xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 81ad626541db97eb356e2c1d4a20eb2a26a766ab)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeGPU.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ConvertUTF.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/MD5.h"
66 #include "llvm/Support/TimeProfiler.h"
67 #include "llvm/Support/X86TargetParser.h"
68 
69 using namespace clang;
70 using namespace CodeGen;
71 
72 static llvm::cl::opt<bool> LimitedCoverage(
73     "limited-coverage-experimental", llvm::cl::Hidden,
74     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
75 
76 static const char AnnotationSection[] = "llvm.metadata";
77 
78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
79   switch (CGM.getContext().getCXXABIKind()) {
80   case TargetCXXABI::AppleARM64:
81   case TargetCXXABI::Fuchsia:
82   case TargetCXXABI::GenericAArch64:
83   case TargetCXXABI::GenericARM:
84   case TargetCXXABI::iOS:
85   case TargetCXXABI::WatchOS:
86   case TargetCXXABI::GenericMIPS:
87   case TargetCXXABI::GenericItanium:
88   case TargetCXXABI::WebAssembly:
89   case TargetCXXABI::XL:
90     return CreateItaniumCXXABI(CGM);
91   case TargetCXXABI::Microsoft:
92     return CreateMicrosoftCXXABI(CGM);
93   }
94 
95   llvm_unreachable("invalid C++ ABI kind");
96 }
97 
98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
99                              const PreprocessorOptions &PPO,
100                              const CodeGenOptions &CGO, llvm::Module &M,
101                              DiagnosticsEngine &diags,
102                              CoverageSourceInfo *CoverageInfo)
103     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
104       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
105       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
106       VMContext(M.getContext()), Types(*this), VTables(*this),
107       SanitizerMD(new SanitizerMetadata(*this)) {
108 
109   // Initialize the type cache.
110   llvm::LLVMContext &LLVMContext = M.getContext();
111   VoidTy = llvm::Type::getVoidTy(LLVMContext);
112   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
113   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
114   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
115   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
116   HalfTy = llvm::Type::getHalfTy(LLVMContext);
117   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
118   FloatTy = llvm::Type::getFloatTy(LLVMContext);
119   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
120   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
121   PointerAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
123   SizeSizeInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
125   IntAlignInBytes =
126     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
127   CharTy =
128     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
129   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
130   IntPtrTy = llvm::IntegerType::get(LLVMContext,
131     C.getTargetInfo().getMaxPointerWidth());
132   Int8PtrTy = Int8Ty->getPointerTo(0);
133   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
134   const llvm::DataLayout &DL = M.getDataLayout();
135   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
136   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
137   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
138 
139   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
140 
141   if (LangOpts.ObjC)
142     createObjCRuntime();
143   if (LangOpts.OpenCL)
144     createOpenCLRuntime();
145   if (LangOpts.OpenMP)
146     createOpenMPRuntime();
147   if (LangOpts.CUDA)
148     createCUDARuntime();
149   if (LangOpts.HLSL)
150     createHLSLRuntime();
151 
152   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
153   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
154       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
155     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
156                                getCXXABI().getMangleContext()));
157 
158   // If debug info or coverage generation is enabled, create the CGDebugInfo
159   // object.
160   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
161       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
162     DebugInfo.reset(new CGDebugInfo(*this));
163 
164   Block.GlobalUniqueCount = 0;
165 
166   if (C.getLangOpts().ObjC)
167     ObjCData.reset(new ObjCEntrypoints());
168 
169   if (CodeGenOpts.hasProfileClangUse()) {
170     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
171         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
172     if (auto E = ReaderOrErr.takeError()) {
173       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
174                                               "Could not read profile %0: %1");
175       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
176         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
177                                   << EI.message();
178       });
179     } else
180       PGOReader = std::move(ReaderOrErr.get());
181   }
182 
183   // If coverage mapping generation is enabled, create the
184   // CoverageMappingModuleGen object.
185   if (CodeGenOpts.CoverageMapping)
186     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
187 
188   // Generate the module name hash here if needed.
189   if (CodeGenOpts.UniqueInternalLinkageNames &&
190       !getModule().getSourceFileName().empty()) {
191     std::string Path = getModule().getSourceFileName();
192     // Check if a path substitution is needed from the MacroPrefixMap.
193     for (const auto &Entry : LangOpts.MacroPrefixMap)
194       if (Path.rfind(Entry.first, 0) != std::string::npos) {
195         Path = Entry.second + Path.substr(Entry.first.size());
196         break;
197       }
198     llvm::MD5 Md5;
199     Md5.update(Path);
200     llvm::MD5::MD5Result R;
201     Md5.final(R);
202     SmallString<32> Str;
203     llvm::MD5::stringifyResult(R, Str);
204     // Convert MD5hash to Decimal. Demangler suffixes can either contain
205     // numbers or characters but not both.
206     llvm::APInt IntHash(128, Str.str(), 16);
207     // Prepend "__uniq" before the hash for tools like profilers to understand
208     // that this symbol is of internal linkage type.  The "__uniq" is the
209     // pre-determined prefix that is used to tell tools that this symbol was
210     // created with -funique-internal-linakge-symbols and the tools can strip or
211     // keep the prefix as needed.
212     ModuleNameHash = (Twine(".__uniq.") +
213         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
214   }
215 }
216 
217 CodeGenModule::~CodeGenModule() {}
218 
219 void CodeGenModule::createObjCRuntime() {
220   // This is just isGNUFamily(), but we want to force implementors of
221   // new ABIs to decide how best to do this.
222   switch (LangOpts.ObjCRuntime.getKind()) {
223   case ObjCRuntime::GNUstep:
224   case ObjCRuntime::GCC:
225   case ObjCRuntime::ObjFW:
226     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
227     return;
228 
229   case ObjCRuntime::FragileMacOSX:
230   case ObjCRuntime::MacOSX:
231   case ObjCRuntime::iOS:
232   case ObjCRuntime::WatchOS:
233     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
234     return;
235   }
236   llvm_unreachable("bad runtime kind");
237 }
238 
239 void CodeGenModule::createOpenCLRuntime() {
240   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
241 }
242 
243 void CodeGenModule::createOpenMPRuntime() {
244   // Select a specialized code generation class based on the target, if any.
245   // If it does not exist use the default implementation.
246   switch (getTriple().getArch()) {
247   case llvm::Triple::nvptx:
248   case llvm::Triple::nvptx64:
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::createHLSLRuntime() {
268   HLSLRuntime.reset(new CGHLSLRuntime(*this));
269 }
270 
271 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
272   Replacements[Name] = C;
273 }
274 
275 void CodeGenModule::applyReplacements() {
276   for (auto &I : Replacements) {
277     StringRef MangledName = I.first();
278     llvm::Constant *Replacement = I.second;
279     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
280     if (!Entry)
281       continue;
282     auto *OldF = cast<llvm::Function>(Entry);
283     auto *NewF = dyn_cast<llvm::Function>(Replacement);
284     if (!NewF) {
285       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
286         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
287       } else {
288         auto *CE = cast<llvm::ConstantExpr>(Replacement);
289         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
290                CE->getOpcode() == llvm::Instruction::GetElementPtr);
291         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
292       }
293     }
294 
295     // Replace old with new, but keep the old order.
296     OldF->replaceAllUsesWith(Replacement);
297     if (NewF) {
298       NewF->removeFromParent();
299       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
300                                                        NewF);
301     }
302     OldF->eraseFromParent();
303   }
304 }
305 
306 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
307   GlobalValReplacements.push_back(std::make_pair(GV, C));
308 }
309 
310 void CodeGenModule::applyGlobalValReplacements() {
311   for (auto &I : GlobalValReplacements) {
312     llvm::GlobalValue *GV = I.first;
313     llvm::Constant *C = I.second;
314 
315     GV->replaceAllUsesWith(C);
316     GV->eraseFromParent();
317   }
318 }
319 
320 // This is only used in aliases that we created and we know they have a
321 // linear structure.
322 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
323   const llvm::Constant *C;
324   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
325     C = GA->getAliasee();
326   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
327     C = GI->getResolver();
328   else
329     return GV;
330 
331   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
332   if (!AliaseeGV)
333     return nullptr;
334 
335   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
336   if (FinalGV == GV)
337     return nullptr;
338 
339   return FinalGV;
340 }
341 
342 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
343                                SourceLocation Location, bool IsIFunc,
344                                const llvm::GlobalValue *Alias,
345                                const llvm::GlobalValue *&GV) {
346   GV = getAliasedGlobal(Alias);
347   if (!GV) {
348     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
349     return false;
350   }
351 
352   if (GV->isDeclaration()) {
353     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
354     return false;
355   }
356 
357   if (IsIFunc) {
358     // Check resolver function type.
359     const auto *F = dyn_cast<llvm::Function>(GV);
360     if (!F) {
361       Diags.Report(Location, diag::err_alias_to_undefined)
362           << IsIFunc << IsIFunc;
363       return false;
364     }
365 
366     llvm::FunctionType *FTy = F->getFunctionType();
367     if (!FTy->getReturnType()->isPointerTy()) {
368       Diags.Report(Location, diag::err_ifunc_resolver_return);
369       return false;
370     }
371   }
372 
373   return true;
374 }
375 
376 void CodeGenModule::checkAliases() {
377   // Check if the constructed aliases are well formed. It is really unfortunate
378   // that we have to do this in CodeGen, but we only construct mangled names
379   // and aliases during codegen.
380   bool Error = false;
381   DiagnosticsEngine &Diags = getDiags();
382   for (const GlobalDecl &GD : Aliases) {
383     const auto *D = cast<ValueDecl>(GD.getDecl());
384     SourceLocation Location;
385     bool IsIFunc = D->hasAttr<IFuncAttr>();
386     if (const Attr *A = D->getDefiningAttr())
387       Location = A->getLocation();
388     else
389       llvm_unreachable("Not an alias or ifunc?");
390 
391     StringRef MangledName = getMangledName(GD);
392     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
393     const llvm::GlobalValue *GV = nullptr;
394     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
395       Error = true;
396       continue;
397     }
398 
399     llvm::Constant *Aliasee =
400         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
401                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
402 
403     llvm::GlobalValue *AliaseeGV;
404     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
405       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
406     else
407       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
408 
409     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
410       StringRef AliasSection = SA->getName();
411       if (AliasSection != AliaseeGV->getSection())
412         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
413             << AliasSection << IsIFunc << IsIFunc;
414     }
415 
416     // We have to handle alias to weak aliases in here. LLVM itself disallows
417     // this since the object semantics would not match the IL one. For
418     // compatibility with gcc we implement it by just pointing the alias
419     // to its aliasee's aliasee. We also warn, since the user is probably
420     // expecting the link to be weak.
421     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
422       if (GA->isInterposable()) {
423         Diags.Report(Location, diag::warn_alias_to_weak_alias)
424             << GV->getName() << GA->getName() << IsIFunc;
425         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
426             GA->getAliasee(), Alias->getType());
427 
428         if (IsIFunc)
429           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
430         else
431           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
432       }
433     }
434   }
435   if (!Error)
436     return;
437 
438   for (const GlobalDecl &GD : Aliases) {
439     StringRef MangledName = getMangledName(GD);
440     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
441     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
442     Alias->eraseFromParent();
443   }
444 }
445 
446 void CodeGenModule::clear() {
447   DeferredDeclsToEmit.clear();
448   if (OpenMPRuntime)
449     OpenMPRuntime->clear();
450 }
451 
452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
453                                        StringRef MainFile) {
454   if (!hasDiagnostics())
455     return;
456   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
457     if (MainFile.empty())
458       MainFile = "<stdin>";
459     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
460   } else {
461     if (Mismatched > 0)
462       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
463 
464     if (Missing > 0)
465       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
466   }
467 }
468 
469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
470                                              llvm::Module &M) {
471   if (!LO.VisibilityFromDLLStorageClass)
472     return;
473 
474   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
476   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
477       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
478   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
479       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
480   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
481       CodeGenModule::GetLLVMVisibility(
482           LO.getExternDeclNoDLLStorageClassVisibility());
483 
484   for (llvm::GlobalValue &GV : M.global_values()) {
485     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
486       continue;
487 
488     // Reset DSO locality before setting the visibility. This removes
489     // any effects that visibility options and annotations may have
490     // had on the DSO locality. Setting the visibility will implicitly set
491     // appropriate globals to DSO Local; however, this will be pessimistic
492     // w.r.t. to the normal compiler IRGen.
493     GV.setDSOLocal(false);
494 
495     if (GV.isDeclarationForLinker()) {
496       GV.setVisibility(GV.getDLLStorageClass() ==
497                                llvm::GlobalValue::DLLImportStorageClass
498                            ? ExternDeclDLLImportVisibility
499                            : ExternDeclNoDLLStorageClassVisibility);
500     } else {
501       GV.setVisibility(GV.getDLLStorageClass() ==
502                                llvm::GlobalValue::DLLExportStorageClass
503                            ? DLLExportVisibility
504                            : NoDLLStorageClassVisibility);
505     }
506 
507     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
508   }
509 }
510 
511 void CodeGenModule::Release() {
512   EmitDeferred();
513   EmitVTablesOpportunistically();
514   applyGlobalValReplacements();
515   applyReplacements();
516   emitMultiVersionFunctions();
517   EmitCXXGlobalInitFunc();
518   EmitCXXGlobalCleanUpFunc();
519   registerGlobalDtorsWithAtExit();
520   EmitCXXThreadLocalInitFunc();
521   if (ObjCRuntime)
522     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
523       AddGlobalCtor(ObjCInitFunction);
524   if (Context.getLangOpts().CUDA && CUDARuntime) {
525     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
526       AddGlobalCtor(CudaCtorFunction);
527   }
528   if (OpenMPRuntime) {
529     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
530             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
531       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
532     }
533     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
534     OpenMPRuntime->clear();
535   }
536   if (PGOReader) {
537     getModule().setProfileSummary(
538         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
539         llvm::ProfileSummary::PSK_Instr);
540     if (PGOStats.hasDiagnostics())
541       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
542   }
543   EmitCtorList(GlobalCtors, "llvm.global_ctors");
544   EmitCtorList(GlobalDtors, "llvm.global_dtors");
545   EmitGlobalAnnotations();
546   EmitStaticExternCAliases();
547   checkAliases();
548   EmitDeferredUnusedCoverageMappings();
549   CodeGenPGO(*this).setValueProfilingFlag(getModule());
550   if (CoverageMapping)
551     CoverageMapping->emit();
552   if (CodeGenOpts.SanitizeCfiCrossDso) {
553     CodeGenFunction(*this).EmitCfiCheckFail();
554     CodeGenFunction(*this).EmitCfiCheckStub();
555   }
556   emitAtAvailableLinkGuard();
557   if (Context.getTargetInfo().getTriple().isWasm())
558     EmitMainVoidAlias();
559 
560   if (getTriple().isAMDGPU()) {
561     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
562     // preserve ASAN functions in bitcode libraries.
563     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
564       auto *FT = llvm::FunctionType::get(VoidTy, {});
565       auto *F = llvm::Function::Create(
566           FT, llvm::GlobalValue::ExternalLinkage,
567           "__amdgpu_device_library_preserve_asan_functions", &getModule());
568       auto *Var = new llvm::GlobalVariable(
569           getModule(), FT->getPointerTo(),
570           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
571           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
572           llvm::GlobalVariable::NotThreadLocal);
573       addCompilerUsedGlobal(Var);
574     }
575     // Emit amdgpu_code_object_version module flag, which is code object version
576     // times 100.
577     // ToDo: Enable module flag for all code object version when ROCm device
578     // library is ready.
579     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
580       getModule().addModuleFlag(llvm::Module::Error,
581                                 "amdgpu_code_object_version",
582                                 getTarget().getTargetOpts().CodeObjectVersion);
583     }
584   }
585 
586   // Emit a global array containing all external kernels or device variables
587   // used by host functions and mark it as used for CUDA/HIP. This is necessary
588   // to get kernels or device variables in archives linked in even if these
589   // kernels or device variables are only used in host functions.
590   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
591     SmallVector<llvm::Constant *, 8> UsedArray;
592     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
593       GlobalDecl GD;
594       if (auto *FD = dyn_cast<FunctionDecl>(D))
595         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
596       else
597         GD = GlobalDecl(D);
598       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
599           GetAddrOfGlobal(GD), Int8PtrTy));
600     }
601 
602     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
603 
604     auto *GV = new llvm::GlobalVariable(
605         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
606         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
607     addCompilerUsedGlobal(GV);
608   }
609 
610   emitLLVMUsed();
611   if (SanStats)
612     SanStats->finish();
613 
614   if (CodeGenOpts.Autolink &&
615       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
616     EmitModuleLinkOptions();
617   }
618 
619   // On ELF we pass the dependent library specifiers directly to the linker
620   // without manipulating them. This is in contrast to other platforms where
621   // they are mapped to a specific linker option by the compiler. This
622   // difference is a result of the greater variety of ELF linkers and the fact
623   // that ELF linkers tend to handle libraries in a more complicated fashion
624   // than on other platforms. This forces us to defer handling the dependent
625   // libs to the linker.
626   //
627   // CUDA/HIP device and host libraries are different. Currently there is no
628   // way to differentiate dependent libraries for host or device. Existing
629   // usage of #pragma comment(lib, *) is intended for host libraries on
630   // Windows. Therefore emit llvm.dependent-libraries only for host.
631   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
632     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
633     for (auto *MD : ELFDependentLibraries)
634       NMD->addOperand(MD);
635   }
636 
637   // Record mregparm value now so it is visible through rest of codegen.
638   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
639     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
640                               CodeGenOpts.NumRegisterParameters);
641 
642   if (CodeGenOpts.DwarfVersion) {
643     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
644                               CodeGenOpts.DwarfVersion);
645   }
646 
647   if (CodeGenOpts.Dwarf64)
648     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
649 
650   if (Context.getLangOpts().SemanticInterposition)
651     // Require various optimization to respect semantic interposition.
652     getModule().setSemanticInterposition(true);
653 
654   if (CodeGenOpts.EmitCodeView) {
655     // Indicate that we want CodeView in the metadata.
656     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
657   }
658   if (CodeGenOpts.CodeViewGHash) {
659     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
660   }
661   if (CodeGenOpts.ControlFlowGuard) {
662     // Function ID tables and checks for Control Flow Guard (cfguard=2).
663     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
664   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
665     // Function ID tables for Control Flow Guard (cfguard=1).
666     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
667   }
668   if (CodeGenOpts.EHContGuard) {
669     // Function ID tables for EH Continuation Guard.
670     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
671   }
672   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
673     // We don't support LTO with 2 with different StrictVTablePointers
674     // FIXME: we could support it by stripping all the information introduced
675     // by StrictVTablePointers.
676 
677     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
678 
679     llvm::Metadata *Ops[2] = {
680               llvm::MDString::get(VMContext, "StrictVTablePointers"),
681               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
682                   llvm::Type::getInt32Ty(VMContext), 1))};
683 
684     getModule().addModuleFlag(llvm::Module::Require,
685                               "StrictVTablePointersRequirement",
686                               llvm::MDNode::get(VMContext, Ops));
687   }
688   if (getModuleDebugInfo())
689     // We support a single version in the linked module. The LLVM
690     // parser will drop debug info with a different version number
691     // (and warn about it, too).
692     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
693                               llvm::DEBUG_METADATA_VERSION);
694 
695   // We need to record the widths of enums and wchar_t, so that we can generate
696   // the correct build attributes in the ARM backend. wchar_size is also used by
697   // TargetLibraryInfo.
698   uint64_t WCharWidth =
699       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
700   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
701 
702   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
703   if (   Arch == llvm::Triple::arm
704       || Arch == llvm::Triple::armeb
705       || Arch == llvm::Triple::thumb
706       || Arch == llvm::Triple::thumbeb) {
707     // The minimum width of an enum in bytes
708     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
709     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
710   }
711 
712   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
713     StringRef ABIStr = Target.getABI();
714     llvm::LLVMContext &Ctx = TheModule.getContext();
715     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
716                               llvm::MDString::get(Ctx, ABIStr));
717   }
718 
719   if (CodeGenOpts.SanitizeCfiCrossDso) {
720     // Indicate that we want cross-DSO control flow integrity checks.
721     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
722   }
723 
724   if (CodeGenOpts.WholeProgramVTables) {
725     // Indicate whether VFE was enabled for this module, so that the
726     // vcall_visibility metadata added under whole program vtables is handled
727     // appropriately in the optimizer.
728     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
729                               CodeGenOpts.VirtualFunctionElimination);
730   }
731 
732   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
733     getModule().addModuleFlag(llvm::Module::Override,
734                               "CFI Canonical Jump Tables",
735                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
736   }
737 
738   if (CodeGenOpts.CFProtectionReturn &&
739       Target.checkCFProtectionReturnSupported(getDiags())) {
740     // Indicate that we want to instrument return control flow protection.
741     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
742                               1);
743   }
744 
745   if (CodeGenOpts.CFProtectionBranch &&
746       Target.checkCFProtectionBranchSupported(getDiags())) {
747     // Indicate that we want to instrument branch control flow protection.
748     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
749                               1);
750   }
751 
752   if (CodeGenOpts.IBTSeal)
753     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
754 
755   // Add module metadata for return address signing (ignoring
756   // non-leaf/all) and stack tagging. These are actually turned on by function
757   // attributes, but we use module metadata to emit build attributes. This is
758   // needed for LTO, where the function attributes are inside bitcode
759   // serialised into a global variable by the time build attributes are
760   // emitted, so we can't access them. LTO objects could be compiled with
761   // different flags therefore module flags are set to "Min" behavior to achieve
762   // the same end result of the normal build where e.g BTI is off if any object
763   // doesn't support it.
764   if (Context.getTargetInfo().hasFeature("ptrauth") &&
765       LangOpts.getSignReturnAddressScope() !=
766           LangOptions::SignReturnAddressScopeKind::None)
767     getModule().addModuleFlag(llvm::Module::Override,
768                               "sign-return-address-buildattr", 1);
769   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
770     getModule().addModuleFlag(llvm::Module::Override,
771                               "tag-stack-memory-buildattr", 1);
772 
773   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
774       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
775       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
776       Arch == llvm::Triple::aarch64_be) {
777     getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
778                               LangOpts.BranchTargetEnforcement);
779 
780     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address",
781                               LangOpts.hasSignReturnAddress());
782 
783     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
784                               LangOpts.isSignReturnAddressScopeAll());
785 
786     getModule().addModuleFlag(llvm::Module::Min,
787                               "sign-return-address-with-bkey",
788                               !LangOpts.isSignReturnAddressWithAKey());
789   }
790 
791   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
792     llvm::LLVMContext &Ctx = TheModule.getContext();
793     getModule().addModuleFlag(
794         llvm::Module::Error, "MemProfProfileFilename",
795         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
796   }
797 
798   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
799     // Indicate whether __nvvm_reflect should be configured to flush denormal
800     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
801     // property.)
802     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
803                               CodeGenOpts.FP32DenormalMode.Output !=
804                                   llvm::DenormalMode::IEEE);
805   }
806 
807   if (LangOpts.EHAsynch)
808     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
809 
810   // Indicate whether this Module was compiled with -fopenmp
811   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
812     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
813   if (getLangOpts().OpenMPIsDevice)
814     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
815                               LangOpts.OpenMP);
816 
817   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
818   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
819     EmitOpenCLMetadata();
820     // Emit SPIR version.
821     if (getTriple().isSPIR()) {
822       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
823       // opencl.spir.version named metadata.
824       // C++ for OpenCL has a distinct mapping for version compatibility with
825       // OpenCL.
826       auto Version = LangOpts.getOpenCLCompatibleVersion();
827       llvm::Metadata *SPIRVerElts[] = {
828           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
829               Int32Ty, Version / 100)),
830           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
831               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
832       llvm::NamedMDNode *SPIRVerMD =
833           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
834       llvm::LLVMContext &Ctx = TheModule.getContext();
835       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
836     }
837   }
838 
839   // HLSL related end of code gen work items.
840   if (LangOpts.HLSL)
841     getHLSLRuntime().finishCodeGen();
842 
843   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
844     assert(PLevel < 3 && "Invalid PIC Level");
845     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
846     if (Context.getLangOpts().PIE)
847       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
848   }
849 
850   if (getCodeGenOpts().CodeModel.size() > 0) {
851     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
852                   .Case("tiny", llvm::CodeModel::Tiny)
853                   .Case("small", llvm::CodeModel::Small)
854                   .Case("kernel", llvm::CodeModel::Kernel)
855                   .Case("medium", llvm::CodeModel::Medium)
856                   .Case("large", llvm::CodeModel::Large)
857                   .Default(~0u);
858     if (CM != ~0u) {
859       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
860       getModule().setCodeModel(codeModel);
861     }
862   }
863 
864   if (CodeGenOpts.NoPLT)
865     getModule().setRtLibUseGOT();
866   if (CodeGenOpts.UnwindTables)
867     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
868 
869   switch (CodeGenOpts.getFramePointer()) {
870   case CodeGenOptions::FramePointerKind::None:
871     // 0 ("none") is the default.
872     break;
873   case CodeGenOptions::FramePointerKind::NonLeaf:
874     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
875     break;
876   case CodeGenOptions::FramePointerKind::All:
877     getModule().setFramePointer(llvm::FramePointerKind::All);
878     break;
879   }
880 
881   SimplifyPersonality();
882 
883   if (getCodeGenOpts().EmitDeclMetadata)
884     EmitDeclMetadata();
885 
886   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
887     EmitCoverageFile();
888 
889   if (CGDebugInfo *DI = getModuleDebugInfo())
890     DI->finalize();
891 
892   if (getCodeGenOpts().EmitVersionIdentMetadata)
893     EmitVersionIdentMetadata();
894 
895   if (!getCodeGenOpts().RecordCommandLine.empty())
896     EmitCommandLineMetadata();
897 
898   if (!getCodeGenOpts().StackProtectorGuard.empty())
899     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
900   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
901     getModule().setStackProtectorGuardReg(
902         getCodeGenOpts().StackProtectorGuardReg);
903   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
904     getModule().setStackProtectorGuardOffset(
905         getCodeGenOpts().StackProtectorGuardOffset);
906   if (getCodeGenOpts().StackAlignment)
907     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
908   if (getCodeGenOpts().SkipRaxSetup)
909     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
910 
911   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
912 
913   EmitBackendOptionsMetadata(getCodeGenOpts());
914 
915   // If there is device offloading code embed it in the host now.
916   EmbedObject(&getModule(), CodeGenOpts, getDiags());
917 
918   // Set visibility from DLL storage class
919   // We do this at the end of LLVM IR generation; after any operation
920   // that might affect the DLL storage class or the visibility, and
921   // before anything that might act on these.
922   setVisibilityFromDLLStorageClass(LangOpts, getModule());
923 }
924 
925 void CodeGenModule::EmitOpenCLMetadata() {
926   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
927   // opencl.ocl.version named metadata node.
928   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
929   auto Version = LangOpts.getOpenCLCompatibleVersion();
930   llvm::Metadata *OCLVerElts[] = {
931       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
932           Int32Ty, Version / 100)),
933       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
934           Int32Ty, (Version % 100) / 10))};
935   llvm::NamedMDNode *OCLVerMD =
936       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
937   llvm::LLVMContext &Ctx = TheModule.getContext();
938   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
939 }
940 
941 void CodeGenModule::EmitBackendOptionsMetadata(
942     const CodeGenOptions CodeGenOpts) {
943   switch (getTriple().getArch()) {
944   default:
945     break;
946   case llvm::Triple::riscv32:
947   case llvm::Triple::riscv64:
948     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
949                               CodeGenOpts.SmallDataLimit);
950     break;
951   }
952 }
953 
954 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
955   // Make sure that this type is translated.
956   Types.UpdateCompletedType(TD);
957 }
958 
959 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
960   // Make sure that this type is translated.
961   Types.RefreshTypeCacheForClass(RD);
962 }
963 
964 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
965   if (!TBAA)
966     return nullptr;
967   return TBAA->getTypeInfo(QTy);
968 }
969 
970 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
971   if (!TBAA)
972     return TBAAAccessInfo();
973   if (getLangOpts().CUDAIsDevice) {
974     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
975     // access info.
976     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
977       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
978           nullptr)
979         return TBAAAccessInfo();
980     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
981       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
982           nullptr)
983         return TBAAAccessInfo();
984     }
985   }
986   return TBAA->getAccessInfo(AccessType);
987 }
988 
989 TBAAAccessInfo
990 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
991   if (!TBAA)
992     return TBAAAccessInfo();
993   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
994 }
995 
996 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
997   if (!TBAA)
998     return nullptr;
999   return TBAA->getTBAAStructInfo(QTy);
1000 }
1001 
1002 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1003   if (!TBAA)
1004     return nullptr;
1005   return TBAA->getBaseTypeInfo(QTy);
1006 }
1007 
1008 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1009   if (!TBAA)
1010     return nullptr;
1011   return TBAA->getAccessTagInfo(Info);
1012 }
1013 
1014 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1015                                                    TBAAAccessInfo TargetInfo) {
1016   if (!TBAA)
1017     return TBAAAccessInfo();
1018   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1019 }
1020 
1021 TBAAAccessInfo
1022 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1023                                                    TBAAAccessInfo InfoB) {
1024   if (!TBAA)
1025     return TBAAAccessInfo();
1026   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1027 }
1028 
1029 TBAAAccessInfo
1030 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1031                                               TBAAAccessInfo SrcInfo) {
1032   if (!TBAA)
1033     return TBAAAccessInfo();
1034   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1035 }
1036 
1037 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1038                                                 TBAAAccessInfo TBAAInfo) {
1039   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1040     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1041 }
1042 
1043 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1044     llvm::Instruction *I, const CXXRecordDecl *RD) {
1045   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1046                  llvm::MDNode::get(getLLVMContext(), {}));
1047 }
1048 
1049 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1050   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1051   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1052 }
1053 
1054 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1055 /// specified stmt yet.
1056 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1057   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1058                                                "cannot compile this %0 yet");
1059   std::string Msg = Type;
1060   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1061       << Msg << S->getSourceRange();
1062 }
1063 
1064 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1065 /// specified decl yet.
1066 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1067   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1068                                                "cannot compile this %0 yet");
1069   std::string Msg = Type;
1070   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1071 }
1072 
1073 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1074   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1075 }
1076 
1077 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1078                                         const NamedDecl *D) const {
1079   if (GV->hasDLLImportStorageClass())
1080     return;
1081   // Internal definitions always have default visibility.
1082   if (GV->hasLocalLinkage()) {
1083     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1084     return;
1085   }
1086   if (!D)
1087     return;
1088   // Set visibility for definitions, and for declarations if requested globally
1089   // or set explicitly.
1090   LinkageInfo LV = D->getLinkageAndVisibility();
1091   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1092       !GV->isDeclarationForLinker())
1093     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1094 }
1095 
1096 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1097                                  llvm::GlobalValue *GV) {
1098   if (GV->hasLocalLinkage())
1099     return true;
1100 
1101   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1102     return true;
1103 
1104   // DLLImport explicitly marks the GV as external.
1105   if (GV->hasDLLImportStorageClass())
1106     return false;
1107 
1108   const llvm::Triple &TT = CGM.getTriple();
1109   if (TT.isWindowsGNUEnvironment()) {
1110     // In MinGW, variables without DLLImport can still be automatically
1111     // imported from a DLL by the linker; don't mark variables that
1112     // potentially could come from another DLL as DSO local.
1113 
1114     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1115     // (and this actually happens in the public interface of libstdc++), so
1116     // such variables can't be marked as DSO local. (Native TLS variables
1117     // can't be dllimported at all, though.)
1118     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1119         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1120       return false;
1121   }
1122 
1123   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1124   // remain unresolved in the link, they can be resolved to zero, which is
1125   // outside the current DSO.
1126   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1127     return false;
1128 
1129   // Every other GV is local on COFF.
1130   // Make an exception for windows OS in the triple: Some firmware builds use
1131   // *-win32-macho triples. This (accidentally?) produced windows relocations
1132   // without GOT tables in older clang versions; Keep this behaviour.
1133   // FIXME: even thread local variables?
1134   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1135     return true;
1136 
1137   // Only handle COFF and ELF for now.
1138   if (!TT.isOSBinFormatELF())
1139     return false;
1140 
1141   // If this is not an executable, don't assume anything is local.
1142   const auto &CGOpts = CGM.getCodeGenOpts();
1143   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1144   const auto &LOpts = CGM.getLangOpts();
1145   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1146     // On ELF, if -fno-semantic-interposition is specified and the target
1147     // supports local aliases, there will be neither CC1
1148     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1149     // dso_local on the function if using a local alias is preferable (can avoid
1150     // PLT indirection).
1151     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1152       return false;
1153     return !(CGM.getLangOpts().SemanticInterposition ||
1154              CGM.getLangOpts().HalfNoSemanticInterposition);
1155   }
1156 
1157   // A definition cannot be preempted from an executable.
1158   if (!GV->isDeclarationForLinker())
1159     return true;
1160 
1161   // Most PIC code sequences that assume that a symbol is local cannot produce a
1162   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1163   // depended, it seems worth it to handle it here.
1164   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1165     return false;
1166 
1167   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1168   if (TT.isPPC64())
1169     return false;
1170 
1171   if (CGOpts.DirectAccessExternalData) {
1172     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1173     // for non-thread-local variables. If the symbol is not defined in the
1174     // executable, a copy relocation will be needed at link time. dso_local is
1175     // excluded for thread-local variables because they generally don't support
1176     // copy relocations.
1177     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1178       if (!Var->isThreadLocal())
1179         return true;
1180 
1181     // -fno-pic sets dso_local on a function declaration to allow direct
1182     // accesses when taking its address (similar to a data symbol). If the
1183     // function is not defined in the executable, a canonical PLT entry will be
1184     // needed at link time. -fno-direct-access-external-data can avoid the
1185     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1186     // it could just cause trouble without providing perceptible benefits.
1187     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1188       return true;
1189   }
1190 
1191   // If we can use copy relocations we can assume it is local.
1192 
1193   // Otherwise don't assume it is local.
1194   return false;
1195 }
1196 
1197 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1198   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1199 }
1200 
1201 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1202                                           GlobalDecl GD) const {
1203   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1204   // C++ destructors have a few C++ ABI specific special cases.
1205   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1206     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1207     return;
1208   }
1209   setDLLImportDLLExport(GV, D);
1210 }
1211 
1212 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1213                                           const NamedDecl *D) const {
1214   if (D && D->isExternallyVisible()) {
1215     if (D->hasAttr<DLLImportAttr>())
1216       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1217     else if ((D->hasAttr<DLLExportAttr>() ||
1218               shouldMapVisibilityToDLLExport(D)) &&
1219              !GV->isDeclarationForLinker())
1220       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1221   }
1222 }
1223 
1224 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1225                                     GlobalDecl GD) const {
1226   setDLLImportDLLExport(GV, GD);
1227   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1228 }
1229 
1230 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1231                                     const NamedDecl *D) const {
1232   setDLLImportDLLExport(GV, D);
1233   setGVPropertiesAux(GV, D);
1234 }
1235 
1236 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1237                                        const NamedDecl *D) const {
1238   setGlobalVisibility(GV, D);
1239   setDSOLocal(GV);
1240   GV->setPartition(CodeGenOpts.SymbolPartition);
1241 }
1242 
1243 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1244   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1245       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1246       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1247       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1248       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1249 }
1250 
1251 llvm::GlobalVariable::ThreadLocalMode
1252 CodeGenModule::GetDefaultLLVMTLSModel() const {
1253   switch (CodeGenOpts.getDefaultTLSModel()) {
1254   case CodeGenOptions::GeneralDynamicTLSModel:
1255     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1256   case CodeGenOptions::LocalDynamicTLSModel:
1257     return llvm::GlobalVariable::LocalDynamicTLSModel;
1258   case CodeGenOptions::InitialExecTLSModel:
1259     return llvm::GlobalVariable::InitialExecTLSModel;
1260   case CodeGenOptions::LocalExecTLSModel:
1261     return llvm::GlobalVariable::LocalExecTLSModel;
1262   }
1263   llvm_unreachable("Invalid TLS model!");
1264 }
1265 
1266 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1267   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1268 
1269   llvm::GlobalValue::ThreadLocalMode TLM;
1270   TLM = GetDefaultLLVMTLSModel();
1271 
1272   // Override the TLS model if it is explicitly specified.
1273   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1274     TLM = GetLLVMTLSModel(Attr->getModel());
1275   }
1276 
1277   GV->setThreadLocalMode(TLM);
1278 }
1279 
1280 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1281                                           StringRef Name) {
1282   const TargetInfo &Target = CGM.getTarget();
1283   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1284 }
1285 
1286 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1287                                                  const CPUSpecificAttr *Attr,
1288                                                  unsigned CPUIndex,
1289                                                  raw_ostream &Out) {
1290   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1291   // supported.
1292   if (Attr)
1293     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1294   else if (CGM.getTarget().supportsIFunc())
1295     Out << ".resolver";
1296 }
1297 
1298 static void AppendTargetMangling(const CodeGenModule &CGM,
1299                                  const TargetAttr *Attr, raw_ostream &Out) {
1300   if (Attr->isDefaultVersion())
1301     return;
1302 
1303   Out << '.';
1304   const TargetInfo &Target = CGM.getTarget();
1305   ParsedTargetAttr Info =
1306       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1307         // Multiversioning doesn't allow "no-${feature}", so we can
1308         // only have "+" prefixes here.
1309         assert(LHS.startswith("+") && RHS.startswith("+") &&
1310                "Features should always have a prefix.");
1311         return Target.multiVersionSortPriority(LHS.substr(1)) >
1312                Target.multiVersionSortPriority(RHS.substr(1));
1313       });
1314 
1315   bool IsFirst = true;
1316 
1317   if (!Info.Architecture.empty()) {
1318     IsFirst = false;
1319     Out << "arch_" << Info.Architecture;
1320   }
1321 
1322   for (StringRef Feat : Info.Features) {
1323     if (!IsFirst)
1324       Out << '_';
1325     IsFirst = false;
1326     Out << Feat.substr(1);
1327   }
1328 }
1329 
1330 // Returns true if GD is a function decl with internal linkage and
1331 // needs a unique suffix after the mangled name.
1332 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1333                                         CodeGenModule &CGM) {
1334   const Decl *D = GD.getDecl();
1335   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1336          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1337 }
1338 
1339 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1340                                        const TargetClonesAttr *Attr,
1341                                        unsigned VersionIndex,
1342                                        raw_ostream &Out) {
1343   Out << '.';
1344   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1345   if (FeatureStr.startswith("arch="))
1346     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1347   else
1348     Out << FeatureStr;
1349 
1350   Out << '.' << Attr->getMangledIndex(VersionIndex);
1351 }
1352 
1353 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1354                                       const NamedDecl *ND,
1355                                       bool OmitMultiVersionMangling = false) {
1356   SmallString<256> Buffer;
1357   llvm::raw_svector_ostream Out(Buffer);
1358   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1359   if (!CGM.getModuleNameHash().empty())
1360     MC.needsUniqueInternalLinkageNames();
1361   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1362   if (ShouldMangle)
1363     MC.mangleName(GD.getWithDecl(ND), Out);
1364   else {
1365     IdentifierInfo *II = ND->getIdentifier();
1366     assert(II && "Attempt to mangle unnamed decl.");
1367     const auto *FD = dyn_cast<FunctionDecl>(ND);
1368 
1369     if (FD &&
1370         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1371       Out << "__regcall3__" << II->getName();
1372     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1373                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1374       Out << "__device_stub__" << II->getName();
1375     } else {
1376       Out << II->getName();
1377     }
1378   }
1379 
1380   // Check if the module name hash should be appended for internal linkage
1381   // symbols.   This should come before multi-version target suffixes are
1382   // appended. This is to keep the name and module hash suffix of the
1383   // internal linkage function together.  The unique suffix should only be
1384   // added when name mangling is done to make sure that the final name can
1385   // be properly demangled.  For example, for C functions without prototypes,
1386   // name mangling is not done and the unique suffix should not be appeneded
1387   // then.
1388   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1389     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1390            "Hash computed when not explicitly requested");
1391     Out << CGM.getModuleNameHash();
1392   }
1393 
1394   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1395     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1396       switch (FD->getMultiVersionKind()) {
1397       case MultiVersionKind::CPUDispatch:
1398       case MultiVersionKind::CPUSpecific:
1399         AppendCPUSpecificCPUDispatchMangling(CGM,
1400                                              FD->getAttr<CPUSpecificAttr>(),
1401                                              GD.getMultiVersionIndex(), Out);
1402         break;
1403       case MultiVersionKind::Target:
1404         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1405         break;
1406       case MultiVersionKind::TargetClones:
1407         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1408                                    GD.getMultiVersionIndex(), Out);
1409         break;
1410       case MultiVersionKind::None:
1411         llvm_unreachable("None multiversion type isn't valid here");
1412       }
1413     }
1414 
1415   // Make unique name for device side static file-scope variable for HIP.
1416   if (CGM.getContext().shouldExternalize(ND) &&
1417       CGM.getLangOpts().GPURelocatableDeviceCode &&
1418       CGM.getLangOpts().CUDAIsDevice)
1419     CGM.printPostfixForExternalizedDecl(Out, ND);
1420 
1421   return std::string(Out.str());
1422 }
1423 
1424 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1425                                             const FunctionDecl *FD,
1426                                             StringRef &CurName) {
1427   if (!FD->isMultiVersion())
1428     return;
1429 
1430   // Get the name of what this would be without the 'target' attribute.  This
1431   // allows us to lookup the version that was emitted when this wasn't a
1432   // multiversion function.
1433   std::string NonTargetName =
1434       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1435   GlobalDecl OtherGD;
1436   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1437     assert(OtherGD.getCanonicalDecl()
1438                .getDecl()
1439                ->getAsFunction()
1440                ->isMultiVersion() &&
1441            "Other GD should now be a multiversioned function");
1442     // OtherFD is the version of this function that was mangled BEFORE
1443     // becoming a MultiVersion function.  It potentially needs to be updated.
1444     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1445                                       .getDecl()
1446                                       ->getAsFunction()
1447                                       ->getMostRecentDecl();
1448     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1449     // This is so that if the initial version was already the 'default'
1450     // version, we don't try to update it.
1451     if (OtherName != NonTargetName) {
1452       // Remove instead of erase, since others may have stored the StringRef
1453       // to this.
1454       const auto ExistingRecord = Manglings.find(NonTargetName);
1455       if (ExistingRecord != std::end(Manglings))
1456         Manglings.remove(&(*ExistingRecord));
1457       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1458       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1459           Result.first->first();
1460       // If this is the current decl is being created, make sure we update the name.
1461       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1462         CurName = OtherNameRef;
1463       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1464         Entry->setName(OtherName);
1465     }
1466   }
1467 }
1468 
1469 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1470   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1471 
1472   // Some ABIs don't have constructor variants.  Make sure that base and
1473   // complete constructors get mangled the same.
1474   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1475     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1476       CXXCtorType OrigCtorType = GD.getCtorType();
1477       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1478       if (OrigCtorType == Ctor_Base)
1479         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1480     }
1481   }
1482 
1483   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1484   // static device variable depends on whether the variable is referenced by
1485   // a host or device host function. Therefore the mangled name cannot be
1486   // cached.
1487   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1488     auto FoundName = MangledDeclNames.find(CanonicalGD);
1489     if (FoundName != MangledDeclNames.end())
1490       return FoundName->second;
1491   }
1492 
1493   // Keep the first result in the case of a mangling collision.
1494   const auto *ND = cast<NamedDecl>(GD.getDecl());
1495   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1496 
1497   // Ensure either we have different ABIs between host and device compilations,
1498   // says host compilation following MSVC ABI but device compilation follows
1499   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1500   // mangling should be the same after name stubbing. The later checking is
1501   // very important as the device kernel name being mangled in host-compilation
1502   // is used to resolve the device binaries to be executed. Inconsistent naming
1503   // result in undefined behavior. Even though we cannot check that naming
1504   // directly between host- and device-compilations, the host- and
1505   // device-mangling in host compilation could help catching certain ones.
1506   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1507          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1508          (getContext().getAuxTargetInfo() &&
1509           (getContext().getAuxTargetInfo()->getCXXABI() !=
1510            getContext().getTargetInfo().getCXXABI())) ||
1511          getCUDARuntime().getDeviceSideName(ND) ==
1512              getMangledNameImpl(
1513                  *this,
1514                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1515                  ND));
1516 
1517   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1518   return MangledDeclNames[CanonicalGD] = Result.first->first();
1519 }
1520 
1521 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1522                                              const BlockDecl *BD) {
1523   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1524   const Decl *D = GD.getDecl();
1525 
1526   SmallString<256> Buffer;
1527   llvm::raw_svector_ostream Out(Buffer);
1528   if (!D)
1529     MangleCtx.mangleGlobalBlock(BD,
1530       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1531   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1532     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1533   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1534     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1535   else
1536     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1537 
1538   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1539   return Result.first->first();
1540 }
1541 
1542 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1543   auto it = MangledDeclNames.begin();
1544   while (it != MangledDeclNames.end()) {
1545     if (it->second == Name)
1546       return it->first;
1547     it++;
1548   }
1549   return GlobalDecl();
1550 }
1551 
1552 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1553   return getModule().getNamedValue(Name);
1554 }
1555 
1556 /// AddGlobalCtor - Add a function to the list that will be called before
1557 /// main() runs.
1558 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1559                                   llvm::Constant *AssociatedData) {
1560   // FIXME: Type coercion of void()* types.
1561   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1562 }
1563 
1564 /// AddGlobalDtor - Add a function to the list that will be called
1565 /// when the module is unloaded.
1566 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1567                                   bool IsDtorAttrFunc) {
1568   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1569       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1570     DtorsUsingAtExit[Priority].push_back(Dtor);
1571     return;
1572   }
1573 
1574   // FIXME: Type coercion of void()* types.
1575   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1576 }
1577 
1578 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1579   if (Fns.empty()) return;
1580 
1581   // Ctor function type is void()*.
1582   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1583   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1584       TheModule.getDataLayout().getProgramAddressSpace());
1585 
1586   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1587   llvm::StructType *CtorStructTy = llvm::StructType::get(
1588       Int32Ty, CtorPFTy, VoidPtrTy);
1589 
1590   // Construct the constructor and destructor arrays.
1591   ConstantInitBuilder builder(*this);
1592   auto ctors = builder.beginArray(CtorStructTy);
1593   for (const auto &I : Fns) {
1594     auto ctor = ctors.beginStruct(CtorStructTy);
1595     ctor.addInt(Int32Ty, I.Priority);
1596     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1597     if (I.AssociatedData)
1598       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1599     else
1600       ctor.addNullPointer(VoidPtrTy);
1601     ctor.finishAndAddTo(ctors);
1602   }
1603 
1604   auto list =
1605     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1606                                 /*constant*/ false,
1607                                 llvm::GlobalValue::AppendingLinkage);
1608 
1609   // The LTO linker doesn't seem to like it when we set an alignment
1610   // on appending variables.  Take it off as a workaround.
1611   list->setAlignment(llvm::None);
1612 
1613   Fns.clear();
1614 }
1615 
1616 llvm::GlobalValue::LinkageTypes
1617 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1618   const auto *D = cast<FunctionDecl>(GD.getDecl());
1619 
1620   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1621 
1622   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1623     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1624 
1625   if (isa<CXXConstructorDecl>(D) &&
1626       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1627       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1628     // Our approach to inheriting constructors is fundamentally different from
1629     // that used by the MS ABI, so keep our inheriting constructor thunks
1630     // internal rather than trying to pick an unambiguous mangling for them.
1631     return llvm::GlobalValue::InternalLinkage;
1632   }
1633 
1634   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1635 }
1636 
1637 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1638   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1639   if (!MDS) return nullptr;
1640 
1641   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1642 }
1643 
1644 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1645                                               const CGFunctionInfo &Info,
1646                                               llvm::Function *F, bool IsThunk) {
1647   unsigned CallingConv;
1648   llvm::AttributeList PAL;
1649   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1650                          /*AttrOnCallSite=*/false, IsThunk);
1651   F->setAttributes(PAL);
1652   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1653 }
1654 
1655 static void removeImageAccessQualifier(std::string& TyName) {
1656   std::string ReadOnlyQual("__read_only");
1657   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1658   if (ReadOnlyPos != std::string::npos)
1659     // "+ 1" for the space after access qualifier.
1660     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1661   else {
1662     std::string WriteOnlyQual("__write_only");
1663     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1664     if (WriteOnlyPos != std::string::npos)
1665       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1666     else {
1667       std::string ReadWriteQual("__read_write");
1668       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1669       if (ReadWritePos != std::string::npos)
1670         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1671     }
1672   }
1673 }
1674 
1675 // Returns the address space id that should be produced to the
1676 // kernel_arg_addr_space metadata. This is always fixed to the ids
1677 // as specified in the SPIR 2.0 specification in order to differentiate
1678 // for example in clGetKernelArgInfo() implementation between the address
1679 // spaces with targets without unique mapping to the OpenCL address spaces
1680 // (basically all single AS CPUs).
1681 static unsigned ArgInfoAddressSpace(LangAS AS) {
1682   switch (AS) {
1683   case LangAS::opencl_global:
1684     return 1;
1685   case LangAS::opencl_constant:
1686     return 2;
1687   case LangAS::opencl_local:
1688     return 3;
1689   case LangAS::opencl_generic:
1690     return 4; // Not in SPIR 2.0 specs.
1691   case LangAS::opencl_global_device:
1692     return 5;
1693   case LangAS::opencl_global_host:
1694     return 6;
1695   default:
1696     return 0; // Assume private.
1697   }
1698 }
1699 
1700 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1701                                          const FunctionDecl *FD,
1702                                          CodeGenFunction *CGF) {
1703   assert(((FD && CGF) || (!FD && !CGF)) &&
1704          "Incorrect use - FD and CGF should either be both null or not!");
1705   // Create MDNodes that represent the kernel arg metadata.
1706   // Each MDNode is a list in the form of "key", N number of values which is
1707   // the same number of values as their are kernel arguments.
1708 
1709   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1710 
1711   // MDNode for the kernel argument address space qualifiers.
1712   SmallVector<llvm::Metadata *, 8> addressQuals;
1713 
1714   // MDNode for the kernel argument access qualifiers (images only).
1715   SmallVector<llvm::Metadata *, 8> accessQuals;
1716 
1717   // MDNode for the kernel argument type names.
1718   SmallVector<llvm::Metadata *, 8> argTypeNames;
1719 
1720   // MDNode for the kernel argument base type names.
1721   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1722 
1723   // MDNode for the kernel argument type qualifiers.
1724   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1725 
1726   // MDNode for the kernel argument names.
1727   SmallVector<llvm::Metadata *, 8> argNames;
1728 
1729   if (FD && CGF)
1730     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1731       const ParmVarDecl *parm = FD->getParamDecl(i);
1732       // Get argument name.
1733       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1734 
1735       if (!getLangOpts().OpenCL)
1736         continue;
1737       QualType ty = parm->getType();
1738       std::string typeQuals;
1739 
1740       // Get image and pipe access qualifier:
1741       if (ty->isImageType() || ty->isPipeType()) {
1742         const Decl *PDecl = parm;
1743         if (auto *TD = dyn_cast<TypedefType>(ty))
1744           PDecl = TD->getDecl();
1745         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1746         if (A && A->isWriteOnly())
1747           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1748         else if (A && A->isReadWrite())
1749           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1750         else
1751           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1752       } else
1753         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1754 
1755       auto getTypeSpelling = [&](QualType Ty) {
1756         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1757 
1758         if (Ty.isCanonical()) {
1759           StringRef typeNameRef = typeName;
1760           // Turn "unsigned type" to "utype"
1761           if (typeNameRef.consume_front("unsigned "))
1762             return std::string("u") + typeNameRef.str();
1763           if (typeNameRef.consume_front("signed "))
1764             return typeNameRef.str();
1765         }
1766 
1767         return typeName;
1768       };
1769 
1770       if (ty->isPointerType()) {
1771         QualType pointeeTy = ty->getPointeeType();
1772 
1773         // Get address qualifier.
1774         addressQuals.push_back(
1775             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1776                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1777 
1778         // Get argument type name.
1779         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1780         std::string baseTypeName =
1781             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1782         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1783         argBaseTypeNames.push_back(
1784             llvm::MDString::get(VMContext, baseTypeName));
1785 
1786         // Get argument type qualifiers:
1787         if (ty.isRestrictQualified())
1788           typeQuals = "restrict";
1789         if (pointeeTy.isConstQualified() ||
1790             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1791           typeQuals += typeQuals.empty() ? "const" : " const";
1792         if (pointeeTy.isVolatileQualified())
1793           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1794       } else {
1795         uint32_t AddrSpc = 0;
1796         bool isPipe = ty->isPipeType();
1797         if (ty->isImageType() || isPipe)
1798           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1799 
1800         addressQuals.push_back(
1801             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1802 
1803         // Get argument type name.
1804         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1805         std::string typeName = getTypeSpelling(ty);
1806         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1807 
1808         // Remove access qualifiers on images
1809         // (as they are inseparable from type in clang implementation,
1810         // but OpenCL spec provides a special query to get access qualifier
1811         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1812         if (ty->isImageType()) {
1813           removeImageAccessQualifier(typeName);
1814           removeImageAccessQualifier(baseTypeName);
1815         }
1816 
1817         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1818         argBaseTypeNames.push_back(
1819             llvm::MDString::get(VMContext, baseTypeName));
1820 
1821         if (isPipe)
1822           typeQuals = "pipe";
1823       }
1824       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1825     }
1826 
1827   if (getLangOpts().OpenCL) {
1828     Fn->setMetadata("kernel_arg_addr_space",
1829                     llvm::MDNode::get(VMContext, addressQuals));
1830     Fn->setMetadata("kernel_arg_access_qual",
1831                     llvm::MDNode::get(VMContext, accessQuals));
1832     Fn->setMetadata("kernel_arg_type",
1833                     llvm::MDNode::get(VMContext, argTypeNames));
1834     Fn->setMetadata("kernel_arg_base_type",
1835                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1836     Fn->setMetadata("kernel_arg_type_qual",
1837                     llvm::MDNode::get(VMContext, argTypeQuals));
1838   }
1839   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1840       getCodeGenOpts().HIPSaveKernelArgName)
1841     Fn->setMetadata("kernel_arg_name",
1842                     llvm::MDNode::get(VMContext, argNames));
1843 }
1844 
1845 /// Determines whether the language options require us to model
1846 /// unwind exceptions.  We treat -fexceptions as mandating this
1847 /// except under the fragile ObjC ABI with only ObjC exceptions
1848 /// enabled.  This means, for example, that C with -fexceptions
1849 /// enables this.
1850 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1851   // If exceptions are completely disabled, obviously this is false.
1852   if (!LangOpts.Exceptions) return false;
1853 
1854   // If C++ exceptions are enabled, this is true.
1855   if (LangOpts.CXXExceptions) return true;
1856 
1857   // If ObjC exceptions are enabled, this depends on the ABI.
1858   if (LangOpts.ObjCExceptions) {
1859     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1860   }
1861 
1862   return true;
1863 }
1864 
1865 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1866                                                       const CXXMethodDecl *MD) {
1867   // Check that the type metadata can ever actually be used by a call.
1868   if (!CGM.getCodeGenOpts().LTOUnit ||
1869       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1870     return false;
1871 
1872   // Only functions whose address can be taken with a member function pointer
1873   // need this sort of type metadata.
1874   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1875          !isa<CXXDestructorDecl>(MD);
1876 }
1877 
1878 std::vector<const CXXRecordDecl *>
1879 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1880   llvm::SetVector<const CXXRecordDecl *> MostBases;
1881 
1882   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1883   CollectMostBases = [&](const CXXRecordDecl *RD) {
1884     if (RD->getNumBases() == 0)
1885       MostBases.insert(RD);
1886     for (const CXXBaseSpecifier &B : RD->bases())
1887       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1888   };
1889   CollectMostBases(RD);
1890   return MostBases.takeVector();
1891 }
1892 
1893 llvm::GlobalVariable *
1894 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1895   auto It = RTTIProxyMap.find(Addr);
1896   if (It != RTTIProxyMap.end())
1897     return It->second;
1898 
1899   auto *FTRTTIProxy = new llvm::GlobalVariable(
1900       TheModule, Addr->getType(),
1901       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1902       "__llvm_rtti_proxy");
1903   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1904 
1905   RTTIProxyMap[Addr] = FTRTTIProxy;
1906   return FTRTTIProxy;
1907 }
1908 
1909 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1910                                                            llvm::Function *F) {
1911   llvm::AttrBuilder B(F->getContext());
1912 
1913   if (CodeGenOpts.UnwindTables)
1914     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1915 
1916   if (CodeGenOpts.StackClashProtector)
1917     B.addAttribute("probe-stack", "inline-asm");
1918 
1919   if (!hasUnwindExceptions(LangOpts))
1920     B.addAttribute(llvm::Attribute::NoUnwind);
1921 
1922   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1923     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1924       B.addAttribute(llvm::Attribute::StackProtect);
1925     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1926       B.addAttribute(llvm::Attribute::StackProtectStrong);
1927     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1928       B.addAttribute(llvm::Attribute::StackProtectReq);
1929   }
1930 
1931   if (!D) {
1932     // If we don't have a declaration to control inlining, the function isn't
1933     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1934     // disabled, mark the function as noinline.
1935     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1936         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1937       B.addAttribute(llvm::Attribute::NoInline);
1938 
1939     F->addFnAttrs(B);
1940     return;
1941   }
1942 
1943   // Track whether we need to add the optnone LLVM attribute,
1944   // starting with the default for this optimization level.
1945   bool ShouldAddOptNone =
1946       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1947   // We can't add optnone in the following cases, it won't pass the verifier.
1948   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1949   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1950 
1951   // Add optnone, but do so only if the function isn't always_inline.
1952   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1953       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1954     B.addAttribute(llvm::Attribute::OptimizeNone);
1955 
1956     // OptimizeNone implies noinline; we should not be inlining such functions.
1957     B.addAttribute(llvm::Attribute::NoInline);
1958 
1959     // We still need to handle naked functions even though optnone subsumes
1960     // much of their semantics.
1961     if (D->hasAttr<NakedAttr>())
1962       B.addAttribute(llvm::Attribute::Naked);
1963 
1964     // OptimizeNone wins over OptimizeForSize and MinSize.
1965     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1966     F->removeFnAttr(llvm::Attribute::MinSize);
1967   } else if (D->hasAttr<NakedAttr>()) {
1968     // Naked implies noinline: we should not be inlining such functions.
1969     B.addAttribute(llvm::Attribute::Naked);
1970     B.addAttribute(llvm::Attribute::NoInline);
1971   } else if (D->hasAttr<NoDuplicateAttr>()) {
1972     B.addAttribute(llvm::Attribute::NoDuplicate);
1973   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1974     // Add noinline if the function isn't always_inline.
1975     B.addAttribute(llvm::Attribute::NoInline);
1976   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1977              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1978     // (noinline wins over always_inline, and we can't specify both in IR)
1979     B.addAttribute(llvm::Attribute::AlwaysInline);
1980   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1981     // If we're not inlining, then force everything that isn't always_inline to
1982     // carry an explicit noinline attribute.
1983     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1984       B.addAttribute(llvm::Attribute::NoInline);
1985   } else {
1986     // Otherwise, propagate the inline hint attribute and potentially use its
1987     // absence to mark things as noinline.
1988     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1989       // Search function and template pattern redeclarations for inline.
1990       auto CheckForInline = [](const FunctionDecl *FD) {
1991         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1992           return Redecl->isInlineSpecified();
1993         };
1994         if (any_of(FD->redecls(), CheckRedeclForInline))
1995           return true;
1996         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1997         if (!Pattern)
1998           return false;
1999         return any_of(Pattern->redecls(), CheckRedeclForInline);
2000       };
2001       if (CheckForInline(FD)) {
2002         B.addAttribute(llvm::Attribute::InlineHint);
2003       } else if (CodeGenOpts.getInlining() ==
2004                      CodeGenOptions::OnlyHintInlining &&
2005                  !FD->isInlined() &&
2006                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2007         B.addAttribute(llvm::Attribute::NoInline);
2008       }
2009     }
2010   }
2011 
2012   // Add other optimization related attributes if we are optimizing this
2013   // function.
2014   if (!D->hasAttr<OptimizeNoneAttr>()) {
2015     if (D->hasAttr<ColdAttr>()) {
2016       if (!ShouldAddOptNone)
2017         B.addAttribute(llvm::Attribute::OptimizeForSize);
2018       B.addAttribute(llvm::Attribute::Cold);
2019     }
2020     if (D->hasAttr<HotAttr>())
2021       B.addAttribute(llvm::Attribute::Hot);
2022     if (D->hasAttr<MinSizeAttr>())
2023       B.addAttribute(llvm::Attribute::MinSize);
2024   }
2025 
2026   F->addFnAttrs(B);
2027 
2028   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2029   if (alignment)
2030     F->setAlignment(llvm::Align(alignment));
2031 
2032   if (!D->hasAttr<AlignedAttr>())
2033     if (LangOpts.FunctionAlignment)
2034       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2035 
2036   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2037   // reserve a bit for differentiating between virtual and non-virtual member
2038   // functions. If the current target's C++ ABI requires this and this is a
2039   // member function, set its alignment accordingly.
2040   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2041     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2042       F->setAlignment(llvm::Align(2));
2043   }
2044 
2045   // In the cross-dso CFI mode with canonical jump tables, we want !type
2046   // attributes on definitions only.
2047   if (CodeGenOpts.SanitizeCfiCrossDso &&
2048       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2049     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2050       // Skip available_externally functions. They won't be codegen'ed in the
2051       // current module anyway.
2052       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2053         CreateFunctionTypeMetadataForIcall(FD, F);
2054     }
2055   }
2056 
2057   // Emit type metadata on member functions for member function pointer checks.
2058   // These are only ever necessary on definitions; we're guaranteed that the
2059   // definition will be present in the LTO unit as a result of LTO visibility.
2060   auto *MD = dyn_cast<CXXMethodDecl>(D);
2061   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2062     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2063       llvm::Metadata *Id =
2064           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2065               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2066       F->addTypeMetadata(0, Id);
2067     }
2068   }
2069 }
2070 
2071 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2072                                                   llvm::Function *F) {
2073   if (D->hasAttr<StrictFPAttr>()) {
2074     llvm::AttrBuilder FuncAttrs(F->getContext());
2075     FuncAttrs.addAttribute("strictfp");
2076     F->addFnAttrs(FuncAttrs);
2077   }
2078 }
2079 
2080 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2081   const Decl *D = GD.getDecl();
2082   if (isa_and_nonnull<NamedDecl>(D))
2083     setGVProperties(GV, GD);
2084   else
2085     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2086 
2087   if (D && D->hasAttr<UsedAttr>())
2088     addUsedOrCompilerUsedGlobal(GV);
2089 
2090   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2091     const auto *VD = cast<VarDecl>(D);
2092     if (VD->getType().isConstQualified() &&
2093         VD->getStorageDuration() == SD_Static)
2094       addUsedOrCompilerUsedGlobal(GV);
2095   }
2096 }
2097 
2098 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2099                                                 llvm::AttrBuilder &Attrs) {
2100   // Add target-cpu and target-features attributes to functions. If
2101   // we have a decl for the function and it has a target attribute then
2102   // parse that and add it to the feature set.
2103   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2104   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2105   std::vector<std::string> Features;
2106   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2107   FD = FD ? FD->getMostRecentDecl() : FD;
2108   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2109   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2110   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2111   bool AddedAttr = false;
2112   if (TD || SD || TC) {
2113     llvm::StringMap<bool> FeatureMap;
2114     getContext().getFunctionFeatureMap(FeatureMap, GD);
2115 
2116     // Produce the canonical string for this set of features.
2117     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2118       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2119 
2120     // Now add the target-cpu and target-features to the function.
2121     // While we populated the feature map above, we still need to
2122     // get and parse the target attribute so we can get the cpu for
2123     // the function.
2124     if (TD) {
2125       ParsedTargetAttr ParsedAttr = TD->parse();
2126       if (!ParsedAttr.Architecture.empty() &&
2127           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2128         TargetCPU = ParsedAttr.Architecture;
2129         TuneCPU = ""; // Clear the tune CPU.
2130       }
2131       if (!ParsedAttr.Tune.empty() &&
2132           getTarget().isValidCPUName(ParsedAttr.Tune))
2133         TuneCPU = ParsedAttr.Tune;
2134     }
2135 
2136     if (SD) {
2137       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2138       // favor this processor.
2139       TuneCPU = getTarget().getCPUSpecificTuneName(
2140           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2141     }
2142   } else {
2143     // Otherwise just add the existing target cpu and target features to the
2144     // function.
2145     Features = getTarget().getTargetOpts().Features;
2146   }
2147 
2148   if (!TargetCPU.empty()) {
2149     Attrs.addAttribute("target-cpu", TargetCPU);
2150     AddedAttr = true;
2151   }
2152   if (!TuneCPU.empty()) {
2153     Attrs.addAttribute("tune-cpu", TuneCPU);
2154     AddedAttr = true;
2155   }
2156   if (!Features.empty()) {
2157     llvm::sort(Features);
2158     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2159     AddedAttr = true;
2160   }
2161 
2162   return AddedAttr;
2163 }
2164 
2165 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2166                                           llvm::GlobalObject *GO) {
2167   const Decl *D = GD.getDecl();
2168   SetCommonAttributes(GD, GO);
2169 
2170   if (D) {
2171     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2172       if (D->hasAttr<RetainAttr>())
2173         addUsedGlobal(GV);
2174       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2175         GV->addAttribute("bss-section", SA->getName());
2176       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2177         GV->addAttribute("data-section", SA->getName());
2178       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2179         GV->addAttribute("rodata-section", SA->getName());
2180       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2181         GV->addAttribute("relro-section", SA->getName());
2182     }
2183 
2184     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2185       if (D->hasAttr<RetainAttr>())
2186         addUsedGlobal(F);
2187       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2188         if (!D->getAttr<SectionAttr>())
2189           F->addFnAttr("implicit-section-name", SA->getName());
2190 
2191       llvm::AttrBuilder Attrs(F->getContext());
2192       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2193         // We know that GetCPUAndFeaturesAttributes will always have the
2194         // newest set, since it has the newest possible FunctionDecl, so the
2195         // new ones should replace the old.
2196         llvm::AttributeMask RemoveAttrs;
2197         RemoveAttrs.addAttribute("target-cpu");
2198         RemoveAttrs.addAttribute("target-features");
2199         RemoveAttrs.addAttribute("tune-cpu");
2200         F->removeFnAttrs(RemoveAttrs);
2201         F->addFnAttrs(Attrs);
2202       }
2203     }
2204 
2205     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2206       GO->setSection(CSA->getName());
2207     else if (const auto *SA = D->getAttr<SectionAttr>())
2208       GO->setSection(SA->getName());
2209   }
2210 
2211   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2212 }
2213 
2214 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2215                                                   llvm::Function *F,
2216                                                   const CGFunctionInfo &FI) {
2217   const Decl *D = GD.getDecl();
2218   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2219   SetLLVMFunctionAttributesForDefinition(D, F);
2220 
2221   F->setLinkage(llvm::Function::InternalLinkage);
2222 
2223   setNonAliasAttributes(GD, F);
2224 }
2225 
2226 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2227   // Set linkage and visibility in case we never see a definition.
2228   LinkageInfo LV = ND->getLinkageAndVisibility();
2229   // Don't set internal linkage on declarations.
2230   // "extern_weak" is overloaded in LLVM; we probably should have
2231   // separate linkage types for this.
2232   if (isExternallyVisible(LV.getLinkage()) &&
2233       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2234     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2235 }
2236 
2237 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2238                                                        llvm::Function *F) {
2239   // Only if we are checking indirect calls.
2240   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2241     return;
2242 
2243   // Non-static class methods are handled via vtable or member function pointer
2244   // checks elsewhere.
2245   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2246     return;
2247 
2248   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2249   F->addTypeMetadata(0, MD);
2250   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2251 
2252   // Emit a hash-based bit set entry for cross-DSO calls.
2253   if (CodeGenOpts.SanitizeCfiCrossDso)
2254     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2255       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2256 }
2257 
2258 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2259                                           bool IsIncompleteFunction,
2260                                           bool IsThunk) {
2261 
2262   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2263     // If this is an intrinsic function, set the function's attributes
2264     // to the intrinsic's attributes.
2265     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2266     return;
2267   }
2268 
2269   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2270 
2271   if (!IsIncompleteFunction)
2272     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2273                               IsThunk);
2274 
2275   // Add the Returned attribute for "this", except for iOS 5 and earlier
2276   // where substantial code, including the libstdc++ dylib, was compiled with
2277   // GCC and does not actually return "this".
2278   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2279       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2280     assert(!F->arg_empty() &&
2281            F->arg_begin()->getType()
2282              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2283            "unexpected this return");
2284     F->addParamAttr(0, llvm::Attribute::Returned);
2285   }
2286 
2287   // Only a few attributes are set on declarations; these may later be
2288   // overridden by a definition.
2289 
2290   setLinkageForGV(F, FD);
2291   setGVProperties(F, FD);
2292 
2293   // Setup target-specific attributes.
2294   if (!IsIncompleteFunction && F->isDeclaration())
2295     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2296 
2297   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2298     F->setSection(CSA->getName());
2299   else if (const auto *SA = FD->getAttr<SectionAttr>())
2300      F->setSection(SA->getName());
2301 
2302   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2303     if (EA->isError())
2304       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2305     else if (EA->isWarning())
2306       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2307   }
2308 
2309   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2310   if (FD->isInlineBuiltinDeclaration()) {
2311     const FunctionDecl *FDBody;
2312     bool HasBody = FD->hasBody(FDBody);
2313     (void)HasBody;
2314     assert(HasBody && "Inline builtin declarations should always have an "
2315                       "available body!");
2316     if (shouldEmitFunction(FDBody))
2317       F->addFnAttr(llvm::Attribute::NoBuiltin);
2318   }
2319 
2320   if (FD->isReplaceableGlobalAllocationFunction()) {
2321     // A replaceable global allocation function does not act like a builtin by
2322     // default, only if it is invoked by a new-expression or delete-expression.
2323     F->addFnAttr(llvm::Attribute::NoBuiltin);
2324   }
2325 
2326   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2327     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2328   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2329     if (MD->isVirtual())
2330       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2331 
2332   // Don't emit entries for function declarations in the cross-DSO mode. This
2333   // is handled with better precision by the receiving DSO. But if jump tables
2334   // are non-canonical then we need type metadata in order to produce the local
2335   // jump table.
2336   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2337       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2338     CreateFunctionTypeMetadataForIcall(FD, F);
2339 
2340   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2341     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2342 
2343   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2344     // Annotate the callback behavior as metadata:
2345     //  - The callback callee (as argument number).
2346     //  - The callback payloads (as argument numbers).
2347     llvm::LLVMContext &Ctx = F->getContext();
2348     llvm::MDBuilder MDB(Ctx);
2349 
2350     // The payload indices are all but the first one in the encoding. The first
2351     // identifies the callback callee.
2352     int CalleeIdx = *CB->encoding_begin();
2353     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2354     F->addMetadata(llvm::LLVMContext::MD_callback,
2355                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2356                                                CalleeIdx, PayloadIndices,
2357                                                /* VarArgsArePassed */ false)}));
2358   }
2359 }
2360 
2361 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2362   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2363          "Only globals with definition can force usage.");
2364   LLVMUsed.emplace_back(GV);
2365 }
2366 
2367 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2368   assert(!GV->isDeclaration() &&
2369          "Only globals with definition can force usage.");
2370   LLVMCompilerUsed.emplace_back(GV);
2371 }
2372 
2373 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2374   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2375          "Only globals with definition can force usage.");
2376   if (getTriple().isOSBinFormatELF())
2377     LLVMCompilerUsed.emplace_back(GV);
2378   else
2379     LLVMUsed.emplace_back(GV);
2380 }
2381 
2382 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2383                      std::vector<llvm::WeakTrackingVH> &List) {
2384   // Don't create llvm.used if there is no need.
2385   if (List.empty())
2386     return;
2387 
2388   // Convert List to what ConstantArray needs.
2389   SmallVector<llvm::Constant*, 8> UsedArray;
2390   UsedArray.resize(List.size());
2391   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2392     UsedArray[i] =
2393         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2394             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2395   }
2396 
2397   if (UsedArray.empty())
2398     return;
2399   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2400 
2401   auto *GV = new llvm::GlobalVariable(
2402       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2403       llvm::ConstantArray::get(ATy, UsedArray), Name);
2404 
2405   GV->setSection("llvm.metadata");
2406 }
2407 
2408 void CodeGenModule::emitLLVMUsed() {
2409   emitUsed(*this, "llvm.used", LLVMUsed);
2410   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2411 }
2412 
2413 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2414   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2415   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2416 }
2417 
2418 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2419   llvm::SmallString<32> Opt;
2420   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2421   if (Opt.empty())
2422     return;
2423   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2424   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2425 }
2426 
2427 void CodeGenModule::AddDependentLib(StringRef Lib) {
2428   auto &C = getLLVMContext();
2429   if (getTarget().getTriple().isOSBinFormatELF()) {
2430       ELFDependentLibraries.push_back(
2431         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2432     return;
2433   }
2434 
2435   llvm::SmallString<24> Opt;
2436   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2437   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2438   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2439 }
2440 
2441 /// Add link options implied by the given module, including modules
2442 /// it depends on, using a postorder walk.
2443 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2444                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2445                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2446   // Import this module's parent.
2447   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2448     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2449   }
2450 
2451   // Import this module's dependencies.
2452   for (Module *Import : llvm::reverse(Mod->Imports)) {
2453     if (Visited.insert(Import).second)
2454       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2455   }
2456 
2457   // Add linker options to link against the libraries/frameworks
2458   // described by this module.
2459   llvm::LLVMContext &Context = CGM.getLLVMContext();
2460   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2461 
2462   // For modules that use export_as for linking, use that module
2463   // name instead.
2464   if (Mod->UseExportAsModuleLinkName)
2465     return;
2466 
2467   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2468     // Link against a framework.  Frameworks are currently Darwin only, so we
2469     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2470     if (LL.IsFramework) {
2471       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2472                                  llvm::MDString::get(Context, LL.Library)};
2473 
2474       Metadata.push_back(llvm::MDNode::get(Context, Args));
2475       continue;
2476     }
2477 
2478     // Link against a library.
2479     if (IsELF) {
2480       llvm::Metadata *Args[2] = {
2481           llvm::MDString::get(Context, "lib"),
2482           llvm::MDString::get(Context, LL.Library),
2483       };
2484       Metadata.push_back(llvm::MDNode::get(Context, Args));
2485     } else {
2486       llvm::SmallString<24> Opt;
2487       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2488       auto *OptString = llvm::MDString::get(Context, Opt);
2489       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2490     }
2491   }
2492 }
2493 
2494 void CodeGenModule::EmitModuleLinkOptions() {
2495   // Collect the set of all of the modules we want to visit to emit link
2496   // options, which is essentially the imported modules and all of their
2497   // non-explicit child modules.
2498   llvm::SetVector<clang::Module *> LinkModules;
2499   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2500   SmallVector<clang::Module *, 16> Stack;
2501 
2502   // Seed the stack with imported modules.
2503   for (Module *M : ImportedModules) {
2504     // Do not add any link flags when an implementation TU of a module imports
2505     // a header of that same module.
2506     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2507         !getLangOpts().isCompilingModule())
2508       continue;
2509     if (Visited.insert(M).second)
2510       Stack.push_back(M);
2511   }
2512 
2513   // Find all of the modules to import, making a little effort to prune
2514   // non-leaf modules.
2515   while (!Stack.empty()) {
2516     clang::Module *Mod = Stack.pop_back_val();
2517 
2518     bool AnyChildren = false;
2519 
2520     // Visit the submodules of this module.
2521     for (const auto &SM : Mod->submodules()) {
2522       // Skip explicit children; they need to be explicitly imported to be
2523       // linked against.
2524       if (SM->IsExplicit)
2525         continue;
2526 
2527       if (Visited.insert(SM).second) {
2528         Stack.push_back(SM);
2529         AnyChildren = true;
2530       }
2531     }
2532 
2533     // We didn't find any children, so add this module to the list of
2534     // modules to link against.
2535     if (!AnyChildren) {
2536       LinkModules.insert(Mod);
2537     }
2538   }
2539 
2540   // Add link options for all of the imported modules in reverse topological
2541   // order.  We don't do anything to try to order import link flags with respect
2542   // to linker options inserted by things like #pragma comment().
2543   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2544   Visited.clear();
2545   for (Module *M : LinkModules)
2546     if (Visited.insert(M).second)
2547       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2548   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2549   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2550 
2551   // Add the linker options metadata flag.
2552   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2553   for (auto *MD : LinkerOptionsMetadata)
2554     NMD->addOperand(MD);
2555 }
2556 
2557 void CodeGenModule::EmitDeferred() {
2558   // Emit deferred declare target declarations.
2559   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2560     getOpenMPRuntime().emitDeferredTargetDecls();
2561 
2562   // Emit code for any potentially referenced deferred decls.  Since a
2563   // previously unused static decl may become used during the generation of code
2564   // for a static function, iterate until no changes are made.
2565 
2566   if (!DeferredVTables.empty()) {
2567     EmitDeferredVTables();
2568 
2569     // Emitting a vtable doesn't directly cause more vtables to
2570     // become deferred, although it can cause functions to be
2571     // emitted that then need those vtables.
2572     assert(DeferredVTables.empty());
2573   }
2574 
2575   // Emit CUDA/HIP static device variables referenced by host code only.
2576   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2577   // needed for further handling.
2578   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2579     llvm::append_range(DeferredDeclsToEmit,
2580                        getContext().CUDADeviceVarODRUsedByHost);
2581 
2582   // Stop if we're out of both deferred vtables and deferred declarations.
2583   if (DeferredDeclsToEmit.empty())
2584     return;
2585 
2586   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2587   // work, it will not interfere with this.
2588   std::vector<GlobalDecl> CurDeclsToEmit;
2589   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2590 
2591   for (GlobalDecl &D : CurDeclsToEmit) {
2592     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2593     // to get GlobalValue with exactly the type we need, not something that
2594     // might had been created for another decl with the same mangled name but
2595     // different type.
2596     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2597         GetAddrOfGlobal(D, ForDefinition));
2598 
2599     // In case of different address spaces, we may still get a cast, even with
2600     // IsForDefinition equal to true. Query mangled names table to get
2601     // GlobalValue.
2602     if (!GV)
2603       GV = GetGlobalValue(getMangledName(D));
2604 
2605     // Make sure GetGlobalValue returned non-null.
2606     assert(GV);
2607 
2608     // Check to see if we've already emitted this.  This is necessary
2609     // for a couple of reasons: first, decls can end up in the
2610     // deferred-decls queue multiple times, and second, decls can end
2611     // up with definitions in unusual ways (e.g. by an extern inline
2612     // function acquiring a strong function redefinition).  Just
2613     // ignore these cases.
2614     if (!GV->isDeclaration())
2615       continue;
2616 
2617     // If this is OpenMP, check if it is legal to emit this global normally.
2618     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2619       continue;
2620 
2621     // Otherwise, emit the definition and move on to the next one.
2622     EmitGlobalDefinition(D, GV);
2623 
2624     // If we found out that we need to emit more decls, do that recursively.
2625     // This has the advantage that the decls are emitted in a DFS and related
2626     // ones are close together, which is convenient for testing.
2627     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2628       EmitDeferred();
2629       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2630     }
2631   }
2632 }
2633 
2634 void CodeGenModule::EmitVTablesOpportunistically() {
2635   // Try to emit external vtables as available_externally if they have emitted
2636   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2637   // is not allowed to create new references to things that need to be emitted
2638   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2639 
2640   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2641          && "Only emit opportunistic vtables with optimizations");
2642 
2643   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2644     assert(getVTables().isVTableExternal(RD) &&
2645            "This queue should only contain external vtables");
2646     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2647       VTables.GenerateClassData(RD);
2648   }
2649   OpportunisticVTables.clear();
2650 }
2651 
2652 void CodeGenModule::EmitGlobalAnnotations() {
2653   if (Annotations.empty())
2654     return;
2655 
2656   // Create a new global variable for the ConstantStruct in the Module.
2657   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2658     Annotations[0]->getType(), Annotations.size()), Annotations);
2659   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2660                                       llvm::GlobalValue::AppendingLinkage,
2661                                       Array, "llvm.global.annotations");
2662   gv->setSection(AnnotationSection);
2663 }
2664 
2665 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2666   llvm::Constant *&AStr = AnnotationStrings[Str];
2667   if (AStr)
2668     return AStr;
2669 
2670   // Not found yet, create a new global.
2671   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2672   auto *gv =
2673       new llvm::GlobalVariable(getModule(), s->getType(), true,
2674                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2675   gv->setSection(AnnotationSection);
2676   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2677   AStr = gv;
2678   return gv;
2679 }
2680 
2681 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2682   SourceManager &SM = getContext().getSourceManager();
2683   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2684   if (PLoc.isValid())
2685     return EmitAnnotationString(PLoc.getFilename());
2686   return EmitAnnotationString(SM.getBufferName(Loc));
2687 }
2688 
2689 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2690   SourceManager &SM = getContext().getSourceManager();
2691   PresumedLoc PLoc = SM.getPresumedLoc(L);
2692   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2693     SM.getExpansionLineNumber(L);
2694   return llvm::ConstantInt::get(Int32Ty, LineNo);
2695 }
2696 
2697 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2698   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2699   if (Exprs.empty())
2700     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2701 
2702   llvm::FoldingSetNodeID ID;
2703   for (Expr *E : Exprs) {
2704     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2705   }
2706   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2707   if (Lookup)
2708     return Lookup;
2709 
2710   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2711   LLVMArgs.reserve(Exprs.size());
2712   ConstantEmitter ConstEmiter(*this);
2713   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2714     const auto *CE = cast<clang::ConstantExpr>(E);
2715     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2716                                     CE->getType());
2717   });
2718   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2719   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2720                                       llvm::GlobalValue::PrivateLinkage, Struct,
2721                                       ".args");
2722   GV->setSection(AnnotationSection);
2723   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2724   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2725 
2726   Lookup = Bitcasted;
2727   return Bitcasted;
2728 }
2729 
2730 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2731                                                 const AnnotateAttr *AA,
2732                                                 SourceLocation L) {
2733   // Get the globals for file name, annotation, and the line number.
2734   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2735                  *UnitGV = EmitAnnotationUnit(L),
2736                  *LineNoCst = EmitAnnotationLineNo(L),
2737                  *Args = EmitAnnotationArgs(AA);
2738 
2739   llvm::Constant *GVInGlobalsAS = GV;
2740   if (GV->getAddressSpace() !=
2741       getDataLayout().getDefaultGlobalsAddressSpace()) {
2742     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2743         GV, GV->getValueType()->getPointerTo(
2744                 getDataLayout().getDefaultGlobalsAddressSpace()));
2745   }
2746 
2747   // Create the ConstantStruct for the global annotation.
2748   llvm::Constant *Fields[] = {
2749       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2750       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2751       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2752       LineNoCst,
2753       Args,
2754   };
2755   return llvm::ConstantStruct::getAnon(Fields);
2756 }
2757 
2758 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2759                                          llvm::GlobalValue *GV) {
2760   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2761   // Get the struct elements for these annotations.
2762   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2763     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2764 }
2765 
2766 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2767                                        SourceLocation Loc) const {
2768   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2769   // NoSanitize by function name.
2770   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2771     return true;
2772   // NoSanitize by location.
2773   if (Loc.isValid())
2774     return NoSanitizeL.containsLocation(Kind, Loc);
2775   // If location is unknown, this may be a compiler-generated function. Assume
2776   // it's located in the main file.
2777   auto &SM = Context.getSourceManager();
2778   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2779     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2780   }
2781   return false;
2782 }
2783 
2784 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2785                                        llvm::GlobalVariable *GV,
2786                                        SourceLocation Loc, QualType Ty,
2787                                        StringRef Category) const {
2788   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2789   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2790     return true;
2791   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2792     return true;
2793   // Check global type.
2794   if (!Ty.isNull()) {
2795     // Drill down the array types: if global variable of a fixed type is
2796     // not sanitized, we also don't instrument arrays of them.
2797     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2798       Ty = AT->getElementType();
2799     Ty = Ty.getCanonicalType().getUnqualifiedType();
2800     // Only record types (classes, structs etc.) are ignored.
2801     if (Ty->isRecordType()) {
2802       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2803       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2804         return true;
2805     }
2806   }
2807   return false;
2808 }
2809 
2810 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2811                                    StringRef Category) const {
2812   const auto &XRayFilter = getContext().getXRayFilter();
2813   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2814   auto Attr = ImbueAttr::NONE;
2815   if (Loc.isValid())
2816     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2817   if (Attr == ImbueAttr::NONE)
2818     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2819   switch (Attr) {
2820   case ImbueAttr::NONE:
2821     return false;
2822   case ImbueAttr::ALWAYS:
2823     Fn->addFnAttr("function-instrument", "xray-always");
2824     break;
2825   case ImbueAttr::ALWAYS_ARG1:
2826     Fn->addFnAttr("function-instrument", "xray-always");
2827     Fn->addFnAttr("xray-log-args", "1");
2828     break;
2829   case ImbueAttr::NEVER:
2830     Fn->addFnAttr("function-instrument", "xray-never");
2831     break;
2832   }
2833   return true;
2834 }
2835 
2836 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2837                                            SourceLocation Loc) const {
2838   const auto &ProfileList = getContext().getProfileList();
2839   // If the profile list is empty, then instrument everything.
2840   if (ProfileList.isEmpty())
2841     return false;
2842   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2843   // First, check the function name.
2844   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2845   if (V)
2846     return *V;
2847   // Next, check the source location.
2848   if (Loc.isValid()) {
2849     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2850     if (V)
2851       return *V;
2852   }
2853   // If location is unknown, this may be a compiler-generated function. Assume
2854   // it's located in the main file.
2855   auto &SM = Context.getSourceManager();
2856   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2857     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2858     if (V)
2859       return *V;
2860   }
2861   return ProfileList.getDefault();
2862 }
2863 
2864 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2865   // Never defer when EmitAllDecls is specified.
2866   if (LangOpts.EmitAllDecls)
2867     return true;
2868 
2869   if (CodeGenOpts.KeepStaticConsts) {
2870     const auto *VD = dyn_cast<VarDecl>(Global);
2871     if (VD && VD->getType().isConstQualified() &&
2872         VD->getStorageDuration() == SD_Static)
2873       return true;
2874   }
2875 
2876   return getContext().DeclMustBeEmitted(Global);
2877 }
2878 
2879 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2880   // In OpenMP 5.0 variables and function may be marked as
2881   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2882   // that they must be emitted on the host/device. To be sure we need to have
2883   // seen a declare target with an explicit mentioning of the function, we know
2884   // we have if the level of the declare target attribute is -1. Note that we
2885   // check somewhere else if we should emit this at all.
2886   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2887     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2888         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2889     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2890       return false;
2891   }
2892 
2893   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2894     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2895       // Implicit template instantiations may change linkage if they are later
2896       // explicitly instantiated, so they should not be emitted eagerly.
2897       return false;
2898   }
2899   if (const auto *VD = dyn_cast<VarDecl>(Global))
2900     if (Context.getInlineVariableDefinitionKind(VD) ==
2901         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2902       // A definition of an inline constexpr static data member may change
2903       // linkage later if it's redeclared outside the class.
2904       return false;
2905   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2906   // codegen for global variables, because they may be marked as threadprivate.
2907   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2908       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2909       !isTypeConstant(Global->getType(), false) &&
2910       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2911     return false;
2912 
2913   return true;
2914 }
2915 
2916 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2917   StringRef Name = getMangledName(GD);
2918 
2919   // The UUID descriptor should be pointer aligned.
2920   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2921 
2922   // Look for an existing global.
2923   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2924     return ConstantAddress(GV, GV->getValueType(), Alignment);
2925 
2926   ConstantEmitter Emitter(*this);
2927   llvm::Constant *Init;
2928 
2929   APValue &V = GD->getAsAPValue();
2930   if (!V.isAbsent()) {
2931     // If possible, emit the APValue version of the initializer. In particular,
2932     // this gets the type of the constant right.
2933     Init = Emitter.emitForInitializer(
2934         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2935   } else {
2936     // As a fallback, directly construct the constant.
2937     // FIXME: This may get padding wrong under esoteric struct layout rules.
2938     // MSVC appears to create a complete type 'struct __s_GUID' that it
2939     // presumably uses to represent these constants.
2940     MSGuidDecl::Parts Parts = GD->getParts();
2941     llvm::Constant *Fields[4] = {
2942         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2943         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2944         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2945         llvm::ConstantDataArray::getRaw(
2946             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2947             Int8Ty)};
2948     Init = llvm::ConstantStruct::getAnon(Fields);
2949   }
2950 
2951   auto *GV = new llvm::GlobalVariable(
2952       getModule(), Init->getType(),
2953       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2954   if (supportsCOMDAT())
2955     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2956   setDSOLocal(GV);
2957 
2958   if (!V.isAbsent()) {
2959     Emitter.finalize(GV);
2960     return ConstantAddress(GV, GV->getValueType(), Alignment);
2961   }
2962 
2963   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2964   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2965       GV, Ty->getPointerTo(GV->getAddressSpace()));
2966   return ConstantAddress(Addr, Ty, Alignment);
2967 }
2968 
2969 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
2970     const UnnamedGlobalConstantDecl *GCD) {
2971   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
2972 
2973   llvm::GlobalVariable **Entry = nullptr;
2974   Entry = &UnnamedGlobalConstantDeclMap[GCD];
2975   if (*Entry)
2976     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
2977 
2978   ConstantEmitter Emitter(*this);
2979   llvm::Constant *Init;
2980 
2981   const APValue &V = GCD->getValue();
2982 
2983   assert(!V.isAbsent());
2984   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
2985                                     GCD->getType());
2986 
2987   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
2988                                       /*isConstant=*/true,
2989                                       llvm::GlobalValue::PrivateLinkage, Init,
2990                                       ".constant");
2991   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2992   GV->setAlignment(Alignment.getAsAlign());
2993 
2994   Emitter.finalize(GV);
2995 
2996   *Entry = GV;
2997   return ConstantAddress(GV, GV->getValueType(), Alignment);
2998 }
2999 
3000 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3001     const TemplateParamObjectDecl *TPO) {
3002   StringRef Name = getMangledName(TPO);
3003   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3004 
3005   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3006     return ConstantAddress(GV, GV->getValueType(), Alignment);
3007 
3008   ConstantEmitter Emitter(*this);
3009   llvm::Constant *Init = Emitter.emitForInitializer(
3010         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3011 
3012   if (!Init) {
3013     ErrorUnsupported(TPO, "template parameter object");
3014     return ConstantAddress::invalid();
3015   }
3016 
3017   auto *GV = new llvm::GlobalVariable(
3018       getModule(), Init->getType(),
3019       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3020   if (supportsCOMDAT())
3021     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3022   Emitter.finalize(GV);
3023 
3024   return ConstantAddress(GV, GV->getValueType(), Alignment);
3025 }
3026 
3027 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3028   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3029   assert(AA && "No alias?");
3030 
3031   CharUnits Alignment = getContext().getDeclAlign(VD);
3032   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3033 
3034   // See if there is already something with the target's name in the module.
3035   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3036   if (Entry) {
3037     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3038     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3039     return ConstantAddress(Ptr, DeclTy, Alignment);
3040   }
3041 
3042   llvm::Constant *Aliasee;
3043   if (isa<llvm::FunctionType>(DeclTy))
3044     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3045                                       GlobalDecl(cast<FunctionDecl>(VD)),
3046                                       /*ForVTable=*/false);
3047   else
3048     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3049                                     nullptr);
3050 
3051   auto *F = cast<llvm::GlobalValue>(Aliasee);
3052   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3053   WeakRefReferences.insert(F);
3054 
3055   return ConstantAddress(Aliasee, DeclTy, Alignment);
3056 }
3057 
3058 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3059   const auto *Global = cast<ValueDecl>(GD.getDecl());
3060 
3061   // Weak references don't produce any output by themselves.
3062   if (Global->hasAttr<WeakRefAttr>())
3063     return;
3064 
3065   // If this is an alias definition (which otherwise looks like a declaration)
3066   // emit it now.
3067   if (Global->hasAttr<AliasAttr>())
3068     return EmitAliasDefinition(GD);
3069 
3070   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3071   if (Global->hasAttr<IFuncAttr>())
3072     return emitIFuncDefinition(GD);
3073 
3074   // If this is a cpu_dispatch multiversion function, emit the resolver.
3075   if (Global->hasAttr<CPUDispatchAttr>())
3076     return emitCPUDispatchDefinition(GD);
3077 
3078   // If this is CUDA, be selective about which declarations we emit.
3079   if (LangOpts.CUDA) {
3080     if (LangOpts.CUDAIsDevice) {
3081       if (!Global->hasAttr<CUDADeviceAttr>() &&
3082           !Global->hasAttr<CUDAGlobalAttr>() &&
3083           !Global->hasAttr<CUDAConstantAttr>() &&
3084           !Global->hasAttr<CUDASharedAttr>() &&
3085           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3086           !Global->getType()->isCUDADeviceBuiltinTextureType())
3087         return;
3088     } else {
3089       // We need to emit host-side 'shadows' for all global
3090       // device-side variables because the CUDA runtime needs their
3091       // size and host-side address in order to provide access to
3092       // their device-side incarnations.
3093 
3094       // So device-only functions are the only things we skip.
3095       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3096           Global->hasAttr<CUDADeviceAttr>())
3097         return;
3098 
3099       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3100              "Expected Variable or Function");
3101     }
3102   }
3103 
3104   if (LangOpts.OpenMP) {
3105     // If this is OpenMP, check if it is legal to emit this global normally.
3106     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3107       return;
3108     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3109       if (MustBeEmitted(Global))
3110         EmitOMPDeclareReduction(DRD);
3111       return;
3112     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3113       if (MustBeEmitted(Global))
3114         EmitOMPDeclareMapper(DMD);
3115       return;
3116     }
3117   }
3118 
3119   // Ignore declarations, they will be emitted on their first use.
3120   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3121     // Forward declarations are emitted lazily on first use.
3122     if (!FD->doesThisDeclarationHaveABody()) {
3123       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3124         return;
3125 
3126       StringRef MangledName = getMangledName(GD);
3127 
3128       // Compute the function info and LLVM type.
3129       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3130       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3131 
3132       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3133                               /*DontDefer=*/false);
3134       return;
3135     }
3136   } else {
3137     const auto *VD = cast<VarDecl>(Global);
3138     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3139     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3140         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3141       if (LangOpts.OpenMP) {
3142         // Emit declaration of the must-be-emitted declare target variable.
3143         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3144                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3145           bool UnifiedMemoryEnabled =
3146               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3147           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3148               !UnifiedMemoryEnabled) {
3149             (void)GetAddrOfGlobalVar(VD);
3150           } else {
3151             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3152                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3153                      UnifiedMemoryEnabled)) &&
3154                    "Link clause or to clause with unified memory expected.");
3155             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3156           }
3157 
3158           return;
3159         }
3160       }
3161       // If this declaration may have caused an inline variable definition to
3162       // change linkage, make sure that it's emitted.
3163       if (Context.getInlineVariableDefinitionKind(VD) ==
3164           ASTContext::InlineVariableDefinitionKind::Strong)
3165         GetAddrOfGlobalVar(VD);
3166       return;
3167     }
3168   }
3169 
3170   // Defer code generation to first use when possible, e.g. if this is an inline
3171   // function. If the global must always be emitted, do it eagerly if possible
3172   // to benefit from cache locality.
3173   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3174     // Emit the definition if it can't be deferred.
3175     EmitGlobalDefinition(GD);
3176     return;
3177   }
3178 
3179   // If we're deferring emission of a C++ variable with an
3180   // initializer, remember the order in which it appeared in the file.
3181   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3182       cast<VarDecl>(Global)->hasInit()) {
3183     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3184     CXXGlobalInits.push_back(nullptr);
3185   }
3186 
3187   StringRef MangledName = getMangledName(GD);
3188   if (GetGlobalValue(MangledName) != nullptr) {
3189     // The value has already been used and should therefore be emitted.
3190     addDeferredDeclToEmit(GD);
3191   } else if (MustBeEmitted(Global)) {
3192     // The value must be emitted, but cannot be emitted eagerly.
3193     assert(!MayBeEmittedEagerly(Global));
3194     addDeferredDeclToEmit(GD);
3195   } else {
3196     // Otherwise, remember that we saw a deferred decl with this name.  The
3197     // first use of the mangled name will cause it to move into
3198     // DeferredDeclsToEmit.
3199     DeferredDecls[MangledName] = GD;
3200   }
3201 }
3202 
3203 // Check if T is a class type with a destructor that's not dllimport.
3204 static bool HasNonDllImportDtor(QualType T) {
3205   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3206     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3207       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3208         return true;
3209 
3210   return false;
3211 }
3212 
3213 namespace {
3214   struct FunctionIsDirectlyRecursive
3215       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3216     const StringRef Name;
3217     const Builtin::Context &BI;
3218     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3219         : Name(N), BI(C) {}
3220 
3221     bool VisitCallExpr(const CallExpr *E) {
3222       const FunctionDecl *FD = E->getDirectCallee();
3223       if (!FD)
3224         return false;
3225       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3226       if (Attr && Name == Attr->getLabel())
3227         return true;
3228       unsigned BuiltinID = FD->getBuiltinID();
3229       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3230         return false;
3231       StringRef BuiltinName = BI.getName(BuiltinID);
3232       if (BuiltinName.startswith("__builtin_") &&
3233           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3234         return true;
3235       }
3236       return false;
3237     }
3238 
3239     bool VisitStmt(const Stmt *S) {
3240       for (const Stmt *Child : S->children())
3241         if (Child && this->Visit(Child))
3242           return true;
3243       return false;
3244     }
3245   };
3246 
3247   // Make sure we're not referencing non-imported vars or functions.
3248   struct DLLImportFunctionVisitor
3249       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3250     bool SafeToInline = true;
3251 
3252     bool shouldVisitImplicitCode() const { return true; }
3253 
3254     bool VisitVarDecl(VarDecl *VD) {
3255       if (VD->getTLSKind()) {
3256         // A thread-local variable cannot be imported.
3257         SafeToInline = false;
3258         return SafeToInline;
3259       }
3260 
3261       // A variable definition might imply a destructor call.
3262       if (VD->isThisDeclarationADefinition())
3263         SafeToInline = !HasNonDllImportDtor(VD->getType());
3264 
3265       return SafeToInline;
3266     }
3267 
3268     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3269       if (const auto *D = E->getTemporary()->getDestructor())
3270         SafeToInline = D->hasAttr<DLLImportAttr>();
3271       return SafeToInline;
3272     }
3273 
3274     bool VisitDeclRefExpr(DeclRefExpr *E) {
3275       ValueDecl *VD = E->getDecl();
3276       if (isa<FunctionDecl>(VD))
3277         SafeToInline = VD->hasAttr<DLLImportAttr>();
3278       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3279         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3280       return SafeToInline;
3281     }
3282 
3283     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3284       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3285       return SafeToInline;
3286     }
3287 
3288     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3289       CXXMethodDecl *M = E->getMethodDecl();
3290       if (!M) {
3291         // Call through a pointer to member function. This is safe to inline.
3292         SafeToInline = true;
3293       } else {
3294         SafeToInline = M->hasAttr<DLLImportAttr>();
3295       }
3296       return SafeToInline;
3297     }
3298 
3299     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3300       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3301       return SafeToInline;
3302     }
3303 
3304     bool VisitCXXNewExpr(CXXNewExpr *E) {
3305       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3306       return SafeToInline;
3307     }
3308   };
3309 }
3310 
3311 // isTriviallyRecursive - Check if this function calls another
3312 // decl that, because of the asm attribute or the other decl being a builtin,
3313 // ends up pointing to itself.
3314 bool
3315 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3316   StringRef Name;
3317   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3318     // asm labels are a special kind of mangling we have to support.
3319     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3320     if (!Attr)
3321       return false;
3322     Name = Attr->getLabel();
3323   } else {
3324     Name = FD->getName();
3325   }
3326 
3327   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3328   const Stmt *Body = FD->getBody();
3329   return Body ? Walker.Visit(Body) : false;
3330 }
3331 
3332 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3333   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3334     return true;
3335   const auto *F = cast<FunctionDecl>(GD.getDecl());
3336   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3337     return false;
3338 
3339   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3340     // Check whether it would be safe to inline this dllimport function.
3341     DLLImportFunctionVisitor Visitor;
3342     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3343     if (!Visitor.SafeToInline)
3344       return false;
3345 
3346     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3347       // Implicit destructor invocations aren't captured in the AST, so the
3348       // check above can't see them. Check for them manually here.
3349       for (const Decl *Member : Dtor->getParent()->decls())
3350         if (isa<FieldDecl>(Member))
3351           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3352             return false;
3353       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3354         if (HasNonDllImportDtor(B.getType()))
3355           return false;
3356     }
3357   }
3358 
3359   // Inline builtins declaration must be emitted. They often are fortified
3360   // functions.
3361   if (F->isInlineBuiltinDeclaration())
3362     return true;
3363 
3364   // PR9614. Avoid cases where the source code is lying to us. An available
3365   // externally function should have an equivalent function somewhere else,
3366   // but a function that calls itself through asm label/`__builtin_` trickery is
3367   // clearly not equivalent to the real implementation.
3368   // This happens in glibc's btowc and in some configure checks.
3369   return !isTriviallyRecursive(F);
3370 }
3371 
3372 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3373   return CodeGenOpts.OptimizationLevel > 0;
3374 }
3375 
3376 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3377                                                        llvm::GlobalValue *GV) {
3378   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3379 
3380   if (FD->isCPUSpecificMultiVersion()) {
3381     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3382     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3383       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3384   } else if (FD->isTargetClonesMultiVersion()) {
3385     auto *Clone = FD->getAttr<TargetClonesAttr>();
3386     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3387       if (Clone->isFirstOfVersion(I))
3388         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3389     // Ensure that the resolver function is also emitted.
3390     GetOrCreateMultiVersionResolver(GD);
3391   } else
3392     EmitGlobalFunctionDefinition(GD, GV);
3393 }
3394 
3395 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3396   const auto *D = cast<ValueDecl>(GD.getDecl());
3397 
3398   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3399                                  Context.getSourceManager(),
3400                                  "Generating code for declaration");
3401 
3402   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3403     // At -O0, don't generate IR for functions with available_externally
3404     // linkage.
3405     if (!shouldEmitFunction(GD))
3406       return;
3407 
3408     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3409       std::string Name;
3410       llvm::raw_string_ostream OS(Name);
3411       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3412                                /*Qualified=*/true);
3413       return Name;
3414     });
3415 
3416     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3417       // Make sure to emit the definition(s) before we emit the thunks.
3418       // This is necessary for the generation of certain thunks.
3419       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3420         ABI->emitCXXStructor(GD);
3421       else if (FD->isMultiVersion())
3422         EmitMultiVersionFunctionDefinition(GD, GV);
3423       else
3424         EmitGlobalFunctionDefinition(GD, GV);
3425 
3426       if (Method->isVirtual())
3427         getVTables().EmitThunks(GD);
3428 
3429       return;
3430     }
3431 
3432     if (FD->isMultiVersion())
3433       return EmitMultiVersionFunctionDefinition(GD, GV);
3434     return EmitGlobalFunctionDefinition(GD, GV);
3435   }
3436 
3437   if (const auto *VD = dyn_cast<VarDecl>(D))
3438     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3439 
3440   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3441 }
3442 
3443 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3444                                                       llvm::Function *NewFn);
3445 
3446 static unsigned
3447 TargetMVPriority(const TargetInfo &TI,
3448                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3449   unsigned Priority = 0;
3450   for (StringRef Feat : RO.Conditions.Features)
3451     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3452 
3453   if (!RO.Conditions.Architecture.empty())
3454     Priority = std::max(
3455         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3456   return Priority;
3457 }
3458 
3459 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3460 // TU can forward declare the function without causing problems.  Particularly
3461 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3462 // work with internal linkage functions, so that the same function name can be
3463 // used with internal linkage in multiple TUs.
3464 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3465                                                        GlobalDecl GD) {
3466   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3467   if (FD->getFormalLinkage() == InternalLinkage)
3468     return llvm::GlobalValue::InternalLinkage;
3469   return llvm::GlobalValue::WeakODRLinkage;
3470 }
3471 
3472 void CodeGenModule::emitMultiVersionFunctions() {
3473   std::vector<GlobalDecl> MVFuncsToEmit;
3474   MultiVersionFuncs.swap(MVFuncsToEmit);
3475   for (GlobalDecl GD : MVFuncsToEmit) {
3476     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3477     assert(FD && "Expected a FunctionDecl");
3478 
3479     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3480     if (FD->isTargetMultiVersion()) {
3481       getContext().forEachMultiversionedFunctionVersion(
3482           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3483             GlobalDecl CurGD{
3484                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3485             StringRef MangledName = getMangledName(CurGD);
3486             llvm::Constant *Func = GetGlobalValue(MangledName);
3487             if (!Func) {
3488               if (CurFD->isDefined()) {
3489                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3490                 Func = GetGlobalValue(MangledName);
3491               } else {
3492                 const CGFunctionInfo &FI =
3493                     getTypes().arrangeGlobalDeclaration(GD);
3494                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3495                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3496                                          /*DontDefer=*/false, ForDefinition);
3497               }
3498               assert(Func && "This should have just been created");
3499             }
3500 
3501             const auto *TA = CurFD->getAttr<TargetAttr>();
3502             llvm::SmallVector<StringRef, 8> Feats;
3503             TA->getAddedFeatures(Feats);
3504 
3505             Options.emplace_back(cast<llvm::Function>(Func),
3506                                  TA->getArchitecture(), Feats);
3507           });
3508     } else if (FD->isTargetClonesMultiVersion()) {
3509       const auto *TC = FD->getAttr<TargetClonesAttr>();
3510       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3511            ++VersionIndex) {
3512         if (!TC->isFirstOfVersion(VersionIndex))
3513           continue;
3514         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3515                          VersionIndex};
3516         StringRef Version = TC->getFeatureStr(VersionIndex);
3517         StringRef MangledName = getMangledName(CurGD);
3518         llvm::Constant *Func = GetGlobalValue(MangledName);
3519         if (!Func) {
3520           if (FD->isDefined()) {
3521             EmitGlobalFunctionDefinition(CurGD, nullptr);
3522             Func = GetGlobalValue(MangledName);
3523           } else {
3524             const CGFunctionInfo &FI =
3525                 getTypes().arrangeGlobalDeclaration(CurGD);
3526             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3527             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3528                                      /*DontDefer=*/false, ForDefinition);
3529           }
3530           assert(Func && "This should have just been created");
3531         }
3532 
3533         StringRef Architecture;
3534         llvm::SmallVector<StringRef, 1> Feature;
3535 
3536         if (Version.startswith("arch="))
3537           Architecture = Version.drop_front(sizeof("arch=") - 1);
3538         else if (Version != "default")
3539           Feature.push_back(Version);
3540 
3541         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3542       }
3543     } else {
3544       assert(0 && "Expected a target or target_clones multiversion function");
3545       continue;
3546     }
3547 
3548     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3549     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3550       ResolverConstant = IFunc->getResolver();
3551     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3552 
3553     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3554 
3555     if (supportsCOMDAT())
3556       ResolverFunc->setComdat(
3557           getModule().getOrInsertComdat(ResolverFunc->getName()));
3558 
3559     const TargetInfo &TI = getTarget();
3560     llvm::stable_sort(
3561         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3562                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3563           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3564         });
3565     CodeGenFunction CGF(*this);
3566     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3567   }
3568 
3569   // Ensure that any additions to the deferred decls list caused by emitting a
3570   // variant are emitted.  This can happen when the variant itself is inline and
3571   // calls a function without linkage.
3572   if (!MVFuncsToEmit.empty())
3573     EmitDeferred();
3574 
3575   // Ensure that any additions to the multiversion funcs list from either the
3576   // deferred decls or the multiversion functions themselves are emitted.
3577   if (!MultiVersionFuncs.empty())
3578     emitMultiVersionFunctions();
3579 }
3580 
3581 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3582   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3583   assert(FD && "Not a FunctionDecl?");
3584   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3585   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3586   assert(DD && "Not a cpu_dispatch Function?");
3587 
3588   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3589   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3590 
3591   StringRef ResolverName = getMangledName(GD);
3592   UpdateMultiVersionNames(GD, FD, ResolverName);
3593 
3594   llvm::Type *ResolverType;
3595   GlobalDecl ResolverGD;
3596   if (getTarget().supportsIFunc()) {
3597     ResolverType = llvm::FunctionType::get(
3598         llvm::PointerType::get(DeclTy,
3599                                Context.getTargetAddressSpace(FD->getType())),
3600         false);
3601   }
3602   else {
3603     ResolverType = DeclTy;
3604     ResolverGD = GD;
3605   }
3606 
3607   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3608       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3609   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3610   if (supportsCOMDAT())
3611     ResolverFunc->setComdat(
3612         getModule().getOrInsertComdat(ResolverFunc->getName()));
3613 
3614   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3615   const TargetInfo &Target = getTarget();
3616   unsigned Index = 0;
3617   for (const IdentifierInfo *II : DD->cpus()) {
3618     // Get the name of the target function so we can look it up/create it.
3619     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3620                               getCPUSpecificMangling(*this, II->getName());
3621 
3622     llvm::Constant *Func = GetGlobalValue(MangledName);
3623 
3624     if (!Func) {
3625       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3626       if (ExistingDecl.getDecl() &&
3627           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3628         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3629         Func = GetGlobalValue(MangledName);
3630       } else {
3631         if (!ExistingDecl.getDecl())
3632           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3633 
3634       Func = GetOrCreateLLVMFunction(
3635           MangledName, DeclTy, ExistingDecl,
3636           /*ForVTable=*/false, /*DontDefer=*/true,
3637           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3638       }
3639     }
3640 
3641     llvm::SmallVector<StringRef, 32> Features;
3642     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3643     llvm::transform(Features, Features.begin(),
3644                     [](StringRef Str) { return Str.substr(1); });
3645     llvm::erase_if(Features, [&Target](StringRef Feat) {
3646       return !Target.validateCpuSupports(Feat);
3647     });
3648     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3649     ++Index;
3650   }
3651 
3652   llvm::stable_sort(
3653       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3654                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3655         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3656                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3657       });
3658 
3659   // If the list contains multiple 'default' versions, such as when it contains
3660   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3661   // always run on at least a 'pentium'). We do this by deleting the 'least
3662   // advanced' (read, lowest mangling letter).
3663   while (Options.size() > 1 &&
3664          llvm::X86::getCpuSupportsMask(
3665              (Options.end() - 2)->Conditions.Features) == 0) {
3666     StringRef LHSName = (Options.end() - 2)->Function->getName();
3667     StringRef RHSName = (Options.end() - 1)->Function->getName();
3668     if (LHSName.compare(RHSName) < 0)
3669       Options.erase(Options.end() - 2);
3670     else
3671       Options.erase(Options.end() - 1);
3672   }
3673 
3674   CodeGenFunction CGF(*this);
3675   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3676 
3677   if (getTarget().supportsIFunc()) {
3678     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3679     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3680 
3681     // Fix up function declarations that were created for cpu_specific before
3682     // cpu_dispatch was known
3683     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3684       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3685       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3686                                            &getModule());
3687       GI->takeName(IFunc);
3688       IFunc->replaceAllUsesWith(GI);
3689       IFunc->eraseFromParent();
3690       IFunc = GI;
3691     }
3692 
3693     std::string AliasName = getMangledNameImpl(
3694         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3695     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3696     if (!AliasFunc) {
3697       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3698                                            &getModule());
3699       SetCommonAttributes(GD, GA);
3700     }
3701   }
3702 }
3703 
3704 /// If a dispatcher for the specified mangled name is not in the module, create
3705 /// and return an llvm Function with the specified type.
3706 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3707   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3708   assert(FD && "Not a FunctionDecl?");
3709 
3710   std::string MangledName =
3711       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3712 
3713   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3714   // a separate resolver).
3715   std::string ResolverName = MangledName;
3716   if (getTarget().supportsIFunc())
3717     ResolverName += ".ifunc";
3718   else if (FD->isTargetMultiVersion())
3719     ResolverName += ".resolver";
3720 
3721   // If the resolver has already been created, just return it.
3722   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3723     return ResolverGV;
3724 
3725   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3726   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3727 
3728   // The resolver needs to be created. For target and target_clones, defer
3729   // creation until the end of the TU.
3730   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3731     MultiVersionFuncs.push_back(GD);
3732 
3733   // For cpu_specific, don't create an ifunc yet because we don't know if the
3734   // cpu_dispatch will be emitted in this translation unit.
3735   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3736     llvm::Type *ResolverType = llvm::FunctionType::get(
3737         llvm::PointerType::get(
3738             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3739         false);
3740     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3741         MangledName + ".resolver", ResolverType, GlobalDecl{},
3742         /*ForVTable=*/false);
3743     llvm::GlobalIFunc *GIF =
3744         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3745                                   "", Resolver, &getModule());
3746     GIF->setName(ResolverName);
3747     SetCommonAttributes(FD, GIF);
3748 
3749     return GIF;
3750   }
3751 
3752   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3753       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3754   assert(isa<llvm::GlobalValue>(Resolver) &&
3755          "Resolver should be created for the first time");
3756   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3757   return Resolver;
3758 }
3759 
3760 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3761 /// module, create and return an llvm Function with the specified type. If there
3762 /// is something in the module with the specified name, return it potentially
3763 /// bitcasted to the right type.
3764 ///
3765 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3766 /// to set the attributes on the function when it is first created.
3767 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3768     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3769     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3770     ForDefinition_t IsForDefinition) {
3771   const Decl *D = GD.getDecl();
3772 
3773   // Any attempts to use a MultiVersion function should result in retrieving
3774   // the iFunc instead. Name Mangling will handle the rest of the changes.
3775   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3776     // For the device mark the function as one that should be emitted.
3777     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3778         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3779         !DontDefer && !IsForDefinition) {
3780       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3781         GlobalDecl GDDef;
3782         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3783           GDDef = GlobalDecl(CD, GD.getCtorType());
3784         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3785           GDDef = GlobalDecl(DD, GD.getDtorType());
3786         else
3787           GDDef = GlobalDecl(FDDef);
3788         EmitGlobal(GDDef);
3789       }
3790     }
3791 
3792     if (FD->isMultiVersion()) {
3793       UpdateMultiVersionNames(GD, FD, MangledName);
3794       if (!IsForDefinition)
3795         return GetOrCreateMultiVersionResolver(GD);
3796     }
3797   }
3798 
3799   // Lookup the entry, lazily creating it if necessary.
3800   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3801   if (Entry) {
3802     if (WeakRefReferences.erase(Entry)) {
3803       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3804       if (FD && !FD->hasAttr<WeakAttr>())
3805         Entry->setLinkage(llvm::Function::ExternalLinkage);
3806     }
3807 
3808     // Handle dropped DLL attributes.
3809     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3810         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3811       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3812       setDSOLocal(Entry);
3813     }
3814 
3815     // If there are two attempts to define the same mangled name, issue an
3816     // error.
3817     if (IsForDefinition && !Entry->isDeclaration()) {
3818       GlobalDecl OtherGD;
3819       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3820       // to make sure that we issue an error only once.
3821       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3822           (GD.getCanonicalDecl().getDecl() !=
3823            OtherGD.getCanonicalDecl().getDecl()) &&
3824           DiagnosedConflictingDefinitions.insert(GD).second) {
3825         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3826             << MangledName;
3827         getDiags().Report(OtherGD.getDecl()->getLocation(),
3828                           diag::note_previous_definition);
3829       }
3830     }
3831 
3832     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3833         (Entry->getValueType() == Ty)) {
3834       return Entry;
3835     }
3836 
3837     // Make sure the result is of the correct type.
3838     // (If function is requested for a definition, we always need to create a new
3839     // function, not just return a bitcast.)
3840     if (!IsForDefinition)
3841       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3842   }
3843 
3844   // This function doesn't have a complete type (for example, the return
3845   // type is an incomplete struct). Use a fake type instead, and make
3846   // sure not to try to set attributes.
3847   bool IsIncompleteFunction = false;
3848 
3849   llvm::FunctionType *FTy;
3850   if (isa<llvm::FunctionType>(Ty)) {
3851     FTy = cast<llvm::FunctionType>(Ty);
3852   } else {
3853     FTy = llvm::FunctionType::get(VoidTy, false);
3854     IsIncompleteFunction = true;
3855   }
3856 
3857   llvm::Function *F =
3858       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3859                              Entry ? StringRef() : MangledName, &getModule());
3860 
3861   // If we already created a function with the same mangled name (but different
3862   // type) before, take its name and add it to the list of functions to be
3863   // replaced with F at the end of CodeGen.
3864   //
3865   // This happens if there is a prototype for a function (e.g. "int f()") and
3866   // then a definition of a different type (e.g. "int f(int x)").
3867   if (Entry) {
3868     F->takeName(Entry);
3869 
3870     // This might be an implementation of a function without a prototype, in
3871     // which case, try to do special replacement of calls which match the new
3872     // prototype.  The really key thing here is that we also potentially drop
3873     // arguments from the call site so as to make a direct call, which makes the
3874     // inliner happier and suppresses a number of optimizer warnings (!) about
3875     // dropping arguments.
3876     if (!Entry->use_empty()) {
3877       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3878       Entry->removeDeadConstantUsers();
3879     }
3880 
3881     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3882         F, Entry->getValueType()->getPointerTo());
3883     addGlobalValReplacement(Entry, BC);
3884   }
3885 
3886   assert(F->getName() == MangledName && "name was uniqued!");
3887   if (D)
3888     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3889   if (ExtraAttrs.hasFnAttrs()) {
3890     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3891     F->addFnAttrs(B);
3892   }
3893 
3894   if (!DontDefer) {
3895     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3896     // each other bottoming out with the base dtor.  Therefore we emit non-base
3897     // dtors on usage, even if there is no dtor definition in the TU.
3898     if (D && isa<CXXDestructorDecl>(D) &&
3899         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3900                                            GD.getDtorType()))
3901       addDeferredDeclToEmit(GD);
3902 
3903     // This is the first use or definition of a mangled name.  If there is a
3904     // deferred decl with this name, remember that we need to emit it at the end
3905     // of the file.
3906     auto DDI = DeferredDecls.find(MangledName);
3907     if (DDI != DeferredDecls.end()) {
3908       // Move the potentially referenced deferred decl to the
3909       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3910       // don't need it anymore).
3911       addDeferredDeclToEmit(DDI->second);
3912       DeferredDecls.erase(DDI);
3913 
3914       // Otherwise, there are cases we have to worry about where we're
3915       // using a declaration for which we must emit a definition but where
3916       // we might not find a top-level definition:
3917       //   - member functions defined inline in their classes
3918       //   - friend functions defined inline in some class
3919       //   - special member functions with implicit definitions
3920       // If we ever change our AST traversal to walk into class methods,
3921       // this will be unnecessary.
3922       //
3923       // We also don't emit a definition for a function if it's going to be an
3924       // entry in a vtable, unless it's already marked as used.
3925     } else if (getLangOpts().CPlusPlus && D) {
3926       // Look for a declaration that's lexically in a record.
3927       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3928            FD = FD->getPreviousDecl()) {
3929         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3930           if (FD->doesThisDeclarationHaveABody()) {
3931             addDeferredDeclToEmit(GD.getWithDecl(FD));
3932             break;
3933           }
3934         }
3935       }
3936     }
3937   }
3938 
3939   // Make sure the result is of the requested type.
3940   if (!IsIncompleteFunction) {
3941     assert(F->getFunctionType() == Ty);
3942     return F;
3943   }
3944 
3945   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3946   return llvm::ConstantExpr::getBitCast(F, PTy);
3947 }
3948 
3949 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3950 /// non-null, then this function will use the specified type if it has to
3951 /// create it (this occurs when we see a definition of the function).
3952 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3953                                                  llvm::Type *Ty,
3954                                                  bool ForVTable,
3955                                                  bool DontDefer,
3956                                               ForDefinition_t IsForDefinition) {
3957   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3958          "consteval function should never be emitted");
3959   // If there was no specific requested type, just convert it now.
3960   if (!Ty) {
3961     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3962     Ty = getTypes().ConvertType(FD->getType());
3963   }
3964 
3965   // Devirtualized destructor calls may come through here instead of via
3966   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3967   // of the complete destructor when necessary.
3968   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3969     if (getTarget().getCXXABI().isMicrosoft() &&
3970         GD.getDtorType() == Dtor_Complete &&
3971         DD->getParent()->getNumVBases() == 0)
3972       GD = GlobalDecl(DD, Dtor_Base);
3973   }
3974 
3975   StringRef MangledName = getMangledName(GD);
3976   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3977                                     /*IsThunk=*/false, llvm::AttributeList(),
3978                                     IsForDefinition);
3979   // Returns kernel handle for HIP kernel stub function.
3980   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3981       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3982     auto *Handle = getCUDARuntime().getKernelHandle(
3983         cast<llvm::Function>(F->stripPointerCasts()), GD);
3984     if (IsForDefinition)
3985       return F;
3986     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3987   }
3988   return F;
3989 }
3990 
3991 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3992   llvm::GlobalValue *F =
3993       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3994 
3995   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3996                                         llvm::Type::getInt8PtrTy(VMContext));
3997 }
3998 
3999 static const FunctionDecl *
4000 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4001   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4002   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4003 
4004   IdentifierInfo &CII = C.Idents.get(Name);
4005   for (const auto *Result : DC->lookup(&CII))
4006     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4007       return FD;
4008 
4009   if (!C.getLangOpts().CPlusPlus)
4010     return nullptr;
4011 
4012   // Demangle the premangled name from getTerminateFn()
4013   IdentifierInfo &CXXII =
4014       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4015           ? C.Idents.get("terminate")
4016           : C.Idents.get(Name);
4017 
4018   for (const auto &N : {"__cxxabiv1", "std"}) {
4019     IdentifierInfo &NS = C.Idents.get(N);
4020     for (const auto *Result : DC->lookup(&NS)) {
4021       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4022       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4023         for (const auto *Result : LSD->lookup(&NS))
4024           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4025             break;
4026 
4027       if (ND)
4028         for (const auto *Result : ND->lookup(&CXXII))
4029           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4030             return FD;
4031     }
4032   }
4033 
4034   return nullptr;
4035 }
4036 
4037 /// CreateRuntimeFunction - Create a new runtime function with the specified
4038 /// type and name.
4039 llvm::FunctionCallee
4040 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4041                                      llvm::AttributeList ExtraAttrs, bool Local,
4042                                      bool AssumeConvergent) {
4043   if (AssumeConvergent) {
4044     ExtraAttrs =
4045         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4046   }
4047 
4048   llvm::Constant *C =
4049       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4050                               /*DontDefer=*/false, /*IsThunk=*/false,
4051                               ExtraAttrs);
4052 
4053   if (auto *F = dyn_cast<llvm::Function>(C)) {
4054     if (F->empty()) {
4055       F->setCallingConv(getRuntimeCC());
4056 
4057       // In Windows Itanium environments, try to mark runtime functions
4058       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4059       // will link their standard library statically or dynamically. Marking
4060       // functions imported when they are not imported can cause linker errors
4061       // and warnings.
4062       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4063           !getCodeGenOpts().LTOVisibilityPublicStd) {
4064         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4065         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4066           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4067           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4068         }
4069       }
4070       setDSOLocal(F);
4071     }
4072   }
4073 
4074   return {FTy, C};
4075 }
4076 
4077 /// isTypeConstant - Determine whether an object of this type can be emitted
4078 /// as a constant.
4079 ///
4080 /// If ExcludeCtor is true, the duration when the object's constructor runs
4081 /// will not be considered. The caller will need to verify that the object is
4082 /// not written to during its construction.
4083 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4084   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4085     return false;
4086 
4087   if (Context.getLangOpts().CPlusPlus) {
4088     if (const CXXRecordDecl *Record
4089           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4090       return ExcludeCtor && !Record->hasMutableFields() &&
4091              Record->hasTrivialDestructor();
4092   }
4093 
4094   return true;
4095 }
4096 
4097 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4098 /// create and return an llvm GlobalVariable with the specified type and address
4099 /// space. If there is something in the module with the specified name, return
4100 /// it potentially bitcasted to the right type.
4101 ///
4102 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4103 /// to set the attributes on the global when it is first created.
4104 ///
4105 /// If IsForDefinition is true, it is guaranteed that an actual global with
4106 /// type Ty will be returned, not conversion of a variable with the same
4107 /// mangled name but some other type.
4108 llvm::Constant *
4109 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4110                                      LangAS AddrSpace, const VarDecl *D,
4111                                      ForDefinition_t IsForDefinition) {
4112   // Lookup the entry, lazily creating it if necessary.
4113   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4114   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4115   if (Entry) {
4116     if (WeakRefReferences.erase(Entry)) {
4117       if (D && !D->hasAttr<WeakAttr>())
4118         Entry->setLinkage(llvm::Function::ExternalLinkage);
4119     }
4120 
4121     // Handle dropped DLL attributes.
4122     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4123         !shouldMapVisibilityToDLLExport(D))
4124       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4125 
4126     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4127       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4128 
4129     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4130       return Entry;
4131 
4132     // If there are two attempts to define the same mangled name, issue an
4133     // error.
4134     if (IsForDefinition && !Entry->isDeclaration()) {
4135       GlobalDecl OtherGD;
4136       const VarDecl *OtherD;
4137 
4138       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4139       // to make sure that we issue an error only once.
4140       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4141           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4142           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4143           OtherD->hasInit() &&
4144           DiagnosedConflictingDefinitions.insert(D).second) {
4145         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4146             << MangledName;
4147         getDiags().Report(OtherGD.getDecl()->getLocation(),
4148                           diag::note_previous_definition);
4149       }
4150     }
4151 
4152     // Make sure the result is of the correct type.
4153     if (Entry->getType()->getAddressSpace() != TargetAS) {
4154       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4155                                                   Ty->getPointerTo(TargetAS));
4156     }
4157 
4158     // (If global is requested for a definition, we always need to create a new
4159     // global, not just return a bitcast.)
4160     if (!IsForDefinition)
4161       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4162   }
4163 
4164   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4165 
4166   auto *GV = new llvm::GlobalVariable(
4167       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4168       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4169       getContext().getTargetAddressSpace(DAddrSpace));
4170 
4171   // If we already created a global with the same mangled name (but different
4172   // type) before, take its name and remove it from its parent.
4173   if (Entry) {
4174     GV->takeName(Entry);
4175 
4176     if (!Entry->use_empty()) {
4177       llvm::Constant *NewPtrForOldDecl =
4178           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4179       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4180     }
4181 
4182     Entry->eraseFromParent();
4183   }
4184 
4185   // This is the first use or definition of a mangled name.  If there is a
4186   // deferred decl with this name, remember that we need to emit it at the end
4187   // of the file.
4188   auto DDI = DeferredDecls.find(MangledName);
4189   if (DDI != DeferredDecls.end()) {
4190     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4191     // list, and remove it from DeferredDecls (since we don't need it anymore).
4192     addDeferredDeclToEmit(DDI->second);
4193     DeferredDecls.erase(DDI);
4194   }
4195 
4196   // Handle things which are present even on external declarations.
4197   if (D) {
4198     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4199       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4200 
4201     // FIXME: This code is overly simple and should be merged with other global
4202     // handling.
4203     GV->setConstant(isTypeConstant(D->getType(), false));
4204 
4205     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4206 
4207     setLinkageForGV(GV, D);
4208 
4209     if (D->getTLSKind()) {
4210       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4211         CXXThreadLocals.push_back(D);
4212       setTLSMode(GV, *D);
4213     }
4214 
4215     setGVProperties(GV, D);
4216 
4217     // If required by the ABI, treat declarations of static data members with
4218     // inline initializers as definitions.
4219     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4220       EmitGlobalVarDefinition(D);
4221     }
4222 
4223     // Emit section information for extern variables.
4224     if (D->hasExternalStorage()) {
4225       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4226         GV->setSection(SA->getName());
4227     }
4228 
4229     // Handle XCore specific ABI requirements.
4230     if (getTriple().getArch() == llvm::Triple::xcore &&
4231         D->getLanguageLinkage() == CLanguageLinkage &&
4232         D->getType().isConstant(Context) &&
4233         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4234       GV->setSection(".cp.rodata");
4235 
4236     // Check if we a have a const declaration with an initializer, we may be
4237     // able to emit it as available_externally to expose it's value to the
4238     // optimizer.
4239     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4240         D->getType().isConstQualified() && !GV->hasInitializer() &&
4241         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4242       const auto *Record =
4243           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4244       bool HasMutableFields = Record && Record->hasMutableFields();
4245       if (!HasMutableFields) {
4246         const VarDecl *InitDecl;
4247         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4248         if (InitExpr) {
4249           ConstantEmitter emitter(*this);
4250           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4251           if (Init) {
4252             auto *InitType = Init->getType();
4253             if (GV->getValueType() != InitType) {
4254               // The type of the initializer does not match the definition.
4255               // This happens when an initializer has a different type from
4256               // the type of the global (because of padding at the end of a
4257               // structure for instance).
4258               GV->setName(StringRef());
4259               // Make a new global with the correct type, this is now guaranteed
4260               // to work.
4261               auto *NewGV = cast<llvm::GlobalVariable>(
4262                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4263                       ->stripPointerCasts());
4264 
4265               // Erase the old global, since it is no longer used.
4266               GV->eraseFromParent();
4267               GV = NewGV;
4268             } else {
4269               GV->setInitializer(Init);
4270               GV->setConstant(true);
4271               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4272             }
4273             emitter.finalize(GV);
4274           }
4275         }
4276       }
4277     }
4278   }
4279 
4280   if (GV->isDeclaration()) {
4281     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4282     // External HIP managed variables needed to be recorded for transformation
4283     // in both device and host compilations.
4284     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4285         D->hasExternalStorage())
4286       getCUDARuntime().handleVarRegistration(D, *GV);
4287   }
4288 
4289   LangAS ExpectedAS =
4290       D ? D->getType().getAddressSpace()
4291         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4292   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4293   if (DAddrSpace != ExpectedAS) {
4294     return getTargetCodeGenInfo().performAddrSpaceCast(
4295         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4296   }
4297 
4298   return GV;
4299 }
4300 
4301 llvm::Constant *
4302 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4303   const Decl *D = GD.getDecl();
4304 
4305   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4306     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4307                                 /*DontDefer=*/false, IsForDefinition);
4308 
4309   if (isa<CXXMethodDecl>(D)) {
4310     auto FInfo =
4311         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4312     auto Ty = getTypes().GetFunctionType(*FInfo);
4313     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4314                              IsForDefinition);
4315   }
4316 
4317   if (isa<FunctionDecl>(D)) {
4318     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4319     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4320     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4321                              IsForDefinition);
4322   }
4323 
4324   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4325 }
4326 
4327 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4328     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4329     unsigned Alignment) {
4330   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4331   llvm::GlobalVariable *OldGV = nullptr;
4332 
4333   if (GV) {
4334     // Check if the variable has the right type.
4335     if (GV->getValueType() == Ty)
4336       return GV;
4337 
4338     // Because C++ name mangling, the only way we can end up with an already
4339     // existing global with the same name is if it has been declared extern "C".
4340     assert(GV->isDeclaration() && "Declaration has wrong type!");
4341     OldGV = GV;
4342   }
4343 
4344   // Create a new variable.
4345   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4346                                 Linkage, nullptr, Name);
4347 
4348   if (OldGV) {
4349     // Replace occurrences of the old variable if needed.
4350     GV->takeName(OldGV);
4351 
4352     if (!OldGV->use_empty()) {
4353       llvm::Constant *NewPtrForOldDecl =
4354       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4355       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4356     }
4357 
4358     OldGV->eraseFromParent();
4359   }
4360 
4361   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4362       !GV->hasAvailableExternallyLinkage())
4363     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4364 
4365   GV->setAlignment(llvm::MaybeAlign(Alignment));
4366 
4367   return GV;
4368 }
4369 
4370 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4371 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4372 /// then it will be created with the specified type instead of whatever the
4373 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4374 /// that an actual global with type Ty will be returned, not conversion of a
4375 /// variable with the same mangled name but some other type.
4376 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4377                                                   llvm::Type *Ty,
4378                                            ForDefinition_t IsForDefinition) {
4379   assert(D->hasGlobalStorage() && "Not a global variable");
4380   QualType ASTTy = D->getType();
4381   if (!Ty)
4382     Ty = getTypes().ConvertTypeForMem(ASTTy);
4383 
4384   StringRef MangledName = getMangledName(D);
4385   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4386                                IsForDefinition);
4387 }
4388 
4389 /// CreateRuntimeVariable - Create a new runtime global variable with the
4390 /// specified type and name.
4391 llvm::Constant *
4392 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4393                                      StringRef Name) {
4394   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4395                                                        : LangAS::Default;
4396   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4397   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4398   return Ret;
4399 }
4400 
4401 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4402   assert(!D->getInit() && "Cannot emit definite definitions here!");
4403 
4404   StringRef MangledName = getMangledName(D);
4405   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4406 
4407   // We already have a definition, not declaration, with the same mangled name.
4408   // Emitting of declaration is not required (and actually overwrites emitted
4409   // definition).
4410   if (GV && !GV->isDeclaration())
4411     return;
4412 
4413   // If we have not seen a reference to this variable yet, place it into the
4414   // deferred declarations table to be emitted if needed later.
4415   if (!MustBeEmitted(D) && !GV) {
4416       DeferredDecls[MangledName] = D;
4417       return;
4418   }
4419 
4420   // The tentative definition is the only definition.
4421   EmitGlobalVarDefinition(D);
4422 }
4423 
4424 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4425   EmitExternalVarDeclaration(D);
4426 }
4427 
4428 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4429   return Context.toCharUnitsFromBits(
4430       getDataLayout().getTypeStoreSizeInBits(Ty));
4431 }
4432 
4433 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4434   if (LangOpts.OpenCL) {
4435     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4436     assert(AS == LangAS::opencl_global ||
4437            AS == LangAS::opencl_global_device ||
4438            AS == LangAS::opencl_global_host ||
4439            AS == LangAS::opencl_constant ||
4440            AS == LangAS::opencl_local ||
4441            AS >= LangAS::FirstTargetAddressSpace);
4442     return AS;
4443   }
4444 
4445   if (LangOpts.SYCLIsDevice &&
4446       (!D || D->getType().getAddressSpace() == LangAS::Default))
4447     return LangAS::sycl_global;
4448 
4449   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4450     if (D && D->hasAttr<CUDAConstantAttr>())
4451       return LangAS::cuda_constant;
4452     else if (D && D->hasAttr<CUDASharedAttr>())
4453       return LangAS::cuda_shared;
4454     else if (D && D->hasAttr<CUDADeviceAttr>())
4455       return LangAS::cuda_device;
4456     else if (D && D->getType().isConstQualified())
4457       return LangAS::cuda_constant;
4458     else
4459       return LangAS::cuda_device;
4460   }
4461 
4462   if (LangOpts.OpenMP) {
4463     LangAS AS;
4464     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4465       return AS;
4466   }
4467   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4468 }
4469 
4470 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4471   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4472   if (LangOpts.OpenCL)
4473     return LangAS::opencl_constant;
4474   if (LangOpts.SYCLIsDevice)
4475     return LangAS::sycl_global;
4476   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4477     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4478     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4479     // with OpVariable instructions with Generic storage class which is not
4480     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4481     // UniformConstant storage class is not viable as pointers to it may not be
4482     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4483     return LangAS::cuda_device;
4484   if (auto AS = getTarget().getConstantAddressSpace())
4485     return *AS;
4486   return LangAS::Default;
4487 }
4488 
4489 // In address space agnostic languages, string literals are in default address
4490 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4491 // emitted in constant address space in LLVM IR. To be consistent with other
4492 // parts of AST, string literal global variables in constant address space
4493 // need to be casted to default address space before being put into address
4494 // map and referenced by other part of CodeGen.
4495 // In OpenCL, string literals are in constant address space in AST, therefore
4496 // they should not be casted to default address space.
4497 static llvm::Constant *
4498 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4499                                        llvm::GlobalVariable *GV) {
4500   llvm::Constant *Cast = GV;
4501   if (!CGM.getLangOpts().OpenCL) {
4502     auto AS = CGM.GetGlobalConstantAddressSpace();
4503     if (AS != LangAS::Default)
4504       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4505           CGM, GV, AS, LangAS::Default,
4506           GV->getValueType()->getPointerTo(
4507               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4508   }
4509   return Cast;
4510 }
4511 
4512 template<typename SomeDecl>
4513 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4514                                                llvm::GlobalValue *GV) {
4515   if (!getLangOpts().CPlusPlus)
4516     return;
4517 
4518   // Must have 'used' attribute, or else inline assembly can't rely on
4519   // the name existing.
4520   if (!D->template hasAttr<UsedAttr>())
4521     return;
4522 
4523   // Must have internal linkage and an ordinary name.
4524   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4525     return;
4526 
4527   // Must be in an extern "C" context. Entities declared directly within
4528   // a record are not extern "C" even if the record is in such a context.
4529   const SomeDecl *First = D->getFirstDecl();
4530   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4531     return;
4532 
4533   // OK, this is an internal linkage entity inside an extern "C" linkage
4534   // specification. Make a note of that so we can give it the "expected"
4535   // mangled name if nothing else is using that name.
4536   std::pair<StaticExternCMap::iterator, bool> R =
4537       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4538 
4539   // If we have multiple internal linkage entities with the same name
4540   // in extern "C" regions, none of them gets that name.
4541   if (!R.second)
4542     R.first->second = nullptr;
4543 }
4544 
4545 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4546   if (!CGM.supportsCOMDAT())
4547     return false;
4548 
4549   if (D.hasAttr<SelectAnyAttr>())
4550     return true;
4551 
4552   GVALinkage Linkage;
4553   if (auto *VD = dyn_cast<VarDecl>(&D))
4554     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4555   else
4556     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4557 
4558   switch (Linkage) {
4559   case GVA_Internal:
4560   case GVA_AvailableExternally:
4561   case GVA_StrongExternal:
4562     return false;
4563   case GVA_DiscardableODR:
4564   case GVA_StrongODR:
4565     return true;
4566   }
4567   llvm_unreachable("No such linkage");
4568 }
4569 
4570 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4571                                           llvm::GlobalObject &GO) {
4572   if (!shouldBeInCOMDAT(*this, D))
4573     return;
4574   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4575 }
4576 
4577 /// Pass IsTentative as true if you want to create a tentative definition.
4578 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4579                                             bool IsTentative) {
4580   // OpenCL global variables of sampler type are translated to function calls,
4581   // therefore no need to be translated.
4582   QualType ASTTy = D->getType();
4583   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4584     return;
4585 
4586   // If this is OpenMP device, check if it is legal to emit this global
4587   // normally.
4588   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4589       OpenMPRuntime->emitTargetGlobalVariable(D))
4590     return;
4591 
4592   llvm::TrackingVH<llvm::Constant> Init;
4593   bool NeedsGlobalCtor = false;
4594   bool NeedsGlobalDtor =
4595       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4596 
4597   const VarDecl *InitDecl;
4598   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4599 
4600   Optional<ConstantEmitter> emitter;
4601 
4602   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4603   // as part of their declaration."  Sema has already checked for
4604   // error cases, so we just need to set Init to UndefValue.
4605   bool IsCUDASharedVar =
4606       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4607   // Shadows of initialized device-side global variables are also left
4608   // undefined.
4609   // Managed Variables should be initialized on both host side and device side.
4610   bool IsCUDAShadowVar =
4611       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4612       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4613        D->hasAttr<CUDASharedAttr>());
4614   bool IsCUDADeviceShadowVar =
4615       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4616       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4617        D->getType()->isCUDADeviceBuiltinTextureType());
4618   if (getLangOpts().CUDA &&
4619       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4620     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4621   else if (D->hasAttr<LoaderUninitializedAttr>())
4622     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4623   else if (!InitExpr) {
4624     // This is a tentative definition; tentative definitions are
4625     // implicitly initialized with { 0 }.
4626     //
4627     // Note that tentative definitions are only emitted at the end of
4628     // a translation unit, so they should never have incomplete
4629     // type. In addition, EmitTentativeDefinition makes sure that we
4630     // never attempt to emit a tentative definition if a real one
4631     // exists. A use may still exists, however, so we still may need
4632     // to do a RAUW.
4633     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4634     Init = EmitNullConstant(D->getType());
4635   } else {
4636     initializedGlobalDecl = GlobalDecl(D);
4637     emitter.emplace(*this);
4638     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4639     if (!Initializer) {
4640       QualType T = InitExpr->getType();
4641       if (D->getType()->isReferenceType())
4642         T = D->getType();
4643 
4644       if (getLangOpts().CPlusPlus) {
4645         if (InitDecl->hasFlexibleArrayInit(getContext()))
4646           ErrorUnsupported(D, "flexible array initializer");
4647         Init = EmitNullConstant(T);
4648         NeedsGlobalCtor = true;
4649       } else {
4650         ErrorUnsupported(D, "static initializer");
4651         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4652       }
4653     } else {
4654       Init = Initializer;
4655       // We don't need an initializer, so remove the entry for the delayed
4656       // initializer position (just in case this entry was delayed) if we
4657       // also don't need to register a destructor.
4658       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4659         DelayedCXXInitPosition.erase(D);
4660 
4661 #ifndef NDEBUG
4662       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4663                           InitDecl->getFlexibleArrayInitChars(getContext());
4664       CharUnits CstSize = CharUnits::fromQuantity(
4665           getDataLayout().getTypeAllocSize(Init->getType()));
4666       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4667 #endif
4668     }
4669   }
4670 
4671   llvm::Type* InitType = Init->getType();
4672   llvm::Constant *Entry =
4673       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4674 
4675   // Strip off pointer casts if we got them.
4676   Entry = Entry->stripPointerCasts();
4677 
4678   // Entry is now either a Function or GlobalVariable.
4679   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4680 
4681   // We have a definition after a declaration with the wrong type.
4682   // We must make a new GlobalVariable* and update everything that used OldGV
4683   // (a declaration or tentative definition) with the new GlobalVariable*
4684   // (which will be a definition).
4685   //
4686   // This happens if there is a prototype for a global (e.g.
4687   // "extern int x[];") and then a definition of a different type (e.g.
4688   // "int x[10];"). This also happens when an initializer has a different type
4689   // from the type of the global (this happens with unions).
4690   if (!GV || GV->getValueType() != InitType ||
4691       GV->getType()->getAddressSpace() !=
4692           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4693 
4694     // Move the old entry aside so that we'll create a new one.
4695     Entry->setName(StringRef());
4696 
4697     // Make a new global with the correct type, this is now guaranteed to work.
4698     GV = cast<llvm::GlobalVariable>(
4699         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4700             ->stripPointerCasts());
4701 
4702     // Replace all uses of the old global with the new global
4703     llvm::Constant *NewPtrForOldDecl =
4704         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4705                                                              Entry->getType());
4706     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4707 
4708     // Erase the old global, since it is no longer used.
4709     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4710   }
4711 
4712   MaybeHandleStaticInExternC(D, GV);
4713 
4714   if (D->hasAttr<AnnotateAttr>())
4715     AddGlobalAnnotations(D, GV);
4716 
4717   // Set the llvm linkage type as appropriate.
4718   llvm::GlobalValue::LinkageTypes Linkage =
4719       getLLVMLinkageVarDefinition(D, GV->isConstant());
4720 
4721   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4722   // the device. [...]"
4723   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4724   // __device__, declares a variable that: [...]
4725   // Is accessible from all the threads within the grid and from the host
4726   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4727   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4728   if (GV && LangOpts.CUDA) {
4729     if (LangOpts.CUDAIsDevice) {
4730       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4731           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4732            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4733            D->getType()->isCUDADeviceBuiltinTextureType()))
4734         GV->setExternallyInitialized(true);
4735     } else {
4736       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4737     }
4738     getCUDARuntime().handleVarRegistration(D, *GV);
4739   }
4740 
4741   GV->setInitializer(Init);
4742   if (emitter)
4743     emitter->finalize(GV);
4744 
4745   // If it is safe to mark the global 'constant', do so now.
4746   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4747                   isTypeConstant(D->getType(), true));
4748 
4749   // If it is in a read-only section, mark it 'constant'.
4750   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4751     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4752     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4753       GV->setConstant(true);
4754   }
4755 
4756   CharUnits AlignVal = getContext().getDeclAlign(D);
4757   // Check for alignment specifed in an 'omp allocate' directive.
4758   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4759           getOMPAllocateAlignment(D))
4760     AlignVal = *AlignValFromAllocate;
4761   GV->setAlignment(AlignVal.getAsAlign());
4762 
4763   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4764   // function is only defined alongside the variable, not also alongside
4765   // callers. Normally, all accesses to a thread_local go through the
4766   // thread-wrapper in order to ensure initialization has occurred, underlying
4767   // variable will never be used other than the thread-wrapper, so it can be
4768   // converted to internal linkage.
4769   //
4770   // However, if the variable has the 'constinit' attribute, it _can_ be
4771   // referenced directly, without calling the thread-wrapper, so the linkage
4772   // must not be changed.
4773   //
4774   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4775   // weak or linkonce, the de-duplication semantics are important to preserve,
4776   // so we don't change the linkage.
4777   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4778       Linkage == llvm::GlobalValue::ExternalLinkage &&
4779       Context.getTargetInfo().getTriple().isOSDarwin() &&
4780       !D->hasAttr<ConstInitAttr>())
4781     Linkage = llvm::GlobalValue::InternalLinkage;
4782 
4783   GV->setLinkage(Linkage);
4784   if (D->hasAttr<DLLImportAttr>())
4785     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4786   else if (D->hasAttr<DLLExportAttr>())
4787     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4788   else
4789     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4790 
4791   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4792     // common vars aren't constant even if declared const.
4793     GV->setConstant(false);
4794     // Tentative definition of global variables may be initialized with
4795     // non-zero null pointers. In this case they should have weak linkage
4796     // since common linkage must have zero initializer and must not have
4797     // explicit section therefore cannot have non-zero initial value.
4798     if (!GV->getInitializer()->isNullValue())
4799       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4800   }
4801 
4802   setNonAliasAttributes(D, GV);
4803 
4804   if (D->getTLSKind() && !GV->isThreadLocal()) {
4805     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4806       CXXThreadLocals.push_back(D);
4807     setTLSMode(GV, *D);
4808   }
4809 
4810   maybeSetTrivialComdat(*D, *GV);
4811 
4812   // Emit the initializer function if necessary.
4813   if (NeedsGlobalCtor || NeedsGlobalDtor)
4814     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4815 
4816   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4817 
4818   // Emit global variable debug information.
4819   if (CGDebugInfo *DI = getModuleDebugInfo())
4820     if (getCodeGenOpts().hasReducedDebugInfo())
4821       DI->EmitGlobalVariable(GV, D);
4822 }
4823 
4824 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4825   if (CGDebugInfo *DI = getModuleDebugInfo())
4826     if (getCodeGenOpts().hasReducedDebugInfo()) {
4827       QualType ASTTy = D->getType();
4828       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4829       llvm::Constant *GV =
4830           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4831       DI->EmitExternalVariable(
4832           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4833     }
4834 }
4835 
4836 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4837                                       CodeGenModule &CGM, const VarDecl *D,
4838                                       bool NoCommon) {
4839   // Don't give variables common linkage if -fno-common was specified unless it
4840   // was overridden by a NoCommon attribute.
4841   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4842     return true;
4843 
4844   // C11 6.9.2/2:
4845   //   A declaration of an identifier for an object that has file scope without
4846   //   an initializer, and without a storage-class specifier or with the
4847   //   storage-class specifier static, constitutes a tentative definition.
4848   if (D->getInit() || D->hasExternalStorage())
4849     return true;
4850 
4851   // A variable cannot be both common and exist in a section.
4852   if (D->hasAttr<SectionAttr>())
4853     return true;
4854 
4855   // A variable cannot be both common and exist in a section.
4856   // We don't try to determine which is the right section in the front-end.
4857   // If no specialized section name is applicable, it will resort to default.
4858   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4859       D->hasAttr<PragmaClangDataSectionAttr>() ||
4860       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4861       D->hasAttr<PragmaClangRodataSectionAttr>())
4862     return true;
4863 
4864   // Thread local vars aren't considered common linkage.
4865   if (D->getTLSKind())
4866     return true;
4867 
4868   // Tentative definitions marked with WeakImportAttr are true definitions.
4869   if (D->hasAttr<WeakImportAttr>())
4870     return true;
4871 
4872   // A variable cannot be both common and exist in a comdat.
4873   if (shouldBeInCOMDAT(CGM, *D))
4874     return true;
4875 
4876   // Declarations with a required alignment do not have common linkage in MSVC
4877   // mode.
4878   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4879     if (D->hasAttr<AlignedAttr>())
4880       return true;
4881     QualType VarType = D->getType();
4882     if (Context.isAlignmentRequired(VarType))
4883       return true;
4884 
4885     if (const auto *RT = VarType->getAs<RecordType>()) {
4886       const RecordDecl *RD = RT->getDecl();
4887       for (const FieldDecl *FD : RD->fields()) {
4888         if (FD->isBitField())
4889           continue;
4890         if (FD->hasAttr<AlignedAttr>())
4891           return true;
4892         if (Context.isAlignmentRequired(FD->getType()))
4893           return true;
4894       }
4895     }
4896   }
4897 
4898   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4899   // common symbols, so symbols with greater alignment requirements cannot be
4900   // common.
4901   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4902   // alignments for common symbols via the aligncomm directive, so this
4903   // restriction only applies to MSVC environments.
4904   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4905       Context.getTypeAlignIfKnown(D->getType()) >
4906           Context.toBits(CharUnits::fromQuantity(32)))
4907     return true;
4908 
4909   return false;
4910 }
4911 
4912 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4913     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4914   if (Linkage == GVA_Internal)
4915     return llvm::Function::InternalLinkage;
4916 
4917   if (D->hasAttr<WeakAttr>())
4918     return llvm::GlobalVariable::WeakAnyLinkage;
4919 
4920   if (const auto *FD = D->getAsFunction())
4921     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4922       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4923 
4924   // We are guaranteed to have a strong definition somewhere else,
4925   // so we can use available_externally linkage.
4926   if (Linkage == GVA_AvailableExternally)
4927     return llvm::GlobalValue::AvailableExternallyLinkage;
4928 
4929   // Note that Apple's kernel linker doesn't support symbol
4930   // coalescing, so we need to avoid linkonce and weak linkages there.
4931   // Normally, this means we just map to internal, but for explicit
4932   // instantiations we'll map to external.
4933 
4934   // In C++, the compiler has to emit a definition in every translation unit
4935   // that references the function.  We should use linkonce_odr because
4936   // a) if all references in this translation unit are optimized away, we
4937   // don't need to codegen it.  b) if the function persists, it needs to be
4938   // merged with other definitions. c) C++ has the ODR, so we know the
4939   // definition is dependable.
4940   if (Linkage == GVA_DiscardableODR)
4941     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4942                                             : llvm::Function::InternalLinkage;
4943 
4944   // An explicit instantiation of a template has weak linkage, since
4945   // explicit instantiations can occur in multiple translation units
4946   // and must all be equivalent. However, we are not allowed to
4947   // throw away these explicit instantiations.
4948   //
4949   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4950   // so say that CUDA templates are either external (for kernels) or internal.
4951   // This lets llvm perform aggressive inter-procedural optimizations. For
4952   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4953   // therefore we need to follow the normal linkage paradigm.
4954   if (Linkage == GVA_StrongODR) {
4955     if (getLangOpts().AppleKext)
4956       return llvm::Function::ExternalLinkage;
4957     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4958         !getLangOpts().GPURelocatableDeviceCode)
4959       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4960                                           : llvm::Function::InternalLinkage;
4961     return llvm::Function::WeakODRLinkage;
4962   }
4963 
4964   // C++ doesn't have tentative definitions and thus cannot have common
4965   // linkage.
4966   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4967       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4968                                  CodeGenOpts.NoCommon))
4969     return llvm::GlobalVariable::CommonLinkage;
4970 
4971   // selectany symbols are externally visible, so use weak instead of
4972   // linkonce.  MSVC optimizes away references to const selectany globals, so
4973   // all definitions should be the same and ODR linkage should be used.
4974   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4975   if (D->hasAttr<SelectAnyAttr>())
4976     return llvm::GlobalVariable::WeakODRLinkage;
4977 
4978   // Otherwise, we have strong external linkage.
4979   assert(Linkage == GVA_StrongExternal);
4980   return llvm::GlobalVariable::ExternalLinkage;
4981 }
4982 
4983 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4984     const VarDecl *VD, bool IsConstant) {
4985   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4986   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4987 }
4988 
4989 /// Replace the uses of a function that was declared with a non-proto type.
4990 /// We want to silently drop extra arguments from call sites
4991 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4992                                           llvm::Function *newFn) {
4993   // Fast path.
4994   if (old->use_empty()) return;
4995 
4996   llvm::Type *newRetTy = newFn->getReturnType();
4997   SmallVector<llvm::Value*, 4> newArgs;
4998 
4999   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5000          ui != ue; ) {
5001     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5002     llvm::User *user = use->getUser();
5003 
5004     // Recognize and replace uses of bitcasts.  Most calls to
5005     // unprototyped functions will use bitcasts.
5006     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5007       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5008         replaceUsesOfNonProtoConstant(bitcast, newFn);
5009       continue;
5010     }
5011 
5012     // Recognize calls to the function.
5013     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5014     if (!callSite) continue;
5015     if (!callSite->isCallee(&*use))
5016       continue;
5017 
5018     // If the return types don't match exactly, then we can't
5019     // transform this call unless it's dead.
5020     if (callSite->getType() != newRetTy && !callSite->use_empty())
5021       continue;
5022 
5023     // Get the call site's attribute list.
5024     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5025     llvm::AttributeList oldAttrs = callSite->getAttributes();
5026 
5027     // If the function was passed too few arguments, don't transform.
5028     unsigned newNumArgs = newFn->arg_size();
5029     if (callSite->arg_size() < newNumArgs)
5030       continue;
5031 
5032     // If extra arguments were passed, we silently drop them.
5033     // If any of the types mismatch, we don't transform.
5034     unsigned argNo = 0;
5035     bool dontTransform = false;
5036     for (llvm::Argument &A : newFn->args()) {
5037       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5038         dontTransform = true;
5039         break;
5040       }
5041 
5042       // Add any parameter attributes.
5043       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5044       argNo++;
5045     }
5046     if (dontTransform)
5047       continue;
5048 
5049     // Okay, we can transform this.  Create the new call instruction and copy
5050     // over the required information.
5051     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5052 
5053     // Copy over any operand bundles.
5054     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5055     callSite->getOperandBundlesAsDefs(newBundles);
5056 
5057     llvm::CallBase *newCall;
5058     if (isa<llvm::CallInst>(callSite)) {
5059       newCall =
5060           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5061     } else {
5062       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5063       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5064                                          oldInvoke->getUnwindDest(), newArgs,
5065                                          newBundles, "", callSite);
5066     }
5067     newArgs.clear(); // for the next iteration
5068 
5069     if (!newCall->getType()->isVoidTy())
5070       newCall->takeName(callSite);
5071     newCall->setAttributes(
5072         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5073                                  oldAttrs.getRetAttrs(), newArgAttrs));
5074     newCall->setCallingConv(callSite->getCallingConv());
5075 
5076     // Finally, remove the old call, replacing any uses with the new one.
5077     if (!callSite->use_empty())
5078       callSite->replaceAllUsesWith(newCall);
5079 
5080     // Copy debug location attached to CI.
5081     if (callSite->getDebugLoc())
5082       newCall->setDebugLoc(callSite->getDebugLoc());
5083 
5084     callSite->eraseFromParent();
5085   }
5086 }
5087 
5088 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5089 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5090 /// existing call uses of the old function in the module, this adjusts them to
5091 /// call the new function directly.
5092 ///
5093 /// This is not just a cleanup: the always_inline pass requires direct calls to
5094 /// functions to be able to inline them.  If there is a bitcast in the way, it
5095 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5096 /// run at -O0.
5097 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5098                                                       llvm::Function *NewFn) {
5099   // If we're redefining a global as a function, don't transform it.
5100   if (!isa<llvm::Function>(Old)) return;
5101 
5102   replaceUsesOfNonProtoConstant(Old, NewFn);
5103 }
5104 
5105 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5106   auto DK = VD->isThisDeclarationADefinition();
5107   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5108     return;
5109 
5110   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5111   // If we have a definition, this might be a deferred decl. If the
5112   // instantiation is explicit, make sure we emit it at the end.
5113   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5114     GetAddrOfGlobalVar(VD);
5115 
5116   EmitTopLevelDecl(VD);
5117 }
5118 
5119 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5120                                                  llvm::GlobalValue *GV) {
5121   const auto *D = cast<FunctionDecl>(GD.getDecl());
5122 
5123   // Compute the function info and LLVM type.
5124   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5125   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5126 
5127   // Get or create the prototype for the function.
5128   if (!GV || (GV->getValueType() != Ty))
5129     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5130                                                    /*DontDefer=*/true,
5131                                                    ForDefinition));
5132 
5133   // Already emitted.
5134   if (!GV->isDeclaration())
5135     return;
5136 
5137   // We need to set linkage and visibility on the function before
5138   // generating code for it because various parts of IR generation
5139   // want to propagate this information down (e.g. to local static
5140   // declarations).
5141   auto *Fn = cast<llvm::Function>(GV);
5142   setFunctionLinkage(GD, Fn);
5143 
5144   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5145   setGVProperties(Fn, GD);
5146 
5147   MaybeHandleStaticInExternC(D, Fn);
5148 
5149   maybeSetTrivialComdat(*D, *Fn);
5150 
5151   // Set CodeGen attributes that represent floating point environment.
5152   setLLVMFunctionFEnvAttributes(D, Fn);
5153 
5154   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5155 
5156   setNonAliasAttributes(GD, Fn);
5157   SetLLVMFunctionAttributesForDefinition(D, Fn);
5158 
5159   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5160     AddGlobalCtor(Fn, CA->getPriority());
5161   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5162     AddGlobalDtor(Fn, DA->getPriority(), true);
5163   if (D->hasAttr<AnnotateAttr>())
5164     AddGlobalAnnotations(D, Fn);
5165 }
5166 
5167 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5168   const auto *D = cast<ValueDecl>(GD.getDecl());
5169   const AliasAttr *AA = D->getAttr<AliasAttr>();
5170   assert(AA && "Not an alias?");
5171 
5172   StringRef MangledName = getMangledName(GD);
5173 
5174   if (AA->getAliasee() == MangledName) {
5175     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5176     return;
5177   }
5178 
5179   // If there is a definition in the module, then it wins over the alias.
5180   // This is dubious, but allow it to be safe.  Just ignore the alias.
5181   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5182   if (Entry && !Entry->isDeclaration())
5183     return;
5184 
5185   Aliases.push_back(GD);
5186 
5187   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5188 
5189   // Create a reference to the named value.  This ensures that it is emitted
5190   // if a deferred decl.
5191   llvm::Constant *Aliasee;
5192   llvm::GlobalValue::LinkageTypes LT;
5193   if (isa<llvm::FunctionType>(DeclTy)) {
5194     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5195                                       /*ForVTable=*/false);
5196     LT = getFunctionLinkage(GD);
5197   } else {
5198     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5199                                     /*D=*/nullptr);
5200     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5201       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5202     else
5203       LT = getFunctionLinkage(GD);
5204   }
5205 
5206   // Create the new alias itself, but don't set a name yet.
5207   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5208   auto *GA =
5209       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5210 
5211   if (Entry) {
5212     if (GA->getAliasee() == Entry) {
5213       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5214       return;
5215     }
5216 
5217     assert(Entry->isDeclaration());
5218 
5219     // If there is a declaration in the module, then we had an extern followed
5220     // by the alias, as in:
5221     //   extern int test6();
5222     //   ...
5223     //   int test6() __attribute__((alias("test7")));
5224     //
5225     // Remove it and replace uses of it with the alias.
5226     GA->takeName(Entry);
5227 
5228     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5229                                                           Entry->getType()));
5230     Entry->eraseFromParent();
5231   } else {
5232     GA->setName(MangledName);
5233   }
5234 
5235   // Set attributes which are particular to an alias; this is a
5236   // specialization of the attributes which may be set on a global
5237   // variable/function.
5238   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5239       D->isWeakImported()) {
5240     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5241   }
5242 
5243   if (const auto *VD = dyn_cast<VarDecl>(D))
5244     if (VD->getTLSKind())
5245       setTLSMode(GA, *VD);
5246 
5247   SetCommonAttributes(GD, GA);
5248 
5249   // Emit global alias debug information.
5250   if (isa<VarDecl>(D))
5251     if (CGDebugInfo *DI = getModuleDebugInfo())
5252       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5253 }
5254 
5255 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5256   const auto *D = cast<ValueDecl>(GD.getDecl());
5257   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5258   assert(IFA && "Not an ifunc?");
5259 
5260   StringRef MangledName = getMangledName(GD);
5261 
5262   if (IFA->getResolver() == MangledName) {
5263     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5264     return;
5265   }
5266 
5267   // Report an error if some definition overrides ifunc.
5268   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5269   if (Entry && !Entry->isDeclaration()) {
5270     GlobalDecl OtherGD;
5271     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5272         DiagnosedConflictingDefinitions.insert(GD).second) {
5273       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5274           << MangledName;
5275       Diags.Report(OtherGD.getDecl()->getLocation(),
5276                    diag::note_previous_definition);
5277     }
5278     return;
5279   }
5280 
5281   Aliases.push_back(GD);
5282 
5283   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5284   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5285   llvm::Constant *Resolver =
5286       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5287                               /*ForVTable=*/false);
5288   llvm::GlobalIFunc *GIF =
5289       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5290                                 "", Resolver, &getModule());
5291   if (Entry) {
5292     if (GIF->getResolver() == Entry) {
5293       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5294       return;
5295     }
5296     assert(Entry->isDeclaration());
5297 
5298     // If there is a declaration in the module, then we had an extern followed
5299     // by the ifunc, as in:
5300     //   extern int test();
5301     //   ...
5302     //   int test() __attribute__((ifunc("resolver")));
5303     //
5304     // Remove it and replace uses of it with the ifunc.
5305     GIF->takeName(Entry);
5306 
5307     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5308                                                           Entry->getType()));
5309     Entry->eraseFromParent();
5310   } else
5311     GIF->setName(MangledName);
5312 
5313   SetCommonAttributes(GD, GIF);
5314 }
5315 
5316 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5317                                             ArrayRef<llvm::Type*> Tys) {
5318   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5319                                          Tys);
5320 }
5321 
5322 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5323 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5324                          const StringLiteral *Literal, bool TargetIsLSB,
5325                          bool &IsUTF16, unsigned &StringLength) {
5326   StringRef String = Literal->getString();
5327   unsigned NumBytes = String.size();
5328 
5329   // Check for simple case.
5330   if (!Literal->containsNonAsciiOrNull()) {
5331     StringLength = NumBytes;
5332     return *Map.insert(std::make_pair(String, nullptr)).first;
5333   }
5334 
5335   // Otherwise, convert the UTF8 literals into a string of shorts.
5336   IsUTF16 = true;
5337 
5338   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5339   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5340   llvm::UTF16 *ToPtr = &ToBuf[0];
5341 
5342   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5343                                  ToPtr + NumBytes, llvm::strictConversion);
5344 
5345   // ConvertUTF8toUTF16 returns the length in ToPtr.
5346   StringLength = ToPtr - &ToBuf[0];
5347 
5348   // Add an explicit null.
5349   *ToPtr = 0;
5350   return *Map.insert(std::make_pair(
5351                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5352                                    (StringLength + 1) * 2),
5353                          nullptr)).first;
5354 }
5355 
5356 ConstantAddress
5357 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5358   unsigned StringLength = 0;
5359   bool isUTF16 = false;
5360   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5361       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5362                                getDataLayout().isLittleEndian(), isUTF16,
5363                                StringLength);
5364 
5365   if (auto *C = Entry.second)
5366     return ConstantAddress(
5367         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5368 
5369   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5370   llvm::Constant *Zeros[] = { Zero, Zero };
5371 
5372   const ASTContext &Context = getContext();
5373   const llvm::Triple &Triple = getTriple();
5374 
5375   const auto CFRuntime = getLangOpts().CFRuntime;
5376   const bool IsSwiftABI =
5377       static_cast<unsigned>(CFRuntime) >=
5378       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5379   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5380 
5381   // If we don't already have it, get __CFConstantStringClassReference.
5382   if (!CFConstantStringClassRef) {
5383     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5384     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5385     Ty = llvm::ArrayType::get(Ty, 0);
5386 
5387     switch (CFRuntime) {
5388     default: break;
5389     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5390     case LangOptions::CoreFoundationABI::Swift5_0:
5391       CFConstantStringClassName =
5392           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5393                               : "$s10Foundation19_NSCFConstantStringCN";
5394       Ty = IntPtrTy;
5395       break;
5396     case LangOptions::CoreFoundationABI::Swift4_2:
5397       CFConstantStringClassName =
5398           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5399                               : "$S10Foundation19_NSCFConstantStringCN";
5400       Ty = IntPtrTy;
5401       break;
5402     case LangOptions::CoreFoundationABI::Swift4_1:
5403       CFConstantStringClassName =
5404           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5405                               : "__T010Foundation19_NSCFConstantStringCN";
5406       Ty = IntPtrTy;
5407       break;
5408     }
5409 
5410     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5411 
5412     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5413       llvm::GlobalValue *GV = nullptr;
5414 
5415       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5416         IdentifierInfo &II = Context.Idents.get(GV->getName());
5417         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5418         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5419 
5420         const VarDecl *VD = nullptr;
5421         for (const auto *Result : DC->lookup(&II))
5422           if ((VD = dyn_cast<VarDecl>(Result)))
5423             break;
5424 
5425         if (Triple.isOSBinFormatELF()) {
5426           if (!VD)
5427             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5428         } else {
5429           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5430           if (!VD || !VD->hasAttr<DLLExportAttr>())
5431             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5432           else
5433             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5434         }
5435 
5436         setDSOLocal(GV);
5437       }
5438     }
5439 
5440     // Decay array -> ptr
5441     CFConstantStringClassRef =
5442         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5443                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5444   }
5445 
5446   QualType CFTy = Context.getCFConstantStringType();
5447 
5448   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5449 
5450   ConstantInitBuilder Builder(*this);
5451   auto Fields = Builder.beginStruct(STy);
5452 
5453   // Class pointer.
5454   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5455 
5456   // Flags.
5457   if (IsSwiftABI) {
5458     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5459     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5460   } else {
5461     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5462   }
5463 
5464   // String pointer.
5465   llvm::Constant *C = nullptr;
5466   if (isUTF16) {
5467     auto Arr = llvm::makeArrayRef(
5468         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5469         Entry.first().size() / 2);
5470     C = llvm::ConstantDataArray::get(VMContext, Arr);
5471   } else {
5472     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5473   }
5474 
5475   // Note: -fwritable-strings doesn't make the backing store strings of
5476   // CFStrings writable. (See <rdar://problem/10657500>)
5477   auto *GV =
5478       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5479                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5480   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5481   // Don't enforce the target's minimum global alignment, since the only use
5482   // of the string is via this class initializer.
5483   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5484                             : Context.getTypeAlignInChars(Context.CharTy);
5485   GV->setAlignment(Align.getAsAlign());
5486 
5487   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5488   // Without it LLVM can merge the string with a non unnamed_addr one during
5489   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5490   if (Triple.isOSBinFormatMachO())
5491     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5492                            : "__TEXT,__cstring,cstring_literals");
5493   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5494   // the static linker to adjust permissions to read-only later on.
5495   else if (Triple.isOSBinFormatELF())
5496     GV->setSection(".rodata");
5497 
5498   // String.
5499   llvm::Constant *Str =
5500       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5501 
5502   if (isUTF16)
5503     // Cast the UTF16 string to the correct type.
5504     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5505   Fields.add(Str);
5506 
5507   // String length.
5508   llvm::IntegerType *LengthTy =
5509       llvm::IntegerType::get(getModule().getContext(),
5510                              Context.getTargetInfo().getLongWidth());
5511   if (IsSwiftABI) {
5512     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5513         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5514       LengthTy = Int32Ty;
5515     else
5516       LengthTy = IntPtrTy;
5517   }
5518   Fields.addInt(LengthTy, StringLength);
5519 
5520   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5521   // properly aligned on 32-bit platforms.
5522   CharUnits Alignment =
5523       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5524 
5525   // The struct.
5526   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5527                                     /*isConstant=*/false,
5528                                     llvm::GlobalVariable::PrivateLinkage);
5529   GV->addAttribute("objc_arc_inert");
5530   switch (Triple.getObjectFormat()) {
5531   case llvm::Triple::UnknownObjectFormat:
5532     llvm_unreachable("unknown file format");
5533   case llvm::Triple::DXContainer:
5534   case llvm::Triple::GOFF:
5535   case llvm::Triple::SPIRV:
5536   case llvm::Triple::XCOFF:
5537     llvm_unreachable("unimplemented");
5538   case llvm::Triple::COFF:
5539   case llvm::Triple::ELF:
5540   case llvm::Triple::Wasm:
5541     GV->setSection("cfstring");
5542     break;
5543   case llvm::Triple::MachO:
5544     GV->setSection("__DATA,__cfstring");
5545     break;
5546   }
5547   Entry.second = GV;
5548 
5549   return ConstantAddress(GV, GV->getValueType(), Alignment);
5550 }
5551 
5552 bool CodeGenModule::getExpressionLocationsEnabled() const {
5553   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5554 }
5555 
5556 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5557   if (ObjCFastEnumerationStateType.isNull()) {
5558     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5559     D->startDefinition();
5560 
5561     QualType FieldTypes[] = {
5562       Context.UnsignedLongTy,
5563       Context.getPointerType(Context.getObjCIdType()),
5564       Context.getPointerType(Context.UnsignedLongTy),
5565       Context.getConstantArrayType(Context.UnsignedLongTy,
5566                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5567     };
5568 
5569     for (size_t i = 0; i < 4; ++i) {
5570       FieldDecl *Field = FieldDecl::Create(Context,
5571                                            D,
5572                                            SourceLocation(),
5573                                            SourceLocation(), nullptr,
5574                                            FieldTypes[i], /*TInfo=*/nullptr,
5575                                            /*BitWidth=*/nullptr,
5576                                            /*Mutable=*/false,
5577                                            ICIS_NoInit);
5578       Field->setAccess(AS_public);
5579       D->addDecl(Field);
5580     }
5581 
5582     D->completeDefinition();
5583     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5584   }
5585 
5586   return ObjCFastEnumerationStateType;
5587 }
5588 
5589 llvm::Constant *
5590 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5591   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5592 
5593   // Don't emit it as the address of the string, emit the string data itself
5594   // as an inline array.
5595   if (E->getCharByteWidth() == 1) {
5596     SmallString<64> Str(E->getString());
5597 
5598     // Resize the string to the right size, which is indicated by its type.
5599     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5600     Str.resize(CAT->getSize().getZExtValue());
5601     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5602   }
5603 
5604   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5605   llvm::Type *ElemTy = AType->getElementType();
5606   unsigned NumElements = AType->getNumElements();
5607 
5608   // Wide strings have either 2-byte or 4-byte elements.
5609   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5610     SmallVector<uint16_t, 32> Elements;
5611     Elements.reserve(NumElements);
5612 
5613     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5614       Elements.push_back(E->getCodeUnit(i));
5615     Elements.resize(NumElements);
5616     return llvm::ConstantDataArray::get(VMContext, Elements);
5617   }
5618 
5619   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5620   SmallVector<uint32_t, 32> Elements;
5621   Elements.reserve(NumElements);
5622 
5623   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5624     Elements.push_back(E->getCodeUnit(i));
5625   Elements.resize(NumElements);
5626   return llvm::ConstantDataArray::get(VMContext, Elements);
5627 }
5628 
5629 static llvm::GlobalVariable *
5630 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5631                       CodeGenModule &CGM, StringRef GlobalName,
5632                       CharUnits Alignment) {
5633   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5634       CGM.GetGlobalConstantAddressSpace());
5635 
5636   llvm::Module &M = CGM.getModule();
5637   // Create a global variable for this string
5638   auto *GV = new llvm::GlobalVariable(
5639       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5640       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5641   GV->setAlignment(Alignment.getAsAlign());
5642   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5643   if (GV->isWeakForLinker()) {
5644     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5645     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5646   }
5647   CGM.setDSOLocal(GV);
5648 
5649   return GV;
5650 }
5651 
5652 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5653 /// constant array for the given string literal.
5654 ConstantAddress
5655 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5656                                                   StringRef Name) {
5657   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5658 
5659   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5660   llvm::GlobalVariable **Entry = nullptr;
5661   if (!LangOpts.WritableStrings) {
5662     Entry = &ConstantStringMap[C];
5663     if (auto GV = *Entry) {
5664       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5665         GV->setAlignment(Alignment.getAsAlign());
5666       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5667                              GV->getValueType(), Alignment);
5668     }
5669   }
5670 
5671   SmallString<256> MangledNameBuffer;
5672   StringRef GlobalVariableName;
5673   llvm::GlobalValue::LinkageTypes LT;
5674 
5675   // Mangle the string literal if that's how the ABI merges duplicate strings.
5676   // Don't do it if they are writable, since we don't want writes in one TU to
5677   // affect strings in another.
5678   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5679       !LangOpts.WritableStrings) {
5680     llvm::raw_svector_ostream Out(MangledNameBuffer);
5681     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5682     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5683     GlobalVariableName = MangledNameBuffer;
5684   } else {
5685     LT = llvm::GlobalValue::PrivateLinkage;
5686     GlobalVariableName = Name;
5687   }
5688 
5689   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5690 
5691   CGDebugInfo *DI = getModuleDebugInfo();
5692   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5693     DI->AddStringLiteralDebugInfo(GV, S);
5694 
5695   if (Entry)
5696     *Entry = GV;
5697 
5698   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5699 
5700   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5701                          GV->getValueType(), Alignment);
5702 }
5703 
5704 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5705 /// array for the given ObjCEncodeExpr node.
5706 ConstantAddress
5707 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5708   std::string Str;
5709   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5710 
5711   return GetAddrOfConstantCString(Str);
5712 }
5713 
5714 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5715 /// the literal and a terminating '\0' character.
5716 /// The result has pointer to array type.
5717 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5718     const std::string &Str, const char *GlobalName) {
5719   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5720   CharUnits Alignment =
5721     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5722 
5723   llvm::Constant *C =
5724       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5725 
5726   // Don't share any string literals if strings aren't constant.
5727   llvm::GlobalVariable **Entry = nullptr;
5728   if (!LangOpts.WritableStrings) {
5729     Entry = &ConstantStringMap[C];
5730     if (auto GV = *Entry) {
5731       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5732         GV->setAlignment(Alignment.getAsAlign());
5733       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5734                              GV->getValueType(), Alignment);
5735     }
5736   }
5737 
5738   // Get the default prefix if a name wasn't specified.
5739   if (!GlobalName)
5740     GlobalName = ".str";
5741   // Create a global variable for this.
5742   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5743                                   GlobalName, Alignment);
5744   if (Entry)
5745     *Entry = GV;
5746 
5747   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5748                          GV->getValueType(), Alignment);
5749 }
5750 
5751 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5752     const MaterializeTemporaryExpr *E, const Expr *Init) {
5753   assert((E->getStorageDuration() == SD_Static ||
5754           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5755   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5756 
5757   // If we're not materializing a subobject of the temporary, keep the
5758   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5759   QualType MaterializedType = Init->getType();
5760   if (Init == E->getSubExpr())
5761     MaterializedType = E->getType();
5762 
5763   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5764 
5765   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5766   if (!InsertResult.second) {
5767     // We've seen this before: either we already created it or we're in the
5768     // process of doing so.
5769     if (!InsertResult.first->second) {
5770       // We recursively re-entered this function, probably during emission of
5771       // the initializer. Create a placeholder. We'll clean this up in the
5772       // outer call, at the end of this function.
5773       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5774       InsertResult.first->second = new llvm::GlobalVariable(
5775           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5776           nullptr);
5777     }
5778     return ConstantAddress(InsertResult.first->second,
5779                            llvm::cast<llvm::GlobalVariable>(
5780                                InsertResult.first->second->stripPointerCasts())
5781                                ->getValueType(),
5782                            Align);
5783   }
5784 
5785   // FIXME: If an externally-visible declaration extends multiple temporaries,
5786   // we need to give each temporary the same name in every translation unit (and
5787   // we also need to make the temporaries externally-visible).
5788   SmallString<256> Name;
5789   llvm::raw_svector_ostream Out(Name);
5790   getCXXABI().getMangleContext().mangleReferenceTemporary(
5791       VD, E->getManglingNumber(), Out);
5792 
5793   APValue *Value = nullptr;
5794   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5795     // If the initializer of the extending declaration is a constant
5796     // initializer, we should have a cached constant initializer for this
5797     // temporary. Note that this might have a different value from the value
5798     // computed by evaluating the initializer if the surrounding constant
5799     // expression modifies the temporary.
5800     Value = E->getOrCreateValue(false);
5801   }
5802 
5803   // Try evaluating it now, it might have a constant initializer.
5804   Expr::EvalResult EvalResult;
5805   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5806       !EvalResult.hasSideEffects())
5807     Value = &EvalResult.Val;
5808 
5809   LangAS AddrSpace =
5810       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5811 
5812   Optional<ConstantEmitter> emitter;
5813   llvm::Constant *InitialValue = nullptr;
5814   bool Constant = false;
5815   llvm::Type *Type;
5816   if (Value) {
5817     // The temporary has a constant initializer, use it.
5818     emitter.emplace(*this);
5819     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5820                                                MaterializedType);
5821     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5822     Type = InitialValue->getType();
5823   } else {
5824     // No initializer, the initialization will be provided when we
5825     // initialize the declaration which performed lifetime extension.
5826     Type = getTypes().ConvertTypeForMem(MaterializedType);
5827   }
5828 
5829   // Create a global variable for this lifetime-extended temporary.
5830   llvm::GlobalValue::LinkageTypes Linkage =
5831       getLLVMLinkageVarDefinition(VD, Constant);
5832   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5833     const VarDecl *InitVD;
5834     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5835         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5836       // Temporaries defined inside a class get linkonce_odr linkage because the
5837       // class can be defined in multiple translation units.
5838       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5839     } else {
5840       // There is no need for this temporary to have external linkage if the
5841       // VarDecl has external linkage.
5842       Linkage = llvm::GlobalVariable::InternalLinkage;
5843     }
5844   }
5845   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5846   auto *GV = new llvm::GlobalVariable(
5847       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5848       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5849   if (emitter) emitter->finalize(GV);
5850   setGVProperties(GV, VD);
5851   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5852     // The reference temporary should never be dllexport.
5853     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5854   GV->setAlignment(Align.getAsAlign());
5855   if (supportsCOMDAT() && GV->isWeakForLinker())
5856     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5857   if (VD->getTLSKind())
5858     setTLSMode(GV, *VD);
5859   llvm::Constant *CV = GV;
5860   if (AddrSpace != LangAS::Default)
5861     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5862         *this, GV, AddrSpace, LangAS::Default,
5863         Type->getPointerTo(
5864             getContext().getTargetAddressSpace(LangAS::Default)));
5865 
5866   // Update the map with the new temporary. If we created a placeholder above,
5867   // replace it with the new global now.
5868   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5869   if (Entry) {
5870     Entry->replaceAllUsesWith(
5871         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5872     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5873   }
5874   Entry = CV;
5875 
5876   return ConstantAddress(CV, Type, Align);
5877 }
5878 
5879 /// EmitObjCPropertyImplementations - Emit information for synthesized
5880 /// properties for an implementation.
5881 void CodeGenModule::EmitObjCPropertyImplementations(const
5882                                                     ObjCImplementationDecl *D) {
5883   for (const auto *PID : D->property_impls()) {
5884     // Dynamic is just for type-checking.
5885     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5886       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5887 
5888       // Determine which methods need to be implemented, some may have
5889       // been overridden. Note that ::isPropertyAccessor is not the method
5890       // we want, that just indicates if the decl came from a
5891       // property. What we want to know is if the method is defined in
5892       // this implementation.
5893       auto *Getter = PID->getGetterMethodDecl();
5894       if (!Getter || Getter->isSynthesizedAccessorStub())
5895         CodeGenFunction(*this).GenerateObjCGetter(
5896             const_cast<ObjCImplementationDecl *>(D), PID);
5897       auto *Setter = PID->getSetterMethodDecl();
5898       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5899         CodeGenFunction(*this).GenerateObjCSetter(
5900                                  const_cast<ObjCImplementationDecl *>(D), PID);
5901     }
5902   }
5903 }
5904 
5905 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5906   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5907   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5908        ivar; ivar = ivar->getNextIvar())
5909     if (ivar->getType().isDestructedType())
5910       return true;
5911 
5912   return false;
5913 }
5914 
5915 static bool AllTrivialInitializers(CodeGenModule &CGM,
5916                                    ObjCImplementationDecl *D) {
5917   CodeGenFunction CGF(CGM);
5918   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5919        E = D->init_end(); B != E; ++B) {
5920     CXXCtorInitializer *CtorInitExp = *B;
5921     Expr *Init = CtorInitExp->getInit();
5922     if (!CGF.isTrivialInitializer(Init))
5923       return false;
5924   }
5925   return true;
5926 }
5927 
5928 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5929 /// for an implementation.
5930 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5931   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5932   if (needsDestructMethod(D)) {
5933     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5934     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5935     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5936         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5937         getContext().VoidTy, nullptr, D,
5938         /*isInstance=*/true, /*isVariadic=*/false,
5939         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5940         /*isImplicitlyDeclared=*/true,
5941         /*isDefined=*/false, ObjCMethodDecl::Required);
5942     D->addInstanceMethod(DTORMethod);
5943     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5944     D->setHasDestructors(true);
5945   }
5946 
5947   // If the implementation doesn't have any ivar initializers, we don't need
5948   // a .cxx_construct.
5949   if (D->getNumIvarInitializers() == 0 ||
5950       AllTrivialInitializers(*this, D))
5951     return;
5952 
5953   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5954   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5955   // The constructor returns 'self'.
5956   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5957       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5958       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5959       /*isVariadic=*/false,
5960       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5961       /*isImplicitlyDeclared=*/true,
5962       /*isDefined=*/false, ObjCMethodDecl::Required);
5963   D->addInstanceMethod(CTORMethod);
5964   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5965   D->setHasNonZeroConstructors(true);
5966 }
5967 
5968 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5969 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5970   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5971       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5972     ErrorUnsupported(LSD, "linkage spec");
5973     return;
5974   }
5975 
5976   EmitDeclContext(LSD);
5977 }
5978 
5979 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5980   for (auto *I : DC->decls()) {
5981     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5982     // are themselves considered "top-level", so EmitTopLevelDecl on an
5983     // ObjCImplDecl does not recursively visit them. We need to do that in
5984     // case they're nested inside another construct (LinkageSpecDecl /
5985     // ExportDecl) that does stop them from being considered "top-level".
5986     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5987       for (auto *M : OID->methods())
5988         EmitTopLevelDecl(M);
5989     }
5990 
5991     EmitTopLevelDecl(I);
5992   }
5993 }
5994 
5995 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5996 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5997   // Ignore dependent declarations.
5998   if (D->isTemplated())
5999     return;
6000 
6001   // Consteval function shouldn't be emitted.
6002   if (auto *FD = dyn_cast<FunctionDecl>(D))
6003     if (FD->isConsteval())
6004       return;
6005 
6006   switch (D->getKind()) {
6007   case Decl::CXXConversion:
6008   case Decl::CXXMethod:
6009   case Decl::Function:
6010     EmitGlobal(cast<FunctionDecl>(D));
6011     // Always provide some coverage mapping
6012     // even for the functions that aren't emitted.
6013     AddDeferredUnusedCoverageMapping(D);
6014     break;
6015 
6016   case Decl::CXXDeductionGuide:
6017     // Function-like, but does not result in code emission.
6018     break;
6019 
6020   case Decl::Var:
6021   case Decl::Decomposition:
6022   case Decl::VarTemplateSpecialization:
6023     EmitGlobal(cast<VarDecl>(D));
6024     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6025       for (auto *B : DD->bindings())
6026         if (auto *HD = B->getHoldingVar())
6027           EmitGlobal(HD);
6028     break;
6029 
6030   // Indirect fields from global anonymous structs and unions can be
6031   // ignored; only the actual variable requires IR gen support.
6032   case Decl::IndirectField:
6033     break;
6034 
6035   // C++ Decls
6036   case Decl::Namespace:
6037     EmitDeclContext(cast<NamespaceDecl>(D));
6038     break;
6039   case Decl::ClassTemplateSpecialization: {
6040     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6041     if (CGDebugInfo *DI = getModuleDebugInfo())
6042       if (Spec->getSpecializationKind() ==
6043               TSK_ExplicitInstantiationDefinition &&
6044           Spec->hasDefinition())
6045         DI->completeTemplateDefinition(*Spec);
6046   } LLVM_FALLTHROUGH;
6047   case Decl::CXXRecord: {
6048     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6049     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6050       if (CRD->hasDefinition())
6051         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6052       if (auto *ES = D->getASTContext().getExternalSource())
6053         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6054           DI->completeUnusedClass(*CRD);
6055     }
6056     // Emit any static data members, they may be definitions.
6057     for (auto *I : CRD->decls())
6058       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6059         EmitTopLevelDecl(I);
6060     break;
6061   }
6062     // No code generation needed.
6063   case Decl::UsingShadow:
6064   case Decl::ClassTemplate:
6065   case Decl::VarTemplate:
6066   case Decl::Concept:
6067   case Decl::VarTemplatePartialSpecialization:
6068   case Decl::FunctionTemplate:
6069   case Decl::TypeAliasTemplate:
6070   case Decl::Block:
6071   case Decl::Empty:
6072   case Decl::Binding:
6073     break;
6074   case Decl::Using:          // using X; [C++]
6075     if (CGDebugInfo *DI = getModuleDebugInfo())
6076         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6077     break;
6078   case Decl::UsingEnum: // using enum X; [C++]
6079     if (CGDebugInfo *DI = getModuleDebugInfo())
6080       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6081     break;
6082   case Decl::NamespaceAlias:
6083     if (CGDebugInfo *DI = getModuleDebugInfo())
6084         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6085     break;
6086   case Decl::UsingDirective: // using namespace X; [C++]
6087     if (CGDebugInfo *DI = getModuleDebugInfo())
6088       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6089     break;
6090   case Decl::CXXConstructor:
6091     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6092     break;
6093   case Decl::CXXDestructor:
6094     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6095     break;
6096 
6097   case Decl::StaticAssert:
6098     // Nothing to do.
6099     break;
6100 
6101   // Objective-C Decls
6102 
6103   // Forward declarations, no (immediate) code generation.
6104   case Decl::ObjCInterface:
6105   case Decl::ObjCCategory:
6106     break;
6107 
6108   case Decl::ObjCProtocol: {
6109     auto *Proto = cast<ObjCProtocolDecl>(D);
6110     if (Proto->isThisDeclarationADefinition())
6111       ObjCRuntime->GenerateProtocol(Proto);
6112     break;
6113   }
6114 
6115   case Decl::ObjCCategoryImpl:
6116     // Categories have properties but don't support synthesize so we
6117     // can ignore them here.
6118     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6119     break;
6120 
6121   case Decl::ObjCImplementation: {
6122     auto *OMD = cast<ObjCImplementationDecl>(D);
6123     EmitObjCPropertyImplementations(OMD);
6124     EmitObjCIvarInitializations(OMD);
6125     ObjCRuntime->GenerateClass(OMD);
6126     // Emit global variable debug information.
6127     if (CGDebugInfo *DI = getModuleDebugInfo())
6128       if (getCodeGenOpts().hasReducedDebugInfo())
6129         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6130             OMD->getClassInterface()), OMD->getLocation());
6131     break;
6132   }
6133   case Decl::ObjCMethod: {
6134     auto *OMD = cast<ObjCMethodDecl>(D);
6135     // If this is not a prototype, emit the body.
6136     if (OMD->getBody())
6137       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6138     break;
6139   }
6140   case Decl::ObjCCompatibleAlias:
6141     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6142     break;
6143 
6144   case Decl::PragmaComment: {
6145     const auto *PCD = cast<PragmaCommentDecl>(D);
6146     switch (PCD->getCommentKind()) {
6147     case PCK_Unknown:
6148       llvm_unreachable("unexpected pragma comment kind");
6149     case PCK_Linker:
6150       AppendLinkerOptions(PCD->getArg());
6151       break;
6152     case PCK_Lib:
6153         AddDependentLib(PCD->getArg());
6154       break;
6155     case PCK_Compiler:
6156     case PCK_ExeStr:
6157     case PCK_User:
6158       break; // We ignore all of these.
6159     }
6160     break;
6161   }
6162 
6163   case Decl::PragmaDetectMismatch: {
6164     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6165     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6166     break;
6167   }
6168 
6169   case Decl::LinkageSpec:
6170     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6171     break;
6172 
6173   case Decl::FileScopeAsm: {
6174     // File-scope asm is ignored during device-side CUDA compilation.
6175     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6176       break;
6177     // File-scope asm is ignored during device-side OpenMP compilation.
6178     if (LangOpts.OpenMPIsDevice)
6179       break;
6180     // File-scope asm is ignored during device-side SYCL compilation.
6181     if (LangOpts.SYCLIsDevice)
6182       break;
6183     auto *AD = cast<FileScopeAsmDecl>(D);
6184     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6185     break;
6186   }
6187 
6188   case Decl::Import: {
6189     auto *Import = cast<ImportDecl>(D);
6190 
6191     // If we've already imported this module, we're done.
6192     if (!ImportedModules.insert(Import->getImportedModule()))
6193       break;
6194 
6195     // Emit debug information for direct imports.
6196     if (!Import->getImportedOwningModule()) {
6197       if (CGDebugInfo *DI = getModuleDebugInfo())
6198         DI->EmitImportDecl(*Import);
6199     }
6200 
6201     // Find all of the submodules and emit the module initializers.
6202     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6203     SmallVector<clang::Module *, 16> Stack;
6204     Visited.insert(Import->getImportedModule());
6205     Stack.push_back(Import->getImportedModule());
6206 
6207     while (!Stack.empty()) {
6208       clang::Module *Mod = Stack.pop_back_val();
6209       if (!EmittedModuleInitializers.insert(Mod).second)
6210         continue;
6211 
6212       for (auto *D : Context.getModuleInitializers(Mod))
6213         EmitTopLevelDecl(D);
6214 
6215       // Visit the submodules of this module.
6216       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6217                                              SubEnd = Mod->submodule_end();
6218            Sub != SubEnd; ++Sub) {
6219         // Skip explicit children; they need to be explicitly imported to emit
6220         // the initializers.
6221         if ((*Sub)->IsExplicit)
6222           continue;
6223 
6224         if (Visited.insert(*Sub).second)
6225           Stack.push_back(*Sub);
6226       }
6227     }
6228     break;
6229   }
6230 
6231   case Decl::Export:
6232     EmitDeclContext(cast<ExportDecl>(D));
6233     break;
6234 
6235   case Decl::OMPThreadPrivate:
6236     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6237     break;
6238 
6239   case Decl::OMPAllocate:
6240     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6241     break;
6242 
6243   case Decl::OMPDeclareReduction:
6244     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6245     break;
6246 
6247   case Decl::OMPDeclareMapper:
6248     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6249     break;
6250 
6251   case Decl::OMPRequires:
6252     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6253     break;
6254 
6255   case Decl::Typedef:
6256   case Decl::TypeAlias: // using foo = bar; [C++11]
6257     if (CGDebugInfo *DI = getModuleDebugInfo())
6258       DI->EmitAndRetainType(
6259           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6260     break;
6261 
6262   case Decl::Record:
6263     if (CGDebugInfo *DI = getModuleDebugInfo())
6264       if (cast<RecordDecl>(D)->getDefinition())
6265         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6266     break;
6267 
6268   case Decl::Enum:
6269     if (CGDebugInfo *DI = getModuleDebugInfo())
6270       if (cast<EnumDecl>(D)->getDefinition())
6271         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6272     break;
6273 
6274   default:
6275     // Make sure we handled everything we should, every other kind is a
6276     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6277     // function. Need to recode Decl::Kind to do that easily.
6278     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6279     break;
6280   }
6281 }
6282 
6283 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6284   // Do we need to generate coverage mapping?
6285   if (!CodeGenOpts.CoverageMapping)
6286     return;
6287   switch (D->getKind()) {
6288   case Decl::CXXConversion:
6289   case Decl::CXXMethod:
6290   case Decl::Function:
6291   case Decl::ObjCMethod:
6292   case Decl::CXXConstructor:
6293   case Decl::CXXDestructor: {
6294     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6295       break;
6296     SourceManager &SM = getContext().getSourceManager();
6297     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6298       break;
6299     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6300     if (I == DeferredEmptyCoverageMappingDecls.end())
6301       DeferredEmptyCoverageMappingDecls[D] = true;
6302     break;
6303   }
6304   default:
6305     break;
6306   };
6307 }
6308 
6309 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6310   // Do we need to generate coverage mapping?
6311   if (!CodeGenOpts.CoverageMapping)
6312     return;
6313   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6314     if (Fn->isTemplateInstantiation())
6315       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6316   }
6317   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6318   if (I == DeferredEmptyCoverageMappingDecls.end())
6319     DeferredEmptyCoverageMappingDecls[D] = false;
6320   else
6321     I->second = false;
6322 }
6323 
6324 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6325   // We call takeVector() here to avoid use-after-free.
6326   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6327   // we deserialize function bodies to emit coverage info for them, and that
6328   // deserializes more declarations. How should we handle that case?
6329   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6330     if (!Entry.second)
6331       continue;
6332     const Decl *D = Entry.first;
6333     switch (D->getKind()) {
6334     case Decl::CXXConversion:
6335     case Decl::CXXMethod:
6336     case Decl::Function:
6337     case Decl::ObjCMethod: {
6338       CodeGenPGO PGO(*this);
6339       GlobalDecl GD(cast<FunctionDecl>(D));
6340       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6341                                   getFunctionLinkage(GD));
6342       break;
6343     }
6344     case Decl::CXXConstructor: {
6345       CodeGenPGO PGO(*this);
6346       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6347       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6348                                   getFunctionLinkage(GD));
6349       break;
6350     }
6351     case Decl::CXXDestructor: {
6352       CodeGenPGO PGO(*this);
6353       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6354       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6355                                   getFunctionLinkage(GD));
6356       break;
6357     }
6358     default:
6359       break;
6360     };
6361   }
6362 }
6363 
6364 void CodeGenModule::EmitMainVoidAlias() {
6365   // In order to transition away from "__original_main" gracefully, emit an
6366   // alias for "main" in the no-argument case so that libc can detect when
6367   // new-style no-argument main is in used.
6368   if (llvm::Function *F = getModule().getFunction("main")) {
6369     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6370         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6371       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6372       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6373     }
6374   }
6375 }
6376 
6377 /// Turns the given pointer into a constant.
6378 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6379                                           const void *Ptr) {
6380   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6381   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6382   return llvm::ConstantInt::get(i64, PtrInt);
6383 }
6384 
6385 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6386                                    llvm::NamedMDNode *&GlobalMetadata,
6387                                    GlobalDecl D,
6388                                    llvm::GlobalValue *Addr) {
6389   if (!GlobalMetadata)
6390     GlobalMetadata =
6391       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6392 
6393   // TODO: should we report variant information for ctors/dtors?
6394   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6395                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6396                                CGM.getLLVMContext(), D.getDecl()))};
6397   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6398 }
6399 
6400 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6401                                                  llvm::GlobalValue *CppFunc) {
6402   // Store the list of ifuncs we need to replace uses in.
6403   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6404   // List of ConstantExprs that we should be able to delete when we're done
6405   // here.
6406   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6407 
6408   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6409   if (Elem == CppFunc)
6410     return false;
6411 
6412   // First make sure that all users of this are ifuncs (or ifuncs via a
6413   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6414   // later.
6415   for (llvm::User *User : Elem->users()) {
6416     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6417     // ifunc directly. In any other case, just give up, as we don't know what we
6418     // could break by changing those.
6419     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6420       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6421         return false;
6422 
6423       for (llvm::User *CEUser : ConstExpr->users()) {
6424         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6425           IFuncs.push_back(IFunc);
6426         } else {
6427           return false;
6428         }
6429       }
6430       CEs.push_back(ConstExpr);
6431     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6432       IFuncs.push_back(IFunc);
6433     } else {
6434       // This user is one we don't know how to handle, so fail redirection. This
6435       // will result in an ifunc retaining a resolver name that will ultimately
6436       // fail to be resolved to a defined function.
6437       return false;
6438     }
6439   }
6440 
6441   // Now we know this is a valid case where we can do this alias replacement, we
6442   // need to remove all of the references to Elem (and the bitcasts!) so we can
6443   // delete it.
6444   for (llvm::GlobalIFunc *IFunc : IFuncs)
6445     IFunc->setResolver(nullptr);
6446   for (llvm::ConstantExpr *ConstExpr : CEs)
6447     ConstExpr->destroyConstant();
6448 
6449   // We should now be out of uses for the 'old' version of this function, so we
6450   // can erase it as well.
6451   Elem->eraseFromParent();
6452 
6453   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6454     // The type of the resolver is always just a function-type that returns the
6455     // type of the IFunc, so create that here. If the type of the actual
6456     // resolver doesn't match, it just gets bitcast to the right thing.
6457     auto *ResolverTy =
6458         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6459     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6460         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6461     IFunc->setResolver(Resolver);
6462   }
6463   return true;
6464 }
6465 
6466 /// For each function which is declared within an extern "C" region and marked
6467 /// as 'used', but has internal linkage, create an alias from the unmangled
6468 /// name to the mangled name if possible. People expect to be able to refer
6469 /// to such functions with an unmangled name from inline assembly within the
6470 /// same translation unit.
6471 void CodeGenModule::EmitStaticExternCAliases() {
6472   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6473     return;
6474   for (auto &I : StaticExternCValues) {
6475     IdentifierInfo *Name = I.first;
6476     llvm::GlobalValue *Val = I.second;
6477 
6478     // If Val is null, that implies there were multiple declarations that each
6479     // had a claim to the unmangled name. In this case, generation of the alias
6480     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6481     if (!Val)
6482       break;
6483 
6484     llvm::GlobalValue *ExistingElem =
6485         getModule().getNamedValue(Name->getName());
6486 
6487     // If there is either not something already by this name, or we were able to
6488     // replace all uses from IFuncs, create the alias.
6489     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6490       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6491   }
6492 }
6493 
6494 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6495                                              GlobalDecl &Result) const {
6496   auto Res = Manglings.find(MangledName);
6497   if (Res == Manglings.end())
6498     return false;
6499   Result = Res->getValue();
6500   return true;
6501 }
6502 
6503 /// Emits metadata nodes associating all the global values in the
6504 /// current module with the Decls they came from.  This is useful for
6505 /// projects using IR gen as a subroutine.
6506 ///
6507 /// Since there's currently no way to associate an MDNode directly
6508 /// with an llvm::GlobalValue, we create a global named metadata
6509 /// with the name 'clang.global.decl.ptrs'.
6510 void CodeGenModule::EmitDeclMetadata() {
6511   llvm::NamedMDNode *GlobalMetadata = nullptr;
6512 
6513   for (auto &I : MangledDeclNames) {
6514     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6515     // Some mangled names don't necessarily have an associated GlobalValue
6516     // in this module, e.g. if we mangled it for DebugInfo.
6517     if (Addr)
6518       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6519   }
6520 }
6521 
6522 /// Emits metadata nodes for all the local variables in the current
6523 /// function.
6524 void CodeGenFunction::EmitDeclMetadata() {
6525   if (LocalDeclMap.empty()) return;
6526 
6527   llvm::LLVMContext &Context = getLLVMContext();
6528 
6529   // Find the unique metadata ID for this name.
6530   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6531 
6532   llvm::NamedMDNode *GlobalMetadata = nullptr;
6533 
6534   for (auto &I : LocalDeclMap) {
6535     const Decl *D = I.first;
6536     llvm::Value *Addr = I.second.getPointer();
6537     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6538       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6539       Alloca->setMetadata(
6540           DeclPtrKind, llvm::MDNode::get(
6541                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6542     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6543       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6544       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6545     }
6546   }
6547 }
6548 
6549 void CodeGenModule::EmitVersionIdentMetadata() {
6550   llvm::NamedMDNode *IdentMetadata =
6551     TheModule.getOrInsertNamedMetadata("llvm.ident");
6552   std::string Version = getClangFullVersion();
6553   llvm::LLVMContext &Ctx = TheModule.getContext();
6554 
6555   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6556   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6557 }
6558 
6559 void CodeGenModule::EmitCommandLineMetadata() {
6560   llvm::NamedMDNode *CommandLineMetadata =
6561     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6562   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6563   llvm::LLVMContext &Ctx = TheModule.getContext();
6564 
6565   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6566   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6567 }
6568 
6569 void CodeGenModule::EmitCoverageFile() {
6570   if (getCodeGenOpts().CoverageDataFile.empty() &&
6571       getCodeGenOpts().CoverageNotesFile.empty())
6572     return;
6573 
6574   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6575   if (!CUNode)
6576     return;
6577 
6578   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6579   llvm::LLVMContext &Ctx = TheModule.getContext();
6580   auto *CoverageDataFile =
6581       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6582   auto *CoverageNotesFile =
6583       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6584   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6585     llvm::MDNode *CU = CUNode->getOperand(i);
6586     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6587     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6588   }
6589 }
6590 
6591 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6592                                                        bool ForEH) {
6593   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6594   // FIXME: should we even be calling this method if RTTI is disabled
6595   // and it's not for EH?
6596   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6597       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6598        getTriple().isNVPTX()))
6599     return llvm::Constant::getNullValue(Int8PtrTy);
6600 
6601   if (ForEH && Ty->isObjCObjectPointerType() &&
6602       LangOpts.ObjCRuntime.isGNUFamily())
6603     return ObjCRuntime->GetEHType(Ty);
6604 
6605   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6606 }
6607 
6608 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6609   // Do not emit threadprivates in simd-only mode.
6610   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6611     return;
6612   for (auto RefExpr : D->varlists()) {
6613     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6614     bool PerformInit =
6615         VD->getAnyInitializer() &&
6616         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6617                                                         /*ForRef=*/false);
6618 
6619     Address Addr(GetAddrOfGlobalVar(VD),
6620                  getTypes().ConvertTypeForMem(VD->getType()),
6621                  getContext().getDeclAlign(VD));
6622     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6623             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6624       CXXGlobalInits.push_back(InitFunction);
6625   }
6626 }
6627 
6628 llvm::Metadata *
6629 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6630                                             StringRef Suffix) {
6631   if (auto *FnType = T->getAs<FunctionProtoType>())
6632     T = getContext().getFunctionType(
6633         FnType->getReturnType(), FnType->getParamTypes(),
6634         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6635 
6636   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6637   if (InternalId)
6638     return InternalId;
6639 
6640   if (isExternallyVisible(T->getLinkage())) {
6641     std::string OutName;
6642     llvm::raw_string_ostream Out(OutName);
6643     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6644     Out << Suffix;
6645 
6646     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6647   } else {
6648     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6649                                            llvm::ArrayRef<llvm::Metadata *>());
6650   }
6651 
6652   return InternalId;
6653 }
6654 
6655 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6656   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6657 }
6658 
6659 llvm::Metadata *
6660 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6661   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6662 }
6663 
6664 // Generalize pointer types to a void pointer with the qualifiers of the
6665 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6666 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6667 // 'void *'.
6668 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6669   if (!Ty->isPointerType())
6670     return Ty;
6671 
6672   return Ctx.getPointerType(
6673       QualType(Ctx.VoidTy).withCVRQualifiers(
6674           Ty->getPointeeType().getCVRQualifiers()));
6675 }
6676 
6677 // Apply type generalization to a FunctionType's return and argument types
6678 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6679   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6680     SmallVector<QualType, 8> GeneralizedParams;
6681     for (auto &Param : FnType->param_types())
6682       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6683 
6684     return Ctx.getFunctionType(
6685         GeneralizeType(Ctx, FnType->getReturnType()),
6686         GeneralizedParams, FnType->getExtProtoInfo());
6687   }
6688 
6689   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6690     return Ctx.getFunctionNoProtoType(
6691         GeneralizeType(Ctx, FnType->getReturnType()));
6692 
6693   llvm_unreachable("Encountered unknown FunctionType");
6694 }
6695 
6696 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6697   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6698                                       GeneralizedMetadataIdMap, ".generalized");
6699 }
6700 
6701 /// Returns whether this module needs the "all-vtables" type identifier.
6702 bool CodeGenModule::NeedAllVtablesTypeId() const {
6703   // Returns true if at least one of vtable-based CFI checkers is enabled and
6704   // is not in the trapping mode.
6705   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6706            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6707           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6708            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6709           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6710            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6711           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6712            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6713 }
6714 
6715 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6716                                           CharUnits Offset,
6717                                           const CXXRecordDecl *RD) {
6718   llvm::Metadata *MD =
6719       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6720   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6721 
6722   if (CodeGenOpts.SanitizeCfiCrossDso)
6723     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6724       VTable->addTypeMetadata(Offset.getQuantity(),
6725                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6726 
6727   if (NeedAllVtablesTypeId()) {
6728     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6729     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6730   }
6731 }
6732 
6733 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6734   if (!SanStats)
6735     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6736 
6737   return *SanStats;
6738 }
6739 
6740 llvm::Value *
6741 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6742                                                   CodeGenFunction &CGF) {
6743   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6744   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6745   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6746   auto *Call = CGF.EmitRuntimeCall(
6747       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6748   return Call;
6749 }
6750 
6751 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6752     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6753   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6754                                  /* forPointeeType= */ true);
6755 }
6756 
6757 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6758                                                  LValueBaseInfo *BaseInfo,
6759                                                  TBAAAccessInfo *TBAAInfo,
6760                                                  bool forPointeeType) {
6761   if (TBAAInfo)
6762     *TBAAInfo = getTBAAAccessInfo(T);
6763 
6764   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6765   // that doesn't return the information we need to compute BaseInfo.
6766 
6767   // Honor alignment typedef attributes even on incomplete types.
6768   // We also honor them straight for C++ class types, even as pointees;
6769   // there's an expressivity gap here.
6770   if (auto TT = T->getAs<TypedefType>()) {
6771     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6772       if (BaseInfo)
6773         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6774       return getContext().toCharUnitsFromBits(Align);
6775     }
6776   }
6777 
6778   bool AlignForArray = T->isArrayType();
6779 
6780   // Analyze the base element type, so we don't get confused by incomplete
6781   // array types.
6782   T = getContext().getBaseElementType(T);
6783 
6784   if (T->isIncompleteType()) {
6785     // We could try to replicate the logic from
6786     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6787     // type is incomplete, so it's impossible to test. We could try to reuse
6788     // getTypeAlignIfKnown, but that doesn't return the information we need
6789     // to set BaseInfo.  So just ignore the possibility that the alignment is
6790     // greater than one.
6791     if (BaseInfo)
6792       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6793     return CharUnits::One();
6794   }
6795 
6796   if (BaseInfo)
6797     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6798 
6799   CharUnits Alignment;
6800   const CXXRecordDecl *RD;
6801   if (T.getQualifiers().hasUnaligned()) {
6802     Alignment = CharUnits::One();
6803   } else if (forPointeeType && !AlignForArray &&
6804              (RD = T->getAsCXXRecordDecl())) {
6805     // For C++ class pointees, we don't know whether we're pointing at a
6806     // base or a complete object, so we generally need to use the
6807     // non-virtual alignment.
6808     Alignment = getClassPointerAlignment(RD);
6809   } else {
6810     Alignment = getContext().getTypeAlignInChars(T);
6811   }
6812 
6813   // Cap to the global maximum type alignment unless the alignment
6814   // was somehow explicit on the type.
6815   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6816     if (Alignment.getQuantity() > MaxAlign &&
6817         !getContext().isAlignmentRequired(T))
6818       Alignment = CharUnits::fromQuantity(MaxAlign);
6819   }
6820   return Alignment;
6821 }
6822 
6823 bool CodeGenModule::stopAutoInit() {
6824   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6825   if (StopAfter) {
6826     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6827     // used
6828     if (NumAutoVarInit >= StopAfter) {
6829       return true;
6830     }
6831     if (!NumAutoVarInit) {
6832       unsigned DiagID = getDiags().getCustomDiagID(
6833           DiagnosticsEngine::Warning,
6834           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6835           "number of times ftrivial-auto-var-init=%1 gets applied.");
6836       getDiags().Report(DiagID)
6837           << StopAfter
6838           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6839                       LangOptions::TrivialAutoVarInitKind::Zero
6840                   ? "zero"
6841                   : "pattern");
6842     }
6843     ++NumAutoVarInit;
6844   }
6845   return false;
6846 }
6847 
6848 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6849                                                     const Decl *D) const {
6850   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6851   // postfix beginning with '.' since the symbol name can be demangled.
6852   if (LangOpts.HIP)
6853     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6854   else
6855     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6856 
6857   // If the CUID is not specified we try to generate a unique postfix.
6858   if (getLangOpts().CUID.empty()) {
6859     SourceManager &SM = getContext().getSourceManager();
6860     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6861     assert(PLoc.isValid() && "Source location is expected to be valid.");
6862 
6863     // Get the hash of the user defined macros.
6864     llvm::MD5 Hash;
6865     llvm::MD5::MD5Result Result;
6866     for (const auto &Arg : PreprocessorOpts.Macros)
6867       Hash.update(Arg.first);
6868     Hash.final(Result);
6869 
6870     // Get the UniqueID for the file containing the decl.
6871     llvm::sys::fs::UniqueID ID;
6872     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6873       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6874       assert(PLoc.isValid() && "Source location is expected to be valid.");
6875       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6876         SM.getDiagnostics().Report(diag::err_cannot_open_file)
6877             << PLoc.getFilename() << EC.message();
6878     }
6879     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6880        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6881   } else {
6882     OS << getContext().getCUIDHash();
6883   }
6884 }
6885