xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 972a253a57b6f144b0e4a3e2080a2a0076ec55a0)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CRC.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/ConvertUTF.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MD5.h"
67 #include "llvm/Support/TimeProfiler.h"
68 #include "llvm/Support/X86TargetParser.h"
69 
70 using namespace clang;
71 using namespace CodeGen;
72 
73 static llvm::cl::opt<bool> LimitedCoverage(
74     "limited-coverage-experimental", llvm::cl::Hidden,
75     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
76 
77 static const char AnnotationSection[] = "llvm.metadata";
78 
79 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
80   switch (CGM.getContext().getCXXABIKind()) {
81   case TargetCXXABI::AppleARM64:
82   case TargetCXXABI::Fuchsia:
83   case TargetCXXABI::GenericAArch64:
84   case TargetCXXABI::GenericARM:
85   case TargetCXXABI::iOS:
86   case TargetCXXABI::WatchOS:
87   case TargetCXXABI::GenericMIPS:
88   case TargetCXXABI::GenericItanium:
89   case TargetCXXABI::WebAssembly:
90   case TargetCXXABI::XL:
91     return CreateItaniumCXXABI(CGM);
92   case TargetCXXABI::Microsoft:
93     return CreateMicrosoftCXXABI(CGM);
94   }
95 
96   llvm_unreachable("invalid C++ ABI kind");
97 }
98 
99 CodeGenModule::CodeGenModule(ASTContext &C,
100                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
101                              const HeaderSearchOptions &HSO,
102                              const PreprocessorOptions &PPO,
103                              const CodeGenOptions &CGO, llvm::Module &M,
104                              DiagnosticsEngine &diags,
105                              CoverageSourceInfo *CoverageInfo)
106     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
107       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
108       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
109       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
110       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
111 
112   // Initialize the type cache.
113   llvm::LLVMContext &LLVMContext = M.getContext();
114   VoidTy = llvm::Type::getVoidTy(LLVMContext);
115   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
116   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
117   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
118   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
119   HalfTy = llvm::Type::getHalfTy(LLVMContext);
120   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
121   FloatTy = llvm::Type::getFloatTy(LLVMContext);
122   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
123   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
124   PointerAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
126   SizeSizeInBytes =
127     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
128   IntAlignInBytes =
129     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
130   CharTy =
131     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
132   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
133   IntPtrTy = llvm::IntegerType::get(LLVMContext,
134     C.getTargetInfo().getMaxPointerWidth());
135   Int8PtrTy = Int8Ty->getPointerTo(0);
136   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
137   const llvm::DataLayout &DL = M.getDataLayout();
138   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
139   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
140   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
141 
142   // Build C++20 Module initializers.
143   // TODO: Add Microsoft here once we know the mangling required for the
144   // initializers.
145   CXX20ModuleInits =
146       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
147                                        ItaniumMangleContext::MK_Itanium;
148 
149   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
150 
151   if (LangOpts.ObjC)
152     createObjCRuntime();
153   if (LangOpts.OpenCL)
154     createOpenCLRuntime();
155   if (LangOpts.OpenMP)
156     createOpenMPRuntime();
157   if (LangOpts.CUDA)
158     createCUDARuntime();
159   if (LangOpts.HLSL)
160     createHLSLRuntime();
161 
162   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
163   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
164       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
165     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
166                                getCXXABI().getMangleContext()));
167 
168   // If debug info or coverage generation is enabled, create the CGDebugInfo
169   // object.
170   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
171       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
172     DebugInfo.reset(new CGDebugInfo(*this));
173 
174   Block.GlobalUniqueCount = 0;
175 
176   if (C.getLangOpts().ObjC)
177     ObjCData.reset(new ObjCEntrypoints());
178 
179   if (CodeGenOpts.hasProfileClangUse()) {
180     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
181         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
182     if (auto E = ReaderOrErr.takeError()) {
183       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
184                                               "Could not read profile %0: %1");
185       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
186         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
187                                   << EI.message();
188       });
189     } else
190       PGOReader = std::move(ReaderOrErr.get());
191   }
192 
193   // If coverage mapping generation is enabled, create the
194   // CoverageMappingModuleGen object.
195   if (CodeGenOpts.CoverageMapping)
196     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
197 
198   // Generate the module name hash here if needed.
199   if (CodeGenOpts.UniqueInternalLinkageNames &&
200       !getModule().getSourceFileName().empty()) {
201     std::string Path = getModule().getSourceFileName();
202     // Check if a path substitution is needed from the MacroPrefixMap.
203     for (const auto &Entry : LangOpts.MacroPrefixMap)
204       if (Path.rfind(Entry.first, 0) != std::string::npos) {
205         Path = Entry.second + Path.substr(Entry.first.size());
206         break;
207       }
208     llvm::MD5 Md5;
209     Md5.update(Path);
210     llvm::MD5::MD5Result R;
211     Md5.final(R);
212     SmallString<32> Str;
213     llvm::MD5::stringifyResult(R, Str);
214     // Convert MD5hash to Decimal. Demangler suffixes can either contain
215     // numbers or characters but not both.
216     llvm::APInt IntHash(128, Str.str(), 16);
217     // Prepend "__uniq" before the hash for tools like profilers to understand
218     // that this symbol is of internal linkage type.  The "__uniq" is the
219     // pre-determined prefix that is used to tell tools that this symbol was
220     // created with -funique-internal-linakge-symbols and the tools can strip or
221     // keep the prefix as needed.
222     ModuleNameHash = (Twine(".__uniq.") +
223         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
224   }
225 }
226 
227 CodeGenModule::~CodeGenModule() {}
228 
229 void CodeGenModule::createObjCRuntime() {
230   // This is just isGNUFamily(), but we want to force implementors of
231   // new ABIs to decide how best to do this.
232   switch (LangOpts.ObjCRuntime.getKind()) {
233   case ObjCRuntime::GNUstep:
234   case ObjCRuntime::GCC:
235   case ObjCRuntime::ObjFW:
236     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
237     return;
238 
239   case ObjCRuntime::FragileMacOSX:
240   case ObjCRuntime::MacOSX:
241   case ObjCRuntime::iOS:
242   case ObjCRuntime::WatchOS:
243     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
244     return;
245   }
246   llvm_unreachable("bad runtime kind");
247 }
248 
249 void CodeGenModule::createOpenCLRuntime() {
250   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
251 }
252 
253 void CodeGenModule::createOpenMPRuntime() {
254   // Select a specialized code generation class based on the target, if any.
255   // If it does not exist use the default implementation.
256   switch (getTriple().getArch()) {
257   case llvm::Triple::nvptx:
258   case llvm::Triple::nvptx64:
259   case llvm::Triple::amdgcn:
260     assert(getLangOpts().OpenMPIsDevice &&
261            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
262     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
263     break;
264   default:
265     if (LangOpts.OpenMPSimd)
266       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
267     else
268       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
269     break;
270   }
271 }
272 
273 void CodeGenModule::createCUDARuntime() {
274   CUDARuntime.reset(CreateNVCUDARuntime(*this));
275 }
276 
277 void CodeGenModule::createHLSLRuntime() {
278   HLSLRuntime.reset(new CGHLSLRuntime(*this));
279 }
280 
281 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
282   Replacements[Name] = C;
283 }
284 
285 void CodeGenModule::applyReplacements() {
286   for (auto &I : Replacements) {
287     StringRef MangledName = I.first();
288     llvm::Constant *Replacement = I.second;
289     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
290     if (!Entry)
291       continue;
292     auto *OldF = cast<llvm::Function>(Entry);
293     auto *NewF = dyn_cast<llvm::Function>(Replacement);
294     if (!NewF) {
295       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
296         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
297       } else {
298         auto *CE = cast<llvm::ConstantExpr>(Replacement);
299         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
300                CE->getOpcode() == llvm::Instruction::GetElementPtr);
301         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
302       }
303     }
304 
305     // Replace old with new, but keep the old order.
306     OldF->replaceAllUsesWith(Replacement);
307     if (NewF) {
308       NewF->removeFromParent();
309       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
310                                                        NewF);
311     }
312     OldF->eraseFromParent();
313   }
314 }
315 
316 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
317   GlobalValReplacements.push_back(std::make_pair(GV, C));
318 }
319 
320 void CodeGenModule::applyGlobalValReplacements() {
321   for (auto &I : GlobalValReplacements) {
322     llvm::GlobalValue *GV = I.first;
323     llvm::Constant *C = I.second;
324 
325     GV->replaceAllUsesWith(C);
326     GV->eraseFromParent();
327   }
328 }
329 
330 // This is only used in aliases that we created and we know they have a
331 // linear structure.
332 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
333   const llvm::Constant *C;
334   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
335     C = GA->getAliasee();
336   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
337     C = GI->getResolver();
338   else
339     return GV;
340 
341   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
342   if (!AliaseeGV)
343     return nullptr;
344 
345   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
346   if (FinalGV == GV)
347     return nullptr;
348 
349   return FinalGV;
350 }
351 
352 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
353                                SourceLocation Location, bool IsIFunc,
354                                const llvm::GlobalValue *Alias,
355                                const llvm::GlobalValue *&GV) {
356   GV = getAliasedGlobal(Alias);
357   if (!GV) {
358     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
359     return false;
360   }
361 
362   if (GV->isDeclaration()) {
363     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
364     return false;
365   }
366 
367   if (IsIFunc) {
368     // Check resolver function type.
369     const auto *F = dyn_cast<llvm::Function>(GV);
370     if (!F) {
371       Diags.Report(Location, diag::err_alias_to_undefined)
372           << IsIFunc << IsIFunc;
373       return false;
374     }
375 
376     llvm::FunctionType *FTy = F->getFunctionType();
377     if (!FTy->getReturnType()->isPointerTy()) {
378       Diags.Report(Location, diag::err_ifunc_resolver_return);
379       return false;
380     }
381   }
382 
383   return true;
384 }
385 
386 void CodeGenModule::checkAliases() {
387   // Check if the constructed aliases are well formed. It is really unfortunate
388   // that we have to do this in CodeGen, but we only construct mangled names
389   // and aliases during codegen.
390   bool Error = false;
391   DiagnosticsEngine &Diags = getDiags();
392   for (const GlobalDecl &GD : Aliases) {
393     const auto *D = cast<ValueDecl>(GD.getDecl());
394     SourceLocation Location;
395     bool IsIFunc = D->hasAttr<IFuncAttr>();
396     if (const Attr *A = D->getDefiningAttr())
397       Location = A->getLocation();
398     else
399       llvm_unreachable("Not an alias or ifunc?");
400 
401     StringRef MangledName = getMangledName(GD);
402     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
403     const llvm::GlobalValue *GV = nullptr;
404     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
405       Error = true;
406       continue;
407     }
408 
409     llvm::Constant *Aliasee =
410         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
411                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
412 
413     llvm::GlobalValue *AliaseeGV;
414     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
415       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
416     else
417       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
418 
419     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
420       StringRef AliasSection = SA->getName();
421       if (AliasSection != AliaseeGV->getSection())
422         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
423             << AliasSection << IsIFunc << IsIFunc;
424     }
425 
426     // We have to handle alias to weak aliases in here. LLVM itself disallows
427     // this since the object semantics would not match the IL one. For
428     // compatibility with gcc we implement it by just pointing the alias
429     // to its aliasee's aliasee. We also warn, since the user is probably
430     // expecting the link to be weak.
431     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
432       if (GA->isInterposable()) {
433         Diags.Report(Location, diag::warn_alias_to_weak_alias)
434             << GV->getName() << GA->getName() << IsIFunc;
435         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
436             GA->getAliasee(), Alias->getType());
437 
438         if (IsIFunc)
439           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
440         else
441           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
442       }
443     }
444   }
445   if (!Error)
446     return;
447 
448   for (const GlobalDecl &GD : Aliases) {
449     StringRef MangledName = getMangledName(GD);
450     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
451     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
452     Alias->eraseFromParent();
453   }
454 }
455 
456 void CodeGenModule::clear() {
457   DeferredDeclsToEmit.clear();
458   EmittedDeferredDecls.clear();
459   if (OpenMPRuntime)
460     OpenMPRuntime->clear();
461 }
462 
463 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
464                                        StringRef MainFile) {
465   if (!hasDiagnostics())
466     return;
467   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
468     if (MainFile.empty())
469       MainFile = "<stdin>";
470     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
471   } else {
472     if (Mismatched > 0)
473       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
474 
475     if (Missing > 0)
476       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
477   }
478 }
479 
480 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
481                                              llvm::Module &M) {
482   if (!LO.VisibilityFromDLLStorageClass)
483     return;
484 
485   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
486       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
487   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
488       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
489   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
490       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
491   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
492       CodeGenModule::GetLLVMVisibility(
493           LO.getExternDeclNoDLLStorageClassVisibility());
494 
495   for (llvm::GlobalValue &GV : M.global_values()) {
496     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
497       continue;
498 
499     // Reset DSO locality before setting the visibility. This removes
500     // any effects that visibility options and annotations may have
501     // had on the DSO locality. Setting the visibility will implicitly set
502     // appropriate globals to DSO Local; however, this will be pessimistic
503     // w.r.t. to the normal compiler IRGen.
504     GV.setDSOLocal(false);
505 
506     if (GV.isDeclarationForLinker()) {
507       GV.setVisibility(GV.getDLLStorageClass() ==
508                                llvm::GlobalValue::DLLImportStorageClass
509                            ? ExternDeclDLLImportVisibility
510                            : ExternDeclNoDLLStorageClassVisibility);
511     } else {
512       GV.setVisibility(GV.getDLLStorageClass() ==
513                                llvm::GlobalValue::DLLExportStorageClass
514                            ? DLLExportVisibility
515                            : NoDLLStorageClassVisibility);
516     }
517 
518     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
519   }
520 }
521 
522 void CodeGenModule::Release() {
523   Module *Primary = getContext().getModuleForCodeGen();
524   if (CXX20ModuleInits && Primary && !Primary->isModuleMapModule())
525     EmitModuleInitializers(Primary);
526   EmitDeferred();
527   DeferredDecls.insert(EmittedDeferredDecls.begin(),
528                        EmittedDeferredDecls.end());
529   EmittedDeferredDecls.clear();
530   EmitVTablesOpportunistically();
531   applyGlobalValReplacements();
532   applyReplacements();
533   emitMultiVersionFunctions();
534   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
535     EmitCXXModuleInitFunc(Primary);
536   else
537     EmitCXXGlobalInitFunc();
538   EmitCXXGlobalCleanUpFunc();
539   registerGlobalDtorsWithAtExit();
540   EmitCXXThreadLocalInitFunc();
541   if (ObjCRuntime)
542     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
543       AddGlobalCtor(ObjCInitFunction);
544   if (Context.getLangOpts().CUDA && CUDARuntime) {
545     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
546       AddGlobalCtor(CudaCtorFunction);
547   }
548   if (OpenMPRuntime) {
549     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
550             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
551       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
552     }
553     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
554     OpenMPRuntime->clear();
555   }
556   if (PGOReader) {
557     getModule().setProfileSummary(
558         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
559         llvm::ProfileSummary::PSK_Instr);
560     if (PGOStats.hasDiagnostics())
561       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
562   }
563   EmitCtorList(GlobalCtors, "llvm.global_ctors");
564   EmitCtorList(GlobalDtors, "llvm.global_dtors");
565   EmitGlobalAnnotations();
566   EmitStaticExternCAliases();
567   checkAliases();
568   EmitDeferredUnusedCoverageMappings();
569   CodeGenPGO(*this).setValueProfilingFlag(getModule());
570   if (CoverageMapping)
571     CoverageMapping->emit();
572   if (CodeGenOpts.SanitizeCfiCrossDso) {
573     CodeGenFunction(*this).EmitCfiCheckFail();
574     CodeGenFunction(*this).EmitCfiCheckStub();
575   }
576   emitAtAvailableLinkGuard();
577   if (Context.getTargetInfo().getTriple().isWasm())
578     EmitMainVoidAlias();
579 
580   if (getTriple().isAMDGPU()) {
581     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
582     // preserve ASAN functions in bitcode libraries.
583     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
584       auto *FT = llvm::FunctionType::get(VoidTy, {});
585       auto *F = llvm::Function::Create(
586           FT, llvm::GlobalValue::ExternalLinkage,
587           "__amdgpu_device_library_preserve_asan_functions", &getModule());
588       auto *Var = new llvm::GlobalVariable(
589           getModule(), FT->getPointerTo(),
590           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
591           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
592           llvm::GlobalVariable::NotThreadLocal);
593       addCompilerUsedGlobal(Var);
594     }
595     // Emit amdgpu_code_object_version module flag, which is code object version
596     // times 100.
597     // ToDo: Enable module flag for all code object version when ROCm device
598     // library is ready.
599     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
600       getModule().addModuleFlag(llvm::Module::Error,
601                                 "amdgpu_code_object_version",
602                                 getTarget().getTargetOpts().CodeObjectVersion);
603     }
604   }
605 
606   // Emit a global array containing all external kernels or device variables
607   // used by host functions and mark it as used for CUDA/HIP. This is necessary
608   // to get kernels or device variables in archives linked in even if these
609   // kernels or device variables are only used in host functions.
610   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
611     SmallVector<llvm::Constant *, 8> UsedArray;
612     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
613       GlobalDecl GD;
614       if (auto *FD = dyn_cast<FunctionDecl>(D))
615         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
616       else
617         GD = GlobalDecl(D);
618       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
619           GetAddrOfGlobal(GD), Int8PtrTy));
620     }
621 
622     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
623 
624     auto *GV = new llvm::GlobalVariable(
625         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
626         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
627     addCompilerUsedGlobal(GV);
628   }
629 
630   emitLLVMUsed();
631   if (SanStats)
632     SanStats->finish();
633 
634   if (CodeGenOpts.Autolink &&
635       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
636     EmitModuleLinkOptions();
637   }
638 
639   // On ELF we pass the dependent library specifiers directly to the linker
640   // without manipulating them. This is in contrast to other platforms where
641   // they are mapped to a specific linker option by the compiler. This
642   // difference is a result of the greater variety of ELF linkers and the fact
643   // that ELF linkers tend to handle libraries in a more complicated fashion
644   // than on other platforms. This forces us to defer handling the dependent
645   // libs to the linker.
646   //
647   // CUDA/HIP device and host libraries are different. Currently there is no
648   // way to differentiate dependent libraries for host or device. Existing
649   // usage of #pragma comment(lib, *) is intended for host libraries on
650   // Windows. Therefore emit llvm.dependent-libraries only for host.
651   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
652     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
653     for (auto *MD : ELFDependentLibraries)
654       NMD->addOperand(MD);
655   }
656 
657   // Record mregparm value now so it is visible through rest of codegen.
658   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
659     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
660                               CodeGenOpts.NumRegisterParameters);
661 
662   if (CodeGenOpts.DwarfVersion) {
663     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
664                               CodeGenOpts.DwarfVersion);
665   }
666 
667   if (CodeGenOpts.Dwarf64)
668     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
669 
670   if (Context.getLangOpts().SemanticInterposition)
671     // Require various optimization to respect semantic interposition.
672     getModule().setSemanticInterposition(true);
673 
674   if (CodeGenOpts.EmitCodeView) {
675     // Indicate that we want CodeView in the metadata.
676     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
677   }
678   if (CodeGenOpts.CodeViewGHash) {
679     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
680   }
681   if (CodeGenOpts.ControlFlowGuard) {
682     // Function ID tables and checks for Control Flow Guard (cfguard=2).
683     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
684   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
685     // Function ID tables for Control Flow Guard (cfguard=1).
686     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
687   }
688   if (CodeGenOpts.EHContGuard) {
689     // Function ID tables for EH Continuation Guard.
690     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
691   }
692   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
693     // We don't support LTO with 2 with different StrictVTablePointers
694     // FIXME: we could support it by stripping all the information introduced
695     // by StrictVTablePointers.
696 
697     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
698 
699     llvm::Metadata *Ops[2] = {
700               llvm::MDString::get(VMContext, "StrictVTablePointers"),
701               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
702                   llvm::Type::getInt32Ty(VMContext), 1))};
703 
704     getModule().addModuleFlag(llvm::Module::Require,
705                               "StrictVTablePointersRequirement",
706                               llvm::MDNode::get(VMContext, Ops));
707   }
708   if (getModuleDebugInfo())
709     // We support a single version in the linked module. The LLVM
710     // parser will drop debug info with a different version number
711     // (and warn about it, too).
712     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
713                               llvm::DEBUG_METADATA_VERSION);
714 
715   // We need to record the widths of enums and wchar_t, so that we can generate
716   // the correct build attributes in the ARM backend. wchar_size is also used by
717   // TargetLibraryInfo.
718   uint64_t WCharWidth =
719       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
720   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
721 
722   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
723   if (   Arch == llvm::Triple::arm
724       || Arch == llvm::Triple::armeb
725       || Arch == llvm::Triple::thumb
726       || Arch == llvm::Triple::thumbeb) {
727     // The minimum width of an enum in bytes
728     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
729     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
730   }
731 
732   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
733     StringRef ABIStr = Target.getABI();
734     llvm::LLVMContext &Ctx = TheModule.getContext();
735     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
736                               llvm::MDString::get(Ctx, ABIStr));
737   }
738 
739   if (CodeGenOpts.SanitizeCfiCrossDso) {
740     // Indicate that we want cross-DSO control flow integrity checks.
741     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
742   }
743 
744   if (CodeGenOpts.WholeProgramVTables) {
745     // Indicate whether VFE was enabled for this module, so that the
746     // vcall_visibility metadata added under whole program vtables is handled
747     // appropriately in the optimizer.
748     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
749                               CodeGenOpts.VirtualFunctionElimination);
750   }
751 
752   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
753     getModule().addModuleFlag(llvm::Module::Override,
754                               "CFI Canonical Jump Tables",
755                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
756   }
757 
758   if (CodeGenOpts.CFProtectionReturn &&
759       Target.checkCFProtectionReturnSupported(getDiags())) {
760     // Indicate that we want to instrument return control flow protection.
761     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
762                               1);
763   }
764 
765   if (CodeGenOpts.CFProtectionBranch &&
766       Target.checkCFProtectionBranchSupported(getDiags())) {
767     // Indicate that we want to instrument branch control flow protection.
768     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
769                               1);
770   }
771 
772   if (CodeGenOpts.IBTSeal)
773     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
774 
775   if (CodeGenOpts.FunctionReturnThunks)
776     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
777 
778   // Add module metadata for return address signing (ignoring
779   // non-leaf/all) and stack tagging. These are actually turned on by function
780   // attributes, but we use module metadata to emit build attributes. This is
781   // needed for LTO, where the function attributes are inside bitcode
782   // serialised into a global variable by the time build attributes are
783   // emitted, so we can't access them. LTO objects could be compiled with
784   // different flags therefore module flags are set to "Min" behavior to achieve
785   // the same end result of the normal build where e.g BTI is off if any object
786   // doesn't support it.
787   if (Context.getTargetInfo().hasFeature("ptrauth") &&
788       LangOpts.getSignReturnAddressScope() !=
789           LangOptions::SignReturnAddressScopeKind::None)
790     getModule().addModuleFlag(llvm::Module::Override,
791                               "sign-return-address-buildattr", 1);
792   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
793     getModule().addModuleFlag(llvm::Module::Override,
794                               "tag-stack-memory-buildattr", 1);
795 
796   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
797       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
798       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
799       Arch == llvm::Triple::aarch64_be) {
800     if (LangOpts.BranchTargetEnforcement)
801       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
802                                 1);
803     if (LangOpts.hasSignReturnAddress())
804       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
805     if (LangOpts.isSignReturnAddressScopeAll())
806       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
807                                 1);
808     if (!LangOpts.isSignReturnAddressWithAKey())
809       getModule().addModuleFlag(llvm::Module::Min,
810                                 "sign-return-address-with-bkey", 1);
811   }
812 
813   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
814     llvm::LLVMContext &Ctx = TheModule.getContext();
815     getModule().addModuleFlag(
816         llvm::Module::Error, "MemProfProfileFilename",
817         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
818   }
819 
820   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
821     // Indicate whether __nvvm_reflect should be configured to flush denormal
822     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
823     // property.)
824     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
825                               CodeGenOpts.FP32DenormalMode.Output !=
826                                   llvm::DenormalMode::IEEE);
827   }
828 
829   if (LangOpts.EHAsynch)
830     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
831 
832   // Indicate whether this Module was compiled with -fopenmp
833   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
834     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
835   if (getLangOpts().OpenMPIsDevice)
836     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
837                               LangOpts.OpenMP);
838 
839   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
840   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
841     EmitOpenCLMetadata();
842     // Emit SPIR version.
843     if (getTriple().isSPIR()) {
844       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
845       // opencl.spir.version named metadata.
846       // C++ for OpenCL has a distinct mapping for version compatibility with
847       // OpenCL.
848       auto Version = LangOpts.getOpenCLCompatibleVersion();
849       llvm::Metadata *SPIRVerElts[] = {
850           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
851               Int32Ty, Version / 100)),
852           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
853               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
854       llvm::NamedMDNode *SPIRVerMD =
855           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
856       llvm::LLVMContext &Ctx = TheModule.getContext();
857       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
858     }
859   }
860 
861   // HLSL related end of code gen work items.
862   if (LangOpts.HLSL)
863     getHLSLRuntime().finishCodeGen();
864 
865   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
866     assert(PLevel < 3 && "Invalid PIC Level");
867     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
868     if (Context.getLangOpts().PIE)
869       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
870   }
871 
872   if (getCodeGenOpts().CodeModel.size() > 0) {
873     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
874                   .Case("tiny", llvm::CodeModel::Tiny)
875                   .Case("small", llvm::CodeModel::Small)
876                   .Case("kernel", llvm::CodeModel::Kernel)
877                   .Case("medium", llvm::CodeModel::Medium)
878                   .Case("large", llvm::CodeModel::Large)
879                   .Default(~0u);
880     if (CM != ~0u) {
881       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
882       getModule().setCodeModel(codeModel);
883     }
884   }
885 
886   if (CodeGenOpts.NoPLT)
887     getModule().setRtLibUseGOT();
888   if (CodeGenOpts.UnwindTables)
889     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
890 
891   switch (CodeGenOpts.getFramePointer()) {
892   case CodeGenOptions::FramePointerKind::None:
893     // 0 ("none") is the default.
894     break;
895   case CodeGenOptions::FramePointerKind::NonLeaf:
896     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
897     break;
898   case CodeGenOptions::FramePointerKind::All:
899     getModule().setFramePointer(llvm::FramePointerKind::All);
900     break;
901   }
902 
903   SimplifyPersonality();
904 
905   if (getCodeGenOpts().EmitDeclMetadata)
906     EmitDeclMetadata();
907 
908   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
909     EmitCoverageFile();
910 
911   if (CGDebugInfo *DI = getModuleDebugInfo())
912     DI->finalize();
913 
914   if (getCodeGenOpts().EmitVersionIdentMetadata)
915     EmitVersionIdentMetadata();
916 
917   if (!getCodeGenOpts().RecordCommandLine.empty())
918     EmitCommandLineMetadata();
919 
920   if (!getCodeGenOpts().StackProtectorGuard.empty())
921     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
922   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
923     getModule().setStackProtectorGuardReg(
924         getCodeGenOpts().StackProtectorGuardReg);
925   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
926     getModule().setStackProtectorGuardSymbol(
927         getCodeGenOpts().StackProtectorGuardSymbol);
928   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
929     getModule().setStackProtectorGuardOffset(
930         getCodeGenOpts().StackProtectorGuardOffset);
931   if (getCodeGenOpts().StackAlignment)
932     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
933   if (getCodeGenOpts().SkipRaxSetup)
934     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
935 
936   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
937 
938   EmitBackendOptionsMetadata(getCodeGenOpts());
939 
940   // If there is device offloading code embed it in the host now.
941   EmbedObject(&getModule(), CodeGenOpts, getDiags());
942 
943   // Set visibility from DLL storage class
944   // We do this at the end of LLVM IR generation; after any operation
945   // that might affect the DLL storage class or the visibility, and
946   // before anything that might act on these.
947   setVisibilityFromDLLStorageClass(LangOpts, getModule());
948 }
949 
950 void CodeGenModule::EmitOpenCLMetadata() {
951   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
952   // opencl.ocl.version named metadata node.
953   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
954   auto Version = LangOpts.getOpenCLCompatibleVersion();
955   llvm::Metadata *OCLVerElts[] = {
956       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
957           Int32Ty, Version / 100)),
958       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
959           Int32Ty, (Version % 100) / 10))};
960   llvm::NamedMDNode *OCLVerMD =
961       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
962   llvm::LLVMContext &Ctx = TheModule.getContext();
963   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
964 }
965 
966 void CodeGenModule::EmitBackendOptionsMetadata(
967     const CodeGenOptions CodeGenOpts) {
968   switch (getTriple().getArch()) {
969   default:
970     break;
971   case llvm::Triple::riscv32:
972   case llvm::Triple::riscv64:
973     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
974                               CodeGenOpts.SmallDataLimit);
975     break;
976   }
977 }
978 
979 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
980   // Make sure that this type is translated.
981   Types.UpdateCompletedType(TD);
982 }
983 
984 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
985   // Make sure that this type is translated.
986   Types.RefreshTypeCacheForClass(RD);
987 }
988 
989 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
990   if (!TBAA)
991     return nullptr;
992   return TBAA->getTypeInfo(QTy);
993 }
994 
995 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
996   if (!TBAA)
997     return TBAAAccessInfo();
998   if (getLangOpts().CUDAIsDevice) {
999     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1000     // access info.
1001     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1002       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1003           nullptr)
1004         return TBAAAccessInfo();
1005     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1006       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1007           nullptr)
1008         return TBAAAccessInfo();
1009     }
1010   }
1011   return TBAA->getAccessInfo(AccessType);
1012 }
1013 
1014 TBAAAccessInfo
1015 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1016   if (!TBAA)
1017     return TBAAAccessInfo();
1018   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1019 }
1020 
1021 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1022   if (!TBAA)
1023     return nullptr;
1024   return TBAA->getTBAAStructInfo(QTy);
1025 }
1026 
1027 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1028   if (!TBAA)
1029     return nullptr;
1030   return TBAA->getBaseTypeInfo(QTy);
1031 }
1032 
1033 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1034   if (!TBAA)
1035     return nullptr;
1036   return TBAA->getAccessTagInfo(Info);
1037 }
1038 
1039 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1040                                                    TBAAAccessInfo TargetInfo) {
1041   if (!TBAA)
1042     return TBAAAccessInfo();
1043   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1044 }
1045 
1046 TBAAAccessInfo
1047 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1048                                                    TBAAAccessInfo InfoB) {
1049   if (!TBAA)
1050     return TBAAAccessInfo();
1051   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1052 }
1053 
1054 TBAAAccessInfo
1055 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1056                                               TBAAAccessInfo SrcInfo) {
1057   if (!TBAA)
1058     return TBAAAccessInfo();
1059   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1060 }
1061 
1062 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1063                                                 TBAAAccessInfo TBAAInfo) {
1064   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1065     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1066 }
1067 
1068 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1069     llvm::Instruction *I, const CXXRecordDecl *RD) {
1070   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1071                  llvm::MDNode::get(getLLVMContext(), {}));
1072 }
1073 
1074 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1075   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1076   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1077 }
1078 
1079 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1080 /// specified stmt yet.
1081 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1082   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1083                                                "cannot compile this %0 yet");
1084   std::string Msg = Type;
1085   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1086       << Msg << S->getSourceRange();
1087 }
1088 
1089 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1090 /// specified decl yet.
1091 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1092   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1093                                                "cannot compile this %0 yet");
1094   std::string Msg = Type;
1095   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1096 }
1097 
1098 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1099   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1100 }
1101 
1102 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1103                                         const NamedDecl *D) const {
1104   if (GV->hasDLLImportStorageClass())
1105     return;
1106   // Internal definitions always have default visibility.
1107   if (GV->hasLocalLinkage()) {
1108     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1109     return;
1110   }
1111   if (!D)
1112     return;
1113   // Set visibility for definitions, and for declarations if requested globally
1114   // or set explicitly.
1115   LinkageInfo LV = D->getLinkageAndVisibility();
1116   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1117       !GV->isDeclarationForLinker())
1118     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1119 }
1120 
1121 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1122                                  llvm::GlobalValue *GV) {
1123   if (GV->hasLocalLinkage())
1124     return true;
1125 
1126   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1127     return true;
1128 
1129   // DLLImport explicitly marks the GV as external.
1130   if (GV->hasDLLImportStorageClass())
1131     return false;
1132 
1133   const llvm::Triple &TT = CGM.getTriple();
1134   if (TT.isWindowsGNUEnvironment()) {
1135     // In MinGW, variables without DLLImport can still be automatically
1136     // imported from a DLL by the linker; don't mark variables that
1137     // potentially could come from another DLL as DSO local.
1138 
1139     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1140     // (and this actually happens in the public interface of libstdc++), so
1141     // such variables can't be marked as DSO local. (Native TLS variables
1142     // can't be dllimported at all, though.)
1143     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1144         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1145       return false;
1146   }
1147 
1148   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1149   // remain unresolved in the link, they can be resolved to zero, which is
1150   // outside the current DSO.
1151   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1152     return false;
1153 
1154   // Every other GV is local on COFF.
1155   // Make an exception for windows OS in the triple: Some firmware builds use
1156   // *-win32-macho triples. This (accidentally?) produced windows relocations
1157   // without GOT tables in older clang versions; Keep this behaviour.
1158   // FIXME: even thread local variables?
1159   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1160     return true;
1161 
1162   // Only handle COFF and ELF for now.
1163   if (!TT.isOSBinFormatELF())
1164     return false;
1165 
1166   // If this is not an executable, don't assume anything is local.
1167   const auto &CGOpts = CGM.getCodeGenOpts();
1168   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1169   const auto &LOpts = CGM.getLangOpts();
1170   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1171     // On ELF, if -fno-semantic-interposition is specified and the target
1172     // supports local aliases, there will be neither CC1
1173     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1174     // dso_local on the function if using a local alias is preferable (can avoid
1175     // PLT indirection).
1176     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1177       return false;
1178     return !(CGM.getLangOpts().SemanticInterposition ||
1179              CGM.getLangOpts().HalfNoSemanticInterposition);
1180   }
1181 
1182   // A definition cannot be preempted from an executable.
1183   if (!GV->isDeclarationForLinker())
1184     return true;
1185 
1186   // Most PIC code sequences that assume that a symbol is local cannot produce a
1187   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1188   // depended, it seems worth it to handle it here.
1189   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1190     return false;
1191 
1192   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1193   if (TT.isPPC64())
1194     return false;
1195 
1196   if (CGOpts.DirectAccessExternalData) {
1197     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1198     // for non-thread-local variables. If the symbol is not defined in the
1199     // executable, a copy relocation will be needed at link time. dso_local is
1200     // excluded for thread-local variables because they generally don't support
1201     // copy relocations.
1202     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1203       if (!Var->isThreadLocal())
1204         return true;
1205 
1206     // -fno-pic sets dso_local on a function declaration to allow direct
1207     // accesses when taking its address (similar to a data symbol). If the
1208     // function is not defined in the executable, a canonical PLT entry will be
1209     // needed at link time. -fno-direct-access-external-data can avoid the
1210     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1211     // it could just cause trouble without providing perceptible benefits.
1212     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1213       return true;
1214   }
1215 
1216   // If we can use copy relocations we can assume it is local.
1217 
1218   // Otherwise don't assume it is local.
1219   return false;
1220 }
1221 
1222 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1223   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1224 }
1225 
1226 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1227                                           GlobalDecl GD) const {
1228   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1229   // C++ destructors have a few C++ ABI specific special cases.
1230   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1231     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1232     return;
1233   }
1234   setDLLImportDLLExport(GV, D);
1235 }
1236 
1237 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1238                                           const NamedDecl *D) const {
1239   if (D && D->isExternallyVisible()) {
1240     if (D->hasAttr<DLLImportAttr>())
1241       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1242     else if ((D->hasAttr<DLLExportAttr>() ||
1243               shouldMapVisibilityToDLLExport(D)) &&
1244              !GV->isDeclarationForLinker())
1245       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1246   }
1247 }
1248 
1249 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1250                                     GlobalDecl GD) const {
1251   setDLLImportDLLExport(GV, GD);
1252   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1253 }
1254 
1255 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1256                                     const NamedDecl *D) const {
1257   setDLLImportDLLExport(GV, D);
1258   setGVPropertiesAux(GV, D);
1259 }
1260 
1261 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1262                                        const NamedDecl *D) const {
1263   setGlobalVisibility(GV, D);
1264   setDSOLocal(GV);
1265   GV->setPartition(CodeGenOpts.SymbolPartition);
1266 }
1267 
1268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1269   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1270       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1271       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1272       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1273       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1274 }
1275 
1276 llvm::GlobalVariable::ThreadLocalMode
1277 CodeGenModule::GetDefaultLLVMTLSModel() const {
1278   switch (CodeGenOpts.getDefaultTLSModel()) {
1279   case CodeGenOptions::GeneralDynamicTLSModel:
1280     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1281   case CodeGenOptions::LocalDynamicTLSModel:
1282     return llvm::GlobalVariable::LocalDynamicTLSModel;
1283   case CodeGenOptions::InitialExecTLSModel:
1284     return llvm::GlobalVariable::InitialExecTLSModel;
1285   case CodeGenOptions::LocalExecTLSModel:
1286     return llvm::GlobalVariable::LocalExecTLSModel;
1287   }
1288   llvm_unreachable("Invalid TLS model!");
1289 }
1290 
1291 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1292   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1293 
1294   llvm::GlobalValue::ThreadLocalMode TLM;
1295   TLM = GetDefaultLLVMTLSModel();
1296 
1297   // Override the TLS model if it is explicitly specified.
1298   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1299     TLM = GetLLVMTLSModel(Attr->getModel());
1300   }
1301 
1302   GV->setThreadLocalMode(TLM);
1303 }
1304 
1305 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1306                                           StringRef Name) {
1307   const TargetInfo &Target = CGM.getTarget();
1308   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1309 }
1310 
1311 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1312                                                  const CPUSpecificAttr *Attr,
1313                                                  unsigned CPUIndex,
1314                                                  raw_ostream &Out) {
1315   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1316   // supported.
1317   if (Attr)
1318     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1319   else if (CGM.getTarget().supportsIFunc())
1320     Out << ".resolver";
1321 }
1322 
1323 static void AppendTargetMangling(const CodeGenModule &CGM,
1324                                  const TargetAttr *Attr, raw_ostream &Out) {
1325   if (Attr->isDefaultVersion())
1326     return;
1327 
1328   Out << '.';
1329   const TargetInfo &Target = CGM.getTarget();
1330   ParsedTargetAttr Info =
1331       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1332         // Multiversioning doesn't allow "no-${feature}", so we can
1333         // only have "+" prefixes here.
1334         assert(LHS.startswith("+") && RHS.startswith("+") &&
1335                "Features should always have a prefix.");
1336         return Target.multiVersionSortPriority(LHS.substr(1)) >
1337                Target.multiVersionSortPriority(RHS.substr(1));
1338       });
1339 
1340   bool IsFirst = true;
1341 
1342   if (!Info.Architecture.empty()) {
1343     IsFirst = false;
1344     Out << "arch_" << Info.Architecture;
1345   }
1346 
1347   for (StringRef Feat : Info.Features) {
1348     if (!IsFirst)
1349       Out << '_';
1350     IsFirst = false;
1351     Out << Feat.substr(1);
1352   }
1353 }
1354 
1355 // Returns true if GD is a function decl with internal linkage and
1356 // needs a unique suffix after the mangled name.
1357 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1358                                         CodeGenModule &CGM) {
1359   const Decl *D = GD.getDecl();
1360   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1361          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1362 }
1363 
1364 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1365                                        const TargetClonesAttr *Attr,
1366                                        unsigned VersionIndex,
1367                                        raw_ostream &Out) {
1368   Out << '.';
1369   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1370   if (FeatureStr.startswith("arch="))
1371     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1372   else
1373     Out << FeatureStr;
1374 
1375   Out << '.' << Attr->getMangledIndex(VersionIndex);
1376 }
1377 
1378 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1379                                       const NamedDecl *ND,
1380                                       bool OmitMultiVersionMangling = false) {
1381   SmallString<256> Buffer;
1382   llvm::raw_svector_ostream Out(Buffer);
1383   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1384   if (!CGM.getModuleNameHash().empty())
1385     MC.needsUniqueInternalLinkageNames();
1386   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1387   if (ShouldMangle)
1388     MC.mangleName(GD.getWithDecl(ND), Out);
1389   else {
1390     IdentifierInfo *II = ND->getIdentifier();
1391     assert(II && "Attempt to mangle unnamed decl.");
1392     const auto *FD = dyn_cast<FunctionDecl>(ND);
1393 
1394     if (FD &&
1395         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1396       Out << "__regcall3__" << II->getName();
1397     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1398                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1399       Out << "__device_stub__" << II->getName();
1400     } else {
1401       Out << II->getName();
1402     }
1403   }
1404 
1405   // Check if the module name hash should be appended for internal linkage
1406   // symbols.   This should come before multi-version target suffixes are
1407   // appended. This is to keep the name and module hash suffix of the
1408   // internal linkage function together.  The unique suffix should only be
1409   // added when name mangling is done to make sure that the final name can
1410   // be properly demangled.  For example, for C functions without prototypes,
1411   // name mangling is not done and the unique suffix should not be appeneded
1412   // then.
1413   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1414     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1415            "Hash computed when not explicitly requested");
1416     Out << CGM.getModuleNameHash();
1417   }
1418 
1419   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1420     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1421       switch (FD->getMultiVersionKind()) {
1422       case MultiVersionKind::CPUDispatch:
1423       case MultiVersionKind::CPUSpecific:
1424         AppendCPUSpecificCPUDispatchMangling(CGM,
1425                                              FD->getAttr<CPUSpecificAttr>(),
1426                                              GD.getMultiVersionIndex(), Out);
1427         break;
1428       case MultiVersionKind::Target:
1429         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1430         break;
1431       case MultiVersionKind::TargetClones:
1432         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1433                                    GD.getMultiVersionIndex(), Out);
1434         break;
1435       case MultiVersionKind::None:
1436         llvm_unreachable("None multiversion type isn't valid here");
1437       }
1438     }
1439 
1440   // Make unique name for device side static file-scope variable for HIP.
1441   if (CGM.getContext().shouldExternalize(ND) &&
1442       CGM.getLangOpts().GPURelocatableDeviceCode &&
1443       CGM.getLangOpts().CUDAIsDevice)
1444     CGM.printPostfixForExternalizedDecl(Out, ND);
1445 
1446   return std::string(Out.str());
1447 }
1448 
1449 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1450                                             const FunctionDecl *FD,
1451                                             StringRef &CurName) {
1452   if (!FD->isMultiVersion())
1453     return;
1454 
1455   // Get the name of what this would be without the 'target' attribute.  This
1456   // allows us to lookup the version that was emitted when this wasn't a
1457   // multiversion function.
1458   std::string NonTargetName =
1459       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1460   GlobalDecl OtherGD;
1461   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1462     assert(OtherGD.getCanonicalDecl()
1463                .getDecl()
1464                ->getAsFunction()
1465                ->isMultiVersion() &&
1466            "Other GD should now be a multiversioned function");
1467     // OtherFD is the version of this function that was mangled BEFORE
1468     // becoming a MultiVersion function.  It potentially needs to be updated.
1469     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1470                                       .getDecl()
1471                                       ->getAsFunction()
1472                                       ->getMostRecentDecl();
1473     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1474     // This is so that if the initial version was already the 'default'
1475     // version, we don't try to update it.
1476     if (OtherName != NonTargetName) {
1477       // Remove instead of erase, since others may have stored the StringRef
1478       // to this.
1479       const auto ExistingRecord = Manglings.find(NonTargetName);
1480       if (ExistingRecord != std::end(Manglings))
1481         Manglings.remove(&(*ExistingRecord));
1482       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1483       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1484           Result.first->first();
1485       // If this is the current decl is being created, make sure we update the name.
1486       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1487         CurName = OtherNameRef;
1488       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1489         Entry->setName(OtherName);
1490     }
1491   }
1492 }
1493 
1494 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1495   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1496 
1497   // Some ABIs don't have constructor variants.  Make sure that base and
1498   // complete constructors get mangled the same.
1499   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1500     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1501       CXXCtorType OrigCtorType = GD.getCtorType();
1502       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1503       if (OrigCtorType == Ctor_Base)
1504         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1505     }
1506   }
1507 
1508   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1509   // static device variable depends on whether the variable is referenced by
1510   // a host or device host function. Therefore the mangled name cannot be
1511   // cached.
1512   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1513     auto FoundName = MangledDeclNames.find(CanonicalGD);
1514     if (FoundName != MangledDeclNames.end())
1515       return FoundName->second;
1516   }
1517 
1518   // Keep the first result in the case of a mangling collision.
1519   const auto *ND = cast<NamedDecl>(GD.getDecl());
1520   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1521 
1522   // Ensure either we have different ABIs between host and device compilations,
1523   // says host compilation following MSVC ABI but device compilation follows
1524   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1525   // mangling should be the same after name stubbing. The later checking is
1526   // very important as the device kernel name being mangled in host-compilation
1527   // is used to resolve the device binaries to be executed. Inconsistent naming
1528   // result in undefined behavior. Even though we cannot check that naming
1529   // directly between host- and device-compilations, the host- and
1530   // device-mangling in host compilation could help catching certain ones.
1531   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1532          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1533          (getContext().getAuxTargetInfo() &&
1534           (getContext().getAuxTargetInfo()->getCXXABI() !=
1535            getContext().getTargetInfo().getCXXABI())) ||
1536          getCUDARuntime().getDeviceSideName(ND) ==
1537              getMangledNameImpl(
1538                  *this,
1539                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1540                  ND));
1541 
1542   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1543   return MangledDeclNames[CanonicalGD] = Result.first->first();
1544 }
1545 
1546 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1547                                              const BlockDecl *BD) {
1548   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1549   const Decl *D = GD.getDecl();
1550 
1551   SmallString<256> Buffer;
1552   llvm::raw_svector_ostream Out(Buffer);
1553   if (!D)
1554     MangleCtx.mangleGlobalBlock(BD,
1555       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1556   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1557     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1558   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1559     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1560   else
1561     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1562 
1563   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1564   return Result.first->first();
1565 }
1566 
1567 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1568   auto it = MangledDeclNames.begin();
1569   while (it != MangledDeclNames.end()) {
1570     if (it->second == Name)
1571       return it->first;
1572     it++;
1573   }
1574   return GlobalDecl();
1575 }
1576 
1577 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1578   return getModule().getNamedValue(Name);
1579 }
1580 
1581 /// AddGlobalCtor - Add a function to the list that will be called before
1582 /// main() runs.
1583 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1584                                   llvm::Constant *AssociatedData) {
1585   // FIXME: Type coercion of void()* types.
1586   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1587 }
1588 
1589 /// AddGlobalDtor - Add a function to the list that will be called
1590 /// when the module is unloaded.
1591 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1592                                   bool IsDtorAttrFunc) {
1593   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1594       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1595     DtorsUsingAtExit[Priority].push_back(Dtor);
1596     return;
1597   }
1598 
1599   // FIXME: Type coercion of void()* types.
1600   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1601 }
1602 
1603 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1604   if (Fns.empty()) return;
1605 
1606   // Ctor function type is void()*.
1607   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1608   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1609       TheModule.getDataLayout().getProgramAddressSpace());
1610 
1611   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1612   llvm::StructType *CtorStructTy = llvm::StructType::get(
1613       Int32Ty, CtorPFTy, VoidPtrTy);
1614 
1615   // Construct the constructor and destructor arrays.
1616   ConstantInitBuilder builder(*this);
1617   auto ctors = builder.beginArray(CtorStructTy);
1618   for (const auto &I : Fns) {
1619     auto ctor = ctors.beginStruct(CtorStructTy);
1620     ctor.addInt(Int32Ty, I.Priority);
1621     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1622     if (I.AssociatedData)
1623       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1624     else
1625       ctor.addNullPointer(VoidPtrTy);
1626     ctor.finishAndAddTo(ctors);
1627   }
1628 
1629   auto list =
1630     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1631                                 /*constant*/ false,
1632                                 llvm::GlobalValue::AppendingLinkage);
1633 
1634   // The LTO linker doesn't seem to like it when we set an alignment
1635   // on appending variables.  Take it off as a workaround.
1636   list->setAlignment(llvm::None);
1637 
1638   Fns.clear();
1639 }
1640 
1641 llvm::GlobalValue::LinkageTypes
1642 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1643   const auto *D = cast<FunctionDecl>(GD.getDecl());
1644 
1645   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1646 
1647   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1648     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1649 
1650   if (isa<CXXConstructorDecl>(D) &&
1651       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1652       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1653     // Our approach to inheriting constructors is fundamentally different from
1654     // that used by the MS ABI, so keep our inheriting constructor thunks
1655     // internal rather than trying to pick an unambiguous mangling for them.
1656     return llvm::GlobalValue::InternalLinkage;
1657   }
1658 
1659   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1660 }
1661 
1662 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1663   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1664   if (!MDS) return nullptr;
1665 
1666   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1667 }
1668 
1669 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1670                                               const CGFunctionInfo &Info,
1671                                               llvm::Function *F, bool IsThunk) {
1672   unsigned CallingConv;
1673   llvm::AttributeList PAL;
1674   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1675                          /*AttrOnCallSite=*/false, IsThunk);
1676   F->setAttributes(PAL);
1677   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1678 }
1679 
1680 static void removeImageAccessQualifier(std::string& TyName) {
1681   std::string ReadOnlyQual("__read_only");
1682   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1683   if (ReadOnlyPos != std::string::npos)
1684     // "+ 1" for the space after access qualifier.
1685     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1686   else {
1687     std::string WriteOnlyQual("__write_only");
1688     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1689     if (WriteOnlyPos != std::string::npos)
1690       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1691     else {
1692       std::string ReadWriteQual("__read_write");
1693       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1694       if (ReadWritePos != std::string::npos)
1695         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1696     }
1697   }
1698 }
1699 
1700 // Returns the address space id that should be produced to the
1701 // kernel_arg_addr_space metadata. This is always fixed to the ids
1702 // as specified in the SPIR 2.0 specification in order to differentiate
1703 // for example in clGetKernelArgInfo() implementation between the address
1704 // spaces with targets without unique mapping to the OpenCL address spaces
1705 // (basically all single AS CPUs).
1706 static unsigned ArgInfoAddressSpace(LangAS AS) {
1707   switch (AS) {
1708   case LangAS::opencl_global:
1709     return 1;
1710   case LangAS::opencl_constant:
1711     return 2;
1712   case LangAS::opencl_local:
1713     return 3;
1714   case LangAS::opencl_generic:
1715     return 4; // Not in SPIR 2.0 specs.
1716   case LangAS::opencl_global_device:
1717     return 5;
1718   case LangAS::opencl_global_host:
1719     return 6;
1720   default:
1721     return 0; // Assume private.
1722   }
1723 }
1724 
1725 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1726                                          const FunctionDecl *FD,
1727                                          CodeGenFunction *CGF) {
1728   assert(((FD && CGF) || (!FD && !CGF)) &&
1729          "Incorrect use - FD and CGF should either be both null or not!");
1730   // Create MDNodes that represent the kernel arg metadata.
1731   // Each MDNode is a list in the form of "key", N number of values which is
1732   // the same number of values as their are kernel arguments.
1733 
1734   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1735 
1736   // MDNode for the kernel argument address space qualifiers.
1737   SmallVector<llvm::Metadata *, 8> addressQuals;
1738 
1739   // MDNode for the kernel argument access qualifiers (images only).
1740   SmallVector<llvm::Metadata *, 8> accessQuals;
1741 
1742   // MDNode for the kernel argument type names.
1743   SmallVector<llvm::Metadata *, 8> argTypeNames;
1744 
1745   // MDNode for the kernel argument base type names.
1746   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1747 
1748   // MDNode for the kernel argument type qualifiers.
1749   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1750 
1751   // MDNode for the kernel argument names.
1752   SmallVector<llvm::Metadata *, 8> argNames;
1753 
1754   if (FD && CGF)
1755     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1756       const ParmVarDecl *parm = FD->getParamDecl(i);
1757       // Get argument name.
1758       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1759 
1760       if (!getLangOpts().OpenCL)
1761         continue;
1762       QualType ty = parm->getType();
1763       std::string typeQuals;
1764 
1765       // Get image and pipe access qualifier:
1766       if (ty->isImageType() || ty->isPipeType()) {
1767         const Decl *PDecl = parm;
1768         if (auto *TD = dyn_cast<TypedefType>(ty))
1769           PDecl = TD->getDecl();
1770         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1771         if (A && A->isWriteOnly())
1772           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1773         else if (A && A->isReadWrite())
1774           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1775         else
1776           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1777       } else
1778         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1779 
1780       auto getTypeSpelling = [&](QualType Ty) {
1781         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1782 
1783         if (Ty.isCanonical()) {
1784           StringRef typeNameRef = typeName;
1785           // Turn "unsigned type" to "utype"
1786           if (typeNameRef.consume_front("unsigned "))
1787             return std::string("u") + typeNameRef.str();
1788           if (typeNameRef.consume_front("signed "))
1789             return typeNameRef.str();
1790         }
1791 
1792         return typeName;
1793       };
1794 
1795       if (ty->isPointerType()) {
1796         QualType pointeeTy = ty->getPointeeType();
1797 
1798         // Get address qualifier.
1799         addressQuals.push_back(
1800             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1801                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1802 
1803         // Get argument type name.
1804         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1805         std::string baseTypeName =
1806             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1807         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1808         argBaseTypeNames.push_back(
1809             llvm::MDString::get(VMContext, baseTypeName));
1810 
1811         // Get argument type qualifiers:
1812         if (ty.isRestrictQualified())
1813           typeQuals = "restrict";
1814         if (pointeeTy.isConstQualified() ||
1815             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1816           typeQuals += typeQuals.empty() ? "const" : " const";
1817         if (pointeeTy.isVolatileQualified())
1818           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1819       } else {
1820         uint32_t AddrSpc = 0;
1821         bool isPipe = ty->isPipeType();
1822         if (ty->isImageType() || isPipe)
1823           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1824 
1825         addressQuals.push_back(
1826             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1827 
1828         // Get argument type name.
1829         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1830         std::string typeName = getTypeSpelling(ty);
1831         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1832 
1833         // Remove access qualifiers on images
1834         // (as they are inseparable from type in clang implementation,
1835         // but OpenCL spec provides a special query to get access qualifier
1836         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1837         if (ty->isImageType()) {
1838           removeImageAccessQualifier(typeName);
1839           removeImageAccessQualifier(baseTypeName);
1840         }
1841 
1842         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1843         argBaseTypeNames.push_back(
1844             llvm::MDString::get(VMContext, baseTypeName));
1845 
1846         if (isPipe)
1847           typeQuals = "pipe";
1848       }
1849       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1850     }
1851 
1852   if (getLangOpts().OpenCL) {
1853     Fn->setMetadata("kernel_arg_addr_space",
1854                     llvm::MDNode::get(VMContext, addressQuals));
1855     Fn->setMetadata("kernel_arg_access_qual",
1856                     llvm::MDNode::get(VMContext, accessQuals));
1857     Fn->setMetadata("kernel_arg_type",
1858                     llvm::MDNode::get(VMContext, argTypeNames));
1859     Fn->setMetadata("kernel_arg_base_type",
1860                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1861     Fn->setMetadata("kernel_arg_type_qual",
1862                     llvm::MDNode::get(VMContext, argTypeQuals));
1863   }
1864   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1865       getCodeGenOpts().HIPSaveKernelArgName)
1866     Fn->setMetadata("kernel_arg_name",
1867                     llvm::MDNode::get(VMContext, argNames));
1868 }
1869 
1870 /// Determines whether the language options require us to model
1871 /// unwind exceptions.  We treat -fexceptions as mandating this
1872 /// except under the fragile ObjC ABI with only ObjC exceptions
1873 /// enabled.  This means, for example, that C with -fexceptions
1874 /// enables this.
1875 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1876   // If exceptions are completely disabled, obviously this is false.
1877   if (!LangOpts.Exceptions) return false;
1878 
1879   // If C++ exceptions are enabled, this is true.
1880   if (LangOpts.CXXExceptions) return true;
1881 
1882   // If ObjC exceptions are enabled, this depends on the ABI.
1883   if (LangOpts.ObjCExceptions) {
1884     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1885   }
1886 
1887   return true;
1888 }
1889 
1890 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1891                                                       const CXXMethodDecl *MD) {
1892   // Check that the type metadata can ever actually be used by a call.
1893   if (!CGM.getCodeGenOpts().LTOUnit ||
1894       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1895     return false;
1896 
1897   // Only functions whose address can be taken with a member function pointer
1898   // need this sort of type metadata.
1899   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1900          !isa<CXXDestructorDecl>(MD);
1901 }
1902 
1903 std::vector<const CXXRecordDecl *>
1904 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1905   llvm::SetVector<const CXXRecordDecl *> MostBases;
1906 
1907   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1908   CollectMostBases = [&](const CXXRecordDecl *RD) {
1909     if (RD->getNumBases() == 0)
1910       MostBases.insert(RD);
1911     for (const CXXBaseSpecifier &B : RD->bases())
1912       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1913   };
1914   CollectMostBases(RD);
1915   return MostBases.takeVector();
1916 }
1917 
1918 llvm::GlobalVariable *
1919 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1920   auto It = RTTIProxyMap.find(Addr);
1921   if (It != RTTIProxyMap.end())
1922     return It->second;
1923 
1924   auto *FTRTTIProxy = new llvm::GlobalVariable(
1925       TheModule, Addr->getType(),
1926       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1927       "__llvm_rtti_proxy");
1928   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1929 
1930   RTTIProxyMap[Addr] = FTRTTIProxy;
1931   return FTRTTIProxy;
1932 }
1933 
1934 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1935                                                            llvm::Function *F) {
1936   llvm::AttrBuilder B(F->getContext());
1937 
1938   if (CodeGenOpts.UnwindTables)
1939     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1940 
1941   if (CodeGenOpts.StackClashProtector)
1942     B.addAttribute("probe-stack", "inline-asm");
1943 
1944   if (!hasUnwindExceptions(LangOpts))
1945     B.addAttribute(llvm::Attribute::NoUnwind);
1946 
1947   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1948     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1949       B.addAttribute(llvm::Attribute::StackProtect);
1950     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1951       B.addAttribute(llvm::Attribute::StackProtectStrong);
1952     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1953       B.addAttribute(llvm::Attribute::StackProtectReq);
1954   }
1955 
1956   if (!D) {
1957     // If we don't have a declaration to control inlining, the function isn't
1958     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1959     // disabled, mark the function as noinline.
1960     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1961         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1962       B.addAttribute(llvm::Attribute::NoInline);
1963 
1964     F->addFnAttrs(B);
1965     return;
1966   }
1967 
1968   // Track whether we need to add the optnone LLVM attribute,
1969   // starting with the default for this optimization level.
1970   bool ShouldAddOptNone =
1971       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1972   // We can't add optnone in the following cases, it won't pass the verifier.
1973   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1974   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1975 
1976   // Add optnone, but do so only if the function isn't always_inline.
1977   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1978       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1979     B.addAttribute(llvm::Attribute::OptimizeNone);
1980 
1981     // OptimizeNone implies noinline; we should not be inlining such functions.
1982     B.addAttribute(llvm::Attribute::NoInline);
1983 
1984     // We still need to handle naked functions even though optnone subsumes
1985     // much of their semantics.
1986     if (D->hasAttr<NakedAttr>())
1987       B.addAttribute(llvm::Attribute::Naked);
1988 
1989     // OptimizeNone wins over OptimizeForSize and MinSize.
1990     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1991     F->removeFnAttr(llvm::Attribute::MinSize);
1992   } else if (D->hasAttr<NakedAttr>()) {
1993     // Naked implies noinline: we should not be inlining such functions.
1994     B.addAttribute(llvm::Attribute::Naked);
1995     B.addAttribute(llvm::Attribute::NoInline);
1996   } else if (D->hasAttr<NoDuplicateAttr>()) {
1997     B.addAttribute(llvm::Attribute::NoDuplicate);
1998   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1999     // Add noinline if the function isn't always_inline.
2000     B.addAttribute(llvm::Attribute::NoInline);
2001   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2002              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2003     // (noinline wins over always_inline, and we can't specify both in IR)
2004     B.addAttribute(llvm::Attribute::AlwaysInline);
2005   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2006     // If we're not inlining, then force everything that isn't always_inline to
2007     // carry an explicit noinline attribute.
2008     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2009       B.addAttribute(llvm::Attribute::NoInline);
2010   } else {
2011     // Otherwise, propagate the inline hint attribute and potentially use its
2012     // absence to mark things as noinline.
2013     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2014       // Search function and template pattern redeclarations for inline.
2015       auto CheckForInline = [](const FunctionDecl *FD) {
2016         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2017           return Redecl->isInlineSpecified();
2018         };
2019         if (any_of(FD->redecls(), CheckRedeclForInline))
2020           return true;
2021         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2022         if (!Pattern)
2023           return false;
2024         return any_of(Pattern->redecls(), CheckRedeclForInline);
2025       };
2026       if (CheckForInline(FD)) {
2027         B.addAttribute(llvm::Attribute::InlineHint);
2028       } else if (CodeGenOpts.getInlining() ==
2029                      CodeGenOptions::OnlyHintInlining &&
2030                  !FD->isInlined() &&
2031                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2032         B.addAttribute(llvm::Attribute::NoInline);
2033       }
2034     }
2035   }
2036 
2037   // Add other optimization related attributes if we are optimizing this
2038   // function.
2039   if (!D->hasAttr<OptimizeNoneAttr>()) {
2040     if (D->hasAttr<ColdAttr>()) {
2041       if (!ShouldAddOptNone)
2042         B.addAttribute(llvm::Attribute::OptimizeForSize);
2043       B.addAttribute(llvm::Attribute::Cold);
2044     }
2045     if (D->hasAttr<HotAttr>())
2046       B.addAttribute(llvm::Attribute::Hot);
2047     if (D->hasAttr<MinSizeAttr>())
2048       B.addAttribute(llvm::Attribute::MinSize);
2049   }
2050 
2051   F->addFnAttrs(B);
2052 
2053   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2054   if (alignment)
2055     F->setAlignment(llvm::Align(alignment));
2056 
2057   if (!D->hasAttr<AlignedAttr>())
2058     if (LangOpts.FunctionAlignment)
2059       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2060 
2061   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2062   // reserve a bit for differentiating between virtual and non-virtual member
2063   // functions. If the current target's C++ ABI requires this and this is a
2064   // member function, set its alignment accordingly.
2065   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2066     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2067       F->setAlignment(llvm::Align(2));
2068   }
2069 
2070   // In the cross-dso CFI mode with canonical jump tables, we want !type
2071   // attributes on definitions only.
2072   if (CodeGenOpts.SanitizeCfiCrossDso &&
2073       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2074     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2075       // Skip available_externally functions. They won't be codegen'ed in the
2076       // current module anyway.
2077       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2078         CreateFunctionTypeMetadataForIcall(FD, F);
2079     }
2080   }
2081 
2082   // Emit type metadata on member functions for member function pointer checks.
2083   // These are only ever necessary on definitions; we're guaranteed that the
2084   // definition will be present in the LTO unit as a result of LTO visibility.
2085   auto *MD = dyn_cast<CXXMethodDecl>(D);
2086   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2087     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2088       llvm::Metadata *Id =
2089           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2090               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2091       F->addTypeMetadata(0, Id);
2092     }
2093   }
2094 }
2095 
2096 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2097                                                   llvm::Function *F) {
2098   if (D->hasAttr<StrictFPAttr>()) {
2099     llvm::AttrBuilder FuncAttrs(F->getContext());
2100     FuncAttrs.addAttribute("strictfp");
2101     F->addFnAttrs(FuncAttrs);
2102   }
2103 }
2104 
2105 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2106   const Decl *D = GD.getDecl();
2107   if (isa_and_nonnull<NamedDecl>(D))
2108     setGVProperties(GV, GD);
2109   else
2110     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2111 
2112   if (D && D->hasAttr<UsedAttr>())
2113     addUsedOrCompilerUsedGlobal(GV);
2114 
2115   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2116     const auto *VD = cast<VarDecl>(D);
2117     if (VD->getType().isConstQualified() &&
2118         VD->getStorageDuration() == SD_Static)
2119       addUsedOrCompilerUsedGlobal(GV);
2120   }
2121 }
2122 
2123 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2124                                                 llvm::AttrBuilder &Attrs) {
2125   // Add target-cpu and target-features attributes to functions. If
2126   // we have a decl for the function and it has a target attribute then
2127   // parse that and add it to the feature set.
2128   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2129   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2130   std::vector<std::string> Features;
2131   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2132   FD = FD ? FD->getMostRecentDecl() : FD;
2133   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2134   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2135   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2136   bool AddedAttr = false;
2137   if (TD || SD || TC) {
2138     llvm::StringMap<bool> FeatureMap;
2139     getContext().getFunctionFeatureMap(FeatureMap, GD);
2140 
2141     // Produce the canonical string for this set of features.
2142     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2143       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2144 
2145     // Now add the target-cpu and target-features to the function.
2146     // While we populated the feature map above, we still need to
2147     // get and parse the target attribute so we can get the cpu for
2148     // the function.
2149     if (TD) {
2150       ParsedTargetAttr ParsedAttr = TD->parse();
2151       if (!ParsedAttr.Architecture.empty() &&
2152           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2153         TargetCPU = ParsedAttr.Architecture;
2154         TuneCPU = ""; // Clear the tune CPU.
2155       }
2156       if (!ParsedAttr.Tune.empty() &&
2157           getTarget().isValidCPUName(ParsedAttr.Tune))
2158         TuneCPU = ParsedAttr.Tune;
2159     }
2160 
2161     if (SD) {
2162       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2163       // favor this processor.
2164       TuneCPU = getTarget().getCPUSpecificTuneName(
2165           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2166     }
2167   } else {
2168     // Otherwise just add the existing target cpu and target features to the
2169     // function.
2170     Features = getTarget().getTargetOpts().Features;
2171   }
2172 
2173   if (!TargetCPU.empty()) {
2174     Attrs.addAttribute("target-cpu", TargetCPU);
2175     AddedAttr = true;
2176   }
2177   if (!TuneCPU.empty()) {
2178     Attrs.addAttribute("tune-cpu", TuneCPU);
2179     AddedAttr = true;
2180   }
2181   if (!Features.empty()) {
2182     llvm::sort(Features);
2183     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2184     AddedAttr = true;
2185   }
2186 
2187   return AddedAttr;
2188 }
2189 
2190 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2191                                           llvm::GlobalObject *GO) {
2192   const Decl *D = GD.getDecl();
2193   SetCommonAttributes(GD, GO);
2194 
2195   if (D) {
2196     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2197       if (D->hasAttr<RetainAttr>())
2198         addUsedGlobal(GV);
2199       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2200         GV->addAttribute("bss-section", SA->getName());
2201       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2202         GV->addAttribute("data-section", SA->getName());
2203       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2204         GV->addAttribute("rodata-section", SA->getName());
2205       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2206         GV->addAttribute("relro-section", SA->getName());
2207     }
2208 
2209     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2210       if (D->hasAttr<RetainAttr>())
2211         addUsedGlobal(F);
2212       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2213         if (!D->getAttr<SectionAttr>())
2214           F->addFnAttr("implicit-section-name", SA->getName());
2215 
2216       llvm::AttrBuilder Attrs(F->getContext());
2217       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2218         // We know that GetCPUAndFeaturesAttributes will always have the
2219         // newest set, since it has the newest possible FunctionDecl, so the
2220         // new ones should replace the old.
2221         llvm::AttributeMask RemoveAttrs;
2222         RemoveAttrs.addAttribute("target-cpu");
2223         RemoveAttrs.addAttribute("target-features");
2224         RemoveAttrs.addAttribute("tune-cpu");
2225         F->removeFnAttrs(RemoveAttrs);
2226         F->addFnAttrs(Attrs);
2227       }
2228     }
2229 
2230     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2231       GO->setSection(CSA->getName());
2232     else if (const auto *SA = D->getAttr<SectionAttr>())
2233       GO->setSection(SA->getName());
2234   }
2235 
2236   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2237 }
2238 
2239 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2240                                                   llvm::Function *F,
2241                                                   const CGFunctionInfo &FI) {
2242   const Decl *D = GD.getDecl();
2243   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2244   SetLLVMFunctionAttributesForDefinition(D, F);
2245 
2246   F->setLinkage(llvm::Function::InternalLinkage);
2247 
2248   setNonAliasAttributes(GD, F);
2249 }
2250 
2251 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2252   // Set linkage and visibility in case we never see a definition.
2253   LinkageInfo LV = ND->getLinkageAndVisibility();
2254   // Don't set internal linkage on declarations.
2255   // "extern_weak" is overloaded in LLVM; we probably should have
2256   // separate linkage types for this.
2257   if (isExternallyVisible(LV.getLinkage()) &&
2258       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2259     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2260 }
2261 
2262 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2263                                                        llvm::Function *F) {
2264   // Only if we are checking indirect calls.
2265   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2266     return;
2267 
2268   // Non-static class methods are handled via vtable or member function pointer
2269   // checks elsewhere.
2270   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2271     return;
2272 
2273   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2274   F->addTypeMetadata(0, MD);
2275   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2276 
2277   // Emit a hash-based bit set entry for cross-DSO calls.
2278   if (CodeGenOpts.SanitizeCfiCrossDso)
2279     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2280       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2281 }
2282 
2283 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2284                                           bool IsIncompleteFunction,
2285                                           bool IsThunk) {
2286 
2287   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2288     // If this is an intrinsic function, set the function's attributes
2289     // to the intrinsic's attributes.
2290     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2291     return;
2292   }
2293 
2294   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2295 
2296   if (!IsIncompleteFunction)
2297     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2298                               IsThunk);
2299 
2300   // Add the Returned attribute for "this", except for iOS 5 and earlier
2301   // where substantial code, including the libstdc++ dylib, was compiled with
2302   // GCC and does not actually return "this".
2303   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2304       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2305     assert(!F->arg_empty() &&
2306            F->arg_begin()->getType()
2307              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2308            "unexpected this return");
2309     F->addParamAttr(0, llvm::Attribute::Returned);
2310   }
2311 
2312   // Only a few attributes are set on declarations; these may later be
2313   // overridden by a definition.
2314 
2315   setLinkageForGV(F, FD);
2316   setGVProperties(F, FD);
2317 
2318   // Setup target-specific attributes.
2319   if (!IsIncompleteFunction && F->isDeclaration())
2320     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2321 
2322   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2323     F->setSection(CSA->getName());
2324   else if (const auto *SA = FD->getAttr<SectionAttr>())
2325      F->setSection(SA->getName());
2326 
2327   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2328     if (EA->isError())
2329       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2330     else if (EA->isWarning())
2331       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2332   }
2333 
2334   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2335   if (FD->isInlineBuiltinDeclaration()) {
2336     const FunctionDecl *FDBody;
2337     bool HasBody = FD->hasBody(FDBody);
2338     (void)HasBody;
2339     assert(HasBody && "Inline builtin declarations should always have an "
2340                       "available body!");
2341     if (shouldEmitFunction(FDBody))
2342       F->addFnAttr(llvm::Attribute::NoBuiltin);
2343   }
2344 
2345   if (FD->isReplaceableGlobalAllocationFunction()) {
2346     // A replaceable global allocation function does not act like a builtin by
2347     // default, only if it is invoked by a new-expression or delete-expression.
2348     F->addFnAttr(llvm::Attribute::NoBuiltin);
2349   }
2350 
2351   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2352     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2353   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2354     if (MD->isVirtual())
2355       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2356 
2357   // Don't emit entries for function declarations in the cross-DSO mode. This
2358   // is handled with better precision by the receiving DSO. But if jump tables
2359   // are non-canonical then we need type metadata in order to produce the local
2360   // jump table.
2361   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2362       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2363     CreateFunctionTypeMetadataForIcall(FD, F);
2364 
2365   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2366     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2367 
2368   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2369     // Annotate the callback behavior as metadata:
2370     //  - The callback callee (as argument number).
2371     //  - The callback payloads (as argument numbers).
2372     llvm::LLVMContext &Ctx = F->getContext();
2373     llvm::MDBuilder MDB(Ctx);
2374 
2375     // The payload indices are all but the first one in the encoding. The first
2376     // identifies the callback callee.
2377     int CalleeIdx = *CB->encoding_begin();
2378     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2379     F->addMetadata(llvm::LLVMContext::MD_callback,
2380                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2381                                                CalleeIdx, PayloadIndices,
2382                                                /* VarArgsArePassed */ false)}));
2383   }
2384 }
2385 
2386 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2387   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2388          "Only globals with definition can force usage.");
2389   LLVMUsed.emplace_back(GV);
2390 }
2391 
2392 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2393   assert(!GV->isDeclaration() &&
2394          "Only globals with definition can force usage.");
2395   LLVMCompilerUsed.emplace_back(GV);
2396 }
2397 
2398 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2399   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2400          "Only globals with definition can force usage.");
2401   if (getTriple().isOSBinFormatELF())
2402     LLVMCompilerUsed.emplace_back(GV);
2403   else
2404     LLVMUsed.emplace_back(GV);
2405 }
2406 
2407 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2408                      std::vector<llvm::WeakTrackingVH> &List) {
2409   // Don't create llvm.used if there is no need.
2410   if (List.empty())
2411     return;
2412 
2413   // Convert List to what ConstantArray needs.
2414   SmallVector<llvm::Constant*, 8> UsedArray;
2415   UsedArray.resize(List.size());
2416   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2417     UsedArray[i] =
2418         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2419             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2420   }
2421 
2422   if (UsedArray.empty())
2423     return;
2424   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2425 
2426   auto *GV = new llvm::GlobalVariable(
2427       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2428       llvm::ConstantArray::get(ATy, UsedArray), Name);
2429 
2430   GV->setSection("llvm.metadata");
2431 }
2432 
2433 void CodeGenModule::emitLLVMUsed() {
2434   emitUsed(*this, "llvm.used", LLVMUsed);
2435   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2436 }
2437 
2438 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2439   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2440   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2441 }
2442 
2443 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2444   llvm::SmallString<32> Opt;
2445   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2446   if (Opt.empty())
2447     return;
2448   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2449   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2450 }
2451 
2452 void CodeGenModule::AddDependentLib(StringRef Lib) {
2453   auto &C = getLLVMContext();
2454   if (getTarget().getTriple().isOSBinFormatELF()) {
2455       ELFDependentLibraries.push_back(
2456         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2457     return;
2458   }
2459 
2460   llvm::SmallString<24> Opt;
2461   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2462   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2463   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2464 }
2465 
2466 /// Add link options implied by the given module, including modules
2467 /// it depends on, using a postorder walk.
2468 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2469                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2470                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2471   // Import this module's parent.
2472   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2473     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2474   }
2475 
2476   // Import this module's dependencies.
2477   for (Module *Import : llvm::reverse(Mod->Imports)) {
2478     if (Visited.insert(Import).second)
2479       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2480   }
2481 
2482   // Add linker options to link against the libraries/frameworks
2483   // described by this module.
2484   llvm::LLVMContext &Context = CGM.getLLVMContext();
2485   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2486 
2487   // For modules that use export_as for linking, use that module
2488   // name instead.
2489   if (Mod->UseExportAsModuleLinkName)
2490     return;
2491 
2492   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2493     // Link against a framework.  Frameworks are currently Darwin only, so we
2494     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2495     if (LL.IsFramework) {
2496       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2497                                  llvm::MDString::get(Context, LL.Library)};
2498 
2499       Metadata.push_back(llvm::MDNode::get(Context, Args));
2500       continue;
2501     }
2502 
2503     // Link against a library.
2504     if (IsELF) {
2505       llvm::Metadata *Args[2] = {
2506           llvm::MDString::get(Context, "lib"),
2507           llvm::MDString::get(Context, LL.Library),
2508       };
2509       Metadata.push_back(llvm::MDNode::get(Context, Args));
2510     } else {
2511       llvm::SmallString<24> Opt;
2512       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2513       auto *OptString = llvm::MDString::get(Context, Opt);
2514       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2515     }
2516   }
2517 }
2518 
2519 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2520   // Emit the initializers in the order that sub-modules appear in the
2521   // source, first Global Module Fragments, if present.
2522   if (auto GMF = Primary->getGlobalModuleFragment()) {
2523     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2524       assert(D->getKind() == Decl::Var && "GMF initializer decl is not a var?");
2525       EmitTopLevelDecl(D);
2526     }
2527   }
2528   // Second any associated with the module, itself.
2529   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2530     // Skip import decls, the inits for those are called explicitly.
2531     if (D->getKind() == Decl::Import)
2532       continue;
2533     EmitTopLevelDecl(D);
2534   }
2535   // Third any associated with the Privat eMOdule Fragment, if present.
2536   if (auto PMF = Primary->getPrivateModuleFragment()) {
2537     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2538       assert(D->getKind() == Decl::Var && "PMF initializer decl is not a var?");
2539       EmitTopLevelDecl(D);
2540     }
2541   }
2542 }
2543 
2544 void CodeGenModule::EmitModuleLinkOptions() {
2545   // Collect the set of all of the modules we want to visit to emit link
2546   // options, which is essentially the imported modules and all of their
2547   // non-explicit child modules.
2548   llvm::SetVector<clang::Module *> LinkModules;
2549   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2550   SmallVector<clang::Module *, 16> Stack;
2551 
2552   // Seed the stack with imported modules.
2553   for (Module *M : ImportedModules) {
2554     // Do not add any link flags when an implementation TU of a module imports
2555     // a header of that same module.
2556     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2557         !getLangOpts().isCompilingModule())
2558       continue;
2559     if (Visited.insert(M).second)
2560       Stack.push_back(M);
2561   }
2562 
2563   // Find all of the modules to import, making a little effort to prune
2564   // non-leaf modules.
2565   while (!Stack.empty()) {
2566     clang::Module *Mod = Stack.pop_back_val();
2567 
2568     bool AnyChildren = false;
2569 
2570     // Visit the submodules of this module.
2571     for (const auto &SM : Mod->submodules()) {
2572       // Skip explicit children; they need to be explicitly imported to be
2573       // linked against.
2574       if (SM->IsExplicit)
2575         continue;
2576 
2577       if (Visited.insert(SM).second) {
2578         Stack.push_back(SM);
2579         AnyChildren = true;
2580       }
2581     }
2582 
2583     // We didn't find any children, so add this module to the list of
2584     // modules to link against.
2585     if (!AnyChildren) {
2586       LinkModules.insert(Mod);
2587     }
2588   }
2589 
2590   // Add link options for all of the imported modules in reverse topological
2591   // order.  We don't do anything to try to order import link flags with respect
2592   // to linker options inserted by things like #pragma comment().
2593   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2594   Visited.clear();
2595   for (Module *M : LinkModules)
2596     if (Visited.insert(M).second)
2597       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2598   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2599   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2600 
2601   // Add the linker options metadata flag.
2602   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2603   for (auto *MD : LinkerOptionsMetadata)
2604     NMD->addOperand(MD);
2605 }
2606 
2607 void CodeGenModule::EmitDeferred() {
2608   // Emit deferred declare target declarations.
2609   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2610     getOpenMPRuntime().emitDeferredTargetDecls();
2611 
2612   // Emit code for any potentially referenced deferred decls.  Since a
2613   // previously unused static decl may become used during the generation of code
2614   // for a static function, iterate until no changes are made.
2615 
2616   if (!DeferredVTables.empty()) {
2617     EmitDeferredVTables();
2618 
2619     // Emitting a vtable doesn't directly cause more vtables to
2620     // become deferred, although it can cause functions to be
2621     // emitted that then need those vtables.
2622     assert(DeferredVTables.empty());
2623   }
2624 
2625   // Emit CUDA/HIP static device variables referenced by host code only.
2626   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2627   // needed for further handling.
2628   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2629     llvm::append_range(DeferredDeclsToEmit,
2630                        getContext().CUDADeviceVarODRUsedByHost);
2631 
2632   // Stop if we're out of both deferred vtables and deferred declarations.
2633   if (DeferredDeclsToEmit.empty())
2634     return;
2635 
2636   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2637   // work, it will not interfere with this.
2638   std::vector<GlobalDecl> CurDeclsToEmit;
2639   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2640 
2641   for (GlobalDecl &D : CurDeclsToEmit) {
2642     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2643     // to get GlobalValue with exactly the type we need, not something that
2644     // might had been created for another decl with the same mangled name but
2645     // different type.
2646     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2647         GetAddrOfGlobal(D, ForDefinition));
2648 
2649     // In case of different address spaces, we may still get a cast, even with
2650     // IsForDefinition equal to true. Query mangled names table to get
2651     // GlobalValue.
2652     if (!GV)
2653       GV = GetGlobalValue(getMangledName(D));
2654 
2655     // Make sure GetGlobalValue returned non-null.
2656     assert(GV);
2657 
2658     // Check to see if we've already emitted this.  This is necessary
2659     // for a couple of reasons: first, decls can end up in the
2660     // deferred-decls queue multiple times, and second, decls can end
2661     // up with definitions in unusual ways (e.g. by an extern inline
2662     // function acquiring a strong function redefinition).  Just
2663     // ignore these cases.
2664     if (!GV->isDeclaration())
2665       continue;
2666 
2667     // If this is OpenMP, check if it is legal to emit this global normally.
2668     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2669       continue;
2670 
2671     // Otherwise, emit the definition and move on to the next one.
2672     EmitGlobalDefinition(D, GV);
2673 
2674     // If we found out that we need to emit more decls, do that recursively.
2675     // This has the advantage that the decls are emitted in a DFS and related
2676     // ones are close together, which is convenient for testing.
2677     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2678       EmitDeferred();
2679       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2680     }
2681   }
2682 }
2683 
2684 void CodeGenModule::EmitVTablesOpportunistically() {
2685   // Try to emit external vtables as available_externally if they have emitted
2686   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2687   // is not allowed to create new references to things that need to be emitted
2688   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2689 
2690   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2691          && "Only emit opportunistic vtables with optimizations");
2692 
2693   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2694     assert(getVTables().isVTableExternal(RD) &&
2695            "This queue should only contain external vtables");
2696     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2697       VTables.GenerateClassData(RD);
2698   }
2699   OpportunisticVTables.clear();
2700 }
2701 
2702 void CodeGenModule::EmitGlobalAnnotations() {
2703   if (Annotations.empty())
2704     return;
2705 
2706   // Create a new global variable for the ConstantStruct in the Module.
2707   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2708     Annotations[0]->getType(), Annotations.size()), Annotations);
2709   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2710                                       llvm::GlobalValue::AppendingLinkage,
2711                                       Array, "llvm.global.annotations");
2712   gv->setSection(AnnotationSection);
2713 }
2714 
2715 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2716   llvm::Constant *&AStr = AnnotationStrings[Str];
2717   if (AStr)
2718     return AStr;
2719 
2720   // Not found yet, create a new global.
2721   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2722   auto *gv =
2723       new llvm::GlobalVariable(getModule(), s->getType(), true,
2724                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2725   gv->setSection(AnnotationSection);
2726   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2727   AStr = gv;
2728   return gv;
2729 }
2730 
2731 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2732   SourceManager &SM = getContext().getSourceManager();
2733   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2734   if (PLoc.isValid())
2735     return EmitAnnotationString(PLoc.getFilename());
2736   return EmitAnnotationString(SM.getBufferName(Loc));
2737 }
2738 
2739 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2740   SourceManager &SM = getContext().getSourceManager();
2741   PresumedLoc PLoc = SM.getPresumedLoc(L);
2742   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2743     SM.getExpansionLineNumber(L);
2744   return llvm::ConstantInt::get(Int32Ty, LineNo);
2745 }
2746 
2747 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2748   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2749   if (Exprs.empty())
2750     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2751 
2752   llvm::FoldingSetNodeID ID;
2753   for (Expr *E : Exprs) {
2754     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2755   }
2756   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2757   if (Lookup)
2758     return Lookup;
2759 
2760   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2761   LLVMArgs.reserve(Exprs.size());
2762   ConstantEmitter ConstEmiter(*this);
2763   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2764     const auto *CE = cast<clang::ConstantExpr>(E);
2765     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2766                                     CE->getType());
2767   });
2768   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2769   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2770                                       llvm::GlobalValue::PrivateLinkage, Struct,
2771                                       ".args");
2772   GV->setSection(AnnotationSection);
2773   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2774   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2775 
2776   Lookup = Bitcasted;
2777   return Bitcasted;
2778 }
2779 
2780 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2781                                                 const AnnotateAttr *AA,
2782                                                 SourceLocation L) {
2783   // Get the globals for file name, annotation, and the line number.
2784   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2785                  *UnitGV = EmitAnnotationUnit(L),
2786                  *LineNoCst = EmitAnnotationLineNo(L),
2787                  *Args = EmitAnnotationArgs(AA);
2788 
2789   llvm::Constant *GVInGlobalsAS = GV;
2790   if (GV->getAddressSpace() !=
2791       getDataLayout().getDefaultGlobalsAddressSpace()) {
2792     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2793         GV, GV->getValueType()->getPointerTo(
2794                 getDataLayout().getDefaultGlobalsAddressSpace()));
2795   }
2796 
2797   // Create the ConstantStruct for the global annotation.
2798   llvm::Constant *Fields[] = {
2799       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2800       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2801       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2802       LineNoCst,
2803       Args,
2804   };
2805   return llvm::ConstantStruct::getAnon(Fields);
2806 }
2807 
2808 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2809                                          llvm::GlobalValue *GV) {
2810   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2811   // Get the struct elements for these annotations.
2812   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2813     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2814 }
2815 
2816 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2817                                        SourceLocation Loc) const {
2818   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2819   // NoSanitize by function name.
2820   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2821     return true;
2822   // NoSanitize by location. Check "mainfile" prefix.
2823   auto &SM = Context.getSourceManager();
2824   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2825   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2826     return true;
2827 
2828   // Check "src" prefix.
2829   if (Loc.isValid())
2830     return NoSanitizeL.containsLocation(Kind, Loc);
2831   // If location is unknown, this may be a compiler-generated function. Assume
2832   // it's located in the main file.
2833   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2834 }
2835 
2836 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2837                                        llvm::GlobalVariable *GV,
2838                                        SourceLocation Loc, QualType Ty,
2839                                        StringRef Category) const {
2840   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2841   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2842     return true;
2843   auto &SM = Context.getSourceManager();
2844   if (NoSanitizeL.containsMainFile(
2845           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2846     return true;
2847   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2848     return true;
2849 
2850   // Check global type.
2851   if (!Ty.isNull()) {
2852     // Drill down the array types: if global variable of a fixed type is
2853     // not sanitized, we also don't instrument arrays of them.
2854     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2855       Ty = AT->getElementType();
2856     Ty = Ty.getCanonicalType().getUnqualifiedType();
2857     // Only record types (classes, structs etc.) are ignored.
2858     if (Ty->isRecordType()) {
2859       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2860       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2861         return true;
2862     }
2863   }
2864   return false;
2865 }
2866 
2867 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2868                                    StringRef Category) const {
2869   const auto &XRayFilter = getContext().getXRayFilter();
2870   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2871   auto Attr = ImbueAttr::NONE;
2872   if (Loc.isValid())
2873     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2874   if (Attr == ImbueAttr::NONE)
2875     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2876   switch (Attr) {
2877   case ImbueAttr::NONE:
2878     return false;
2879   case ImbueAttr::ALWAYS:
2880     Fn->addFnAttr("function-instrument", "xray-always");
2881     break;
2882   case ImbueAttr::ALWAYS_ARG1:
2883     Fn->addFnAttr("function-instrument", "xray-always");
2884     Fn->addFnAttr("xray-log-args", "1");
2885     break;
2886   case ImbueAttr::NEVER:
2887     Fn->addFnAttr("function-instrument", "xray-never");
2888     break;
2889   }
2890   return true;
2891 }
2892 
2893 bool CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2894                                                    SourceLocation Loc) const {
2895   const auto &ProfileList = getContext().getProfileList();
2896   // If the profile list is empty, then instrument everything.
2897   if (ProfileList.isEmpty())
2898     return false;
2899   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2900   // First, check the function name.
2901   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2902   if (V)
2903     return *V;
2904   // Next, check the source location.
2905   if (Loc.isValid()) {
2906     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2907     if (V)
2908       return *V;
2909   }
2910   // If location is unknown, this may be a compiler-generated function. Assume
2911   // it's located in the main file.
2912   auto &SM = Context.getSourceManager();
2913   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2914     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2915     if (V)
2916       return *V;
2917   }
2918   return ProfileList.getDefault();
2919 }
2920 
2921 bool CodeGenModule::isFunctionBlockedFromProfileInstr(
2922     llvm::Function *Fn, SourceLocation Loc) const {
2923   if (isFunctionBlockedByProfileList(Fn, Loc))
2924     return true;
2925 
2926   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
2927   if (NumGroups > 1) {
2928     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
2929     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
2930       return true;
2931   }
2932   return false;
2933 }
2934 
2935 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2936   // Never defer when EmitAllDecls is specified.
2937   if (LangOpts.EmitAllDecls)
2938     return true;
2939 
2940   if (CodeGenOpts.KeepStaticConsts) {
2941     const auto *VD = dyn_cast<VarDecl>(Global);
2942     if (VD && VD->getType().isConstQualified() &&
2943         VD->getStorageDuration() == SD_Static)
2944       return true;
2945   }
2946 
2947   return getContext().DeclMustBeEmitted(Global);
2948 }
2949 
2950 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2951   // In OpenMP 5.0 variables and function may be marked as
2952   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2953   // that they must be emitted on the host/device. To be sure we need to have
2954   // seen a declare target with an explicit mentioning of the function, we know
2955   // we have if the level of the declare target attribute is -1. Note that we
2956   // check somewhere else if we should emit this at all.
2957   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2958     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2959         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2960     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2961       return false;
2962   }
2963 
2964   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2965     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2966       // Implicit template instantiations may change linkage if they are later
2967       // explicitly instantiated, so they should not be emitted eagerly.
2968       return false;
2969   }
2970   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
2971     if (Context.getInlineVariableDefinitionKind(VD) ==
2972         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2973       // A definition of an inline constexpr static data member may change
2974       // linkage later if it's redeclared outside the class.
2975       return false;
2976     if (CXX20ModuleInits && VD->getOwningModule() &&
2977         !VD->getOwningModule()->isModuleMapModule()) {
2978       // For CXX20, module-owned initializers need to be deferred, since it is
2979       // not known at this point if they will be run for the current module or
2980       // as part of the initializer for an imported one.
2981       return false;
2982     }
2983   }
2984   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2985   // codegen for global variables, because they may be marked as threadprivate.
2986   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2987       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2988       !isTypeConstant(Global->getType(), false) &&
2989       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2990     return false;
2991 
2992   return true;
2993 }
2994 
2995 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2996   StringRef Name = getMangledName(GD);
2997 
2998   // The UUID descriptor should be pointer aligned.
2999   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3000 
3001   // Look for an existing global.
3002   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3003     return ConstantAddress(GV, GV->getValueType(), Alignment);
3004 
3005   ConstantEmitter Emitter(*this);
3006   llvm::Constant *Init;
3007 
3008   APValue &V = GD->getAsAPValue();
3009   if (!V.isAbsent()) {
3010     // If possible, emit the APValue version of the initializer. In particular,
3011     // this gets the type of the constant right.
3012     Init = Emitter.emitForInitializer(
3013         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3014   } else {
3015     // As a fallback, directly construct the constant.
3016     // FIXME: This may get padding wrong under esoteric struct layout rules.
3017     // MSVC appears to create a complete type 'struct __s_GUID' that it
3018     // presumably uses to represent these constants.
3019     MSGuidDecl::Parts Parts = GD->getParts();
3020     llvm::Constant *Fields[4] = {
3021         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3022         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3023         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3024         llvm::ConstantDataArray::getRaw(
3025             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3026             Int8Ty)};
3027     Init = llvm::ConstantStruct::getAnon(Fields);
3028   }
3029 
3030   auto *GV = new llvm::GlobalVariable(
3031       getModule(), Init->getType(),
3032       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3033   if (supportsCOMDAT())
3034     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3035   setDSOLocal(GV);
3036 
3037   if (!V.isAbsent()) {
3038     Emitter.finalize(GV);
3039     return ConstantAddress(GV, GV->getValueType(), Alignment);
3040   }
3041 
3042   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3043   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3044       GV, Ty->getPointerTo(GV->getAddressSpace()));
3045   return ConstantAddress(Addr, Ty, Alignment);
3046 }
3047 
3048 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3049     const UnnamedGlobalConstantDecl *GCD) {
3050   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3051 
3052   llvm::GlobalVariable **Entry = nullptr;
3053   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3054   if (*Entry)
3055     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3056 
3057   ConstantEmitter Emitter(*this);
3058   llvm::Constant *Init;
3059 
3060   const APValue &V = GCD->getValue();
3061 
3062   assert(!V.isAbsent());
3063   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3064                                     GCD->getType());
3065 
3066   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3067                                       /*isConstant=*/true,
3068                                       llvm::GlobalValue::PrivateLinkage, Init,
3069                                       ".constant");
3070   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3071   GV->setAlignment(Alignment.getAsAlign());
3072 
3073   Emitter.finalize(GV);
3074 
3075   *Entry = GV;
3076   return ConstantAddress(GV, GV->getValueType(), Alignment);
3077 }
3078 
3079 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3080     const TemplateParamObjectDecl *TPO) {
3081   StringRef Name = getMangledName(TPO);
3082   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3083 
3084   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3085     return ConstantAddress(GV, GV->getValueType(), Alignment);
3086 
3087   ConstantEmitter Emitter(*this);
3088   llvm::Constant *Init = Emitter.emitForInitializer(
3089         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3090 
3091   if (!Init) {
3092     ErrorUnsupported(TPO, "template parameter object");
3093     return ConstantAddress::invalid();
3094   }
3095 
3096   auto *GV = new llvm::GlobalVariable(
3097       getModule(), Init->getType(),
3098       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3099   if (supportsCOMDAT())
3100     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3101   Emitter.finalize(GV);
3102 
3103   return ConstantAddress(GV, GV->getValueType(), Alignment);
3104 }
3105 
3106 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3107   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3108   assert(AA && "No alias?");
3109 
3110   CharUnits Alignment = getContext().getDeclAlign(VD);
3111   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3112 
3113   // See if there is already something with the target's name in the module.
3114   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3115   if (Entry) {
3116     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3117     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3118     return ConstantAddress(Ptr, DeclTy, Alignment);
3119   }
3120 
3121   llvm::Constant *Aliasee;
3122   if (isa<llvm::FunctionType>(DeclTy))
3123     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3124                                       GlobalDecl(cast<FunctionDecl>(VD)),
3125                                       /*ForVTable=*/false);
3126   else
3127     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3128                                     nullptr);
3129 
3130   auto *F = cast<llvm::GlobalValue>(Aliasee);
3131   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3132   WeakRefReferences.insert(F);
3133 
3134   return ConstantAddress(Aliasee, DeclTy, Alignment);
3135 }
3136 
3137 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3138   const auto *Global = cast<ValueDecl>(GD.getDecl());
3139 
3140   // Weak references don't produce any output by themselves.
3141   if (Global->hasAttr<WeakRefAttr>())
3142     return;
3143 
3144   // If this is an alias definition (which otherwise looks like a declaration)
3145   // emit it now.
3146   if (Global->hasAttr<AliasAttr>())
3147     return EmitAliasDefinition(GD);
3148 
3149   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3150   if (Global->hasAttr<IFuncAttr>())
3151     return emitIFuncDefinition(GD);
3152 
3153   // If this is a cpu_dispatch multiversion function, emit the resolver.
3154   if (Global->hasAttr<CPUDispatchAttr>())
3155     return emitCPUDispatchDefinition(GD);
3156 
3157   // If this is CUDA, be selective about which declarations we emit.
3158   if (LangOpts.CUDA) {
3159     if (LangOpts.CUDAIsDevice) {
3160       if (!Global->hasAttr<CUDADeviceAttr>() &&
3161           !Global->hasAttr<CUDAGlobalAttr>() &&
3162           !Global->hasAttr<CUDAConstantAttr>() &&
3163           !Global->hasAttr<CUDASharedAttr>() &&
3164           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3165           !Global->getType()->isCUDADeviceBuiltinTextureType())
3166         return;
3167     } else {
3168       // We need to emit host-side 'shadows' for all global
3169       // device-side variables because the CUDA runtime needs their
3170       // size and host-side address in order to provide access to
3171       // their device-side incarnations.
3172 
3173       // So device-only functions are the only things we skip.
3174       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3175           Global->hasAttr<CUDADeviceAttr>())
3176         return;
3177 
3178       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3179              "Expected Variable or Function");
3180     }
3181   }
3182 
3183   if (LangOpts.OpenMP) {
3184     // If this is OpenMP, check if it is legal to emit this global normally.
3185     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3186       return;
3187     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3188       if (MustBeEmitted(Global))
3189         EmitOMPDeclareReduction(DRD);
3190       return;
3191     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3192       if (MustBeEmitted(Global))
3193         EmitOMPDeclareMapper(DMD);
3194       return;
3195     }
3196   }
3197 
3198   // Ignore declarations, they will be emitted on their first use.
3199   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3200     // Forward declarations are emitted lazily on first use.
3201     if (!FD->doesThisDeclarationHaveABody()) {
3202       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3203         return;
3204 
3205       StringRef MangledName = getMangledName(GD);
3206 
3207       // Compute the function info and LLVM type.
3208       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3209       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3210 
3211       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3212                               /*DontDefer=*/false);
3213       return;
3214     }
3215   } else {
3216     const auto *VD = cast<VarDecl>(Global);
3217     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3218     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3219         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3220       if (LangOpts.OpenMP) {
3221         // Emit declaration of the must-be-emitted declare target variable.
3222         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3223                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3224           bool UnifiedMemoryEnabled =
3225               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3226           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3227               !UnifiedMemoryEnabled) {
3228             (void)GetAddrOfGlobalVar(VD);
3229           } else {
3230             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3231                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3232                      UnifiedMemoryEnabled)) &&
3233                    "Link clause or to clause with unified memory expected.");
3234             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3235           }
3236 
3237           return;
3238         }
3239       }
3240       // If this declaration may have caused an inline variable definition to
3241       // change linkage, make sure that it's emitted.
3242       if (Context.getInlineVariableDefinitionKind(VD) ==
3243           ASTContext::InlineVariableDefinitionKind::Strong)
3244         GetAddrOfGlobalVar(VD);
3245       return;
3246     }
3247   }
3248 
3249   // Defer code generation to first use when possible, e.g. if this is an inline
3250   // function. If the global must always be emitted, do it eagerly if possible
3251   // to benefit from cache locality.
3252   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3253     // Emit the definition if it can't be deferred.
3254     EmitGlobalDefinition(GD);
3255     return;
3256   }
3257 
3258   // If we're deferring emission of a C++ variable with an
3259   // initializer, remember the order in which it appeared in the file.
3260   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3261       cast<VarDecl>(Global)->hasInit()) {
3262     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3263     CXXGlobalInits.push_back(nullptr);
3264   }
3265 
3266   StringRef MangledName = getMangledName(GD);
3267   if (GetGlobalValue(MangledName) != nullptr) {
3268     // The value has already been used and should therefore be emitted.
3269     addDeferredDeclToEmit(GD);
3270   } else if (MustBeEmitted(Global)) {
3271     // The value must be emitted, but cannot be emitted eagerly.
3272     assert(!MayBeEmittedEagerly(Global));
3273     addDeferredDeclToEmit(GD);
3274   } else {
3275     // Otherwise, remember that we saw a deferred decl with this name.  The
3276     // first use of the mangled name will cause it to move into
3277     // DeferredDeclsToEmit.
3278     DeferredDecls[MangledName] = GD;
3279   }
3280 }
3281 
3282 // Check if T is a class type with a destructor that's not dllimport.
3283 static bool HasNonDllImportDtor(QualType T) {
3284   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3285     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3286       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3287         return true;
3288 
3289   return false;
3290 }
3291 
3292 namespace {
3293   struct FunctionIsDirectlyRecursive
3294       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3295     const StringRef Name;
3296     const Builtin::Context &BI;
3297     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3298         : Name(N), BI(C) {}
3299 
3300     bool VisitCallExpr(const CallExpr *E) {
3301       const FunctionDecl *FD = E->getDirectCallee();
3302       if (!FD)
3303         return false;
3304       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3305       if (Attr && Name == Attr->getLabel())
3306         return true;
3307       unsigned BuiltinID = FD->getBuiltinID();
3308       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3309         return false;
3310       StringRef BuiltinName = BI.getName(BuiltinID);
3311       if (BuiltinName.startswith("__builtin_") &&
3312           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3313         return true;
3314       }
3315       return false;
3316     }
3317 
3318     bool VisitStmt(const Stmt *S) {
3319       for (const Stmt *Child : S->children())
3320         if (Child && this->Visit(Child))
3321           return true;
3322       return false;
3323     }
3324   };
3325 
3326   // Make sure we're not referencing non-imported vars or functions.
3327   struct DLLImportFunctionVisitor
3328       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3329     bool SafeToInline = true;
3330 
3331     bool shouldVisitImplicitCode() const { return true; }
3332 
3333     bool VisitVarDecl(VarDecl *VD) {
3334       if (VD->getTLSKind()) {
3335         // A thread-local variable cannot be imported.
3336         SafeToInline = false;
3337         return SafeToInline;
3338       }
3339 
3340       // A variable definition might imply a destructor call.
3341       if (VD->isThisDeclarationADefinition())
3342         SafeToInline = !HasNonDllImportDtor(VD->getType());
3343 
3344       return SafeToInline;
3345     }
3346 
3347     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3348       if (const auto *D = E->getTemporary()->getDestructor())
3349         SafeToInline = D->hasAttr<DLLImportAttr>();
3350       return SafeToInline;
3351     }
3352 
3353     bool VisitDeclRefExpr(DeclRefExpr *E) {
3354       ValueDecl *VD = E->getDecl();
3355       if (isa<FunctionDecl>(VD))
3356         SafeToInline = VD->hasAttr<DLLImportAttr>();
3357       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3358         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3359       return SafeToInline;
3360     }
3361 
3362     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3363       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3364       return SafeToInline;
3365     }
3366 
3367     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3368       CXXMethodDecl *M = E->getMethodDecl();
3369       if (!M) {
3370         // Call through a pointer to member function. This is safe to inline.
3371         SafeToInline = true;
3372       } else {
3373         SafeToInline = M->hasAttr<DLLImportAttr>();
3374       }
3375       return SafeToInline;
3376     }
3377 
3378     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3379       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3380       return SafeToInline;
3381     }
3382 
3383     bool VisitCXXNewExpr(CXXNewExpr *E) {
3384       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3385       return SafeToInline;
3386     }
3387   };
3388 }
3389 
3390 // isTriviallyRecursive - Check if this function calls another
3391 // decl that, because of the asm attribute or the other decl being a builtin,
3392 // ends up pointing to itself.
3393 bool
3394 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3395   StringRef Name;
3396   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3397     // asm labels are a special kind of mangling we have to support.
3398     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3399     if (!Attr)
3400       return false;
3401     Name = Attr->getLabel();
3402   } else {
3403     Name = FD->getName();
3404   }
3405 
3406   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3407   const Stmt *Body = FD->getBody();
3408   return Body ? Walker.Visit(Body) : false;
3409 }
3410 
3411 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3412   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3413     return true;
3414   const auto *F = cast<FunctionDecl>(GD.getDecl());
3415   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3416     return false;
3417 
3418   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3419     // Check whether it would be safe to inline this dllimport function.
3420     DLLImportFunctionVisitor Visitor;
3421     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3422     if (!Visitor.SafeToInline)
3423       return false;
3424 
3425     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3426       // Implicit destructor invocations aren't captured in the AST, so the
3427       // check above can't see them. Check for them manually here.
3428       for (const Decl *Member : Dtor->getParent()->decls())
3429         if (isa<FieldDecl>(Member))
3430           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3431             return false;
3432       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3433         if (HasNonDllImportDtor(B.getType()))
3434           return false;
3435     }
3436   }
3437 
3438   // Inline builtins declaration must be emitted. They often are fortified
3439   // functions.
3440   if (F->isInlineBuiltinDeclaration())
3441     return true;
3442 
3443   // PR9614. Avoid cases where the source code is lying to us. An available
3444   // externally function should have an equivalent function somewhere else,
3445   // but a function that calls itself through asm label/`__builtin_` trickery is
3446   // clearly not equivalent to the real implementation.
3447   // This happens in glibc's btowc and in some configure checks.
3448   return !isTriviallyRecursive(F);
3449 }
3450 
3451 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3452   return CodeGenOpts.OptimizationLevel > 0;
3453 }
3454 
3455 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3456                                                        llvm::GlobalValue *GV) {
3457   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3458 
3459   if (FD->isCPUSpecificMultiVersion()) {
3460     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3461     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3462       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3463   } else if (FD->isTargetClonesMultiVersion()) {
3464     auto *Clone = FD->getAttr<TargetClonesAttr>();
3465     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3466       if (Clone->isFirstOfVersion(I))
3467         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3468     // Ensure that the resolver function is also emitted.
3469     GetOrCreateMultiVersionResolver(GD);
3470   } else
3471     EmitGlobalFunctionDefinition(GD, GV);
3472 }
3473 
3474 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3475   const auto *D = cast<ValueDecl>(GD.getDecl());
3476 
3477   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3478                                  Context.getSourceManager(),
3479                                  "Generating code for declaration");
3480 
3481   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3482     // At -O0, don't generate IR for functions with available_externally
3483     // linkage.
3484     if (!shouldEmitFunction(GD))
3485       return;
3486 
3487     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3488       std::string Name;
3489       llvm::raw_string_ostream OS(Name);
3490       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3491                                /*Qualified=*/true);
3492       return Name;
3493     });
3494 
3495     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3496       // Make sure to emit the definition(s) before we emit the thunks.
3497       // This is necessary for the generation of certain thunks.
3498       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3499         ABI->emitCXXStructor(GD);
3500       else if (FD->isMultiVersion())
3501         EmitMultiVersionFunctionDefinition(GD, GV);
3502       else
3503         EmitGlobalFunctionDefinition(GD, GV);
3504 
3505       if (Method->isVirtual())
3506         getVTables().EmitThunks(GD);
3507 
3508       return;
3509     }
3510 
3511     if (FD->isMultiVersion())
3512       return EmitMultiVersionFunctionDefinition(GD, GV);
3513     return EmitGlobalFunctionDefinition(GD, GV);
3514   }
3515 
3516   if (const auto *VD = dyn_cast<VarDecl>(D))
3517     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3518 
3519   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3520 }
3521 
3522 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3523                                                       llvm::Function *NewFn);
3524 
3525 static unsigned
3526 TargetMVPriority(const TargetInfo &TI,
3527                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3528   unsigned Priority = 0;
3529   for (StringRef Feat : RO.Conditions.Features)
3530     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3531 
3532   if (!RO.Conditions.Architecture.empty())
3533     Priority = std::max(
3534         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3535   return Priority;
3536 }
3537 
3538 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3539 // TU can forward declare the function without causing problems.  Particularly
3540 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3541 // work with internal linkage functions, so that the same function name can be
3542 // used with internal linkage in multiple TUs.
3543 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3544                                                        GlobalDecl GD) {
3545   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3546   if (FD->getFormalLinkage() == InternalLinkage)
3547     return llvm::GlobalValue::InternalLinkage;
3548   return llvm::GlobalValue::WeakODRLinkage;
3549 }
3550 
3551 void CodeGenModule::emitMultiVersionFunctions() {
3552   std::vector<GlobalDecl> MVFuncsToEmit;
3553   MultiVersionFuncs.swap(MVFuncsToEmit);
3554   for (GlobalDecl GD : MVFuncsToEmit) {
3555     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3556     assert(FD && "Expected a FunctionDecl");
3557 
3558     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3559     if (FD->isTargetMultiVersion()) {
3560       getContext().forEachMultiversionedFunctionVersion(
3561           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3562             GlobalDecl CurGD{
3563                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3564             StringRef MangledName = getMangledName(CurGD);
3565             llvm::Constant *Func = GetGlobalValue(MangledName);
3566             if (!Func) {
3567               if (CurFD->isDefined()) {
3568                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3569                 Func = GetGlobalValue(MangledName);
3570               } else {
3571                 const CGFunctionInfo &FI =
3572                     getTypes().arrangeGlobalDeclaration(GD);
3573                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3574                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3575                                          /*DontDefer=*/false, ForDefinition);
3576               }
3577               assert(Func && "This should have just been created");
3578             }
3579 
3580             const auto *TA = CurFD->getAttr<TargetAttr>();
3581             llvm::SmallVector<StringRef, 8> Feats;
3582             TA->getAddedFeatures(Feats);
3583 
3584             Options.emplace_back(cast<llvm::Function>(Func),
3585                                  TA->getArchitecture(), Feats);
3586           });
3587     } else if (FD->isTargetClonesMultiVersion()) {
3588       const auto *TC = FD->getAttr<TargetClonesAttr>();
3589       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3590            ++VersionIndex) {
3591         if (!TC->isFirstOfVersion(VersionIndex))
3592           continue;
3593         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3594                          VersionIndex};
3595         StringRef Version = TC->getFeatureStr(VersionIndex);
3596         StringRef MangledName = getMangledName(CurGD);
3597         llvm::Constant *Func = GetGlobalValue(MangledName);
3598         if (!Func) {
3599           if (FD->isDefined()) {
3600             EmitGlobalFunctionDefinition(CurGD, nullptr);
3601             Func = GetGlobalValue(MangledName);
3602           } else {
3603             const CGFunctionInfo &FI =
3604                 getTypes().arrangeGlobalDeclaration(CurGD);
3605             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3606             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3607                                      /*DontDefer=*/false, ForDefinition);
3608           }
3609           assert(Func && "This should have just been created");
3610         }
3611 
3612         StringRef Architecture;
3613         llvm::SmallVector<StringRef, 1> Feature;
3614 
3615         if (Version.startswith("arch="))
3616           Architecture = Version.drop_front(sizeof("arch=") - 1);
3617         else if (Version != "default")
3618           Feature.push_back(Version);
3619 
3620         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3621       }
3622     } else {
3623       assert(0 && "Expected a target or target_clones multiversion function");
3624       continue;
3625     }
3626 
3627     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3628     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3629       ResolverConstant = IFunc->getResolver();
3630     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3631 
3632     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3633 
3634     if (supportsCOMDAT())
3635       ResolverFunc->setComdat(
3636           getModule().getOrInsertComdat(ResolverFunc->getName()));
3637 
3638     const TargetInfo &TI = getTarget();
3639     llvm::stable_sort(
3640         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3641                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3642           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3643         });
3644     CodeGenFunction CGF(*this);
3645     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3646   }
3647 
3648   // Ensure that any additions to the deferred decls list caused by emitting a
3649   // variant are emitted.  This can happen when the variant itself is inline and
3650   // calls a function without linkage.
3651   if (!MVFuncsToEmit.empty())
3652     EmitDeferred();
3653 
3654   // Ensure that any additions to the multiversion funcs list from either the
3655   // deferred decls or the multiversion functions themselves are emitted.
3656   if (!MultiVersionFuncs.empty())
3657     emitMultiVersionFunctions();
3658 }
3659 
3660 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3661   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3662   assert(FD && "Not a FunctionDecl?");
3663   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3664   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3665   assert(DD && "Not a cpu_dispatch Function?");
3666 
3667   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3668   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3669 
3670   StringRef ResolverName = getMangledName(GD);
3671   UpdateMultiVersionNames(GD, FD, ResolverName);
3672 
3673   llvm::Type *ResolverType;
3674   GlobalDecl ResolverGD;
3675   if (getTarget().supportsIFunc()) {
3676     ResolverType = llvm::FunctionType::get(
3677         llvm::PointerType::get(DeclTy,
3678                                Context.getTargetAddressSpace(FD->getType())),
3679         false);
3680   }
3681   else {
3682     ResolverType = DeclTy;
3683     ResolverGD = GD;
3684   }
3685 
3686   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3687       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3688   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3689   if (supportsCOMDAT())
3690     ResolverFunc->setComdat(
3691         getModule().getOrInsertComdat(ResolverFunc->getName()));
3692 
3693   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3694   const TargetInfo &Target = getTarget();
3695   unsigned Index = 0;
3696   for (const IdentifierInfo *II : DD->cpus()) {
3697     // Get the name of the target function so we can look it up/create it.
3698     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3699                               getCPUSpecificMangling(*this, II->getName());
3700 
3701     llvm::Constant *Func = GetGlobalValue(MangledName);
3702 
3703     if (!Func) {
3704       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3705       if (ExistingDecl.getDecl() &&
3706           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3707         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3708         Func = GetGlobalValue(MangledName);
3709       } else {
3710         if (!ExistingDecl.getDecl())
3711           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3712 
3713       Func = GetOrCreateLLVMFunction(
3714           MangledName, DeclTy, ExistingDecl,
3715           /*ForVTable=*/false, /*DontDefer=*/true,
3716           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3717       }
3718     }
3719 
3720     llvm::SmallVector<StringRef, 32> Features;
3721     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3722     llvm::transform(Features, Features.begin(),
3723                     [](StringRef Str) { return Str.substr(1); });
3724     llvm::erase_if(Features, [&Target](StringRef Feat) {
3725       return !Target.validateCpuSupports(Feat);
3726     });
3727     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3728     ++Index;
3729   }
3730 
3731   llvm::stable_sort(
3732       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3733                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3734         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3735                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3736       });
3737 
3738   // If the list contains multiple 'default' versions, such as when it contains
3739   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3740   // always run on at least a 'pentium'). We do this by deleting the 'least
3741   // advanced' (read, lowest mangling letter).
3742   while (Options.size() > 1 &&
3743          llvm::X86::getCpuSupportsMask(
3744              (Options.end() - 2)->Conditions.Features) == 0) {
3745     StringRef LHSName = (Options.end() - 2)->Function->getName();
3746     StringRef RHSName = (Options.end() - 1)->Function->getName();
3747     if (LHSName.compare(RHSName) < 0)
3748       Options.erase(Options.end() - 2);
3749     else
3750       Options.erase(Options.end() - 1);
3751   }
3752 
3753   CodeGenFunction CGF(*this);
3754   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3755 
3756   if (getTarget().supportsIFunc()) {
3757     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3758     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3759 
3760     // Fix up function declarations that were created for cpu_specific before
3761     // cpu_dispatch was known
3762     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3763       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3764       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3765                                            &getModule());
3766       GI->takeName(IFunc);
3767       IFunc->replaceAllUsesWith(GI);
3768       IFunc->eraseFromParent();
3769       IFunc = GI;
3770     }
3771 
3772     std::string AliasName = getMangledNameImpl(
3773         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3774     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3775     if (!AliasFunc) {
3776       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3777                                            &getModule());
3778       SetCommonAttributes(GD, GA);
3779     }
3780   }
3781 }
3782 
3783 /// If a dispatcher for the specified mangled name is not in the module, create
3784 /// and return an llvm Function with the specified type.
3785 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3786   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3787   assert(FD && "Not a FunctionDecl?");
3788 
3789   std::string MangledName =
3790       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3791 
3792   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3793   // a separate resolver).
3794   std::string ResolverName = MangledName;
3795   if (getTarget().supportsIFunc())
3796     ResolverName += ".ifunc";
3797   else if (FD->isTargetMultiVersion())
3798     ResolverName += ".resolver";
3799 
3800   // If the resolver has already been created, just return it.
3801   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3802     return ResolverGV;
3803 
3804   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3805   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3806 
3807   // The resolver needs to be created. For target and target_clones, defer
3808   // creation until the end of the TU.
3809   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3810     MultiVersionFuncs.push_back(GD);
3811 
3812   // For cpu_specific, don't create an ifunc yet because we don't know if the
3813   // cpu_dispatch will be emitted in this translation unit.
3814   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3815     llvm::Type *ResolverType = llvm::FunctionType::get(
3816         llvm::PointerType::get(
3817             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3818         false);
3819     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3820         MangledName + ".resolver", ResolverType, GlobalDecl{},
3821         /*ForVTable=*/false);
3822     llvm::GlobalIFunc *GIF =
3823         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3824                                   "", Resolver, &getModule());
3825     GIF->setName(ResolverName);
3826     SetCommonAttributes(FD, GIF);
3827 
3828     return GIF;
3829   }
3830 
3831   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3832       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3833   assert(isa<llvm::GlobalValue>(Resolver) &&
3834          "Resolver should be created for the first time");
3835   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3836   return Resolver;
3837 }
3838 
3839 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3840 /// module, create and return an llvm Function with the specified type. If there
3841 /// is something in the module with the specified name, return it potentially
3842 /// bitcasted to the right type.
3843 ///
3844 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3845 /// to set the attributes on the function when it is first created.
3846 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3847     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3848     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3849     ForDefinition_t IsForDefinition) {
3850   const Decl *D = GD.getDecl();
3851 
3852   // Any attempts to use a MultiVersion function should result in retrieving
3853   // the iFunc instead. Name Mangling will handle the rest of the changes.
3854   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3855     // For the device mark the function as one that should be emitted.
3856     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3857         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3858         !DontDefer && !IsForDefinition) {
3859       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3860         GlobalDecl GDDef;
3861         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3862           GDDef = GlobalDecl(CD, GD.getCtorType());
3863         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3864           GDDef = GlobalDecl(DD, GD.getDtorType());
3865         else
3866           GDDef = GlobalDecl(FDDef);
3867         EmitGlobal(GDDef);
3868       }
3869     }
3870 
3871     if (FD->isMultiVersion()) {
3872       UpdateMultiVersionNames(GD, FD, MangledName);
3873       if (!IsForDefinition)
3874         return GetOrCreateMultiVersionResolver(GD);
3875     }
3876   }
3877 
3878   // Lookup the entry, lazily creating it if necessary.
3879   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3880   if (Entry) {
3881     if (WeakRefReferences.erase(Entry)) {
3882       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3883       if (FD && !FD->hasAttr<WeakAttr>())
3884         Entry->setLinkage(llvm::Function::ExternalLinkage);
3885     }
3886 
3887     // Handle dropped DLL attributes.
3888     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3889         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3890       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3891       setDSOLocal(Entry);
3892     }
3893 
3894     // If there are two attempts to define the same mangled name, issue an
3895     // error.
3896     if (IsForDefinition && !Entry->isDeclaration()) {
3897       GlobalDecl OtherGD;
3898       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3899       // to make sure that we issue an error only once.
3900       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3901           (GD.getCanonicalDecl().getDecl() !=
3902            OtherGD.getCanonicalDecl().getDecl()) &&
3903           DiagnosedConflictingDefinitions.insert(GD).second) {
3904         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3905             << MangledName;
3906         getDiags().Report(OtherGD.getDecl()->getLocation(),
3907                           diag::note_previous_definition);
3908       }
3909     }
3910 
3911     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3912         (Entry->getValueType() == Ty)) {
3913       return Entry;
3914     }
3915 
3916     // Make sure the result is of the correct type.
3917     // (If function is requested for a definition, we always need to create a new
3918     // function, not just return a bitcast.)
3919     if (!IsForDefinition)
3920       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3921   }
3922 
3923   // This function doesn't have a complete type (for example, the return
3924   // type is an incomplete struct). Use a fake type instead, and make
3925   // sure not to try to set attributes.
3926   bool IsIncompleteFunction = false;
3927 
3928   llvm::FunctionType *FTy;
3929   if (isa<llvm::FunctionType>(Ty)) {
3930     FTy = cast<llvm::FunctionType>(Ty);
3931   } else {
3932     FTy = llvm::FunctionType::get(VoidTy, false);
3933     IsIncompleteFunction = true;
3934   }
3935 
3936   llvm::Function *F =
3937       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3938                              Entry ? StringRef() : MangledName, &getModule());
3939 
3940   // If we already created a function with the same mangled name (but different
3941   // type) before, take its name and add it to the list of functions to be
3942   // replaced with F at the end of CodeGen.
3943   //
3944   // This happens if there is a prototype for a function (e.g. "int f()") and
3945   // then a definition of a different type (e.g. "int f(int x)").
3946   if (Entry) {
3947     F->takeName(Entry);
3948 
3949     // This might be an implementation of a function without a prototype, in
3950     // which case, try to do special replacement of calls which match the new
3951     // prototype.  The really key thing here is that we also potentially drop
3952     // arguments from the call site so as to make a direct call, which makes the
3953     // inliner happier and suppresses a number of optimizer warnings (!) about
3954     // dropping arguments.
3955     if (!Entry->use_empty()) {
3956       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3957       Entry->removeDeadConstantUsers();
3958     }
3959 
3960     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3961         F, Entry->getValueType()->getPointerTo());
3962     addGlobalValReplacement(Entry, BC);
3963   }
3964 
3965   assert(F->getName() == MangledName && "name was uniqued!");
3966   if (D)
3967     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3968   if (ExtraAttrs.hasFnAttrs()) {
3969     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3970     F->addFnAttrs(B);
3971   }
3972 
3973   if (!DontDefer) {
3974     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3975     // each other bottoming out with the base dtor.  Therefore we emit non-base
3976     // dtors on usage, even if there is no dtor definition in the TU.
3977     if (D && isa<CXXDestructorDecl>(D) &&
3978         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3979                                            GD.getDtorType()))
3980       addDeferredDeclToEmit(GD);
3981 
3982     // This is the first use or definition of a mangled name.  If there is a
3983     // deferred decl with this name, remember that we need to emit it at the end
3984     // of the file.
3985     auto DDI = DeferredDecls.find(MangledName);
3986     if (DDI != DeferredDecls.end()) {
3987       // Move the potentially referenced deferred decl to the
3988       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3989       // don't need it anymore).
3990       addDeferredDeclToEmit(DDI->second);
3991       DeferredDecls.erase(DDI);
3992 
3993       // Otherwise, there are cases we have to worry about where we're
3994       // using a declaration for which we must emit a definition but where
3995       // we might not find a top-level definition:
3996       //   - member functions defined inline in their classes
3997       //   - friend functions defined inline in some class
3998       //   - special member functions with implicit definitions
3999       // If we ever change our AST traversal to walk into class methods,
4000       // this will be unnecessary.
4001       //
4002       // We also don't emit a definition for a function if it's going to be an
4003       // entry in a vtable, unless it's already marked as used.
4004     } else if (getLangOpts().CPlusPlus && D) {
4005       // Look for a declaration that's lexically in a record.
4006       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4007            FD = FD->getPreviousDecl()) {
4008         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4009           if (FD->doesThisDeclarationHaveABody()) {
4010             addDeferredDeclToEmit(GD.getWithDecl(FD));
4011             break;
4012           }
4013         }
4014       }
4015     }
4016   }
4017 
4018   // Make sure the result is of the requested type.
4019   if (!IsIncompleteFunction) {
4020     assert(F->getFunctionType() == Ty);
4021     return F;
4022   }
4023 
4024   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4025   return llvm::ConstantExpr::getBitCast(F, PTy);
4026 }
4027 
4028 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4029 /// non-null, then this function will use the specified type if it has to
4030 /// create it (this occurs when we see a definition of the function).
4031 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4032                                                  llvm::Type *Ty,
4033                                                  bool ForVTable,
4034                                                  bool DontDefer,
4035                                               ForDefinition_t IsForDefinition) {
4036   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4037          "consteval function should never be emitted");
4038   // If there was no specific requested type, just convert it now.
4039   if (!Ty) {
4040     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4041     Ty = getTypes().ConvertType(FD->getType());
4042   }
4043 
4044   // Devirtualized destructor calls may come through here instead of via
4045   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4046   // of the complete destructor when necessary.
4047   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4048     if (getTarget().getCXXABI().isMicrosoft() &&
4049         GD.getDtorType() == Dtor_Complete &&
4050         DD->getParent()->getNumVBases() == 0)
4051       GD = GlobalDecl(DD, Dtor_Base);
4052   }
4053 
4054   StringRef MangledName = getMangledName(GD);
4055   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4056                                     /*IsThunk=*/false, llvm::AttributeList(),
4057                                     IsForDefinition);
4058   // Returns kernel handle for HIP kernel stub function.
4059   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4060       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4061     auto *Handle = getCUDARuntime().getKernelHandle(
4062         cast<llvm::Function>(F->stripPointerCasts()), GD);
4063     if (IsForDefinition)
4064       return F;
4065     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4066   }
4067   return F;
4068 }
4069 
4070 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4071   llvm::GlobalValue *F =
4072       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4073 
4074   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4075                                         llvm::Type::getInt8PtrTy(VMContext));
4076 }
4077 
4078 static const FunctionDecl *
4079 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4080   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4081   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4082 
4083   IdentifierInfo &CII = C.Idents.get(Name);
4084   for (const auto *Result : DC->lookup(&CII))
4085     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4086       return FD;
4087 
4088   if (!C.getLangOpts().CPlusPlus)
4089     return nullptr;
4090 
4091   // Demangle the premangled name from getTerminateFn()
4092   IdentifierInfo &CXXII =
4093       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4094           ? C.Idents.get("terminate")
4095           : C.Idents.get(Name);
4096 
4097   for (const auto &N : {"__cxxabiv1", "std"}) {
4098     IdentifierInfo &NS = C.Idents.get(N);
4099     for (const auto *Result : DC->lookup(&NS)) {
4100       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4101       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4102         for (const auto *Result : LSD->lookup(&NS))
4103           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4104             break;
4105 
4106       if (ND)
4107         for (const auto *Result : ND->lookup(&CXXII))
4108           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4109             return FD;
4110     }
4111   }
4112 
4113   return nullptr;
4114 }
4115 
4116 /// CreateRuntimeFunction - Create a new runtime function with the specified
4117 /// type and name.
4118 llvm::FunctionCallee
4119 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4120                                      llvm::AttributeList ExtraAttrs, bool Local,
4121                                      bool AssumeConvergent) {
4122   if (AssumeConvergent) {
4123     ExtraAttrs =
4124         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4125   }
4126 
4127   llvm::Constant *C =
4128       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4129                               /*DontDefer=*/false, /*IsThunk=*/false,
4130                               ExtraAttrs);
4131 
4132   if (auto *F = dyn_cast<llvm::Function>(C)) {
4133     if (F->empty()) {
4134       F->setCallingConv(getRuntimeCC());
4135 
4136       // In Windows Itanium environments, try to mark runtime functions
4137       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4138       // will link their standard library statically or dynamically. Marking
4139       // functions imported when they are not imported can cause linker errors
4140       // and warnings.
4141       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4142           !getCodeGenOpts().LTOVisibilityPublicStd) {
4143         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4144         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4145           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4146           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4147         }
4148       }
4149       setDSOLocal(F);
4150     }
4151   }
4152 
4153   return {FTy, C};
4154 }
4155 
4156 /// isTypeConstant - Determine whether an object of this type can be emitted
4157 /// as a constant.
4158 ///
4159 /// If ExcludeCtor is true, the duration when the object's constructor runs
4160 /// will not be considered. The caller will need to verify that the object is
4161 /// not written to during its construction.
4162 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4163   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4164     return false;
4165 
4166   if (Context.getLangOpts().CPlusPlus) {
4167     if (const CXXRecordDecl *Record
4168           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4169       return ExcludeCtor && !Record->hasMutableFields() &&
4170              Record->hasTrivialDestructor();
4171   }
4172 
4173   return true;
4174 }
4175 
4176 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4177 /// create and return an llvm GlobalVariable with the specified type and address
4178 /// space. If there is something in the module with the specified name, return
4179 /// it potentially bitcasted to the right type.
4180 ///
4181 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4182 /// to set the attributes on the global when it is first created.
4183 ///
4184 /// If IsForDefinition is true, it is guaranteed that an actual global with
4185 /// type Ty will be returned, not conversion of a variable with the same
4186 /// mangled name but some other type.
4187 llvm::Constant *
4188 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4189                                      LangAS AddrSpace, const VarDecl *D,
4190                                      ForDefinition_t IsForDefinition) {
4191   // Lookup the entry, lazily creating it if necessary.
4192   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4193   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4194   if (Entry) {
4195     if (WeakRefReferences.erase(Entry)) {
4196       if (D && !D->hasAttr<WeakAttr>())
4197         Entry->setLinkage(llvm::Function::ExternalLinkage);
4198     }
4199 
4200     // Handle dropped DLL attributes.
4201     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4202         !shouldMapVisibilityToDLLExport(D))
4203       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4204 
4205     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4206       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4207 
4208     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4209       return Entry;
4210 
4211     // If there are two attempts to define the same mangled name, issue an
4212     // error.
4213     if (IsForDefinition && !Entry->isDeclaration()) {
4214       GlobalDecl OtherGD;
4215       const VarDecl *OtherD;
4216 
4217       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4218       // to make sure that we issue an error only once.
4219       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4220           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4221           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4222           OtherD->hasInit() &&
4223           DiagnosedConflictingDefinitions.insert(D).second) {
4224         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4225             << MangledName;
4226         getDiags().Report(OtherGD.getDecl()->getLocation(),
4227                           diag::note_previous_definition);
4228       }
4229     }
4230 
4231     // Make sure the result is of the correct type.
4232     if (Entry->getType()->getAddressSpace() != TargetAS) {
4233       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4234                                                   Ty->getPointerTo(TargetAS));
4235     }
4236 
4237     // (If global is requested for a definition, we always need to create a new
4238     // global, not just return a bitcast.)
4239     if (!IsForDefinition)
4240       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4241   }
4242 
4243   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4244 
4245   auto *GV = new llvm::GlobalVariable(
4246       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4247       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4248       getContext().getTargetAddressSpace(DAddrSpace));
4249 
4250   // If we already created a global with the same mangled name (but different
4251   // type) before, take its name and remove it from its parent.
4252   if (Entry) {
4253     GV->takeName(Entry);
4254 
4255     if (!Entry->use_empty()) {
4256       llvm::Constant *NewPtrForOldDecl =
4257           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4258       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4259     }
4260 
4261     Entry->eraseFromParent();
4262   }
4263 
4264   // This is the first use or definition of a mangled name.  If there is a
4265   // deferred decl with this name, remember that we need to emit it at the end
4266   // of the file.
4267   auto DDI = DeferredDecls.find(MangledName);
4268   if (DDI != DeferredDecls.end()) {
4269     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4270     // list, and remove it from DeferredDecls (since we don't need it anymore).
4271     addDeferredDeclToEmit(DDI->second);
4272     DeferredDecls.erase(DDI);
4273   }
4274 
4275   // Handle things which are present even on external declarations.
4276   if (D) {
4277     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4278       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4279 
4280     // FIXME: This code is overly simple and should be merged with other global
4281     // handling.
4282     GV->setConstant(isTypeConstant(D->getType(), false));
4283 
4284     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4285 
4286     setLinkageForGV(GV, D);
4287 
4288     if (D->getTLSKind()) {
4289       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4290         CXXThreadLocals.push_back(D);
4291       setTLSMode(GV, *D);
4292     }
4293 
4294     setGVProperties(GV, D);
4295 
4296     // If required by the ABI, treat declarations of static data members with
4297     // inline initializers as definitions.
4298     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4299       EmitGlobalVarDefinition(D);
4300     }
4301 
4302     // Emit section information for extern variables.
4303     if (D->hasExternalStorage()) {
4304       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4305         GV->setSection(SA->getName());
4306     }
4307 
4308     // Handle XCore specific ABI requirements.
4309     if (getTriple().getArch() == llvm::Triple::xcore &&
4310         D->getLanguageLinkage() == CLanguageLinkage &&
4311         D->getType().isConstant(Context) &&
4312         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4313       GV->setSection(".cp.rodata");
4314 
4315     // Check if we a have a const declaration with an initializer, we may be
4316     // able to emit it as available_externally to expose it's value to the
4317     // optimizer.
4318     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4319         D->getType().isConstQualified() && !GV->hasInitializer() &&
4320         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4321       const auto *Record =
4322           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4323       bool HasMutableFields = Record && Record->hasMutableFields();
4324       if (!HasMutableFields) {
4325         const VarDecl *InitDecl;
4326         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4327         if (InitExpr) {
4328           ConstantEmitter emitter(*this);
4329           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4330           if (Init) {
4331             auto *InitType = Init->getType();
4332             if (GV->getValueType() != InitType) {
4333               // The type of the initializer does not match the definition.
4334               // This happens when an initializer has a different type from
4335               // the type of the global (because of padding at the end of a
4336               // structure for instance).
4337               GV->setName(StringRef());
4338               // Make a new global with the correct type, this is now guaranteed
4339               // to work.
4340               auto *NewGV = cast<llvm::GlobalVariable>(
4341                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4342                       ->stripPointerCasts());
4343 
4344               // Erase the old global, since it is no longer used.
4345               GV->eraseFromParent();
4346               GV = NewGV;
4347             } else {
4348               GV->setInitializer(Init);
4349               GV->setConstant(true);
4350               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4351             }
4352             emitter.finalize(GV);
4353           }
4354         }
4355       }
4356     }
4357   }
4358 
4359   if (GV->isDeclaration()) {
4360     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4361     // External HIP managed variables needed to be recorded for transformation
4362     // in both device and host compilations.
4363     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4364         D->hasExternalStorage())
4365       getCUDARuntime().handleVarRegistration(D, *GV);
4366   }
4367 
4368   if (D)
4369     SanitizerMD->reportGlobal(GV, *D);
4370 
4371   LangAS ExpectedAS =
4372       D ? D->getType().getAddressSpace()
4373         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4374   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4375   if (DAddrSpace != ExpectedAS) {
4376     return getTargetCodeGenInfo().performAddrSpaceCast(
4377         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4378   }
4379 
4380   return GV;
4381 }
4382 
4383 llvm::Constant *
4384 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4385   const Decl *D = GD.getDecl();
4386 
4387   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4388     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4389                                 /*DontDefer=*/false, IsForDefinition);
4390 
4391   if (isa<CXXMethodDecl>(D)) {
4392     auto FInfo =
4393         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4394     auto Ty = getTypes().GetFunctionType(*FInfo);
4395     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4396                              IsForDefinition);
4397   }
4398 
4399   if (isa<FunctionDecl>(D)) {
4400     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4401     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4402     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4403                              IsForDefinition);
4404   }
4405 
4406   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4407 }
4408 
4409 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4410     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4411     unsigned Alignment) {
4412   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4413   llvm::GlobalVariable *OldGV = nullptr;
4414 
4415   if (GV) {
4416     // Check if the variable has the right type.
4417     if (GV->getValueType() == Ty)
4418       return GV;
4419 
4420     // Because C++ name mangling, the only way we can end up with an already
4421     // existing global with the same name is if it has been declared extern "C".
4422     assert(GV->isDeclaration() && "Declaration has wrong type!");
4423     OldGV = GV;
4424   }
4425 
4426   // Create a new variable.
4427   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4428                                 Linkage, nullptr, Name);
4429 
4430   if (OldGV) {
4431     // Replace occurrences of the old variable if needed.
4432     GV->takeName(OldGV);
4433 
4434     if (!OldGV->use_empty()) {
4435       llvm::Constant *NewPtrForOldDecl =
4436       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4437       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4438     }
4439 
4440     OldGV->eraseFromParent();
4441   }
4442 
4443   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4444       !GV->hasAvailableExternallyLinkage())
4445     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4446 
4447   GV->setAlignment(llvm::MaybeAlign(Alignment));
4448 
4449   return GV;
4450 }
4451 
4452 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4453 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4454 /// then it will be created with the specified type instead of whatever the
4455 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4456 /// that an actual global with type Ty will be returned, not conversion of a
4457 /// variable with the same mangled name but some other type.
4458 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4459                                                   llvm::Type *Ty,
4460                                            ForDefinition_t IsForDefinition) {
4461   assert(D->hasGlobalStorage() && "Not a global variable");
4462   QualType ASTTy = D->getType();
4463   if (!Ty)
4464     Ty = getTypes().ConvertTypeForMem(ASTTy);
4465 
4466   StringRef MangledName = getMangledName(D);
4467   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4468                                IsForDefinition);
4469 }
4470 
4471 /// CreateRuntimeVariable - Create a new runtime global variable with the
4472 /// specified type and name.
4473 llvm::Constant *
4474 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4475                                      StringRef Name) {
4476   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4477                                                        : LangAS::Default;
4478   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4479   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4480   return Ret;
4481 }
4482 
4483 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4484   assert(!D->getInit() && "Cannot emit definite definitions here!");
4485 
4486   StringRef MangledName = getMangledName(D);
4487   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4488 
4489   // We already have a definition, not declaration, with the same mangled name.
4490   // Emitting of declaration is not required (and actually overwrites emitted
4491   // definition).
4492   if (GV && !GV->isDeclaration())
4493     return;
4494 
4495   // If we have not seen a reference to this variable yet, place it into the
4496   // deferred declarations table to be emitted if needed later.
4497   if (!MustBeEmitted(D) && !GV) {
4498       DeferredDecls[MangledName] = D;
4499       return;
4500   }
4501 
4502   // The tentative definition is the only definition.
4503   EmitGlobalVarDefinition(D);
4504 }
4505 
4506 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4507   EmitExternalVarDeclaration(D);
4508 }
4509 
4510 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4511   return Context.toCharUnitsFromBits(
4512       getDataLayout().getTypeStoreSizeInBits(Ty));
4513 }
4514 
4515 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4516   if (LangOpts.OpenCL) {
4517     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4518     assert(AS == LangAS::opencl_global ||
4519            AS == LangAS::opencl_global_device ||
4520            AS == LangAS::opencl_global_host ||
4521            AS == LangAS::opencl_constant ||
4522            AS == LangAS::opencl_local ||
4523            AS >= LangAS::FirstTargetAddressSpace);
4524     return AS;
4525   }
4526 
4527   if (LangOpts.SYCLIsDevice &&
4528       (!D || D->getType().getAddressSpace() == LangAS::Default))
4529     return LangAS::sycl_global;
4530 
4531   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4532     if (D && D->hasAttr<CUDAConstantAttr>())
4533       return LangAS::cuda_constant;
4534     else if (D && D->hasAttr<CUDASharedAttr>())
4535       return LangAS::cuda_shared;
4536     else if (D && D->hasAttr<CUDADeviceAttr>())
4537       return LangAS::cuda_device;
4538     else if (D && D->getType().isConstQualified())
4539       return LangAS::cuda_constant;
4540     else
4541       return LangAS::cuda_device;
4542   }
4543 
4544   if (LangOpts.OpenMP) {
4545     LangAS AS;
4546     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4547       return AS;
4548   }
4549   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4550 }
4551 
4552 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4553   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4554   if (LangOpts.OpenCL)
4555     return LangAS::opencl_constant;
4556   if (LangOpts.SYCLIsDevice)
4557     return LangAS::sycl_global;
4558   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4559     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4560     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4561     // with OpVariable instructions with Generic storage class which is not
4562     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4563     // UniformConstant storage class is not viable as pointers to it may not be
4564     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4565     return LangAS::cuda_device;
4566   if (auto AS = getTarget().getConstantAddressSpace())
4567     return *AS;
4568   return LangAS::Default;
4569 }
4570 
4571 // In address space agnostic languages, string literals are in default address
4572 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4573 // emitted in constant address space in LLVM IR. To be consistent with other
4574 // parts of AST, string literal global variables in constant address space
4575 // need to be casted to default address space before being put into address
4576 // map and referenced by other part of CodeGen.
4577 // In OpenCL, string literals are in constant address space in AST, therefore
4578 // they should not be casted to default address space.
4579 static llvm::Constant *
4580 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4581                                        llvm::GlobalVariable *GV) {
4582   llvm::Constant *Cast = GV;
4583   if (!CGM.getLangOpts().OpenCL) {
4584     auto AS = CGM.GetGlobalConstantAddressSpace();
4585     if (AS != LangAS::Default)
4586       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4587           CGM, GV, AS, LangAS::Default,
4588           GV->getValueType()->getPointerTo(
4589               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4590   }
4591   return Cast;
4592 }
4593 
4594 template<typename SomeDecl>
4595 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4596                                                llvm::GlobalValue *GV) {
4597   if (!getLangOpts().CPlusPlus)
4598     return;
4599 
4600   // Must have 'used' attribute, or else inline assembly can't rely on
4601   // the name existing.
4602   if (!D->template hasAttr<UsedAttr>())
4603     return;
4604 
4605   // Must have internal linkage and an ordinary name.
4606   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4607     return;
4608 
4609   // Must be in an extern "C" context. Entities declared directly within
4610   // a record are not extern "C" even if the record is in such a context.
4611   const SomeDecl *First = D->getFirstDecl();
4612   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4613     return;
4614 
4615   // OK, this is an internal linkage entity inside an extern "C" linkage
4616   // specification. Make a note of that so we can give it the "expected"
4617   // mangled name if nothing else is using that name.
4618   std::pair<StaticExternCMap::iterator, bool> R =
4619       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4620 
4621   // If we have multiple internal linkage entities with the same name
4622   // in extern "C" regions, none of them gets that name.
4623   if (!R.second)
4624     R.first->second = nullptr;
4625 }
4626 
4627 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4628   if (!CGM.supportsCOMDAT())
4629     return false;
4630 
4631   if (D.hasAttr<SelectAnyAttr>())
4632     return true;
4633 
4634   GVALinkage Linkage;
4635   if (auto *VD = dyn_cast<VarDecl>(&D))
4636     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4637   else
4638     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4639 
4640   switch (Linkage) {
4641   case GVA_Internal:
4642   case GVA_AvailableExternally:
4643   case GVA_StrongExternal:
4644     return false;
4645   case GVA_DiscardableODR:
4646   case GVA_StrongODR:
4647     return true;
4648   }
4649   llvm_unreachable("No such linkage");
4650 }
4651 
4652 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4653                                           llvm::GlobalObject &GO) {
4654   if (!shouldBeInCOMDAT(*this, D))
4655     return;
4656   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4657 }
4658 
4659 /// Pass IsTentative as true if you want to create a tentative definition.
4660 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4661                                             bool IsTentative) {
4662   // OpenCL global variables of sampler type are translated to function calls,
4663   // therefore no need to be translated.
4664   QualType ASTTy = D->getType();
4665   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4666     return;
4667 
4668   // If this is OpenMP device, check if it is legal to emit this global
4669   // normally.
4670   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4671       OpenMPRuntime->emitTargetGlobalVariable(D))
4672     return;
4673 
4674   llvm::TrackingVH<llvm::Constant> Init;
4675   bool NeedsGlobalCtor = false;
4676   bool NeedsGlobalDtor =
4677       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4678 
4679   const VarDecl *InitDecl;
4680   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4681 
4682   Optional<ConstantEmitter> emitter;
4683 
4684   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4685   // as part of their declaration."  Sema has already checked for
4686   // error cases, so we just need to set Init to UndefValue.
4687   bool IsCUDASharedVar =
4688       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4689   // Shadows of initialized device-side global variables are also left
4690   // undefined.
4691   // Managed Variables should be initialized on both host side and device side.
4692   bool IsCUDAShadowVar =
4693       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4694       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4695        D->hasAttr<CUDASharedAttr>());
4696   bool IsCUDADeviceShadowVar =
4697       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4698       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4699        D->getType()->isCUDADeviceBuiltinTextureType());
4700   if (getLangOpts().CUDA &&
4701       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4702     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4703   else if (D->hasAttr<LoaderUninitializedAttr>())
4704     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4705   else if (!InitExpr) {
4706     // This is a tentative definition; tentative definitions are
4707     // implicitly initialized with { 0 }.
4708     //
4709     // Note that tentative definitions are only emitted at the end of
4710     // a translation unit, so they should never have incomplete
4711     // type. In addition, EmitTentativeDefinition makes sure that we
4712     // never attempt to emit a tentative definition if a real one
4713     // exists. A use may still exists, however, so we still may need
4714     // to do a RAUW.
4715     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4716     Init = EmitNullConstant(D->getType());
4717   } else {
4718     initializedGlobalDecl = GlobalDecl(D);
4719     emitter.emplace(*this);
4720     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4721     if (!Initializer) {
4722       QualType T = InitExpr->getType();
4723       if (D->getType()->isReferenceType())
4724         T = D->getType();
4725 
4726       if (getLangOpts().CPlusPlus) {
4727         if (InitDecl->hasFlexibleArrayInit(getContext()))
4728           ErrorUnsupported(D, "flexible array initializer");
4729         Init = EmitNullConstant(T);
4730         NeedsGlobalCtor = true;
4731       } else {
4732         ErrorUnsupported(D, "static initializer");
4733         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4734       }
4735     } else {
4736       Init = Initializer;
4737       // We don't need an initializer, so remove the entry for the delayed
4738       // initializer position (just in case this entry was delayed) if we
4739       // also don't need to register a destructor.
4740       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4741         DelayedCXXInitPosition.erase(D);
4742 
4743 #ifndef NDEBUG
4744       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4745                           InitDecl->getFlexibleArrayInitChars(getContext());
4746       CharUnits CstSize = CharUnits::fromQuantity(
4747           getDataLayout().getTypeAllocSize(Init->getType()));
4748       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4749 #endif
4750     }
4751   }
4752 
4753   llvm::Type* InitType = Init->getType();
4754   llvm::Constant *Entry =
4755       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4756 
4757   // Strip off pointer casts if we got them.
4758   Entry = Entry->stripPointerCasts();
4759 
4760   // Entry is now either a Function or GlobalVariable.
4761   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4762 
4763   // We have a definition after a declaration with the wrong type.
4764   // We must make a new GlobalVariable* and update everything that used OldGV
4765   // (a declaration or tentative definition) with the new GlobalVariable*
4766   // (which will be a definition).
4767   //
4768   // This happens if there is a prototype for a global (e.g.
4769   // "extern int x[];") and then a definition of a different type (e.g.
4770   // "int x[10];"). This also happens when an initializer has a different type
4771   // from the type of the global (this happens with unions).
4772   if (!GV || GV->getValueType() != InitType ||
4773       GV->getType()->getAddressSpace() !=
4774           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4775 
4776     // Move the old entry aside so that we'll create a new one.
4777     Entry->setName(StringRef());
4778 
4779     // Make a new global with the correct type, this is now guaranteed to work.
4780     GV = cast<llvm::GlobalVariable>(
4781         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4782             ->stripPointerCasts());
4783 
4784     // Replace all uses of the old global with the new global
4785     llvm::Constant *NewPtrForOldDecl =
4786         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4787                                                              Entry->getType());
4788     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4789 
4790     // Erase the old global, since it is no longer used.
4791     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4792   }
4793 
4794   MaybeHandleStaticInExternC(D, GV);
4795 
4796   if (D->hasAttr<AnnotateAttr>())
4797     AddGlobalAnnotations(D, GV);
4798 
4799   // Set the llvm linkage type as appropriate.
4800   llvm::GlobalValue::LinkageTypes Linkage =
4801       getLLVMLinkageVarDefinition(D, GV->isConstant());
4802 
4803   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4804   // the device. [...]"
4805   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4806   // __device__, declares a variable that: [...]
4807   // Is accessible from all the threads within the grid and from the host
4808   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4809   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4810   if (GV && LangOpts.CUDA) {
4811     if (LangOpts.CUDAIsDevice) {
4812       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4813           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4814            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4815            D->getType()->isCUDADeviceBuiltinTextureType()))
4816         GV->setExternallyInitialized(true);
4817     } else {
4818       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4819     }
4820     getCUDARuntime().handleVarRegistration(D, *GV);
4821   }
4822 
4823   GV->setInitializer(Init);
4824   if (emitter)
4825     emitter->finalize(GV);
4826 
4827   // If it is safe to mark the global 'constant', do so now.
4828   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4829                   isTypeConstant(D->getType(), true));
4830 
4831   // If it is in a read-only section, mark it 'constant'.
4832   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4833     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4834     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4835       GV->setConstant(true);
4836   }
4837 
4838   CharUnits AlignVal = getContext().getDeclAlign(D);
4839   // Check for alignment specifed in an 'omp allocate' directive.
4840   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4841           getOMPAllocateAlignment(D))
4842     AlignVal = *AlignValFromAllocate;
4843   GV->setAlignment(AlignVal.getAsAlign());
4844 
4845   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4846   // function is only defined alongside the variable, not also alongside
4847   // callers. Normally, all accesses to a thread_local go through the
4848   // thread-wrapper in order to ensure initialization has occurred, underlying
4849   // variable will never be used other than the thread-wrapper, so it can be
4850   // converted to internal linkage.
4851   //
4852   // However, if the variable has the 'constinit' attribute, it _can_ be
4853   // referenced directly, without calling the thread-wrapper, so the linkage
4854   // must not be changed.
4855   //
4856   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4857   // weak or linkonce, the de-duplication semantics are important to preserve,
4858   // so we don't change the linkage.
4859   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4860       Linkage == llvm::GlobalValue::ExternalLinkage &&
4861       Context.getTargetInfo().getTriple().isOSDarwin() &&
4862       !D->hasAttr<ConstInitAttr>())
4863     Linkage = llvm::GlobalValue::InternalLinkage;
4864 
4865   GV->setLinkage(Linkage);
4866   if (D->hasAttr<DLLImportAttr>())
4867     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4868   else if (D->hasAttr<DLLExportAttr>())
4869     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4870   else
4871     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4872 
4873   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4874     // common vars aren't constant even if declared const.
4875     GV->setConstant(false);
4876     // Tentative definition of global variables may be initialized with
4877     // non-zero null pointers. In this case they should have weak linkage
4878     // since common linkage must have zero initializer and must not have
4879     // explicit section therefore cannot have non-zero initial value.
4880     if (!GV->getInitializer()->isNullValue())
4881       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4882   }
4883 
4884   setNonAliasAttributes(D, GV);
4885 
4886   if (D->getTLSKind() && !GV->isThreadLocal()) {
4887     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4888       CXXThreadLocals.push_back(D);
4889     setTLSMode(GV, *D);
4890   }
4891 
4892   maybeSetTrivialComdat(*D, *GV);
4893 
4894   // Emit the initializer function if necessary.
4895   if (NeedsGlobalCtor || NeedsGlobalDtor)
4896     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4897 
4898   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4899 
4900   // Emit global variable debug information.
4901   if (CGDebugInfo *DI = getModuleDebugInfo())
4902     if (getCodeGenOpts().hasReducedDebugInfo())
4903       DI->EmitGlobalVariable(GV, D);
4904 }
4905 
4906 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4907   if (CGDebugInfo *DI = getModuleDebugInfo())
4908     if (getCodeGenOpts().hasReducedDebugInfo()) {
4909       QualType ASTTy = D->getType();
4910       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4911       llvm::Constant *GV =
4912           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4913       DI->EmitExternalVariable(
4914           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4915     }
4916 }
4917 
4918 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4919                                       CodeGenModule &CGM, const VarDecl *D,
4920                                       bool NoCommon) {
4921   // Don't give variables common linkage if -fno-common was specified unless it
4922   // was overridden by a NoCommon attribute.
4923   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4924     return true;
4925 
4926   // C11 6.9.2/2:
4927   //   A declaration of an identifier for an object that has file scope without
4928   //   an initializer, and without a storage-class specifier or with the
4929   //   storage-class specifier static, constitutes a tentative definition.
4930   if (D->getInit() || D->hasExternalStorage())
4931     return true;
4932 
4933   // A variable cannot be both common and exist in a section.
4934   if (D->hasAttr<SectionAttr>())
4935     return true;
4936 
4937   // A variable cannot be both common and exist in a section.
4938   // We don't try to determine which is the right section in the front-end.
4939   // If no specialized section name is applicable, it will resort to default.
4940   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4941       D->hasAttr<PragmaClangDataSectionAttr>() ||
4942       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4943       D->hasAttr<PragmaClangRodataSectionAttr>())
4944     return true;
4945 
4946   // Thread local vars aren't considered common linkage.
4947   if (D->getTLSKind())
4948     return true;
4949 
4950   // Tentative definitions marked with WeakImportAttr are true definitions.
4951   if (D->hasAttr<WeakImportAttr>())
4952     return true;
4953 
4954   // A variable cannot be both common and exist in a comdat.
4955   if (shouldBeInCOMDAT(CGM, *D))
4956     return true;
4957 
4958   // Declarations with a required alignment do not have common linkage in MSVC
4959   // mode.
4960   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4961     if (D->hasAttr<AlignedAttr>())
4962       return true;
4963     QualType VarType = D->getType();
4964     if (Context.isAlignmentRequired(VarType))
4965       return true;
4966 
4967     if (const auto *RT = VarType->getAs<RecordType>()) {
4968       const RecordDecl *RD = RT->getDecl();
4969       for (const FieldDecl *FD : RD->fields()) {
4970         if (FD->isBitField())
4971           continue;
4972         if (FD->hasAttr<AlignedAttr>())
4973           return true;
4974         if (Context.isAlignmentRequired(FD->getType()))
4975           return true;
4976       }
4977     }
4978   }
4979 
4980   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4981   // common symbols, so symbols with greater alignment requirements cannot be
4982   // common.
4983   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4984   // alignments for common symbols via the aligncomm directive, so this
4985   // restriction only applies to MSVC environments.
4986   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4987       Context.getTypeAlignIfKnown(D->getType()) >
4988           Context.toBits(CharUnits::fromQuantity(32)))
4989     return true;
4990 
4991   return false;
4992 }
4993 
4994 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4995     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4996   if (Linkage == GVA_Internal)
4997     return llvm::Function::InternalLinkage;
4998 
4999   if (D->hasAttr<WeakAttr>())
5000     return llvm::GlobalVariable::WeakAnyLinkage;
5001 
5002   if (const auto *FD = D->getAsFunction())
5003     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5004       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5005 
5006   // We are guaranteed to have a strong definition somewhere else,
5007   // so we can use available_externally linkage.
5008   if (Linkage == GVA_AvailableExternally)
5009     return llvm::GlobalValue::AvailableExternallyLinkage;
5010 
5011   // Note that Apple's kernel linker doesn't support symbol
5012   // coalescing, so we need to avoid linkonce and weak linkages there.
5013   // Normally, this means we just map to internal, but for explicit
5014   // instantiations we'll map to external.
5015 
5016   // In C++, the compiler has to emit a definition in every translation unit
5017   // that references the function.  We should use linkonce_odr because
5018   // a) if all references in this translation unit are optimized away, we
5019   // don't need to codegen it.  b) if the function persists, it needs to be
5020   // merged with other definitions. c) C++ has the ODR, so we know the
5021   // definition is dependable.
5022   if (Linkage == GVA_DiscardableODR)
5023     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5024                                             : llvm::Function::InternalLinkage;
5025 
5026   // An explicit instantiation of a template has weak linkage, since
5027   // explicit instantiations can occur in multiple translation units
5028   // and must all be equivalent. However, we are not allowed to
5029   // throw away these explicit instantiations.
5030   //
5031   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5032   // so say that CUDA templates are either external (for kernels) or internal.
5033   // This lets llvm perform aggressive inter-procedural optimizations. For
5034   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5035   // therefore we need to follow the normal linkage paradigm.
5036   if (Linkage == GVA_StrongODR) {
5037     if (getLangOpts().AppleKext)
5038       return llvm::Function::ExternalLinkage;
5039     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5040         !getLangOpts().GPURelocatableDeviceCode)
5041       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5042                                           : llvm::Function::InternalLinkage;
5043     return llvm::Function::WeakODRLinkage;
5044   }
5045 
5046   // C++ doesn't have tentative definitions and thus cannot have common
5047   // linkage.
5048   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5049       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5050                                  CodeGenOpts.NoCommon))
5051     return llvm::GlobalVariable::CommonLinkage;
5052 
5053   // selectany symbols are externally visible, so use weak instead of
5054   // linkonce.  MSVC optimizes away references to const selectany globals, so
5055   // all definitions should be the same and ODR linkage should be used.
5056   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5057   if (D->hasAttr<SelectAnyAttr>())
5058     return llvm::GlobalVariable::WeakODRLinkage;
5059 
5060   // Otherwise, we have strong external linkage.
5061   assert(Linkage == GVA_StrongExternal);
5062   return llvm::GlobalVariable::ExternalLinkage;
5063 }
5064 
5065 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5066     const VarDecl *VD, bool IsConstant) {
5067   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5068   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5069 }
5070 
5071 /// Replace the uses of a function that was declared with a non-proto type.
5072 /// We want to silently drop extra arguments from call sites
5073 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5074                                           llvm::Function *newFn) {
5075   // Fast path.
5076   if (old->use_empty()) return;
5077 
5078   llvm::Type *newRetTy = newFn->getReturnType();
5079   SmallVector<llvm::Value*, 4> newArgs;
5080 
5081   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5082          ui != ue; ) {
5083     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5084     llvm::User *user = use->getUser();
5085 
5086     // Recognize and replace uses of bitcasts.  Most calls to
5087     // unprototyped functions will use bitcasts.
5088     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5089       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5090         replaceUsesOfNonProtoConstant(bitcast, newFn);
5091       continue;
5092     }
5093 
5094     // Recognize calls to the function.
5095     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5096     if (!callSite) continue;
5097     if (!callSite->isCallee(&*use))
5098       continue;
5099 
5100     // If the return types don't match exactly, then we can't
5101     // transform this call unless it's dead.
5102     if (callSite->getType() != newRetTy && !callSite->use_empty())
5103       continue;
5104 
5105     // Get the call site's attribute list.
5106     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5107     llvm::AttributeList oldAttrs = callSite->getAttributes();
5108 
5109     // If the function was passed too few arguments, don't transform.
5110     unsigned newNumArgs = newFn->arg_size();
5111     if (callSite->arg_size() < newNumArgs)
5112       continue;
5113 
5114     // If extra arguments were passed, we silently drop them.
5115     // If any of the types mismatch, we don't transform.
5116     unsigned argNo = 0;
5117     bool dontTransform = false;
5118     for (llvm::Argument &A : newFn->args()) {
5119       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5120         dontTransform = true;
5121         break;
5122       }
5123 
5124       // Add any parameter attributes.
5125       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5126       argNo++;
5127     }
5128     if (dontTransform)
5129       continue;
5130 
5131     // Okay, we can transform this.  Create the new call instruction and copy
5132     // over the required information.
5133     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5134 
5135     // Copy over any operand bundles.
5136     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5137     callSite->getOperandBundlesAsDefs(newBundles);
5138 
5139     llvm::CallBase *newCall;
5140     if (isa<llvm::CallInst>(callSite)) {
5141       newCall =
5142           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5143     } else {
5144       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5145       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5146                                          oldInvoke->getUnwindDest(), newArgs,
5147                                          newBundles, "", callSite);
5148     }
5149     newArgs.clear(); // for the next iteration
5150 
5151     if (!newCall->getType()->isVoidTy())
5152       newCall->takeName(callSite);
5153     newCall->setAttributes(
5154         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5155                                  oldAttrs.getRetAttrs(), newArgAttrs));
5156     newCall->setCallingConv(callSite->getCallingConv());
5157 
5158     // Finally, remove the old call, replacing any uses with the new one.
5159     if (!callSite->use_empty())
5160       callSite->replaceAllUsesWith(newCall);
5161 
5162     // Copy debug location attached to CI.
5163     if (callSite->getDebugLoc())
5164       newCall->setDebugLoc(callSite->getDebugLoc());
5165 
5166     callSite->eraseFromParent();
5167   }
5168 }
5169 
5170 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5171 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5172 /// existing call uses of the old function in the module, this adjusts them to
5173 /// call the new function directly.
5174 ///
5175 /// This is not just a cleanup: the always_inline pass requires direct calls to
5176 /// functions to be able to inline them.  If there is a bitcast in the way, it
5177 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5178 /// run at -O0.
5179 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5180                                                       llvm::Function *NewFn) {
5181   // If we're redefining a global as a function, don't transform it.
5182   if (!isa<llvm::Function>(Old)) return;
5183 
5184   replaceUsesOfNonProtoConstant(Old, NewFn);
5185 }
5186 
5187 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5188   auto DK = VD->isThisDeclarationADefinition();
5189   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5190     return;
5191 
5192   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5193   // If we have a definition, this might be a deferred decl. If the
5194   // instantiation is explicit, make sure we emit it at the end.
5195   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5196     GetAddrOfGlobalVar(VD);
5197 
5198   EmitTopLevelDecl(VD);
5199 }
5200 
5201 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5202                                                  llvm::GlobalValue *GV) {
5203   const auto *D = cast<FunctionDecl>(GD.getDecl());
5204 
5205   // Compute the function info and LLVM type.
5206   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5207   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5208 
5209   // Get or create the prototype for the function.
5210   if (!GV || (GV->getValueType() != Ty))
5211     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5212                                                    /*DontDefer=*/true,
5213                                                    ForDefinition));
5214 
5215   // Already emitted.
5216   if (!GV->isDeclaration())
5217     return;
5218 
5219   // We need to set linkage and visibility on the function before
5220   // generating code for it because various parts of IR generation
5221   // want to propagate this information down (e.g. to local static
5222   // declarations).
5223   auto *Fn = cast<llvm::Function>(GV);
5224   setFunctionLinkage(GD, Fn);
5225 
5226   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5227   setGVProperties(Fn, GD);
5228 
5229   MaybeHandleStaticInExternC(D, Fn);
5230 
5231   maybeSetTrivialComdat(*D, *Fn);
5232 
5233   // Set CodeGen attributes that represent floating point environment.
5234   setLLVMFunctionFEnvAttributes(D, Fn);
5235 
5236   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5237 
5238   setNonAliasAttributes(GD, Fn);
5239   SetLLVMFunctionAttributesForDefinition(D, Fn);
5240 
5241   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5242     AddGlobalCtor(Fn, CA->getPriority());
5243   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5244     AddGlobalDtor(Fn, DA->getPriority(), true);
5245   if (D->hasAttr<AnnotateAttr>())
5246     AddGlobalAnnotations(D, Fn);
5247 }
5248 
5249 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5250   const auto *D = cast<ValueDecl>(GD.getDecl());
5251   const AliasAttr *AA = D->getAttr<AliasAttr>();
5252   assert(AA && "Not an alias?");
5253 
5254   StringRef MangledName = getMangledName(GD);
5255 
5256   if (AA->getAliasee() == MangledName) {
5257     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5258     return;
5259   }
5260 
5261   // If there is a definition in the module, then it wins over the alias.
5262   // This is dubious, but allow it to be safe.  Just ignore the alias.
5263   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5264   if (Entry && !Entry->isDeclaration())
5265     return;
5266 
5267   Aliases.push_back(GD);
5268 
5269   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5270 
5271   // Create a reference to the named value.  This ensures that it is emitted
5272   // if a deferred decl.
5273   llvm::Constant *Aliasee;
5274   llvm::GlobalValue::LinkageTypes LT;
5275   if (isa<llvm::FunctionType>(DeclTy)) {
5276     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5277                                       /*ForVTable=*/false);
5278     LT = getFunctionLinkage(GD);
5279   } else {
5280     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5281                                     /*D=*/nullptr);
5282     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5283       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5284     else
5285       LT = getFunctionLinkage(GD);
5286   }
5287 
5288   // Create the new alias itself, but don't set a name yet.
5289   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5290   auto *GA =
5291       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5292 
5293   if (Entry) {
5294     if (GA->getAliasee() == Entry) {
5295       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5296       return;
5297     }
5298 
5299     assert(Entry->isDeclaration());
5300 
5301     // If there is a declaration in the module, then we had an extern followed
5302     // by the alias, as in:
5303     //   extern int test6();
5304     //   ...
5305     //   int test6() __attribute__((alias("test7")));
5306     //
5307     // Remove it and replace uses of it with the alias.
5308     GA->takeName(Entry);
5309 
5310     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5311                                                           Entry->getType()));
5312     Entry->eraseFromParent();
5313   } else {
5314     GA->setName(MangledName);
5315   }
5316 
5317   // Set attributes which are particular to an alias; this is a
5318   // specialization of the attributes which may be set on a global
5319   // variable/function.
5320   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5321       D->isWeakImported()) {
5322     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5323   }
5324 
5325   if (const auto *VD = dyn_cast<VarDecl>(D))
5326     if (VD->getTLSKind())
5327       setTLSMode(GA, *VD);
5328 
5329   SetCommonAttributes(GD, GA);
5330 
5331   // Emit global alias debug information.
5332   if (isa<VarDecl>(D))
5333     if (CGDebugInfo *DI = getModuleDebugInfo())
5334       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5335 }
5336 
5337 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5338   const auto *D = cast<ValueDecl>(GD.getDecl());
5339   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5340   assert(IFA && "Not an ifunc?");
5341 
5342   StringRef MangledName = getMangledName(GD);
5343 
5344   if (IFA->getResolver() == MangledName) {
5345     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5346     return;
5347   }
5348 
5349   // Report an error if some definition overrides ifunc.
5350   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5351   if (Entry && !Entry->isDeclaration()) {
5352     GlobalDecl OtherGD;
5353     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5354         DiagnosedConflictingDefinitions.insert(GD).second) {
5355       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5356           << MangledName;
5357       Diags.Report(OtherGD.getDecl()->getLocation(),
5358                    diag::note_previous_definition);
5359     }
5360     return;
5361   }
5362 
5363   Aliases.push_back(GD);
5364 
5365   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5366   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5367   llvm::Constant *Resolver =
5368       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5369                               /*ForVTable=*/false);
5370   llvm::GlobalIFunc *GIF =
5371       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5372                                 "", Resolver, &getModule());
5373   if (Entry) {
5374     if (GIF->getResolver() == Entry) {
5375       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5376       return;
5377     }
5378     assert(Entry->isDeclaration());
5379 
5380     // If there is a declaration in the module, then we had an extern followed
5381     // by the ifunc, as in:
5382     //   extern int test();
5383     //   ...
5384     //   int test() __attribute__((ifunc("resolver")));
5385     //
5386     // Remove it and replace uses of it with the ifunc.
5387     GIF->takeName(Entry);
5388 
5389     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5390                                                           Entry->getType()));
5391     Entry->eraseFromParent();
5392   } else
5393     GIF->setName(MangledName);
5394 
5395   SetCommonAttributes(GD, GIF);
5396 }
5397 
5398 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5399                                             ArrayRef<llvm::Type*> Tys) {
5400   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5401                                          Tys);
5402 }
5403 
5404 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5405 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5406                          const StringLiteral *Literal, bool TargetIsLSB,
5407                          bool &IsUTF16, unsigned &StringLength) {
5408   StringRef String = Literal->getString();
5409   unsigned NumBytes = String.size();
5410 
5411   // Check for simple case.
5412   if (!Literal->containsNonAsciiOrNull()) {
5413     StringLength = NumBytes;
5414     return *Map.insert(std::make_pair(String, nullptr)).first;
5415   }
5416 
5417   // Otherwise, convert the UTF8 literals into a string of shorts.
5418   IsUTF16 = true;
5419 
5420   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5421   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5422   llvm::UTF16 *ToPtr = &ToBuf[0];
5423 
5424   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5425                                  ToPtr + NumBytes, llvm::strictConversion);
5426 
5427   // ConvertUTF8toUTF16 returns the length in ToPtr.
5428   StringLength = ToPtr - &ToBuf[0];
5429 
5430   // Add an explicit null.
5431   *ToPtr = 0;
5432   return *Map.insert(std::make_pair(
5433                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5434                                    (StringLength + 1) * 2),
5435                          nullptr)).first;
5436 }
5437 
5438 ConstantAddress
5439 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5440   unsigned StringLength = 0;
5441   bool isUTF16 = false;
5442   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5443       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5444                                getDataLayout().isLittleEndian(), isUTF16,
5445                                StringLength);
5446 
5447   if (auto *C = Entry.second)
5448     return ConstantAddress(
5449         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5450 
5451   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5452   llvm::Constant *Zeros[] = { Zero, Zero };
5453 
5454   const ASTContext &Context = getContext();
5455   const llvm::Triple &Triple = getTriple();
5456 
5457   const auto CFRuntime = getLangOpts().CFRuntime;
5458   const bool IsSwiftABI =
5459       static_cast<unsigned>(CFRuntime) >=
5460       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5461   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5462 
5463   // If we don't already have it, get __CFConstantStringClassReference.
5464   if (!CFConstantStringClassRef) {
5465     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5466     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5467     Ty = llvm::ArrayType::get(Ty, 0);
5468 
5469     switch (CFRuntime) {
5470     default: break;
5471     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5472     case LangOptions::CoreFoundationABI::Swift5_0:
5473       CFConstantStringClassName =
5474           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5475                               : "$s10Foundation19_NSCFConstantStringCN";
5476       Ty = IntPtrTy;
5477       break;
5478     case LangOptions::CoreFoundationABI::Swift4_2:
5479       CFConstantStringClassName =
5480           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5481                               : "$S10Foundation19_NSCFConstantStringCN";
5482       Ty = IntPtrTy;
5483       break;
5484     case LangOptions::CoreFoundationABI::Swift4_1:
5485       CFConstantStringClassName =
5486           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5487                               : "__T010Foundation19_NSCFConstantStringCN";
5488       Ty = IntPtrTy;
5489       break;
5490     }
5491 
5492     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5493 
5494     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5495       llvm::GlobalValue *GV = nullptr;
5496 
5497       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5498         IdentifierInfo &II = Context.Idents.get(GV->getName());
5499         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5500         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5501 
5502         const VarDecl *VD = nullptr;
5503         for (const auto *Result : DC->lookup(&II))
5504           if ((VD = dyn_cast<VarDecl>(Result)))
5505             break;
5506 
5507         if (Triple.isOSBinFormatELF()) {
5508           if (!VD)
5509             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5510         } else {
5511           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5512           if (!VD || !VD->hasAttr<DLLExportAttr>())
5513             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5514           else
5515             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5516         }
5517 
5518         setDSOLocal(GV);
5519       }
5520     }
5521 
5522     // Decay array -> ptr
5523     CFConstantStringClassRef =
5524         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5525                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5526   }
5527 
5528   QualType CFTy = Context.getCFConstantStringType();
5529 
5530   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5531 
5532   ConstantInitBuilder Builder(*this);
5533   auto Fields = Builder.beginStruct(STy);
5534 
5535   // Class pointer.
5536   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5537 
5538   // Flags.
5539   if (IsSwiftABI) {
5540     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5541     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5542   } else {
5543     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5544   }
5545 
5546   // String pointer.
5547   llvm::Constant *C = nullptr;
5548   if (isUTF16) {
5549     auto Arr = llvm::makeArrayRef(
5550         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5551         Entry.first().size() / 2);
5552     C = llvm::ConstantDataArray::get(VMContext, Arr);
5553   } else {
5554     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5555   }
5556 
5557   // Note: -fwritable-strings doesn't make the backing store strings of
5558   // CFStrings writable. (See <rdar://problem/10657500>)
5559   auto *GV =
5560       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5561                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5562   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5563   // Don't enforce the target's minimum global alignment, since the only use
5564   // of the string is via this class initializer.
5565   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5566                             : Context.getTypeAlignInChars(Context.CharTy);
5567   GV->setAlignment(Align.getAsAlign());
5568 
5569   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5570   // Without it LLVM can merge the string with a non unnamed_addr one during
5571   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5572   if (Triple.isOSBinFormatMachO())
5573     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5574                            : "__TEXT,__cstring,cstring_literals");
5575   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5576   // the static linker to adjust permissions to read-only later on.
5577   else if (Triple.isOSBinFormatELF())
5578     GV->setSection(".rodata");
5579 
5580   // String.
5581   llvm::Constant *Str =
5582       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5583 
5584   if (isUTF16)
5585     // Cast the UTF16 string to the correct type.
5586     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5587   Fields.add(Str);
5588 
5589   // String length.
5590   llvm::IntegerType *LengthTy =
5591       llvm::IntegerType::get(getModule().getContext(),
5592                              Context.getTargetInfo().getLongWidth());
5593   if (IsSwiftABI) {
5594     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5595         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5596       LengthTy = Int32Ty;
5597     else
5598       LengthTy = IntPtrTy;
5599   }
5600   Fields.addInt(LengthTy, StringLength);
5601 
5602   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5603   // properly aligned on 32-bit platforms.
5604   CharUnits Alignment =
5605       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5606 
5607   // The struct.
5608   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5609                                     /*isConstant=*/false,
5610                                     llvm::GlobalVariable::PrivateLinkage);
5611   GV->addAttribute("objc_arc_inert");
5612   switch (Triple.getObjectFormat()) {
5613   case llvm::Triple::UnknownObjectFormat:
5614     llvm_unreachable("unknown file format");
5615   case llvm::Triple::DXContainer:
5616   case llvm::Triple::GOFF:
5617   case llvm::Triple::SPIRV:
5618   case llvm::Triple::XCOFF:
5619     llvm_unreachable("unimplemented");
5620   case llvm::Triple::COFF:
5621   case llvm::Triple::ELF:
5622   case llvm::Triple::Wasm:
5623     GV->setSection("cfstring");
5624     break;
5625   case llvm::Triple::MachO:
5626     GV->setSection("__DATA,__cfstring");
5627     break;
5628   }
5629   Entry.second = GV;
5630 
5631   return ConstantAddress(GV, GV->getValueType(), Alignment);
5632 }
5633 
5634 bool CodeGenModule::getExpressionLocationsEnabled() const {
5635   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5636 }
5637 
5638 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5639   if (ObjCFastEnumerationStateType.isNull()) {
5640     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5641     D->startDefinition();
5642 
5643     QualType FieldTypes[] = {
5644       Context.UnsignedLongTy,
5645       Context.getPointerType(Context.getObjCIdType()),
5646       Context.getPointerType(Context.UnsignedLongTy),
5647       Context.getConstantArrayType(Context.UnsignedLongTy,
5648                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5649     };
5650 
5651     for (size_t i = 0; i < 4; ++i) {
5652       FieldDecl *Field = FieldDecl::Create(Context,
5653                                            D,
5654                                            SourceLocation(),
5655                                            SourceLocation(), nullptr,
5656                                            FieldTypes[i], /*TInfo=*/nullptr,
5657                                            /*BitWidth=*/nullptr,
5658                                            /*Mutable=*/false,
5659                                            ICIS_NoInit);
5660       Field->setAccess(AS_public);
5661       D->addDecl(Field);
5662     }
5663 
5664     D->completeDefinition();
5665     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5666   }
5667 
5668   return ObjCFastEnumerationStateType;
5669 }
5670 
5671 llvm::Constant *
5672 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5673   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5674 
5675   // Don't emit it as the address of the string, emit the string data itself
5676   // as an inline array.
5677   if (E->getCharByteWidth() == 1) {
5678     SmallString<64> Str(E->getString());
5679 
5680     // Resize the string to the right size, which is indicated by its type.
5681     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5682     Str.resize(CAT->getSize().getZExtValue());
5683     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5684   }
5685 
5686   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5687   llvm::Type *ElemTy = AType->getElementType();
5688   unsigned NumElements = AType->getNumElements();
5689 
5690   // Wide strings have either 2-byte or 4-byte elements.
5691   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5692     SmallVector<uint16_t, 32> Elements;
5693     Elements.reserve(NumElements);
5694 
5695     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5696       Elements.push_back(E->getCodeUnit(i));
5697     Elements.resize(NumElements);
5698     return llvm::ConstantDataArray::get(VMContext, Elements);
5699   }
5700 
5701   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5702   SmallVector<uint32_t, 32> Elements;
5703   Elements.reserve(NumElements);
5704 
5705   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5706     Elements.push_back(E->getCodeUnit(i));
5707   Elements.resize(NumElements);
5708   return llvm::ConstantDataArray::get(VMContext, Elements);
5709 }
5710 
5711 static llvm::GlobalVariable *
5712 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5713                       CodeGenModule &CGM, StringRef GlobalName,
5714                       CharUnits Alignment) {
5715   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5716       CGM.GetGlobalConstantAddressSpace());
5717 
5718   llvm::Module &M = CGM.getModule();
5719   // Create a global variable for this string
5720   auto *GV = new llvm::GlobalVariable(
5721       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5722       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5723   GV->setAlignment(Alignment.getAsAlign());
5724   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5725   if (GV->isWeakForLinker()) {
5726     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5727     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5728   }
5729   CGM.setDSOLocal(GV);
5730 
5731   return GV;
5732 }
5733 
5734 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5735 /// constant array for the given string literal.
5736 ConstantAddress
5737 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5738                                                   StringRef Name) {
5739   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5740 
5741   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5742   llvm::GlobalVariable **Entry = nullptr;
5743   if (!LangOpts.WritableStrings) {
5744     Entry = &ConstantStringMap[C];
5745     if (auto GV = *Entry) {
5746       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5747         GV->setAlignment(Alignment.getAsAlign());
5748       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5749                              GV->getValueType(), Alignment);
5750     }
5751   }
5752 
5753   SmallString<256> MangledNameBuffer;
5754   StringRef GlobalVariableName;
5755   llvm::GlobalValue::LinkageTypes LT;
5756 
5757   // Mangle the string literal if that's how the ABI merges duplicate strings.
5758   // Don't do it if they are writable, since we don't want writes in one TU to
5759   // affect strings in another.
5760   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5761       !LangOpts.WritableStrings) {
5762     llvm::raw_svector_ostream Out(MangledNameBuffer);
5763     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5764     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5765     GlobalVariableName = MangledNameBuffer;
5766   } else {
5767     LT = llvm::GlobalValue::PrivateLinkage;
5768     GlobalVariableName = Name;
5769   }
5770 
5771   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5772 
5773   CGDebugInfo *DI = getModuleDebugInfo();
5774   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5775     DI->AddStringLiteralDebugInfo(GV, S);
5776 
5777   if (Entry)
5778     *Entry = GV;
5779 
5780   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5781 
5782   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5783                          GV->getValueType(), Alignment);
5784 }
5785 
5786 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5787 /// array for the given ObjCEncodeExpr node.
5788 ConstantAddress
5789 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5790   std::string Str;
5791   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5792 
5793   return GetAddrOfConstantCString(Str);
5794 }
5795 
5796 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5797 /// the literal and a terminating '\0' character.
5798 /// The result has pointer to array type.
5799 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5800     const std::string &Str, const char *GlobalName) {
5801   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5802   CharUnits Alignment =
5803     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5804 
5805   llvm::Constant *C =
5806       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5807 
5808   // Don't share any string literals if strings aren't constant.
5809   llvm::GlobalVariable **Entry = nullptr;
5810   if (!LangOpts.WritableStrings) {
5811     Entry = &ConstantStringMap[C];
5812     if (auto GV = *Entry) {
5813       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5814         GV->setAlignment(Alignment.getAsAlign());
5815       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5816                              GV->getValueType(), Alignment);
5817     }
5818   }
5819 
5820   // Get the default prefix if a name wasn't specified.
5821   if (!GlobalName)
5822     GlobalName = ".str";
5823   // Create a global variable for this.
5824   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5825                                   GlobalName, Alignment);
5826   if (Entry)
5827     *Entry = GV;
5828 
5829   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5830                          GV->getValueType(), Alignment);
5831 }
5832 
5833 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5834     const MaterializeTemporaryExpr *E, const Expr *Init) {
5835   assert((E->getStorageDuration() == SD_Static ||
5836           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5837   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5838 
5839   // If we're not materializing a subobject of the temporary, keep the
5840   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5841   QualType MaterializedType = Init->getType();
5842   if (Init == E->getSubExpr())
5843     MaterializedType = E->getType();
5844 
5845   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5846 
5847   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5848   if (!InsertResult.second) {
5849     // We've seen this before: either we already created it or we're in the
5850     // process of doing so.
5851     if (!InsertResult.first->second) {
5852       // We recursively re-entered this function, probably during emission of
5853       // the initializer. Create a placeholder. We'll clean this up in the
5854       // outer call, at the end of this function.
5855       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5856       InsertResult.first->second = new llvm::GlobalVariable(
5857           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5858           nullptr);
5859     }
5860     return ConstantAddress(InsertResult.first->second,
5861                            llvm::cast<llvm::GlobalVariable>(
5862                                InsertResult.first->second->stripPointerCasts())
5863                                ->getValueType(),
5864                            Align);
5865   }
5866 
5867   // FIXME: If an externally-visible declaration extends multiple temporaries,
5868   // we need to give each temporary the same name in every translation unit (and
5869   // we also need to make the temporaries externally-visible).
5870   SmallString<256> Name;
5871   llvm::raw_svector_ostream Out(Name);
5872   getCXXABI().getMangleContext().mangleReferenceTemporary(
5873       VD, E->getManglingNumber(), Out);
5874 
5875   APValue *Value = nullptr;
5876   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5877     // If the initializer of the extending declaration is a constant
5878     // initializer, we should have a cached constant initializer for this
5879     // temporary. Note that this might have a different value from the value
5880     // computed by evaluating the initializer if the surrounding constant
5881     // expression modifies the temporary.
5882     Value = E->getOrCreateValue(false);
5883   }
5884 
5885   // Try evaluating it now, it might have a constant initializer.
5886   Expr::EvalResult EvalResult;
5887   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5888       !EvalResult.hasSideEffects())
5889     Value = &EvalResult.Val;
5890 
5891   LangAS AddrSpace =
5892       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5893 
5894   Optional<ConstantEmitter> emitter;
5895   llvm::Constant *InitialValue = nullptr;
5896   bool Constant = false;
5897   llvm::Type *Type;
5898   if (Value) {
5899     // The temporary has a constant initializer, use it.
5900     emitter.emplace(*this);
5901     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5902                                                MaterializedType);
5903     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5904     Type = InitialValue->getType();
5905   } else {
5906     // No initializer, the initialization will be provided when we
5907     // initialize the declaration which performed lifetime extension.
5908     Type = getTypes().ConvertTypeForMem(MaterializedType);
5909   }
5910 
5911   // Create a global variable for this lifetime-extended temporary.
5912   llvm::GlobalValue::LinkageTypes Linkage =
5913       getLLVMLinkageVarDefinition(VD, Constant);
5914   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5915     const VarDecl *InitVD;
5916     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5917         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5918       // Temporaries defined inside a class get linkonce_odr linkage because the
5919       // class can be defined in multiple translation units.
5920       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5921     } else {
5922       // There is no need for this temporary to have external linkage if the
5923       // VarDecl has external linkage.
5924       Linkage = llvm::GlobalVariable::InternalLinkage;
5925     }
5926   }
5927   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5928   auto *GV = new llvm::GlobalVariable(
5929       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5930       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5931   if (emitter) emitter->finalize(GV);
5932   setGVProperties(GV, VD);
5933   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5934     // The reference temporary should never be dllexport.
5935     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5936   GV->setAlignment(Align.getAsAlign());
5937   if (supportsCOMDAT() && GV->isWeakForLinker())
5938     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5939   if (VD->getTLSKind())
5940     setTLSMode(GV, *VD);
5941   llvm::Constant *CV = GV;
5942   if (AddrSpace != LangAS::Default)
5943     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5944         *this, GV, AddrSpace, LangAS::Default,
5945         Type->getPointerTo(
5946             getContext().getTargetAddressSpace(LangAS::Default)));
5947 
5948   // Update the map with the new temporary. If we created a placeholder above,
5949   // replace it with the new global now.
5950   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5951   if (Entry) {
5952     Entry->replaceAllUsesWith(
5953         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5954     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5955   }
5956   Entry = CV;
5957 
5958   return ConstantAddress(CV, Type, Align);
5959 }
5960 
5961 /// EmitObjCPropertyImplementations - Emit information for synthesized
5962 /// properties for an implementation.
5963 void CodeGenModule::EmitObjCPropertyImplementations(const
5964                                                     ObjCImplementationDecl *D) {
5965   for (const auto *PID : D->property_impls()) {
5966     // Dynamic is just for type-checking.
5967     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5968       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5969 
5970       // Determine which methods need to be implemented, some may have
5971       // been overridden. Note that ::isPropertyAccessor is not the method
5972       // we want, that just indicates if the decl came from a
5973       // property. What we want to know is if the method is defined in
5974       // this implementation.
5975       auto *Getter = PID->getGetterMethodDecl();
5976       if (!Getter || Getter->isSynthesizedAccessorStub())
5977         CodeGenFunction(*this).GenerateObjCGetter(
5978             const_cast<ObjCImplementationDecl *>(D), PID);
5979       auto *Setter = PID->getSetterMethodDecl();
5980       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5981         CodeGenFunction(*this).GenerateObjCSetter(
5982                                  const_cast<ObjCImplementationDecl *>(D), PID);
5983     }
5984   }
5985 }
5986 
5987 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5988   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5989   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5990        ivar; ivar = ivar->getNextIvar())
5991     if (ivar->getType().isDestructedType())
5992       return true;
5993 
5994   return false;
5995 }
5996 
5997 static bool AllTrivialInitializers(CodeGenModule &CGM,
5998                                    ObjCImplementationDecl *D) {
5999   CodeGenFunction CGF(CGM);
6000   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6001        E = D->init_end(); B != E; ++B) {
6002     CXXCtorInitializer *CtorInitExp = *B;
6003     Expr *Init = CtorInitExp->getInit();
6004     if (!CGF.isTrivialInitializer(Init))
6005       return false;
6006   }
6007   return true;
6008 }
6009 
6010 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6011 /// for an implementation.
6012 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6013   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6014   if (needsDestructMethod(D)) {
6015     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6016     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6017     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6018         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6019         getContext().VoidTy, nullptr, D,
6020         /*isInstance=*/true, /*isVariadic=*/false,
6021         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6022         /*isImplicitlyDeclared=*/true,
6023         /*isDefined=*/false, ObjCMethodDecl::Required);
6024     D->addInstanceMethod(DTORMethod);
6025     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6026     D->setHasDestructors(true);
6027   }
6028 
6029   // If the implementation doesn't have any ivar initializers, we don't need
6030   // a .cxx_construct.
6031   if (D->getNumIvarInitializers() == 0 ||
6032       AllTrivialInitializers(*this, D))
6033     return;
6034 
6035   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6036   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6037   // The constructor returns 'self'.
6038   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6039       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6040       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6041       /*isVariadic=*/false,
6042       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6043       /*isImplicitlyDeclared=*/true,
6044       /*isDefined=*/false, ObjCMethodDecl::Required);
6045   D->addInstanceMethod(CTORMethod);
6046   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6047   D->setHasNonZeroConstructors(true);
6048 }
6049 
6050 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6051 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6052   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6053       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6054     ErrorUnsupported(LSD, "linkage spec");
6055     return;
6056   }
6057 
6058   EmitDeclContext(LSD);
6059 }
6060 
6061 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6062   for (auto *I : DC->decls()) {
6063     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6064     // are themselves considered "top-level", so EmitTopLevelDecl on an
6065     // ObjCImplDecl does not recursively visit them. We need to do that in
6066     // case they're nested inside another construct (LinkageSpecDecl /
6067     // ExportDecl) that does stop them from being considered "top-level".
6068     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6069       for (auto *M : OID->methods())
6070         EmitTopLevelDecl(M);
6071     }
6072 
6073     EmitTopLevelDecl(I);
6074   }
6075 }
6076 
6077 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6078 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6079   // Ignore dependent declarations.
6080   if (D->isTemplated())
6081     return;
6082 
6083   // Consteval function shouldn't be emitted.
6084   if (auto *FD = dyn_cast<FunctionDecl>(D))
6085     if (FD->isConsteval())
6086       return;
6087 
6088   switch (D->getKind()) {
6089   case Decl::CXXConversion:
6090   case Decl::CXXMethod:
6091   case Decl::Function:
6092     EmitGlobal(cast<FunctionDecl>(D));
6093     // Always provide some coverage mapping
6094     // even for the functions that aren't emitted.
6095     AddDeferredUnusedCoverageMapping(D);
6096     break;
6097 
6098   case Decl::CXXDeductionGuide:
6099     // Function-like, but does not result in code emission.
6100     break;
6101 
6102   case Decl::Var:
6103   case Decl::Decomposition:
6104   case Decl::VarTemplateSpecialization:
6105     EmitGlobal(cast<VarDecl>(D));
6106     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6107       for (auto *B : DD->bindings())
6108         if (auto *HD = B->getHoldingVar())
6109           EmitGlobal(HD);
6110     break;
6111 
6112   // Indirect fields from global anonymous structs and unions can be
6113   // ignored; only the actual variable requires IR gen support.
6114   case Decl::IndirectField:
6115     break;
6116 
6117   // C++ Decls
6118   case Decl::Namespace:
6119     EmitDeclContext(cast<NamespaceDecl>(D));
6120     break;
6121   case Decl::ClassTemplateSpecialization: {
6122     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6123     if (CGDebugInfo *DI = getModuleDebugInfo())
6124       if (Spec->getSpecializationKind() ==
6125               TSK_ExplicitInstantiationDefinition &&
6126           Spec->hasDefinition())
6127         DI->completeTemplateDefinition(*Spec);
6128   } LLVM_FALLTHROUGH;
6129   case Decl::CXXRecord: {
6130     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6131     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6132       if (CRD->hasDefinition())
6133         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6134       if (auto *ES = D->getASTContext().getExternalSource())
6135         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6136           DI->completeUnusedClass(*CRD);
6137     }
6138     // Emit any static data members, they may be definitions.
6139     for (auto *I : CRD->decls())
6140       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6141         EmitTopLevelDecl(I);
6142     break;
6143   }
6144     // No code generation needed.
6145   case Decl::UsingShadow:
6146   case Decl::ClassTemplate:
6147   case Decl::VarTemplate:
6148   case Decl::Concept:
6149   case Decl::VarTemplatePartialSpecialization:
6150   case Decl::FunctionTemplate:
6151   case Decl::TypeAliasTemplate:
6152   case Decl::Block:
6153   case Decl::Empty:
6154   case Decl::Binding:
6155     break;
6156   case Decl::Using:          // using X; [C++]
6157     if (CGDebugInfo *DI = getModuleDebugInfo())
6158         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6159     break;
6160   case Decl::UsingEnum: // using enum X; [C++]
6161     if (CGDebugInfo *DI = getModuleDebugInfo())
6162       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6163     break;
6164   case Decl::NamespaceAlias:
6165     if (CGDebugInfo *DI = getModuleDebugInfo())
6166         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6167     break;
6168   case Decl::UsingDirective: // using namespace X; [C++]
6169     if (CGDebugInfo *DI = getModuleDebugInfo())
6170       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6171     break;
6172   case Decl::CXXConstructor:
6173     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6174     break;
6175   case Decl::CXXDestructor:
6176     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6177     break;
6178 
6179   case Decl::StaticAssert:
6180     // Nothing to do.
6181     break;
6182 
6183   // Objective-C Decls
6184 
6185   // Forward declarations, no (immediate) code generation.
6186   case Decl::ObjCInterface:
6187   case Decl::ObjCCategory:
6188     break;
6189 
6190   case Decl::ObjCProtocol: {
6191     auto *Proto = cast<ObjCProtocolDecl>(D);
6192     if (Proto->isThisDeclarationADefinition())
6193       ObjCRuntime->GenerateProtocol(Proto);
6194     break;
6195   }
6196 
6197   case Decl::ObjCCategoryImpl:
6198     // Categories have properties but don't support synthesize so we
6199     // can ignore them here.
6200     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6201     break;
6202 
6203   case Decl::ObjCImplementation: {
6204     auto *OMD = cast<ObjCImplementationDecl>(D);
6205     EmitObjCPropertyImplementations(OMD);
6206     EmitObjCIvarInitializations(OMD);
6207     ObjCRuntime->GenerateClass(OMD);
6208     // Emit global variable debug information.
6209     if (CGDebugInfo *DI = getModuleDebugInfo())
6210       if (getCodeGenOpts().hasReducedDebugInfo())
6211         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6212             OMD->getClassInterface()), OMD->getLocation());
6213     break;
6214   }
6215   case Decl::ObjCMethod: {
6216     auto *OMD = cast<ObjCMethodDecl>(D);
6217     // If this is not a prototype, emit the body.
6218     if (OMD->getBody())
6219       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6220     break;
6221   }
6222   case Decl::ObjCCompatibleAlias:
6223     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6224     break;
6225 
6226   case Decl::PragmaComment: {
6227     const auto *PCD = cast<PragmaCommentDecl>(D);
6228     switch (PCD->getCommentKind()) {
6229     case PCK_Unknown:
6230       llvm_unreachable("unexpected pragma comment kind");
6231     case PCK_Linker:
6232       AppendLinkerOptions(PCD->getArg());
6233       break;
6234     case PCK_Lib:
6235         AddDependentLib(PCD->getArg());
6236       break;
6237     case PCK_Compiler:
6238     case PCK_ExeStr:
6239     case PCK_User:
6240       break; // We ignore all of these.
6241     }
6242     break;
6243   }
6244 
6245   case Decl::PragmaDetectMismatch: {
6246     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6247     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6248     break;
6249   }
6250 
6251   case Decl::LinkageSpec:
6252     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6253     break;
6254 
6255   case Decl::FileScopeAsm: {
6256     // File-scope asm is ignored during device-side CUDA compilation.
6257     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6258       break;
6259     // File-scope asm is ignored during device-side OpenMP compilation.
6260     if (LangOpts.OpenMPIsDevice)
6261       break;
6262     // File-scope asm is ignored during device-side SYCL compilation.
6263     if (LangOpts.SYCLIsDevice)
6264       break;
6265     auto *AD = cast<FileScopeAsmDecl>(D);
6266     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6267     break;
6268   }
6269 
6270   case Decl::Import: {
6271     auto *Import = cast<ImportDecl>(D);
6272 
6273     // If we've already imported this module, we're done.
6274     if (!ImportedModules.insert(Import->getImportedModule()))
6275       break;
6276 
6277     // Emit debug information for direct imports.
6278     if (!Import->getImportedOwningModule()) {
6279       if (CGDebugInfo *DI = getModuleDebugInfo())
6280         DI->EmitImportDecl(*Import);
6281     }
6282 
6283     // For C++ standard modules we are done - we will call the module
6284     // initializer for imported modules, and that will likewise call those for
6285     // any imports it has.
6286     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6287         !Import->getImportedOwningModule()->isModuleMapModule())
6288       break;
6289 
6290     // For clang C++ module map modules the initializers for sub-modules are
6291     // emitted here.
6292 
6293     // Find all of the submodules and emit the module initializers.
6294     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6295     SmallVector<clang::Module *, 16> Stack;
6296     Visited.insert(Import->getImportedModule());
6297     Stack.push_back(Import->getImportedModule());
6298 
6299     while (!Stack.empty()) {
6300       clang::Module *Mod = Stack.pop_back_val();
6301       if (!EmittedModuleInitializers.insert(Mod).second)
6302         continue;
6303 
6304       for (auto *D : Context.getModuleInitializers(Mod))
6305         EmitTopLevelDecl(D);
6306 
6307       // Visit the submodules of this module.
6308       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6309                                              SubEnd = Mod->submodule_end();
6310            Sub != SubEnd; ++Sub) {
6311         // Skip explicit children; they need to be explicitly imported to emit
6312         // the initializers.
6313         if ((*Sub)->IsExplicit)
6314           continue;
6315 
6316         if (Visited.insert(*Sub).second)
6317           Stack.push_back(*Sub);
6318       }
6319     }
6320     break;
6321   }
6322 
6323   case Decl::Export:
6324     EmitDeclContext(cast<ExportDecl>(D));
6325     break;
6326 
6327   case Decl::OMPThreadPrivate:
6328     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6329     break;
6330 
6331   case Decl::OMPAllocate:
6332     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6333     break;
6334 
6335   case Decl::OMPDeclareReduction:
6336     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6337     break;
6338 
6339   case Decl::OMPDeclareMapper:
6340     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6341     break;
6342 
6343   case Decl::OMPRequires:
6344     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6345     break;
6346 
6347   case Decl::Typedef:
6348   case Decl::TypeAlias: // using foo = bar; [C++11]
6349     if (CGDebugInfo *DI = getModuleDebugInfo())
6350       DI->EmitAndRetainType(
6351           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6352     break;
6353 
6354   case Decl::Record:
6355     if (CGDebugInfo *DI = getModuleDebugInfo())
6356       if (cast<RecordDecl>(D)->getDefinition())
6357         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6358     break;
6359 
6360   case Decl::Enum:
6361     if (CGDebugInfo *DI = getModuleDebugInfo())
6362       if (cast<EnumDecl>(D)->getDefinition())
6363         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6364     break;
6365 
6366   default:
6367     // Make sure we handled everything we should, every other kind is a
6368     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6369     // function. Need to recode Decl::Kind to do that easily.
6370     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6371     break;
6372   }
6373 }
6374 
6375 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6376   // Do we need to generate coverage mapping?
6377   if (!CodeGenOpts.CoverageMapping)
6378     return;
6379   switch (D->getKind()) {
6380   case Decl::CXXConversion:
6381   case Decl::CXXMethod:
6382   case Decl::Function:
6383   case Decl::ObjCMethod:
6384   case Decl::CXXConstructor:
6385   case Decl::CXXDestructor: {
6386     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6387       break;
6388     SourceManager &SM = getContext().getSourceManager();
6389     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6390       break;
6391     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6392     if (I == DeferredEmptyCoverageMappingDecls.end())
6393       DeferredEmptyCoverageMappingDecls[D] = true;
6394     break;
6395   }
6396   default:
6397     break;
6398   };
6399 }
6400 
6401 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6402   // Do we need to generate coverage mapping?
6403   if (!CodeGenOpts.CoverageMapping)
6404     return;
6405   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6406     if (Fn->isTemplateInstantiation())
6407       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6408   }
6409   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6410   if (I == DeferredEmptyCoverageMappingDecls.end())
6411     DeferredEmptyCoverageMappingDecls[D] = false;
6412   else
6413     I->second = false;
6414 }
6415 
6416 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6417   // We call takeVector() here to avoid use-after-free.
6418   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6419   // we deserialize function bodies to emit coverage info for them, and that
6420   // deserializes more declarations. How should we handle that case?
6421   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6422     if (!Entry.second)
6423       continue;
6424     const Decl *D = Entry.first;
6425     switch (D->getKind()) {
6426     case Decl::CXXConversion:
6427     case Decl::CXXMethod:
6428     case Decl::Function:
6429     case Decl::ObjCMethod: {
6430       CodeGenPGO PGO(*this);
6431       GlobalDecl GD(cast<FunctionDecl>(D));
6432       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6433                                   getFunctionLinkage(GD));
6434       break;
6435     }
6436     case Decl::CXXConstructor: {
6437       CodeGenPGO PGO(*this);
6438       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6439       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6440                                   getFunctionLinkage(GD));
6441       break;
6442     }
6443     case Decl::CXXDestructor: {
6444       CodeGenPGO PGO(*this);
6445       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6446       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6447                                   getFunctionLinkage(GD));
6448       break;
6449     }
6450     default:
6451       break;
6452     };
6453   }
6454 }
6455 
6456 void CodeGenModule::EmitMainVoidAlias() {
6457   // In order to transition away from "__original_main" gracefully, emit an
6458   // alias for "main" in the no-argument case so that libc can detect when
6459   // new-style no-argument main is in used.
6460   if (llvm::Function *F = getModule().getFunction("main")) {
6461     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6462         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6463       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6464       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6465     }
6466   }
6467 }
6468 
6469 /// Turns the given pointer into a constant.
6470 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6471                                           const void *Ptr) {
6472   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6473   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6474   return llvm::ConstantInt::get(i64, PtrInt);
6475 }
6476 
6477 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6478                                    llvm::NamedMDNode *&GlobalMetadata,
6479                                    GlobalDecl D,
6480                                    llvm::GlobalValue *Addr) {
6481   if (!GlobalMetadata)
6482     GlobalMetadata =
6483       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6484 
6485   // TODO: should we report variant information for ctors/dtors?
6486   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6487                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6488                                CGM.getLLVMContext(), D.getDecl()))};
6489   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6490 }
6491 
6492 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6493                                                  llvm::GlobalValue *CppFunc) {
6494   // Store the list of ifuncs we need to replace uses in.
6495   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6496   // List of ConstantExprs that we should be able to delete when we're done
6497   // here.
6498   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6499 
6500   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6501   if (Elem == CppFunc)
6502     return false;
6503 
6504   // First make sure that all users of this are ifuncs (or ifuncs via a
6505   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6506   // later.
6507   for (llvm::User *User : Elem->users()) {
6508     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6509     // ifunc directly. In any other case, just give up, as we don't know what we
6510     // could break by changing those.
6511     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6512       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6513         return false;
6514 
6515       for (llvm::User *CEUser : ConstExpr->users()) {
6516         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6517           IFuncs.push_back(IFunc);
6518         } else {
6519           return false;
6520         }
6521       }
6522       CEs.push_back(ConstExpr);
6523     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6524       IFuncs.push_back(IFunc);
6525     } else {
6526       // This user is one we don't know how to handle, so fail redirection. This
6527       // will result in an ifunc retaining a resolver name that will ultimately
6528       // fail to be resolved to a defined function.
6529       return false;
6530     }
6531   }
6532 
6533   // Now we know this is a valid case where we can do this alias replacement, we
6534   // need to remove all of the references to Elem (and the bitcasts!) so we can
6535   // delete it.
6536   for (llvm::GlobalIFunc *IFunc : IFuncs)
6537     IFunc->setResolver(nullptr);
6538   for (llvm::ConstantExpr *ConstExpr : CEs)
6539     ConstExpr->destroyConstant();
6540 
6541   // We should now be out of uses for the 'old' version of this function, so we
6542   // can erase it as well.
6543   Elem->eraseFromParent();
6544 
6545   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6546     // The type of the resolver is always just a function-type that returns the
6547     // type of the IFunc, so create that here. If the type of the actual
6548     // resolver doesn't match, it just gets bitcast to the right thing.
6549     auto *ResolverTy =
6550         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6551     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6552         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6553     IFunc->setResolver(Resolver);
6554   }
6555   return true;
6556 }
6557 
6558 /// For each function which is declared within an extern "C" region and marked
6559 /// as 'used', but has internal linkage, create an alias from the unmangled
6560 /// name to the mangled name if possible. People expect to be able to refer
6561 /// to such functions with an unmangled name from inline assembly within the
6562 /// same translation unit.
6563 void CodeGenModule::EmitStaticExternCAliases() {
6564   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6565     return;
6566   for (auto &I : StaticExternCValues) {
6567     IdentifierInfo *Name = I.first;
6568     llvm::GlobalValue *Val = I.second;
6569 
6570     // If Val is null, that implies there were multiple declarations that each
6571     // had a claim to the unmangled name. In this case, generation of the alias
6572     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6573     if (!Val)
6574       break;
6575 
6576     llvm::GlobalValue *ExistingElem =
6577         getModule().getNamedValue(Name->getName());
6578 
6579     // If there is either not something already by this name, or we were able to
6580     // replace all uses from IFuncs, create the alias.
6581     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6582       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6583   }
6584 }
6585 
6586 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6587                                              GlobalDecl &Result) const {
6588   auto Res = Manglings.find(MangledName);
6589   if (Res == Manglings.end())
6590     return false;
6591   Result = Res->getValue();
6592   return true;
6593 }
6594 
6595 /// Emits metadata nodes associating all the global values in the
6596 /// current module with the Decls they came from.  This is useful for
6597 /// projects using IR gen as a subroutine.
6598 ///
6599 /// Since there's currently no way to associate an MDNode directly
6600 /// with an llvm::GlobalValue, we create a global named metadata
6601 /// with the name 'clang.global.decl.ptrs'.
6602 void CodeGenModule::EmitDeclMetadata() {
6603   llvm::NamedMDNode *GlobalMetadata = nullptr;
6604 
6605   for (auto &I : MangledDeclNames) {
6606     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6607     // Some mangled names don't necessarily have an associated GlobalValue
6608     // in this module, e.g. if we mangled it for DebugInfo.
6609     if (Addr)
6610       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6611   }
6612 }
6613 
6614 /// Emits metadata nodes for all the local variables in the current
6615 /// function.
6616 void CodeGenFunction::EmitDeclMetadata() {
6617   if (LocalDeclMap.empty()) return;
6618 
6619   llvm::LLVMContext &Context = getLLVMContext();
6620 
6621   // Find the unique metadata ID for this name.
6622   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6623 
6624   llvm::NamedMDNode *GlobalMetadata = nullptr;
6625 
6626   for (auto &I : LocalDeclMap) {
6627     const Decl *D = I.first;
6628     llvm::Value *Addr = I.second.getPointer();
6629     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6630       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6631       Alloca->setMetadata(
6632           DeclPtrKind, llvm::MDNode::get(
6633                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6634     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6635       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6636       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6637     }
6638   }
6639 }
6640 
6641 void CodeGenModule::EmitVersionIdentMetadata() {
6642   llvm::NamedMDNode *IdentMetadata =
6643     TheModule.getOrInsertNamedMetadata("llvm.ident");
6644   std::string Version = getClangFullVersion();
6645   llvm::LLVMContext &Ctx = TheModule.getContext();
6646 
6647   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6648   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6649 }
6650 
6651 void CodeGenModule::EmitCommandLineMetadata() {
6652   llvm::NamedMDNode *CommandLineMetadata =
6653     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6654   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6655   llvm::LLVMContext &Ctx = TheModule.getContext();
6656 
6657   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6658   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6659 }
6660 
6661 void CodeGenModule::EmitCoverageFile() {
6662   if (getCodeGenOpts().CoverageDataFile.empty() &&
6663       getCodeGenOpts().CoverageNotesFile.empty())
6664     return;
6665 
6666   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6667   if (!CUNode)
6668     return;
6669 
6670   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6671   llvm::LLVMContext &Ctx = TheModule.getContext();
6672   auto *CoverageDataFile =
6673       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6674   auto *CoverageNotesFile =
6675       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6676   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6677     llvm::MDNode *CU = CUNode->getOperand(i);
6678     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6679     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6680   }
6681 }
6682 
6683 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6684                                                        bool ForEH) {
6685   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6686   // FIXME: should we even be calling this method if RTTI is disabled
6687   // and it's not for EH?
6688   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6689       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6690        getTriple().isNVPTX()))
6691     return llvm::Constant::getNullValue(Int8PtrTy);
6692 
6693   if (ForEH && Ty->isObjCObjectPointerType() &&
6694       LangOpts.ObjCRuntime.isGNUFamily())
6695     return ObjCRuntime->GetEHType(Ty);
6696 
6697   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6698 }
6699 
6700 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6701   // Do not emit threadprivates in simd-only mode.
6702   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6703     return;
6704   for (auto RefExpr : D->varlists()) {
6705     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6706     bool PerformInit =
6707         VD->getAnyInitializer() &&
6708         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6709                                                         /*ForRef=*/false);
6710 
6711     Address Addr(GetAddrOfGlobalVar(VD),
6712                  getTypes().ConvertTypeForMem(VD->getType()),
6713                  getContext().getDeclAlign(VD));
6714     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6715             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6716       CXXGlobalInits.push_back(InitFunction);
6717   }
6718 }
6719 
6720 llvm::Metadata *
6721 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6722                                             StringRef Suffix) {
6723   if (auto *FnType = T->getAs<FunctionProtoType>())
6724     T = getContext().getFunctionType(
6725         FnType->getReturnType(), FnType->getParamTypes(),
6726         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6727 
6728   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6729   if (InternalId)
6730     return InternalId;
6731 
6732   if (isExternallyVisible(T->getLinkage())) {
6733     std::string OutName;
6734     llvm::raw_string_ostream Out(OutName);
6735     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6736     Out << Suffix;
6737 
6738     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6739   } else {
6740     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6741                                            llvm::ArrayRef<llvm::Metadata *>());
6742   }
6743 
6744   return InternalId;
6745 }
6746 
6747 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6748   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6749 }
6750 
6751 llvm::Metadata *
6752 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6753   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6754 }
6755 
6756 // Generalize pointer types to a void pointer with the qualifiers of the
6757 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6758 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6759 // 'void *'.
6760 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6761   if (!Ty->isPointerType())
6762     return Ty;
6763 
6764   return Ctx.getPointerType(
6765       QualType(Ctx.VoidTy).withCVRQualifiers(
6766           Ty->getPointeeType().getCVRQualifiers()));
6767 }
6768 
6769 // Apply type generalization to a FunctionType's return and argument types
6770 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6771   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6772     SmallVector<QualType, 8> GeneralizedParams;
6773     for (auto &Param : FnType->param_types())
6774       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6775 
6776     return Ctx.getFunctionType(
6777         GeneralizeType(Ctx, FnType->getReturnType()),
6778         GeneralizedParams, FnType->getExtProtoInfo());
6779   }
6780 
6781   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6782     return Ctx.getFunctionNoProtoType(
6783         GeneralizeType(Ctx, FnType->getReturnType()));
6784 
6785   llvm_unreachable("Encountered unknown FunctionType");
6786 }
6787 
6788 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6789   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6790                                       GeneralizedMetadataIdMap, ".generalized");
6791 }
6792 
6793 /// Returns whether this module needs the "all-vtables" type identifier.
6794 bool CodeGenModule::NeedAllVtablesTypeId() const {
6795   // Returns true if at least one of vtable-based CFI checkers is enabled and
6796   // is not in the trapping mode.
6797   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6798            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6799           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6800            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6801           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6802            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6803           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6804            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6805 }
6806 
6807 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6808                                           CharUnits Offset,
6809                                           const CXXRecordDecl *RD) {
6810   llvm::Metadata *MD =
6811       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6812   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6813 
6814   if (CodeGenOpts.SanitizeCfiCrossDso)
6815     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6816       VTable->addTypeMetadata(Offset.getQuantity(),
6817                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6818 
6819   if (NeedAllVtablesTypeId()) {
6820     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6821     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6822   }
6823 }
6824 
6825 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6826   if (!SanStats)
6827     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6828 
6829   return *SanStats;
6830 }
6831 
6832 llvm::Value *
6833 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6834                                                   CodeGenFunction &CGF) {
6835   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6836   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6837   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6838   auto *Call = CGF.EmitRuntimeCall(
6839       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6840   return Call;
6841 }
6842 
6843 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6844     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6845   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6846                                  /* forPointeeType= */ true);
6847 }
6848 
6849 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6850                                                  LValueBaseInfo *BaseInfo,
6851                                                  TBAAAccessInfo *TBAAInfo,
6852                                                  bool forPointeeType) {
6853   if (TBAAInfo)
6854     *TBAAInfo = getTBAAAccessInfo(T);
6855 
6856   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6857   // that doesn't return the information we need to compute BaseInfo.
6858 
6859   // Honor alignment typedef attributes even on incomplete types.
6860   // We also honor them straight for C++ class types, even as pointees;
6861   // there's an expressivity gap here.
6862   if (auto TT = T->getAs<TypedefType>()) {
6863     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6864       if (BaseInfo)
6865         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6866       return getContext().toCharUnitsFromBits(Align);
6867     }
6868   }
6869 
6870   bool AlignForArray = T->isArrayType();
6871 
6872   // Analyze the base element type, so we don't get confused by incomplete
6873   // array types.
6874   T = getContext().getBaseElementType(T);
6875 
6876   if (T->isIncompleteType()) {
6877     // We could try to replicate the logic from
6878     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6879     // type is incomplete, so it's impossible to test. We could try to reuse
6880     // getTypeAlignIfKnown, but that doesn't return the information we need
6881     // to set BaseInfo.  So just ignore the possibility that the alignment is
6882     // greater than one.
6883     if (BaseInfo)
6884       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6885     return CharUnits::One();
6886   }
6887 
6888   if (BaseInfo)
6889     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6890 
6891   CharUnits Alignment;
6892   const CXXRecordDecl *RD;
6893   if (T.getQualifiers().hasUnaligned()) {
6894     Alignment = CharUnits::One();
6895   } else if (forPointeeType && !AlignForArray &&
6896              (RD = T->getAsCXXRecordDecl())) {
6897     // For C++ class pointees, we don't know whether we're pointing at a
6898     // base or a complete object, so we generally need to use the
6899     // non-virtual alignment.
6900     Alignment = getClassPointerAlignment(RD);
6901   } else {
6902     Alignment = getContext().getTypeAlignInChars(T);
6903   }
6904 
6905   // Cap to the global maximum type alignment unless the alignment
6906   // was somehow explicit on the type.
6907   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6908     if (Alignment.getQuantity() > MaxAlign &&
6909         !getContext().isAlignmentRequired(T))
6910       Alignment = CharUnits::fromQuantity(MaxAlign);
6911   }
6912   return Alignment;
6913 }
6914 
6915 bool CodeGenModule::stopAutoInit() {
6916   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6917   if (StopAfter) {
6918     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6919     // used
6920     if (NumAutoVarInit >= StopAfter) {
6921       return true;
6922     }
6923     if (!NumAutoVarInit) {
6924       unsigned DiagID = getDiags().getCustomDiagID(
6925           DiagnosticsEngine::Warning,
6926           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6927           "number of times ftrivial-auto-var-init=%1 gets applied.");
6928       getDiags().Report(DiagID)
6929           << StopAfter
6930           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6931                       LangOptions::TrivialAutoVarInitKind::Zero
6932                   ? "zero"
6933                   : "pattern");
6934     }
6935     ++NumAutoVarInit;
6936   }
6937   return false;
6938 }
6939 
6940 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6941                                                     const Decl *D) const {
6942   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6943   // postfix beginning with '.' since the symbol name can be demangled.
6944   if (LangOpts.HIP)
6945     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6946   else
6947     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6948 
6949   // If the CUID is not specified we try to generate a unique postfix.
6950   if (getLangOpts().CUID.empty()) {
6951     SourceManager &SM = getContext().getSourceManager();
6952     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6953     assert(PLoc.isValid() && "Source location is expected to be valid.");
6954 
6955     // Get the hash of the user defined macros.
6956     llvm::MD5 Hash;
6957     llvm::MD5::MD5Result Result;
6958     for (const auto &Arg : PreprocessorOpts.Macros)
6959       Hash.update(Arg.first);
6960     Hash.final(Result);
6961 
6962     // Get the UniqueID for the file containing the decl.
6963     llvm::sys::fs::UniqueID ID;
6964     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6965       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6966       assert(PLoc.isValid() && "Source location is expected to be valid.");
6967       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6968         SM.getDiagnostics().Report(diag::err_cannot_open_file)
6969             << PLoc.getFilename() << EC.message();
6970     }
6971     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6972        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6973   } else {
6974     OS << getContext().getCUIDHash();
6975   }
6976 }
6977 
6978 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
6979   assert(DeferredDeclsToEmit.empty() &&
6980          "Should have emitted all decls deferred to emit.");
6981   assert(NewBuilder->DeferredDecls.empty() &&
6982          "Newly created module should not have deferred decls");
6983   NewBuilder->DeferredDecls = std::move(DeferredDecls);
6984 
6985   assert(NewBuilder->DeferredVTables.empty() &&
6986          "Newly created module should not have deferred vtables");
6987   NewBuilder->DeferredVTables = std::move(DeferredVTables);
6988 
6989   assert(NewBuilder->MangledDeclNames.empty() &&
6990          "Newly created module should not have mangled decl names");
6991   assert(NewBuilder->Manglings.empty() &&
6992          "Newly created module should not have manglings");
6993   NewBuilder->Manglings = std::move(Manglings);
6994 
6995   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
6996   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
6997 
6998   NewBuilder->TBAA = std::move(TBAA);
6999 
7000   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7001          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7002 
7003   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7004 
7005   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7006 }
7007