xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/SwiftCallingConv.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // Implementation of the abstract lowering for the Swift calling convention.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "clang/CodeGen/SwiftCallingConv.h"
14fcaf7f86SDimitry Andric #include "ABIInfo.h"
150b57cec5SDimitry Andric #include "CodeGenModule.h"
160b57cec5SDimitry Andric #include "TargetInfo.h"
17fcaf7f86SDimitry Andric #include "clang/Basic/TargetInfo.h"
18bdd1243dSDimitry Andric #include <optional>
190b57cec5SDimitry Andric 
200b57cec5SDimitry Andric using namespace clang;
210b57cec5SDimitry Andric using namespace CodeGen;
220b57cec5SDimitry Andric using namespace swiftcall;
230b57cec5SDimitry Andric 
240b57cec5SDimitry Andric static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
25bdd1243dSDimitry Andric   return CGM.getTargetCodeGenInfo().getSwiftABIInfo();
260b57cec5SDimitry Andric }
270b57cec5SDimitry Andric 
280b57cec5SDimitry Andric static bool isPowerOf2(unsigned n) {
290b57cec5SDimitry Andric   return n == (n & -n);
300b57cec5SDimitry Andric }
310b57cec5SDimitry Andric 
320b57cec5SDimitry Andric /// Given two types with the same size, try to find a common type.
330b57cec5SDimitry Andric static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
340b57cec5SDimitry Andric   assert(first != second);
350b57cec5SDimitry Andric 
360b57cec5SDimitry Andric   // Allow pointers to merge with integers, but prefer the integer type.
370b57cec5SDimitry Andric   if (first->isIntegerTy()) {
380b57cec5SDimitry Andric     if (second->isPointerTy()) return first;
390b57cec5SDimitry Andric   } else if (first->isPointerTy()) {
400b57cec5SDimitry Andric     if (second->isIntegerTy()) return second;
410b57cec5SDimitry Andric     if (second->isPointerTy()) return first;
420b57cec5SDimitry Andric 
430b57cec5SDimitry Andric   // Allow two vectors to be merged (given that they have the same size).
440b57cec5SDimitry Andric   // This assumes that we never have two different vector register sets.
450b57cec5SDimitry Andric   } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
460b57cec5SDimitry Andric     if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
470b57cec5SDimitry Andric       if (auto commonTy = getCommonType(firstVecTy->getElementType(),
480b57cec5SDimitry Andric                                         secondVecTy->getElementType())) {
490b57cec5SDimitry Andric         return (commonTy == firstVecTy->getElementType() ? first : second);
500b57cec5SDimitry Andric       }
510b57cec5SDimitry Andric     }
520b57cec5SDimitry Andric   }
530b57cec5SDimitry Andric 
540b57cec5SDimitry Andric   return nullptr;
550b57cec5SDimitry Andric }
560b57cec5SDimitry Andric 
570b57cec5SDimitry Andric static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
580b57cec5SDimitry Andric   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
590b57cec5SDimitry Andric }
600b57cec5SDimitry Andric 
610b57cec5SDimitry Andric static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
620b57cec5SDimitry Andric   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
630b57cec5SDimitry Andric }
640b57cec5SDimitry Andric 
650b57cec5SDimitry Andric void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
660b57cec5SDimitry Andric   // Deal with various aggregate types as special cases:
670b57cec5SDimitry Andric 
680b57cec5SDimitry Andric   // Record types.
690b57cec5SDimitry Andric   if (auto recType = type->getAs<RecordType>()) {
700b57cec5SDimitry Andric     addTypedData(recType->getDecl(), begin);
710b57cec5SDimitry Andric 
720b57cec5SDimitry Andric   // Array types.
730b57cec5SDimitry Andric   } else if (type->isArrayType()) {
740b57cec5SDimitry Andric     // Incomplete array types (flexible array members?) don't provide
750b57cec5SDimitry Andric     // data to lay out, and the other cases shouldn't be possible.
760b57cec5SDimitry Andric     auto arrayType = CGM.getContext().getAsConstantArrayType(type);
770b57cec5SDimitry Andric     if (!arrayType) return;
780b57cec5SDimitry Andric 
790b57cec5SDimitry Andric     QualType eltType = arrayType->getElementType();
800b57cec5SDimitry Andric     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
81*0fca6ea1SDimitry Andric     for (uint64_t i = 0, e = arrayType->getZExtSize(); i != e; ++i) {
820b57cec5SDimitry Andric       addTypedData(eltType, begin + i * eltSize);
830b57cec5SDimitry Andric     }
840b57cec5SDimitry Andric 
850b57cec5SDimitry Andric   // Complex types.
860b57cec5SDimitry Andric   } else if (auto complexType = type->getAs<ComplexType>()) {
870b57cec5SDimitry Andric     auto eltType = complexType->getElementType();
880b57cec5SDimitry Andric     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
890b57cec5SDimitry Andric     auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
900b57cec5SDimitry Andric     addTypedData(eltLLVMType, begin, begin + eltSize);
910b57cec5SDimitry Andric     addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
920b57cec5SDimitry Andric 
930b57cec5SDimitry Andric   // Member pointer types.
940b57cec5SDimitry Andric   } else if (type->getAs<MemberPointerType>()) {
950b57cec5SDimitry Andric     // Just add it all as opaque.
960b57cec5SDimitry Andric     addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
970b57cec5SDimitry Andric 
98e8d8bef9SDimitry Andric     // Atomic types.
99e8d8bef9SDimitry Andric   } else if (const auto *atomicType = type->getAs<AtomicType>()) {
100e8d8bef9SDimitry Andric     auto valueType = atomicType->getValueType();
101e8d8bef9SDimitry Andric     auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType);
102e8d8bef9SDimitry Andric     auto valueSize = CGM.getContext().getTypeSizeInChars(valueType);
103e8d8bef9SDimitry Andric 
104e8d8bef9SDimitry Andric     addTypedData(atomicType->getValueType(), begin);
105e8d8bef9SDimitry Andric 
106e8d8bef9SDimitry Andric     // Add atomic padding.
107e8d8bef9SDimitry Andric     auto atomicPadding = atomicSize - valueSize;
108e8d8bef9SDimitry Andric     if (atomicPadding > CharUnits::Zero())
109e8d8bef9SDimitry Andric       addOpaqueData(begin + valueSize, begin + atomicSize);
110e8d8bef9SDimitry Andric 
1110b57cec5SDimitry Andric     // Everything else is scalar and should not convert as an LLVM aggregate.
1120b57cec5SDimitry Andric   } else {
1130b57cec5SDimitry Andric     // We intentionally convert as !ForMem because we want to preserve
1140b57cec5SDimitry Andric     // that a type was an i1.
115e8d8bef9SDimitry Andric     auto *llvmType = CGM.getTypes().ConvertType(type);
1160b57cec5SDimitry Andric     addTypedData(llvmType, begin);
1170b57cec5SDimitry Andric   }
1180b57cec5SDimitry Andric }
1190b57cec5SDimitry Andric 
1200b57cec5SDimitry Andric void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
1210b57cec5SDimitry Andric   addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
1220b57cec5SDimitry Andric }
1230b57cec5SDimitry Andric 
1240b57cec5SDimitry Andric void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
1250b57cec5SDimitry Andric                                     const ASTRecordLayout &layout) {
1260b57cec5SDimitry Andric   // Unions are a special case.
1270b57cec5SDimitry Andric   if (record->isUnion()) {
128bdd1243dSDimitry Andric     for (auto *field : record->fields()) {
1290b57cec5SDimitry Andric       if (field->isBitField()) {
1300b57cec5SDimitry Andric         addBitFieldData(field, begin, 0);
1310b57cec5SDimitry Andric       } else {
1320b57cec5SDimitry Andric         addTypedData(field->getType(), begin);
1330b57cec5SDimitry Andric       }
1340b57cec5SDimitry Andric     }
1350b57cec5SDimitry Andric     return;
1360b57cec5SDimitry Andric   }
1370b57cec5SDimitry Andric 
1380b57cec5SDimitry Andric   // Note that correctness does not rely on us adding things in
1390b57cec5SDimitry Andric   // their actual order of layout; it's just somewhat more efficient
1400b57cec5SDimitry Andric   // for the builder.
1410b57cec5SDimitry Andric 
1420b57cec5SDimitry Andric   // With that in mind, add "early" C++ data.
1430b57cec5SDimitry Andric   auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
1440b57cec5SDimitry Andric   if (cxxRecord) {
1450b57cec5SDimitry Andric     //   - a v-table pointer, if the class adds its own
1460b57cec5SDimitry Andric     if (layout.hasOwnVFPtr()) {
1470b57cec5SDimitry Andric       addTypedData(CGM.Int8PtrTy, begin);
1480b57cec5SDimitry Andric     }
1490b57cec5SDimitry Andric 
1500b57cec5SDimitry Andric     //   - non-virtual bases
1510b57cec5SDimitry Andric     for (auto &baseSpecifier : cxxRecord->bases()) {
1520b57cec5SDimitry Andric       if (baseSpecifier.isVirtual()) continue;
1530b57cec5SDimitry Andric 
1540b57cec5SDimitry Andric       auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
1550b57cec5SDimitry Andric       addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
1560b57cec5SDimitry Andric     }
1570b57cec5SDimitry Andric 
1580b57cec5SDimitry Andric     //   - a vbptr if the class adds its own
1590b57cec5SDimitry Andric     if (layout.hasOwnVBPtr()) {
1600b57cec5SDimitry Andric       addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
1610b57cec5SDimitry Andric     }
1620b57cec5SDimitry Andric   }
1630b57cec5SDimitry Andric 
1640b57cec5SDimitry Andric   // Add fields.
165bdd1243dSDimitry Andric   for (auto *field : record->fields()) {
1660b57cec5SDimitry Andric     auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
1670b57cec5SDimitry Andric     if (field->isBitField()) {
1680b57cec5SDimitry Andric       addBitFieldData(field, begin, fieldOffsetInBits);
1690b57cec5SDimitry Andric     } else {
1700b57cec5SDimitry Andric       addTypedData(field->getType(),
1710b57cec5SDimitry Andric               begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
1720b57cec5SDimitry Andric     }
1730b57cec5SDimitry Andric   }
1740b57cec5SDimitry Andric 
1750b57cec5SDimitry Andric   // Add "late" C++ data:
1760b57cec5SDimitry Andric   if (cxxRecord) {
1770b57cec5SDimitry Andric     //   - virtual bases
1780b57cec5SDimitry Andric     for (auto &vbaseSpecifier : cxxRecord->vbases()) {
1790b57cec5SDimitry Andric       auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
1800b57cec5SDimitry Andric       addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
1810b57cec5SDimitry Andric     }
1820b57cec5SDimitry Andric   }
1830b57cec5SDimitry Andric }
1840b57cec5SDimitry Andric 
1850b57cec5SDimitry Andric void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
1860b57cec5SDimitry Andric                                        CharUnits recordBegin,
1870b57cec5SDimitry Andric                                        uint64_t bitfieldBitBegin) {
1880b57cec5SDimitry Andric   assert(bitfield->isBitField());
1890b57cec5SDimitry Andric   auto &ctx = CGM.getContext();
1900b57cec5SDimitry Andric   auto width = bitfield->getBitWidthValue(ctx);
1910b57cec5SDimitry Andric 
1920b57cec5SDimitry Andric   // We can ignore zero-width bit-fields.
1930b57cec5SDimitry Andric   if (width == 0) return;
1940b57cec5SDimitry Andric 
1950b57cec5SDimitry Andric   // toCharUnitsFromBits rounds down.
1960b57cec5SDimitry Andric   CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
1970b57cec5SDimitry Andric 
1980b57cec5SDimitry Andric   // Find the offset of the last byte that is partially occupied by the
1990b57cec5SDimitry Andric   // bit-field; since we otherwise expect exclusive ends, the end is the
2000b57cec5SDimitry Andric   // next byte.
2010b57cec5SDimitry Andric   uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
2020b57cec5SDimitry Andric   CharUnits bitfieldByteEnd =
2030b57cec5SDimitry Andric     ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
2040b57cec5SDimitry Andric   addOpaqueData(recordBegin + bitfieldByteBegin,
2050b57cec5SDimitry Andric                 recordBegin + bitfieldByteEnd);
2060b57cec5SDimitry Andric }
2070b57cec5SDimitry Andric 
2080b57cec5SDimitry Andric void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
2090b57cec5SDimitry Andric   assert(type && "didn't provide type for typed data");
2100b57cec5SDimitry Andric   addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
2110b57cec5SDimitry Andric }
2120b57cec5SDimitry Andric 
2130b57cec5SDimitry Andric void SwiftAggLowering::addTypedData(llvm::Type *type,
2140b57cec5SDimitry Andric                                     CharUnits begin, CharUnits end) {
2150b57cec5SDimitry Andric   assert(type && "didn't provide type for typed data");
2160b57cec5SDimitry Andric   assert(getTypeStoreSize(CGM, type) == end - begin);
2170b57cec5SDimitry Andric 
2180b57cec5SDimitry Andric   // Legalize vector types.
2190b57cec5SDimitry Andric   if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
2200b57cec5SDimitry Andric     SmallVector<llvm::Type*, 4> componentTys;
2210b57cec5SDimitry Andric     legalizeVectorType(CGM, end - begin, vecTy, componentTys);
2220b57cec5SDimitry Andric     assert(componentTys.size() >= 1);
2230b57cec5SDimitry Andric 
2240b57cec5SDimitry Andric     // Walk the initial components.
2250b57cec5SDimitry Andric     for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
2260b57cec5SDimitry Andric       llvm::Type *componentTy = componentTys[i];
2270b57cec5SDimitry Andric       auto componentSize = getTypeStoreSize(CGM, componentTy);
2280b57cec5SDimitry Andric       assert(componentSize < end - begin);
2290b57cec5SDimitry Andric       addLegalTypedData(componentTy, begin, begin + componentSize);
2300b57cec5SDimitry Andric       begin += componentSize;
2310b57cec5SDimitry Andric     }
2320b57cec5SDimitry Andric 
2330b57cec5SDimitry Andric     return addLegalTypedData(componentTys.back(), begin, end);
2340b57cec5SDimitry Andric   }
2350b57cec5SDimitry Andric 
2360b57cec5SDimitry Andric   // Legalize integer types.
2370b57cec5SDimitry Andric   if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
2380b57cec5SDimitry Andric     if (!isLegalIntegerType(CGM, intTy))
2390b57cec5SDimitry Andric       return addOpaqueData(begin, end);
2400b57cec5SDimitry Andric   }
2410b57cec5SDimitry Andric 
2420b57cec5SDimitry Andric   // All other types should be legal.
2430b57cec5SDimitry Andric   return addLegalTypedData(type, begin, end);
2440b57cec5SDimitry Andric }
2450b57cec5SDimitry Andric 
2460b57cec5SDimitry Andric void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
2470b57cec5SDimitry Andric                                          CharUnits begin, CharUnits end) {
2480b57cec5SDimitry Andric   // Require the type to be naturally aligned.
2490b57cec5SDimitry Andric   if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
2500b57cec5SDimitry Andric 
2510b57cec5SDimitry Andric     // Try splitting vector types.
2520b57cec5SDimitry Andric     if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
2530b57cec5SDimitry Andric       auto split = splitLegalVectorType(CGM, end - begin, vecTy);
2540b57cec5SDimitry Andric       auto eltTy = split.first;
2550b57cec5SDimitry Andric       auto numElts = split.second;
2560b57cec5SDimitry Andric 
2570b57cec5SDimitry Andric       auto eltSize = (end - begin) / numElts;
2580b57cec5SDimitry Andric       assert(eltSize == getTypeStoreSize(CGM, eltTy));
2590b57cec5SDimitry Andric       for (size_t i = 0, e = numElts; i != e; ++i) {
2600b57cec5SDimitry Andric         addLegalTypedData(eltTy, begin, begin + eltSize);
2610b57cec5SDimitry Andric         begin += eltSize;
2620b57cec5SDimitry Andric       }
2630b57cec5SDimitry Andric       assert(begin == end);
2640b57cec5SDimitry Andric       return;
2650b57cec5SDimitry Andric     }
2660b57cec5SDimitry Andric 
2670b57cec5SDimitry Andric     return addOpaqueData(begin, end);
2680b57cec5SDimitry Andric   }
2690b57cec5SDimitry Andric 
2700b57cec5SDimitry Andric   addEntry(type, begin, end);
2710b57cec5SDimitry Andric }
2720b57cec5SDimitry Andric 
2730b57cec5SDimitry Andric void SwiftAggLowering::addEntry(llvm::Type *type,
2740b57cec5SDimitry Andric                                 CharUnits begin, CharUnits end) {
2750b57cec5SDimitry Andric   assert((!type ||
2760b57cec5SDimitry Andric           (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
2770b57cec5SDimitry Andric          "cannot add aggregate-typed data");
2780b57cec5SDimitry Andric   assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
2790b57cec5SDimitry Andric 
2800b57cec5SDimitry Andric   // Fast path: we can just add entries to the end.
2810b57cec5SDimitry Andric   if (Entries.empty() || Entries.back().End <= begin) {
2820b57cec5SDimitry Andric     Entries.push_back({begin, end, type});
2830b57cec5SDimitry Andric     return;
2840b57cec5SDimitry Andric   }
2850b57cec5SDimitry Andric 
2860b57cec5SDimitry Andric   // Find the first existing entry that ends after the start of the new data.
2870b57cec5SDimitry Andric   // TODO: do a binary search if Entries is big enough for it to matter.
2880b57cec5SDimitry Andric   size_t index = Entries.size() - 1;
2890b57cec5SDimitry Andric   while (index != 0) {
2900b57cec5SDimitry Andric     if (Entries[index - 1].End <= begin) break;
2910b57cec5SDimitry Andric     --index;
2920b57cec5SDimitry Andric   }
2930b57cec5SDimitry Andric 
2940b57cec5SDimitry Andric   // The entry ends after the start of the new data.
2950b57cec5SDimitry Andric   // If the entry starts after the end of the new data, there's no conflict.
2960b57cec5SDimitry Andric   if (Entries[index].Begin >= end) {
2970b57cec5SDimitry Andric     // This insertion is potentially O(n), but the way we generally build
2980b57cec5SDimitry Andric     // these layouts makes that unlikely to matter: we'd need a union of
2990b57cec5SDimitry Andric     // several very large types.
3000b57cec5SDimitry Andric     Entries.insert(Entries.begin() + index, {begin, end, type});
3010b57cec5SDimitry Andric     return;
3020b57cec5SDimitry Andric   }
3030b57cec5SDimitry Andric 
3040b57cec5SDimitry Andric   // Otherwise, the ranges overlap.  The new range might also overlap
3050b57cec5SDimitry Andric   // with later ranges.
3060b57cec5SDimitry Andric restartAfterSplit:
3070b57cec5SDimitry Andric 
3080b57cec5SDimitry Andric   // Simplest case: an exact overlap.
3090b57cec5SDimitry Andric   if (Entries[index].Begin == begin && Entries[index].End == end) {
3100b57cec5SDimitry Andric     // If the types match exactly, great.
3110b57cec5SDimitry Andric     if (Entries[index].Type == type) return;
3120b57cec5SDimitry Andric 
3130b57cec5SDimitry Andric     // If either type is opaque, make the entry opaque and return.
3140b57cec5SDimitry Andric     if (Entries[index].Type == nullptr) {
3150b57cec5SDimitry Andric       return;
3160b57cec5SDimitry Andric     } else if (type == nullptr) {
3170b57cec5SDimitry Andric       Entries[index].Type = nullptr;
3180b57cec5SDimitry Andric       return;
3190b57cec5SDimitry Andric     }
3200b57cec5SDimitry Andric 
3210b57cec5SDimitry Andric     // If they disagree in an ABI-agnostic way, just resolve the conflict
3220b57cec5SDimitry Andric     // arbitrarily.
3230b57cec5SDimitry Andric     if (auto entryType = getCommonType(Entries[index].Type, type)) {
3240b57cec5SDimitry Andric       Entries[index].Type = entryType;
3250b57cec5SDimitry Andric       return;
3260b57cec5SDimitry Andric     }
3270b57cec5SDimitry Andric 
3280b57cec5SDimitry Andric     // Otherwise, make the entry opaque.
3290b57cec5SDimitry Andric     Entries[index].Type = nullptr;
3300b57cec5SDimitry Andric     return;
3310b57cec5SDimitry Andric   }
3320b57cec5SDimitry Andric 
3330b57cec5SDimitry Andric   // Okay, we have an overlapping conflict of some sort.
3340b57cec5SDimitry Andric 
3350b57cec5SDimitry Andric   // If we have a vector type, split it.
3360b57cec5SDimitry Andric   if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
3370b57cec5SDimitry Andric     auto eltTy = vecTy->getElementType();
338e8d8bef9SDimitry Andric     CharUnits eltSize =
339e8d8bef9SDimitry Andric         (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements();
3400b57cec5SDimitry Andric     assert(eltSize == getTypeStoreSize(CGM, eltTy));
341e8d8bef9SDimitry Andric     for (unsigned i = 0,
342e8d8bef9SDimitry Andric                   e = cast<llvm::FixedVectorType>(vecTy)->getNumElements();
343e8d8bef9SDimitry Andric          i != e; ++i) {
3440b57cec5SDimitry Andric       addEntry(eltTy, begin, begin + eltSize);
3450b57cec5SDimitry Andric       begin += eltSize;
3460b57cec5SDimitry Andric     }
3470b57cec5SDimitry Andric     assert(begin == end);
3480b57cec5SDimitry Andric     return;
3490b57cec5SDimitry Andric   }
3500b57cec5SDimitry Andric 
3510b57cec5SDimitry Andric   // If the entry is a vector type, split it and try again.
3520b57cec5SDimitry Andric   if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
3530b57cec5SDimitry Andric     splitVectorEntry(index);
3540b57cec5SDimitry Andric     goto restartAfterSplit;
3550b57cec5SDimitry Andric   }
3560b57cec5SDimitry Andric 
3570b57cec5SDimitry Andric   // Okay, we have no choice but to make the existing entry opaque.
3580b57cec5SDimitry Andric 
3590b57cec5SDimitry Andric   Entries[index].Type = nullptr;
3600b57cec5SDimitry Andric 
3610b57cec5SDimitry Andric   // Stretch the start of the entry to the beginning of the range.
3620b57cec5SDimitry Andric   if (begin < Entries[index].Begin) {
3630b57cec5SDimitry Andric     Entries[index].Begin = begin;
3640b57cec5SDimitry Andric     assert(index == 0 || begin >= Entries[index - 1].End);
3650b57cec5SDimitry Andric   }
3660b57cec5SDimitry Andric 
3670b57cec5SDimitry Andric   // Stretch the end of the entry to the end of the range; but if we run
3680b57cec5SDimitry Andric   // into the start of the next entry, just leave the range there and repeat.
3690b57cec5SDimitry Andric   while (end > Entries[index].End) {
3700b57cec5SDimitry Andric     assert(Entries[index].Type == nullptr);
3710b57cec5SDimitry Andric 
3720b57cec5SDimitry Andric     // If the range doesn't overlap the next entry, we're done.
3730b57cec5SDimitry Andric     if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
3740b57cec5SDimitry Andric       Entries[index].End = end;
3750b57cec5SDimitry Andric       break;
3760b57cec5SDimitry Andric     }
3770b57cec5SDimitry Andric 
3780b57cec5SDimitry Andric     // Otherwise, stretch to the start of the next entry.
3790b57cec5SDimitry Andric     Entries[index].End = Entries[index + 1].Begin;
3800b57cec5SDimitry Andric 
3810b57cec5SDimitry Andric     // Continue with the next entry.
3820b57cec5SDimitry Andric     index++;
3830b57cec5SDimitry Andric 
3840b57cec5SDimitry Andric     // This entry needs to be made opaque if it is not already.
3850b57cec5SDimitry Andric     if (Entries[index].Type == nullptr)
3860b57cec5SDimitry Andric       continue;
3870b57cec5SDimitry Andric 
3880b57cec5SDimitry Andric     // Split vector entries unless we completely subsume them.
3890b57cec5SDimitry Andric     if (Entries[index].Type->isVectorTy() &&
3900b57cec5SDimitry Andric         end < Entries[index].End) {
3910b57cec5SDimitry Andric       splitVectorEntry(index);
3920b57cec5SDimitry Andric     }
3930b57cec5SDimitry Andric 
3940b57cec5SDimitry Andric     // Make the entry opaque.
3950b57cec5SDimitry Andric     Entries[index].Type = nullptr;
3960b57cec5SDimitry Andric   }
3970b57cec5SDimitry Andric }
3980b57cec5SDimitry Andric 
3990b57cec5SDimitry Andric /// Replace the entry of vector type at offset 'index' with a sequence
4000b57cec5SDimitry Andric /// of its component vectors.
4010b57cec5SDimitry Andric void SwiftAggLowering::splitVectorEntry(unsigned index) {
4020b57cec5SDimitry Andric   auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
4030b57cec5SDimitry Andric   auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
4040b57cec5SDimitry Andric 
4050b57cec5SDimitry Andric   auto eltTy = split.first;
4060b57cec5SDimitry Andric   CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
4070b57cec5SDimitry Andric   auto numElts = split.second;
4080b57cec5SDimitry Andric   Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
4090b57cec5SDimitry Andric 
4100b57cec5SDimitry Andric   CharUnits begin = Entries[index].Begin;
4110b57cec5SDimitry Andric   for (unsigned i = 0; i != numElts; ++i) {
4125f757f3fSDimitry Andric     unsigned idx = index + i;
4135f757f3fSDimitry Andric     Entries[idx].Type = eltTy;
4145f757f3fSDimitry Andric     Entries[idx].Begin = begin;
4155f757f3fSDimitry Andric     Entries[idx].End = begin + eltSize;
4160b57cec5SDimitry Andric     begin += eltSize;
4170b57cec5SDimitry Andric   }
4180b57cec5SDimitry Andric }
4190b57cec5SDimitry Andric 
4200b57cec5SDimitry Andric /// Given a power-of-two unit size, return the offset of the aligned unit
4210b57cec5SDimitry Andric /// of that size which contains the given offset.
4220b57cec5SDimitry Andric ///
4230b57cec5SDimitry Andric /// In other words, round down to the nearest multiple of the unit size.
4240b57cec5SDimitry Andric static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
4250b57cec5SDimitry Andric   assert(isPowerOf2(unitSize.getQuantity()));
4260b57cec5SDimitry Andric   auto unitMask = ~(unitSize.getQuantity() - 1);
4270b57cec5SDimitry Andric   return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
4280b57cec5SDimitry Andric }
4290b57cec5SDimitry Andric 
4300b57cec5SDimitry Andric static bool areBytesInSameUnit(CharUnits first, CharUnits second,
4310b57cec5SDimitry Andric                                CharUnits chunkSize) {
4320b57cec5SDimitry Andric   return getOffsetAtStartOfUnit(first, chunkSize)
4330b57cec5SDimitry Andric       == getOffsetAtStartOfUnit(second, chunkSize);
4340b57cec5SDimitry Andric }
4350b57cec5SDimitry Andric 
4360b57cec5SDimitry Andric static bool isMergeableEntryType(llvm::Type *type) {
4370b57cec5SDimitry Andric   // Opaquely-typed memory is always mergeable.
4380b57cec5SDimitry Andric   if (type == nullptr) return true;
4390b57cec5SDimitry Andric 
4400b57cec5SDimitry Andric   // Pointers and integers are always mergeable.  In theory we should not
4410b57cec5SDimitry Andric   // merge pointers, but (1) it doesn't currently matter in practice because
4420b57cec5SDimitry Andric   // the chunk size is never greater than the size of a pointer and (2)
4430b57cec5SDimitry Andric   // Swift IRGen uses integer types for a lot of things that are "really"
444bdd1243dSDimitry Andric   // just storing pointers (like std::optional<SomePointer>).  If we ever have a
4450b57cec5SDimitry Andric   // target that would otherwise combine pointers, we should put some effort
4460b57cec5SDimitry Andric   // into fixing those cases in Swift IRGen and then call out pointer types
4470b57cec5SDimitry Andric   // here.
4480b57cec5SDimitry Andric 
4490b57cec5SDimitry Andric   // Floating-point and vector types should never be merged.
4500b57cec5SDimitry Andric   // Most such types are too large and highly-aligned to ever trigger merging
4510b57cec5SDimitry Andric   // in practice, but it's important for the rule to cover at least 'half'
4520b57cec5SDimitry Andric   // and 'float', as well as things like small vectors of 'i1' or 'i8'.
4530b57cec5SDimitry Andric   return (!type->isFloatingPointTy() && !type->isVectorTy());
4540b57cec5SDimitry Andric }
4550b57cec5SDimitry Andric 
4560b57cec5SDimitry Andric bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
4570b57cec5SDimitry Andric                                           const StorageEntry &second,
4580b57cec5SDimitry Andric                                           CharUnits chunkSize) {
4590b57cec5SDimitry Andric   // Only merge entries that overlap the same chunk.  We test this first
4600b57cec5SDimitry Andric   // despite being a bit more expensive because this is the condition that
4610b57cec5SDimitry Andric   // tends to prevent merging.
4620b57cec5SDimitry Andric   if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
4630b57cec5SDimitry Andric                           chunkSize))
4640b57cec5SDimitry Andric     return false;
4650b57cec5SDimitry Andric 
4660b57cec5SDimitry Andric   return (isMergeableEntryType(first.Type) &&
4670b57cec5SDimitry Andric           isMergeableEntryType(second.Type));
4680b57cec5SDimitry Andric }
4690b57cec5SDimitry Andric 
4700b57cec5SDimitry Andric void SwiftAggLowering::finish() {
4710b57cec5SDimitry Andric   if (Entries.empty()) {
4720b57cec5SDimitry Andric     Finished = true;
4730b57cec5SDimitry Andric     return;
4740b57cec5SDimitry Andric   }
4750b57cec5SDimitry Andric 
4760b57cec5SDimitry Andric   // We logically split the layout down into a series of chunks of this size,
4770b57cec5SDimitry Andric   // which is generally the size of a pointer.
4780b57cec5SDimitry Andric   const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
4790b57cec5SDimitry Andric 
4800b57cec5SDimitry Andric   // First pass: if two entries should be merged, make them both opaque
4810b57cec5SDimitry Andric   // and stretch one to meet the next.
4820b57cec5SDimitry Andric   // Also, remember if there are any opaque entries.
4830b57cec5SDimitry Andric   bool hasOpaqueEntries = (Entries[0].Type == nullptr);
4840b57cec5SDimitry Andric   for (size_t i = 1, e = Entries.size(); i != e; ++i) {
4850b57cec5SDimitry Andric     if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
4860b57cec5SDimitry Andric       Entries[i - 1].Type = nullptr;
4870b57cec5SDimitry Andric       Entries[i].Type = nullptr;
4880b57cec5SDimitry Andric       Entries[i - 1].End = Entries[i].Begin;
4890b57cec5SDimitry Andric       hasOpaqueEntries = true;
4900b57cec5SDimitry Andric 
4910b57cec5SDimitry Andric     } else if (Entries[i].Type == nullptr) {
4920b57cec5SDimitry Andric       hasOpaqueEntries = true;
4930b57cec5SDimitry Andric     }
4940b57cec5SDimitry Andric   }
4950b57cec5SDimitry Andric 
4960b57cec5SDimitry Andric   // The rest of the algorithm leaves non-opaque entries alone, so if we
4970b57cec5SDimitry Andric   // have no opaque entries, we're done.
4980b57cec5SDimitry Andric   if (!hasOpaqueEntries) {
4990b57cec5SDimitry Andric     Finished = true;
5000b57cec5SDimitry Andric     return;
5010b57cec5SDimitry Andric   }
5020b57cec5SDimitry Andric 
5030b57cec5SDimitry Andric   // Okay, move the entries to a temporary and rebuild Entries.
5040b57cec5SDimitry Andric   auto orig = std::move(Entries);
5050b57cec5SDimitry Andric   assert(Entries.empty());
5060b57cec5SDimitry Andric 
5070b57cec5SDimitry Andric   for (size_t i = 0, e = orig.size(); i != e; ++i) {
5080b57cec5SDimitry Andric     // Just copy over non-opaque entries.
5090b57cec5SDimitry Andric     if (orig[i].Type != nullptr) {
5100b57cec5SDimitry Andric       Entries.push_back(orig[i]);
5110b57cec5SDimitry Andric       continue;
5120b57cec5SDimitry Andric     }
5130b57cec5SDimitry Andric 
5140b57cec5SDimitry Andric     // Scan forward to determine the full extent of the next opaque range.
5150b57cec5SDimitry Andric     // We know from the first pass that only contiguous ranges will overlap
5160b57cec5SDimitry Andric     // the same aligned chunk.
5170b57cec5SDimitry Andric     auto begin = orig[i].Begin;
5180b57cec5SDimitry Andric     auto end = orig[i].End;
5190b57cec5SDimitry Andric     while (i + 1 != e &&
5200b57cec5SDimitry Andric            orig[i + 1].Type == nullptr &&
5210b57cec5SDimitry Andric            end == orig[i + 1].Begin) {
5220b57cec5SDimitry Andric       end = orig[i + 1].End;
5230b57cec5SDimitry Andric       i++;
5240b57cec5SDimitry Andric     }
5250b57cec5SDimitry Andric 
5260b57cec5SDimitry Andric     // Add an entry per intersected chunk.
5270b57cec5SDimitry Andric     do {
5280b57cec5SDimitry Andric       // Find the smallest aligned storage unit in the maximal aligned
5290b57cec5SDimitry Andric       // storage unit containing 'begin' that contains all the bytes in
5300b57cec5SDimitry Andric       // the intersection between the range and this chunk.
5310b57cec5SDimitry Andric       CharUnits localBegin = begin;
5320b57cec5SDimitry Andric       CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
5330b57cec5SDimitry Andric       CharUnits chunkEnd = chunkBegin + chunkSize;
5340b57cec5SDimitry Andric       CharUnits localEnd = std::min(end, chunkEnd);
5350b57cec5SDimitry Andric 
5360b57cec5SDimitry Andric       // Just do a simple loop over ever-increasing unit sizes.
5370b57cec5SDimitry Andric       CharUnits unitSize = CharUnits::One();
5380b57cec5SDimitry Andric       CharUnits unitBegin, unitEnd;
5390b57cec5SDimitry Andric       for (; ; unitSize *= 2) {
5400b57cec5SDimitry Andric         assert(unitSize <= chunkSize);
5410b57cec5SDimitry Andric         unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
5420b57cec5SDimitry Andric         unitEnd = unitBegin + unitSize;
5430b57cec5SDimitry Andric         if (unitEnd >= localEnd) break;
5440b57cec5SDimitry Andric       }
5450b57cec5SDimitry Andric 
5460b57cec5SDimitry Andric       // Add an entry for this unit.
5470b57cec5SDimitry Andric       auto entryTy =
5480b57cec5SDimitry Andric         llvm::IntegerType::get(CGM.getLLVMContext(),
5490b57cec5SDimitry Andric                                CGM.getContext().toBits(unitSize));
5500b57cec5SDimitry Andric       Entries.push_back({unitBegin, unitEnd, entryTy});
5510b57cec5SDimitry Andric 
5520b57cec5SDimitry Andric       // The next chunk starts where this chunk left off.
5530b57cec5SDimitry Andric       begin = localEnd;
5540b57cec5SDimitry Andric     } while (begin != end);
5550b57cec5SDimitry Andric   }
5560b57cec5SDimitry Andric 
5570b57cec5SDimitry Andric   // Okay, finally finished.
5580b57cec5SDimitry Andric   Finished = true;
5590b57cec5SDimitry Andric }
5600b57cec5SDimitry Andric 
5610b57cec5SDimitry Andric void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
5620b57cec5SDimitry Andric   assert(Finished && "haven't yet finished lowering");
5630b57cec5SDimitry Andric 
5640b57cec5SDimitry Andric   for (auto &entry : Entries) {
5650b57cec5SDimitry Andric     callback(entry.Begin, entry.End, entry.Type);
5660b57cec5SDimitry Andric   }
5670b57cec5SDimitry Andric }
5680b57cec5SDimitry Andric 
5690b57cec5SDimitry Andric std::pair<llvm::StructType*, llvm::Type*>
5700b57cec5SDimitry Andric SwiftAggLowering::getCoerceAndExpandTypes() const {
5710b57cec5SDimitry Andric   assert(Finished && "haven't yet finished lowering");
5720b57cec5SDimitry Andric 
5730b57cec5SDimitry Andric   auto &ctx = CGM.getLLVMContext();
5740b57cec5SDimitry Andric 
5750b57cec5SDimitry Andric   if (Entries.empty()) {
5760b57cec5SDimitry Andric     auto type = llvm::StructType::get(ctx);
5770b57cec5SDimitry Andric     return { type, type };
5780b57cec5SDimitry Andric   }
5790b57cec5SDimitry Andric 
5800b57cec5SDimitry Andric   SmallVector<llvm::Type*, 8> elts;
5810b57cec5SDimitry Andric   CharUnits lastEnd = CharUnits::Zero();
5820b57cec5SDimitry Andric   bool hasPadding = false;
5830b57cec5SDimitry Andric   bool packed = false;
5840b57cec5SDimitry Andric   for (auto &entry : Entries) {
5850b57cec5SDimitry Andric     if (entry.Begin != lastEnd) {
5860b57cec5SDimitry Andric       auto paddingSize = entry.Begin - lastEnd;
5870b57cec5SDimitry Andric       assert(!paddingSize.isNegative());
5880b57cec5SDimitry Andric 
5890b57cec5SDimitry Andric       auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
5900b57cec5SDimitry Andric                                           paddingSize.getQuantity());
5910b57cec5SDimitry Andric       elts.push_back(padding);
5920b57cec5SDimitry Andric       hasPadding = true;
5930b57cec5SDimitry Andric     }
5940b57cec5SDimitry Andric 
595bdd1243dSDimitry Andric     if (!packed && !entry.Begin.isMultipleOf(CharUnits::fromQuantity(
596bdd1243dSDimitry Andric                        CGM.getDataLayout().getABITypeAlign(entry.Type))))
5970b57cec5SDimitry Andric       packed = true;
5980b57cec5SDimitry Andric 
5990b57cec5SDimitry Andric     elts.push_back(entry.Type);
6000b57cec5SDimitry Andric 
6010b57cec5SDimitry Andric     lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
6020b57cec5SDimitry Andric     assert(entry.End <= lastEnd);
6030b57cec5SDimitry Andric   }
6040b57cec5SDimitry Andric 
6050b57cec5SDimitry Andric   // We don't need to adjust 'packed' to deal with possible tail padding
6060b57cec5SDimitry Andric   // because we never do that kind of access through the coercion type.
6070b57cec5SDimitry Andric   auto coercionType = llvm::StructType::get(ctx, elts, packed);
6080b57cec5SDimitry Andric 
6090b57cec5SDimitry Andric   llvm::Type *unpaddedType = coercionType;
6100b57cec5SDimitry Andric   if (hasPadding) {
6110b57cec5SDimitry Andric     elts.clear();
6120b57cec5SDimitry Andric     for (auto &entry : Entries) {
6130b57cec5SDimitry Andric       elts.push_back(entry.Type);
6140b57cec5SDimitry Andric     }
6150b57cec5SDimitry Andric     if (elts.size() == 1) {
6160b57cec5SDimitry Andric       unpaddedType = elts[0];
6170b57cec5SDimitry Andric     } else {
6180b57cec5SDimitry Andric       unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
6190b57cec5SDimitry Andric     }
6200b57cec5SDimitry Andric   } else if (Entries.size() == 1) {
6210b57cec5SDimitry Andric     unpaddedType = Entries[0].Type;
6220b57cec5SDimitry Andric   }
6230b57cec5SDimitry Andric 
6240b57cec5SDimitry Andric   return { coercionType, unpaddedType };
6250b57cec5SDimitry Andric }
6260b57cec5SDimitry Andric 
6270b57cec5SDimitry Andric bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
6280b57cec5SDimitry Andric   assert(Finished && "haven't yet finished lowering");
6290b57cec5SDimitry Andric 
6300b57cec5SDimitry Andric   // Empty types don't need to be passed indirectly.
6310b57cec5SDimitry Andric   if (Entries.empty()) return false;
6320b57cec5SDimitry Andric 
6330b57cec5SDimitry Andric   // Avoid copying the array of types when there's just a single element.
6340b57cec5SDimitry Andric   if (Entries.size() == 1) {
635bdd1243dSDimitry Andric     return getSwiftABIInfo(CGM).shouldPassIndirectly(Entries.back().Type,
6360b57cec5SDimitry Andric                                                      asReturnValue);
6370b57cec5SDimitry Andric   }
6380b57cec5SDimitry Andric 
6390b57cec5SDimitry Andric   SmallVector<llvm::Type*, 8> componentTys;
6400b57cec5SDimitry Andric   componentTys.reserve(Entries.size());
6410b57cec5SDimitry Andric   for (auto &entry : Entries) {
6420b57cec5SDimitry Andric     componentTys.push_back(entry.Type);
6430b57cec5SDimitry Andric   }
644bdd1243dSDimitry Andric   return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
6450b57cec5SDimitry Andric }
6460b57cec5SDimitry Andric 
6470b57cec5SDimitry Andric bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
6480b57cec5SDimitry Andric                                      ArrayRef<llvm::Type*> componentTys,
6490b57cec5SDimitry Andric                                      bool asReturnValue) {
650bdd1243dSDimitry Andric   return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
6510b57cec5SDimitry Andric }
6520b57cec5SDimitry Andric 
6530b57cec5SDimitry Andric CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
6540b57cec5SDimitry Andric   // Currently always the size of an ordinary pointer.
6550b57cec5SDimitry Andric   return CGM.getContext().toCharUnitsFromBits(
656bdd1243dSDimitry Andric       CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default));
6570b57cec5SDimitry Andric }
6580b57cec5SDimitry Andric 
6590b57cec5SDimitry Andric CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
6600b57cec5SDimitry Andric   // For Swift's purposes, this is always just the store size of the type
6610b57cec5SDimitry Andric   // rounded up to a power of 2.
6620b57cec5SDimitry Andric   auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
663bdd1243dSDimitry Andric   size = llvm::bit_ceil(size);
664bdd1243dSDimitry Andric   assert(CGM.getDataLayout().getABITypeAlign(type) <= size);
6650b57cec5SDimitry Andric   return CharUnits::fromQuantity(size);
6660b57cec5SDimitry Andric }
6670b57cec5SDimitry Andric 
6680b57cec5SDimitry Andric bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
6690b57cec5SDimitry Andric                                    llvm::IntegerType *intTy) {
6700b57cec5SDimitry Andric   auto size = intTy->getBitWidth();
6710b57cec5SDimitry Andric   switch (size) {
6720b57cec5SDimitry Andric   case 1:
6730b57cec5SDimitry Andric   case 8:
6740b57cec5SDimitry Andric   case 16:
6750b57cec5SDimitry Andric   case 32:
6760b57cec5SDimitry Andric   case 64:
6770b57cec5SDimitry Andric     // Just assume that the above are always legal.
6780b57cec5SDimitry Andric     return true;
6790b57cec5SDimitry Andric 
6800b57cec5SDimitry Andric   case 128:
6810b57cec5SDimitry Andric     return CGM.getContext().getTargetInfo().hasInt128Type();
6820b57cec5SDimitry Andric 
6830b57cec5SDimitry Andric   default:
6840b57cec5SDimitry Andric     return false;
6850b57cec5SDimitry Andric   }
6860b57cec5SDimitry Andric }
6870b57cec5SDimitry Andric 
6880b57cec5SDimitry Andric bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
6890b57cec5SDimitry Andric                                   llvm::VectorType *vectorTy) {
690e8d8bef9SDimitry Andric   return isLegalVectorType(
691e8d8bef9SDimitry Andric       CGM, vectorSize, vectorTy->getElementType(),
692e8d8bef9SDimitry Andric       cast<llvm::FixedVectorType>(vectorTy)->getNumElements());
6930b57cec5SDimitry Andric }
6940b57cec5SDimitry Andric 
6950b57cec5SDimitry Andric bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
6960b57cec5SDimitry Andric                                   llvm::Type *eltTy, unsigned numElts) {
6970b57cec5SDimitry Andric   assert(numElts > 1 && "illegal vector length");
698bdd1243dSDimitry Andric   return getSwiftABIInfo(CGM).isLegalVectorType(vectorSize, eltTy, numElts);
6990b57cec5SDimitry Andric }
7000b57cec5SDimitry Andric 
7010b57cec5SDimitry Andric std::pair<llvm::Type*, unsigned>
7020b57cec5SDimitry Andric swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
7030b57cec5SDimitry Andric                                 llvm::VectorType *vectorTy) {
704e8d8bef9SDimitry Andric   auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements();
7050b57cec5SDimitry Andric   auto eltTy = vectorTy->getElementType();
7060b57cec5SDimitry Andric 
7070b57cec5SDimitry Andric   // Try to split the vector type in half.
7080b57cec5SDimitry Andric   if (numElts >= 4 && isPowerOf2(numElts)) {
7090b57cec5SDimitry Andric     if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
7105ffd83dbSDimitry Andric       return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2};
7110b57cec5SDimitry Andric   }
7120b57cec5SDimitry Andric 
7130b57cec5SDimitry Andric   return {eltTy, numElts};
7140b57cec5SDimitry Andric }
7150b57cec5SDimitry Andric 
7160b57cec5SDimitry Andric void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
7170b57cec5SDimitry Andric                                    llvm::VectorType *origVectorTy,
7180b57cec5SDimitry Andric                              llvm::SmallVectorImpl<llvm::Type*> &components) {
7190b57cec5SDimitry Andric   // If it's already a legal vector type, use it.
7200b57cec5SDimitry Andric   if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
7210b57cec5SDimitry Andric     components.push_back(origVectorTy);
7220b57cec5SDimitry Andric     return;
7230b57cec5SDimitry Andric   }
7240b57cec5SDimitry Andric 
7250b57cec5SDimitry Andric   // Try to split the vector into legal subvectors.
726e8d8bef9SDimitry Andric   auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements();
7270b57cec5SDimitry Andric   auto eltTy = origVectorTy->getElementType();
7280b57cec5SDimitry Andric   assert(numElts != 1);
7290b57cec5SDimitry Andric 
7300b57cec5SDimitry Andric   // The largest size that we're still considering making subvectors of.
7310b57cec5SDimitry Andric   // Always a power of 2.
73206c3fb27SDimitry Andric   unsigned logCandidateNumElts = llvm::Log2_32(numElts);
7330b57cec5SDimitry Andric   unsigned candidateNumElts = 1U << logCandidateNumElts;
7340b57cec5SDimitry Andric   assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
7350b57cec5SDimitry Andric 
7360b57cec5SDimitry Andric   // Minor optimization: don't check the legality of this exact size twice.
7370b57cec5SDimitry Andric   if (candidateNumElts == numElts) {
7380b57cec5SDimitry Andric     logCandidateNumElts--;
7390b57cec5SDimitry Andric     candidateNumElts >>= 1;
7400b57cec5SDimitry Andric   }
7410b57cec5SDimitry Andric 
7420b57cec5SDimitry Andric   CharUnits eltSize = (origVectorSize / numElts);
7430b57cec5SDimitry Andric   CharUnits candidateSize = eltSize * candidateNumElts;
7440b57cec5SDimitry Andric 
7450b57cec5SDimitry Andric   // The sensibility of this algorithm relies on the fact that we never
7460b57cec5SDimitry Andric   // have a legal non-power-of-2 vector size without having the power of 2
7470b57cec5SDimitry Andric   // also be legal.
7480b57cec5SDimitry Andric   while (logCandidateNumElts > 0) {
7490b57cec5SDimitry Andric     assert(candidateNumElts == 1U << logCandidateNumElts);
7500b57cec5SDimitry Andric     assert(candidateNumElts <= numElts);
7510b57cec5SDimitry Andric     assert(candidateSize == eltSize * candidateNumElts);
7520b57cec5SDimitry Andric 
7530b57cec5SDimitry Andric     // Skip illegal vector sizes.
7540b57cec5SDimitry Andric     if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
7550b57cec5SDimitry Andric       logCandidateNumElts--;
7560b57cec5SDimitry Andric       candidateNumElts /= 2;
7570b57cec5SDimitry Andric       candidateSize /= 2;
7580b57cec5SDimitry Andric       continue;
7590b57cec5SDimitry Andric     }
7600b57cec5SDimitry Andric 
7610b57cec5SDimitry Andric     // Add the right number of vectors of this size.
7620b57cec5SDimitry Andric     auto numVecs = numElts >> logCandidateNumElts;
7635ffd83dbSDimitry Andric     components.append(numVecs,
7645ffd83dbSDimitry Andric                       llvm::FixedVectorType::get(eltTy, candidateNumElts));
7650b57cec5SDimitry Andric     numElts -= (numVecs << logCandidateNumElts);
7660b57cec5SDimitry Andric 
7670b57cec5SDimitry Andric     if (numElts == 0) return;
7680b57cec5SDimitry Andric 
7690b57cec5SDimitry Andric     // It's possible that the number of elements remaining will be legal.
7700b57cec5SDimitry Andric     // This can happen with e.g. <7 x float> when <3 x float> is legal.
7710b57cec5SDimitry Andric     // This only needs to be separately checked if it's not a power of 2.
7720b57cec5SDimitry Andric     if (numElts > 2 && !isPowerOf2(numElts) &&
7730b57cec5SDimitry Andric         isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
7745ffd83dbSDimitry Andric       components.push_back(llvm::FixedVectorType::get(eltTy, numElts));
7750b57cec5SDimitry Andric       return;
7760b57cec5SDimitry Andric     }
7770b57cec5SDimitry Andric 
7780b57cec5SDimitry Andric     // Bring vecSize down to something no larger than numElts.
7790b57cec5SDimitry Andric     do {
7800b57cec5SDimitry Andric       logCandidateNumElts--;
7810b57cec5SDimitry Andric       candidateNumElts /= 2;
7820b57cec5SDimitry Andric       candidateSize /= 2;
7830b57cec5SDimitry Andric     } while (candidateNumElts > numElts);
7840b57cec5SDimitry Andric   }
7850b57cec5SDimitry Andric 
7860b57cec5SDimitry Andric   // Otherwise, just append a bunch of individual elements.
7870b57cec5SDimitry Andric   components.append(numElts, eltTy);
7880b57cec5SDimitry Andric }
7890b57cec5SDimitry Andric 
7900b57cec5SDimitry Andric bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
7910b57cec5SDimitry Andric                                          const RecordDecl *record) {
7920b57cec5SDimitry Andric   // FIXME: should we not rely on the standard computation in Sema, just in
7930b57cec5SDimitry Andric   // case we want to diverge from the platform ABI (e.g. on targets where
7940b57cec5SDimitry Andric   // that uses the MSVC rule)?
7950b57cec5SDimitry Andric   return !record->canPassInRegisters();
7960b57cec5SDimitry Andric }
7970b57cec5SDimitry Andric 
7980b57cec5SDimitry Andric static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
7990b57cec5SDimitry Andric                                        bool forReturn,
8000b57cec5SDimitry Andric                                        CharUnits alignmentForIndirect) {
8010b57cec5SDimitry Andric   if (lowering.empty()) {
8020b57cec5SDimitry Andric     return ABIArgInfo::getIgnore();
8030b57cec5SDimitry Andric   } else if (lowering.shouldPassIndirectly(forReturn)) {
8040b57cec5SDimitry Andric     return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
8050b57cec5SDimitry Andric   } else {
8060b57cec5SDimitry Andric     auto types = lowering.getCoerceAndExpandTypes();
8070b57cec5SDimitry Andric     return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
8080b57cec5SDimitry Andric   }
8090b57cec5SDimitry Andric }
8100b57cec5SDimitry Andric 
8110b57cec5SDimitry Andric static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
8120b57cec5SDimitry Andric                                bool forReturn) {
8130b57cec5SDimitry Andric   if (auto recordType = dyn_cast<RecordType>(type)) {
8140b57cec5SDimitry Andric     auto record = recordType->getDecl();
8150b57cec5SDimitry Andric     auto &layout = CGM.getContext().getASTRecordLayout(record);
8160b57cec5SDimitry Andric 
8170b57cec5SDimitry Andric     if (mustPassRecordIndirectly(CGM, record))
8180b57cec5SDimitry Andric       return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
8190b57cec5SDimitry Andric 
8200b57cec5SDimitry Andric     SwiftAggLowering lowering(CGM);
8210b57cec5SDimitry Andric     lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
8220b57cec5SDimitry Andric     lowering.finish();
8230b57cec5SDimitry Andric 
8240b57cec5SDimitry Andric     return classifyExpandedType(lowering, forReturn, layout.getAlignment());
8250b57cec5SDimitry Andric   }
8260b57cec5SDimitry Andric 
8270b57cec5SDimitry Andric   // Just assume that all of our target ABIs can support returning at least
8280b57cec5SDimitry Andric   // two integer or floating-point values.
8290b57cec5SDimitry Andric   if (isa<ComplexType>(type)) {
8300b57cec5SDimitry Andric     return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
8310b57cec5SDimitry Andric   }
8320b57cec5SDimitry Andric 
8330b57cec5SDimitry Andric   // Vector types may need to be legalized.
8340b57cec5SDimitry Andric   if (isa<VectorType>(type)) {
8350b57cec5SDimitry Andric     SwiftAggLowering lowering(CGM);
8360b57cec5SDimitry Andric     lowering.addTypedData(type, CharUnits::Zero());
8370b57cec5SDimitry Andric     lowering.finish();
8380b57cec5SDimitry Andric 
8390b57cec5SDimitry Andric     CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
8400b57cec5SDimitry Andric     return classifyExpandedType(lowering, forReturn, alignment);
8410b57cec5SDimitry Andric   }
8420b57cec5SDimitry Andric 
8430b57cec5SDimitry Andric   // Member pointer types need to be expanded, but it's a simple form of
8440b57cec5SDimitry Andric   // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
8450b57cec5SDimitry Andric   // true for this to work.
8460b57cec5SDimitry Andric 
8470b57cec5SDimitry Andric   // 'void' needs to be ignored.
8480b57cec5SDimitry Andric   if (type->isVoidType()) {
8490b57cec5SDimitry Andric     return ABIArgInfo::getIgnore();
8500b57cec5SDimitry Andric   }
8510b57cec5SDimitry Andric 
8520b57cec5SDimitry Andric   // Everything else can be passed directly.
8530b57cec5SDimitry Andric   return ABIArgInfo::getDirect();
8540b57cec5SDimitry Andric }
8550b57cec5SDimitry Andric 
8560b57cec5SDimitry Andric ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
8570b57cec5SDimitry Andric   return classifyType(CGM, type, /*forReturn*/ true);
8580b57cec5SDimitry Andric }
8590b57cec5SDimitry Andric 
8600b57cec5SDimitry Andric ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
8610b57cec5SDimitry Andric                                            CanQualType type) {
8620b57cec5SDimitry Andric   return classifyType(CGM, type, /*forReturn*/ false);
8630b57cec5SDimitry Andric }
8640b57cec5SDimitry Andric 
8650b57cec5SDimitry Andric void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8660b57cec5SDimitry Andric   auto &retInfo = FI.getReturnInfo();
8670b57cec5SDimitry Andric   retInfo = classifyReturnType(CGM, FI.getReturnType());
8680b57cec5SDimitry Andric 
8690b57cec5SDimitry Andric   for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
8700b57cec5SDimitry Andric     auto &argInfo = FI.arg_begin()[i];
8710b57cec5SDimitry Andric     argInfo.info = classifyArgumentType(CGM, argInfo.type);
8720b57cec5SDimitry Andric   }
8730b57cec5SDimitry Andric }
8740b57cec5SDimitry Andric 
8750b57cec5SDimitry Andric // Is swifterror lowered to a register by the target ABI.
8760b57cec5SDimitry Andric bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
8770b57cec5SDimitry Andric   return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
8780b57cec5SDimitry Andric }
879