertType(Ty);
10022   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
10023     AI.setCoerceToType(ArgTy);
10024   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
10025 
10026   Address Val = Address::invalid();
10027   CharUnits ArgSize = CharUnits::Zero();
10028   switch (AI.getKind()) {
10029   case ABIArgInfo::Expand:
10030   case ABIArgInfo::CoerceAndExpand:
10031   case ABIArgInfo::InAlloca:
10032     llvm_unreachable("Unsupported ABI kind for va_arg");
10033   case ABIArgInfo::Ignore:
10034     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
10035     ArgSize = CharUnits::Zero();
10036     break;
10037   case ABIArgInfo::Extend:
10038   case ABIArgInfo::Direct:
10039     Val = Builder.CreateBitCast(AP, ArgPtrTy);
10040     ArgSize = CharUnits::fromQuantity(
10041                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
10042     ArgSize = ArgSize.alignTo(SlotSize);
10043     break;
10044   case ABIArgInfo::Indirect:
10045   case ABIArgInfo::IndirectAliased:
10046     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
10047     Val = Address(Builder.CreateLoad(Val), TypeAlign);
10048     ArgSize = SlotSize;
10049     break;
10050   }
10051 
10052   // Increment the VAList.
10053   if (!ArgSize.isZero()) {
10054     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
10055     Builder.CreateStore(APN.getPointer(), VAListAddr);
10056   }
10057 
10058   return Val;
10059 }
10060 
10061 /// During the expansion of a RecordType, an incomplete TypeString is placed
10062 /// into the cache as a means to identify and break recursion.
10063 /// If there is a Recursive encoding in the cache, it is swapped out and will
10064 /// be reinserted by removeIncomplete().
10065 /// All other types of encoding should have been used rather than arriving here.
10066 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
10067                                     std::string StubEnc) {
10068   if (!ID)
10069     return;
10070   Entry &E = Map[ID];
10071   assert( (E.Str.empty() || E.State == Recursive) &&
10072          "Incorrectly use of addIncomplete");
10073   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
10074   E.Swapped.swap(E.Str); // swap out the Recursive
10075   E.Str.swap(StubEnc);
10076   E.State = Incomplete;
10077   ++IncompleteCount;
10078 }
10079 
10080 /// Once the RecordType has been expanded, the temporary incomplete TypeString
10081 /// must be removed from the cache.
10082 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
10083 /// Returns true if the RecordType was defined recursively.
10084 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
10085   if (!ID)
10086     return false;
10087   auto I = Map.find(ID);
10088   assert(I != Map.end() && "Entry not present");
10089   Entry &E = I->second;
10090   assert( (E.State == Incomplete ||
10091            E.State == IncompleteUsed) &&
10092          "Entry must be an incomplete type");
10093   bool IsRecursive = false;
10094   if (E.State == IncompleteUsed) {
10095     // We made use of our Incomplete encoding, thus we are recursive.
10096     IsRecursive = true;
10097     --IncompleteUsedCount;
10098   }
10099   if (E.Swapped.empty())
10100     Map.erase(I);
10101   else {
10102     // Swap the Recursive back.
10103     E.Swapped.swap(E.Str);
10104     E.Swapped.clear();
10105     E.State = Recursive;
10106   }
10107   --IncompleteCount;
10108   return IsRecursive;
10109 }
10110 
10111 /// Add the encoded TypeString to the cache only if it is NonRecursive or
10112 /// Recursive (viz: all sub-members were expanded as fully as possible).
10113 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
10114                                     bool IsRecursive) {
10115   if (!ID || IncompleteUsedCount)
10116     return; // No key or it is is an incomplete sub-type so don't add.
10117   Entry &E = Map[ID];
10118   if (IsRecursive && !E.Str.empty()) {
10119     assert(E.State==Recursive && E.Str.size() == Str.size() &&
10120            "This is not the same Recursive entry");
10121     // The parent container was not recursive after all, so we could have used
10122     // this Recursive sub-member entry after all, but we assumed the worse when
10123     // we started viz: IncompleteCount!=0.
10124     return;
10125   }
10126   assert(E.Str.empty() && "Entry already present");
10127   E.Str = Str.str();
10128   E.State = IsRecursive? Recursive : NonRecursive;
10129 }
10130 
10131 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
10132 /// are recursively expanding a type (IncompleteCount != 0) and the cached
10133 /// encoding is Recursive, return an empty StringRef.
10134 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
10135   if (!ID)
10136     return StringRef();   // We have no key.
10137   auto I = Map.find(ID);
10138   if (I == Map.end())
10139     return StringRef();   // We have no encoding.
10140   Entry &E = I->second;
10141   if (E.State == Recursive && IncompleteCount)
10142     return StringRef();   // We don't use Recursive encodings for member types.
10143 
10144   if (E.State == Incomplete) {
10145     // The incomplete type is being used to break out of recursion.
10146     E.State = IncompleteUsed;
10147     ++IncompleteUsedCount;
10148   }
10149   return E.Str;
10150 }
10151 
10152 /// The XCore ABI includes a type information section that communicates symbol
10153 /// type information to the linker. The linker uses this information to verify
10154 /// safety/correctness of things such as array bound and pointers et al.
10155 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
10156 /// This type information (TypeString) is emitted into meta data for all global
10157 /// symbols: definitions, declarations, functions & variables.
10158 ///
10159 /// The TypeString carries type, qualifier, name, size & value details.
10160 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
10161 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
10162 /// The output is tested by test/CodeGen/xcore-stringtype.c.
10163 ///
10164 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10165                           const CodeGen::CodeGenModule &CGM,
10166                           TypeStringCache &TSC);
10167 
10168 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
10169 void XCoreTargetCodeGenInfo::emitTargetMD(
10170     const Decl *D, llvm::GlobalValue *GV,
10171     const CodeGen::CodeGenModule &CGM) const {
10172   SmallStringEnc Enc;
10173   if (getTypeString(Enc, D, CGM, TSC)) {
10174     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
10175     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
10176                                 llvm::MDString::get(Ctx, Enc.str())};
10177     llvm::NamedMDNode *MD =
10178       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
10179     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
10180   }
10181 }
10182 
10183 void XCoreTargetCodeGenInfo::emitTargetMetadata(
10184     CodeGen::CodeGenModule &CGM,
10185     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
10186   // Warning, new MangledDeclNames may be appended within this loop.
10187   // We rely on MapVector insertions adding new elements to the end
10188   // of the container.
10189   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
10190     auto Val = *(MangledDeclNames.begin() + I);
10191     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
10192     if (GV) {
10193       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
10194       emitTargetMD(D, GV, CGM);
10195     }
10196   }
10197 }
10198 
10199 //===----------------------------------------------------------------------===//
10200 // Base ABI and target codegen info implementation common between SPIR and
10201 // SPIR-V.
10202 //===----------------------------------------------------------------------===//
10203 
10204 namespace {
10205 class CommonSPIRABIInfo : public DefaultABIInfo {
10206 public:
10207   CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
10208 
10209 private:
10210   void setCCs();
10211 };
10212 } // end anonymous namespace
10213 namespace {
10214 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo {
10215 public:
10216   CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10217       : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {}
10218 
10219   LangAS getASTAllocaAddressSpace() const override {
10220     return getLangASFromTargetAS(
10221         getABIInfo().getDataLayout().getAllocaAddrSpace());
10222   }
10223 
10224   unsigned getOpenCLKernelCallingConv() const override;
10225 };
10226 
10227 } // End anonymous namespace.
10228 void CommonSPIRABIInfo::setCCs() {
10229   assert(getRuntimeCC() == llvm::CallingConv::C);
10230   RuntimeCC = llvm::CallingConv::SPIR_FUNC;
10231 }
10232 
10233 namespace clang {
10234 namespace CodeGen {
10235 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10236   DefaultABIInfo SPIRABI(CGM.getTypes());
10237   SPIRABI.computeInfo(FI);
10238 }
10239 }
10240 }
10241 
10242 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10243   return llvm::CallingConv::SPIR_KERNEL;
10244 }
10245 
10246 static bool appendType(SmallStringEnc &Enc, QualType QType,
10247                        const CodeGen::CodeGenModule &CGM,
10248                        TypeStringCache &TSC);
10249 
10250 /// Helper function for appendRecordType().
10251 /// Builds a SmallVector containing the encoded field types in declaration
10252 /// order.
10253 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10254                              const RecordDecl *RD,
10255                              const CodeGen::CodeGenModule &CGM,
10256                              TypeStringCache &TSC) {
10257   for (const auto *Field : RD->fields()) {
10258     SmallStringEnc Enc;
10259     Enc += "m(";
10260     Enc += Field->getName();
10261     Enc += "){";
10262     if (Field->isBitField()) {
10263       Enc += "b(";
10264       llvm::raw_svector_ostream OS(Enc);
10265       OS << Field->getBitWidthValue(CGM.getContext());
10266       Enc += ':';
10267     }
10268     if (!appendType(Enc, Field->getType(), CGM, TSC))
10269       return false;
10270     if (Field->isBitField())
10271       Enc += ')';
10272     Enc += '}';
10273     FE.emplace_back(!Field->getName().empty(), Enc);
10274   }
10275   return true;
10276 }
10277 
10278 /// Appends structure and union types to Enc and adds encoding to cache.
10279 /// Recursively calls appendType (via extractFieldType) for each field.
10280 /// Union types have their fields ordered according to the ABI.
10281 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10282                              const CodeGen::CodeGenModule &CGM,
10283                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10284   // Append the cached TypeString if we have one.
10285   StringRef TypeString = TSC.lookupStr(ID);
10286   if (!TypeString.empty()) {
10287     Enc += TypeString;
10288     return true;
10289   }
10290 
10291   // Start to emit an incomplete TypeString.
10292   size_t Start = Enc.size();
10293   Enc += (RT->isUnionType()? 'u' : 's');
10294   Enc += '(';
10295   if (ID)
10296     Enc += ID->getName();
10297   Enc += "){";
10298 
10299   // We collect all encoded fields and order as necessary.
10300   bool IsRecursive = false;
10301   const RecordDecl *RD = RT->getDecl()->getDefinition();
10302   if (RD && !RD->field_empty()) {
10303     // An incomplete TypeString stub is placed in the cache for this RecordType
10304     // so that recursive calls to this RecordType will use it whilst building a
10305     // complete TypeString for this RecordType.
10306     SmallVector<FieldEncoding, 16> FE;
10307     std::string StubEnc(Enc.substr(Start).str());
10308     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10309     TSC.addIncomplete(ID, std::move(StubEnc));
10310     if (!extractFieldType(FE, RD, CGM, TSC)) {
10311       (void) TSC.removeIncomplete(ID);
10312       return false;
10313     }
10314     IsRecursive = TSC.removeIncomplete(ID);
10315     // The ABI requires unions to be sorted but not structures.
10316     // See FieldEncoding::operator< for sort algorithm.
10317     if (RT->isUnionType())
10318       llvm::sort(FE);
10319     // We can now complete the TypeString.
10320     unsigned E = FE.size();
10321     for (unsigned I = 0; I != E; ++I) {
10322       if (I)
10323         Enc += ',';
10324       Enc += FE[I].str();
10325     }
10326   }
10327   Enc += '}';
10328   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10329   return true;
10330 }
10331 
10332 /// Appends enum types to Enc and adds the encoding to the cache.
10333 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10334                            TypeStringCache &TSC,
10335                            const IdentifierInfo *ID) {
10336   // Append the cached TypeString if we have one.
10337   StringRef TypeString = TSC.lookupStr(ID);
10338   if (!TypeString.empty()) {
10339     Enc += TypeString;
10340     return true;
10341   }
10342 
10343   size_t Start = Enc.size();
10344   Enc += "e(";
10345   if (ID)
10346     Enc += ID->getName();
10347   Enc += "){";
10348 
10349   // We collect all encoded enumerations and order them alphanumerically.
10350   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10351     SmallVector<FieldEncoding, 16> FE;
10352     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10353          ++I) {
10354       SmallStringEnc EnumEnc;
10355       EnumEnc += "m(";
10356       EnumEnc += I->getName();
10357       EnumEnc += "){";
10358       I->getInitVal().toString(EnumEnc);
10359       EnumEnc += '}';
10360       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10361     }
10362     llvm::sort(FE);
10363     unsigned E = FE.size();
10364     for (unsigned I = 0; I != E; ++I) {
10365       if (I)
10366         Enc += ',';
10367       Enc += FE[I].str();
10368     }
10369   }
10370   Enc += '}';
10371   TSC.addIfComplete(ID, Enc.substr(Start), false);
10372   return true;
10373 }
10374 
10375 /// Appends type's qualifier to Enc.
10376 /// This is done prior to appending the type's encoding.
10377 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10378   // Qualifiers are emitted in alphabetical order.
10379   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10380   int Lookup = 0;
10381   if (QT.isConstQualified())
10382     Lookup += 1<<0;
10383   if (QT.isRestrictQualified())
10384     Lookup += 1<<1;
10385   if (QT.isVolatileQualified())
10386     Lookup += 1<<2;
10387   Enc += Table[Lookup];
10388 }
10389 
10390 /// Appends built-in types to Enc.
10391 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10392   const char *EncType;
10393   switch (BT->getKind()) {
10394     case BuiltinType::Void:
10395       EncType = "0";
10396       break;
10397     case BuiltinType::Bool:
10398       EncType = "b";
10399       break;
10400     case BuiltinType::Char_U:
10401       EncType = "uc";
10402       break;
10403     case BuiltinType::UChar:
10404       EncType = "uc";
10405       break;
10406     case BuiltinType::SChar:
10407       EncType = "sc";
10408       break;
10409     case BuiltinType::UShort:
10410       EncType = "us";
10411       break;
10412     case BuiltinType::Short:
10413       EncType = "ss";
10414       break;
10415     case BuiltinType::UInt:
10416       EncType = "ui";
10417       break;
10418     case BuiltinType::Int:
10419       EncType = "si";
10420       break;
10421     case BuiltinType::ULong:
10422       EncType = "ul";
10423       break;
10424     case BuiltinType::Long:
10425       EncType = "sl";
10426       break;
10427     case BuiltinType::ULongLong:
10428       EncType = "ull";
10429       break;
10430     case BuiltinType::LongLong:
10431       EncType = "sll";
10432       break;
10433     case BuiltinType::Float:
10434       EncType = "ft";
10435       break;
10436     case BuiltinType::Double:
10437       EncType = "d";
10438       break;
10439     case BuiltinType::LongDouble:
10440       EncType = "ld";
10441       break;
10442     default:
10443       return false;
10444   }
10445   Enc += EncType;
10446   return true;
10447 }
10448 
10449 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10450 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10451                               const CodeGen::CodeGenModule &CGM,
10452                               TypeStringCache &TSC) {
10453   Enc += "p(";
10454   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10455     return false;
10456   Enc += ')';
10457   return true;
10458 }
10459 
10460 /// Appends array encoding to Enc before calling appendType for the element.
10461 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10462                             const ArrayType *AT,
10463                             const CodeGen::CodeGenModule &CGM,
10464                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10465   if (AT->getSizeModifier() != ArrayType::Normal)
10466     return false;
10467   Enc += "a(";
10468   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10469     CAT->getSize().toStringUnsigned(Enc);
10470   else
10471     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10472   Enc += ':';
10473   // The Qualifiers should be attached to the type rather than the array.
10474   appendQualifier(Enc, QT);
10475   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10476     return false;
10477   Enc += ')';
10478   return true;
10479 }
10480 
10481 /// Appends a function encoding to Enc, calling appendType for the return type
10482 /// and the arguments.
10483 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10484                              const CodeGen::CodeGenModule &CGM,
10485                              TypeStringCache &TSC) {
10486   Enc += "f{";
10487   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10488     return false;
10489   Enc += "}(";
10490   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10491     // N.B. we are only interested in the adjusted param types.
10492     auto I = FPT->param_type_begin();
10493     auto E = FPT->param_type_end();
10494     if (I != E) {
10495       do {
10496         if (!appendType(Enc, *I, CGM, TSC))
10497           return false;
10498         ++I;
10499         if (I != E)
10500           Enc += ',';
10501       } while (I != E);
10502       if (FPT->isVariadic())
10503         Enc += ",va";
10504     } else {
10505       if (FPT->isVariadic())
10506         Enc += "va";
10507       else
10508         Enc += '0';
10509     }
10510   }
10511   Enc += ')';
10512   return true;
10513 }
10514 
10515 /// Handles the type's qualifier before dispatching a call to handle specific
10516 /// type encodings.
10517 static bool appendType(SmallStringEnc &Enc, QualType QType,
10518                        const CodeGen::CodeGenModule &CGM,
10519                        TypeStringCache &TSC) {
10520 
10521   QualType QT = QType.getCanonicalType();
10522 
10523   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10524     // The Qualifiers should be attached to the type rather than the array.
10525     // Thus we don't call appendQualifier() here.
10526     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10527 
10528   appendQualifier(Enc, QT);
10529 
10530   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10531     return appendBuiltinType(Enc, BT);
10532 
10533   if (const PointerType *PT = QT->getAs<PointerType>())
10534     return appendPointerType(Enc, PT, CGM, TSC);
10535 
10536   if (const EnumType *ET = QT->getAs<EnumType>())
10537     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10538 
10539   if (const RecordType *RT = QT->getAsStructureType())
10540     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10541 
10542   if (const RecordType *RT = QT->getAsUnionType())
10543     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10544 
10545   if (const FunctionType *FT = QT->getAs<FunctionType>())
10546     return appendFunctionType(Enc, FT, CGM, TSC);
10547 
10548   return false;
10549 }
10550 
10551 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10552                           const CodeGen::CodeGenModule &CGM,
10553                           TypeStringCache &TSC) {
10554   if (!D)
10555     return false;
10556 
10557   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10558     if (FD->getLanguageLinkage() != CLanguageLinkage)
10559       return false;
10560     return appendType(Enc, FD->getType(), CGM, TSC);
10561   }
10562 
10563   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10564     if (VD->getLanguageLinkage() != CLanguageLinkage)
10565       return false;
10566     QualType QT = VD->getType().getCanonicalType();
10567     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10568       // Global ArrayTypes are given a size of '*' if the size is unknown.
10569       // The Qualifiers should be attached to the type rather than the array.
10570       // Thus we don't call appendQualifier() here.
10571       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10572     }
10573     return appendType(Enc, QT, CGM, TSC);
10574   }
10575   return false;
10576 }
10577 
10578 //===----------------------------------------------------------------------===//
10579 // RISCV ABI Implementation
10580 //===----------------------------------------------------------------------===//
10581 
10582 namespace {
10583 class RISCVABIInfo : public DefaultABIInfo {
10584 private:
10585   // Size of the integer ('x') registers in bits.
10586   unsigned XLen;
10587   // Size of the floating point ('f') registers in bits. Note that the target
10588   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10589   // with soft float ABI has FLen==0).
10590   unsigned FLen;
10591   static const int NumArgGPRs = 8;
10592   static const int NumArgFPRs = 8;
10593   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10594                                       llvm::Type *&Field1Ty,
10595                                       CharUnits &Field1Off,
10596                                       llvm::Type *&Field2Ty,
10597                                       CharUnits &Field2Off) const;
10598 
10599 public:
10600   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10601       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10602 
10603   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10604   // non-virtual, but computeInfo is virtual, so we overload it.
10605   void computeInfo(CGFunctionInfo &FI) const override;
10606 
10607   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10608                                   int &ArgFPRsLeft) const;
10609   ABIArgInfo classifyReturnType(QualType RetTy) const;
10610 
10611   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10612                     QualType Ty) const override;
10613 
10614   ABIArgInfo extendType(QualType Ty) const;
10615 
10616   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10617                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10618                                 CharUnits &Field2Off, int &NeededArgGPRs,
10619                                 int &NeededArgFPRs) const;
10620   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10621                                                CharUnits Field1Off,
10622                                                llvm::Type *Field2Ty,
10623                                                CharUnits Field2Off) const;
10624 };
10625 } // end anonymous namespace
10626 
10627 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10628   QualType RetTy = FI.getReturnType();
10629   if (!getCXXABI().classifyReturnType(FI))
10630     FI.getReturnInfo() = classifyReturnType(RetTy);
10631 
10632   // IsRetIndirect is true if classifyArgumentType indicated the value should
10633   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10634   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10635   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10636   // list and pass indirectly on RV32.
10637   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10638   if (!IsRetIndirect && RetTy->isScalarType() &&
10639       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10640     if (RetTy->isComplexType() && FLen) {
10641       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10642       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10643     } else {
10644       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10645       IsRetIndirect = true;
10646     }
10647   }
10648 
10649   // We must track the number of GPRs used in order to conform to the RISC-V
10650   // ABI, as integer scalars passed in registers should have signext/zeroext
10651   // when promoted, but are anyext if passed on the stack. As GPR usage is
10652   // different for variadic arguments, we must also track whether we are
10653   // examining a vararg or not.
10654   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10655   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10656   int NumFixedArgs = FI.getNumRequiredArgs();
10657 
10658   int ArgNum = 0;
10659   for (auto &ArgInfo : FI.arguments()) {
10660     bool IsFixed = ArgNum < NumFixedArgs;
10661     ArgInfo.info =
10662         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10663     ArgNum++;
10664   }
10665 }
10666 
10667 // Returns true if the struct is a potential candidate for the floating point
10668 // calling convention. If this function returns true, the caller is
10669 // responsible for checking that if there is only a single field then that
10670 // field is a float.
10671 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10672                                                   llvm::Type *&Field1Ty,
10673                                                   CharUnits &Field1Off,
10674                                                   llvm::Type *&Field2Ty,
10675                                                   CharUnits &Field2Off) const {
10676   bool IsInt = Ty->isIntegralOrEnumerationType();
10677   bool IsFloat = Ty->isRealFloatingType();
10678 
10679   if (IsInt || IsFloat) {
10680     uint64_t Size = getContext().getTypeSize(Ty);
10681     if (IsInt && Size > XLen)
10682       return false;
10683     // Can't be eligible if larger than the FP registers. Half precision isn't
10684     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10685     // default to the integer ABI in that case.
10686     if (IsFloat && (Size > FLen || Size < 32))
10687       return false;
10688     // Can't be eligible if an integer type was already found (int+int pairs
10689     // are not eligible).
10690     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10691       return false;
10692     if (!Field1Ty) {
10693       Field1Ty = CGT.ConvertType(Ty);
10694       Field1Off = CurOff;
10695       return true;
10696     }
10697     if (!Field2Ty) {
10698       Field2Ty = CGT.ConvertType(Ty);
10699       Field2Off = CurOff;
10700       return true;
10701     }
10702     return false;
10703   }
10704 
10705   if (auto CTy = Ty->getAs<ComplexType>()) {
10706     if (Field1Ty)
10707       return false;
10708     QualType EltTy = CTy->getElementType();
10709     if (getContext().getTypeSize(EltTy) > FLen)
10710       return false;
10711     Field1Ty = CGT.ConvertType(EltTy);
10712     Field1Off = CurOff;
10713     Field2Ty = Field1Ty;
10714     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10715     return true;
10716   }
10717 
10718   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10719     uint64_t ArraySize = ATy->getSize().getZExtValue();
10720     QualType EltTy = ATy->getElementType();
10721     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10722     for (uint64_t i = 0; i < ArraySize; ++i) {
10723       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10724                                                 Field1Off, Field2Ty, Field2Off);
10725       if (!Ret)
10726         return false;
10727       CurOff += EltSize;
10728     }
10729     return true;
10730   }
10731 
10732   if (const auto *RTy = Ty->getAs<RecordType>()) {
10733     // Structures with either a non-trivial destructor or a non-trivial
10734     // copy constructor are not eligible for the FP calling convention.
10735     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10736       return false;
10737     if (isEmptyRecord(getContext(), Ty, true))
10738       return true;
10739     const RecordDecl *RD = RTy->getDecl();
10740     // Unions aren't eligible unless they're empty (which is caught above).
10741     if (RD->isUnion())
10742       return false;
10743     int ZeroWidthBitFieldCount = 0;
10744     for (const FieldDecl *FD : RD->fields()) {
10745       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10746       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10747       QualType QTy = FD->getType();
10748       if (FD->isBitField()) {
10749         unsigned BitWidth = FD->getBitWidthValue(getContext());
10750         // Allow a bitfield with a type greater than XLen as long as the
10751         // bitwidth is XLen or less.
10752         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10753           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10754         if (BitWidth == 0) {
10755           ZeroWidthBitFieldCount++;
10756           continue;
10757         }
10758       }
10759 
10760       bool Ret = detectFPCCEligibleStructHelper(
10761           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10762           Field1Ty, Field1Off, Field2Ty, Field2Off);
10763       if (!Ret)
10764         return false;
10765 
10766       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10767       // or int+fp structs, but are ignored for a struct with an fp field and
10768       // any number of zero-width bitfields.
10769       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10770         return false;
10771     }
10772     return Field1Ty != nullptr;
10773   }
10774 
10775   return false;
10776 }
10777 
10778 // Determine if a struct is eligible for passing according to the floating
10779 // point calling convention (i.e., when flattened it contains a single fp
10780 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10781 // NeededArgGPRs are incremented appropriately.
10782 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10783                                             CharUnits &Field1Off,
10784                                             llvm::Type *&Field2Ty,
10785                                             CharUnits &Field2Off,
10786                                             int &NeededArgGPRs,
10787                                             int &NeededArgFPRs) const {
10788   Field1Ty = nullptr;
10789   Field2Ty = nullptr;
10790   NeededArgGPRs = 0;
10791   NeededArgFPRs = 0;
10792   bool IsCandidate = detectFPCCEligibleStructHelper(
10793       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10794   // Not really a candidate if we have a single int but no float.
10795   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10796     return false;
10797   if (!IsCandidate)
10798     return false;
10799   if (Field1Ty && Field1Ty->isFloatingPointTy())
10800     NeededArgFPRs++;
10801   else if (Field1Ty)
10802     NeededArgGPRs++;
10803   if (Field2Ty && Field2Ty->isFloatingPointTy())
10804     NeededArgFPRs++;
10805   else if (Field2Ty)
10806     NeededArgGPRs++;
10807   return true;
10808 }
10809 
10810 // Call getCoerceAndExpand for the two-element flattened struct described by
10811 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10812 // appropriate coerceToType and unpaddedCoerceToType.
10813 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10814     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10815     CharUnits Field2Off) const {
10816   SmallVector<llvm::Type *, 3> CoerceElts;
10817   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10818   if (!Field1Off.isZero())
10819     CoerceElts.push_back(llvm::ArrayType::get(
10820         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10821 
10822   CoerceElts.push_back(Field1Ty);
10823   UnpaddedCoerceElts.push_back(Field1Ty);
10824 
10825   if (!Field2Ty) {
10826     return ABIArgInfo::getCoerceAndExpand(
10827         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10828         UnpaddedCoerceElts[0]);
10829   }
10830 
10831   CharUnits Field2Align =
10832       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10833   CharUnits Field1End = Field1Off +
10834       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10835   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
10836 
10837   CharUnits Padding = CharUnits::Zero();
10838   if (Field2Off > Field2OffNoPadNoPack)
10839     Padding = Field2Off - Field2OffNoPadNoPack;
10840   else if (Field2Off != Field2Align && Field2Off > Field1End)
10841     Padding = Field2Off - Field1End;
10842 
10843   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10844 
10845   if (!Padding.isZero())
10846     CoerceElts.push_back(llvm::ArrayType::get(
10847         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10848 
10849   CoerceElts.push_back(Field2Ty);
10850   UnpaddedCoerceElts.push_back(Field2Ty);
10851 
10852   auto CoerceToType =
10853       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10854   auto UnpaddedCoerceToType =
10855       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10856 
10857   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10858 }
10859 
10860 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10861                                               int &ArgGPRsLeft,
10862                                               int &ArgFPRsLeft) const {
10863   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10864   Ty = useFirstFieldIfTransparentUnion(Ty);
10865 
10866   // Structures with either a non-trivial destructor or a non-trivial
10867   // copy constructor are always passed indirectly.
10868   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10869     if (ArgGPRsLeft)
10870       ArgGPRsLeft -= 1;
10871     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10872                                            CGCXXABI::RAA_DirectInMemory);
10873   }
10874 
10875   // Ignore empty structs/unions.
10876   if (isEmptyRecord(getContext(), Ty, true))
10877     return ABIArgInfo::getIgnore();
10878 
10879   uint64_t Size = getContext().getTypeSize(Ty);
10880 
10881   // Pass floating point values via FPRs if possible.
10882   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10883       FLen >= Size && ArgFPRsLeft) {
10884     ArgFPRsLeft--;
10885     return ABIArgInfo::getDirect();
10886   }
10887 
10888   // Complex types for the hard float ABI must be passed direct rather than
10889   // using CoerceAndExpand.
10890   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10891     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10892     if (getContext().getTypeSize(EltTy) <= FLen) {
10893       ArgFPRsLeft -= 2;
10894       return ABIArgInfo::getDirect();
10895     }
10896   }
10897 
10898   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10899     llvm::Type *Field1Ty = nullptr;
10900     llvm::Type *Field2Ty = nullptr;
10901     CharUnits Field1Off = CharUnits::Zero();
10902     CharUnits Field2Off = CharUnits::Zero();
10903     int NeededArgGPRs = 0;
10904     int NeededArgFPRs = 0;
10905     bool IsCandidate =
10906         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10907                                  NeededArgGPRs, NeededArgFPRs);
10908     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10909         NeededArgFPRs <= ArgFPRsLeft) {
10910       ArgGPRsLeft -= NeededArgGPRs;
10911       ArgFPRsLeft -= NeededArgFPRs;
10912       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10913                                                Field2Off);
10914     }
10915   }
10916 
10917   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10918   bool MustUseStack = false;
10919   // Determine the number of GPRs needed to pass the current argument
10920   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10921   // register pairs, so may consume 3 registers.
10922   int NeededArgGPRs = 1;
10923   if (!IsFixed && NeededAlign == 2 * XLen)
10924     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10925   else if (Size > XLen && Size <= 2 * XLen)
10926     NeededArgGPRs = 2;
10927 
10928   if (NeededArgGPRs > ArgGPRsLeft) {
10929     MustUseStack = true;
10930     NeededArgGPRs = ArgGPRsLeft;
10931   }
10932 
10933   ArgGPRsLeft -= NeededArgGPRs;
10934 
10935   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10936     // Treat an enum type as its underlying type.
10937     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10938       Ty = EnumTy->getDecl()->getIntegerType();
10939 
10940     // All integral types are promoted to XLen width, unless passed on the
10941     // stack.
10942     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10943       return extendType(Ty);
10944     }
10945 
10946     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10947       if (EIT->getNumBits() < XLen && !MustUseStack)
10948         return extendType(Ty);
10949       if (EIT->getNumBits() > 128 ||
10950           (!getContext().getTargetInfo().hasInt128Type() &&
10951            EIT->getNumBits() > 64))
10952         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10953     }
10954 
10955     return ABIArgInfo::getDirect();
10956   }
10957 
10958   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10959   // so coerce to integers.
10960   if (Size <= 2 * XLen) {
10961     unsigned Alignment = getContext().getTypeAlign(Ty);
10962 
10963     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10964     // required, and a 2-element XLen array if only XLen alignment is required.
10965     if (Size <= XLen) {
10966       return ABIArgInfo::getDirect(
10967           llvm::IntegerType::get(getVMContext(), XLen));
10968     } else if (Alignment == 2 * XLen) {
10969       return ABIArgInfo::getDirect(
10970           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10971     } else {
10972       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10973           llvm::IntegerType::get(getVMContext(), XLen), 2));
10974     }
10975   }
10976   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10977 }
10978 
10979 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10980   if (RetTy->isVoidType())
10981     return ABIArgInfo::getIgnore();
10982 
10983   int ArgGPRsLeft = 2;
10984   int ArgFPRsLeft = FLen ? 2 : 0;
10985 
10986   // The rules for return and argument types are the same, so defer to
10987   // classifyArgumentType.
10988   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10989                               ArgFPRsLeft);
10990 }
10991 
10992 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10993                                 QualType Ty) const {
10994   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10995 
10996   // Empty records are ignored for parameter passing purposes.
10997   if (isEmptyRecord(getContext(), Ty, true)) {
10998     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10999     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
11000     return Addr;
11001   }
11002 
11003   auto TInfo = getContext().getTypeInfoInChars(Ty);
11004 
11005   // Arguments bigger than 2*Xlen bytes are passed indirectly.
11006   bool IsIndirect = TInfo.Width > 2 * SlotSize;
11007 
11008   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
11009                           SlotSize, /*AllowHigherAlign=*/true);
11010 }
11011 
11012 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
11013   int TySize = getContext().getTypeSize(Ty);
11014   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
11015   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
11016     return ABIArgInfo::getSignExtend(Ty);
11017   return ABIArgInfo::getExtend(Ty);
11018 }
11019 
11020 namespace {
11021 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
11022 public:
11023   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
11024                          unsigned FLen)
11025       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
11026 
11027   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
11028                            CodeGen::CodeGenModule &CGM) const override {
11029     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
11030     if (!FD) return;
11031 
11032     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
11033     if (!Attr)
11034       return;
11035 
11036     const char *Kind;
11037     switch (Attr->getInterrupt()) {
11038     case RISCVInterruptAttr::user: Kind = "user"; break;
11039     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
11040     case RISCVInterruptAttr::machine: Kind = "machine"; break;
11041     }
11042 
11043     auto *Fn = cast<llvm::Function>(GV);
11044 
11045     Fn->addFnAttr("interrupt", Kind);
11046   }
11047 };
11048 } // namespace
11049 
11050 //===----------------------------------------------------------------------===//
11051 // VE ABI Implementation.
11052 //
11053 namespace {
11054 class VEABIInfo : public DefaultABIInfo {
11055 public:
11056   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
11057 
11058 private:
11059   ABIArgInfo classifyReturnType(QualType RetTy) const;
11060   ABIArgInfo classifyArgumentType(QualType RetTy) const;
11061   void computeInfo(CGFunctionInfo &FI) const override;
11062 };
11063 } // end anonymous namespace
11064 
11065 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
11066   if (Ty->isAnyComplexType())
11067     return ABIArgInfo::getDirect();
11068   uint64_t Size = getContext().getTypeSize(Ty);
11069   if (Size < 64 && Ty->isIntegerType())
11070     return ABIArgInfo::getExtend(Ty);
11071   return DefaultABIInfo::classifyReturnType(Ty);
11072 }
11073 
11074 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
11075   if (Ty->isAnyComplexType())
11076     return ABIArgInfo::getDirect();
11077   uint64_t Size = getContext().getTypeSize(Ty);
11078   if (Size < 64 && Ty->isIntegerType())
11079     return ABIArgInfo::getExtend(Ty);
11080   return DefaultABIInfo::classifyArgumentType(Ty);
11081 }
11082 
11083 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
11084   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
11085   for (auto &Arg : FI.arguments())
11086     Arg.info = classifyArgumentType(Arg.type);
11087 }
11088 
11089 namespace {
11090 class VETargetCodeGenInfo : public TargetCodeGenInfo {
11091 public:
11092   VETargetCodeGenInfo(CodeGenTypes &CGT)
11093       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
11094   // VE ABI requires the arguments of variadic and prototype-less functions
11095   // are passed in both registers and memory.
11096   bool isNoProtoCallVariadic(const CallArgList &args,
11097                              const FunctionNoProtoType *fnType) const override {
11098     return true;
11099   }
11100 };
11101 } // end anonymous namespace
11102 
11103 //===----------------------------------------------------------------------===//
11104 // Driver code
11105 //===----------------------------------------------------------------------===//
11106 
11107 bool CodeGenModule::supportsCOMDAT() const {
11108   return getTriple().supportsCOMDAT();
11109 }
11110 
11111 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
11112   if (TheTargetCodeGenInfo)
11113     return *TheTargetCodeGenInfo;
11114 
11115   // Helper to set the unique_ptr while still keeping the return value.
11116   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
11117     this->TheTargetCodeGenInfo.reset(P);
11118     return *P;
11119   };
11120 
11121   const llvm::Triple &Triple = getTarget().getTriple();
11122   switch (Triple.getArch()) {
11123   default:
11124     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
11125 
11126   case llvm::Triple::le32:
11127     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11128   case llvm::Triple::m68k:
11129     return SetCGInfo(new M68kTargetCodeGenInfo(Types));
11130   case llvm::Triple::mips:
11131   case llvm::Triple::mipsel:
11132     if (Triple.getOS() == llvm::Triple::NaCl)
11133       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11134     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
11135 
11136   case llvm::Triple::mips64:
11137   case llvm::Triple::mips64el:
11138     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
11139 
11140   case llvm::Triple::avr:
11141     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
11142 
11143   case llvm::Triple::aarch64:
11144   case llvm::Triple::aarch64_32:
11145   case llvm::Triple::aarch64_be: {
11146     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
11147     if (getTarget().getABI() == "darwinpcs")
11148       Kind = AArch64ABIInfo::DarwinPCS;
11149     else if (Triple.isOSWindows())
11150       return SetCGInfo(
11151           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
11152 
11153     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
11154   }
11155 
11156   case llvm::Triple::wasm32:
11157   case llvm::Triple::wasm64: {
11158     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
11159     if (getTarget().getABI() == "experimental-mv")
11160       Kind = WebAssemblyABIInfo::ExperimentalMV;
11161     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
11162   }
11163 
11164   case llvm::Triple::arm:
11165   case llvm::Triple::armeb:
11166   case llvm::Triple::thumb:
11167   case llvm::Triple::thumbeb: {
11168     if (Triple.getOS() == llvm::Triple::Win32) {
11169       return SetCGInfo(
11170           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
11171     }
11172 
11173     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
11174     StringRef ABIStr = getTarget().getABI();
11175     if (ABIStr == "apcs-gnu")
11176       Kind = ARMABIInfo::APCS;
11177     else if (ABIStr == "aapcs16")
11178       Kind = ARMABIInfo::AAPCS16_VFP;
11179     else if (CodeGenOpts.FloatABI == "hard" ||
11180              (CodeGenOpts.FloatABI != "soft" &&
11181               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
11182                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
11183                Triple.getEnvironment() == llvm::Triple::EABIHF)))
11184       Kind = ARMABIInfo::AAPCS_VFP;
11185 
11186     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
11187   }
11188 
11189   case llvm::Triple::ppc: {
11190     if (Triple.isOSAIX())
11191       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
11192 
11193     bool IsSoftFloat =
11194         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
11195     bool RetSmallStructInRegABI =
11196         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11197     return SetCGInfo(
11198         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11199   }
11200   case llvm::Triple::ppcle: {
11201     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11202     bool RetSmallStructInRegABI =
11203         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11204     return SetCGInfo(
11205         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11206   }
11207   case llvm::Triple::ppc64:
11208     if (Triple.isOSAIX())
11209       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
11210 
11211     if (Triple.isOSBinFormatELF()) {
11212       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
11213       if (getTarget().getABI() == "elfv2")
11214         Kind = PPC64_SVR4_ABIInfo::ELFv2;
11215       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11216 
11217       return SetCGInfo(
11218           new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11219     }
11220     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
11221   case llvm::Triple::ppc64le: {
11222     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
11223     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
11224     if (getTarget().getABI() == "elfv1")
11225       Kind = PPC64_SVR4_ABIInfo::ELFv1;
11226     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11227 
11228     return SetCGInfo(
11229         new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11230   }
11231 
11232   case llvm::Triple::nvptx:
11233   case llvm::Triple::nvptx64:
11234     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
11235 
11236   case llvm::Triple::msp430:
11237     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
11238 
11239   case llvm::Triple::riscv32:
11240   case llvm::Triple::riscv64: {
11241     StringRef ABIStr = getTarget().getABI();
11242     unsigned XLen = getTarget().getPointerWidth(0);
11243     unsigned ABIFLen = 0;
11244     if (ABIStr.endswith("f"))
11245       ABIFLen = 32;
11246     else if (ABIStr.endswith("d"))
11247       ABIFLen = 64;
11248     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11249   }
11250 
11251   case llvm::Triple::systemz: {
11252     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11253     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11254     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11255   }
11256 
11257   case llvm::Triple::tce:
11258   case llvm::Triple::tcele:
11259     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11260 
11261   case llvm::Triple::x86: {
11262     bool IsDarwinVectorABI = Triple.isOSDarwin();
11263     bool RetSmallStructInRegABI =
11264         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11265     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11266 
11267     if (Triple.getOS() == llvm::Triple::Win32) {
11268       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11269           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11270           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11271     } else {
11272       return SetCGInfo(new X86_32TargetCodeGenInfo(
11273           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11274           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11275           CodeGenOpts.FloatABI == "soft"));
11276     }
11277   }
11278 
11279   case llvm::Triple::x86_64: {
11280     StringRef ABI = getTarget().getABI();
11281     X86AVXABILevel AVXLevel =
11282         (ABI == "avx512"
11283              ? X86AVXABILevel::AVX512
11284              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11285 
11286     switch (Triple.getOS()) {
11287     case llvm::Triple::Win32:
11288       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11289     default:
11290       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11291     }
11292   }
11293   case llvm::Triple::hexagon:
11294     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11295   case llvm::Triple::lanai:
11296     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11297   case llvm::Triple::r600:
11298     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11299   case llvm::Triple::amdgcn:
11300     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11301   case llvm::Triple::sparc:
11302     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11303   case llvm::Triple::sparcv9:
11304     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11305   case llvm::Triple::xcore:
11306     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11307   case llvm::Triple::arc:
11308     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11309   case llvm::Triple::spir:
11310   case llvm::Triple::spir64:
11311   case llvm::Triple::spirv32:
11312   case llvm::Triple::spirv64:
11313     return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types));
11314   case llvm::Triple::ve:
11315     return SetCGInfo(new VETargetCodeGenInfo(Types));
11316   }
11317 }
11318 
11319 /// Create an OpenCL kernel for an enqueued block.
11320 ///
11321 /// The kernel has the same function type as the block invoke function. Its
11322 /// name is the name of the block invoke function postfixed with "_kernel".
11323 /// It simply calls the block invoke function then returns.
11324 llvm::Function *
11325 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11326                                              llvm::Function *Invoke,
11327                                              llvm::Value *BlockLiteral) const {
11328   auto *InvokeFT = Invoke->getFunctionType();
11329   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11330   for (auto &P : InvokeFT->params())
11331     ArgTys.push_back(P);
11332   auto &C = CGF.getLLVMContext();
11333   std::string Name = Invoke->getName().str() + "_kernel";
11334   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11335   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11336                                    &CGF.CGM.getModule());
11337   auto IP = CGF.Builder.saveIP();
11338   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11339   auto &Builder = CGF.Builder;
11340   Builder.SetInsertPoint(BB);
11341   llvm::SmallVector<llvm::Value *, 2> Args;
11342   for (auto &A : F->args())
11343     Args.push_back(&A);
11344   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11345   call->setCallingConv(Invoke->getCallingConv());
11346   Builder.CreateRetVoid();
11347   Builder.restoreIP(IP);
11348   return F;
11349 }
11350 
11351 /// Create an OpenCL kernel for an enqueued block.
11352 ///
11353 /// The type of the first argument (the block literal) is the struct type
11354 /// of the block literal instead of a pointer type. The first argument
11355 /// (block literal) is passed directly by value to the kernel. The kernel
11356 /// allocates the same type of struct on stack and stores the block literal
11357 /// to it and passes its pointer to the block invoke function. The kernel
11358 /// has "enqueued-block" function attribute and kernel argument metadata.
11359 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11360     CodeGenFunction &CGF, llvm::Function *Invoke,
11361     llvm::Value *BlockLiteral) const {
11362   auto &Builder = CGF.Builder;
11363   auto &C = CGF.getLLVMContext();
11364 
11365   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11366   auto *InvokeFT = Invoke->getFunctionType();
11367   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11368   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11369   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11370   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11371   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11372   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11373   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11374 
11375   ArgTys.push_back(BlockTy);
11376   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11377   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11378   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11379   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11380   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11381   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11382   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11383     ArgTys.push_back(InvokeFT->getParamType(I));
11384     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11385     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11386     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11387     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11388     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11389     ArgNames.push_back(
11390         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11391   }
11392   std::string Name = Invoke->getName().str() + "_kernel";
11393   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11394   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11395                                    &CGF.CGM.getModule());
11396   F->addFnAttr("enqueued-block");
11397   auto IP = CGF.Builder.saveIP();
11398   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11399   Builder.SetInsertPoint(BB);
11400   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11401   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11402   BlockPtr->setAlignment(BlockAlign);
11403   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11404   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11405   llvm::SmallVector<llvm::Value *, 2> Args;
11406   Args.push_back(Cast);
11407   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11408     Args.push_back(I);
11409   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11410   call->setCallingConv(Invoke->getCallingConv());
11411   Builder.CreateRetVoid();
11412   Builder.restoreIP(IP);
11413 
11414   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11415   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11416   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11417   F->setMetadata("kernel_arg_base_type",
11418                  llvm::MDNode::get(C, ArgBaseTypeNames));
11419   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11420   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11421     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11422 
11423   return F;
11424 }
11425