1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGVTables.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenTypes.h" 21 #include "TargetInfo.h" 22 #include "clang/CodeGen/ConstantInitBuilder.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/AST/VTableBuilder.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSet.h" 29 #include "llvm/IR/Intrinsics.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 namespace { 35 36 /// Holds all the vbtable globals for a given class. 37 struct VBTableGlobals { 38 const VPtrInfoVector *VBTables; 39 SmallVector<llvm::GlobalVariable *, 2> Globals; 40 }; 41 42 class MicrosoftCXXABI : public CGCXXABI { 43 public: 44 MicrosoftCXXABI(CodeGenModule &CGM) 45 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 46 ClassHierarchyDescriptorType(nullptr), 47 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 48 ThrowInfoType(nullptr) {} 49 50 bool HasThisReturn(GlobalDecl GD) const override; 51 bool hasMostDerivedReturn(GlobalDecl GD) const override; 52 53 bool classifyReturnType(CGFunctionInfo &FI) const override; 54 55 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 56 57 bool isSRetParameterAfterThis() const override { return true; } 58 59 bool isThisCompleteObject(GlobalDecl GD) const override { 60 // The Microsoft ABI doesn't use separate complete-object vs. 61 // base-object variants of constructors, but it does of destructors. 62 if (isa<CXXDestructorDecl>(GD.getDecl())) { 63 switch (GD.getDtorType()) { 64 case Dtor_Complete: 65 case Dtor_Deleting: 66 return true; 67 68 case Dtor_Base: 69 return false; 70 71 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 72 } 73 llvm_unreachable("bad dtor kind"); 74 } 75 76 // No other kinds. 77 return false; 78 } 79 80 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 81 FunctionArgList &Args) const override { 82 assert(Args.size() >= 2 && 83 "expected the arglist to have at least two args!"); 84 // The 'most_derived' parameter goes second if the ctor is variadic and 85 // has v-bases. 86 if (CD->getParent()->getNumVBases() > 0 && 87 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 88 return 2; 89 return 1; 90 } 91 92 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 93 std::vector<CharUnits> VBPtrOffsets; 94 const ASTContext &Context = getContext(); 95 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 96 97 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 98 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 99 const ASTRecordLayout &SubobjectLayout = 100 Context.getASTRecordLayout(VBT->IntroducingObject); 101 CharUnits Offs = VBT->NonVirtualOffset; 102 Offs += SubobjectLayout.getVBPtrOffset(); 103 if (VBT->getVBaseWithVPtr()) 104 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 105 VBPtrOffsets.push_back(Offs); 106 } 107 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 108 return VBPtrOffsets; 109 } 110 111 StringRef GetPureVirtualCallName() override { return "_purecall"; } 112 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 113 114 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 115 Address Ptr, QualType ElementType, 116 const CXXDestructorDecl *Dtor) override; 117 118 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 119 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 120 121 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 122 123 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 124 const VPtrInfo &Info); 125 126 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 127 CatchTypeInfo 128 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 129 130 /// MSVC needs an extra flag to indicate a catchall. 131 CatchTypeInfo getCatchAllTypeInfo() override { 132 return CatchTypeInfo{nullptr, 0x40}; 133 } 134 135 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 136 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 137 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 138 Address ThisPtr, 139 llvm::Type *StdTypeInfoPtrTy) override; 140 141 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 142 QualType SrcRecordTy) override; 143 144 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, 145 QualType SrcRecordTy, QualType DestTy, 146 QualType DestRecordTy, 147 llvm::BasicBlock *CastEnd) override; 148 149 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 150 QualType SrcRecordTy, 151 QualType DestTy) override; 152 153 bool EmitBadCastCall(CodeGenFunction &CGF) override; 154 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 155 return false; 156 } 157 158 llvm::Value * 159 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 160 const CXXRecordDecl *ClassDecl, 161 const CXXRecordDecl *BaseClassDecl) override; 162 163 llvm::BasicBlock * 164 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 165 const CXXRecordDecl *RD) override; 166 167 llvm::BasicBlock * 168 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 169 170 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 171 const CXXRecordDecl *RD) override; 172 173 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 174 175 // Background on MSVC destructors 176 // ============================== 177 // 178 // Both Itanium and MSVC ABIs have destructor variants. The variant names 179 // roughly correspond in the following way: 180 // Itanium Microsoft 181 // Base -> no name, just ~Class 182 // Complete -> vbase destructor 183 // Deleting -> scalar deleting destructor 184 // vector deleting destructor 185 // 186 // The base and complete destructors are the same as in Itanium, although the 187 // complete destructor does not accept a VTT parameter when there are virtual 188 // bases. A separate mechanism involving vtordisps is used to ensure that 189 // virtual methods of destroyed subobjects are not called. 190 // 191 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 192 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 193 // pointer points to an array. The scalar deleting destructor assumes that 194 // bit 2 is zero, and therefore does not contain a loop. 195 // 196 // For virtual destructors, only one entry is reserved in the vftable, and it 197 // always points to the vector deleting destructor. The vector deleting 198 // destructor is the most general, so it can be used to destroy objects in 199 // place, delete single heap objects, or delete arrays. 200 // 201 // A TU defining a non-inline destructor is only guaranteed to emit a base 202 // destructor, and all of the other variants are emitted on an as-needed basis 203 // in COMDATs. Because a non-base destructor can be emitted in a TU that 204 // lacks a definition for the destructor, non-base destructors must always 205 // delegate to or alias the base destructor. 206 207 AddedStructorArgs 208 buildStructorSignature(GlobalDecl GD, 209 SmallVectorImpl<CanQualType> &ArgTys) override; 210 211 /// Non-base dtors should be emitted as delegating thunks in this ABI. 212 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 213 CXXDtorType DT) const override { 214 return DT != Dtor_Base; 215 } 216 217 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 218 const CXXDestructorDecl *Dtor, 219 CXXDtorType DT) const override; 220 221 llvm::GlobalValue::LinkageTypes 222 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 223 CXXDtorType DT) const override; 224 225 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 226 227 const CXXRecordDecl * 228 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { 229 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { 230 MethodVFTableLocation ML = 231 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); 232 // The vbases might be ordered differently in the final overrider object 233 // and the complete object, so the "this" argument may sometimes point to 234 // memory that has no particular type (e.g. past the complete object). 235 // In this case, we just use a generic pointer type. 236 // FIXME: might want to have a more precise type in the non-virtual 237 // multiple inheritance case. 238 if (ML.VBase || !ML.VFPtrOffset.isZero()) 239 return nullptr; 240 } 241 return MD->getParent(); 242 } 243 244 Address 245 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 246 Address This, 247 bool VirtualCall) override; 248 249 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 250 FunctionArgList &Params) override; 251 252 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 253 254 AddedStructorArgs 255 addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D, 256 CXXCtorType Type, bool ForVirtualBase, 257 bool Delegating, CallArgList &Args) override; 258 259 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 260 CXXDtorType Type, bool ForVirtualBase, 261 bool Delegating, Address This, 262 QualType ThisTy) override; 263 264 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 265 llvm::GlobalVariable *VTable); 266 267 void emitVTableDefinitions(CodeGenVTables &CGVT, 268 const CXXRecordDecl *RD) override; 269 270 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 271 CodeGenFunction::VPtr Vptr) override; 272 273 /// Don't initialize vptrs if dynamic class 274 /// is marked with with the 'novtable' attribute. 275 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 276 return !VTableClass->hasAttr<MSNoVTableAttr>(); 277 } 278 279 llvm::Constant * 280 getVTableAddressPoint(BaseSubobject Base, 281 const CXXRecordDecl *VTableClass) override; 282 283 llvm::Value *getVTableAddressPointInStructor( 284 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 285 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 286 287 llvm::Constant * 288 getVTableAddressPointForConstExpr(BaseSubobject Base, 289 const CXXRecordDecl *VTableClass) override; 290 291 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 292 CharUnits VPtrOffset) override; 293 294 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 295 Address This, llvm::Type *Ty, 296 SourceLocation Loc) override; 297 298 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 299 const CXXDestructorDecl *Dtor, 300 CXXDtorType DtorType, Address This, 301 DeleteOrMemberCallExpr E) override; 302 303 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 304 CallArgList &CallArgs) override { 305 assert(GD.getDtorType() == Dtor_Deleting && 306 "Only deleting destructor thunks are available in this ABI"); 307 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 308 getContext().IntTy); 309 } 310 311 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 312 313 llvm::GlobalVariable * 314 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 315 llvm::GlobalVariable::LinkageTypes Linkage); 316 317 llvm::GlobalVariable * 318 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 319 const CXXRecordDecl *DstRD) { 320 SmallString<256> OutName; 321 llvm::raw_svector_ostream Out(OutName); 322 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 323 StringRef MangledName = OutName.str(); 324 325 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 326 return VDispMap; 327 328 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 329 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 330 SmallVector<llvm::Constant *, 4> Map(NumEntries, 331 llvm::UndefValue::get(CGM.IntTy)); 332 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 333 bool AnyDifferent = false; 334 for (const auto &I : SrcRD->vbases()) { 335 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 336 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 337 continue; 338 339 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 340 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 341 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 342 AnyDifferent |= SrcVBIndex != DstVBIndex; 343 } 344 // This map would be useless, don't use it. 345 if (!AnyDifferent) 346 return nullptr; 347 348 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 349 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 350 llvm::GlobalValue::LinkageTypes Linkage = 351 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 352 ? llvm::GlobalValue::LinkOnceODRLinkage 353 : llvm::GlobalValue::InternalLinkage; 354 auto *VDispMap = new llvm::GlobalVariable( 355 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 356 /*Initializer=*/Init, MangledName); 357 return VDispMap; 358 } 359 360 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 361 llvm::GlobalVariable *GV) const; 362 363 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 364 GlobalDecl GD, bool ReturnAdjustment) override { 365 GVALinkage Linkage = 366 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 367 368 if (Linkage == GVA_Internal) 369 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 370 else if (ReturnAdjustment) 371 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 372 else 373 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 374 } 375 376 bool exportThunk() override { return false; } 377 378 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 379 const ThisAdjustment &TA) override; 380 381 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 382 const ReturnAdjustment &RA) override; 383 384 void EmitThreadLocalInitFuncs( 385 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 386 ArrayRef<llvm::Function *> CXXThreadLocalInits, 387 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 388 389 bool usesThreadWrapperFunction() const override { return false; } 390 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 391 QualType LValType) override; 392 393 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 394 llvm::GlobalVariable *DeclPtr, 395 bool PerformInit) override; 396 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 397 llvm::FunctionCallee Dtor, 398 llvm::Constant *Addr) override; 399 400 // ==== Notes on array cookies ========= 401 // 402 // MSVC seems to only use cookies when the class has a destructor; a 403 // two-argument usual array deallocation function isn't sufficient. 404 // 405 // For example, this code prints "100" and "1": 406 // struct A { 407 // char x; 408 // void *operator new[](size_t sz) { 409 // printf("%u\n", sz); 410 // return malloc(sz); 411 // } 412 // void operator delete[](void *p, size_t sz) { 413 // printf("%u\n", sz); 414 // free(p); 415 // } 416 // }; 417 // int main() { 418 // A *p = new A[100]; 419 // delete[] p; 420 // } 421 // Whereas it prints "104" and "104" if you give A a destructor. 422 423 bool requiresArrayCookie(const CXXDeleteExpr *expr, 424 QualType elementType) override; 425 bool requiresArrayCookie(const CXXNewExpr *expr) override; 426 CharUnits getArrayCookieSizeImpl(QualType type) override; 427 Address InitializeArrayCookie(CodeGenFunction &CGF, 428 Address NewPtr, 429 llvm::Value *NumElements, 430 const CXXNewExpr *expr, 431 QualType ElementType) override; 432 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 433 Address allocPtr, 434 CharUnits cookieSize) override; 435 436 friend struct MSRTTIBuilder; 437 438 bool isImageRelative() const { 439 return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64; 440 } 441 442 // 5 routines for constructing the llvm types for MS RTTI structs. 443 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 444 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 445 TDTypeName += llvm::utostr(TypeInfoString.size()); 446 llvm::StructType *&TypeDescriptorType = 447 TypeDescriptorTypeMap[TypeInfoString.size()]; 448 if (TypeDescriptorType) 449 return TypeDescriptorType; 450 llvm::Type *FieldTypes[] = { 451 CGM.Int8PtrPtrTy, 452 CGM.Int8PtrTy, 453 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 454 TypeDescriptorType = 455 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 456 return TypeDescriptorType; 457 } 458 459 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 460 if (!isImageRelative()) 461 return PtrType; 462 return CGM.IntTy; 463 } 464 465 llvm::StructType *getBaseClassDescriptorType() { 466 if (BaseClassDescriptorType) 467 return BaseClassDescriptorType; 468 llvm::Type *FieldTypes[] = { 469 getImageRelativeType(CGM.Int8PtrTy), 470 CGM.IntTy, 471 CGM.IntTy, 472 CGM.IntTy, 473 CGM.IntTy, 474 CGM.IntTy, 475 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 476 }; 477 BaseClassDescriptorType = llvm::StructType::create( 478 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 479 return BaseClassDescriptorType; 480 } 481 482 llvm::StructType *getClassHierarchyDescriptorType() { 483 if (ClassHierarchyDescriptorType) 484 return ClassHierarchyDescriptorType; 485 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 486 ClassHierarchyDescriptorType = llvm::StructType::create( 487 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 488 llvm::Type *FieldTypes[] = { 489 CGM.IntTy, 490 CGM.IntTy, 491 CGM.IntTy, 492 getImageRelativeType( 493 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 494 }; 495 ClassHierarchyDescriptorType->setBody(FieldTypes); 496 return ClassHierarchyDescriptorType; 497 } 498 499 llvm::StructType *getCompleteObjectLocatorType() { 500 if (CompleteObjectLocatorType) 501 return CompleteObjectLocatorType; 502 CompleteObjectLocatorType = llvm::StructType::create( 503 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 504 llvm::Type *FieldTypes[] = { 505 CGM.IntTy, 506 CGM.IntTy, 507 CGM.IntTy, 508 getImageRelativeType(CGM.Int8PtrTy), 509 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 510 getImageRelativeType(CompleteObjectLocatorType), 511 }; 512 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 513 if (!isImageRelative()) 514 FieldTypesRef = FieldTypesRef.drop_back(); 515 CompleteObjectLocatorType->setBody(FieldTypesRef); 516 return CompleteObjectLocatorType; 517 } 518 519 llvm::GlobalVariable *getImageBase() { 520 StringRef Name = "__ImageBase"; 521 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 522 return GV; 523 524 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 525 /*isConstant=*/true, 526 llvm::GlobalValue::ExternalLinkage, 527 /*Initializer=*/nullptr, Name); 528 CGM.setDSOLocal(GV); 529 return GV; 530 } 531 532 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 533 if (!isImageRelative()) 534 return PtrVal; 535 536 if (PtrVal->isNullValue()) 537 return llvm::Constant::getNullValue(CGM.IntTy); 538 539 llvm::Constant *ImageBaseAsInt = 540 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 541 llvm::Constant *PtrValAsInt = 542 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 543 llvm::Constant *Diff = 544 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 545 /*HasNUW=*/true, /*HasNSW=*/true); 546 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 547 } 548 549 private: 550 MicrosoftMangleContext &getMangleContext() { 551 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 552 } 553 554 llvm::Constant *getZeroInt() { 555 return llvm::ConstantInt::get(CGM.IntTy, 0); 556 } 557 558 llvm::Constant *getAllOnesInt() { 559 return llvm::Constant::getAllOnesValue(CGM.IntTy); 560 } 561 562 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 563 564 void 565 GetNullMemberPointerFields(const MemberPointerType *MPT, 566 llvm::SmallVectorImpl<llvm::Constant *> &fields); 567 568 /// Shared code for virtual base adjustment. Returns the offset from 569 /// the vbptr to the virtual base. Optionally returns the address of the 570 /// vbptr itself. 571 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 572 Address Base, 573 llvm::Value *VBPtrOffset, 574 llvm::Value *VBTableOffset, 575 llvm::Value **VBPtr = nullptr); 576 577 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 578 Address Base, 579 int32_t VBPtrOffset, 580 int32_t VBTableOffset, 581 llvm::Value **VBPtr = nullptr) { 582 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 583 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 584 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 585 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 586 } 587 588 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 589 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 590 QualType SrcRecordTy); 591 592 /// Performs a full virtual base adjustment. Used to dereference 593 /// pointers to members of virtual bases. 594 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 595 const CXXRecordDecl *RD, Address Base, 596 llvm::Value *VirtualBaseAdjustmentOffset, 597 llvm::Value *VBPtrOffset /* optional */); 598 599 /// Emits a full member pointer with the fields common to data and 600 /// function member pointers. 601 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 602 bool IsMemberFunction, 603 const CXXRecordDecl *RD, 604 CharUnits NonVirtualBaseAdjustment, 605 unsigned VBTableIndex); 606 607 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 608 llvm::Constant *MP); 609 610 /// - Initialize all vbptrs of 'this' with RD as the complete type. 611 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 612 613 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 614 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 615 616 /// Generate a thunk for calling a virtual member function MD. 617 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 618 const MethodVFTableLocation &ML); 619 620 public: 621 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 622 623 bool isZeroInitializable(const MemberPointerType *MPT) override; 624 625 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 626 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 627 return RD->hasAttr<MSInheritanceAttr>(); 628 } 629 630 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 631 632 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 633 CharUnits offset) override; 634 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 635 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 636 637 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 638 llvm::Value *L, 639 llvm::Value *R, 640 const MemberPointerType *MPT, 641 bool Inequality) override; 642 643 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 644 llvm::Value *MemPtr, 645 const MemberPointerType *MPT) override; 646 647 llvm::Value * 648 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 649 Address Base, llvm::Value *MemPtr, 650 const MemberPointerType *MPT) override; 651 652 llvm::Value *EmitNonNullMemberPointerConversion( 653 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 654 CastKind CK, CastExpr::path_const_iterator PathBegin, 655 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 656 CGBuilderTy &Builder); 657 658 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 659 const CastExpr *E, 660 llvm::Value *Src) override; 661 662 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 663 llvm::Constant *Src) override; 664 665 llvm::Constant *EmitMemberPointerConversion( 666 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 667 CastKind CK, CastExpr::path_const_iterator PathBegin, 668 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 669 670 CGCallee 671 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 672 Address This, llvm::Value *&ThisPtrForCall, 673 llvm::Value *MemPtr, 674 const MemberPointerType *MPT) override; 675 676 void emitCXXStructor(GlobalDecl GD) override; 677 678 llvm::StructType *getCatchableTypeType() { 679 if (CatchableTypeType) 680 return CatchableTypeType; 681 llvm::Type *FieldTypes[] = { 682 CGM.IntTy, // Flags 683 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 684 CGM.IntTy, // NonVirtualAdjustment 685 CGM.IntTy, // OffsetToVBPtr 686 CGM.IntTy, // VBTableIndex 687 CGM.IntTy, // Size 688 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 689 }; 690 CatchableTypeType = llvm::StructType::create( 691 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 692 return CatchableTypeType; 693 } 694 695 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 696 llvm::StructType *&CatchableTypeArrayType = 697 CatchableTypeArrayTypeMap[NumEntries]; 698 if (CatchableTypeArrayType) 699 return CatchableTypeArrayType; 700 701 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 702 CTATypeName += llvm::utostr(NumEntries); 703 llvm::Type *CTType = 704 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 705 llvm::Type *FieldTypes[] = { 706 CGM.IntTy, // NumEntries 707 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 708 }; 709 CatchableTypeArrayType = 710 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 711 return CatchableTypeArrayType; 712 } 713 714 llvm::StructType *getThrowInfoType() { 715 if (ThrowInfoType) 716 return ThrowInfoType; 717 llvm::Type *FieldTypes[] = { 718 CGM.IntTy, // Flags 719 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 720 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 721 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 722 }; 723 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 724 "eh.ThrowInfo"); 725 return ThrowInfoType; 726 } 727 728 llvm::FunctionCallee getThrowFn() { 729 // _CxxThrowException is passed an exception object and a ThrowInfo object 730 // which describes the exception. 731 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 732 llvm::FunctionType *FTy = 733 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 734 llvm::FunctionCallee Throw = 735 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 736 // _CxxThrowException is stdcall on 32-bit x86 platforms. 737 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 738 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 739 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 740 } 741 return Throw; 742 } 743 744 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 745 CXXCtorType CT); 746 747 llvm::Constant *getCatchableType(QualType T, 748 uint32_t NVOffset = 0, 749 int32_t VBPtrOffset = -1, 750 uint32_t VBIndex = 0); 751 752 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 753 754 llvm::GlobalVariable *getThrowInfo(QualType T) override; 755 756 std::pair<llvm::Value *, const CXXRecordDecl *> 757 LoadVTablePtr(CodeGenFunction &CGF, Address This, 758 const CXXRecordDecl *RD) override; 759 760 private: 761 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 762 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 763 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 764 /// All the vftables that have been referenced. 765 VFTablesMapTy VFTablesMap; 766 VTablesMapTy VTablesMap; 767 768 /// This set holds the record decls we've deferred vtable emission for. 769 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 770 771 772 /// All the vbtables which have been referenced. 773 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 774 775 /// Info on the global variable used to guard initialization of static locals. 776 /// The BitIndex field is only used for externally invisible declarations. 777 struct GuardInfo { 778 GuardInfo() : Guard(nullptr), BitIndex(0) {} 779 llvm::GlobalVariable *Guard; 780 unsigned BitIndex; 781 }; 782 783 /// Map from DeclContext to the current guard variable. We assume that the 784 /// AST is visited in source code order. 785 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 786 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 787 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 788 789 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 790 llvm::StructType *BaseClassDescriptorType; 791 llvm::StructType *ClassHierarchyDescriptorType; 792 llvm::StructType *CompleteObjectLocatorType; 793 794 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 795 796 llvm::StructType *CatchableTypeType; 797 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 798 llvm::StructType *ThrowInfoType; 799 }; 800 801 } 802 803 CGCXXABI::RecordArgABI 804 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 805 switch (CGM.getTarget().getTriple().getArch()) { 806 default: 807 // FIXME: Implement for other architectures. 808 return RAA_Default; 809 810 case llvm::Triple::thumb: 811 // Use the simple Itanium rules for now. 812 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 813 // copy ctor. 814 return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default; 815 816 case llvm::Triple::x86: 817 // All record arguments are passed in memory on x86. Decide whether to 818 // construct the object directly in argument memory, or to construct the 819 // argument elsewhere and copy the bytes during the call. 820 821 // If C++ prohibits us from making a copy, construct the arguments directly 822 // into argument memory. 823 if (!RD->canPassInRegisters()) 824 return RAA_DirectInMemory; 825 826 // Otherwise, construct the argument into a temporary and copy the bytes 827 // into the outgoing argument memory. 828 return RAA_Default; 829 830 case llvm::Triple::x86_64: 831 case llvm::Triple::aarch64: 832 return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default; 833 } 834 835 llvm_unreachable("invalid enum"); 836 } 837 838 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 839 const CXXDeleteExpr *DE, 840 Address Ptr, 841 QualType ElementType, 842 const CXXDestructorDecl *Dtor) { 843 // FIXME: Provide a source location here even though there's no 844 // CXXMemberCallExpr for dtor call. 845 bool UseGlobalDelete = DE->isGlobalDelete(); 846 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 847 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); 848 if (UseGlobalDelete) 849 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 850 } 851 852 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 853 llvm::Value *Args[] = { 854 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 855 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 856 llvm::FunctionCallee Fn = getThrowFn(); 857 if (isNoReturn) 858 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 859 else 860 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 861 } 862 863 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 864 const CXXCatchStmt *S) { 865 // In the MS ABI, the runtime handles the copy, and the catch handler is 866 // responsible for destruction. 867 VarDecl *CatchParam = S->getExceptionDecl(); 868 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 869 llvm::CatchPadInst *CPI = 870 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 871 CGF.CurrentFuncletPad = CPI; 872 873 // If this is a catch-all or the catch parameter is unnamed, we don't need to 874 // emit an alloca to the object. 875 if (!CatchParam || !CatchParam->getDeclName()) { 876 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 877 return; 878 } 879 880 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 881 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 882 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 883 CGF.EmitAutoVarCleanups(var); 884 } 885 886 /// We need to perform a generic polymorphic operation (like a typeid 887 /// or a cast), which requires an object with a vfptr. Adjust the 888 /// address to point to an object with a vfptr. 889 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 890 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 891 QualType SrcRecordTy) { 892 Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy); 893 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 894 const ASTContext &Context = getContext(); 895 896 // If the class itself has a vfptr, great. This check implicitly 897 // covers non-virtual base subobjects: a class with its own virtual 898 // functions would be a candidate to be a primary base. 899 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 900 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 901 SrcDecl); 902 903 // Okay, one of the vbases must have a vfptr, or else this isn't 904 // actually a polymorphic class. 905 const CXXRecordDecl *PolymorphicBase = nullptr; 906 for (auto &Base : SrcDecl->vbases()) { 907 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 908 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 909 PolymorphicBase = BaseDecl; 910 break; 911 } 912 } 913 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 914 915 llvm::Value *Offset = 916 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 917 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset); 918 CharUnits VBaseAlign = 919 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 920 return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase); 921 } 922 923 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 924 QualType SrcRecordTy) { 925 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 926 return IsDeref && 927 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 928 } 929 930 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 931 llvm::Value *Argument) { 932 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 933 llvm::FunctionType *FTy = 934 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 935 llvm::Value *Args[] = {Argument}; 936 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 937 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 938 } 939 940 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 941 llvm::CallBase *Call = 942 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 943 Call->setDoesNotReturn(); 944 CGF.Builder.CreateUnreachable(); 945 } 946 947 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 948 QualType SrcRecordTy, 949 Address ThisPtr, 950 llvm::Type *StdTypeInfoPtrTy) { 951 std::tie(ThisPtr, std::ignore, std::ignore) = 952 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 953 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); 954 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 955 } 956 957 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 958 QualType SrcRecordTy) { 959 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 960 return SrcIsPtr && 961 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 962 } 963 964 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( 965 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, 966 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 967 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 968 969 llvm::Value *SrcRTTI = 970 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 971 llvm::Value *DestRTTI = 972 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 973 974 llvm::Value *Offset; 975 std::tie(This, Offset, std::ignore) = 976 performBaseAdjustment(CGF, This, SrcRecordTy); 977 llvm::Value *ThisPtr = This.getPointer(); 978 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 979 980 // PVOID __RTDynamicCast( 981 // PVOID inptr, 982 // LONG VfDelta, 983 // PVOID SrcType, 984 // PVOID TargetType, 985 // BOOL isReference) 986 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 987 CGF.Int8PtrTy, CGF.Int32Ty}; 988 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 989 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 990 "__RTDynamicCast"); 991 llvm::Value *Args[] = { 992 ThisPtr, Offset, SrcRTTI, DestRTTI, 993 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 994 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args); 995 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy); 996 } 997 998 llvm::Value * 999 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 1000 QualType SrcRecordTy, 1001 QualType DestTy) { 1002 std::tie(Value, std::ignore, std::ignore) = 1003 performBaseAdjustment(CGF, Value, SrcRecordTy); 1004 1005 // PVOID __RTCastToVoid( 1006 // PVOID inptr) 1007 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1008 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1009 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1010 "__RTCastToVoid"); 1011 llvm::Value *Args[] = {Value.getPointer()}; 1012 return CGF.EmitRuntimeCall(Function, Args); 1013 } 1014 1015 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1016 return false; 1017 } 1018 1019 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1020 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1021 const CXXRecordDecl *BaseClassDecl) { 1022 const ASTContext &Context = getContext(); 1023 int64_t VBPtrChars = 1024 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1025 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1026 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1027 CharUnits VBTableChars = 1028 IntSize * 1029 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1030 llvm::Value *VBTableOffset = 1031 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1032 1033 llvm::Value *VBPtrToNewBase = 1034 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1035 VBPtrToNewBase = 1036 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1037 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1038 } 1039 1040 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1041 return isa<CXXConstructorDecl>(GD.getDecl()); 1042 } 1043 1044 static bool isDeletingDtor(GlobalDecl GD) { 1045 return isa<CXXDestructorDecl>(GD.getDecl()) && 1046 GD.getDtorType() == Dtor_Deleting; 1047 } 1048 1049 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1050 return isDeletingDtor(GD); 1051 } 1052 1053 static bool IsSizeGreaterThan128(const CXXRecordDecl *RD) { 1054 return RD->getASTContext().getTypeSize(RD->getTypeForDecl()) > 128; 1055 } 1056 1057 static bool hasMicrosoftABIRestrictions(const CXXRecordDecl *RD) { 1058 // For AArch64, we use the C++14 definition of an aggregate, so we also 1059 // check for: 1060 // No private or protected non static data members. 1061 // No base classes 1062 // No virtual functions 1063 // Additionally, we need to ensure that there is a trivial copy assignment 1064 // operator, a trivial destructor and no user-provided constructors. 1065 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1066 return true; 1067 if (RD->getNumBases() > 0) 1068 return true; 1069 if (RD->isPolymorphic()) 1070 return true; 1071 if (RD->hasNonTrivialCopyAssignment()) 1072 return true; 1073 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1074 if (Ctor->isUserProvided()) 1075 return true; 1076 if (RD->hasNonTrivialDestructor()) 1077 return true; 1078 return false; 1079 } 1080 1081 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1082 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1083 if (!RD) 1084 return false; 1085 1086 bool isAArch64 = CGM.getTarget().getTriple().isAArch64(); 1087 bool isSimple = !isAArch64 || !hasMicrosoftABIRestrictions(RD); 1088 bool isIndirectReturn = 1089 isAArch64 ? (!RD->canPassInRegisters() || 1090 IsSizeGreaterThan128(RD)) 1091 : !RD->isPOD(); 1092 bool isInstanceMethod = FI.isInstanceMethod(); 1093 1094 if (isIndirectReturn || !isSimple || isInstanceMethod) { 1095 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1096 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1097 FI.getReturnInfo().setSRetAfterThis(isInstanceMethod); 1098 1099 FI.getReturnInfo().setInReg(isAArch64 && 1100 !(isSimple && IsSizeGreaterThan128(RD))); 1101 1102 return true; 1103 } 1104 1105 // Otherwise, use the C ABI rules. 1106 return false; 1107 } 1108 1109 llvm::BasicBlock * 1110 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1111 const CXXRecordDecl *RD) { 1112 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1113 assert(IsMostDerivedClass && 1114 "ctor for a class with virtual bases must have an implicit parameter"); 1115 llvm::Value *IsCompleteObject = 1116 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1117 1118 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1119 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1120 CGF.Builder.CreateCondBr(IsCompleteObject, 1121 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1122 1123 CGF.EmitBlock(CallVbaseCtorsBB); 1124 1125 // Fill in the vbtable pointers here. 1126 EmitVBPtrStores(CGF, RD); 1127 1128 // CGF will put the base ctor calls in this basic block for us later. 1129 1130 return SkipVbaseCtorsBB; 1131 } 1132 1133 llvm::BasicBlock * 1134 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1135 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1136 assert(IsMostDerivedClass && 1137 "ctor for a class with virtual bases must have an implicit parameter"); 1138 llvm::Value *IsCompleteObject = 1139 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1140 1141 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1142 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1143 CGF.Builder.CreateCondBr(IsCompleteObject, 1144 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1145 1146 CGF.EmitBlock(CallVbaseDtorsBB); 1147 // CGF will put the base dtor calls in this basic block for us later. 1148 1149 return SkipVbaseDtorsBB; 1150 } 1151 1152 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1153 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1154 // In most cases, an override for a vbase virtual method can adjust 1155 // the "this" parameter by applying a constant offset. 1156 // However, this is not enough while a constructor or a destructor of some 1157 // class X is being executed if all the following conditions are met: 1158 // - X has virtual bases, (1) 1159 // - X overrides a virtual method M of a vbase Y, (2) 1160 // - X itself is a vbase of the most derived class. 1161 // 1162 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1163 // which holds the extra amount of "this" adjustment we must do when we use 1164 // the X vftables (i.e. during X ctor or dtor). 1165 // Outside the ctors and dtors, the values of vtorDisps are zero. 1166 1167 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1168 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1169 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1170 CGBuilderTy &Builder = CGF.Builder; 1171 1172 unsigned AS = getThisAddress(CGF).getAddressSpace(); 1173 llvm::Value *Int8This = nullptr; // Initialize lazily. 1174 1175 for (const CXXBaseSpecifier &S : RD->vbases()) { 1176 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1177 auto I = VBaseMap.find(VBase); 1178 assert(I != VBaseMap.end()); 1179 if (!I->second.hasVtorDisp()) 1180 continue; 1181 1182 llvm::Value *VBaseOffset = 1183 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1184 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1185 1186 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1187 llvm::Value *VtorDispValue = Builder.CreateSub( 1188 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1189 "vtordisp.value"); 1190 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1191 1192 if (!Int8This) 1193 Int8This = Builder.CreateBitCast(getThisValue(CGF), 1194 CGF.Int8Ty->getPointerTo(AS)); 1195 llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset); 1196 // vtorDisp is always the 32-bits before the vbase in the class layout. 1197 VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4); 1198 VtorDispPtr = Builder.CreateBitCast( 1199 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); 1200 1201 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1202 CharUnits::fromQuantity(4)); 1203 } 1204 } 1205 1206 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1207 const CXXMethodDecl *MD) { 1208 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1209 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1210 CallingConv ActualCallingConv = 1211 MD->getType()->getAs<FunctionProtoType>()->getCallConv(); 1212 return ExpectedCallingConv == ActualCallingConv; 1213 } 1214 1215 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1216 // There's only one constructor type in this ABI. 1217 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1218 1219 // Exported default constructors either have a simple call-site where they use 1220 // the typical calling convention and have a single 'this' pointer for an 1221 // argument -or- they get a wrapper function which appropriately thunks to the 1222 // real default constructor. This thunk is the default constructor closure. 1223 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor()) 1224 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1225 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1226 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1227 CGM.setGVProperties(Fn, D); 1228 } 1229 } 1230 1231 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1232 const CXXRecordDecl *RD) { 1233 Address This = getThisAddress(CGF); 1234 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8"); 1235 const ASTContext &Context = getContext(); 1236 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1237 1238 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1239 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1240 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1241 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1242 const ASTRecordLayout &SubobjectLayout = 1243 Context.getASTRecordLayout(VBT->IntroducingObject); 1244 CharUnits Offs = VBT->NonVirtualOffset; 1245 Offs += SubobjectLayout.getVBPtrOffset(); 1246 if (VBT->getVBaseWithVPtr()) 1247 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1248 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1249 llvm::Value *GVPtr = 1250 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1251 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(), 1252 "vbptr." + VBT->ObjectWithVPtr->getName()); 1253 CGF.Builder.CreateStore(GVPtr, VBPtr); 1254 } 1255 } 1256 1257 CGCXXABI::AddedStructorArgs 1258 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1259 SmallVectorImpl<CanQualType> &ArgTys) { 1260 AddedStructorArgs Added; 1261 // TODO: 'for base' flag 1262 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1263 GD.getDtorType() == Dtor_Deleting) { 1264 // The scalar deleting destructor takes an implicit int parameter. 1265 ArgTys.push_back(getContext().IntTy); 1266 ++Added.Suffix; 1267 } 1268 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1269 if (!CD) 1270 return Added; 1271 1272 // All parameters are already in place except is_most_derived, which goes 1273 // after 'this' if it's variadic and last if it's not. 1274 1275 const CXXRecordDecl *Class = CD->getParent(); 1276 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1277 if (Class->getNumVBases()) { 1278 if (FPT->isVariadic()) { 1279 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1280 ++Added.Prefix; 1281 } else { 1282 ArgTys.push_back(getContext().IntTy); 1283 ++Added.Suffix; 1284 } 1285 } 1286 1287 return Added; 1288 } 1289 1290 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1291 const CXXDestructorDecl *Dtor, 1292 CXXDtorType DT) const { 1293 // Deleting destructor variants are never imported or exported. Give them the 1294 // default storage class. 1295 if (DT == Dtor_Deleting) { 1296 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1297 } else { 1298 const NamedDecl *ND = Dtor; 1299 CGM.setDLLImportDLLExport(GV, ND); 1300 } 1301 } 1302 1303 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1304 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1305 // Internal things are always internal, regardless of attributes. After this, 1306 // we know the thunk is externally visible. 1307 if (Linkage == GVA_Internal) 1308 return llvm::GlobalValue::InternalLinkage; 1309 1310 switch (DT) { 1311 case Dtor_Base: 1312 // The base destructor most closely tracks the user-declared constructor, so 1313 // we delegate back to the normal declarator case. 1314 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage, 1315 /*IsConstantVariable=*/false); 1316 case Dtor_Complete: 1317 // The complete destructor is like an inline function, but it may be 1318 // imported and therefore must be exported as well. This requires changing 1319 // the linkage if a DLL attribute is present. 1320 if (Dtor->hasAttr<DLLExportAttr>()) 1321 return llvm::GlobalValue::WeakODRLinkage; 1322 if (Dtor->hasAttr<DLLImportAttr>()) 1323 return llvm::GlobalValue::AvailableExternallyLinkage; 1324 return llvm::GlobalValue::LinkOnceODRLinkage; 1325 case Dtor_Deleting: 1326 // Deleting destructors are like inline functions. They have vague linkage 1327 // and are emitted everywhere they are used. They are internal if the class 1328 // is internal. 1329 return llvm::GlobalValue::LinkOnceODRLinkage; 1330 case Dtor_Comdat: 1331 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1332 } 1333 llvm_unreachable("invalid dtor type"); 1334 } 1335 1336 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1337 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1338 // other destructor variants are delegating thunks. 1339 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1340 } 1341 1342 CharUnits 1343 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1344 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1345 1346 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1347 // Complete destructors take a pointer to the complete object as a 1348 // parameter, thus don't need this adjustment. 1349 if (GD.getDtorType() == Dtor_Complete) 1350 return CharUnits(); 1351 1352 // There's no Dtor_Base in vftable but it shares the this adjustment with 1353 // the deleting one, so look it up instead. 1354 GD = GlobalDecl(DD, Dtor_Deleting); 1355 } 1356 1357 MethodVFTableLocation ML = 1358 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1359 CharUnits Adjustment = ML.VFPtrOffset; 1360 1361 // Normal virtual instance methods need to adjust from the vfptr that first 1362 // defined the virtual method to the virtual base subobject, but destructors 1363 // do not. The vector deleting destructor thunk applies this adjustment for 1364 // us if necessary. 1365 if (isa<CXXDestructorDecl>(MD)) 1366 Adjustment = CharUnits::Zero(); 1367 1368 if (ML.VBase) { 1369 const ASTRecordLayout &DerivedLayout = 1370 getContext().getASTRecordLayout(MD->getParent()); 1371 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1372 } 1373 1374 return Adjustment; 1375 } 1376 1377 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1378 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1379 bool VirtualCall) { 1380 if (!VirtualCall) { 1381 // If the call of a virtual function is not virtual, we just have to 1382 // compensate for the adjustment the virtual function does in its prologue. 1383 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1384 if (Adjustment.isZero()) 1385 return This; 1386 1387 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 1388 assert(Adjustment.isPositive()); 1389 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1390 } 1391 1392 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1393 1394 GlobalDecl LookupGD = GD; 1395 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1396 // Complete dtors take a pointer to the complete object, 1397 // thus don't need adjustment. 1398 if (GD.getDtorType() == Dtor_Complete) 1399 return This; 1400 1401 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1402 // with the base one, so look up the deleting one instead. 1403 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1404 } 1405 MethodVFTableLocation ML = 1406 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1407 1408 CharUnits StaticOffset = ML.VFPtrOffset; 1409 1410 // Base destructors expect 'this' to point to the beginning of the base 1411 // subobject, not the first vfptr that happens to contain the virtual dtor. 1412 // However, we still need to apply the virtual base adjustment. 1413 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1414 StaticOffset = CharUnits::Zero(); 1415 1416 Address Result = This; 1417 if (ML.VBase) { 1418 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1419 1420 const CXXRecordDecl *Derived = MD->getParent(); 1421 const CXXRecordDecl *VBase = ML.VBase; 1422 llvm::Value *VBaseOffset = 1423 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1424 llvm::Value *VBasePtr = 1425 CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset); 1426 CharUnits VBaseAlign = 1427 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1428 Result = Address(VBasePtr, VBaseAlign); 1429 } 1430 if (!StaticOffset.isZero()) { 1431 assert(StaticOffset.isPositive()); 1432 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1433 if (ML.VBase) { 1434 // Non-virtual adjustment might result in a pointer outside the allocated 1435 // object, e.g. if the final overrider class is laid out after the virtual 1436 // base that declares a method in the most derived class. 1437 // FIXME: Update the code that emits this adjustment in thunks prologues. 1438 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1439 } else { 1440 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1441 } 1442 } 1443 return Result; 1444 } 1445 1446 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1447 QualType &ResTy, 1448 FunctionArgList &Params) { 1449 ASTContext &Context = getContext(); 1450 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1451 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1452 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1453 auto *IsMostDerived = ImplicitParamDecl::Create( 1454 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1455 &Context.Idents.get("is_most_derived"), Context.IntTy, 1456 ImplicitParamDecl::Other); 1457 // The 'most_derived' parameter goes second if the ctor is variadic and last 1458 // if it's not. Dtors can't be variadic. 1459 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1460 if (FPT->isVariadic()) 1461 Params.insert(Params.begin() + 1, IsMostDerived); 1462 else 1463 Params.push_back(IsMostDerived); 1464 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1465 } else if (isDeletingDtor(CGF.CurGD)) { 1466 auto *ShouldDelete = ImplicitParamDecl::Create( 1467 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1468 &Context.Idents.get("should_call_delete"), Context.IntTy, 1469 ImplicitParamDecl::Other); 1470 Params.push_back(ShouldDelete); 1471 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1472 } 1473 } 1474 1475 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1476 // Naked functions have no prolog. 1477 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1478 return; 1479 1480 // Overridden virtual methods of non-primary bases need to adjust the incoming 1481 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1482 // sizeof(void*) to adjust from B* to C*: 1483 // struct A { virtual void a(); }; 1484 // struct B { virtual void b(); }; 1485 // struct C : A, B { virtual void b(); }; 1486 // 1487 // Leave the value stored in the 'this' alloca unadjusted, so that the 1488 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1489 // will apply the ThisAdjustment in the method type information. 1490 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1491 // without making our codegen depend on debug info settings. 1492 llvm::Value *This = loadIncomingCXXThis(CGF); 1493 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1494 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1495 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1496 if (!Adjustment.isZero()) { 1497 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1498 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), 1499 *thisTy = This->getType(); 1500 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1501 assert(Adjustment.isPositive()); 1502 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1503 -Adjustment.getQuantity()); 1504 This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted"); 1505 } 1506 } 1507 setCXXABIThisValue(CGF, This); 1508 1509 // If this is a function that the ABI specifies returns 'this', initialize 1510 // the return slot to 'this' at the start of the function. 1511 // 1512 // Unlike the setting of return types, this is done within the ABI 1513 // implementation instead of by clients of CGCXXABI because: 1514 // 1) getThisValue is currently protected 1515 // 2) in theory, an ABI could implement 'this' returns some other way; 1516 // HasThisReturn only specifies a contract, not the implementation 1517 if (HasThisReturn(CGF.CurGD)) 1518 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1519 else if (hasMostDerivedReturn(CGF.CurGD)) 1520 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)), 1521 CGF.ReturnValue); 1522 1523 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1524 assert(getStructorImplicitParamDecl(CGF) && 1525 "no implicit parameter for a constructor with virtual bases?"); 1526 getStructorImplicitParamValue(CGF) 1527 = CGF.Builder.CreateLoad( 1528 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1529 "is_most_derived"); 1530 } 1531 1532 if (isDeletingDtor(CGF.CurGD)) { 1533 assert(getStructorImplicitParamDecl(CGF) && 1534 "no implicit parameter for a deleting destructor?"); 1535 getStructorImplicitParamValue(CGF) 1536 = CGF.Builder.CreateLoad( 1537 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1538 "should_call_delete"); 1539 } 1540 } 1541 1542 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::addImplicitConstructorArgs( 1543 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1544 bool ForVirtualBase, bool Delegating, CallArgList &Args) { 1545 assert(Type == Ctor_Complete || Type == Ctor_Base); 1546 1547 // Check if we need a 'most_derived' parameter. 1548 if (!D->getParent()->getNumVBases()) 1549 return AddedStructorArgs{}; 1550 1551 // Add the 'most_derived' argument second if we are variadic or last if not. 1552 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1553 llvm::Value *MostDerivedArg; 1554 if (Delegating) { 1555 MostDerivedArg = getStructorImplicitParamValue(CGF); 1556 } else { 1557 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1558 } 1559 RValue RV = RValue::get(MostDerivedArg); 1560 if (FPT->isVariadic()) { 1561 Args.insert(Args.begin() + 1, CallArg(RV, getContext().IntTy)); 1562 return AddedStructorArgs::prefix(1); 1563 } 1564 Args.add(RV, getContext().IntTy); 1565 return AddedStructorArgs::suffix(1); 1566 } 1567 1568 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1569 const CXXDestructorDecl *DD, 1570 CXXDtorType Type, bool ForVirtualBase, 1571 bool Delegating, Address This, 1572 QualType ThisTy) { 1573 // Use the base destructor variant in place of the complete destructor variant 1574 // if the class has no virtual bases. This effectively implements some of the 1575 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1576 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1577 Type = Dtor_Base; 1578 1579 GlobalDecl GD(DD, Type); 1580 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1581 1582 if (DD->isVirtual()) { 1583 assert(Type != CXXDtorType::Dtor_Deleting && 1584 "The deleting destructor should only be called via a virtual call"); 1585 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1586 This, false); 1587 } 1588 1589 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1590 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1591 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1592 } 1593 1594 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1595 /*ImplicitParam=*/nullptr, 1596 /*ImplicitParamTy=*/QualType(), nullptr); 1597 if (BaseDtorEndBB) { 1598 // Complete object handler should continue to be the remaining 1599 CGF.Builder.CreateBr(BaseDtorEndBB); 1600 CGF.EmitBlock(BaseDtorEndBB); 1601 } 1602 } 1603 1604 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1605 const CXXRecordDecl *RD, 1606 llvm::GlobalVariable *VTable) { 1607 if (!CGM.getCodeGenOpts().LTOUnit) 1608 return; 1609 1610 // The location of the first virtual function pointer in the virtual table, 1611 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1612 // disabled, or sizeof(void*) if RTTI is enabled. 1613 CharUnits AddressPoint = 1614 getContext().getLangOpts().RTTIData 1615 ? getContext().toCharUnitsFromBits( 1616 getContext().getTargetInfo().getPointerWidth(0)) 1617 : CharUnits::Zero(); 1618 1619 if (Info.PathToIntroducingObject.empty()) { 1620 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1621 return; 1622 } 1623 1624 // Add a bitset entry for the least derived base belonging to this vftable. 1625 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1626 Info.PathToIntroducingObject.back()); 1627 1628 // Add a bitset entry for each derived class that is laid out at the same 1629 // offset as the least derived base. 1630 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1631 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1632 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1633 1634 const ASTRecordLayout &Layout = 1635 getContext().getASTRecordLayout(DerivedRD); 1636 CharUnits Offset; 1637 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1638 if (VBI == Layout.getVBaseOffsetsMap().end()) 1639 Offset = Layout.getBaseClassOffset(BaseRD); 1640 else 1641 Offset = VBI->second.VBaseOffset; 1642 if (!Offset.isZero()) 1643 return; 1644 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1645 } 1646 1647 // Finally do the same for the most derived class. 1648 if (Info.FullOffsetInMDC.isZero()) 1649 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1650 } 1651 1652 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1653 const CXXRecordDecl *RD) { 1654 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1655 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1656 1657 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1658 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1659 if (VTable->hasInitializer()) 1660 continue; 1661 1662 const VTableLayout &VTLayout = 1663 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1664 1665 llvm::Constant *RTTI = nullptr; 1666 if (any_of(VTLayout.vtable_components(), 1667 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1668 RTTI = getMSCompleteObjectLocator(RD, *Info); 1669 1670 ConstantInitBuilder Builder(CGM); 1671 auto Components = Builder.beginStruct(); 1672 CGVT.createVTableInitializer(Components, VTLayout, RTTI); 1673 Components.finishAndSetAsInitializer(VTable); 1674 1675 emitVTableTypeMetadata(*Info, RD, VTable); 1676 } 1677 } 1678 1679 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1680 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1681 return Vptr.NearestVBase != nullptr; 1682 } 1683 1684 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1685 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1686 const CXXRecordDecl *NearestVBase) { 1687 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1688 if (!VTableAddressPoint) { 1689 assert(Base.getBase()->getNumVBases() && 1690 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1691 } 1692 return VTableAddressPoint; 1693 } 1694 1695 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1696 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1697 SmallString<256> &Name) { 1698 llvm::raw_svector_ostream Out(Name); 1699 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1700 } 1701 1702 llvm::Constant * 1703 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1704 const CXXRecordDecl *VTableClass) { 1705 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1706 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1707 return VFTablesMap[ID]; 1708 } 1709 1710 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1711 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1712 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1713 assert(VFTable && "Couldn't find a vftable for the given base?"); 1714 return VFTable; 1715 } 1716 1717 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1718 CharUnits VPtrOffset) { 1719 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1720 // shouldn't be used in the given record type. We want to cache this result in 1721 // VFTablesMap, thus a simple zero check is not sufficient. 1722 1723 VFTableIdTy ID(RD, VPtrOffset); 1724 VTablesMapTy::iterator I; 1725 bool Inserted; 1726 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1727 if (!Inserted) 1728 return I->second; 1729 1730 llvm::GlobalVariable *&VTable = I->second; 1731 1732 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1733 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1734 1735 if (DeferredVFTables.insert(RD).second) { 1736 // We haven't processed this record type before. 1737 // Queue up this vtable for possible deferred emission. 1738 CGM.addDeferredVTable(RD); 1739 1740 #ifndef NDEBUG 1741 // Create all the vftables at once in order to make sure each vftable has 1742 // a unique mangled name. 1743 llvm::StringSet<> ObservedMangledNames; 1744 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1745 SmallString<256> Name; 1746 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1747 if (!ObservedMangledNames.insert(Name.str()).second) 1748 llvm_unreachable("Already saw this mangling before?"); 1749 } 1750 #endif 1751 } 1752 1753 const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if( 1754 VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) { 1755 return VPI->FullOffsetInMDC == VPtrOffset; 1756 }); 1757 if (VFPtrI == VFPtrs.end()) { 1758 VFTablesMap[ID] = nullptr; 1759 return nullptr; 1760 } 1761 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1762 1763 SmallString<256> VFTableName; 1764 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1765 1766 // Classes marked __declspec(dllimport) need vftables generated on the 1767 // import-side in order to support features like constexpr. No other 1768 // translation unit relies on the emission of the local vftable, translation 1769 // units are expected to generate them as needed. 1770 // 1771 // Because of this unique behavior, we maintain this logic here instead of 1772 // getVTableLinkage. 1773 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1774 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1775 : CGM.getVTableLinkage(RD); 1776 bool VFTableComesFromAnotherTU = 1777 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1778 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1779 bool VTableAliasIsRequred = 1780 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1781 1782 if (llvm::GlobalValue *VFTable = 1783 CGM.getModule().getNamedGlobal(VFTableName)) { 1784 VFTablesMap[ID] = VFTable; 1785 VTable = VTableAliasIsRequred 1786 ? cast<llvm::GlobalVariable>( 1787 cast<llvm::GlobalAlias>(VFTable)->getBaseObject()) 1788 : cast<llvm::GlobalVariable>(VFTable); 1789 return VTable; 1790 } 1791 1792 const VTableLayout &VTLayout = 1793 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1794 llvm::GlobalValue::LinkageTypes VTableLinkage = 1795 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1796 1797 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1798 1799 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1800 1801 // Create a backing variable for the contents of VTable. The VTable may 1802 // or may not include space for a pointer to RTTI data. 1803 llvm::GlobalValue *VFTable; 1804 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1805 /*isConstant=*/true, VTableLinkage, 1806 /*Initializer=*/nullptr, VTableName); 1807 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1808 1809 llvm::Comdat *C = nullptr; 1810 if (!VFTableComesFromAnotherTU && 1811 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) || 1812 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) && 1813 VTableAliasIsRequred))) 1814 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1815 1816 // Only insert a pointer into the VFTable for RTTI data if we are not 1817 // importing it. We never reference the RTTI data directly so there is no 1818 // need to make room for it. 1819 if (VTableAliasIsRequred) { 1820 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1821 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1822 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1823 // Create a GEP which points just after the first entry in the VFTable, 1824 // this should be the location of the first virtual method. 1825 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1826 VTable->getValueType(), VTable, GEPIndices); 1827 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1828 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1829 if (C) 1830 C->setSelectionKind(llvm::Comdat::Largest); 1831 } 1832 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1833 /*AddressSpace=*/0, VFTableLinkage, 1834 VFTableName.str(), VTableGEP, 1835 &CGM.getModule()); 1836 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1837 } else { 1838 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1839 // be referencing any RTTI data. 1840 // The GlobalVariable will end up being an appropriate definition of the 1841 // VFTable. 1842 VFTable = VTable; 1843 } 1844 if (C) 1845 VTable->setComdat(C); 1846 1847 if (RD->hasAttr<DLLExportAttr>()) 1848 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1849 1850 VFTablesMap[ID] = VFTable; 1851 return VTable; 1852 } 1853 1854 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1855 GlobalDecl GD, 1856 Address This, 1857 llvm::Type *Ty, 1858 SourceLocation Loc) { 1859 CGBuilderTy &Builder = CGF.Builder; 1860 1861 Ty = Ty->getPointerTo()->getPointerTo(); 1862 Address VPtr = 1863 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1864 1865 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1866 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent()); 1867 1868 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1869 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1870 1871 // Compute the identity of the most derived class whose virtual table is 1872 // located at the MethodVFTableLocation ML. 1873 auto getObjectWithVPtr = [&] { 1874 return llvm::find_if(VFTContext.getVFPtrOffsets( 1875 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1876 [&](const std::unique_ptr<VPtrInfo> &Info) { 1877 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1878 }) 1879 ->get() 1880 ->ObjectWithVPtr; 1881 }; 1882 1883 llvm::Value *VFunc; 1884 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1885 VFunc = CGF.EmitVTableTypeCheckedLoad( 1886 getObjectWithVPtr(), VTable, 1887 ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); 1888 } else { 1889 if (CGM.getCodeGenOpts().PrepareForLTO) 1890 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1891 1892 llvm::Value *VFuncPtr = 1893 Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 1894 VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 1895 } 1896 1897 CGCallee Callee(GD, VFunc); 1898 return Callee; 1899 } 1900 1901 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1902 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1903 Address This, DeleteOrMemberCallExpr E) { 1904 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 1905 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 1906 assert((CE != nullptr) ^ (D != nullptr)); 1907 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1908 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1909 1910 // We have only one destructor in the vftable but can get both behaviors 1911 // by passing an implicit int parameter. 1912 GlobalDecl GD(Dtor, Dtor_Deleting); 1913 const CGFunctionInfo *FInfo = 1914 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 1915 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 1916 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 1917 1918 ASTContext &Context = getContext(); 1919 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 1920 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 1921 DtorType == Dtor_Deleting); 1922 1923 QualType ThisTy; 1924 if (CE) { 1925 ThisTy = CE->getObjectType(); 1926 } else { 1927 ThisTy = D->getDestroyedType(); 1928 } 1929 1930 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1931 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1932 ImplicitParam, Context.IntTy, CE); 1933 return RV.getScalarVal(); 1934 } 1935 1936 const VBTableGlobals & 1937 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 1938 // At this layer, we can key the cache off of a single class, which is much 1939 // easier than caching each vbtable individually. 1940 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 1941 bool Added; 1942 std::tie(Entry, Added) = 1943 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 1944 VBTableGlobals &VBGlobals = Entry->second; 1945 if (!Added) 1946 return VBGlobals; 1947 1948 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 1949 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 1950 1951 // Cache the globals for all vbtables so we don't have to recompute the 1952 // mangled names. 1953 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 1954 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 1955 E = VBGlobals.VBTables->end(); 1956 I != E; ++I) { 1957 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 1958 } 1959 1960 return VBGlobals; 1961 } 1962 1963 llvm::Function * 1964 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 1965 const MethodVFTableLocation &ML) { 1966 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 1967 "can't form pointers to ctors or virtual dtors"); 1968 1969 // Calculate the mangled name. 1970 SmallString<256> ThunkName; 1971 llvm::raw_svector_ostream Out(ThunkName); 1972 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 1973 1974 // If the thunk has been generated previously, just return it. 1975 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 1976 return cast<llvm::Function>(GV); 1977 1978 // Create the llvm::Function. 1979 const CGFunctionInfo &FnInfo = 1980 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 1981 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 1982 llvm::Function *ThunkFn = 1983 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 1984 ThunkName.str(), &CGM.getModule()); 1985 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 1986 1987 ThunkFn->setLinkage(MD->isExternallyVisible() 1988 ? llvm::GlobalValue::LinkOnceODRLinkage 1989 : llvm::GlobalValue::InternalLinkage); 1990 if (MD->isExternallyVisible()) 1991 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 1992 1993 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 1994 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 1995 1996 // Add the "thunk" attribute so that LLVM knows that the return type is 1997 // meaningless. These thunks can be used to call functions with differing 1998 // return types, and the caller is required to cast the prototype 1999 // appropriately to extract the correct value. 2000 ThunkFn->addFnAttr("thunk"); 2001 2002 // These thunks can be compared, so they are not unnamed. 2003 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2004 2005 // Start codegen. 2006 CodeGenFunction CGF(CGM); 2007 CGF.CurGD = GlobalDecl(MD); 2008 CGF.CurFuncIsThunk = true; 2009 2010 // Build FunctionArgs, but only include the implicit 'this' parameter 2011 // declaration. 2012 FunctionArgList FunctionArgs; 2013 buildThisParam(CGF, FunctionArgs); 2014 2015 // Start defining the function. 2016 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2017 FunctionArgs, MD->getLocation(), SourceLocation()); 2018 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2019 2020 // Load the vfptr and then callee from the vftable. The callee should have 2021 // adjusted 'this' so that the vfptr is at offset zero. 2022 llvm::Value *VTable = CGF.GetVTablePtr( 2023 getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent()); 2024 2025 llvm::Value *VFuncPtr = 2026 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 2027 llvm::Value *Callee = 2028 CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 2029 2030 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2031 2032 return ThunkFn; 2033 } 2034 2035 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2036 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2037 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2038 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2039 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2040 if (GV->isDeclaration()) 2041 emitVBTableDefinition(*VBT, RD, GV); 2042 } 2043 } 2044 2045 llvm::GlobalVariable * 2046 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2047 llvm::GlobalVariable::LinkageTypes Linkage) { 2048 SmallString<256> OutName; 2049 llvm::raw_svector_ostream Out(OutName); 2050 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2051 StringRef Name = OutName.str(); 2052 2053 llvm::ArrayType *VBTableType = 2054 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2055 2056 assert(!CGM.getModule().getNamedGlobal(Name) && 2057 "vbtable with this name already exists: mangling bug?"); 2058 CharUnits Alignment = 2059 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2060 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2061 Name, VBTableType, Linkage, Alignment.getQuantity()); 2062 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2063 2064 if (RD->hasAttr<DLLImportAttr>()) 2065 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2066 else if (RD->hasAttr<DLLExportAttr>()) 2067 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2068 2069 if (!GV->hasExternalLinkage()) 2070 emitVBTableDefinition(VBT, RD, GV); 2071 2072 return GV; 2073 } 2074 2075 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2076 const CXXRecordDecl *RD, 2077 llvm::GlobalVariable *GV) const { 2078 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2079 2080 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2081 "should only emit vbtables for classes with vbtables"); 2082 2083 const ASTRecordLayout &BaseLayout = 2084 getContext().getASTRecordLayout(VBT.IntroducingObject); 2085 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2086 2087 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2088 nullptr); 2089 2090 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2091 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2092 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2093 2094 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2095 for (const auto &I : ObjectWithVPtr->vbases()) { 2096 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2097 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2098 assert(!Offset.isNegative()); 2099 2100 // Make it relative to the subobject vbptr. 2101 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2102 if (VBT.getVBaseWithVPtr()) 2103 CompleteVBPtrOffset += 2104 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2105 Offset -= CompleteVBPtrOffset; 2106 2107 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2108 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2109 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2110 } 2111 2112 assert(Offsets.size() == 2113 cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType()) 2114 ->getElementType())->getNumElements()); 2115 llvm::ArrayType *VBTableType = 2116 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2117 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2118 GV->setInitializer(Init); 2119 2120 if (RD->hasAttr<DLLImportAttr>()) 2121 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2122 } 2123 2124 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2125 Address This, 2126 const ThisAdjustment &TA) { 2127 if (TA.isEmpty()) 2128 return This.getPointer(); 2129 2130 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 2131 2132 llvm::Value *V; 2133 if (TA.Virtual.isEmpty()) { 2134 V = This.getPointer(); 2135 } else { 2136 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2137 // Adjust the this argument based on the vtordisp value. 2138 Address VtorDispPtr = 2139 CGF.Builder.CreateConstInBoundsByteGEP(This, 2140 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2141 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty); 2142 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2143 V = CGF.Builder.CreateGEP(This.getPointer(), 2144 CGF.Builder.CreateNeg(VtorDisp)); 2145 2146 // Unfortunately, having applied the vtordisp means that we no 2147 // longer really have a known alignment for the vbptr step. 2148 // We'll assume the vbptr is pointer-aligned. 2149 2150 if (TA.Virtual.Microsoft.VBPtrOffset) { 2151 // If the final overrider is defined in a virtual base other than the one 2152 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2153 // the vbtable of the derived class. 2154 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2155 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2156 llvm::Value *VBPtr; 2157 llvm::Value *VBaseOffset = 2158 GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()), 2159 -TA.Virtual.Microsoft.VBPtrOffset, 2160 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2161 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2162 } 2163 } 2164 2165 if (TA.NonVirtual) { 2166 // Non-virtual adjustment might result in a pointer outside the allocated 2167 // object, e.g. if the final overrider class is laid out after the virtual 2168 // base that declares a method in the most derived class. 2169 V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual); 2170 } 2171 2172 // Don't need to bitcast back, the call CodeGen will handle this. 2173 return V; 2174 } 2175 2176 llvm::Value * 2177 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2178 const ReturnAdjustment &RA) { 2179 if (RA.isEmpty()) 2180 return Ret.getPointer(); 2181 2182 auto OrigTy = Ret.getType(); 2183 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty); 2184 2185 llvm::Value *V = Ret.getPointer(); 2186 if (RA.Virtual.Microsoft.VBIndex) { 2187 assert(RA.Virtual.Microsoft.VBIndex > 0); 2188 int32_t IntSize = CGF.getIntSize().getQuantity(); 2189 llvm::Value *VBPtr; 2190 llvm::Value *VBaseOffset = 2191 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2192 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2193 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2194 } 2195 2196 if (RA.NonVirtual) 2197 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2198 2199 // Cast back to the original type. 2200 return CGF.Builder.CreateBitCast(V, OrigTy); 2201 } 2202 2203 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2204 QualType elementType) { 2205 // Microsoft seems to completely ignore the possibility of a 2206 // two-argument usual deallocation function. 2207 return elementType.isDestructedType(); 2208 } 2209 2210 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2211 // Microsoft seems to completely ignore the possibility of a 2212 // two-argument usual deallocation function. 2213 return expr->getAllocatedType().isDestructedType(); 2214 } 2215 2216 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2217 // The array cookie is always a size_t; we then pad that out to the 2218 // alignment of the element type. 2219 ASTContext &Ctx = getContext(); 2220 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2221 Ctx.getTypeAlignInChars(type)); 2222 } 2223 2224 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2225 Address allocPtr, 2226 CharUnits cookieSize) { 2227 Address numElementsPtr = 2228 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy); 2229 return CGF.Builder.CreateLoad(numElementsPtr); 2230 } 2231 2232 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2233 Address newPtr, 2234 llvm::Value *numElements, 2235 const CXXNewExpr *expr, 2236 QualType elementType) { 2237 assert(requiresArrayCookie(expr)); 2238 2239 // The size of the cookie. 2240 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2241 2242 // Compute an offset to the cookie. 2243 Address cookiePtr = newPtr; 2244 2245 // Write the number of elements into the appropriate slot. 2246 Address numElementsPtr 2247 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy); 2248 CGF.Builder.CreateStore(numElements, numElementsPtr); 2249 2250 // Finally, compute a pointer to the actual data buffer by skipping 2251 // over the cookie completely. 2252 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2253 } 2254 2255 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2256 llvm::FunctionCallee Dtor, 2257 llvm::Constant *Addr) { 2258 // Create a function which calls the destructor. 2259 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2260 2261 // extern "C" int __tlregdtor(void (*f)(void)); 2262 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2263 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2264 2265 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2266 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2267 if (llvm::Function *TLRegDtorFn = 2268 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2269 TLRegDtorFn->setDoesNotThrow(); 2270 2271 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2272 } 2273 2274 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2275 llvm::FunctionCallee Dtor, 2276 llvm::Constant *Addr) { 2277 if (D.isNoDestroy(CGM.getContext())) 2278 return; 2279 2280 if (D.getTLSKind()) 2281 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2282 2283 // The default behavior is to use atexit. 2284 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2285 } 2286 2287 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2288 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2289 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2290 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2291 if (CXXThreadLocalInits.empty()) 2292 return; 2293 2294 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2295 llvm::Triple::x86 2296 ? "/include:___dyn_tls_init@12" 2297 : "/include:__dyn_tls_init"); 2298 2299 // This will create a GV in the .CRT$XDU section. It will point to our 2300 // initialization function. The CRT will call all of these function 2301 // pointers at start-up time and, eventually, at thread-creation time. 2302 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2303 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2304 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2305 llvm::GlobalVariable::InternalLinkage, InitFunc, 2306 Twine(InitFunc->getName(), "$initializer$")); 2307 InitFuncPtr->setSection(".CRT$XDU"); 2308 // This variable has discardable linkage, we have to add it to @llvm.used to 2309 // ensure it won't get discarded. 2310 CGM.addUsedGlobal(InitFuncPtr); 2311 return InitFuncPtr; 2312 }; 2313 2314 std::vector<llvm::Function *> NonComdatInits; 2315 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2316 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2317 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2318 llvm::Function *F = CXXThreadLocalInits[I]; 2319 2320 // If the GV is already in a comdat group, then we have to join it. 2321 if (llvm::Comdat *C = GV->getComdat()) 2322 AddToXDU(F)->setComdat(C); 2323 else 2324 NonComdatInits.push_back(F); 2325 } 2326 2327 if (!NonComdatInits.empty()) { 2328 llvm::FunctionType *FTy = 2329 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2330 llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction( 2331 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2332 SourceLocation(), /*TLS=*/true); 2333 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2334 2335 AddToXDU(InitFunc); 2336 } 2337 } 2338 2339 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2340 const VarDecl *VD, 2341 QualType LValType) { 2342 CGF.CGM.ErrorUnsupported(VD, "thread wrappers"); 2343 return LValue(); 2344 } 2345 2346 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2347 StringRef VarName("_Init_thread_epoch"); 2348 CharUnits Align = CGM.getIntAlign(); 2349 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2350 return ConstantAddress(GV, Align); 2351 auto *GV = new llvm::GlobalVariable( 2352 CGM.getModule(), CGM.IntTy, 2353 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2354 /*Initializer=*/nullptr, VarName, 2355 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2356 GV->setAlignment(Align.getQuantity()); 2357 return ConstantAddress(GV, Align); 2358 } 2359 2360 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2361 llvm::FunctionType *FTy = 2362 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2363 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2364 return CGM.CreateRuntimeFunction( 2365 FTy, "_Init_thread_header", 2366 llvm::AttributeList::get(CGM.getLLVMContext(), 2367 llvm::AttributeList::FunctionIndex, 2368 llvm::Attribute::NoUnwind), 2369 /*Local=*/true); 2370 } 2371 2372 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2373 llvm::FunctionType *FTy = 2374 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2375 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2376 return CGM.CreateRuntimeFunction( 2377 FTy, "_Init_thread_footer", 2378 llvm::AttributeList::get(CGM.getLLVMContext(), 2379 llvm::AttributeList::FunctionIndex, 2380 llvm::Attribute::NoUnwind), 2381 /*Local=*/true); 2382 } 2383 2384 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2385 llvm::FunctionType *FTy = 2386 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2387 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2388 return CGM.CreateRuntimeFunction( 2389 FTy, "_Init_thread_abort", 2390 llvm::AttributeList::get(CGM.getLLVMContext(), 2391 llvm::AttributeList::FunctionIndex, 2392 llvm::Attribute::NoUnwind), 2393 /*Local=*/true); 2394 } 2395 2396 namespace { 2397 struct ResetGuardBit final : EHScopeStack::Cleanup { 2398 Address Guard; 2399 unsigned GuardNum; 2400 ResetGuardBit(Address Guard, unsigned GuardNum) 2401 : Guard(Guard), GuardNum(GuardNum) {} 2402 2403 void Emit(CodeGenFunction &CGF, Flags flags) override { 2404 // Reset the bit in the mask so that the static variable may be 2405 // reinitialized. 2406 CGBuilderTy &Builder = CGF.Builder; 2407 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2408 llvm::ConstantInt *Mask = 2409 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2410 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2411 } 2412 }; 2413 2414 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2415 llvm::Value *Guard; 2416 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2417 2418 void Emit(CodeGenFunction &CGF, Flags flags) override { 2419 // Calling _Init_thread_abort will reset the guard's state. 2420 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2421 } 2422 }; 2423 } 2424 2425 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2426 llvm::GlobalVariable *GV, 2427 bool PerformInit) { 2428 // MSVC only uses guards for static locals. 2429 if (!D.isStaticLocal()) { 2430 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2431 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2432 llvm::Function *F = CGF.CurFn; 2433 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2434 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2435 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2436 return; 2437 } 2438 2439 bool ThreadlocalStatic = D.getTLSKind(); 2440 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2441 2442 // Thread-safe static variables which aren't thread-specific have a 2443 // per-variable guard. 2444 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2445 2446 CGBuilderTy &Builder = CGF.Builder; 2447 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2448 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2449 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2450 2451 // Get the guard variable for this function if we have one already. 2452 GuardInfo *GI = nullptr; 2453 if (ThreadlocalStatic) 2454 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2455 else if (!ThreadsafeStatic) 2456 GI = &GuardVariableMap[D.getDeclContext()]; 2457 2458 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2459 unsigned GuardNum; 2460 if (D.isExternallyVisible()) { 2461 // Externally visible variables have to be numbered in Sema to properly 2462 // handle unreachable VarDecls. 2463 GuardNum = getContext().getStaticLocalNumber(&D); 2464 assert(GuardNum > 0); 2465 GuardNum--; 2466 } else if (HasPerVariableGuard) { 2467 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2468 } else { 2469 // Non-externally visible variables are numbered here in CodeGen. 2470 GuardNum = GI->BitIndex++; 2471 } 2472 2473 if (!HasPerVariableGuard && GuardNum >= 32) { 2474 if (D.isExternallyVisible()) 2475 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2476 GuardNum %= 32; 2477 GuardVar = nullptr; 2478 } 2479 2480 if (!GuardVar) { 2481 // Mangle the name for the guard. 2482 SmallString<256> GuardName; 2483 { 2484 llvm::raw_svector_ostream Out(GuardName); 2485 if (HasPerVariableGuard) 2486 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2487 Out); 2488 else 2489 getMangleContext().mangleStaticGuardVariable(&D, Out); 2490 } 2491 2492 // Create the guard variable with a zero-initializer. Just absorb linkage, 2493 // visibility and dll storage class from the guarded variable. 2494 GuardVar = 2495 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2496 GV->getLinkage(), Zero, GuardName.str()); 2497 GuardVar->setVisibility(GV->getVisibility()); 2498 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2499 GuardVar->setAlignment(GuardAlign.getQuantity()); 2500 if (GuardVar->isWeakForLinker()) 2501 GuardVar->setComdat( 2502 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2503 if (D.getTLSKind()) 2504 GuardVar->setThreadLocal(true); 2505 if (GI && !HasPerVariableGuard) 2506 GI->Guard = GuardVar; 2507 } 2508 2509 ConstantAddress GuardAddr(GuardVar, GuardAlign); 2510 2511 assert(GuardVar->getLinkage() == GV->getLinkage() && 2512 "static local from the same function had different linkage"); 2513 2514 if (!HasPerVariableGuard) { 2515 // Pseudo code for the test: 2516 // if (!(GuardVar & MyGuardBit)) { 2517 // GuardVar |= MyGuardBit; 2518 // ... initialize the object ...; 2519 // } 2520 2521 // Test our bit from the guard variable. 2522 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2523 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2524 llvm::Value *NeedsInit = 2525 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2526 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2527 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2528 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2529 CodeGenFunction::GuardKind::VariableGuard, &D); 2530 2531 // Set our bit in the guard variable and emit the initializer and add a global 2532 // destructor if appropriate. 2533 CGF.EmitBlock(InitBlock); 2534 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2535 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2536 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2537 CGF.PopCleanupBlock(); 2538 Builder.CreateBr(EndBlock); 2539 2540 // Continue. 2541 CGF.EmitBlock(EndBlock); 2542 } else { 2543 // Pseudo code for the test: 2544 // if (TSS > _Init_thread_epoch) { 2545 // _Init_thread_header(&TSS); 2546 // if (TSS == -1) { 2547 // ... initialize the object ...; 2548 // _Init_thread_footer(&TSS); 2549 // } 2550 // } 2551 // 2552 // The algorithm is almost identical to what can be found in the appendix 2553 // found in N2325. 2554 2555 // This BasicBLock determines whether or not we have any work to do. 2556 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2557 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2558 llvm::LoadInst *InitThreadEpoch = 2559 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2560 llvm::Value *IsUninitialized = 2561 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2562 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2563 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2564 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2565 CodeGenFunction::GuardKind::VariableGuard, &D); 2566 2567 // This BasicBlock attempts to determine whether or not this thread is 2568 // responsible for doing the initialization. 2569 CGF.EmitBlock(AttemptInitBlock); 2570 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2571 GuardAddr.getPointer()); 2572 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2573 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2574 llvm::Value *ShouldDoInit = 2575 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2576 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2577 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2578 2579 // Ok, we ended up getting selected as the initializing thread. 2580 CGF.EmitBlock(InitBlock); 2581 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2582 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2583 CGF.PopCleanupBlock(); 2584 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2585 GuardAddr.getPointer()); 2586 Builder.CreateBr(EndBlock); 2587 2588 CGF.EmitBlock(EndBlock); 2589 } 2590 } 2591 2592 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2593 // Null-ness for function memptrs only depends on the first field, which is 2594 // the function pointer. The rest don't matter, so we can zero initialize. 2595 if (MPT->isMemberFunctionPointer()) 2596 return true; 2597 2598 // The virtual base adjustment field is always -1 for null, so if we have one 2599 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2600 // valid field offset. 2601 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2602 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2603 return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) && 2604 RD->nullFieldOffsetIsZero()); 2605 } 2606 2607 llvm::Type * 2608 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2609 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2610 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2611 llvm::SmallVector<llvm::Type *, 4> fields; 2612 if (MPT->isMemberFunctionPointer()) 2613 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2614 else 2615 fields.push_back(CGM.IntTy); // FieldOffset 2616 2617 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), 2618 Inheritance)) 2619 fields.push_back(CGM.IntTy); 2620 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 2621 fields.push_back(CGM.IntTy); 2622 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 2623 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2624 2625 if (fields.size() == 1) 2626 return fields[0]; 2627 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2628 } 2629 2630 void MicrosoftCXXABI:: 2631 GetNullMemberPointerFields(const MemberPointerType *MPT, 2632 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2633 assert(fields.empty()); 2634 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2635 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2636 if (MPT->isMemberFunctionPointer()) { 2637 // FunctionPointerOrVirtualThunk 2638 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2639 } else { 2640 if (RD->nullFieldOffsetIsZero()) 2641 fields.push_back(getZeroInt()); // FieldOffset 2642 else 2643 fields.push_back(getAllOnesInt()); // FieldOffset 2644 } 2645 2646 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), 2647 Inheritance)) 2648 fields.push_back(getZeroInt()); 2649 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 2650 fields.push_back(getZeroInt()); 2651 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 2652 fields.push_back(getAllOnesInt()); 2653 } 2654 2655 llvm::Constant * 2656 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2657 llvm::SmallVector<llvm::Constant *, 4> fields; 2658 GetNullMemberPointerFields(MPT, fields); 2659 if (fields.size() == 1) 2660 return fields[0]; 2661 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2662 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2663 return Res; 2664 } 2665 2666 llvm::Constant * 2667 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2668 bool IsMemberFunction, 2669 const CXXRecordDecl *RD, 2670 CharUnits NonVirtualBaseAdjustment, 2671 unsigned VBTableIndex) { 2672 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2673 2674 // Single inheritance class member pointer are represented as scalars instead 2675 // of aggregates. 2676 if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance)) 2677 return FirstField; 2678 2679 llvm::SmallVector<llvm::Constant *, 4> fields; 2680 fields.push_back(FirstField); 2681 2682 if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance)) 2683 fields.push_back(llvm::ConstantInt::get( 2684 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2685 2686 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) { 2687 CharUnits Offs = CharUnits::Zero(); 2688 if (VBTableIndex) 2689 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2690 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2691 } 2692 2693 // The rest of the fields are adjusted by conversions to a more derived class. 2694 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 2695 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2696 2697 return llvm::ConstantStruct::getAnon(fields); 2698 } 2699 2700 llvm::Constant * 2701 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2702 CharUnits offset) { 2703 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2704 if (RD->getMSInheritanceModel() == 2705 MSInheritanceAttr::Keyword_virtual_inheritance) 2706 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2707 llvm::Constant *FirstField = 2708 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2709 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2710 CharUnits::Zero(), /*VBTableIndex=*/0); 2711 } 2712 2713 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2714 QualType MPType) { 2715 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2716 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2717 if (!MPD) 2718 return EmitNullMemberPointer(DstTy); 2719 2720 ASTContext &Ctx = getContext(); 2721 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2722 2723 llvm::Constant *C; 2724 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2725 C = EmitMemberFunctionPointer(MD); 2726 } else { 2727 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2728 C = EmitMemberDataPointer(DstTy, FieldOffset); 2729 } 2730 2731 if (!MemberPointerPath.empty()) { 2732 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2733 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2734 const MemberPointerType *SrcTy = 2735 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2736 ->castAs<MemberPointerType>(); 2737 2738 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2739 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2740 const CXXRecordDecl *PrevRD = SrcRD; 2741 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2742 const CXXRecordDecl *Base = nullptr; 2743 const CXXRecordDecl *Derived = nullptr; 2744 if (DerivedMember) { 2745 Base = PathElem; 2746 Derived = PrevRD; 2747 } else { 2748 Base = PrevRD; 2749 Derived = PathElem; 2750 } 2751 for (const CXXBaseSpecifier &BS : Derived->bases()) 2752 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2753 Base->getCanonicalDecl()) 2754 DerivedToBasePath.push_back(&BS); 2755 PrevRD = PathElem; 2756 } 2757 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2758 2759 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2760 : CK_BaseToDerivedMemberPointer; 2761 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2762 DerivedToBasePath.end(), C); 2763 } 2764 return C; 2765 } 2766 2767 llvm::Constant * 2768 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2769 assert(MD->isInstance() && "Member function must not be static!"); 2770 2771 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2772 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2773 CodeGenTypes &Types = CGM.getTypes(); 2774 2775 unsigned VBTableIndex = 0; 2776 llvm::Constant *FirstField; 2777 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2778 if (!MD->isVirtual()) { 2779 llvm::Type *Ty; 2780 // Check whether the function has a computable LLVM signature. 2781 if (Types.isFuncTypeConvertible(FPT)) { 2782 // The function has a computable LLVM signature; use the correct type. 2783 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2784 } else { 2785 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2786 // function type is incomplete. 2787 Ty = CGM.PtrDiffTy; 2788 } 2789 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2790 } else { 2791 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2792 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2793 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2794 // Include the vfptr adjustment if the method is in a non-primary vftable. 2795 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2796 if (ML.VBase) 2797 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2798 } 2799 2800 if (VBTableIndex == 0 && 2801 RD->getMSInheritanceModel() == 2802 MSInheritanceAttr::Keyword_virtual_inheritance) 2803 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2804 2805 // The rest of the fields are common with data member pointers. 2806 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); 2807 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2808 NonVirtualBaseAdjustment, VBTableIndex); 2809 } 2810 2811 /// Member pointers are the same if they're either bitwise identical *or* both 2812 /// null. Null-ness for function members is determined by the first field, 2813 /// while for data member pointers we must compare all fields. 2814 llvm::Value * 2815 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2816 llvm::Value *L, 2817 llvm::Value *R, 2818 const MemberPointerType *MPT, 2819 bool Inequality) { 2820 CGBuilderTy &Builder = CGF.Builder; 2821 2822 // Handle != comparisons by switching the sense of all boolean operations. 2823 llvm::ICmpInst::Predicate Eq; 2824 llvm::Instruction::BinaryOps And, Or; 2825 if (Inequality) { 2826 Eq = llvm::ICmpInst::ICMP_NE; 2827 And = llvm::Instruction::Or; 2828 Or = llvm::Instruction::And; 2829 } else { 2830 Eq = llvm::ICmpInst::ICMP_EQ; 2831 And = llvm::Instruction::And; 2832 Or = llvm::Instruction::Or; 2833 } 2834 2835 // If this is a single field member pointer (single inheritance), this is a 2836 // single icmp. 2837 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2838 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2839 if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(), 2840 Inheritance)) 2841 return Builder.CreateICmp(Eq, L, R); 2842 2843 // Compare the first field. 2844 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 2845 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 2846 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 2847 2848 // Compare everything other than the first field. 2849 llvm::Value *Res = nullptr; 2850 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 2851 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 2852 llvm::Value *LF = Builder.CreateExtractValue(L, I); 2853 llvm::Value *RF = Builder.CreateExtractValue(R, I); 2854 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 2855 if (Res) 2856 Res = Builder.CreateBinOp(And, Res, Cmp); 2857 else 2858 Res = Cmp; 2859 } 2860 2861 // Check if the first field is 0 if this is a function pointer. 2862 if (MPT->isMemberFunctionPointer()) { 2863 // (l1 == r1 && ...) || l0 == 0 2864 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 2865 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 2866 Res = Builder.CreateBinOp(Or, Res, IsZero); 2867 } 2868 2869 // Combine the comparison of the first field, which must always be true for 2870 // this comparison to succeeed. 2871 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 2872 } 2873 2874 llvm::Value * 2875 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 2876 llvm::Value *MemPtr, 2877 const MemberPointerType *MPT) { 2878 CGBuilderTy &Builder = CGF.Builder; 2879 llvm::SmallVector<llvm::Constant *, 4> fields; 2880 // We only need one field for member functions. 2881 if (MPT->isMemberFunctionPointer()) 2882 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2883 else 2884 GetNullMemberPointerFields(MPT, fields); 2885 assert(!fields.empty()); 2886 llvm::Value *FirstField = MemPtr; 2887 if (MemPtr->getType()->isStructTy()) 2888 FirstField = Builder.CreateExtractValue(MemPtr, 0); 2889 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 2890 2891 // For function member pointers, we only need to test the function pointer 2892 // field. The other fields if any can be garbage. 2893 if (MPT->isMemberFunctionPointer()) 2894 return Res; 2895 2896 // Otherwise, emit a series of compares and combine the results. 2897 for (int I = 1, E = fields.size(); I < E; ++I) { 2898 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 2899 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 2900 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 2901 } 2902 return Res; 2903 } 2904 2905 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 2906 llvm::Constant *Val) { 2907 // Function pointers are null if the pointer in the first field is null. 2908 if (MPT->isMemberFunctionPointer()) { 2909 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 2910 Val->getAggregateElement(0U) : Val; 2911 return FirstField->isNullValue(); 2912 } 2913 2914 // If it's not a function pointer and it's zero initializable, we can easily 2915 // check zero. 2916 if (isZeroInitializable(MPT) && Val->isNullValue()) 2917 return true; 2918 2919 // Otherwise, break down all the fields for comparison. Hopefully these 2920 // little Constants are reused, while a big null struct might not be. 2921 llvm::SmallVector<llvm::Constant *, 4> Fields; 2922 GetNullMemberPointerFields(MPT, Fields); 2923 if (Fields.size() == 1) { 2924 assert(Val->getType()->isIntegerTy()); 2925 return Val == Fields[0]; 2926 } 2927 2928 unsigned I, E; 2929 for (I = 0, E = Fields.size(); I != E; ++I) { 2930 if (Val->getAggregateElement(I) != Fields[I]) 2931 break; 2932 } 2933 return I == E; 2934 } 2935 2936 llvm::Value * 2937 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 2938 Address This, 2939 llvm::Value *VBPtrOffset, 2940 llvm::Value *VBTableOffset, 2941 llvm::Value **VBPtrOut) { 2942 CGBuilderTy &Builder = CGF.Builder; 2943 // Load the vbtable pointer from the vbptr in the instance. 2944 This = Builder.CreateElementBitCast(This, CGM.Int8Ty); 2945 llvm::Value *VBPtr = 2946 Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr"); 2947 if (VBPtrOut) *VBPtrOut = VBPtr; 2948 VBPtr = Builder.CreateBitCast(VBPtr, 2949 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace())); 2950 2951 CharUnits VBPtrAlign; 2952 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 2953 VBPtrAlign = This.getAlignment().alignmentAtOffset( 2954 CharUnits::fromQuantity(CI->getSExtValue())); 2955 } else { 2956 VBPtrAlign = CGF.getPointerAlign(); 2957 } 2958 2959 llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable"); 2960 2961 // Translate from byte offset to table index. It improves analyzability. 2962 llvm::Value *VBTableIndex = Builder.CreateAShr( 2963 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 2964 "vbtindex", /*isExact=*/true); 2965 2966 // Load an i32 offset from the vb-table. 2967 llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex); 2968 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); 2969 return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4), 2970 "vbase_offs"); 2971 } 2972 2973 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 2974 // it. 2975 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 2976 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 2977 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 2978 CGBuilderTy &Builder = CGF.Builder; 2979 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty); 2980 llvm::BasicBlock *OriginalBB = nullptr; 2981 llvm::BasicBlock *SkipAdjustBB = nullptr; 2982 llvm::BasicBlock *VBaseAdjustBB = nullptr; 2983 2984 // In the unspecified inheritance model, there might not be a vbtable at all, 2985 // in which case we need to skip the virtual base lookup. If there is a 2986 // vbtable, the first entry is a no-op entry that gives back the original 2987 // base, so look for a virtual base adjustment offset of zero. 2988 if (VBPtrOffset) { 2989 OriginalBB = Builder.GetInsertBlock(); 2990 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 2991 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 2992 llvm::Value *IsVirtual = 2993 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 2994 "memptr.is_vbase"); 2995 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 2996 CGF.EmitBlock(VBaseAdjustBB); 2997 } 2998 2999 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3000 // know the vbptr offset. 3001 if (!VBPtrOffset) { 3002 CharUnits offs = CharUnits::Zero(); 3003 if (!RD->hasDefinition()) { 3004 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3005 unsigned DiagID = Diags.getCustomDiagID( 3006 DiagnosticsEngine::Error, 3007 "member pointer representation requires a " 3008 "complete class type for %0 to perform this expression"); 3009 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3010 } else if (RD->getNumVBases()) 3011 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3012 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3013 } 3014 llvm::Value *VBPtr = nullptr; 3015 llvm::Value *VBaseOffs = 3016 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3017 llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs); 3018 3019 // Merge control flow with the case where we didn't have to adjust. 3020 if (VBaseAdjustBB) { 3021 Builder.CreateBr(SkipAdjustBB); 3022 CGF.EmitBlock(SkipAdjustBB); 3023 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3024 Phi->addIncoming(Base.getPointer(), OriginalBB); 3025 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3026 return Phi; 3027 } 3028 return AdjustedBase; 3029 } 3030 3031 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3032 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3033 const MemberPointerType *MPT) { 3034 assert(MPT->isMemberDataPointer()); 3035 unsigned AS = Base.getAddressSpace(); 3036 llvm::Type *PType = 3037 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 3038 CGBuilderTy &Builder = CGF.Builder; 3039 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3040 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 3041 3042 // Extract the fields we need, regardless of model. We'll apply them if we 3043 // have them. 3044 llvm::Value *FieldOffset = MemPtr; 3045 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3046 llvm::Value *VBPtrOffset = nullptr; 3047 if (MemPtr->getType()->isStructTy()) { 3048 // We need to extract values. 3049 unsigned I = 0; 3050 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3051 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 3052 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3053 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 3054 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3055 } 3056 3057 llvm::Value *Addr; 3058 if (VirtualBaseAdjustmentOffset) { 3059 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3060 VBPtrOffset); 3061 } else { 3062 Addr = Base.getPointer(); 3063 } 3064 3065 // Cast to char*. 3066 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS)); 3067 3068 // Apply the offset, which we assume is non-null. 3069 Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset"); 3070 3071 // Cast the address to the appropriate pointer type, adopting the address 3072 // space of the base pointer. 3073 return Builder.CreateBitCast(Addr, PType); 3074 } 3075 3076 llvm::Value * 3077 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3078 const CastExpr *E, 3079 llvm::Value *Src) { 3080 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3081 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3082 E->getCastKind() == CK_ReinterpretMemberPointer); 3083 3084 // Use constant emission if we can. 3085 if (isa<llvm::Constant>(Src)) 3086 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3087 3088 // We may be adding or dropping fields from the member pointer, so we need 3089 // both types and the inheritance models of both records. 3090 const MemberPointerType *SrcTy = 3091 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3092 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3093 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3094 3095 // If the classes use the same null representation, reinterpret_cast is a nop. 3096 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3097 if (IsReinterpret && IsFunc) 3098 return Src; 3099 3100 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3101 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3102 if (IsReinterpret && 3103 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3104 return Src; 3105 3106 CGBuilderTy &Builder = CGF.Builder; 3107 3108 // Branch past the conversion if Src is null. 3109 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3110 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3111 3112 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3113 // pointer value of the destination type. 3114 if (IsReinterpret) { 3115 // For reinterpret casts, sema ensures that src and dst are both functions 3116 // or data and have the same size, which means the LLVM types should match. 3117 assert(Src->getType() == DstNull->getType()); 3118 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3119 } 3120 3121 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3122 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3123 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3124 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3125 CGF.EmitBlock(ConvertBB); 3126 3127 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3128 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3129 Builder); 3130 3131 Builder.CreateBr(ContinueBB); 3132 3133 // In the continuation, choose between DstNull and Dst. 3134 CGF.EmitBlock(ContinueBB); 3135 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3136 Phi->addIncoming(DstNull, OriginalBB); 3137 Phi->addIncoming(Dst, ConvertBB); 3138 return Phi; 3139 } 3140 3141 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3142 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3143 CastExpr::path_const_iterator PathBegin, 3144 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3145 CGBuilderTy &Builder) { 3146 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3147 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3148 MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel(); 3149 MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel(); 3150 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3151 bool IsConstant = isa<llvm::Constant>(Src); 3152 3153 // Decompose src. 3154 llvm::Value *FirstField = Src; 3155 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3156 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3157 llvm::Value *VBPtrOffset = getZeroInt(); 3158 if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) { 3159 // We need to extract values. 3160 unsigned I = 0; 3161 FirstField = Builder.CreateExtractValue(Src, I++); 3162 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance)) 3163 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3164 if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance)) 3165 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3166 if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) 3167 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3168 } 3169 3170 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3171 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3172 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3173 3174 // For data pointers, we adjust the field offset directly. For functions, we 3175 // have a separate field. 3176 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3177 3178 // The virtual inheritance model has a quirk: the virtual base table is always 3179 // referenced when dereferencing a member pointer even if the member pointer 3180 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3181 // to point backwards to the top of the MDC from the first VBase. Undo this 3182 // adjustment to normalize the member pointer. 3183 llvm::Value *SrcVBIndexEqZero = 3184 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3185 if (SrcInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) { 3186 if (int64_t SrcOffsetToFirstVBase = 3187 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3188 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3189 SrcVBIndexEqZero, 3190 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3191 getZeroInt()); 3192 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3193 } 3194 } 3195 3196 // A non-zero vbindex implies that we are dealing with a source member in a 3197 // floating virtual base in addition to some non-virtual offset. If the 3198 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3199 // fixed, base. The difference between these two cases is that the vbindex + 3200 // nvoffset *always* point to the member regardless of what context they are 3201 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3202 // base requires explicit nv adjustment. 3203 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3204 CGM.IntTy, 3205 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3206 .getQuantity()); 3207 3208 llvm::Value *NVDisp; 3209 if (IsDerivedToBase) 3210 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3211 else 3212 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3213 3214 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3215 3216 // Update the vbindex to an appropriate value in the destination because 3217 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3218 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3219 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance) && 3220 MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) { 3221 if (llvm::GlobalVariable *VDispMap = 3222 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3223 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3224 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3225 if (IsConstant) { 3226 llvm::Constant *Mapping = VDispMap->getInitializer(); 3227 VirtualBaseAdjustmentOffset = 3228 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3229 } else { 3230 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3231 VirtualBaseAdjustmentOffset = 3232 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs), 3233 CharUnits::fromQuantity(4)); 3234 } 3235 3236 DstVBIndexEqZero = 3237 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3238 } 3239 } 3240 3241 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3242 // it to the offset of the vbptr. 3243 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) { 3244 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3245 CGM.IntTy, 3246 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3247 VBPtrOffset = 3248 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3249 } 3250 3251 // Likewise, apply a similar adjustment so that dereferencing the member 3252 // pointer correctly accounts for the distance between the start of the first 3253 // virtual base and the top of the MDC. 3254 if (DstInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) { 3255 if (int64_t DstOffsetToFirstVBase = 3256 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3257 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3258 DstVBIndexEqZero, 3259 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3260 getZeroInt()); 3261 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3262 } 3263 } 3264 3265 // Recompose dst from the null struct and the adjusted fields from src. 3266 llvm::Value *Dst; 3267 if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) { 3268 Dst = FirstField; 3269 } else { 3270 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3271 unsigned Idx = 0; 3272 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3273 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance)) 3274 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3275 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) 3276 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3277 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance)) 3278 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3279 } 3280 return Dst; 3281 } 3282 3283 llvm::Constant * 3284 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3285 llvm::Constant *Src) { 3286 const MemberPointerType *SrcTy = 3287 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3288 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3289 3290 CastKind CK = E->getCastKind(); 3291 3292 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3293 E->path_end(), Src); 3294 } 3295 3296 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3297 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3298 CastExpr::path_const_iterator PathBegin, 3299 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3300 assert(CK == CK_DerivedToBaseMemberPointer || 3301 CK == CK_BaseToDerivedMemberPointer || 3302 CK == CK_ReinterpretMemberPointer); 3303 // If src is null, emit a new null for dst. We can't return src because dst 3304 // might have a new representation. 3305 if (MemberPointerConstantIsNull(SrcTy, Src)) 3306 return EmitNullMemberPointer(DstTy); 3307 3308 // We don't need to do anything for reinterpret_casts of non-null member 3309 // pointers. We should only get here when the two type representations have 3310 // the same size. 3311 if (CK == CK_ReinterpretMemberPointer) 3312 return Src; 3313 3314 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3315 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3316 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3317 3318 return Dst; 3319 } 3320 3321 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3322 CodeGenFunction &CGF, const Expr *E, Address This, 3323 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3324 const MemberPointerType *MPT) { 3325 assert(MPT->isMemberFunctionPointer()); 3326 const FunctionProtoType *FPT = 3327 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3328 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3329 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( 3330 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); 3331 CGBuilderTy &Builder = CGF.Builder; 3332 3333 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 3334 3335 // Extract the fields we need, regardless of model. We'll apply them if we 3336 // have them. 3337 llvm::Value *FunctionPointer = MemPtr; 3338 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3339 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3340 llvm::Value *VBPtrOffset = nullptr; 3341 if (MemPtr->getType()->isStructTy()) { 3342 // We need to extract values. 3343 unsigned I = 0; 3344 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3345 if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance)) 3346 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3347 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 3348 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3349 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 3350 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3351 } 3352 3353 if (VirtualBaseAdjustmentOffset) { 3354 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3355 VirtualBaseAdjustmentOffset, VBPtrOffset); 3356 } else { 3357 ThisPtrForCall = This.getPointer(); 3358 } 3359 3360 if (NonVirtualBaseAdjustment) { 3361 // Apply the adjustment and cast back to the original struct type. 3362 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy); 3363 Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment); 3364 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(), 3365 "this.adjusted"); 3366 } 3367 3368 FunctionPointer = 3369 Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); 3370 CGCallee Callee(FPT, FunctionPointer); 3371 return Callee; 3372 } 3373 3374 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3375 return new MicrosoftCXXABI(CGM); 3376 } 3377 3378 // MS RTTI Overview: 3379 // The run time type information emitted by cl.exe contains 5 distinct types of 3380 // structures. Many of them reference each other. 3381 // 3382 // TypeInfo: Static classes that are returned by typeid. 3383 // 3384 // CompleteObjectLocator: Referenced by vftables. They contain information 3385 // required for dynamic casting, including OffsetFromTop. They also contain 3386 // a reference to the TypeInfo for the type and a reference to the 3387 // CompleteHierarchyDescriptor for the type. 3388 // 3389 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3390 // Used during dynamic_cast to walk a class hierarchy. References a base 3391 // class array and the size of said array. 3392 // 3393 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3394 // somewhat of a misnomer because the most derived class is also in the list 3395 // as well as multiple copies of virtual bases (if they occur multiple times 3396 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3397 // every path in the hierarchy, in pre-order depth first order. Note, we do 3398 // not declare a specific llvm type for BaseClassArray, it's merely an array 3399 // of BaseClassDescriptor pointers. 3400 // 3401 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3402 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3403 // BaseClassArray is. It contains information about a class within a 3404 // hierarchy such as: is this base is ambiguous and what is its offset in the 3405 // vbtable. The names of the BaseClassDescriptors have all of their fields 3406 // mangled into them so they can be aggressively deduplicated by the linker. 3407 3408 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3409 StringRef MangledName("??_7type_info@@6B@"); 3410 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3411 return VTable; 3412 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3413 /*isConstant=*/true, 3414 llvm::GlobalVariable::ExternalLinkage, 3415 /*Initializer=*/nullptr, MangledName); 3416 } 3417 3418 namespace { 3419 3420 /// A Helper struct that stores information about a class in a class 3421 /// hierarchy. The information stored in these structs struct is used during 3422 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3423 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3424 // implicit depth first pre-order tree connectivity. getFirstChild and 3425 // getNextSibling allow us to walk the tree efficiently. 3426 struct MSRTTIClass { 3427 enum { 3428 IsPrivateOnPath = 1 | 8, 3429 IsAmbiguous = 2, 3430 IsPrivate = 4, 3431 IsVirtual = 16, 3432 HasHierarchyDescriptor = 64 3433 }; 3434 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3435 uint32_t initialize(const MSRTTIClass *Parent, 3436 const CXXBaseSpecifier *Specifier); 3437 3438 MSRTTIClass *getFirstChild() { return this + 1; } 3439 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3440 return Child + 1 + Child->NumBases; 3441 } 3442 3443 const CXXRecordDecl *RD, *VirtualRoot; 3444 uint32_t Flags, NumBases, OffsetInVBase; 3445 }; 3446 3447 /// Recursively initialize the base class array. 3448 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3449 const CXXBaseSpecifier *Specifier) { 3450 Flags = HasHierarchyDescriptor; 3451 if (!Parent) { 3452 VirtualRoot = nullptr; 3453 OffsetInVBase = 0; 3454 } else { 3455 if (Specifier->getAccessSpecifier() != AS_public) 3456 Flags |= IsPrivate | IsPrivateOnPath; 3457 if (Specifier->isVirtual()) { 3458 Flags |= IsVirtual; 3459 VirtualRoot = RD; 3460 OffsetInVBase = 0; 3461 } else { 3462 if (Parent->Flags & IsPrivateOnPath) 3463 Flags |= IsPrivateOnPath; 3464 VirtualRoot = Parent->VirtualRoot; 3465 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3466 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3467 } 3468 } 3469 NumBases = 0; 3470 MSRTTIClass *Child = getFirstChild(); 3471 for (const CXXBaseSpecifier &Base : RD->bases()) { 3472 NumBases += Child->initialize(this, &Base) + 1; 3473 Child = getNextChild(Child); 3474 } 3475 return NumBases; 3476 } 3477 3478 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3479 switch (Ty->getLinkage()) { 3480 case NoLinkage: 3481 case InternalLinkage: 3482 case UniqueExternalLinkage: 3483 return llvm::GlobalValue::InternalLinkage; 3484 3485 case VisibleNoLinkage: 3486 case ModuleInternalLinkage: 3487 case ModuleLinkage: 3488 case ExternalLinkage: 3489 return llvm::GlobalValue::LinkOnceODRLinkage; 3490 } 3491 llvm_unreachable("Invalid linkage!"); 3492 } 3493 3494 /// An ephemeral helper class for building MS RTTI types. It caches some 3495 /// calls to the module and information about the most derived class in a 3496 /// hierarchy. 3497 struct MSRTTIBuilder { 3498 enum { 3499 HasBranchingHierarchy = 1, 3500 HasVirtualBranchingHierarchy = 2, 3501 HasAmbiguousBases = 4 3502 }; 3503 3504 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3505 : CGM(ABI.CGM), Context(CGM.getContext()), 3506 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3507 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3508 ABI(ABI) {} 3509 3510 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3511 llvm::GlobalVariable * 3512 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3513 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3514 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3515 3516 CodeGenModule &CGM; 3517 ASTContext &Context; 3518 llvm::LLVMContext &VMContext; 3519 llvm::Module &Module; 3520 const CXXRecordDecl *RD; 3521 llvm::GlobalVariable::LinkageTypes Linkage; 3522 MicrosoftCXXABI &ABI; 3523 }; 3524 3525 } // namespace 3526 3527 /// Recursively serializes a class hierarchy in pre-order depth first 3528 /// order. 3529 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3530 const CXXRecordDecl *RD) { 3531 Classes.push_back(MSRTTIClass(RD)); 3532 for (const CXXBaseSpecifier &Base : RD->bases()) 3533 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3534 } 3535 3536 /// Find ambiguity among base classes. 3537 static void 3538 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3539 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3540 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3541 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3542 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3543 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3544 !VirtualBases.insert(Class->RD).second) { 3545 Class = MSRTTIClass::getNextChild(Class); 3546 continue; 3547 } 3548 if (!UniqueBases.insert(Class->RD).second) 3549 AmbiguousBases.insert(Class->RD); 3550 Class++; 3551 } 3552 if (AmbiguousBases.empty()) 3553 return; 3554 for (MSRTTIClass &Class : Classes) 3555 if (AmbiguousBases.count(Class.RD)) 3556 Class.Flags |= MSRTTIClass::IsAmbiguous; 3557 } 3558 3559 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3560 SmallString<256> MangledName; 3561 { 3562 llvm::raw_svector_ostream Out(MangledName); 3563 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3564 } 3565 3566 // Check to see if we've already declared this ClassHierarchyDescriptor. 3567 if (auto CHD = Module.getNamedGlobal(MangledName)) 3568 return CHD; 3569 3570 // Serialize the class hierarchy and initialize the CHD Fields. 3571 SmallVector<MSRTTIClass, 8> Classes; 3572 serializeClassHierarchy(Classes, RD); 3573 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3574 detectAmbiguousBases(Classes); 3575 int Flags = 0; 3576 for (auto Class : Classes) { 3577 if (Class.RD->getNumBases() > 1) 3578 Flags |= HasBranchingHierarchy; 3579 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3580 // believe the field isn't actually used. 3581 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3582 Flags |= HasAmbiguousBases; 3583 } 3584 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3585 Flags |= HasVirtualBranchingHierarchy; 3586 // These gep indices are used to get the address of the first element of the 3587 // base class array. 3588 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3589 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3590 3591 // Forward-declare the class hierarchy descriptor 3592 auto Type = ABI.getClassHierarchyDescriptorType(); 3593 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3594 /*Initializer=*/nullptr, 3595 MangledName); 3596 if (CHD->isWeakForLinker()) 3597 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3598 3599 auto *Bases = getBaseClassArray(Classes); 3600 3601 // Initialize the base class ClassHierarchyDescriptor. 3602 llvm::Constant *Fields[] = { 3603 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3604 llvm::ConstantInt::get(CGM.IntTy, Flags), 3605 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3606 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3607 Bases->getValueType(), Bases, 3608 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3609 }; 3610 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3611 return CHD; 3612 } 3613 3614 llvm::GlobalVariable * 3615 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3616 SmallString<256> MangledName; 3617 { 3618 llvm::raw_svector_ostream Out(MangledName); 3619 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3620 } 3621 3622 // Forward-declare the base class array. 3623 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3624 // mode) bytes of padding. We provide a pointer sized amount of padding by 3625 // adding +1 to Classes.size(). The sections have pointer alignment and are 3626 // marked pick-any so it shouldn't matter. 3627 llvm::Type *PtrType = ABI.getImageRelativeType( 3628 ABI.getBaseClassDescriptorType()->getPointerTo()); 3629 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3630 auto *BCA = 3631 new llvm::GlobalVariable(Module, ArrType, 3632 /*isConstant=*/true, Linkage, 3633 /*Initializer=*/nullptr, MangledName); 3634 if (BCA->isWeakForLinker()) 3635 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3636 3637 // Initialize the BaseClassArray. 3638 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3639 for (MSRTTIClass &Class : Classes) 3640 BaseClassArrayData.push_back( 3641 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3642 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3643 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3644 return BCA; 3645 } 3646 3647 llvm::GlobalVariable * 3648 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3649 // Compute the fields for the BaseClassDescriptor. They are computed up front 3650 // because they are mangled into the name of the object. 3651 uint32_t OffsetInVBTable = 0; 3652 int32_t VBPtrOffset = -1; 3653 if (Class.VirtualRoot) { 3654 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3655 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3656 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3657 } 3658 3659 SmallString<256> MangledName; 3660 { 3661 llvm::raw_svector_ostream Out(MangledName); 3662 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3663 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3664 Class.Flags, Out); 3665 } 3666 3667 // Check to see if we've already declared this object. 3668 if (auto BCD = Module.getNamedGlobal(MangledName)) 3669 return BCD; 3670 3671 // Forward-declare the base class descriptor. 3672 auto Type = ABI.getBaseClassDescriptorType(); 3673 auto BCD = 3674 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3675 /*Initializer=*/nullptr, MangledName); 3676 if (BCD->isWeakForLinker()) 3677 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3678 3679 // Initialize the BaseClassDescriptor. 3680 llvm::Constant *Fields[] = { 3681 ABI.getImageRelativeConstant( 3682 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3683 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3684 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3685 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3686 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3687 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3688 ABI.getImageRelativeConstant( 3689 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3690 }; 3691 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3692 return BCD; 3693 } 3694 3695 llvm::GlobalVariable * 3696 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3697 SmallString<256> MangledName; 3698 { 3699 llvm::raw_svector_ostream Out(MangledName); 3700 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3701 } 3702 3703 // Check to see if we've already computed this complete object locator. 3704 if (auto COL = Module.getNamedGlobal(MangledName)) 3705 return COL; 3706 3707 // Compute the fields of the complete object locator. 3708 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3709 int VFPtrOffset = 0; 3710 // The offset includes the vtordisp if one exists. 3711 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3712 if (Context.getASTRecordLayout(RD) 3713 .getVBaseOffsetsMap() 3714 .find(VBase) 3715 ->second.hasVtorDisp()) 3716 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3717 3718 // Forward-declare the complete object locator. 3719 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3720 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3721 /*Initializer=*/nullptr, MangledName); 3722 3723 // Initialize the CompleteObjectLocator. 3724 llvm::Constant *Fields[] = { 3725 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3726 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3727 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3728 ABI.getImageRelativeConstant( 3729 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3730 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3731 ABI.getImageRelativeConstant(COL), 3732 }; 3733 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3734 if (!ABI.isImageRelative()) 3735 FieldsRef = FieldsRef.drop_back(); 3736 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3737 if (COL->isWeakForLinker()) 3738 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3739 return COL; 3740 } 3741 3742 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3743 bool &IsConst, bool &IsVolatile, 3744 bool &IsUnaligned) { 3745 T = Context.getExceptionObjectType(T); 3746 3747 // C++14 [except.handle]p3: 3748 // A handler is a match for an exception object of type E if [...] 3749 // - the handler is of type cv T or const T& where T is a pointer type and 3750 // E is a pointer type that can be converted to T by [...] 3751 // - a qualification conversion 3752 IsConst = false; 3753 IsVolatile = false; 3754 IsUnaligned = false; 3755 QualType PointeeType = T->getPointeeType(); 3756 if (!PointeeType.isNull()) { 3757 IsConst = PointeeType.isConstQualified(); 3758 IsVolatile = PointeeType.isVolatileQualified(); 3759 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3760 } 3761 3762 // Member pointer types like "const int A::*" are represented by having RTTI 3763 // for "int A::*" and separately storing the const qualifier. 3764 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3765 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3766 MPTy->getClass()); 3767 3768 // Pointer types like "const int * const *" are represented by having RTTI 3769 // for "const int **" and separately storing the const qualifier. 3770 if (T->isPointerType()) 3771 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3772 3773 return T; 3774 } 3775 3776 CatchTypeInfo 3777 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3778 QualType CatchHandlerType) { 3779 // TypeDescriptors for exceptions never have qualified pointer types, 3780 // qualifiers are stored separately in order to support qualification 3781 // conversions. 3782 bool IsConst, IsVolatile, IsUnaligned; 3783 Type = 3784 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3785 3786 bool IsReference = CatchHandlerType->isReferenceType(); 3787 3788 uint32_t Flags = 0; 3789 if (IsConst) 3790 Flags |= 1; 3791 if (IsVolatile) 3792 Flags |= 2; 3793 if (IsUnaligned) 3794 Flags |= 4; 3795 if (IsReference) 3796 Flags |= 8; 3797 3798 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3799 Flags}; 3800 } 3801 3802 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3803 /// llvm::GlobalVariable * because different type descriptors have different 3804 /// types, and need to be abstracted. They are abstracting by casting the 3805 /// address to an Int8PtrTy. 3806 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3807 SmallString<256> MangledName; 3808 { 3809 llvm::raw_svector_ostream Out(MangledName); 3810 getMangleContext().mangleCXXRTTI(Type, Out); 3811 } 3812 3813 // Check to see if we've already declared this TypeDescriptor. 3814 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3815 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); 3816 3817 // Note for the future: If we would ever like to do deferred emission of 3818 // RTTI, check if emitting vtables opportunistically need any adjustment. 3819 3820 // Compute the fields for the TypeDescriptor. 3821 SmallString<256> TypeInfoString; 3822 { 3823 llvm::raw_svector_ostream Out(TypeInfoString); 3824 getMangleContext().mangleCXXRTTIName(Type, Out); 3825 } 3826 3827 // Declare and initialize the TypeDescriptor. 3828 llvm::Constant *Fields[] = { 3829 getTypeInfoVTable(CGM), // VFPtr 3830 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 3831 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 3832 llvm::StructType *TypeDescriptorType = 3833 getTypeDescriptorType(TypeInfoString); 3834 auto *Var = new llvm::GlobalVariable( 3835 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 3836 getLinkageForRTTI(Type), 3837 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 3838 MangledName); 3839 if (Var->isWeakForLinker()) 3840 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 3841 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy); 3842 } 3843 3844 /// Gets or a creates a Microsoft CompleteObjectLocator. 3845 llvm::GlobalVariable * 3846 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 3847 const VPtrInfo &Info) { 3848 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 3849 } 3850 3851 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 3852 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 3853 // There are no constructor variants, always emit the complete destructor. 3854 llvm::Function *Fn = 3855 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 3856 CGM.maybeSetTrivialComdat(*ctor, *Fn); 3857 return; 3858 } 3859 3860 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 3861 3862 // Emit the base destructor if the base and complete (vbase) destructors are 3863 // equivalent. This effectively implements -mconstructor-aliases as part of 3864 // the ABI. 3865 if (GD.getDtorType() == Dtor_Complete && 3866 dtor->getParent()->getNumVBases() == 0) 3867 GD = GD.getWithDtorType(Dtor_Base); 3868 3869 // The base destructor is equivalent to the base destructor of its 3870 // base class if there is exactly one non-virtual base class with a 3871 // non-trivial destructor, there are no fields with a non-trivial 3872 // destructor, and the body of the destructor is trivial. 3873 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 3874 return; 3875 3876 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 3877 if (Fn->isWeakForLinker()) 3878 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 3879 } 3880 3881 llvm::Function * 3882 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 3883 CXXCtorType CT) { 3884 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 3885 3886 // Calculate the mangled name. 3887 SmallString<256> ThunkName; 3888 llvm::raw_svector_ostream Out(ThunkName); 3889 getMangleContext().mangleCXXCtor(CD, CT, Out); 3890 3891 // If the thunk has been generated previously, just return it. 3892 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 3893 return cast<llvm::Function>(GV); 3894 3895 // Create the llvm::Function. 3896 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 3897 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 3898 const CXXRecordDecl *RD = CD->getParent(); 3899 QualType RecordTy = getContext().getRecordType(RD); 3900 llvm::Function *ThunkFn = llvm::Function::Create( 3901 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 3902 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 3903 FnInfo.getEffectiveCallingConvention())); 3904 if (ThunkFn->isWeakForLinker()) 3905 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 3906 bool IsCopy = CT == Ctor_CopyingClosure; 3907 3908 // Start codegen. 3909 CodeGenFunction CGF(CGM); 3910 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 3911 3912 // Build FunctionArgs. 3913 FunctionArgList FunctionArgs; 3914 3915 // A constructor always starts with a 'this' pointer as its first argument. 3916 buildThisParam(CGF, FunctionArgs); 3917 3918 // Following the 'this' pointer is a reference to the source object that we 3919 // are copying from. 3920 ImplicitParamDecl SrcParam( 3921 getContext(), /*DC=*/nullptr, SourceLocation(), 3922 &getContext().Idents.get("src"), 3923 getContext().getLValueReferenceType(RecordTy, 3924 /*SpelledAsLValue=*/true), 3925 ImplicitParamDecl::Other); 3926 if (IsCopy) 3927 FunctionArgs.push_back(&SrcParam); 3928 3929 // Constructors for classes which utilize virtual bases have an additional 3930 // parameter which indicates whether or not it is being delegated to by a more 3931 // derived constructor. 3932 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 3933 SourceLocation(), 3934 &getContext().Idents.get("is_most_derived"), 3935 getContext().IntTy, ImplicitParamDecl::Other); 3936 // Only add the parameter to the list if the class has virtual bases. 3937 if (RD->getNumVBases() > 0) 3938 FunctionArgs.push_back(&IsMostDerived); 3939 3940 // Start defining the function. 3941 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3942 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 3943 FunctionArgs, CD->getLocation(), SourceLocation()); 3944 // Create a scope with an artificial location for the body of this function. 3945 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 3946 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 3947 llvm::Value *This = getThisValue(CGF); 3948 3949 llvm::Value *SrcVal = 3950 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 3951 : nullptr; 3952 3953 CallArgList Args; 3954 3955 // Push the this ptr. 3956 Args.add(RValue::get(This), CD->getThisType()); 3957 3958 // Push the src ptr. 3959 if (SrcVal) 3960 Args.add(RValue::get(SrcVal), SrcParam.getType()); 3961 3962 // Add the rest of the default arguments. 3963 SmallVector<const Stmt *, 4> ArgVec; 3964 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 3965 for (const ParmVarDecl *PD : params) { 3966 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 3967 ArgVec.push_back(PD->getDefaultArg()); 3968 } 3969 3970 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 3971 3972 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 3973 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 3974 3975 // Insert any ABI-specific implicit constructor arguments. 3976 AddedStructorArgs ExtraArgs = 3977 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 3978 /*ForVirtualBase=*/false, 3979 /*Delegating=*/false, Args); 3980 // Call the destructor with our arguments. 3981 llvm::Constant *CalleePtr = 3982 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 3983 CGCallee Callee = 3984 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 3985 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 3986 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 3987 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 3988 3989 Cleanups.ForceCleanup(); 3990 3991 // Emit the ret instruction, remove any temporary instructions created for the 3992 // aid of CodeGen. 3993 CGF.FinishFunction(SourceLocation()); 3994 3995 return ThunkFn; 3996 } 3997 3998 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 3999 uint32_t NVOffset, 4000 int32_t VBPtrOffset, 4001 uint32_t VBIndex) { 4002 assert(!T->isReferenceType()); 4003 4004 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4005 const CXXConstructorDecl *CD = 4006 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4007 CXXCtorType CT = Ctor_Complete; 4008 if (CD) 4009 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4010 CT = Ctor_CopyingClosure; 4011 4012 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4013 SmallString<256> MangledName; 4014 { 4015 llvm::raw_svector_ostream Out(MangledName); 4016 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4017 VBPtrOffset, VBIndex, Out); 4018 } 4019 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4020 return getImageRelativeConstant(GV); 4021 4022 // The TypeDescriptor is used by the runtime to determine if a catch handler 4023 // is appropriate for the exception object. 4024 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4025 4026 // The runtime is responsible for calling the copy constructor if the 4027 // exception is caught by value. 4028 llvm::Constant *CopyCtor; 4029 if (CD) { 4030 if (CT == Ctor_CopyingClosure) 4031 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4032 else 4033 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4034 4035 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy); 4036 } else { 4037 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4038 } 4039 CopyCtor = getImageRelativeConstant(CopyCtor); 4040 4041 bool IsScalar = !RD; 4042 bool HasVirtualBases = false; 4043 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4044 QualType PointeeType = T; 4045 if (T->isPointerType()) 4046 PointeeType = T->getPointeeType(); 4047 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4048 HasVirtualBases = RD->getNumVBases() > 0; 4049 if (IdentifierInfo *II = RD->getIdentifier()) 4050 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4051 } 4052 4053 // Encode the relevant CatchableType properties into the Flags bitfield. 4054 // FIXME: Figure out how bits 2 or 8 can get set. 4055 uint32_t Flags = 0; 4056 if (IsScalar) 4057 Flags |= 1; 4058 if (HasVirtualBases) 4059 Flags |= 4; 4060 if (IsStdBadAlloc) 4061 Flags |= 16; 4062 4063 llvm::Constant *Fields[] = { 4064 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4065 TD, // TypeDescriptor 4066 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4067 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4068 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4069 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4070 CopyCtor // CopyCtor 4071 }; 4072 llvm::StructType *CTType = getCatchableTypeType(); 4073 auto *GV = new llvm::GlobalVariable( 4074 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4075 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4076 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4077 GV->setSection(".xdata"); 4078 if (GV->isWeakForLinker()) 4079 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4080 return getImageRelativeConstant(GV); 4081 } 4082 4083 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4084 assert(!T->isReferenceType()); 4085 4086 // See if we've already generated a CatchableTypeArray for this type before. 4087 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4088 if (CTA) 4089 return CTA; 4090 4091 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4092 // using a SmallSetVector. Duplicates may arise due to virtual bases 4093 // occurring more than once in the hierarchy. 4094 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4095 4096 // C++14 [except.handle]p3: 4097 // A handler is a match for an exception object of type E if [...] 4098 // - the handler is of type cv T or cv T& and T is an unambiguous public 4099 // base class of E, or 4100 // - the handler is of type cv T or const T& where T is a pointer type and 4101 // E is a pointer type that can be converted to T by [...] 4102 // - a standard pointer conversion (4.10) not involving conversions to 4103 // pointers to private or protected or ambiguous classes 4104 const CXXRecordDecl *MostDerivedClass = nullptr; 4105 bool IsPointer = T->isPointerType(); 4106 if (IsPointer) 4107 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4108 else 4109 MostDerivedClass = T->getAsCXXRecordDecl(); 4110 4111 // Collect all the unambiguous public bases of the MostDerivedClass. 4112 if (MostDerivedClass) { 4113 const ASTContext &Context = getContext(); 4114 const ASTRecordLayout &MostDerivedLayout = 4115 Context.getASTRecordLayout(MostDerivedClass); 4116 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4117 SmallVector<MSRTTIClass, 8> Classes; 4118 serializeClassHierarchy(Classes, MostDerivedClass); 4119 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4120 detectAmbiguousBases(Classes); 4121 for (const MSRTTIClass &Class : Classes) { 4122 // Skip any ambiguous or private bases. 4123 if (Class.Flags & 4124 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4125 continue; 4126 // Write down how to convert from a derived pointer to a base pointer. 4127 uint32_t OffsetInVBTable = 0; 4128 int32_t VBPtrOffset = -1; 4129 if (Class.VirtualRoot) { 4130 OffsetInVBTable = 4131 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4132 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4133 } 4134 4135 // Turn our record back into a pointer if the exception object is a 4136 // pointer. 4137 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4138 if (IsPointer) 4139 RTTITy = Context.getPointerType(RTTITy); 4140 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4141 VBPtrOffset, OffsetInVBTable)); 4142 } 4143 } 4144 4145 // C++14 [except.handle]p3: 4146 // A handler is a match for an exception object of type E if 4147 // - The handler is of type cv T or cv T& and E and T are the same type 4148 // (ignoring the top-level cv-qualifiers) 4149 CatchableTypes.insert(getCatchableType(T)); 4150 4151 // C++14 [except.handle]p3: 4152 // A handler is a match for an exception object of type E if 4153 // - the handler is of type cv T or const T& where T is a pointer type and 4154 // E is a pointer type that can be converted to T by [...] 4155 // - a standard pointer conversion (4.10) not involving conversions to 4156 // pointers to private or protected or ambiguous classes 4157 // 4158 // C++14 [conv.ptr]p2: 4159 // A prvalue of type "pointer to cv T," where T is an object type, can be 4160 // converted to a prvalue of type "pointer to cv void". 4161 if (IsPointer && T->getPointeeType()->isObjectType()) 4162 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4163 4164 // C++14 [except.handle]p3: 4165 // A handler is a match for an exception object of type E if [...] 4166 // - the handler is of type cv T or const T& where T is a pointer or 4167 // pointer to member type and E is std::nullptr_t. 4168 // 4169 // We cannot possibly list all possible pointer types here, making this 4170 // implementation incompatible with the standard. However, MSVC includes an 4171 // entry for pointer-to-void in this case. Let's do the same. 4172 if (T->isNullPtrType()) 4173 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4174 4175 uint32_t NumEntries = CatchableTypes.size(); 4176 llvm::Type *CTType = 4177 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4178 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4179 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4180 llvm::Constant *Fields[] = { 4181 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4182 llvm::ConstantArray::get( 4183 AT, llvm::makeArrayRef(CatchableTypes.begin(), 4184 CatchableTypes.end())) // CatchableTypes 4185 }; 4186 SmallString<256> MangledName; 4187 { 4188 llvm::raw_svector_ostream Out(MangledName); 4189 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4190 } 4191 CTA = new llvm::GlobalVariable( 4192 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4193 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4194 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4195 CTA->setSection(".xdata"); 4196 if (CTA->isWeakForLinker()) 4197 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4198 return CTA; 4199 } 4200 4201 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4202 bool IsConst, IsVolatile, IsUnaligned; 4203 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4204 4205 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4206 // the exception object may be caught as. 4207 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4208 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4209 // This is used as a component of the mangled name which means that we need to 4210 // know what it is in order to see if we have previously generated the 4211 // ThrowInfo. 4212 uint32_t NumEntries = 4213 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4214 ->getLimitedValue(); 4215 4216 SmallString<256> MangledName; 4217 { 4218 llvm::raw_svector_ostream Out(MangledName); 4219 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4220 NumEntries, Out); 4221 } 4222 4223 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4224 // one before. 4225 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4226 return GV; 4227 4228 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4229 // be at least as CV qualified. Encode this requirement into the Flags 4230 // bitfield. 4231 uint32_t Flags = 0; 4232 if (IsConst) 4233 Flags |= 1; 4234 if (IsVolatile) 4235 Flags |= 2; 4236 if (IsUnaligned) 4237 Flags |= 4; 4238 4239 // The cleanup-function (a destructor) must be called when the exception 4240 // object's lifetime ends. 4241 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4242 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4243 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4244 if (!DtorD->isTrivial()) 4245 CleanupFn = llvm::ConstantExpr::getBitCast( 4246 CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)), 4247 CGM.Int8PtrTy); 4248 // This is unused as far as we can tell, initialize it to null. 4249 llvm::Constant *ForwardCompat = 4250 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4251 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant( 4252 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy)); 4253 llvm::StructType *TIType = getThrowInfoType(); 4254 llvm::Constant *Fields[] = { 4255 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4256 getImageRelativeConstant(CleanupFn), // CleanupFn 4257 ForwardCompat, // ForwardCompat 4258 PointerToCatchableTypes // CatchableTypeArray 4259 }; 4260 auto *GV = new llvm::GlobalVariable( 4261 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4262 llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName)); 4263 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4264 GV->setSection(".xdata"); 4265 if (GV->isWeakForLinker()) 4266 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4267 return GV; 4268 } 4269 4270 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4271 const Expr *SubExpr = E->getSubExpr(); 4272 QualType ThrowType = SubExpr->getType(); 4273 // The exception object lives on the stack and it's address is passed to the 4274 // runtime function. 4275 Address AI = CGF.CreateMemTemp(ThrowType); 4276 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4277 /*IsInit=*/true); 4278 4279 // The so-called ThrowInfo is used to describe how the exception object may be 4280 // caught. 4281 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4282 4283 // Call into the runtime to throw the exception. 4284 llvm::Value *Args[] = { 4285 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy), 4286 TI 4287 }; 4288 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4289 } 4290 4291 std::pair<llvm::Value *, const CXXRecordDecl *> 4292 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4293 const CXXRecordDecl *RD) { 4294 std::tie(This, std::ignore, RD) = 4295 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4296 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4297 } 4298