1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeGPU.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/ConstantInitBuilder.h" 47 #include "clang/Frontend/FrontendDiagnostic.h" 48 #include "llvm/ADT/StringSwitch.h" 49 #include "llvm/ADT/Triple.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 52 #include "llvm/IR/CallingConv.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ProfileSummary.h" 58 #include "llvm/ProfileData/InstrProfReader.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ConvertUTF.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MD5.h" 64 #include "llvm/Support/TimeProfiler.h" 65 #include "llvm/Support/X86TargetParser.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getContext().getCXXABIKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 const llvm::DataLayout &DL = M.getDataLayout(); 134 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 135 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 136 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 137 138 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 139 140 if (LangOpts.ObjC) 141 createObjCRuntime(); 142 if (LangOpts.OpenCL) 143 createOpenCLRuntime(); 144 if (LangOpts.OpenMP) 145 createOpenMPRuntime(); 146 if (LangOpts.CUDA) 147 createCUDARuntime(); 148 149 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 150 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 151 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 152 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 153 getCXXABI().getMangleContext())); 154 155 // If debug info or coverage generation is enabled, create the CGDebugInfo 156 // object. 157 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 158 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 159 DebugInfo.reset(new CGDebugInfo(*this)); 160 161 Block.GlobalUniqueCount = 0; 162 163 if (C.getLangOpts().ObjC) 164 ObjCData.reset(new ObjCEntrypoints()); 165 166 if (CodeGenOpts.hasProfileClangUse()) { 167 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 168 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 169 if (auto E = ReaderOrErr.takeError()) { 170 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 171 "Could not read profile %0: %1"); 172 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 173 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 174 << EI.message(); 175 }); 176 } else 177 PGOReader = std::move(ReaderOrErr.get()); 178 } 179 180 // If coverage mapping generation is enabled, create the 181 // CoverageMappingModuleGen object. 182 if (CodeGenOpts.CoverageMapping) 183 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 184 185 // Generate the module name hash here if needed. 186 if (CodeGenOpts.UniqueInternalLinkageNames && 187 !getModule().getSourceFileName().empty()) { 188 std::string Path = getModule().getSourceFileName(); 189 // Check if a path substitution is needed from the MacroPrefixMap. 190 for (const auto &Entry : LangOpts.MacroPrefixMap) 191 if (Path.rfind(Entry.first, 0) != std::string::npos) { 192 Path = Entry.second + Path.substr(Entry.first.size()); 193 break; 194 } 195 llvm::MD5 Md5; 196 Md5.update(Path); 197 llvm::MD5::MD5Result R; 198 Md5.final(R); 199 SmallString<32> Str; 200 llvm::MD5::stringifyResult(R, Str); 201 // Convert MD5hash to Decimal. Demangler suffixes can either contain 202 // numbers or characters but not both. 203 llvm::APInt IntHash(128, Str.str(), 16); 204 // Prepend "__uniq" before the hash for tools like profilers to understand 205 // that this symbol is of internal linkage type. The "__uniq" is the 206 // pre-determined prefix that is used to tell tools that this symbol was 207 // created with -funique-internal-linakge-symbols and the tools can strip or 208 // keep the prefix as needed. 209 ModuleNameHash = (Twine(".__uniq.") + 210 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 211 } 212 } 213 214 CodeGenModule::~CodeGenModule() {} 215 216 void CodeGenModule::createObjCRuntime() { 217 // This is just isGNUFamily(), but we want to force implementors of 218 // new ABIs to decide how best to do this. 219 switch (LangOpts.ObjCRuntime.getKind()) { 220 case ObjCRuntime::GNUstep: 221 case ObjCRuntime::GCC: 222 case ObjCRuntime::ObjFW: 223 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 224 return; 225 226 case ObjCRuntime::FragileMacOSX: 227 case ObjCRuntime::MacOSX: 228 case ObjCRuntime::iOS: 229 case ObjCRuntime::WatchOS: 230 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 231 return; 232 } 233 llvm_unreachable("bad runtime kind"); 234 } 235 236 void CodeGenModule::createOpenCLRuntime() { 237 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 238 } 239 240 void CodeGenModule::createOpenMPRuntime() { 241 // Select a specialized code generation class based on the target, if any. 242 // If it does not exist use the default implementation. 243 switch (getTriple().getArch()) { 244 case llvm::Triple::nvptx: 245 case llvm::Triple::nvptx64: 246 case llvm::Triple::amdgcn: 247 assert(getLangOpts().OpenMPIsDevice && 248 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 249 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 250 break; 251 default: 252 if (LangOpts.OpenMPSimd) 253 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 254 else 255 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 256 break; 257 } 258 } 259 260 void CodeGenModule::createCUDARuntime() { 261 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 262 } 263 264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 265 Replacements[Name] = C; 266 } 267 268 void CodeGenModule::applyReplacements() { 269 for (auto &I : Replacements) { 270 StringRef MangledName = I.first(); 271 llvm::Constant *Replacement = I.second; 272 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 273 if (!Entry) 274 continue; 275 auto *OldF = cast<llvm::Function>(Entry); 276 auto *NewF = dyn_cast<llvm::Function>(Replacement); 277 if (!NewF) { 278 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 279 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 280 } else { 281 auto *CE = cast<llvm::ConstantExpr>(Replacement); 282 assert(CE->getOpcode() == llvm::Instruction::BitCast || 283 CE->getOpcode() == llvm::Instruction::GetElementPtr); 284 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 285 } 286 } 287 288 // Replace old with new, but keep the old order. 289 OldF->replaceAllUsesWith(Replacement); 290 if (NewF) { 291 NewF->removeFromParent(); 292 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 293 NewF); 294 } 295 OldF->eraseFromParent(); 296 } 297 } 298 299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 300 GlobalValReplacements.push_back(std::make_pair(GV, C)); 301 } 302 303 void CodeGenModule::applyGlobalValReplacements() { 304 for (auto &I : GlobalValReplacements) { 305 llvm::GlobalValue *GV = I.first; 306 llvm::Constant *C = I.second; 307 308 GV->replaceAllUsesWith(C); 309 GV->eraseFromParent(); 310 } 311 } 312 313 // This is only used in aliases that we created and we know they have a 314 // linear structure. 315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 316 const llvm::Constant *C; 317 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 318 C = GA->getAliasee(); 319 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 320 C = GI->getResolver(); 321 else 322 return GV; 323 324 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 325 if (!AliaseeGV) 326 return nullptr; 327 328 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 329 if (FinalGV == GV) 330 return nullptr; 331 332 return FinalGV; 333 } 334 335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 336 SourceLocation Location, bool IsIFunc, 337 const llvm::GlobalValue *Alias, 338 const llvm::GlobalValue *&GV) { 339 GV = getAliasedGlobal(Alias); 340 if (!GV) { 341 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 342 return false; 343 } 344 345 if (GV->isDeclaration()) { 346 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 347 return false; 348 } 349 350 if (IsIFunc) { 351 // Check resolver function type. 352 const auto *F = dyn_cast<llvm::Function>(GV); 353 if (!F) { 354 Diags.Report(Location, diag::err_alias_to_undefined) 355 << IsIFunc << IsIFunc; 356 return false; 357 } 358 359 llvm::FunctionType *FTy = F->getFunctionType(); 360 if (!FTy->getReturnType()->isPointerTy()) { 361 Diags.Report(Location, diag::err_ifunc_resolver_return); 362 return false; 363 } 364 } 365 366 return true; 367 } 368 369 void CodeGenModule::checkAliases() { 370 // Check if the constructed aliases are well formed. It is really unfortunate 371 // that we have to do this in CodeGen, but we only construct mangled names 372 // and aliases during codegen. 373 bool Error = false; 374 DiagnosticsEngine &Diags = getDiags(); 375 for (const GlobalDecl &GD : Aliases) { 376 const auto *D = cast<ValueDecl>(GD.getDecl()); 377 SourceLocation Location; 378 bool IsIFunc = D->hasAttr<IFuncAttr>(); 379 if (const Attr *A = D->getDefiningAttr()) 380 Location = A->getLocation(); 381 else 382 llvm_unreachable("Not an alias or ifunc?"); 383 384 StringRef MangledName = getMangledName(GD); 385 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 386 const llvm::GlobalValue *GV = nullptr; 387 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 388 Error = true; 389 continue; 390 } 391 392 llvm::Constant *Aliasee = 393 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 394 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 395 396 llvm::GlobalValue *AliaseeGV; 397 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 398 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 399 else 400 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 401 402 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 403 StringRef AliasSection = SA->getName(); 404 if (AliasSection != AliaseeGV->getSection()) 405 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 406 << AliasSection << IsIFunc << IsIFunc; 407 } 408 409 // We have to handle alias to weak aliases in here. LLVM itself disallows 410 // this since the object semantics would not match the IL one. For 411 // compatibility with gcc we implement it by just pointing the alias 412 // to its aliasee's aliasee. We also warn, since the user is probably 413 // expecting the link to be weak. 414 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 415 if (GA->isInterposable()) { 416 Diags.Report(Location, diag::warn_alias_to_weak_alias) 417 << GV->getName() << GA->getName() << IsIFunc; 418 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 419 GA->getAliasee(), Alias->getType()); 420 421 if (IsIFunc) 422 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 423 else 424 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 425 } 426 } 427 } 428 if (!Error) 429 return; 430 431 for (const GlobalDecl &GD : Aliases) { 432 StringRef MangledName = getMangledName(GD); 433 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 434 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 435 Alias->eraseFromParent(); 436 } 437 } 438 439 void CodeGenModule::clear() { 440 DeferredDeclsToEmit.clear(); 441 if (OpenMPRuntime) 442 OpenMPRuntime->clear(); 443 } 444 445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 446 StringRef MainFile) { 447 if (!hasDiagnostics()) 448 return; 449 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 450 if (MainFile.empty()) 451 MainFile = "<stdin>"; 452 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 453 } else { 454 if (Mismatched > 0) 455 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 456 457 if (Missing > 0) 458 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 459 } 460 } 461 462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 463 llvm::Module &M) { 464 if (!LO.VisibilityFromDLLStorageClass) 465 return; 466 467 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 468 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 469 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 470 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 471 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 472 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 473 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 474 CodeGenModule::GetLLVMVisibility( 475 LO.getExternDeclNoDLLStorageClassVisibility()); 476 477 for (llvm::GlobalValue &GV : M.global_values()) { 478 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 479 continue; 480 481 // Reset DSO locality before setting the visibility. This removes 482 // any effects that visibility options and annotations may have 483 // had on the DSO locality. Setting the visibility will implicitly set 484 // appropriate globals to DSO Local; however, this will be pessimistic 485 // w.r.t. to the normal compiler IRGen. 486 GV.setDSOLocal(false); 487 488 if (GV.isDeclarationForLinker()) { 489 GV.setVisibility(GV.getDLLStorageClass() == 490 llvm::GlobalValue::DLLImportStorageClass 491 ? ExternDeclDLLImportVisibility 492 : ExternDeclNoDLLStorageClassVisibility); 493 } else { 494 GV.setVisibility(GV.getDLLStorageClass() == 495 llvm::GlobalValue::DLLExportStorageClass 496 ? DLLExportVisibility 497 : NoDLLStorageClassVisibility); 498 } 499 500 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 501 } 502 } 503 504 void CodeGenModule::Release() { 505 EmitDeferred(); 506 EmitVTablesOpportunistically(); 507 applyGlobalValReplacements(); 508 applyReplacements(); 509 checkAliases(); 510 emitMultiVersionFunctions(); 511 EmitCXXGlobalInitFunc(); 512 EmitCXXGlobalCleanUpFunc(); 513 registerGlobalDtorsWithAtExit(); 514 EmitCXXThreadLocalInitFunc(); 515 if (ObjCRuntime) 516 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 517 AddGlobalCtor(ObjCInitFunction); 518 if (Context.getLangOpts().CUDA && CUDARuntime) { 519 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 520 AddGlobalCtor(CudaCtorFunction); 521 } 522 if (OpenMPRuntime) { 523 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 524 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 525 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 526 } 527 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 528 OpenMPRuntime->clear(); 529 } 530 if (PGOReader) { 531 getModule().setProfileSummary( 532 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 533 llvm::ProfileSummary::PSK_Instr); 534 if (PGOStats.hasDiagnostics()) 535 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 536 } 537 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 538 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 539 EmitGlobalAnnotations(); 540 EmitStaticExternCAliases(); 541 EmitDeferredUnusedCoverageMappings(); 542 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 543 if (CoverageMapping) 544 CoverageMapping->emit(); 545 if (CodeGenOpts.SanitizeCfiCrossDso) { 546 CodeGenFunction(*this).EmitCfiCheckFail(); 547 CodeGenFunction(*this).EmitCfiCheckStub(); 548 } 549 emitAtAvailableLinkGuard(); 550 if (Context.getTargetInfo().getTriple().isWasm() && 551 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 552 EmitMainVoidAlias(); 553 } 554 555 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 556 // preserve ASAN functions in bitcode libraries. 557 if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) { 558 auto *FT = llvm::FunctionType::get(VoidTy, {}); 559 auto *F = llvm::Function::Create( 560 FT, llvm::GlobalValue::ExternalLinkage, 561 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 562 auto *Var = new llvm::GlobalVariable( 563 getModule(), FT->getPointerTo(), 564 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 565 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 566 llvm::GlobalVariable::NotThreadLocal); 567 addCompilerUsedGlobal(Var); 568 if (!getModule().getModuleFlag("amdgpu_hostcall")) { 569 getModule().addModuleFlag(llvm::Module::Override, "amdgpu_hostcall", 1); 570 } 571 } 572 573 emitLLVMUsed(); 574 if (SanStats) 575 SanStats->finish(); 576 577 if (CodeGenOpts.Autolink && 578 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 579 EmitModuleLinkOptions(); 580 } 581 582 // On ELF we pass the dependent library specifiers directly to the linker 583 // without manipulating them. This is in contrast to other platforms where 584 // they are mapped to a specific linker option by the compiler. This 585 // difference is a result of the greater variety of ELF linkers and the fact 586 // that ELF linkers tend to handle libraries in a more complicated fashion 587 // than on other platforms. This forces us to defer handling the dependent 588 // libs to the linker. 589 // 590 // CUDA/HIP device and host libraries are different. Currently there is no 591 // way to differentiate dependent libraries for host or device. Existing 592 // usage of #pragma comment(lib, *) is intended for host libraries on 593 // Windows. Therefore emit llvm.dependent-libraries only for host. 594 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 595 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 596 for (auto *MD : ELFDependentLibraries) 597 NMD->addOperand(MD); 598 } 599 600 // Record mregparm value now so it is visible through rest of codegen. 601 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 602 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 603 CodeGenOpts.NumRegisterParameters); 604 605 if (CodeGenOpts.DwarfVersion) { 606 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 607 CodeGenOpts.DwarfVersion); 608 } 609 610 if (CodeGenOpts.Dwarf64) 611 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 612 613 if (Context.getLangOpts().SemanticInterposition) 614 // Require various optimization to respect semantic interposition. 615 getModule().setSemanticInterposition(true); 616 617 if (CodeGenOpts.EmitCodeView) { 618 // Indicate that we want CodeView in the metadata. 619 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 620 } 621 if (CodeGenOpts.CodeViewGHash) { 622 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 623 } 624 if (CodeGenOpts.ControlFlowGuard) { 625 // Function ID tables and checks for Control Flow Guard (cfguard=2). 626 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 627 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 628 // Function ID tables for Control Flow Guard (cfguard=1). 629 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 630 } 631 if (CodeGenOpts.EHContGuard) { 632 // Function ID tables for EH Continuation Guard. 633 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 634 } 635 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 636 // We don't support LTO with 2 with different StrictVTablePointers 637 // FIXME: we could support it by stripping all the information introduced 638 // by StrictVTablePointers. 639 640 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 641 642 llvm::Metadata *Ops[2] = { 643 llvm::MDString::get(VMContext, "StrictVTablePointers"), 644 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 645 llvm::Type::getInt32Ty(VMContext), 1))}; 646 647 getModule().addModuleFlag(llvm::Module::Require, 648 "StrictVTablePointersRequirement", 649 llvm::MDNode::get(VMContext, Ops)); 650 } 651 if (getModuleDebugInfo()) 652 // We support a single version in the linked module. The LLVM 653 // parser will drop debug info with a different version number 654 // (and warn about it, too). 655 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 656 llvm::DEBUG_METADATA_VERSION); 657 658 // We need to record the widths of enums and wchar_t, so that we can generate 659 // the correct build attributes in the ARM backend. wchar_size is also used by 660 // TargetLibraryInfo. 661 uint64_t WCharWidth = 662 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 663 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 664 665 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 666 if ( Arch == llvm::Triple::arm 667 || Arch == llvm::Triple::armeb 668 || Arch == llvm::Triple::thumb 669 || Arch == llvm::Triple::thumbeb) { 670 // The minimum width of an enum in bytes 671 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 672 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 673 } 674 675 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 676 StringRef ABIStr = Target.getABI(); 677 llvm::LLVMContext &Ctx = TheModule.getContext(); 678 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 679 llvm::MDString::get(Ctx, ABIStr)); 680 } 681 682 if (CodeGenOpts.SanitizeCfiCrossDso) { 683 // Indicate that we want cross-DSO control flow integrity checks. 684 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 685 } 686 687 if (CodeGenOpts.WholeProgramVTables) { 688 // Indicate whether VFE was enabled for this module, so that the 689 // vcall_visibility metadata added under whole program vtables is handled 690 // appropriately in the optimizer. 691 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 692 CodeGenOpts.VirtualFunctionElimination); 693 } 694 695 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 696 getModule().addModuleFlag(llvm::Module::Override, 697 "CFI Canonical Jump Tables", 698 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 699 } 700 701 if (CodeGenOpts.CFProtectionReturn && 702 Target.checkCFProtectionReturnSupported(getDiags())) { 703 // Indicate that we want to instrument return control flow protection. 704 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 705 1); 706 } 707 708 if (CodeGenOpts.CFProtectionBranch && 709 Target.checkCFProtectionBranchSupported(getDiags())) { 710 // Indicate that we want to instrument branch control flow protection. 711 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 712 1); 713 } 714 715 if (CodeGenOpts.IBTSeal) 716 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 717 718 // Add module metadata for return address signing (ignoring 719 // non-leaf/all) and stack tagging. These are actually turned on by function 720 // attributes, but we use module metadata to emit build attributes. This is 721 // needed for LTO, where the function attributes are inside bitcode 722 // serialised into a global variable by the time build attributes are 723 // emitted, so we can't access them. 724 if (Context.getTargetInfo().hasFeature("ptrauth") && 725 LangOpts.getSignReturnAddressScope() != 726 LangOptions::SignReturnAddressScopeKind::None) 727 getModule().addModuleFlag(llvm::Module::Override, 728 "sign-return-address-buildattr", 1); 729 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) 730 getModule().addModuleFlag(llvm::Module::Override, 731 "tag-stack-memory-buildattr", 1); 732 733 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 734 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 735 Arch == llvm::Triple::aarch64_be) { 736 getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement", 737 LangOpts.BranchTargetEnforcement); 738 739 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 740 LangOpts.hasSignReturnAddress()); 741 742 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 743 LangOpts.isSignReturnAddressScopeAll()); 744 745 if (Arch != llvm::Triple::thumb && Arch != llvm::Triple::thumbeb) { 746 getModule().addModuleFlag(llvm::Module::Error, 747 "sign-return-address-with-bkey", 748 !LangOpts.isSignReturnAddressWithAKey()); 749 } 750 } 751 752 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 753 llvm::LLVMContext &Ctx = TheModule.getContext(); 754 getModule().addModuleFlag( 755 llvm::Module::Error, "MemProfProfileFilename", 756 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 757 } 758 759 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 760 // Indicate whether __nvvm_reflect should be configured to flush denormal 761 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 762 // property.) 763 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 764 CodeGenOpts.FP32DenormalMode.Output != 765 llvm::DenormalMode::IEEE); 766 } 767 768 if (LangOpts.EHAsynch) 769 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 770 771 // Indicate whether this Module was compiled with -fopenmp 772 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 773 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 774 if (getLangOpts().OpenMPIsDevice) 775 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 776 LangOpts.OpenMP); 777 778 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 779 if (LangOpts.OpenCL) { 780 EmitOpenCLMetadata(); 781 // Emit SPIR version. 782 if (getTriple().isSPIR()) { 783 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 784 // opencl.spir.version named metadata. 785 // C++ for OpenCL has a distinct mapping for version compatibility with 786 // OpenCL. 787 auto Version = LangOpts.getOpenCLCompatibleVersion(); 788 llvm::Metadata *SPIRVerElts[] = { 789 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 790 Int32Ty, Version / 100)), 791 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 792 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 793 llvm::NamedMDNode *SPIRVerMD = 794 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 795 llvm::LLVMContext &Ctx = TheModule.getContext(); 796 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 797 } 798 } 799 800 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 801 assert(PLevel < 3 && "Invalid PIC Level"); 802 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 803 if (Context.getLangOpts().PIE) 804 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 805 } 806 807 if (getCodeGenOpts().CodeModel.size() > 0) { 808 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 809 .Case("tiny", llvm::CodeModel::Tiny) 810 .Case("small", llvm::CodeModel::Small) 811 .Case("kernel", llvm::CodeModel::Kernel) 812 .Case("medium", llvm::CodeModel::Medium) 813 .Case("large", llvm::CodeModel::Large) 814 .Default(~0u); 815 if (CM != ~0u) { 816 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 817 getModule().setCodeModel(codeModel); 818 } 819 } 820 821 if (CodeGenOpts.NoPLT) 822 getModule().setRtLibUseGOT(); 823 if (CodeGenOpts.UnwindTables) 824 getModule().setUwtable(); 825 826 switch (CodeGenOpts.getFramePointer()) { 827 case CodeGenOptions::FramePointerKind::None: 828 // 0 ("none") is the default. 829 break; 830 case CodeGenOptions::FramePointerKind::NonLeaf: 831 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 832 break; 833 case CodeGenOptions::FramePointerKind::All: 834 getModule().setFramePointer(llvm::FramePointerKind::All); 835 break; 836 } 837 838 SimplifyPersonality(); 839 840 if (getCodeGenOpts().EmitDeclMetadata) 841 EmitDeclMetadata(); 842 843 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 844 EmitCoverageFile(); 845 846 if (CGDebugInfo *DI = getModuleDebugInfo()) 847 DI->finalize(); 848 849 if (getCodeGenOpts().EmitVersionIdentMetadata) 850 EmitVersionIdentMetadata(); 851 852 if (!getCodeGenOpts().RecordCommandLine.empty()) 853 EmitCommandLineMetadata(); 854 855 if (!getCodeGenOpts().StackProtectorGuard.empty()) 856 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 857 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 858 getModule().setStackProtectorGuardReg( 859 getCodeGenOpts().StackProtectorGuardReg); 860 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 861 getModule().setStackProtectorGuardOffset( 862 getCodeGenOpts().StackProtectorGuardOffset); 863 if (getCodeGenOpts().StackAlignment) 864 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 865 if (getCodeGenOpts().SkipRaxSetup) 866 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 867 868 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 869 870 EmitBackendOptionsMetadata(getCodeGenOpts()); 871 872 // Set visibility from DLL storage class 873 // We do this at the end of LLVM IR generation; after any operation 874 // that might affect the DLL storage class or the visibility, and 875 // before anything that might act on these. 876 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 877 } 878 879 void CodeGenModule::EmitOpenCLMetadata() { 880 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 881 // opencl.ocl.version named metadata node. 882 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 883 auto Version = LangOpts.getOpenCLCompatibleVersion(); 884 llvm::Metadata *OCLVerElts[] = { 885 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 886 Int32Ty, Version / 100)), 887 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 888 Int32Ty, (Version % 100) / 10))}; 889 llvm::NamedMDNode *OCLVerMD = 890 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 891 llvm::LLVMContext &Ctx = TheModule.getContext(); 892 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 893 } 894 895 void CodeGenModule::EmitBackendOptionsMetadata( 896 const CodeGenOptions CodeGenOpts) { 897 switch (getTriple().getArch()) { 898 default: 899 break; 900 case llvm::Triple::riscv32: 901 case llvm::Triple::riscv64: 902 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 903 CodeGenOpts.SmallDataLimit); 904 break; 905 } 906 } 907 908 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 909 // Make sure that this type is translated. 910 Types.UpdateCompletedType(TD); 911 } 912 913 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 914 // Make sure that this type is translated. 915 Types.RefreshTypeCacheForClass(RD); 916 } 917 918 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 919 if (!TBAA) 920 return nullptr; 921 return TBAA->getTypeInfo(QTy); 922 } 923 924 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 925 if (!TBAA) 926 return TBAAAccessInfo(); 927 if (getLangOpts().CUDAIsDevice) { 928 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 929 // access info. 930 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 931 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 932 nullptr) 933 return TBAAAccessInfo(); 934 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 935 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 936 nullptr) 937 return TBAAAccessInfo(); 938 } 939 } 940 return TBAA->getAccessInfo(AccessType); 941 } 942 943 TBAAAccessInfo 944 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 945 if (!TBAA) 946 return TBAAAccessInfo(); 947 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 948 } 949 950 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 951 if (!TBAA) 952 return nullptr; 953 return TBAA->getTBAAStructInfo(QTy); 954 } 955 956 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 957 if (!TBAA) 958 return nullptr; 959 return TBAA->getBaseTypeInfo(QTy); 960 } 961 962 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 963 if (!TBAA) 964 return nullptr; 965 return TBAA->getAccessTagInfo(Info); 966 } 967 968 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 969 TBAAAccessInfo TargetInfo) { 970 if (!TBAA) 971 return TBAAAccessInfo(); 972 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 973 } 974 975 TBAAAccessInfo 976 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 977 TBAAAccessInfo InfoB) { 978 if (!TBAA) 979 return TBAAAccessInfo(); 980 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 981 } 982 983 TBAAAccessInfo 984 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 985 TBAAAccessInfo SrcInfo) { 986 if (!TBAA) 987 return TBAAAccessInfo(); 988 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 989 } 990 991 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 992 TBAAAccessInfo TBAAInfo) { 993 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 994 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 995 } 996 997 void CodeGenModule::DecorateInstructionWithInvariantGroup( 998 llvm::Instruction *I, const CXXRecordDecl *RD) { 999 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1000 llvm::MDNode::get(getLLVMContext(), {})); 1001 } 1002 1003 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1004 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1005 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1006 } 1007 1008 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1009 /// specified stmt yet. 1010 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1011 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1012 "cannot compile this %0 yet"); 1013 std::string Msg = Type; 1014 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1015 << Msg << S->getSourceRange(); 1016 } 1017 1018 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1019 /// specified decl yet. 1020 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1021 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1022 "cannot compile this %0 yet"); 1023 std::string Msg = Type; 1024 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1025 } 1026 1027 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1028 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1029 } 1030 1031 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1032 const NamedDecl *D) const { 1033 if (GV->hasDLLImportStorageClass()) 1034 return; 1035 // Internal definitions always have default visibility. 1036 if (GV->hasLocalLinkage()) { 1037 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1038 return; 1039 } 1040 if (!D) 1041 return; 1042 // Set visibility for definitions, and for declarations if requested globally 1043 // or set explicitly. 1044 LinkageInfo LV = D->getLinkageAndVisibility(); 1045 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1046 !GV->isDeclarationForLinker()) 1047 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1048 } 1049 1050 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1051 llvm::GlobalValue *GV) { 1052 if (GV->hasLocalLinkage()) 1053 return true; 1054 1055 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1056 return true; 1057 1058 // DLLImport explicitly marks the GV as external. 1059 if (GV->hasDLLImportStorageClass()) 1060 return false; 1061 1062 const llvm::Triple &TT = CGM.getTriple(); 1063 if (TT.isWindowsGNUEnvironment()) { 1064 // In MinGW, variables without DLLImport can still be automatically 1065 // imported from a DLL by the linker; don't mark variables that 1066 // potentially could come from another DLL as DSO local. 1067 1068 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1069 // (and this actually happens in the public interface of libstdc++), so 1070 // such variables can't be marked as DSO local. (Native TLS variables 1071 // can't be dllimported at all, though.) 1072 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1073 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1074 return false; 1075 } 1076 1077 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1078 // remain unresolved in the link, they can be resolved to zero, which is 1079 // outside the current DSO. 1080 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1081 return false; 1082 1083 // Every other GV is local on COFF. 1084 // Make an exception for windows OS in the triple: Some firmware builds use 1085 // *-win32-macho triples. This (accidentally?) produced windows relocations 1086 // without GOT tables in older clang versions; Keep this behaviour. 1087 // FIXME: even thread local variables? 1088 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1089 return true; 1090 1091 // Only handle COFF and ELF for now. 1092 if (!TT.isOSBinFormatELF()) 1093 return false; 1094 1095 // If this is not an executable, don't assume anything is local. 1096 const auto &CGOpts = CGM.getCodeGenOpts(); 1097 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1098 const auto &LOpts = CGM.getLangOpts(); 1099 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1100 // On ELF, if -fno-semantic-interposition is specified and the target 1101 // supports local aliases, there will be neither CC1 1102 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1103 // dso_local on the function if using a local alias is preferable (can avoid 1104 // PLT indirection). 1105 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1106 return false; 1107 return !(CGM.getLangOpts().SemanticInterposition || 1108 CGM.getLangOpts().HalfNoSemanticInterposition); 1109 } 1110 1111 // A definition cannot be preempted from an executable. 1112 if (!GV->isDeclarationForLinker()) 1113 return true; 1114 1115 // Most PIC code sequences that assume that a symbol is local cannot produce a 1116 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1117 // depended, it seems worth it to handle it here. 1118 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1119 return false; 1120 1121 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1122 if (TT.isPPC64()) 1123 return false; 1124 1125 if (CGOpts.DirectAccessExternalData) { 1126 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1127 // for non-thread-local variables. If the symbol is not defined in the 1128 // executable, a copy relocation will be needed at link time. dso_local is 1129 // excluded for thread-local variables because they generally don't support 1130 // copy relocations. 1131 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1132 if (!Var->isThreadLocal()) 1133 return true; 1134 1135 // -fno-pic sets dso_local on a function declaration to allow direct 1136 // accesses when taking its address (similar to a data symbol). If the 1137 // function is not defined in the executable, a canonical PLT entry will be 1138 // needed at link time. -fno-direct-access-external-data can avoid the 1139 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1140 // it could just cause trouble without providing perceptible benefits. 1141 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1142 return true; 1143 } 1144 1145 // If we can use copy relocations we can assume it is local. 1146 1147 // Otherwise don't assume it is local. 1148 return false; 1149 } 1150 1151 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1152 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1153 } 1154 1155 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1156 GlobalDecl GD) const { 1157 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1158 // C++ destructors have a few C++ ABI specific special cases. 1159 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1160 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1161 return; 1162 } 1163 setDLLImportDLLExport(GV, D); 1164 } 1165 1166 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1167 const NamedDecl *D) const { 1168 if (D && D->isExternallyVisible()) { 1169 if (D->hasAttr<DLLImportAttr>()) 1170 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1171 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1172 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1173 } 1174 } 1175 1176 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1177 GlobalDecl GD) const { 1178 setDLLImportDLLExport(GV, GD); 1179 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1180 } 1181 1182 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1183 const NamedDecl *D) const { 1184 setDLLImportDLLExport(GV, D); 1185 setGVPropertiesAux(GV, D); 1186 } 1187 1188 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1189 const NamedDecl *D) const { 1190 setGlobalVisibility(GV, D); 1191 setDSOLocal(GV); 1192 GV->setPartition(CodeGenOpts.SymbolPartition); 1193 } 1194 1195 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1196 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1197 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1198 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1199 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1200 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1201 } 1202 1203 llvm::GlobalVariable::ThreadLocalMode 1204 CodeGenModule::GetDefaultLLVMTLSModel() const { 1205 switch (CodeGenOpts.getDefaultTLSModel()) { 1206 case CodeGenOptions::GeneralDynamicTLSModel: 1207 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1208 case CodeGenOptions::LocalDynamicTLSModel: 1209 return llvm::GlobalVariable::LocalDynamicTLSModel; 1210 case CodeGenOptions::InitialExecTLSModel: 1211 return llvm::GlobalVariable::InitialExecTLSModel; 1212 case CodeGenOptions::LocalExecTLSModel: 1213 return llvm::GlobalVariable::LocalExecTLSModel; 1214 } 1215 llvm_unreachable("Invalid TLS model!"); 1216 } 1217 1218 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1219 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1220 1221 llvm::GlobalValue::ThreadLocalMode TLM; 1222 TLM = GetDefaultLLVMTLSModel(); 1223 1224 // Override the TLS model if it is explicitly specified. 1225 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1226 TLM = GetLLVMTLSModel(Attr->getModel()); 1227 } 1228 1229 GV->setThreadLocalMode(TLM); 1230 } 1231 1232 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1233 StringRef Name) { 1234 const TargetInfo &Target = CGM.getTarget(); 1235 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1236 } 1237 1238 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1239 const CPUSpecificAttr *Attr, 1240 unsigned CPUIndex, 1241 raw_ostream &Out) { 1242 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1243 // supported. 1244 if (Attr) 1245 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1246 else if (CGM.getTarget().supportsIFunc()) 1247 Out << ".resolver"; 1248 } 1249 1250 static void AppendTargetMangling(const CodeGenModule &CGM, 1251 const TargetAttr *Attr, raw_ostream &Out) { 1252 if (Attr->isDefaultVersion()) 1253 return; 1254 1255 Out << '.'; 1256 const TargetInfo &Target = CGM.getTarget(); 1257 ParsedTargetAttr Info = 1258 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1259 // Multiversioning doesn't allow "no-${feature}", so we can 1260 // only have "+" prefixes here. 1261 assert(LHS.startswith("+") && RHS.startswith("+") && 1262 "Features should always have a prefix."); 1263 return Target.multiVersionSortPriority(LHS.substr(1)) > 1264 Target.multiVersionSortPriority(RHS.substr(1)); 1265 }); 1266 1267 bool IsFirst = true; 1268 1269 if (!Info.Architecture.empty()) { 1270 IsFirst = false; 1271 Out << "arch_" << Info.Architecture; 1272 } 1273 1274 for (StringRef Feat : Info.Features) { 1275 if (!IsFirst) 1276 Out << '_'; 1277 IsFirst = false; 1278 Out << Feat.substr(1); 1279 } 1280 } 1281 1282 // Returns true if GD is a function decl with internal linkage and 1283 // needs a unique suffix after the mangled name. 1284 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1285 CodeGenModule &CGM) { 1286 const Decl *D = GD.getDecl(); 1287 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1288 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1289 } 1290 1291 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1292 const TargetClonesAttr *Attr, 1293 unsigned VersionIndex, 1294 raw_ostream &Out) { 1295 Out << '.'; 1296 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1297 if (FeatureStr.startswith("arch=")) 1298 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1299 else 1300 Out << FeatureStr; 1301 1302 Out << '.' << Attr->getMangledIndex(VersionIndex); 1303 } 1304 1305 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1306 const NamedDecl *ND, 1307 bool OmitMultiVersionMangling = false) { 1308 SmallString<256> Buffer; 1309 llvm::raw_svector_ostream Out(Buffer); 1310 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1311 if (!CGM.getModuleNameHash().empty()) 1312 MC.needsUniqueInternalLinkageNames(); 1313 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1314 if (ShouldMangle) 1315 MC.mangleName(GD.getWithDecl(ND), Out); 1316 else { 1317 IdentifierInfo *II = ND->getIdentifier(); 1318 assert(II && "Attempt to mangle unnamed decl."); 1319 const auto *FD = dyn_cast<FunctionDecl>(ND); 1320 1321 if (FD && 1322 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1323 Out << "__regcall3__" << II->getName(); 1324 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1325 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1326 Out << "__device_stub__" << II->getName(); 1327 } else { 1328 Out << II->getName(); 1329 } 1330 } 1331 1332 // Check if the module name hash should be appended for internal linkage 1333 // symbols. This should come before multi-version target suffixes are 1334 // appended. This is to keep the name and module hash suffix of the 1335 // internal linkage function together. The unique suffix should only be 1336 // added when name mangling is done to make sure that the final name can 1337 // be properly demangled. For example, for C functions without prototypes, 1338 // name mangling is not done and the unique suffix should not be appeneded 1339 // then. 1340 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1341 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1342 "Hash computed when not explicitly requested"); 1343 Out << CGM.getModuleNameHash(); 1344 } 1345 1346 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1347 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1348 switch (FD->getMultiVersionKind()) { 1349 case MultiVersionKind::CPUDispatch: 1350 case MultiVersionKind::CPUSpecific: 1351 AppendCPUSpecificCPUDispatchMangling(CGM, 1352 FD->getAttr<CPUSpecificAttr>(), 1353 GD.getMultiVersionIndex(), Out); 1354 break; 1355 case MultiVersionKind::Target: 1356 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1357 break; 1358 case MultiVersionKind::TargetClones: 1359 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1360 GD.getMultiVersionIndex(), Out); 1361 break; 1362 case MultiVersionKind::None: 1363 llvm_unreachable("None multiversion type isn't valid here"); 1364 } 1365 } 1366 1367 // Make unique name for device side static file-scope variable for HIP. 1368 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1369 CGM.getLangOpts().GPURelocatableDeviceCode && 1370 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1371 CGM.printPostfixForExternalizedStaticVar(Out); 1372 return std::string(Out.str()); 1373 } 1374 1375 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1376 const FunctionDecl *FD, 1377 StringRef &CurName) { 1378 if (!FD->isMultiVersion()) 1379 return; 1380 1381 // Get the name of what this would be without the 'target' attribute. This 1382 // allows us to lookup the version that was emitted when this wasn't a 1383 // multiversion function. 1384 std::string NonTargetName = 1385 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1386 GlobalDecl OtherGD; 1387 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1388 assert(OtherGD.getCanonicalDecl() 1389 .getDecl() 1390 ->getAsFunction() 1391 ->isMultiVersion() && 1392 "Other GD should now be a multiversioned function"); 1393 // OtherFD is the version of this function that was mangled BEFORE 1394 // becoming a MultiVersion function. It potentially needs to be updated. 1395 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1396 .getDecl() 1397 ->getAsFunction() 1398 ->getMostRecentDecl(); 1399 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1400 // This is so that if the initial version was already the 'default' 1401 // version, we don't try to update it. 1402 if (OtherName != NonTargetName) { 1403 // Remove instead of erase, since others may have stored the StringRef 1404 // to this. 1405 const auto ExistingRecord = Manglings.find(NonTargetName); 1406 if (ExistingRecord != std::end(Manglings)) 1407 Manglings.remove(&(*ExistingRecord)); 1408 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1409 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1410 Result.first->first(); 1411 // If this is the current decl is being created, make sure we update the name. 1412 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1413 CurName = OtherNameRef; 1414 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1415 Entry->setName(OtherName); 1416 } 1417 } 1418 } 1419 1420 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1421 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1422 1423 // Some ABIs don't have constructor variants. Make sure that base and 1424 // complete constructors get mangled the same. 1425 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1426 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1427 CXXCtorType OrigCtorType = GD.getCtorType(); 1428 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1429 if (OrigCtorType == Ctor_Base) 1430 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1431 } 1432 } 1433 1434 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1435 // static device variable depends on whether the variable is referenced by 1436 // a host or device host function. Therefore the mangled name cannot be 1437 // cached. 1438 if (!LangOpts.CUDAIsDevice || 1439 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1440 auto FoundName = MangledDeclNames.find(CanonicalGD); 1441 if (FoundName != MangledDeclNames.end()) 1442 return FoundName->second; 1443 } 1444 1445 // Keep the first result in the case of a mangling collision. 1446 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1447 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1448 1449 // Ensure either we have different ABIs between host and device compilations, 1450 // says host compilation following MSVC ABI but device compilation follows 1451 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1452 // mangling should be the same after name stubbing. The later checking is 1453 // very important as the device kernel name being mangled in host-compilation 1454 // is used to resolve the device binaries to be executed. Inconsistent naming 1455 // result in undefined behavior. Even though we cannot check that naming 1456 // directly between host- and device-compilations, the host- and 1457 // device-mangling in host compilation could help catching certain ones. 1458 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1459 getLangOpts().CUDAIsDevice || 1460 (getContext().getAuxTargetInfo() && 1461 (getContext().getAuxTargetInfo()->getCXXABI() != 1462 getContext().getTargetInfo().getCXXABI())) || 1463 getCUDARuntime().getDeviceSideName(ND) == 1464 getMangledNameImpl( 1465 *this, 1466 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1467 ND)); 1468 1469 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1470 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1471 } 1472 1473 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1474 const BlockDecl *BD) { 1475 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1476 const Decl *D = GD.getDecl(); 1477 1478 SmallString<256> Buffer; 1479 llvm::raw_svector_ostream Out(Buffer); 1480 if (!D) 1481 MangleCtx.mangleGlobalBlock(BD, 1482 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1483 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1484 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1485 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1486 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1487 else 1488 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1489 1490 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1491 return Result.first->first(); 1492 } 1493 1494 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1495 return getModule().getNamedValue(Name); 1496 } 1497 1498 /// AddGlobalCtor - Add a function to the list that will be called before 1499 /// main() runs. 1500 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1501 llvm::Constant *AssociatedData) { 1502 // FIXME: Type coercion of void()* types. 1503 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1504 } 1505 1506 /// AddGlobalDtor - Add a function to the list that will be called 1507 /// when the module is unloaded. 1508 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1509 bool IsDtorAttrFunc) { 1510 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1511 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1512 DtorsUsingAtExit[Priority].push_back(Dtor); 1513 return; 1514 } 1515 1516 // FIXME: Type coercion of void()* types. 1517 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1518 } 1519 1520 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1521 if (Fns.empty()) return; 1522 1523 // Ctor function type is void()*. 1524 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1525 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1526 TheModule.getDataLayout().getProgramAddressSpace()); 1527 1528 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1529 llvm::StructType *CtorStructTy = llvm::StructType::get( 1530 Int32Ty, CtorPFTy, VoidPtrTy); 1531 1532 // Construct the constructor and destructor arrays. 1533 ConstantInitBuilder builder(*this); 1534 auto ctors = builder.beginArray(CtorStructTy); 1535 for (const auto &I : Fns) { 1536 auto ctor = ctors.beginStruct(CtorStructTy); 1537 ctor.addInt(Int32Ty, I.Priority); 1538 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1539 if (I.AssociatedData) 1540 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1541 else 1542 ctor.addNullPointer(VoidPtrTy); 1543 ctor.finishAndAddTo(ctors); 1544 } 1545 1546 auto list = 1547 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1548 /*constant*/ false, 1549 llvm::GlobalValue::AppendingLinkage); 1550 1551 // The LTO linker doesn't seem to like it when we set an alignment 1552 // on appending variables. Take it off as a workaround. 1553 list->setAlignment(llvm::None); 1554 1555 Fns.clear(); 1556 } 1557 1558 llvm::GlobalValue::LinkageTypes 1559 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1560 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1561 1562 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1563 1564 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1565 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1566 1567 if (isa<CXXConstructorDecl>(D) && 1568 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1569 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1570 // Our approach to inheriting constructors is fundamentally different from 1571 // that used by the MS ABI, so keep our inheriting constructor thunks 1572 // internal rather than trying to pick an unambiguous mangling for them. 1573 return llvm::GlobalValue::InternalLinkage; 1574 } 1575 1576 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1577 } 1578 1579 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1580 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1581 if (!MDS) return nullptr; 1582 1583 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1584 } 1585 1586 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1587 const CGFunctionInfo &Info, 1588 llvm::Function *F, bool IsThunk) { 1589 unsigned CallingConv; 1590 llvm::AttributeList PAL; 1591 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1592 /*AttrOnCallSite=*/false, IsThunk); 1593 F->setAttributes(PAL); 1594 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1595 } 1596 1597 static void removeImageAccessQualifier(std::string& TyName) { 1598 std::string ReadOnlyQual("__read_only"); 1599 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1600 if (ReadOnlyPos != std::string::npos) 1601 // "+ 1" for the space after access qualifier. 1602 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1603 else { 1604 std::string WriteOnlyQual("__write_only"); 1605 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1606 if (WriteOnlyPos != std::string::npos) 1607 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1608 else { 1609 std::string ReadWriteQual("__read_write"); 1610 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1611 if (ReadWritePos != std::string::npos) 1612 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1613 } 1614 } 1615 } 1616 1617 // Returns the address space id that should be produced to the 1618 // kernel_arg_addr_space metadata. This is always fixed to the ids 1619 // as specified in the SPIR 2.0 specification in order to differentiate 1620 // for example in clGetKernelArgInfo() implementation between the address 1621 // spaces with targets without unique mapping to the OpenCL address spaces 1622 // (basically all single AS CPUs). 1623 static unsigned ArgInfoAddressSpace(LangAS AS) { 1624 switch (AS) { 1625 case LangAS::opencl_global: 1626 return 1; 1627 case LangAS::opencl_constant: 1628 return 2; 1629 case LangAS::opencl_local: 1630 return 3; 1631 case LangAS::opencl_generic: 1632 return 4; // Not in SPIR 2.0 specs. 1633 case LangAS::opencl_global_device: 1634 return 5; 1635 case LangAS::opencl_global_host: 1636 return 6; 1637 default: 1638 return 0; // Assume private. 1639 } 1640 } 1641 1642 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1643 const FunctionDecl *FD, 1644 CodeGenFunction *CGF) { 1645 assert(((FD && CGF) || (!FD && !CGF)) && 1646 "Incorrect use - FD and CGF should either be both null or not!"); 1647 // Create MDNodes that represent the kernel arg metadata. 1648 // Each MDNode is a list in the form of "key", N number of values which is 1649 // the same number of values as their are kernel arguments. 1650 1651 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1652 1653 // MDNode for the kernel argument address space qualifiers. 1654 SmallVector<llvm::Metadata *, 8> addressQuals; 1655 1656 // MDNode for the kernel argument access qualifiers (images only). 1657 SmallVector<llvm::Metadata *, 8> accessQuals; 1658 1659 // MDNode for the kernel argument type names. 1660 SmallVector<llvm::Metadata *, 8> argTypeNames; 1661 1662 // MDNode for the kernel argument base type names. 1663 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1664 1665 // MDNode for the kernel argument type qualifiers. 1666 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1667 1668 // MDNode for the kernel argument names. 1669 SmallVector<llvm::Metadata *, 8> argNames; 1670 1671 if (FD && CGF) 1672 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1673 const ParmVarDecl *parm = FD->getParamDecl(i); 1674 QualType ty = parm->getType(); 1675 std::string typeQuals; 1676 1677 // Get image and pipe access qualifier: 1678 if (ty->isImageType() || ty->isPipeType()) { 1679 const Decl *PDecl = parm; 1680 if (auto *TD = dyn_cast<TypedefType>(ty)) 1681 PDecl = TD->getDecl(); 1682 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1683 if (A && A->isWriteOnly()) 1684 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1685 else if (A && A->isReadWrite()) 1686 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1687 else 1688 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1689 } else 1690 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1691 1692 // Get argument name. 1693 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1694 1695 auto getTypeSpelling = [&](QualType Ty) { 1696 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1697 1698 if (Ty.isCanonical()) { 1699 StringRef typeNameRef = typeName; 1700 // Turn "unsigned type" to "utype" 1701 if (typeNameRef.consume_front("unsigned ")) 1702 return std::string("u") + typeNameRef.str(); 1703 if (typeNameRef.consume_front("signed ")) 1704 return typeNameRef.str(); 1705 } 1706 1707 return typeName; 1708 }; 1709 1710 if (ty->isPointerType()) { 1711 QualType pointeeTy = ty->getPointeeType(); 1712 1713 // Get address qualifier. 1714 addressQuals.push_back( 1715 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1716 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1717 1718 // Get argument type name. 1719 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1720 std::string baseTypeName = 1721 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1722 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1723 argBaseTypeNames.push_back( 1724 llvm::MDString::get(VMContext, baseTypeName)); 1725 1726 // Get argument type qualifiers: 1727 if (ty.isRestrictQualified()) 1728 typeQuals = "restrict"; 1729 if (pointeeTy.isConstQualified() || 1730 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1731 typeQuals += typeQuals.empty() ? "const" : " const"; 1732 if (pointeeTy.isVolatileQualified()) 1733 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1734 } else { 1735 uint32_t AddrSpc = 0; 1736 bool isPipe = ty->isPipeType(); 1737 if (ty->isImageType() || isPipe) 1738 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1739 1740 addressQuals.push_back( 1741 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1742 1743 // Get argument type name. 1744 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1745 std::string typeName = getTypeSpelling(ty); 1746 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1747 1748 // Remove access qualifiers on images 1749 // (as they are inseparable from type in clang implementation, 1750 // but OpenCL spec provides a special query to get access qualifier 1751 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1752 if (ty->isImageType()) { 1753 removeImageAccessQualifier(typeName); 1754 removeImageAccessQualifier(baseTypeName); 1755 } 1756 1757 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1758 argBaseTypeNames.push_back( 1759 llvm::MDString::get(VMContext, baseTypeName)); 1760 1761 if (isPipe) 1762 typeQuals = "pipe"; 1763 } 1764 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1765 } 1766 1767 Fn->setMetadata("kernel_arg_addr_space", 1768 llvm::MDNode::get(VMContext, addressQuals)); 1769 Fn->setMetadata("kernel_arg_access_qual", 1770 llvm::MDNode::get(VMContext, accessQuals)); 1771 Fn->setMetadata("kernel_arg_type", 1772 llvm::MDNode::get(VMContext, argTypeNames)); 1773 Fn->setMetadata("kernel_arg_base_type", 1774 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1775 Fn->setMetadata("kernel_arg_type_qual", 1776 llvm::MDNode::get(VMContext, argTypeQuals)); 1777 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1778 Fn->setMetadata("kernel_arg_name", 1779 llvm::MDNode::get(VMContext, argNames)); 1780 } 1781 1782 /// Determines whether the language options require us to model 1783 /// unwind exceptions. We treat -fexceptions as mandating this 1784 /// except under the fragile ObjC ABI with only ObjC exceptions 1785 /// enabled. This means, for example, that C with -fexceptions 1786 /// enables this. 1787 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1788 // If exceptions are completely disabled, obviously this is false. 1789 if (!LangOpts.Exceptions) return false; 1790 1791 // If C++ exceptions are enabled, this is true. 1792 if (LangOpts.CXXExceptions) return true; 1793 1794 // If ObjC exceptions are enabled, this depends on the ABI. 1795 if (LangOpts.ObjCExceptions) { 1796 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1797 } 1798 1799 return true; 1800 } 1801 1802 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1803 const CXXMethodDecl *MD) { 1804 // Check that the type metadata can ever actually be used by a call. 1805 if (!CGM.getCodeGenOpts().LTOUnit || 1806 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1807 return false; 1808 1809 // Only functions whose address can be taken with a member function pointer 1810 // need this sort of type metadata. 1811 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1812 !isa<CXXDestructorDecl>(MD); 1813 } 1814 1815 std::vector<const CXXRecordDecl *> 1816 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1817 llvm::SetVector<const CXXRecordDecl *> MostBases; 1818 1819 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1820 CollectMostBases = [&](const CXXRecordDecl *RD) { 1821 if (RD->getNumBases() == 0) 1822 MostBases.insert(RD); 1823 for (const CXXBaseSpecifier &B : RD->bases()) 1824 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1825 }; 1826 CollectMostBases(RD); 1827 return MostBases.takeVector(); 1828 } 1829 1830 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1831 llvm::Function *F) { 1832 llvm::AttrBuilder B(F->getContext()); 1833 1834 if (CodeGenOpts.UnwindTables) 1835 B.addAttribute(llvm::Attribute::UWTable); 1836 1837 if (CodeGenOpts.StackClashProtector) 1838 B.addAttribute("probe-stack", "inline-asm"); 1839 1840 if (!hasUnwindExceptions(LangOpts)) 1841 B.addAttribute(llvm::Attribute::NoUnwind); 1842 1843 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1844 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1845 B.addAttribute(llvm::Attribute::StackProtect); 1846 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1847 B.addAttribute(llvm::Attribute::StackProtectStrong); 1848 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1849 B.addAttribute(llvm::Attribute::StackProtectReq); 1850 } 1851 1852 if (!D) { 1853 // If we don't have a declaration to control inlining, the function isn't 1854 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1855 // disabled, mark the function as noinline. 1856 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1857 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1858 B.addAttribute(llvm::Attribute::NoInline); 1859 1860 F->addFnAttrs(B); 1861 return; 1862 } 1863 1864 // Track whether we need to add the optnone LLVM attribute, 1865 // starting with the default for this optimization level. 1866 bool ShouldAddOptNone = 1867 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1868 // We can't add optnone in the following cases, it won't pass the verifier. 1869 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1870 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1871 1872 // Add optnone, but do so only if the function isn't always_inline. 1873 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1874 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1875 B.addAttribute(llvm::Attribute::OptimizeNone); 1876 1877 // OptimizeNone implies noinline; we should not be inlining such functions. 1878 B.addAttribute(llvm::Attribute::NoInline); 1879 1880 // We still need to handle naked functions even though optnone subsumes 1881 // much of their semantics. 1882 if (D->hasAttr<NakedAttr>()) 1883 B.addAttribute(llvm::Attribute::Naked); 1884 1885 // OptimizeNone wins over OptimizeForSize and MinSize. 1886 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1887 F->removeFnAttr(llvm::Attribute::MinSize); 1888 } else if (D->hasAttr<NakedAttr>()) { 1889 // Naked implies noinline: we should not be inlining such functions. 1890 B.addAttribute(llvm::Attribute::Naked); 1891 B.addAttribute(llvm::Attribute::NoInline); 1892 } else if (D->hasAttr<NoDuplicateAttr>()) { 1893 B.addAttribute(llvm::Attribute::NoDuplicate); 1894 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1895 // Add noinline if the function isn't always_inline. 1896 B.addAttribute(llvm::Attribute::NoInline); 1897 } else if (D->hasAttr<AlwaysInlineAttr>() && 1898 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1899 // (noinline wins over always_inline, and we can't specify both in IR) 1900 B.addAttribute(llvm::Attribute::AlwaysInline); 1901 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1902 // If we're not inlining, then force everything that isn't always_inline to 1903 // carry an explicit noinline attribute. 1904 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1905 B.addAttribute(llvm::Attribute::NoInline); 1906 } else { 1907 // Otherwise, propagate the inline hint attribute and potentially use its 1908 // absence to mark things as noinline. 1909 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1910 // Search function and template pattern redeclarations for inline. 1911 auto CheckForInline = [](const FunctionDecl *FD) { 1912 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1913 return Redecl->isInlineSpecified(); 1914 }; 1915 if (any_of(FD->redecls(), CheckRedeclForInline)) 1916 return true; 1917 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1918 if (!Pattern) 1919 return false; 1920 return any_of(Pattern->redecls(), CheckRedeclForInline); 1921 }; 1922 if (CheckForInline(FD)) { 1923 B.addAttribute(llvm::Attribute::InlineHint); 1924 } else if (CodeGenOpts.getInlining() == 1925 CodeGenOptions::OnlyHintInlining && 1926 !FD->isInlined() && 1927 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1928 B.addAttribute(llvm::Attribute::NoInline); 1929 } 1930 } 1931 } 1932 1933 // Add other optimization related attributes if we are optimizing this 1934 // function. 1935 if (!D->hasAttr<OptimizeNoneAttr>()) { 1936 if (D->hasAttr<ColdAttr>()) { 1937 if (!ShouldAddOptNone) 1938 B.addAttribute(llvm::Attribute::OptimizeForSize); 1939 B.addAttribute(llvm::Attribute::Cold); 1940 } 1941 if (D->hasAttr<HotAttr>()) 1942 B.addAttribute(llvm::Attribute::Hot); 1943 if (D->hasAttr<MinSizeAttr>()) 1944 B.addAttribute(llvm::Attribute::MinSize); 1945 } 1946 1947 F->addFnAttrs(B); 1948 1949 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1950 if (alignment) 1951 F->setAlignment(llvm::Align(alignment)); 1952 1953 if (!D->hasAttr<AlignedAttr>()) 1954 if (LangOpts.FunctionAlignment) 1955 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1956 1957 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1958 // reserve a bit for differentiating between virtual and non-virtual member 1959 // functions. If the current target's C++ ABI requires this and this is a 1960 // member function, set its alignment accordingly. 1961 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1962 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1963 F->setAlignment(llvm::Align(2)); 1964 } 1965 1966 // In the cross-dso CFI mode with canonical jump tables, we want !type 1967 // attributes on definitions only. 1968 if (CodeGenOpts.SanitizeCfiCrossDso && 1969 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1970 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1971 // Skip available_externally functions. They won't be codegen'ed in the 1972 // current module anyway. 1973 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1974 CreateFunctionTypeMetadataForIcall(FD, F); 1975 } 1976 } 1977 1978 // Emit type metadata on member functions for member function pointer checks. 1979 // These are only ever necessary on definitions; we're guaranteed that the 1980 // definition will be present in the LTO unit as a result of LTO visibility. 1981 auto *MD = dyn_cast<CXXMethodDecl>(D); 1982 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1983 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1984 llvm::Metadata *Id = 1985 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1986 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1987 F->addTypeMetadata(0, Id); 1988 } 1989 } 1990 } 1991 1992 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1993 llvm::Function *F) { 1994 if (D->hasAttr<StrictFPAttr>()) { 1995 llvm::AttrBuilder FuncAttrs(F->getContext()); 1996 FuncAttrs.addAttribute("strictfp"); 1997 F->addFnAttrs(FuncAttrs); 1998 } 1999 } 2000 2001 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2002 const Decl *D = GD.getDecl(); 2003 if (isa_and_nonnull<NamedDecl>(D)) 2004 setGVProperties(GV, GD); 2005 else 2006 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2007 2008 if (D && D->hasAttr<UsedAttr>()) 2009 addUsedOrCompilerUsedGlobal(GV); 2010 2011 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2012 const auto *VD = cast<VarDecl>(D); 2013 if (VD->getType().isConstQualified() && 2014 VD->getStorageDuration() == SD_Static) 2015 addUsedOrCompilerUsedGlobal(GV); 2016 } 2017 } 2018 2019 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2020 llvm::AttrBuilder &Attrs) { 2021 // Add target-cpu and target-features attributes to functions. If 2022 // we have a decl for the function and it has a target attribute then 2023 // parse that and add it to the feature set. 2024 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2025 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2026 std::vector<std::string> Features; 2027 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2028 FD = FD ? FD->getMostRecentDecl() : FD; 2029 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2030 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2031 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2032 bool AddedAttr = false; 2033 if (TD || SD || TC) { 2034 llvm::StringMap<bool> FeatureMap; 2035 getContext().getFunctionFeatureMap(FeatureMap, GD); 2036 2037 // Produce the canonical string for this set of features. 2038 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2039 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2040 2041 // Now add the target-cpu and target-features to the function. 2042 // While we populated the feature map above, we still need to 2043 // get and parse the target attribute so we can get the cpu for 2044 // the function. 2045 if (TD) { 2046 ParsedTargetAttr ParsedAttr = TD->parse(); 2047 if (!ParsedAttr.Architecture.empty() && 2048 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2049 TargetCPU = ParsedAttr.Architecture; 2050 TuneCPU = ""; // Clear the tune CPU. 2051 } 2052 if (!ParsedAttr.Tune.empty() && 2053 getTarget().isValidCPUName(ParsedAttr.Tune)) 2054 TuneCPU = ParsedAttr.Tune; 2055 } 2056 } else { 2057 // Otherwise just add the existing target cpu and target features to the 2058 // function. 2059 Features = getTarget().getTargetOpts().Features; 2060 } 2061 2062 if (!TargetCPU.empty()) { 2063 Attrs.addAttribute("target-cpu", TargetCPU); 2064 AddedAttr = true; 2065 } 2066 if (!TuneCPU.empty()) { 2067 Attrs.addAttribute("tune-cpu", TuneCPU); 2068 AddedAttr = true; 2069 } 2070 if (!Features.empty()) { 2071 llvm::sort(Features); 2072 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2073 AddedAttr = true; 2074 } 2075 2076 return AddedAttr; 2077 } 2078 2079 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2080 llvm::GlobalObject *GO) { 2081 const Decl *D = GD.getDecl(); 2082 SetCommonAttributes(GD, GO); 2083 2084 if (D) { 2085 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2086 if (D->hasAttr<RetainAttr>()) 2087 addUsedGlobal(GV); 2088 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2089 GV->addAttribute("bss-section", SA->getName()); 2090 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2091 GV->addAttribute("data-section", SA->getName()); 2092 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2093 GV->addAttribute("rodata-section", SA->getName()); 2094 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2095 GV->addAttribute("relro-section", SA->getName()); 2096 } 2097 2098 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2099 if (D->hasAttr<RetainAttr>()) 2100 addUsedGlobal(F); 2101 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2102 if (!D->getAttr<SectionAttr>()) 2103 F->addFnAttr("implicit-section-name", SA->getName()); 2104 2105 llvm::AttrBuilder Attrs(F->getContext()); 2106 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2107 // We know that GetCPUAndFeaturesAttributes will always have the 2108 // newest set, since it has the newest possible FunctionDecl, so the 2109 // new ones should replace the old. 2110 llvm::AttributeMask RemoveAttrs; 2111 RemoveAttrs.addAttribute("target-cpu"); 2112 RemoveAttrs.addAttribute("target-features"); 2113 RemoveAttrs.addAttribute("tune-cpu"); 2114 F->removeFnAttrs(RemoveAttrs); 2115 F->addFnAttrs(Attrs); 2116 } 2117 } 2118 2119 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2120 GO->setSection(CSA->getName()); 2121 else if (const auto *SA = D->getAttr<SectionAttr>()) 2122 GO->setSection(SA->getName()); 2123 } 2124 2125 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2126 } 2127 2128 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2129 llvm::Function *F, 2130 const CGFunctionInfo &FI) { 2131 const Decl *D = GD.getDecl(); 2132 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2133 SetLLVMFunctionAttributesForDefinition(D, F); 2134 2135 F->setLinkage(llvm::Function::InternalLinkage); 2136 2137 setNonAliasAttributes(GD, F); 2138 } 2139 2140 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2141 // Set linkage and visibility in case we never see a definition. 2142 LinkageInfo LV = ND->getLinkageAndVisibility(); 2143 // Don't set internal linkage on declarations. 2144 // "extern_weak" is overloaded in LLVM; we probably should have 2145 // separate linkage types for this. 2146 if (isExternallyVisible(LV.getLinkage()) && 2147 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2148 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2149 } 2150 2151 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2152 llvm::Function *F) { 2153 // Only if we are checking indirect calls. 2154 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2155 return; 2156 2157 // Non-static class methods are handled via vtable or member function pointer 2158 // checks elsewhere. 2159 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2160 return; 2161 2162 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2163 F->addTypeMetadata(0, MD); 2164 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2165 2166 // Emit a hash-based bit set entry for cross-DSO calls. 2167 if (CodeGenOpts.SanitizeCfiCrossDso) 2168 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2169 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2170 } 2171 2172 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2173 bool IsIncompleteFunction, 2174 bool IsThunk) { 2175 2176 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2177 // If this is an intrinsic function, set the function's attributes 2178 // to the intrinsic's attributes. 2179 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2180 return; 2181 } 2182 2183 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2184 2185 if (!IsIncompleteFunction) 2186 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2187 IsThunk); 2188 2189 // Add the Returned attribute for "this", except for iOS 5 and earlier 2190 // where substantial code, including the libstdc++ dylib, was compiled with 2191 // GCC and does not actually return "this". 2192 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2193 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2194 assert(!F->arg_empty() && 2195 F->arg_begin()->getType() 2196 ->canLosslesslyBitCastTo(F->getReturnType()) && 2197 "unexpected this return"); 2198 F->addParamAttr(0, llvm::Attribute::Returned); 2199 } 2200 2201 // Only a few attributes are set on declarations; these may later be 2202 // overridden by a definition. 2203 2204 setLinkageForGV(F, FD); 2205 setGVProperties(F, FD); 2206 2207 // Setup target-specific attributes. 2208 if (!IsIncompleteFunction && F->isDeclaration()) 2209 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2210 2211 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2212 F->setSection(CSA->getName()); 2213 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2214 F->setSection(SA->getName()); 2215 2216 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2217 if (EA->isError()) 2218 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2219 else if (EA->isWarning()) 2220 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2221 } 2222 2223 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2224 if (FD->isInlineBuiltinDeclaration()) { 2225 const FunctionDecl *FDBody; 2226 bool HasBody = FD->hasBody(FDBody); 2227 (void)HasBody; 2228 assert(HasBody && "Inline builtin declarations should always have an " 2229 "available body!"); 2230 if (shouldEmitFunction(FDBody)) 2231 F->addFnAttr(llvm::Attribute::NoBuiltin); 2232 } 2233 2234 if (FD->isReplaceableGlobalAllocationFunction()) { 2235 // A replaceable global allocation function does not act like a builtin by 2236 // default, only if it is invoked by a new-expression or delete-expression. 2237 F->addFnAttr(llvm::Attribute::NoBuiltin); 2238 } 2239 2240 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2241 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2242 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2243 if (MD->isVirtual()) 2244 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2245 2246 // Don't emit entries for function declarations in the cross-DSO mode. This 2247 // is handled with better precision by the receiving DSO. But if jump tables 2248 // are non-canonical then we need type metadata in order to produce the local 2249 // jump table. 2250 if (!CodeGenOpts.SanitizeCfiCrossDso || 2251 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2252 CreateFunctionTypeMetadataForIcall(FD, F); 2253 2254 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2255 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2256 2257 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2258 // Annotate the callback behavior as metadata: 2259 // - The callback callee (as argument number). 2260 // - The callback payloads (as argument numbers). 2261 llvm::LLVMContext &Ctx = F->getContext(); 2262 llvm::MDBuilder MDB(Ctx); 2263 2264 // The payload indices are all but the first one in the encoding. The first 2265 // identifies the callback callee. 2266 int CalleeIdx = *CB->encoding_begin(); 2267 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2268 F->addMetadata(llvm::LLVMContext::MD_callback, 2269 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2270 CalleeIdx, PayloadIndices, 2271 /* VarArgsArePassed */ false)})); 2272 } 2273 } 2274 2275 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2276 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2277 "Only globals with definition can force usage."); 2278 LLVMUsed.emplace_back(GV); 2279 } 2280 2281 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2282 assert(!GV->isDeclaration() && 2283 "Only globals with definition can force usage."); 2284 LLVMCompilerUsed.emplace_back(GV); 2285 } 2286 2287 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2288 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2289 "Only globals with definition can force usage."); 2290 if (getTriple().isOSBinFormatELF()) 2291 LLVMCompilerUsed.emplace_back(GV); 2292 else 2293 LLVMUsed.emplace_back(GV); 2294 } 2295 2296 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2297 std::vector<llvm::WeakTrackingVH> &List) { 2298 // Don't create llvm.used if there is no need. 2299 if (List.empty()) 2300 return; 2301 2302 // Convert List to what ConstantArray needs. 2303 SmallVector<llvm::Constant*, 8> UsedArray; 2304 UsedArray.resize(List.size()); 2305 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2306 UsedArray[i] = 2307 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2308 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2309 } 2310 2311 if (UsedArray.empty()) 2312 return; 2313 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2314 2315 auto *GV = new llvm::GlobalVariable( 2316 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2317 llvm::ConstantArray::get(ATy, UsedArray), Name); 2318 2319 GV->setSection("llvm.metadata"); 2320 } 2321 2322 void CodeGenModule::emitLLVMUsed() { 2323 emitUsed(*this, "llvm.used", LLVMUsed); 2324 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2325 } 2326 2327 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2328 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2329 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2330 } 2331 2332 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2333 llvm::SmallString<32> Opt; 2334 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2335 if (Opt.empty()) 2336 return; 2337 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2338 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2339 } 2340 2341 void CodeGenModule::AddDependentLib(StringRef Lib) { 2342 auto &C = getLLVMContext(); 2343 if (getTarget().getTriple().isOSBinFormatELF()) { 2344 ELFDependentLibraries.push_back( 2345 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2346 return; 2347 } 2348 2349 llvm::SmallString<24> Opt; 2350 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2351 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2352 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2353 } 2354 2355 /// Add link options implied by the given module, including modules 2356 /// it depends on, using a postorder walk. 2357 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2358 SmallVectorImpl<llvm::MDNode *> &Metadata, 2359 llvm::SmallPtrSet<Module *, 16> &Visited) { 2360 // Import this module's parent. 2361 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2362 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2363 } 2364 2365 // Import this module's dependencies. 2366 for (Module *Import : llvm::reverse(Mod->Imports)) { 2367 if (Visited.insert(Import).second) 2368 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2369 } 2370 2371 // Add linker options to link against the libraries/frameworks 2372 // described by this module. 2373 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2374 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2375 2376 // For modules that use export_as for linking, use that module 2377 // name instead. 2378 if (Mod->UseExportAsModuleLinkName) 2379 return; 2380 2381 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2382 // Link against a framework. Frameworks are currently Darwin only, so we 2383 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2384 if (LL.IsFramework) { 2385 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2386 llvm::MDString::get(Context, LL.Library)}; 2387 2388 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2389 continue; 2390 } 2391 2392 // Link against a library. 2393 if (IsELF) { 2394 llvm::Metadata *Args[2] = { 2395 llvm::MDString::get(Context, "lib"), 2396 llvm::MDString::get(Context, LL.Library), 2397 }; 2398 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2399 } else { 2400 llvm::SmallString<24> Opt; 2401 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2402 auto *OptString = llvm::MDString::get(Context, Opt); 2403 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2404 } 2405 } 2406 } 2407 2408 void CodeGenModule::EmitModuleLinkOptions() { 2409 // Collect the set of all of the modules we want to visit to emit link 2410 // options, which is essentially the imported modules and all of their 2411 // non-explicit child modules. 2412 llvm::SetVector<clang::Module *> LinkModules; 2413 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2414 SmallVector<clang::Module *, 16> Stack; 2415 2416 // Seed the stack with imported modules. 2417 for (Module *M : ImportedModules) { 2418 // Do not add any link flags when an implementation TU of a module imports 2419 // a header of that same module. 2420 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2421 !getLangOpts().isCompilingModule()) 2422 continue; 2423 if (Visited.insert(M).second) 2424 Stack.push_back(M); 2425 } 2426 2427 // Find all of the modules to import, making a little effort to prune 2428 // non-leaf modules. 2429 while (!Stack.empty()) { 2430 clang::Module *Mod = Stack.pop_back_val(); 2431 2432 bool AnyChildren = false; 2433 2434 // Visit the submodules of this module. 2435 for (const auto &SM : Mod->submodules()) { 2436 // Skip explicit children; they need to be explicitly imported to be 2437 // linked against. 2438 if (SM->IsExplicit) 2439 continue; 2440 2441 if (Visited.insert(SM).second) { 2442 Stack.push_back(SM); 2443 AnyChildren = true; 2444 } 2445 } 2446 2447 // We didn't find any children, so add this module to the list of 2448 // modules to link against. 2449 if (!AnyChildren) { 2450 LinkModules.insert(Mod); 2451 } 2452 } 2453 2454 // Add link options for all of the imported modules in reverse topological 2455 // order. We don't do anything to try to order import link flags with respect 2456 // to linker options inserted by things like #pragma comment(). 2457 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2458 Visited.clear(); 2459 for (Module *M : LinkModules) 2460 if (Visited.insert(M).second) 2461 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2462 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2463 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2464 2465 // Add the linker options metadata flag. 2466 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2467 for (auto *MD : LinkerOptionsMetadata) 2468 NMD->addOperand(MD); 2469 } 2470 2471 void CodeGenModule::EmitDeferred() { 2472 // Emit deferred declare target declarations. 2473 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2474 getOpenMPRuntime().emitDeferredTargetDecls(); 2475 2476 // Emit code for any potentially referenced deferred decls. Since a 2477 // previously unused static decl may become used during the generation of code 2478 // for a static function, iterate until no changes are made. 2479 2480 if (!DeferredVTables.empty()) { 2481 EmitDeferredVTables(); 2482 2483 // Emitting a vtable doesn't directly cause more vtables to 2484 // become deferred, although it can cause functions to be 2485 // emitted that then need those vtables. 2486 assert(DeferredVTables.empty()); 2487 } 2488 2489 // Emit CUDA/HIP static device variables referenced by host code only. 2490 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2491 // needed for further handling. 2492 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2493 for (const auto *V : getContext().CUDADeviceVarODRUsedByHost) 2494 DeferredDeclsToEmit.push_back(V); 2495 2496 // Stop if we're out of both deferred vtables and deferred declarations. 2497 if (DeferredDeclsToEmit.empty()) 2498 return; 2499 2500 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2501 // work, it will not interfere with this. 2502 std::vector<GlobalDecl> CurDeclsToEmit; 2503 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2504 2505 for (GlobalDecl &D : CurDeclsToEmit) { 2506 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2507 // to get GlobalValue with exactly the type we need, not something that 2508 // might had been created for another decl with the same mangled name but 2509 // different type. 2510 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2511 GetAddrOfGlobal(D, ForDefinition)); 2512 2513 // In case of different address spaces, we may still get a cast, even with 2514 // IsForDefinition equal to true. Query mangled names table to get 2515 // GlobalValue. 2516 if (!GV) 2517 GV = GetGlobalValue(getMangledName(D)); 2518 2519 // Make sure GetGlobalValue returned non-null. 2520 assert(GV); 2521 2522 // Check to see if we've already emitted this. This is necessary 2523 // for a couple of reasons: first, decls can end up in the 2524 // deferred-decls queue multiple times, and second, decls can end 2525 // up with definitions in unusual ways (e.g. by an extern inline 2526 // function acquiring a strong function redefinition). Just 2527 // ignore these cases. 2528 if (!GV->isDeclaration()) 2529 continue; 2530 2531 // If this is OpenMP, check if it is legal to emit this global normally. 2532 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2533 continue; 2534 2535 // Otherwise, emit the definition and move on to the next one. 2536 EmitGlobalDefinition(D, GV); 2537 2538 // If we found out that we need to emit more decls, do that recursively. 2539 // This has the advantage that the decls are emitted in a DFS and related 2540 // ones are close together, which is convenient for testing. 2541 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2542 EmitDeferred(); 2543 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2544 } 2545 } 2546 } 2547 2548 void CodeGenModule::EmitVTablesOpportunistically() { 2549 // Try to emit external vtables as available_externally if they have emitted 2550 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2551 // is not allowed to create new references to things that need to be emitted 2552 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2553 2554 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2555 && "Only emit opportunistic vtables with optimizations"); 2556 2557 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2558 assert(getVTables().isVTableExternal(RD) && 2559 "This queue should only contain external vtables"); 2560 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2561 VTables.GenerateClassData(RD); 2562 } 2563 OpportunisticVTables.clear(); 2564 } 2565 2566 void CodeGenModule::EmitGlobalAnnotations() { 2567 if (Annotations.empty()) 2568 return; 2569 2570 // Create a new global variable for the ConstantStruct in the Module. 2571 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2572 Annotations[0]->getType(), Annotations.size()), Annotations); 2573 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2574 llvm::GlobalValue::AppendingLinkage, 2575 Array, "llvm.global.annotations"); 2576 gv->setSection(AnnotationSection); 2577 } 2578 2579 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2580 llvm::Constant *&AStr = AnnotationStrings[Str]; 2581 if (AStr) 2582 return AStr; 2583 2584 // Not found yet, create a new global. 2585 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2586 auto *gv = 2587 new llvm::GlobalVariable(getModule(), s->getType(), true, 2588 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2589 gv->setSection(AnnotationSection); 2590 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2591 AStr = gv; 2592 return gv; 2593 } 2594 2595 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2596 SourceManager &SM = getContext().getSourceManager(); 2597 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2598 if (PLoc.isValid()) 2599 return EmitAnnotationString(PLoc.getFilename()); 2600 return EmitAnnotationString(SM.getBufferName(Loc)); 2601 } 2602 2603 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2604 SourceManager &SM = getContext().getSourceManager(); 2605 PresumedLoc PLoc = SM.getPresumedLoc(L); 2606 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2607 SM.getExpansionLineNumber(L); 2608 return llvm::ConstantInt::get(Int32Ty, LineNo); 2609 } 2610 2611 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2612 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2613 if (Exprs.empty()) 2614 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2615 2616 llvm::FoldingSetNodeID ID; 2617 for (Expr *E : Exprs) { 2618 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2619 } 2620 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2621 if (Lookup) 2622 return Lookup; 2623 2624 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2625 LLVMArgs.reserve(Exprs.size()); 2626 ConstantEmitter ConstEmiter(*this); 2627 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2628 const auto *CE = cast<clang::ConstantExpr>(E); 2629 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2630 CE->getType()); 2631 }); 2632 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2633 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2634 llvm::GlobalValue::PrivateLinkage, Struct, 2635 ".args"); 2636 GV->setSection(AnnotationSection); 2637 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2638 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2639 2640 Lookup = Bitcasted; 2641 return Bitcasted; 2642 } 2643 2644 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2645 const AnnotateAttr *AA, 2646 SourceLocation L) { 2647 // Get the globals for file name, annotation, and the line number. 2648 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2649 *UnitGV = EmitAnnotationUnit(L), 2650 *LineNoCst = EmitAnnotationLineNo(L), 2651 *Args = EmitAnnotationArgs(AA); 2652 2653 llvm::Constant *GVInGlobalsAS = GV; 2654 if (GV->getAddressSpace() != 2655 getDataLayout().getDefaultGlobalsAddressSpace()) { 2656 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2657 GV, GV->getValueType()->getPointerTo( 2658 getDataLayout().getDefaultGlobalsAddressSpace())); 2659 } 2660 2661 // Create the ConstantStruct for the global annotation. 2662 llvm::Constant *Fields[] = { 2663 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2664 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2665 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2666 LineNoCst, 2667 Args, 2668 }; 2669 return llvm::ConstantStruct::getAnon(Fields); 2670 } 2671 2672 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2673 llvm::GlobalValue *GV) { 2674 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2675 // Get the struct elements for these annotations. 2676 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2677 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2678 } 2679 2680 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2681 SourceLocation Loc) const { 2682 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2683 // NoSanitize by function name. 2684 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2685 return true; 2686 // NoSanitize by location. 2687 if (Loc.isValid()) 2688 return NoSanitizeL.containsLocation(Kind, Loc); 2689 // If location is unknown, this may be a compiler-generated function. Assume 2690 // it's located in the main file. 2691 auto &SM = Context.getSourceManager(); 2692 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2693 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2694 } 2695 return false; 2696 } 2697 2698 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2699 SourceLocation Loc, QualType Ty, 2700 StringRef Category) const { 2701 // For now globals can be ignored only in ASan and KASan. 2702 const SanitizerMask EnabledAsanMask = 2703 LangOpts.Sanitize.Mask & 2704 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2705 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2706 SanitizerKind::MemTag); 2707 if (!EnabledAsanMask) 2708 return false; 2709 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2710 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2711 return true; 2712 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2713 return true; 2714 // Check global type. 2715 if (!Ty.isNull()) { 2716 // Drill down the array types: if global variable of a fixed type is 2717 // not sanitized, we also don't instrument arrays of them. 2718 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2719 Ty = AT->getElementType(); 2720 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2721 // Only record types (classes, structs etc.) are ignored. 2722 if (Ty->isRecordType()) { 2723 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2724 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2725 return true; 2726 } 2727 } 2728 return false; 2729 } 2730 2731 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2732 StringRef Category) const { 2733 const auto &XRayFilter = getContext().getXRayFilter(); 2734 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2735 auto Attr = ImbueAttr::NONE; 2736 if (Loc.isValid()) 2737 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2738 if (Attr == ImbueAttr::NONE) 2739 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2740 switch (Attr) { 2741 case ImbueAttr::NONE: 2742 return false; 2743 case ImbueAttr::ALWAYS: 2744 Fn->addFnAttr("function-instrument", "xray-always"); 2745 break; 2746 case ImbueAttr::ALWAYS_ARG1: 2747 Fn->addFnAttr("function-instrument", "xray-always"); 2748 Fn->addFnAttr("xray-log-args", "1"); 2749 break; 2750 case ImbueAttr::NEVER: 2751 Fn->addFnAttr("function-instrument", "xray-never"); 2752 break; 2753 } 2754 return true; 2755 } 2756 2757 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2758 SourceLocation Loc) const { 2759 const auto &ProfileList = getContext().getProfileList(); 2760 // If the profile list is empty, then instrument everything. 2761 if (ProfileList.isEmpty()) 2762 return false; 2763 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2764 // First, check the function name. 2765 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2766 if (V.hasValue()) 2767 return *V; 2768 // Next, check the source location. 2769 if (Loc.isValid()) { 2770 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2771 if (V.hasValue()) 2772 return *V; 2773 } 2774 // If location is unknown, this may be a compiler-generated function. Assume 2775 // it's located in the main file. 2776 auto &SM = Context.getSourceManager(); 2777 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2778 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2779 if (V.hasValue()) 2780 return *V; 2781 } 2782 return ProfileList.getDefault(); 2783 } 2784 2785 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2786 // Never defer when EmitAllDecls is specified. 2787 if (LangOpts.EmitAllDecls) 2788 return true; 2789 2790 if (CodeGenOpts.KeepStaticConsts) { 2791 const auto *VD = dyn_cast<VarDecl>(Global); 2792 if (VD && VD->getType().isConstQualified() && 2793 VD->getStorageDuration() == SD_Static) 2794 return true; 2795 } 2796 2797 return getContext().DeclMustBeEmitted(Global); 2798 } 2799 2800 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2801 // In OpenMP 5.0 variables and function may be marked as 2802 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2803 // that they must be emitted on the host/device. To be sure we need to have 2804 // seen a declare target with an explicit mentioning of the function, we know 2805 // we have if the level of the declare target attribute is -1. Note that we 2806 // check somewhere else if we should emit this at all. 2807 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2808 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2809 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2810 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2811 return false; 2812 } 2813 2814 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2815 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2816 // Implicit template instantiations may change linkage if they are later 2817 // explicitly instantiated, so they should not be emitted eagerly. 2818 return false; 2819 } 2820 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2821 if (Context.getInlineVariableDefinitionKind(VD) == 2822 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2823 // A definition of an inline constexpr static data member may change 2824 // linkage later if it's redeclared outside the class. 2825 return false; 2826 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2827 // codegen for global variables, because they may be marked as threadprivate. 2828 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2829 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2830 !isTypeConstant(Global->getType(), false) && 2831 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2832 return false; 2833 2834 return true; 2835 } 2836 2837 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2838 StringRef Name = getMangledName(GD); 2839 2840 // The UUID descriptor should be pointer aligned. 2841 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2842 2843 // Look for an existing global. 2844 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2845 return ConstantAddress(GV, GV->getValueType(), Alignment); 2846 2847 ConstantEmitter Emitter(*this); 2848 llvm::Constant *Init; 2849 2850 APValue &V = GD->getAsAPValue(); 2851 if (!V.isAbsent()) { 2852 // If possible, emit the APValue version of the initializer. In particular, 2853 // this gets the type of the constant right. 2854 Init = Emitter.emitForInitializer( 2855 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2856 } else { 2857 // As a fallback, directly construct the constant. 2858 // FIXME: This may get padding wrong under esoteric struct layout rules. 2859 // MSVC appears to create a complete type 'struct __s_GUID' that it 2860 // presumably uses to represent these constants. 2861 MSGuidDecl::Parts Parts = GD->getParts(); 2862 llvm::Constant *Fields[4] = { 2863 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2864 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2865 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2866 llvm::ConstantDataArray::getRaw( 2867 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2868 Int8Ty)}; 2869 Init = llvm::ConstantStruct::getAnon(Fields); 2870 } 2871 2872 auto *GV = new llvm::GlobalVariable( 2873 getModule(), Init->getType(), 2874 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2875 if (supportsCOMDAT()) 2876 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2877 setDSOLocal(GV); 2878 2879 if (!V.isAbsent()) { 2880 Emitter.finalize(GV); 2881 return ConstantAddress(GV, GV->getValueType(), Alignment); 2882 } 2883 2884 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2885 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2886 GV, Ty->getPointerTo(GV->getAddressSpace())); 2887 return ConstantAddress(Addr, Ty, Alignment); 2888 } 2889 2890 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2891 const TemplateParamObjectDecl *TPO) { 2892 StringRef Name = getMangledName(TPO); 2893 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2894 2895 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2896 return ConstantAddress(GV, GV->getValueType(), Alignment); 2897 2898 ConstantEmitter Emitter(*this); 2899 llvm::Constant *Init = Emitter.emitForInitializer( 2900 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2901 2902 if (!Init) { 2903 ErrorUnsupported(TPO, "template parameter object"); 2904 return ConstantAddress::invalid(); 2905 } 2906 2907 auto *GV = new llvm::GlobalVariable( 2908 getModule(), Init->getType(), 2909 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2910 if (supportsCOMDAT()) 2911 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2912 Emitter.finalize(GV); 2913 2914 return ConstantAddress(GV, GV->getValueType(), Alignment); 2915 } 2916 2917 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2918 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2919 assert(AA && "No alias?"); 2920 2921 CharUnits Alignment = getContext().getDeclAlign(VD); 2922 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2923 2924 // See if there is already something with the target's name in the module. 2925 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2926 if (Entry) { 2927 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2928 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2929 return ConstantAddress(Ptr, DeclTy, Alignment); 2930 } 2931 2932 llvm::Constant *Aliasee; 2933 if (isa<llvm::FunctionType>(DeclTy)) 2934 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2935 GlobalDecl(cast<FunctionDecl>(VD)), 2936 /*ForVTable=*/false); 2937 else 2938 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 2939 nullptr); 2940 2941 auto *F = cast<llvm::GlobalValue>(Aliasee); 2942 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2943 WeakRefReferences.insert(F); 2944 2945 return ConstantAddress(Aliasee, DeclTy, Alignment); 2946 } 2947 2948 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2949 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2950 2951 // Weak references don't produce any output by themselves. 2952 if (Global->hasAttr<WeakRefAttr>()) 2953 return; 2954 2955 // If this is an alias definition (which otherwise looks like a declaration) 2956 // emit it now. 2957 if (Global->hasAttr<AliasAttr>()) 2958 return EmitAliasDefinition(GD); 2959 2960 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2961 if (Global->hasAttr<IFuncAttr>()) 2962 return emitIFuncDefinition(GD); 2963 2964 // If this is a cpu_dispatch multiversion function, emit the resolver. 2965 if (Global->hasAttr<CPUDispatchAttr>()) 2966 return emitCPUDispatchDefinition(GD); 2967 2968 // If this is CUDA, be selective about which declarations we emit. 2969 if (LangOpts.CUDA) { 2970 if (LangOpts.CUDAIsDevice) { 2971 if (!Global->hasAttr<CUDADeviceAttr>() && 2972 !Global->hasAttr<CUDAGlobalAttr>() && 2973 !Global->hasAttr<CUDAConstantAttr>() && 2974 !Global->hasAttr<CUDASharedAttr>() && 2975 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2976 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2977 return; 2978 } else { 2979 // We need to emit host-side 'shadows' for all global 2980 // device-side variables because the CUDA runtime needs their 2981 // size and host-side address in order to provide access to 2982 // their device-side incarnations. 2983 2984 // So device-only functions are the only things we skip. 2985 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2986 Global->hasAttr<CUDADeviceAttr>()) 2987 return; 2988 2989 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2990 "Expected Variable or Function"); 2991 } 2992 } 2993 2994 if (LangOpts.OpenMP) { 2995 // If this is OpenMP, check if it is legal to emit this global normally. 2996 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2997 return; 2998 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2999 if (MustBeEmitted(Global)) 3000 EmitOMPDeclareReduction(DRD); 3001 return; 3002 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3003 if (MustBeEmitted(Global)) 3004 EmitOMPDeclareMapper(DMD); 3005 return; 3006 } 3007 } 3008 3009 // Ignore declarations, they will be emitted on their first use. 3010 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3011 // Forward declarations are emitted lazily on first use. 3012 if (!FD->doesThisDeclarationHaveABody()) { 3013 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3014 return; 3015 3016 StringRef MangledName = getMangledName(GD); 3017 3018 // Compute the function info and LLVM type. 3019 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3020 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3021 3022 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3023 /*DontDefer=*/false); 3024 return; 3025 } 3026 } else { 3027 const auto *VD = cast<VarDecl>(Global); 3028 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3029 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3030 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3031 if (LangOpts.OpenMP) { 3032 // Emit declaration of the must-be-emitted declare target variable. 3033 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3034 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3035 bool UnifiedMemoryEnabled = 3036 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3037 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3038 !UnifiedMemoryEnabled) { 3039 (void)GetAddrOfGlobalVar(VD); 3040 } else { 3041 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3042 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3043 UnifiedMemoryEnabled)) && 3044 "Link clause or to clause with unified memory expected."); 3045 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3046 } 3047 3048 return; 3049 } 3050 } 3051 // If this declaration may have caused an inline variable definition to 3052 // change linkage, make sure that it's emitted. 3053 if (Context.getInlineVariableDefinitionKind(VD) == 3054 ASTContext::InlineVariableDefinitionKind::Strong) 3055 GetAddrOfGlobalVar(VD); 3056 return; 3057 } 3058 } 3059 3060 // Defer code generation to first use when possible, e.g. if this is an inline 3061 // function. If the global must always be emitted, do it eagerly if possible 3062 // to benefit from cache locality. 3063 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3064 // Emit the definition if it can't be deferred. 3065 EmitGlobalDefinition(GD); 3066 return; 3067 } 3068 3069 // If we're deferring emission of a C++ variable with an 3070 // initializer, remember the order in which it appeared in the file. 3071 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3072 cast<VarDecl>(Global)->hasInit()) { 3073 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3074 CXXGlobalInits.push_back(nullptr); 3075 } 3076 3077 StringRef MangledName = getMangledName(GD); 3078 if (GetGlobalValue(MangledName) != nullptr) { 3079 // The value has already been used and should therefore be emitted. 3080 addDeferredDeclToEmit(GD); 3081 } else if (MustBeEmitted(Global)) { 3082 // The value must be emitted, but cannot be emitted eagerly. 3083 assert(!MayBeEmittedEagerly(Global)); 3084 addDeferredDeclToEmit(GD); 3085 } else { 3086 // Otherwise, remember that we saw a deferred decl with this name. The 3087 // first use of the mangled name will cause it to move into 3088 // DeferredDeclsToEmit. 3089 DeferredDecls[MangledName] = GD; 3090 } 3091 } 3092 3093 // Check if T is a class type with a destructor that's not dllimport. 3094 static bool HasNonDllImportDtor(QualType T) { 3095 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3096 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3097 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3098 return true; 3099 3100 return false; 3101 } 3102 3103 namespace { 3104 struct FunctionIsDirectlyRecursive 3105 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3106 const StringRef Name; 3107 const Builtin::Context &BI; 3108 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3109 : Name(N), BI(C) {} 3110 3111 bool VisitCallExpr(const CallExpr *E) { 3112 const FunctionDecl *FD = E->getDirectCallee(); 3113 if (!FD) 3114 return false; 3115 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3116 if (Attr && Name == Attr->getLabel()) 3117 return true; 3118 unsigned BuiltinID = FD->getBuiltinID(); 3119 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3120 return false; 3121 StringRef BuiltinName = BI.getName(BuiltinID); 3122 if (BuiltinName.startswith("__builtin_") && 3123 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3124 return true; 3125 } 3126 return false; 3127 } 3128 3129 bool VisitStmt(const Stmt *S) { 3130 for (const Stmt *Child : S->children()) 3131 if (Child && this->Visit(Child)) 3132 return true; 3133 return false; 3134 } 3135 }; 3136 3137 // Make sure we're not referencing non-imported vars or functions. 3138 struct DLLImportFunctionVisitor 3139 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3140 bool SafeToInline = true; 3141 3142 bool shouldVisitImplicitCode() const { return true; } 3143 3144 bool VisitVarDecl(VarDecl *VD) { 3145 if (VD->getTLSKind()) { 3146 // A thread-local variable cannot be imported. 3147 SafeToInline = false; 3148 return SafeToInline; 3149 } 3150 3151 // A variable definition might imply a destructor call. 3152 if (VD->isThisDeclarationADefinition()) 3153 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3154 3155 return SafeToInline; 3156 } 3157 3158 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3159 if (const auto *D = E->getTemporary()->getDestructor()) 3160 SafeToInline = D->hasAttr<DLLImportAttr>(); 3161 return SafeToInline; 3162 } 3163 3164 bool VisitDeclRefExpr(DeclRefExpr *E) { 3165 ValueDecl *VD = E->getDecl(); 3166 if (isa<FunctionDecl>(VD)) 3167 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3168 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3169 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3170 return SafeToInline; 3171 } 3172 3173 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3174 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3175 return SafeToInline; 3176 } 3177 3178 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3179 CXXMethodDecl *M = E->getMethodDecl(); 3180 if (!M) { 3181 // Call through a pointer to member function. This is safe to inline. 3182 SafeToInline = true; 3183 } else { 3184 SafeToInline = M->hasAttr<DLLImportAttr>(); 3185 } 3186 return SafeToInline; 3187 } 3188 3189 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3190 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3191 return SafeToInline; 3192 } 3193 3194 bool VisitCXXNewExpr(CXXNewExpr *E) { 3195 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3196 return SafeToInline; 3197 } 3198 }; 3199 } 3200 3201 // isTriviallyRecursive - Check if this function calls another 3202 // decl that, because of the asm attribute or the other decl being a builtin, 3203 // ends up pointing to itself. 3204 bool 3205 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3206 StringRef Name; 3207 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3208 // asm labels are a special kind of mangling we have to support. 3209 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3210 if (!Attr) 3211 return false; 3212 Name = Attr->getLabel(); 3213 } else { 3214 Name = FD->getName(); 3215 } 3216 3217 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3218 const Stmt *Body = FD->getBody(); 3219 return Body ? Walker.Visit(Body) : false; 3220 } 3221 3222 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3223 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3224 return true; 3225 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3226 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3227 return false; 3228 3229 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3230 // Check whether it would be safe to inline this dllimport function. 3231 DLLImportFunctionVisitor Visitor; 3232 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3233 if (!Visitor.SafeToInline) 3234 return false; 3235 3236 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3237 // Implicit destructor invocations aren't captured in the AST, so the 3238 // check above can't see them. Check for them manually here. 3239 for (const Decl *Member : Dtor->getParent()->decls()) 3240 if (isa<FieldDecl>(Member)) 3241 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3242 return false; 3243 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3244 if (HasNonDllImportDtor(B.getType())) 3245 return false; 3246 } 3247 } 3248 3249 // Inline builtins declaration must be emitted. They often are fortified 3250 // functions. 3251 if (F->isInlineBuiltinDeclaration()) 3252 return true; 3253 3254 // PR9614. Avoid cases where the source code is lying to us. An available 3255 // externally function should have an equivalent function somewhere else, 3256 // but a function that calls itself through asm label/`__builtin_` trickery is 3257 // clearly not equivalent to the real implementation. 3258 // This happens in glibc's btowc and in some configure checks. 3259 return !isTriviallyRecursive(F); 3260 } 3261 3262 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3263 return CodeGenOpts.OptimizationLevel > 0; 3264 } 3265 3266 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3267 llvm::GlobalValue *GV) { 3268 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3269 3270 if (FD->isCPUSpecificMultiVersion()) { 3271 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3272 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3273 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3274 // Requires multiple emits. 3275 } else if (FD->isTargetClonesMultiVersion()) { 3276 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3277 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3278 if (Clone->isFirstOfVersion(I)) 3279 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3280 EmitTargetClonesResolver(GD); 3281 } else 3282 EmitGlobalFunctionDefinition(GD, GV); 3283 } 3284 3285 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3286 const auto *D = cast<ValueDecl>(GD.getDecl()); 3287 3288 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3289 Context.getSourceManager(), 3290 "Generating code for declaration"); 3291 3292 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3293 // At -O0, don't generate IR for functions with available_externally 3294 // linkage. 3295 if (!shouldEmitFunction(GD)) 3296 return; 3297 3298 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3299 std::string Name; 3300 llvm::raw_string_ostream OS(Name); 3301 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3302 /*Qualified=*/true); 3303 return Name; 3304 }); 3305 3306 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3307 // Make sure to emit the definition(s) before we emit the thunks. 3308 // This is necessary for the generation of certain thunks. 3309 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3310 ABI->emitCXXStructor(GD); 3311 else if (FD->isMultiVersion()) 3312 EmitMultiVersionFunctionDefinition(GD, GV); 3313 else 3314 EmitGlobalFunctionDefinition(GD, GV); 3315 3316 if (Method->isVirtual()) 3317 getVTables().EmitThunks(GD); 3318 3319 return; 3320 } 3321 3322 if (FD->isMultiVersion()) 3323 return EmitMultiVersionFunctionDefinition(GD, GV); 3324 return EmitGlobalFunctionDefinition(GD, GV); 3325 } 3326 3327 if (const auto *VD = dyn_cast<VarDecl>(D)) 3328 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3329 3330 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3331 } 3332 3333 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3334 llvm::Function *NewFn); 3335 3336 static unsigned 3337 TargetMVPriority(const TargetInfo &TI, 3338 const CodeGenFunction::MultiVersionResolverOption &RO) { 3339 unsigned Priority = 0; 3340 for (StringRef Feat : RO.Conditions.Features) 3341 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3342 3343 if (!RO.Conditions.Architecture.empty()) 3344 Priority = std::max( 3345 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3346 return Priority; 3347 } 3348 3349 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3350 // TU can forward declare the function without causing problems. Particularly 3351 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3352 // work with internal linkage functions, so that the same function name can be 3353 // used with internal linkage in multiple TUs. 3354 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3355 GlobalDecl GD) { 3356 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3357 if (FD->getFormalLinkage() == InternalLinkage) 3358 return llvm::GlobalValue::InternalLinkage; 3359 return llvm::GlobalValue::WeakODRLinkage; 3360 } 3361 3362 void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) { 3363 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3364 assert(FD && "Not a FunctionDecl?"); 3365 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3366 assert(TC && "Not a target_clones Function?"); 3367 3368 QualType CanonTy = Context.getCanonicalType(FD->getType()); 3369 llvm::Type *DeclTy = getTypes().ConvertType(CanonTy); 3370 3371 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3372 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3373 DeclTy = getTypes().GetFunctionType(FInfo); 3374 } 3375 3376 llvm::Function *ResolverFunc; 3377 if (getTarget().supportsIFunc()) { 3378 auto *IFunc = cast<llvm::GlobalIFunc>( 3379 GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3380 ResolverFunc = cast<llvm::Function>(IFunc->getResolver()); 3381 } else 3382 ResolverFunc = 3383 cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3384 3385 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3386 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3387 ++VersionIndex) { 3388 if (!TC->isFirstOfVersion(VersionIndex)) 3389 continue; 3390 StringRef Version = TC->getFeatureStr(VersionIndex); 3391 StringRef MangledName = 3392 getMangledName(GD.getWithMultiVersionIndex(VersionIndex)); 3393 llvm::Constant *Func = GetGlobalValue(MangledName); 3394 assert(Func && 3395 "Should have already been created before calling resolver emit"); 3396 3397 StringRef Architecture; 3398 llvm::SmallVector<StringRef, 1> Feature; 3399 3400 if (Version.startswith("arch=")) 3401 Architecture = Version.drop_front(sizeof("arch=") - 1); 3402 else if (Version != "default") 3403 Feature.push_back(Version); 3404 3405 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3406 } 3407 3408 const TargetInfo &TI = getTarget(); 3409 std::stable_sort( 3410 Options.begin(), Options.end(), 3411 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3412 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3413 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3414 }); 3415 CodeGenFunction CGF(*this); 3416 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3417 } 3418 3419 void CodeGenModule::emitMultiVersionFunctions() { 3420 std::vector<GlobalDecl> MVFuncsToEmit; 3421 MultiVersionFuncs.swap(MVFuncsToEmit); 3422 for (GlobalDecl GD : MVFuncsToEmit) { 3423 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3424 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3425 getContext().forEachMultiversionedFunctionVersion( 3426 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3427 GlobalDecl CurGD{ 3428 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3429 StringRef MangledName = getMangledName(CurGD); 3430 llvm::Constant *Func = GetGlobalValue(MangledName); 3431 if (!Func) { 3432 if (CurFD->isDefined()) { 3433 EmitGlobalFunctionDefinition(CurGD, nullptr); 3434 Func = GetGlobalValue(MangledName); 3435 } else { 3436 const CGFunctionInfo &FI = 3437 getTypes().arrangeGlobalDeclaration(GD); 3438 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3439 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3440 /*DontDefer=*/false, ForDefinition); 3441 } 3442 assert(Func && "This should have just been created"); 3443 } 3444 3445 const auto *TA = CurFD->getAttr<TargetAttr>(); 3446 llvm::SmallVector<StringRef, 8> Feats; 3447 TA->getAddedFeatures(Feats); 3448 3449 Options.emplace_back(cast<llvm::Function>(Func), 3450 TA->getArchitecture(), Feats); 3451 }); 3452 3453 llvm::Function *ResolverFunc; 3454 const TargetInfo &TI = getTarget(); 3455 3456 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3457 ResolverFunc = cast<llvm::Function>( 3458 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3459 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3460 } else { 3461 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3462 } 3463 3464 if (supportsCOMDAT()) 3465 ResolverFunc->setComdat( 3466 getModule().getOrInsertComdat(ResolverFunc->getName())); 3467 3468 llvm::stable_sort( 3469 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3470 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3471 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3472 }); 3473 CodeGenFunction CGF(*this); 3474 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3475 } 3476 3477 // Ensure that any additions to the deferred decls list caused by emitting a 3478 // variant are emitted. This can happen when the variant itself is inline and 3479 // calls a function without linkage. 3480 if (!MVFuncsToEmit.empty()) 3481 EmitDeferred(); 3482 3483 // Ensure that any additions to the multiversion funcs list from either the 3484 // deferred decls or the multiversion functions themselves are emitted. 3485 if (!MultiVersionFuncs.empty()) 3486 emitMultiVersionFunctions(); 3487 } 3488 3489 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3490 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3491 assert(FD && "Not a FunctionDecl?"); 3492 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3493 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3494 assert(DD && "Not a cpu_dispatch Function?"); 3495 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3496 3497 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3498 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3499 DeclTy = getTypes().GetFunctionType(FInfo); 3500 } 3501 3502 StringRef ResolverName = getMangledName(GD); 3503 UpdateMultiVersionNames(GD, FD, ResolverName); 3504 3505 llvm::Type *ResolverType; 3506 GlobalDecl ResolverGD; 3507 if (getTarget().supportsIFunc()) { 3508 ResolverType = llvm::FunctionType::get( 3509 llvm::PointerType::get(DeclTy, 3510 Context.getTargetAddressSpace(FD->getType())), 3511 false); 3512 } 3513 else { 3514 ResolverType = DeclTy; 3515 ResolverGD = GD; 3516 } 3517 3518 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3519 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3520 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3521 if (supportsCOMDAT()) 3522 ResolverFunc->setComdat( 3523 getModule().getOrInsertComdat(ResolverFunc->getName())); 3524 3525 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3526 const TargetInfo &Target = getTarget(); 3527 unsigned Index = 0; 3528 for (const IdentifierInfo *II : DD->cpus()) { 3529 // Get the name of the target function so we can look it up/create it. 3530 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3531 getCPUSpecificMangling(*this, II->getName()); 3532 3533 llvm::Constant *Func = GetGlobalValue(MangledName); 3534 3535 if (!Func) { 3536 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3537 if (ExistingDecl.getDecl() && 3538 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3539 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3540 Func = GetGlobalValue(MangledName); 3541 } else { 3542 if (!ExistingDecl.getDecl()) 3543 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3544 3545 Func = GetOrCreateLLVMFunction( 3546 MangledName, DeclTy, ExistingDecl, 3547 /*ForVTable=*/false, /*DontDefer=*/true, 3548 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3549 } 3550 } 3551 3552 llvm::SmallVector<StringRef, 32> Features; 3553 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3554 llvm::transform(Features, Features.begin(), 3555 [](StringRef Str) { return Str.substr(1); }); 3556 llvm::erase_if(Features, [&Target](StringRef Feat) { 3557 return !Target.validateCpuSupports(Feat); 3558 }); 3559 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3560 ++Index; 3561 } 3562 3563 llvm::stable_sort( 3564 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3565 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3566 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3567 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3568 }); 3569 3570 // If the list contains multiple 'default' versions, such as when it contains 3571 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3572 // always run on at least a 'pentium'). We do this by deleting the 'least 3573 // advanced' (read, lowest mangling letter). 3574 while (Options.size() > 1 && 3575 llvm::X86::getCpuSupportsMask( 3576 (Options.end() - 2)->Conditions.Features) == 0) { 3577 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3578 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3579 if (LHSName.compare(RHSName) < 0) 3580 Options.erase(Options.end() - 2); 3581 else 3582 Options.erase(Options.end() - 1); 3583 } 3584 3585 CodeGenFunction CGF(*this); 3586 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3587 3588 if (getTarget().supportsIFunc()) { 3589 std::string AliasName = getMangledNameImpl( 3590 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3591 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3592 if (!AliasFunc) { 3593 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3594 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3595 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3596 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, 3597 getMultiversionLinkage(*this, GD), 3598 AliasName, IFunc, &getModule()); 3599 SetCommonAttributes(GD, GA); 3600 } 3601 } 3602 } 3603 3604 /// If a dispatcher for the specified mangled name is not in the module, create 3605 /// and return an llvm Function with the specified type. 3606 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3607 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3608 std::string MangledName = 3609 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3610 3611 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3612 // a separate resolver). 3613 std::string ResolverName = MangledName; 3614 if (getTarget().supportsIFunc()) 3615 ResolverName += ".ifunc"; 3616 else if (FD->isTargetMultiVersion()) 3617 ResolverName += ".resolver"; 3618 3619 // If this already exists, just return that one. 3620 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3621 return ResolverGV; 3622 3623 // Since this is the first time we've created this IFunc, make sure 3624 // that we put this multiversioned function into the list to be 3625 // replaced later if necessary (target multiversioning only). 3626 if (FD->isTargetMultiVersion()) 3627 MultiVersionFuncs.push_back(GD); 3628 else if (FD->isTargetClonesMultiVersion()) { 3629 // In target_clones multiversioning, make sure we emit this if used. 3630 auto DDI = 3631 DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0))); 3632 if (DDI != DeferredDecls.end()) { 3633 addDeferredDeclToEmit(GD); 3634 DeferredDecls.erase(DDI); 3635 } else { 3636 // Emit the symbol of the 1st variant, so that the deferred decls know we 3637 // need it, otherwise the only global value will be the resolver/ifunc, 3638 // which end up getting broken if we search for them with GetGlobalValue'. 3639 GetOrCreateLLVMFunction( 3640 getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD, 3641 /*ForVTable=*/false, /*DontDefer=*/true, 3642 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3643 } 3644 } 3645 3646 if (getTarget().supportsIFunc()) { 3647 llvm::Type *ResolverType = llvm::FunctionType::get( 3648 llvm::PointerType::get( 3649 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3650 false); 3651 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3652 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3653 /*ForVTable=*/false); 3654 llvm::GlobalIFunc *GIF = 3655 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3656 "", Resolver, &getModule()); 3657 GIF->setName(ResolverName); 3658 SetCommonAttributes(FD, GIF); 3659 3660 return GIF; 3661 } 3662 3663 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3664 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3665 assert(isa<llvm::GlobalValue>(Resolver) && 3666 "Resolver should be created for the first time"); 3667 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3668 return Resolver; 3669 } 3670 3671 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3672 /// module, create and return an llvm Function with the specified type. If there 3673 /// is something in the module with the specified name, return it potentially 3674 /// bitcasted to the right type. 3675 /// 3676 /// If D is non-null, it specifies a decl that correspond to this. This is used 3677 /// to set the attributes on the function when it is first created. 3678 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3679 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3680 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3681 ForDefinition_t IsForDefinition) { 3682 const Decl *D = GD.getDecl(); 3683 3684 // Any attempts to use a MultiVersion function should result in retrieving 3685 // the iFunc instead. Name Mangling will handle the rest of the changes. 3686 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3687 // For the device mark the function as one that should be emitted. 3688 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3689 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3690 !DontDefer && !IsForDefinition) { 3691 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3692 GlobalDecl GDDef; 3693 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3694 GDDef = GlobalDecl(CD, GD.getCtorType()); 3695 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3696 GDDef = GlobalDecl(DD, GD.getDtorType()); 3697 else 3698 GDDef = GlobalDecl(FDDef); 3699 EmitGlobal(GDDef); 3700 } 3701 } 3702 3703 if (FD->isMultiVersion()) { 3704 UpdateMultiVersionNames(GD, FD, MangledName); 3705 if (!IsForDefinition) 3706 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3707 } 3708 } 3709 3710 // Lookup the entry, lazily creating it if necessary. 3711 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3712 if (Entry) { 3713 if (WeakRefReferences.erase(Entry)) { 3714 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3715 if (FD && !FD->hasAttr<WeakAttr>()) 3716 Entry->setLinkage(llvm::Function::ExternalLinkage); 3717 } 3718 3719 // Handle dropped DLL attributes. 3720 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3721 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3722 setDSOLocal(Entry); 3723 } 3724 3725 // If there are two attempts to define the same mangled name, issue an 3726 // error. 3727 if (IsForDefinition && !Entry->isDeclaration()) { 3728 GlobalDecl OtherGD; 3729 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3730 // to make sure that we issue an error only once. 3731 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3732 (GD.getCanonicalDecl().getDecl() != 3733 OtherGD.getCanonicalDecl().getDecl()) && 3734 DiagnosedConflictingDefinitions.insert(GD).second) { 3735 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3736 << MangledName; 3737 getDiags().Report(OtherGD.getDecl()->getLocation(), 3738 diag::note_previous_definition); 3739 } 3740 } 3741 3742 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3743 (Entry->getValueType() == Ty)) { 3744 return Entry; 3745 } 3746 3747 // Make sure the result is of the correct type. 3748 // (If function is requested for a definition, we always need to create a new 3749 // function, not just return a bitcast.) 3750 if (!IsForDefinition) 3751 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3752 } 3753 3754 // This function doesn't have a complete type (for example, the return 3755 // type is an incomplete struct). Use a fake type instead, and make 3756 // sure not to try to set attributes. 3757 bool IsIncompleteFunction = false; 3758 3759 llvm::FunctionType *FTy; 3760 if (isa<llvm::FunctionType>(Ty)) { 3761 FTy = cast<llvm::FunctionType>(Ty); 3762 } else { 3763 FTy = llvm::FunctionType::get(VoidTy, false); 3764 IsIncompleteFunction = true; 3765 } 3766 3767 llvm::Function *F = 3768 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3769 Entry ? StringRef() : MangledName, &getModule()); 3770 3771 // If we already created a function with the same mangled name (but different 3772 // type) before, take its name and add it to the list of functions to be 3773 // replaced with F at the end of CodeGen. 3774 // 3775 // This happens if there is a prototype for a function (e.g. "int f()") and 3776 // then a definition of a different type (e.g. "int f(int x)"). 3777 if (Entry) { 3778 F->takeName(Entry); 3779 3780 // This might be an implementation of a function without a prototype, in 3781 // which case, try to do special replacement of calls which match the new 3782 // prototype. The really key thing here is that we also potentially drop 3783 // arguments from the call site so as to make a direct call, which makes the 3784 // inliner happier and suppresses a number of optimizer warnings (!) about 3785 // dropping arguments. 3786 if (!Entry->use_empty()) { 3787 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3788 Entry->removeDeadConstantUsers(); 3789 } 3790 3791 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3792 F, Entry->getValueType()->getPointerTo()); 3793 addGlobalValReplacement(Entry, BC); 3794 } 3795 3796 assert(F->getName() == MangledName && "name was uniqued!"); 3797 if (D) 3798 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3799 if (ExtraAttrs.hasFnAttrs()) { 3800 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3801 F->addFnAttrs(B); 3802 } 3803 3804 if (!DontDefer) { 3805 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3806 // each other bottoming out with the base dtor. Therefore we emit non-base 3807 // dtors on usage, even if there is no dtor definition in the TU. 3808 if (D && isa<CXXDestructorDecl>(D) && 3809 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3810 GD.getDtorType())) 3811 addDeferredDeclToEmit(GD); 3812 3813 // This is the first use or definition of a mangled name. If there is a 3814 // deferred decl with this name, remember that we need to emit it at the end 3815 // of the file. 3816 auto DDI = DeferredDecls.find(MangledName); 3817 if (DDI != DeferredDecls.end()) { 3818 // Move the potentially referenced deferred decl to the 3819 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3820 // don't need it anymore). 3821 addDeferredDeclToEmit(DDI->second); 3822 DeferredDecls.erase(DDI); 3823 3824 // Otherwise, there are cases we have to worry about where we're 3825 // using a declaration for which we must emit a definition but where 3826 // we might not find a top-level definition: 3827 // - member functions defined inline in their classes 3828 // - friend functions defined inline in some class 3829 // - special member functions with implicit definitions 3830 // If we ever change our AST traversal to walk into class methods, 3831 // this will be unnecessary. 3832 // 3833 // We also don't emit a definition for a function if it's going to be an 3834 // entry in a vtable, unless it's already marked as used. 3835 } else if (getLangOpts().CPlusPlus && D) { 3836 // Look for a declaration that's lexically in a record. 3837 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3838 FD = FD->getPreviousDecl()) { 3839 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3840 if (FD->doesThisDeclarationHaveABody()) { 3841 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3842 break; 3843 } 3844 } 3845 } 3846 } 3847 } 3848 3849 // Make sure the result is of the requested type. 3850 if (!IsIncompleteFunction) { 3851 assert(F->getFunctionType() == Ty); 3852 return F; 3853 } 3854 3855 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3856 return llvm::ConstantExpr::getBitCast(F, PTy); 3857 } 3858 3859 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3860 /// non-null, then this function will use the specified type if it has to 3861 /// create it (this occurs when we see a definition of the function). 3862 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3863 llvm::Type *Ty, 3864 bool ForVTable, 3865 bool DontDefer, 3866 ForDefinition_t IsForDefinition) { 3867 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3868 "consteval function should never be emitted"); 3869 // If there was no specific requested type, just convert it now. 3870 if (!Ty) { 3871 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3872 Ty = getTypes().ConvertType(FD->getType()); 3873 } 3874 3875 // Devirtualized destructor calls may come through here instead of via 3876 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3877 // of the complete destructor when necessary. 3878 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3879 if (getTarget().getCXXABI().isMicrosoft() && 3880 GD.getDtorType() == Dtor_Complete && 3881 DD->getParent()->getNumVBases() == 0) 3882 GD = GlobalDecl(DD, Dtor_Base); 3883 } 3884 3885 StringRef MangledName = getMangledName(GD); 3886 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3887 /*IsThunk=*/false, llvm::AttributeList(), 3888 IsForDefinition); 3889 // Returns kernel handle for HIP kernel stub function. 3890 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3891 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3892 auto *Handle = getCUDARuntime().getKernelHandle( 3893 cast<llvm::Function>(F->stripPointerCasts()), GD); 3894 if (IsForDefinition) 3895 return F; 3896 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3897 } 3898 return F; 3899 } 3900 3901 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3902 llvm::GlobalValue *F = 3903 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 3904 3905 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 3906 llvm::Type::getInt8PtrTy(VMContext)); 3907 } 3908 3909 static const FunctionDecl * 3910 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3911 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3912 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3913 3914 IdentifierInfo &CII = C.Idents.get(Name); 3915 for (const auto *Result : DC->lookup(&CII)) 3916 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3917 return FD; 3918 3919 if (!C.getLangOpts().CPlusPlus) 3920 return nullptr; 3921 3922 // Demangle the premangled name from getTerminateFn() 3923 IdentifierInfo &CXXII = 3924 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3925 ? C.Idents.get("terminate") 3926 : C.Idents.get(Name); 3927 3928 for (const auto &N : {"__cxxabiv1", "std"}) { 3929 IdentifierInfo &NS = C.Idents.get(N); 3930 for (const auto *Result : DC->lookup(&NS)) { 3931 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3932 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3933 for (const auto *Result : LSD->lookup(&NS)) 3934 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3935 break; 3936 3937 if (ND) 3938 for (const auto *Result : ND->lookup(&CXXII)) 3939 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3940 return FD; 3941 } 3942 } 3943 3944 return nullptr; 3945 } 3946 3947 /// CreateRuntimeFunction - Create a new runtime function with the specified 3948 /// type and name. 3949 llvm::FunctionCallee 3950 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3951 llvm::AttributeList ExtraAttrs, bool Local, 3952 bool AssumeConvergent) { 3953 if (AssumeConvergent) { 3954 ExtraAttrs = 3955 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 3956 } 3957 3958 llvm::Constant *C = 3959 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3960 /*DontDefer=*/false, /*IsThunk=*/false, 3961 ExtraAttrs); 3962 3963 if (auto *F = dyn_cast<llvm::Function>(C)) { 3964 if (F->empty()) { 3965 F->setCallingConv(getRuntimeCC()); 3966 3967 // In Windows Itanium environments, try to mark runtime functions 3968 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3969 // will link their standard library statically or dynamically. Marking 3970 // functions imported when they are not imported can cause linker errors 3971 // and warnings. 3972 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3973 !getCodeGenOpts().LTOVisibilityPublicStd) { 3974 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3975 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3976 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3977 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3978 } 3979 } 3980 setDSOLocal(F); 3981 } 3982 } 3983 3984 return {FTy, C}; 3985 } 3986 3987 /// isTypeConstant - Determine whether an object of this type can be emitted 3988 /// as a constant. 3989 /// 3990 /// If ExcludeCtor is true, the duration when the object's constructor runs 3991 /// will not be considered. The caller will need to verify that the object is 3992 /// not written to during its construction. 3993 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3994 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3995 return false; 3996 3997 if (Context.getLangOpts().CPlusPlus) { 3998 if (const CXXRecordDecl *Record 3999 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4000 return ExcludeCtor && !Record->hasMutableFields() && 4001 Record->hasTrivialDestructor(); 4002 } 4003 4004 return true; 4005 } 4006 4007 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4008 /// create and return an llvm GlobalVariable with the specified type and address 4009 /// space. If there is something in the module with the specified name, return 4010 /// it potentially bitcasted to the right type. 4011 /// 4012 /// If D is non-null, it specifies a decl that correspond to this. This is used 4013 /// to set the attributes on the global when it is first created. 4014 /// 4015 /// If IsForDefinition is true, it is guaranteed that an actual global with 4016 /// type Ty will be returned, not conversion of a variable with the same 4017 /// mangled name but some other type. 4018 llvm::Constant * 4019 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4020 LangAS AddrSpace, const VarDecl *D, 4021 ForDefinition_t IsForDefinition) { 4022 // Lookup the entry, lazily creating it if necessary. 4023 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4024 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4025 if (Entry) { 4026 if (WeakRefReferences.erase(Entry)) { 4027 if (D && !D->hasAttr<WeakAttr>()) 4028 Entry->setLinkage(llvm::Function::ExternalLinkage); 4029 } 4030 4031 // Handle dropped DLL attributes. 4032 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 4033 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4034 4035 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4036 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4037 4038 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4039 return Entry; 4040 4041 // If there are two attempts to define the same mangled name, issue an 4042 // error. 4043 if (IsForDefinition && !Entry->isDeclaration()) { 4044 GlobalDecl OtherGD; 4045 const VarDecl *OtherD; 4046 4047 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4048 // to make sure that we issue an error only once. 4049 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4050 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4051 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4052 OtherD->hasInit() && 4053 DiagnosedConflictingDefinitions.insert(D).second) { 4054 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4055 << MangledName; 4056 getDiags().Report(OtherGD.getDecl()->getLocation(), 4057 diag::note_previous_definition); 4058 } 4059 } 4060 4061 // Make sure the result is of the correct type. 4062 if (Entry->getType()->getAddressSpace() != TargetAS) { 4063 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4064 Ty->getPointerTo(TargetAS)); 4065 } 4066 4067 // (If global is requested for a definition, we always need to create a new 4068 // global, not just return a bitcast.) 4069 if (!IsForDefinition) 4070 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4071 } 4072 4073 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4074 4075 auto *GV = new llvm::GlobalVariable( 4076 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4077 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4078 getContext().getTargetAddressSpace(DAddrSpace)); 4079 4080 // If we already created a global with the same mangled name (but different 4081 // type) before, take its name and remove it from its parent. 4082 if (Entry) { 4083 GV->takeName(Entry); 4084 4085 if (!Entry->use_empty()) { 4086 llvm::Constant *NewPtrForOldDecl = 4087 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4088 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4089 } 4090 4091 Entry->eraseFromParent(); 4092 } 4093 4094 // This is the first use or definition of a mangled name. If there is a 4095 // deferred decl with this name, remember that we need to emit it at the end 4096 // of the file. 4097 auto DDI = DeferredDecls.find(MangledName); 4098 if (DDI != DeferredDecls.end()) { 4099 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4100 // list, and remove it from DeferredDecls (since we don't need it anymore). 4101 addDeferredDeclToEmit(DDI->second); 4102 DeferredDecls.erase(DDI); 4103 } 4104 4105 // Handle things which are present even on external declarations. 4106 if (D) { 4107 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4108 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4109 4110 // FIXME: This code is overly simple and should be merged with other global 4111 // handling. 4112 GV->setConstant(isTypeConstant(D->getType(), false)); 4113 4114 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4115 4116 setLinkageForGV(GV, D); 4117 4118 if (D->getTLSKind()) { 4119 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4120 CXXThreadLocals.push_back(D); 4121 setTLSMode(GV, *D); 4122 } 4123 4124 setGVProperties(GV, D); 4125 4126 // If required by the ABI, treat declarations of static data members with 4127 // inline initializers as definitions. 4128 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4129 EmitGlobalVarDefinition(D); 4130 } 4131 4132 // Emit section information for extern variables. 4133 if (D->hasExternalStorage()) { 4134 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4135 GV->setSection(SA->getName()); 4136 } 4137 4138 // Handle XCore specific ABI requirements. 4139 if (getTriple().getArch() == llvm::Triple::xcore && 4140 D->getLanguageLinkage() == CLanguageLinkage && 4141 D->getType().isConstant(Context) && 4142 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4143 GV->setSection(".cp.rodata"); 4144 4145 // Check if we a have a const declaration with an initializer, we may be 4146 // able to emit it as available_externally to expose it's value to the 4147 // optimizer. 4148 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4149 D->getType().isConstQualified() && !GV->hasInitializer() && 4150 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4151 const auto *Record = 4152 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4153 bool HasMutableFields = Record && Record->hasMutableFields(); 4154 if (!HasMutableFields) { 4155 const VarDecl *InitDecl; 4156 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4157 if (InitExpr) { 4158 ConstantEmitter emitter(*this); 4159 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4160 if (Init) { 4161 auto *InitType = Init->getType(); 4162 if (GV->getValueType() != InitType) { 4163 // The type of the initializer does not match the definition. 4164 // This happens when an initializer has a different type from 4165 // the type of the global (because of padding at the end of a 4166 // structure for instance). 4167 GV->setName(StringRef()); 4168 // Make a new global with the correct type, this is now guaranteed 4169 // to work. 4170 auto *NewGV = cast<llvm::GlobalVariable>( 4171 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4172 ->stripPointerCasts()); 4173 4174 // Erase the old global, since it is no longer used. 4175 GV->eraseFromParent(); 4176 GV = NewGV; 4177 } else { 4178 GV->setInitializer(Init); 4179 GV->setConstant(true); 4180 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4181 } 4182 emitter.finalize(GV); 4183 } 4184 } 4185 } 4186 } 4187 } 4188 4189 if (GV->isDeclaration()) { 4190 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4191 // External HIP managed variables needed to be recorded for transformation 4192 // in both device and host compilations. 4193 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4194 D->hasExternalStorage()) 4195 getCUDARuntime().handleVarRegistration(D, *GV); 4196 } 4197 4198 LangAS ExpectedAS = 4199 D ? D->getType().getAddressSpace() 4200 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4201 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4202 if (DAddrSpace != ExpectedAS) { 4203 return getTargetCodeGenInfo().performAddrSpaceCast( 4204 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4205 } 4206 4207 return GV; 4208 } 4209 4210 llvm::Constant * 4211 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4212 const Decl *D = GD.getDecl(); 4213 4214 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4215 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4216 /*DontDefer=*/false, IsForDefinition); 4217 4218 if (isa<CXXMethodDecl>(D)) { 4219 auto FInfo = 4220 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4221 auto Ty = getTypes().GetFunctionType(*FInfo); 4222 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4223 IsForDefinition); 4224 } 4225 4226 if (isa<FunctionDecl>(D)) { 4227 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4228 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4229 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4230 IsForDefinition); 4231 } 4232 4233 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4234 } 4235 4236 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4237 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4238 unsigned Alignment) { 4239 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4240 llvm::GlobalVariable *OldGV = nullptr; 4241 4242 if (GV) { 4243 // Check if the variable has the right type. 4244 if (GV->getValueType() == Ty) 4245 return GV; 4246 4247 // Because C++ name mangling, the only way we can end up with an already 4248 // existing global with the same name is if it has been declared extern "C". 4249 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4250 OldGV = GV; 4251 } 4252 4253 // Create a new variable. 4254 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4255 Linkage, nullptr, Name); 4256 4257 if (OldGV) { 4258 // Replace occurrences of the old variable if needed. 4259 GV->takeName(OldGV); 4260 4261 if (!OldGV->use_empty()) { 4262 llvm::Constant *NewPtrForOldDecl = 4263 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4264 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4265 } 4266 4267 OldGV->eraseFromParent(); 4268 } 4269 4270 if (supportsCOMDAT() && GV->isWeakForLinker() && 4271 !GV->hasAvailableExternallyLinkage()) 4272 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4273 4274 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4275 4276 return GV; 4277 } 4278 4279 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4280 /// given global variable. If Ty is non-null and if the global doesn't exist, 4281 /// then it will be created with the specified type instead of whatever the 4282 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4283 /// that an actual global with type Ty will be returned, not conversion of a 4284 /// variable with the same mangled name but some other type. 4285 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4286 llvm::Type *Ty, 4287 ForDefinition_t IsForDefinition) { 4288 assert(D->hasGlobalStorage() && "Not a global variable"); 4289 QualType ASTTy = D->getType(); 4290 if (!Ty) 4291 Ty = getTypes().ConvertTypeForMem(ASTTy); 4292 4293 StringRef MangledName = getMangledName(D); 4294 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4295 IsForDefinition); 4296 } 4297 4298 /// CreateRuntimeVariable - Create a new runtime global variable with the 4299 /// specified type and name. 4300 llvm::Constant * 4301 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4302 StringRef Name) { 4303 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4304 : LangAS::Default; 4305 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4306 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4307 return Ret; 4308 } 4309 4310 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4311 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4312 4313 StringRef MangledName = getMangledName(D); 4314 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4315 4316 // We already have a definition, not declaration, with the same mangled name. 4317 // Emitting of declaration is not required (and actually overwrites emitted 4318 // definition). 4319 if (GV && !GV->isDeclaration()) 4320 return; 4321 4322 // If we have not seen a reference to this variable yet, place it into the 4323 // deferred declarations table to be emitted if needed later. 4324 if (!MustBeEmitted(D) && !GV) { 4325 DeferredDecls[MangledName] = D; 4326 return; 4327 } 4328 4329 // The tentative definition is the only definition. 4330 EmitGlobalVarDefinition(D); 4331 } 4332 4333 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4334 EmitExternalVarDeclaration(D); 4335 } 4336 4337 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4338 return Context.toCharUnitsFromBits( 4339 getDataLayout().getTypeStoreSizeInBits(Ty)); 4340 } 4341 4342 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4343 if (LangOpts.OpenCL) { 4344 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4345 assert(AS == LangAS::opencl_global || 4346 AS == LangAS::opencl_global_device || 4347 AS == LangAS::opencl_global_host || 4348 AS == LangAS::opencl_constant || 4349 AS == LangAS::opencl_local || 4350 AS >= LangAS::FirstTargetAddressSpace); 4351 return AS; 4352 } 4353 4354 if (LangOpts.SYCLIsDevice && 4355 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4356 return LangAS::sycl_global; 4357 4358 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4359 if (D && D->hasAttr<CUDAConstantAttr>()) 4360 return LangAS::cuda_constant; 4361 else if (D && D->hasAttr<CUDASharedAttr>()) 4362 return LangAS::cuda_shared; 4363 else if (D && D->hasAttr<CUDADeviceAttr>()) 4364 return LangAS::cuda_device; 4365 else if (D && D->getType().isConstQualified()) 4366 return LangAS::cuda_constant; 4367 else 4368 return LangAS::cuda_device; 4369 } 4370 4371 if (LangOpts.OpenMP) { 4372 LangAS AS; 4373 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4374 return AS; 4375 } 4376 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4377 } 4378 4379 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4380 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4381 if (LangOpts.OpenCL) 4382 return LangAS::opencl_constant; 4383 if (LangOpts.SYCLIsDevice) 4384 return LangAS::sycl_global; 4385 if (auto AS = getTarget().getConstantAddressSpace()) 4386 return AS.getValue(); 4387 return LangAS::Default; 4388 } 4389 4390 // In address space agnostic languages, string literals are in default address 4391 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4392 // emitted in constant address space in LLVM IR. To be consistent with other 4393 // parts of AST, string literal global variables in constant address space 4394 // need to be casted to default address space before being put into address 4395 // map and referenced by other part of CodeGen. 4396 // In OpenCL, string literals are in constant address space in AST, therefore 4397 // they should not be casted to default address space. 4398 static llvm::Constant * 4399 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4400 llvm::GlobalVariable *GV) { 4401 llvm::Constant *Cast = GV; 4402 if (!CGM.getLangOpts().OpenCL) { 4403 auto AS = CGM.GetGlobalConstantAddressSpace(); 4404 if (AS != LangAS::Default) 4405 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4406 CGM, GV, AS, LangAS::Default, 4407 GV->getValueType()->getPointerTo( 4408 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4409 } 4410 return Cast; 4411 } 4412 4413 template<typename SomeDecl> 4414 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4415 llvm::GlobalValue *GV) { 4416 if (!getLangOpts().CPlusPlus) 4417 return; 4418 4419 // Must have 'used' attribute, or else inline assembly can't rely on 4420 // the name existing. 4421 if (!D->template hasAttr<UsedAttr>()) 4422 return; 4423 4424 // Must have internal linkage and an ordinary name. 4425 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4426 return; 4427 4428 // Must be in an extern "C" context. Entities declared directly within 4429 // a record are not extern "C" even if the record is in such a context. 4430 const SomeDecl *First = D->getFirstDecl(); 4431 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4432 return; 4433 4434 // OK, this is an internal linkage entity inside an extern "C" linkage 4435 // specification. Make a note of that so we can give it the "expected" 4436 // mangled name if nothing else is using that name. 4437 std::pair<StaticExternCMap::iterator, bool> R = 4438 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4439 4440 // If we have multiple internal linkage entities with the same name 4441 // in extern "C" regions, none of them gets that name. 4442 if (!R.second) 4443 R.first->second = nullptr; 4444 } 4445 4446 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4447 if (!CGM.supportsCOMDAT()) 4448 return false; 4449 4450 if (D.hasAttr<SelectAnyAttr>()) 4451 return true; 4452 4453 GVALinkage Linkage; 4454 if (auto *VD = dyn_cast<VarDecl>(&D)) 4455 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4456 else 4457 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4458 4459 switch (Linkage) { 4460 case GVA_Internal: 4461 case GVA_AvailableExternally: 4462 case GVA_StrongExternal: 4463 return false; 4464 case GVA_DiscardableODR: 4465 case GVA_StrongODR: 4466 return true; 4467 } 4468 llvm_unreachable("No such linkage"); 4469 } 4470 4471 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4472 llvm::GlobalObject &GO) { 4473 if (!shouldBeInCOMDAT(*this, D)) 4474 return; 4475 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4476 } 4477 4478 /// Pass IsTentative as true if you want to create a tentative definition. 4479 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4480 bool IsTentative) { 4481 // OpenCL global variables of sampler type are translated to function calls, 4482 // therefore no need to be translated. 4483 QualType ASTTy = D->getType(); 4484 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4485 return; 4486 4487 // If this is OpenMP device, check if it is legal to emit this global 4488 // normally. 4489 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4490 OpenMPRuntime->emitTargetGlobalVariable(D)) 4491 return; 4492 4493 llvm::TrackingVH<llvm::Constant> Init; 4494 bool NeedsGlobalCtor = false; 4495 bool NeedsGlobalDtor = 4496 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4497 4498 const VarDecl *InitDecl; 4499 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4500 4501 Optional<ConstantEmitter> emitter; 4502 4503 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4504 // as part of their declaration." Sema has already checked for 4505 // error cases, so we just need to set Init to UndefValue. 4506 bool IsCUDASharedVar = 4507 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4508 // Shadows of initialized device-side global variables are also left 4509 // undefined. 4510 // Managed Variables should be initialized on both host side and device side. 4511 bool IsCUDAShadowVar = 4512 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4513 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4514 D->hasAttr<CUDASharedAttr>()); 4515 bool IsCUDADeviceShadowVar = 4516 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4517 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4518 D->getType()->isCUDADeviceBuiltinTextureType()); 4519 if (getLangOpts().CUDA && 4520 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4521 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4522 else if (D->hasAttr<LoaderUninitializedAttr>()) 4523 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4524 else if (!InitExpr) { 4525 // This is a tentative definition; tentative definitions are 4526 // implicitly initialized with { 0 }. 4527 // 4528 // Note that tentative definitions are only emitted at the end of 4529 // a translation unit, so they should never have incomplete 4530 // type. In addition, EmitTentativeDefinition makes sure that we 4531 // never attempt to emit a tentative definition if a real one 4532 // exists. A use may still exists, however, so we still may need 4533 // to do a RAUW. 4534 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4535 Init = EmitNullConstant(D->getType()); 4536 } else { 4537 initializedGlobalDecl = GlobalDecl(D); 4538 emitter.emplace(*this); 4539 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4540 if (!Initializer) { 4541 QualType T = InitExpr->getType(); 4542 if (D->getType()->isReferenceType()) 4543 T = D->getType(); 4544 4545 if (getLangOpts().CPlusPlus) { 4546 Init = EmitNullConstant(T); 4547 NeedsGlobalCtor = true; 4548 } else { 4549 ErrorUnsupported(D, "static initializer"); 4550 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4551 } 4552 } else { 4553 Init = Initializer; 4554 // We don't need an initializer, so remove the entry for the delayed 4555 // initializer position (just in case this entry was delayed) if we 4556 // also don't need to register a destructor. 4557 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4558 DelayedCXXInitPosition.erase(D); 4559 } 4560 } 4561 4562 llvm::Type* InitType = Init->getType(); 4563 llvm::Constant *Entry = 4564 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4565 4566 // Strip off pointer casts if we got them. 4567 Entry = Entry->stripPointerCasts(); 4568 4569 // Entry is now either a Function or GlobalVariable. 4570 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4571 4572 // We have a definition after a declaration with the wrong type. 4573 // We must make a new GlobalVariable* and update everything that used OldGV 4574 // (a declaration or tentative definition) with the new GlobalVariable* 4575 // (which will be a definition). 4576 // 4577 // This happens if there is a prototype for a global (e.g. 4578 // "extern int x[];") and then a definition of a different type (e.g. 4579 // "int x[10];"). This also happens when an initializer has a different type 4580 // from the type of the global (this happens with unions). 4581 if (!GV || GV->getValueType() != InitType || 4582 GV->getType()->getAddressSpace() != 4583 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4584 4585 // Move the old entry aside so that we'll create a new one. 4586 Entry->setName(StringRef()); 4587 4588 // Make a new global with the correct type, this is now guaranteed to work. 4589 GV = cast<llvm::GlobalVariable>( 4590 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4591 ->stripPointerCasts()); 4592 4593 // Replace all uses of the old global with the new global 4594 llvm::Constant *NewPtrForOldDecl = 4595 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4596 Entry->getType()); 4597 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4598 4599 // Erase the old global, since it is no longer used. 4600 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4601 } 4602 4603 MaybeHandleStaticInExternC(D, GV); 4604 4605 if (D->hasAttr<AnnotateAttr>()) 4606 AddGlobalAnnotations(D, GV); 4607 4608 // Set the llvm linkage type as appropriate. 4609 llvm::GlobalValue::LinkageTypes Linkage = 4610 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4611 4612 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4613 // the device. [...]" 4614 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4615 // __device__, declares a variable that: [...] 4616 // Is accessible from all the threads within the grid and from the host 4617 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4618 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4619 if (GV && LangOpts.CUDA) { 4620 if (LangOpts.CUDAIsDevice) { 4621 if (Linkage != llvm::GlobalValue::InternalLinkage && 4622 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4623 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4624 D->getType()->isCUDADeviceBuiltinTextureType())) 4625 GV->setExternallyInitialized(true); 4626 } else { 4627 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4628 } 4629 getCUDARuntime().handleVarRegistration(D, *GV); 4630 } 4631 4632 GV->setInitializer(Init); 4633 if (emitter) 4634 emitter->finalize(GV); 4635 4636 // If it is safe to mark the global 'constant', do so now. 4637 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4638 isTypeConstant(D->getType(), true)); 4639 4640 // If it is in a read-only section, mark it 'constant'. 4641 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4642 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4643 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4644 GV->setConstant(true); 4645 } 4646 4647 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4648 4649 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4650 // function is only defined alongside the variable, not also alongside 4651 // callers. Normally, all accesses to a thread_local go through the 4652 // thread-wrapper in order to ensure initialization has occurred, underlying 4653 // variable will never be used other than the thread-wrapper, so it can be 4654 // converted to internal linkage. 4655 // 4656 // However, if the variable has the 'constinit' attribute, it _can_ be 4657 // referenced directly, without calling the thread-wrapper, so the linkage 4658 // must not be changed. 4659 // 4660 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4661 // weak or linkonce, the de-duplication semantics are important to preserve, 4662 // so we don't change the linkage. 4663 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4664 Linkage == llvm::GlobalValue::ExternalLinkage && 4665 Context.getTargetInfo().getTriple().isOSDarwin() && 4666 !D->hasAttr<ConstInitAttr>()) 4667 Linkage = llvm::GlobalValue::InternalLinkage; 4668 4669 GV->setLinkage(Linkage); 4670 if (D->hasAttr<DLLImportAttr>()) 4671 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4672 else if (D->hasAttr<DLLExportAttr>()) 4673 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4674 else 4675 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4676 4677 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4678 // common vars aren't constant even if declared const. 4679 GV->setConstant(false); 4680 // Tentative definition of global variables may be initialized with 4681 // non-zero null pointers. In this case they should have weak linkage 4682 // since common linkage must have zero initializer and must not have 4683 // explicit section therefore cannot have non-zero initial value. 4684 if (!GV->getInitializer()->isNullValue()) 4685 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4686 } 4687 4688 setNonAliasAttributes(D, GV); 4689 4690 if (D->getTLSKind() && !GV->isThreadLocal()) { 4691 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4692 CXXThreadLocals.push_back(D); 4693 setTLSMode(GV, *D); 4694 } 4695 4696 maybeSetTrivialComdat(*D, *GV); 4697 4698 // Emit the initializer function if necessary. 4699 if (NeedsGlobalCtor || NeedsGlobalDtor) 4700 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4701 4702 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4703 4704 // Emit global variable debug information. 4705 if (CGDebugInfo *DI = getModuleDebugInfo()) 4706 if (getCodeGenOpts().hasReducedDebugInfo()) 4707 DI->EmitGlobalVariable(GV, D); 4708 } 4709 4710 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4711 if (CGDebugInfo *DI = getModuleDebugInfo()) 4712 if (getCodeGenOpts().hasReducedDebugInfo()) { 4713 QualType ASTTy = D->getType(); 4714 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4715 llvm::Constant *GV = 4716 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4717 DI->EmitExternalVariable( 4718 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4719 } 4720 } 4721 4722 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4723 CodeGenModule &CGM, const VarDecl *D, 4724 bool NoCommon) { 4725 // Don't give variables common linkage if -fno-common was specified unless it 4726 // was overridden by a NoCommon attribute. 4727 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4728 return true; 4729 4730 // C11 6.9.2/2: 4731 // A declaration of an identifier for an object that has file scope without 4732 // an initializer, and without a storage-class specifier or with the 4733 // storage-class specifier static, constitutes a tentative definition. 4734 if (D->getInit() || D->hasExternalStorage()) 4735 return true; 4736 4737 // A variable cannot be both common and exist in a section. 4738 if (D->hasAttr<SectionAttr>()) 4739 return true; 4740 4741 // A variable cannot be both common and exist in a section. 4742 // We don't try to determine which is the right section in the front-end. 4743 // If no specialized section name is applicable, it will resort to default. 4744 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4745 D->hasAttr<PragmaClangDataSectionAttr>() || 4746 D->hasAttr<PragmaClangRelroSectionAttr>() || 4747 D->hasAttr<PragmaClangRodataSectionAttr>()) 4748 return true; 4749 4750 // Thread local vars aren't considered common linkage. 4751 if (D->getTLSKind()) 4752 return true; 4753 4754 // Tentative definitions marked with WeakImportAttr are true definitions. 4755 if (D->hasAttr<WeakImportAttr>()) 4756 return true; 4757 4758 // A variable cannot be both common and exist in a comdat. 4759 if (shouldBeInCOMDAT(CGM, *D)) 4760 return true; 4761 4762 // Declarations with a required alignment do not have common linkage in MSVC 4763 // mode. 4764 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4765 if (D->hasAttr<AlignedAttr>()) 4766 return true; 4767 QualType VarType = D->getType(); 4768 if (Context.isAlignmentRequired(VarType)) 4769 return true; 4770 4771 if (const auto *RT = VarType->getAs<RecordType>()) { 4772 const RecordDecl *RD = RT->getDecl(); 4773 for (const FieldDecl *FD : RD->fields()) { 4774 if (FD->isBitField()) 4775 continue; 4776 if (FD->hasAttr<AlignedAttr>()) 4777 return true; 4778 if (Context.isAlignmentRequired(FD->getType())) 4779 return true; 4780 } 4781 } 4782 } 4783 4784 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4785 // common symbols, so symbols with greater alignment requirements cannot be 4786 // common. 4787 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4788 // alignments for common symbols via the aligncomm directive, so this 4789 // restriction only applies to MSVC environments. 4790 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4791 Context.getTypeAlignIfKnown(D->getType()) > 4792 Context.toBits(CharUnits::fromQuantity(32))) 4793 return true; 4794 4795 return false; 4796 } 4797 4798 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4799 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4800 if (Linkage == GVA_Internal) 4801 return llvm::Function::InternalLinkage; 4802 4803 if (D->hasAttr<WeakAttr>()) { 4804 if (IsConstantVariable) 4805 return llvm::GlobalVariable::WeakODRLinkage; 4806 else 4807 return llvm::GlobalVariable::WeakAnyLinkage; 4808 } 4809 4810 if (const auto *FD = D->getAsFunction()) 4811 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4812 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4813 4814 // We are guaranteed to have a strong definition somewhere else, 4815 // so we can use available_externally linkage. 4816 if (Linkage == GVA_AvailableExternally) 4817 return llvm::GlobalValue::AvailableExternallyLinkage; 4818 4819 // Note that Apple's kernel linker doesn't support symbol 4820 // coalescing, so we need to avoid linkonce and weak linkages there. 4821 // Normally, this means we just map to internal, but for explicit 4822 // instantiations we'll map to external. 4823 4824 // In C++, the compiler has to emit a definition in every translation unit 4825 // that references the function. We should use linkonce_odr because 4826 // a) if all references in this translation unit are optimized away, we 4827 // don't need to codegen it. b) if the function persists, it needs to be 4828 // merged with other definitions. c) C++ has the ODR, so we know the 4829 // definition is dependable. 4830 if (Linkage == GVA_DiscardableODR) 4831 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4832 : llvm::Function::InternalLinkage; 4833 4834 // An explicit instantiation of a template has weak linkage, since 4835 // explicit instantiations can occur in multiple translation units 4836 // and must all be equivalent. However, we are not allowed to 4837 // throw away these explicit instantiations. 4838 // 4839 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4840 // so say that CUDA templates are either external (for kernels) or internal. 4841 // This lets llvm perform aggressive inter-procedural optimizations. For 4842 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4843 // therefore we need to follow the normal linkage paradigm. 4844 if (Linkage == GVA_StrongODR) { 4845 if (getLangOpts().AppleKext) 4846 return llvm::Function::ExternalLinkage; 4847 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4848 !getLangOpts().GPURelocatableDeviceCode) 4849 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4850 : llvm::Function::InternalLinkage; 4851 return llvm::Function::WeakODRLinkage; 4852 } 4853 4854 // C++ doesn't have tentative definitions and thus cannot have common 4855 // linkage. 4856 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4857 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4858 CodeGenOpts.NoCommon)) 4859 return llvm::GlobalVariable::CommonLinkage; 4860 4861 // selectany symbols are externally visible, so use weak instead of 4862 // linkonce. MSVC optimizes away references to const selectany globals, so 4863 // all definitions should be the same and ODR linkage should be used. 4864 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4865 if (D->hasAttr<SelectAnyAttr>()) 4866 return llvm::GlobalVariable::WeakODRLinkage; 4867 4868 // Otherwise, we have strong external linkage. 4869 assert(Linkage == GVA_StrongExternal); 4870 return llvm::GlobalVariable::ExternalLinkage; 4871 } 4872 4873 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4874 const VarDecl *VD, bool IsConstant) { 4875 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4876 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4877 } 4878 4879 /// Replace the uses of a function that was declared with a non-proto type. 4880 /// We want to silently drop extra arguments from call sites 4881 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4882 llvm::Function *newFn) { 4883 // Fast path. 4884 if (old->use_empty()) return; 4885 4886 llvm::Type *newRetTy = newFn->getReturnType(); 4887 SmallVector<llvm::Value*, 4> newArgs; 4888 4889 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4890 ui != ue; ) { 4891 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4892 llvm::User *user = use->getUser(); 4893 4894 // Recognize and replace uses of bitcasts. Most calls to 4895 // unprototyped functions will use bitcasts. 4896 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4897 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4898 replaceUsesOfNonProtoConstant(bitcast, newFn); 4899 continue; 4900 } 4901 4902 // Recognize calls to the function. 4903 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4904 if (!callSite) continue; 4905 if (!callSite->isCallee(&*use)) 4906 continue; 4907 4908 // If the return types don't match exactly, then we can't 4909 // transform this call unless it's dead. 4910 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4911 continue; 4912 4913 // Get the call site's attribute list. 4914 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4915 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4916 4917 // If the function was passed too few arguments, don't transform. 4918 unsigned newNumArgs = newFn->arg_size(); 4919 if (callSite->arg_size() < newNumArgs) 4920 continue; 4921 4922 // If extra arguments were passed, we silently drop them. 4923 // If any of the types mismatch, we don't transform. 4924 unsigned argNo = 0; 4925 bool dontTransform = false; 4926 for (llvm::Argument &A : newFn->args()) { 4927 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4928 dontTransform = true; 4929 break; 4930 } 4931 4932 // Add any parameter attributes. 4933 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 4934 argNo++; 4935 } 4936 if (dontTransform) 4937 continue; 4938 4939 // Okay, we can transform this. Create the new call instruction and copy 4940 // over the required information. 4941 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4942 4943 // Copy over any operand bundles. 4944 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4945 callSite->getOperandBundlesAsDefs(newBundles); 4946 4947 llvm::CallBase *newCall; 4948 if (isa<llvm::CallInst>(callSite)) { 4949 newCall = 4950 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4951 } else { 4952 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4953 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4954 oldInvoke->getUnwindDest(), newArgs, 4955 newBundles, "", callSite); 4956 } 4957 newArgs.clear(); // for the next iteration 4958 4959 if (!newCall->getType()->isVoidTy()) 4960 newCall->takeName(callSite); 4961 newCall->setAttributes( 4962 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 4963 oldAttrs.getRetAttrs(), newArgAttrs)); 4964 newCall->setCallingConv(callSite->getCallingConv()); 4965 4966 // Finally, remove the old call, replacing any uses with the new one. 4967 if (!callSite->use_empty()) 4968 callSite->replaceAllUsesWith(newCall); 4969 4970 // Copy debug location attached to CI. 4971 if (callSite->getDebugLoc()) 4972 newCall->setDebugLoc(callSite->getDebugLoc()); 4973 4974 callSite->eraseFromParent(); 4975 } 4976 } 4977 4978 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4979 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4980 /// existing call uses of the old function in the module, this adjusts them to 4981 /// call the new function directly. 4982 /// 4983 /// This is not just a cleanup: the always_inline pass requires direct calls to 4984 /// functions to be able to inline them. If there is a bitcast in the way, it 4985 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4986 /// run at -O0. 4987 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4988 llvm::Function *NewFn) { 4989 // If we're redefining a global as a function, don't transform it. 4990 if (!isa<llvm::Function>(Old)) return; 4991 4992 replaceUsesOfNonProtoConstant(Old, NewFn); 4993 } 4994 4995 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4996 auto DK = VD->isThisDeclarationADefinition(); 4997 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4998 return; 4999 5000 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5001 // If we have a definition, this might be a deferred decl. If the 5002 // instantiation is explicit, make sure we emit it at the end. 5003 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5004 GetAddrOfGlobalVar(VD); 5005 5006 EmitTopLevelDecl(VD); 5007 } 5008 5009 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5010 llvm::GlobalValue *GV) { 5011 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5012 5013 // Compute the function info and LLVM type. 5014 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5015 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5016 5017 // Get or create the prototype for the function. 5018 if (!GV || (GV->getValueType() != Ty)) 5019 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5020 /*DontDefer=*/true, 5021 ForDefinition)); 5022 5023 // Already emitted. 5024 if (!GV->isDeclaration()) 5025 return; 5026 5027 // We need to set linkage and visibility on the function before 5028 // generating code for it because various parts of IR generation 5029 // want to propagate this information down (e.g. to local static 5030 // declarations). 5031 auto *Fn = cast<llvm::Function>(GV); 5032 setFunctionLinkage(GD, Fn); 5033 5034 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5035 setGVProperties(Fn, GD); 5036 5037 MaybeHandleStaticInExternC(D, Fn); 5038 5039 maybeSetTrivialComdat(*D, *Fn); 5040 5041 // Set CodeGen attributes that represent floating point environment. 5042 setLLVMFunctionFEnvAttributes(D, Fn); 5043 5044 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5045 5046 setNonAliasAttributes(GD, Fn); 5047 SetLLVMFunctionAttributesForDefinition(D, Fn); 5048 5049 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5050 AddGlobalCtor(Fn, CA->getPriority()); 5051 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5052 AddGlobalDtor(Fn, DA->getPriority(), true); 5053 if (D->hasAttr<AnnotateAttr>()) 5054 AddGlobalAnnotations(D, Fn); 5055 } 5056 5057 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5058 const auto *D = cast<ValueDecl>(GD.getDecl()); 5059 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5060 assert(AA && "Not an alias?"); 5061 5062 StringRef MangledName = getMangledName(GD); 5063 5064 if (AA->getAliasee() == MangledName) { 5065 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5066 return; 5067 } 5068 5069 // If there is a definition in the module, then it wins over the alias. 5070 // This is dubious, but allow it to be safe. Just ignore the alias. 5071 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5072 if (Entry && !Entry->isDeclaration()) 5073 return; 5074 5075 Aliases.push_back(GD); 5076 5077 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5078 5079 // Create a reference to the named value. This ensures that it is emitted 5080 // if a deferred decl. 5081 llvm::Constant *Aliasee; 5082 llvm::GlobalValue::LinkageTypes LT; 5083 if (isa<llvm::FunctionType>(DeclTy)) { 5084 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5085 /*ForVTable=*/false); 5086 LT = getFunctionLinkage(GD); 5087 } else { 5088 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5089 /*D=*/nullptr); 5090 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5091 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5092 else 5093 LT = getFunctionLinkage(GD); 5094 } 5095 5096 // Create the new alias itself, but don't set a name yet. 5097 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5098 auto *GA = 5099 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5100 5101 if (Entry) { 5102 if (GA->getAliasee() == Entry) { 5103 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5104 return; 5105 } 5106 5107 assert(Entry->isDeclaration()); 5108 5109 // If there is a declaration in the module, then we had an extern followed 5110 // by the alias, as in: 5111 // extern int test6(); 5112 // ... 5113 // int test6() __attribute__((alias("test7"))); 5114 // 5115 // Remove it and replace uses of it with the alias. 5116 GA->takeName(Entry); 5117 5118 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5119 Entry->getType())); 5120 Entry->eraseFromParent(); 5121 } else { 5122 GA->setName(MangledName); 5123 } 5124 5125 // Set attributes which are particular to an alias; this is a 5126 // specialization of the attributes which may be set on a global 5127 // variable/function. 5128 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5129 D->isWeakImported()) { 5130 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5131 } 5132 5133 if (const auto *VD = dyn_cast<VarDecl>(D)) 5134 if (VD->getTLSKind()) 5135 setTLSMode(GA, *VD); 5136 5137 SetCommonAttributes(GD, GA); 5138 } 5139 5140 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5141 const auto *D = cast<ValueDecl>(GD.getDecl()); 5142 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5143 assert(IFA && "Not an ifunc?"); 5144 5145 StringRef MangledName = getMangledName(GD); 5146 5147 if (IFA->getResolver() == MangledName) { 5148 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5149 return; 5150 } 5151 5152 // Report an error if some definition overrides ifunc. 5153 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5154 if (Entry && !Entry->isDeclaration()) { 5155 GlobalDecl OtherGD; 5156 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5157 DiagnosedConflictingDefinitions.insert(GD).second) { 5158 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5159 << MangledName; 5160 Diags.Report(OtherGD.getDecl()->getLocation(), 5161 diag::note_previous_definition); 5162 } 5163 return; 5164 } 5165 5166 Aliases.push_back(GD); 5167 5168 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5169 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5170 llvm::Constant *Resolver = 5171 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5172 /*ForVTable=*/false); 5173 llvm::GlobalIFunc *GIF = 5174 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5175 "", Resolver, &getModule()); 5176 if (Entry) { 5177 if (GIF->getResolver() == Entry) { 5178 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5179 return; 5180 } 5181 assert(Entry->isDeclaration()); 5182 5183 // If there is a declaration in the module, then we had an extern followed 5184 // by the ifunc, as in: 5185 // extern int test(); 5186 // ... 5187 // int test() __attribute__((ifunc("resolver"))); 5188 // 5189 // Remove it and replace uses of it with the ifunc. 5190 GIF->takeName(Entry); 5191 5192 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5193 Entry->getType())); 5194 Entry->eraseFromParent(); 5195 } else 5196 GIF->setName(MangledName); 5197 5198 SetCommonAttributes(GD, GIF); 5199 } 5200 5201 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5202 ArrayRef<llvm::Type*> Tys) { 5203 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5204 Tys); 5205 } 5206 5207 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5208 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5209 const StringLiteral *Literal, bool TargetIsLSB, 5210 bool &IsUTF16, unsigned &StringLength) { 5211 StringRef String = Literal->getString(); 5212 unsigned NumBytes = String.size(); 5213 5214 // Check for simple case. 5215 if (!Literal->containsNonAsciiOrNull()) { 5216 StringLength = NumBytes; 5217 return *Map.insert(std::make_pair(String, nullptr)).first; 5218 } 5219 5220 // Otherwise, convert the UTF8 literals into a string of shorts. 5221 IsUTF16 = true; 5222 5223 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5224 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5225 llvm::UTF16 *ToPtr = &ToBuf[0]; 5226 5227 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5228 ToPtr + NumBytes, llvm::strictConversion); 5229 5230 // ConvertUTF8toUTF16 returns the length in ToPtr. 5231 StringLength = ToPtr - &ToBuf[0]; 5232 5233 // Add an explicit null. 5234 *ToPtr = 0; 5235 return *Map.insert(std::make_pair( 5236 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5237 (StringLength + 1) * 2), 5238 nullptr)).first; 5239 } 5240 5241 ConstantAddress 5242 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5243 unsigned StringLength = 0; 5244 bool isUTF16 = false; 5245 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5246 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5247 getDataLayout().isLittleEndian(), isUTF16, 5248 StringLength); 5249 5250 if (auto *C = Entry.second) 5251 return ConstantAddress( 5252 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5253 5254 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5255 llvm::Constant *Zeros[] = { Zero, Zero }; 5256 5257 const ASTContext &Context = getContext(); 5258 const llvm::Triple &Triple = getTriple(); 5259 5260 const auto CFRuntime = getLangOpts().CFRuntime; 5261 const bool IsSwiftABI = 5262 static_cast<unsigned>(CFRuntime) >= 5263 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5264 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5265 5266 // If we don't already have it, get __CFConstantStringClassReference. 5267 if (!CFConstantStringClassRef) { 5268 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5269 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5270 Ty = llvm::ArrayType::get(Ty, 0); 5271 5272 switch (CFRuntime) { 5273 default: break; 5274 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5275 case LangOptions::CoreFoundationABI::Swift5_0: 5276 CFConstantStringClassName = 5277 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5278 : "$s10Foundation19_NSCFConstantStringCN"; 5279 Ty = IntPtrTy; 5280 break; 5281 case LangOptions::CoreFoundationABI::Swift4_2: 5282 CFConstantStringClassName = 5283 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5284 : "$S10Foundation19_NSCFConstantStringCN"; 5285 Ty = IntPtrTy; 5286 break; 5287 case LangOptions::CoreFoundationABI::Swift4_1: 5288 CFConstantStringClassName = 5289 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5290 : "__T010Foundation19_NSCFConstantStringCN"; 5291 Ty = IntPtrTy; 5292 break; 5293 } 5294 5295 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5296 5297 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5298 llvm::GlobalValue *GV = nullptr; 5299 5300 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5301 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5302 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5303 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5304 5305 const VarDecl *VD = nullptr; 5306 for (const auto *Result : DC->lookup(&II)) 5307 if ((VD = dyn_cast<VarDecl>(Result))) 5308 break; 5309 5310 if (Triple.isOSBinFormatELF()) { 5311 if (!VD) 5312 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5313 } else { 5314 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5315 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5316 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5317 else 5318 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5319 } 5320 5321 setDSOLocal(GV); 5322 } 5323 } 5324 5325 // Decay array -> ptr 5326 CFConstantStringClassRef = 5327 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5328 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5329 } 5330 5331 QualType CFTy = Context.getCFConstantStringType(); 5332 5333 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5334 5335 ConstantInitBuilder Builder(*this); 5336 auto Fields = Builder.beginStruct(STy); 5337 5338 // Class pointer. 5339 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5340 5341 // Flags. 5342 if (IsSwiftABI) { 5343 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5344 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5345 } else { 5346 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5347 } 5348 5349 // String pointer. 5350 llvm::Constant *C = nullptr; 5351 if (isUTF16) { 5352 auto Arr = llvm::makeArrayRef( 5353 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5354 Entry.first().size() / 2); 5355 C = llvm::ConstantDataArray::get(VMContext, Arr); 5356 } else { 5357 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5358 } 5359 5360 // Note: -fwritable-strings doesn't make the backing store strings of 5361 // CFStrings writable. (See <rdar://problem/10657500>) 5362 auto *GV = 5363 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5364 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5365 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5366 // Don't enforce the target's minimum global alignment, since the only use 5367 // of the string is via this class initializer. 5368 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5369 : Context.getTypeAlignInChars(Context.CharTy); 5370 GV->setAlignment(Align.getAsAlign()); 5371 5372 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5373 // Without it LLVM can merge the string with a non unnamed_addr one during 5374 // LTO. Doing that changes the section it ends in, which surprises ld64. 5375 if (Triple.isOSBinFormatMachO()) 5376 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5377 : "__TEXT,__cstring,cstring_literals"); 5378 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5379 // the static linker to adjust permissions to read-only later on. 5380 else if (Triple.isOSBinFormatELF()) 5381 GV->setSection(".rodata"); 5382 5383 // String. 5384 llvm::Constant *Str = 5385 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5386 5387 if (isUTF16) 5388 // Cast the UTF16 string to the correct type. 5389 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5390 Fields.add(Str); 5391 5392 // String length. 5393 llvm::IntegerType *LengthTy = 5394 llvm::IntegerType::get(getModule().getContext(), 5395 Context.getTargetInfo().getLongWidth()); 5396 if (IsSwiftABI) { 5397 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5398 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5399 LengthTy = Int32Ty; 5400 else 5401 LengthTy = IntPtrTy; 5402 } 5403 Fields.addInt(LengthTy, StringLength); 5404 5405 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5406 // properly aligned on 32-bit platforms. 5407 CharUnits Alignment = 5408 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5409 5410 // The struct. 5411 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5412 /*isConstant=*/false, 5413 llvm::GlobalVariable::PrivateLinkage); 5414 GV->addAttribute("objc_arc_inert"); 5415 switch (Triple.getObjectFormat()) { 5416 case llvm::Triple::UnknownObjectFormat: 5417 llvm_unreachable("unknown file format"); 5418 case llvm::Triple::GOFF: 5419 llvm_unreachable("GOFF is not yet implemented"); 5420 case llvm::Triple::XCOFF: 5421 llvm_unreachable("XCOFF is not yet implemented"); 5422 case llvm::Triple::COFF: 5423 case llvm::Triple::ELF: 5424 case llvm::Triple::Wasm: 5425 GV->setSection("cfstring"); 5426 break; 5427 case llvm::Triple::MachO: 5428 GV->setSection("__DATA,__cfstring"); 5429 break; 5430 } 5431 Entry.second = GV; 5432 5433 return ConstantAddress(GV, GV->getValueType(), Alignment); 5434 } 5435 5436 bool CodeGenModule::getExpressionLocationsEnabled() const { 5437 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5438 } 5439 5440 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5441 if (ObjCFastEnumerationStateType.isNull()) { 5442 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5443 D->startDefinition(); 5444 5445 QualType FieldTypes[] = { 5446 Context.UnsignedLongTy, 5447 Context.getPointerType(Context.getObjCIdType()), 5448 Context.getPointerType(Context.UnsignedLongTy), 5449 Context.getConstantArrayType(Context.UnsignedLongTy, 5450 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5451 }; 5452 5453 for (size_t i = 0; i < 4; ++i) { 5454 FieldDecl *Field = FieldDecl::Create(Context, 5455 D, 5456 SourceLocation(), 5457 SourceLocation(), nullptr, 5458 FieldTypes[i], /*TInfo=*/nullptr, 5459 /*BitWidth=*/nullptr, 5460 /*Mutable=*/false, 5461 ICIS_NoInit); 5462 Field->setAccess(AS_public); 5463 D->addDecl(Field); 5464 } 5465 5466 D->completeDefinition(); 5467 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5468 } 5469 5470 return ObjCFastEnumerationStateType; 5471 } 5472 5473 llvm::Constant * 5474 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5475 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5476 5477 // Don't emit it as the address of the string, emit the string data itself 5478 // as an inline array. 5479 if (E->getCharByteWidth() == 1) { 5480 SmallString<64> Str(E->getString()); 5481 5482 // Resize the string to the right size, which is indicated by its type. 5483 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5484 Str.resize(CAT->getSize().getZExtValue()); 5485 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5486 } 5487 5488 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5489 llvm::Type *ElemTy = AType->getElementType(); 5490 unsigned NumElements = AType->getNumElements(); 5491 5492 // Wide strings have either 2-byte or 4-byte elements. 5493 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5494 SmallVector<uint16_t, 32> Elements; 5495 Elements.reserve(NumElements); 5496 5497 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5498 Elements.push_back(E->getCodeUnit(i)); 5499 Elements.resize(NumElements); 5500 return llvm::ConstantDataArray::get(VMContext, Elements); 5501 } 5502 5503 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5504 SmallVector<uint32_t, 32> Elements; 5505 Elements.reserve(NumElements); 5506 5507 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5508 Elements.push_back(E->getCodeUnit(i)); 5509 Elements.resize(NumElements); 5510 return llvm::ConstantDataArray::get(VMContext, Elements); 5511 } 5512 5513 static llvm::GlobalVariable * 5514 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5515 CodeGenModule &CGM, StringRef GlobalName, 5516 CharUnits Alignment) { 5517 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5518 CGM.GetGlobalConstantAddressSpace()); 5519 5520 llvm::Module &M = CGM.getModule(); 5521 // Create a global variable for this string 5522 auto *GV = new llvm::GlobalVariable( 5523 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5524 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5525 GV->setAlignment(Alignment.getAsAlign()); 5526 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5527 if (GV->isWeakForLinker()) { 5528 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5529 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5530 } 5531 CGM.setDSOLocal(GV); 5532 5533 return GV; 5534 } 5535 5536 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5537 /// constant array for the given string literal. 5538 ConstantAddress 5539 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5540 StringRef Name) { 5541 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5542 5543 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5544 llvm::GlobalVariable **Entry = nullptr; 5545 if (!LangOpts.WritableStrings) { 5546 Entry = &ConstantStringMap[C]; 5547 if (auto GV = *Entry) { 5548 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5549 GV->setAlignment(Alignment.getAsAlign()); 5550 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5551 GV->getValueType(), Alignment); 5552 } 5553 } 5554 5555 SmallString<256> MangledNameBuffer; 5556 StringRef GlobalVariableName; 5557 llvm::GlobalValue::LinkageTypes LT; 5558 5559 // Mangle the string literal if that's how the ABI merges duplicate strings. 5560 // Don't do it if they are writable, since we don't want writes in one TU to 5561 // affect strings in another. 5562 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5563 !LangOpts.WritableStrings) { 5564 llvm::raw_svector_ostream Out(MangledNameBuffer); 5565 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5566 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5567 GlobalVariableName = MangledNameBuffer; 5568 } else { 5569 LT = llvm::GlobalValue::PrivateLinkage; 5570 GlobalVariableName = Name; 5571 } 5572 5573 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5574 if (Entry) 5575 *Entry = GV; 5576 5577 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5578 QualType()); 5579 5580 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5581 GV->getValueType(), Alignment); 5582 } 5583 5584 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5585 /// array for the given ObjCEncodeExpr node. 5586 ConstantAddress 5587 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5588 std::string Str; 5589 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5590 5591 return GetAddrOfConstantCString(Str); 5592 } 5593 5594 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5595 /// the literal and a terminating '\0' character. 5596 /// The result has pointer to array type. 5597 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5598 const std::string &Str, const char *GlobalName) { 5599 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5600 CharUnits Alignment = 5601 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5602 5603 llvm::Constant *C = 5604 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5605 5606 // Don't share any string literals if strings aren't constant. 5607 llvm::GlobalVariable **Entry = nullptr; 5608 if (!LangOpts.WritableStrings) { 5609 Entry = &ConstantStringMap[C]; 5610 if (auto GV = *Entry) { 5611 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5612 GV->setAlignment(Alignment.getAsAlign()); 5613 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5614 GV->getValueType(), Alignment); 5615 } 5616 } 5617 5618 // Get the default prefix if a name wasn't specified. 5619 if (!GlobalName) 5620 GlobalName = ".str"; 5621 // Create a global variable for this. 5622 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5623 GlobalName, Alignment); 5624 if (Entry) 5625 *Entry = GV; 5626 5627 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5628 GV->getValueType(), Alignment); 5629 } 5630 5631 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5632 const MaterializeTemporaryExpr *E, const Expr *Init) { 5633 assert((E->getStorageDuration() == SD_Static || 5634 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5635 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5636 5637 // If we're not materializing a subobject of the temporary, keep the 5638 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5639 QualType MaterializedType = Init->getType(); 5640 if (Init == E->getSubExpr()) 5641 MaterializedType = E->getType(); 5642 5643 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5644 5645 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5646 if (!InsertResult.second) { 5647 // We've seen this before: either we already created it or we're in the 5648 // process of doing so. 5649 if (!InsertResult.first->second) { 5650 // We recursively re-entered this function, probably during emission of 5651 // the initializer. Create a placeholder. We'll clean this up in the 5652 // outer call, at the end of this function. 5653 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5654 InsertResult.first->second = new llvm::GlobalVariable( 5655 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5656 nullptr); 5657 } 5658 return ConstantAddress( 5659 InsertResult.first->second, 5660 InsertResult.first->second->getType()->getPointerElementType(), Align); 5661 } 5662 5663 // FIXME: If an externally-visible declaration extends multiple temporaries, 5664 // we need to give each temporary the same name in every translation unit (and 5665 // we also need to make the temporaries externally-visible). 5666 SmallString<256> Name; 5667 llvm::raw_svector_ostream Out(Name); 5668 getCXXABI().getMangleContext().mangleReferenceTemporary( 5669 VD, E->getManglingNumber(), Out); 5670 5671 APValue *Value = nullptr; 5672 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5673 // If the initializer of the extending declaration is a constant 5674 // initializer, we should have a cached constant initializer for this 5675 // temporary. Note that this might have a different value from the value 5676 // computed by evaluating the initializer if the surrounding constant 5677 // expression modifies the temporary. 5678 Value = E->getOrCreateValue(false); 5679 } 5680 5681 // Try evaluating it now, it might have a constant initializer. 5682 Expr::EvalResult EvalResult; 5683 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5684 !EvalResult.hasSideEffects()) 5685 Value = &EvalResult.Val; 5686 5687 LangAS AddrSpace = 5688 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5689 5690 Optional<ConstantEmitter> emitter; 5691 llvm::Constant *InitialValue = nullptr; 5692 bool Constant = false; 5693 llvm::Type *Type; 5694 if (Value) { 5695 // The temporary has a constant initializer, use it. 5696 emitter.emplace(*this); 5697 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5698 MaterializedType); 5699 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5700 Type = InitialValue->getType(); 5701 } else { 5702 // No initializer, the initialization will be provided when we 5703 // initialize the declaration which performed lifetime extension. 5704 Type = getTypes().ConvertTypeForMem(MaterializedType); 5705 } 5706 5707 // Create a global variable for this lifetime-extended temporary. 5708 llvm::GlobalValue::LinkageTypes Linkage = 5709 getLLVMLinkageVarDefinition(VD, Constant); 5710 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5711 const VarDecl *InitVD; 5712 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5713 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5714 // Temporaries defined inside a class get linkonce_odr linkage because the 5715 // class can be defined in multiple translation units. 5716 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5717 } else { 5718 // There is no need for this temporary to have external linkage if the 5719 // VarDecl has external linkage. 5720 Linkage = llvm::GlobalVariable::InternalLinkage; 5721 } 5722 } 5723 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5724 auto *GV = new llvm::GlobalVariable( 5725 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5726 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5727 if (emitter) emitter->finalize(GV); 5728 setGVProperties(GV, VD); 5729 GV->setAlignment(Align.getAsAlign()); 5730 if (supportsCOMDAT() && GV->isWeakForLinker()) 5731 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5732 if (VD->getTLSKind()) 5733 setTLSMode(GV, *VD); 5734 llvm::Constant *CV = GV; 5735 if (AddrSpace != LangAS::Default) 5736 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5737 *this, GV, AddrSpace, LangAS::Default, 5738 Type->getPointerTo( 5739 getContext().getTargetAddressSpace(LangAS::Default))); 5740 5741 // Update the map with the new temporary. If we created a placeholder above, 5742 // replace it with the new global now. 5743 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5744 if (Entry) { 5745 Entry->replaceAllUsesWith( 5746 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5747 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5748 } 5749 Entry = CV; 5750 5751 return ConstantAddress(CV, Type, Align); 5752 } 5753 5754 /// EmitObjCPropertyImplementations - Emit information for synthesized 5755 /// properties for an implementation. 5756 void CodeGenModule::EmitObjCPropertyImplementations(const 5757 ObjCImplementationDecl *D) { 5758 for (const auto *PID : D->property_impls()) { 5759 // Dynamic is just for type-checking. 5760 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5761 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5762 5763 // Determine which methods need to be implemented, some may have 5764 // been overridden. Note that ::isPropertyAccessor is not the method 5765 // we want, that just indicates if the decl came from a 5766 // property. What we want to know is if the method is defined in 5767 // this implementation. 5768 auto *Getter = PID->getGetterMethodDecl(); 5769 if (!Getter || Getter->isSynthesizedAccessorStub()) 5770 CodeGenFunction(*this).GenerateObjCGetter( 5771 const_cast<ObjCImplementationDecl *>(D), PID); 5772 auto *Setter = PID->getSetterMethodDecl(); 5773 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5774 CodeGenFunction(*this).GenerateObjCSetter( 5775 const_cast<ObjCImplementationDecl *>(D), PID); 5776 } 5777 } 5778 } 5779 5780 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5781 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5782 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5783 ivar; ivar = ivar->getNextIvar()) 5784 if (ivar->getType().isDestructedType()) 5785 return true; 5786 5787 return false; 5788 } 5789 5790 static bool AllTrivialInitializers(CodeGenModule &CGM, 5791 ObjCImplementationDecl *D) { 5792 CodeGenFunction CGF(CGM); 5793 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5794 E = D->init_end(); B != E; ++B) { 5795 CXXCtorInitializer *CtorInitExp = *B; 5796 Expr *Init = CtorInitExp->getInit(); 5797 if (!CGF.isTrivialInitializer(Init)) 5798 return false; 5799 } 5800 return true; 5801 } 5802 5803 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5804 /// for an implementation. 5805 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5806 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5807 if (needsDestructMethod(D)) { 5808 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5809 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5810 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5811 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5812 getContext().VoidTy, nullptr, D, 5813 /*isInstance=*/true, /*isVariadic=*/false, 5814 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5815 /*isImplicitlyDeclared=*/true, 5816 /*isDefined=*/false, ObjCMethodDecl::Required); 5817 D->addInstanceMethod(DTORMethod); 5818 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5819 D->setHasDestructors(true); 5820 } 5821 5822 // If the implementation doesn't have any ivar initializers, we don't need 5823 // a .cxx_construct. 5824 if (D->getNumIvarInitializers() == 0 || 5825 AllTrivialInitializers(*this, D)) 5826 return; 5827 5828 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5829 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5830 // The constructor returns 'self'. 5831 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5832 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5833 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5834 /*isVariadic=*/false, 5835 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5836 /*isImplicitlyDeclared=*/true, 5837 /*isDefined=*/false, ObjCMethodDecl::Required); 5838 D->addInstanceMethod(CTORMethod); 5839 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5840 D->setHasNonZeroConstructors(true); 5841 } 5842 5843 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5844 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5845 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5846 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5847 ErrorUnsupported(LSD, "linkage spec"); 5848 return; 5849 } 5850 5851 EmitDeclContext(LSD); 5852 } 5853 5854 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5855 for (auto *I : DC->decls()) { 5856 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5857 // are themselves considered "top-level", so EmitTopLevelDecl on an 5858 // ObjCImplDecl does not recursively visit them. We need to do that in 5859 // case they're nested inside another construct (LinkageSpecDecl / 5860 // ExportDecl) that does stop them from being considered "top-level". 5861 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5862 for (auto *M : OID->methods()) 5863 EmitTopLevelDecl(M); 5864 } 5865 5866 EmitTopLevelDecl(I); 5867 } 5868 } 5869 5870 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5871 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5872 // Ignore dependent declarations. 5873 if (D->isTemplated()) 5874 return; 5875 5876 // Consteval function shouldn't be emitted. 5877 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5878 if (FD->isConsteval()) 5879 return; 5880 5881 switch (D->getKind()) { 5882 case Decl::CXXConversion: 5883 case Decl::CXXMethod: 5884 case Decl::Function: 5885 EmitGlobal(cast<FunctionDecl>(D)); 5886 // Always provide some coverage mapping 5887 // even for the functions that aren't emitted. 5888 AddDeferredUnusedCoverageMapping(D); 5889 break; 5890 5891 case Decl::CXXDeductionGuide: 5892 // Function-like, but does not result in code emission. 5893 break; 5894 5895 case Decl::Var: 5896 case Decl::Decomposition: 5897 case Decl::VarTemplateSpecialization: 5898 EmitGlobal(cast<VarDecl>(D)); 5899 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5900 for (auto *B : DD->bindings()) 5901 if (auto *HD = B->getHoldingVar()) 5902 EmitGlobal(HD); 5903 break; 5904 5905 // Indirect fields from global anonymous structs and unions can be 5906 // ignored; only the actual variable requires IR gen support. 5907 case Decl::IndirectField: 5908 break; 5909 5910 // C++ Decls 5911 case Decl::Namespace: 5912 EmitDeclContext(cast<NamespaceDecl>(D)); 5913 break; 5914 case Decl::ClassTemplateSpecialization: { 5915 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5916 if (CGDebugInfo *DI = getModuleDebugInfo()) 5917 if (Spec->getSpecializationKind() == 5918 TSK_ExplicitInstantiationDefinition && 5919 Spec->hasDefinition()) 5920 DI->completeTemplateDefinition(*Spec); 5921 } LLVM_FALLTHROUGH; 5922 case Decl::CXXRecord: { 5923 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5924 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5925 if (CRD->hasDefinition()) 5926 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5927 if (auto *ES = D->getASTContext().getExternalSource()) 5928 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5929 DI->completeUnusedClass(*CRD); 5930 } 5931 // Emit any static data members, they may be definitions. 5932 for (auto *I : CRD->decls()) 5933 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5934 EmitTopLevelDecl(I); 5935 break; 5936 } 5937 // No code generation needed. 5938 case Decl::UsingShadow: 5939 case Decl::ClassTemplate: 5940 case Decl::VarTemplate: 5941 case Decl::Concept: 5942 case Decl::VarTemplatePartialSpecialization: 5943 case Decl::FunctionTemplate: 5944 case Decl::TypeAliasTemplate: 5945 case Decl::Block: 5946 case Decl::Empty: 5947 case Decl::Binding: 5948 break; 5949 case Decl::Using: // using X; [C++] 5950 if (CGDebugInfo *DI = getModuleDebugInfo()) 5951 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5952 break; 5953 case Decl::UsingEnum: // using enum X; [C++] 5954 if (CGDebugInfo *DI = getModuleDebugInfo()) 5955 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 5956 break; 5957 case Decl::NamespaceAlias: 5958 if (CGDebugInfo *DI = getModuleDebugInfo()) 5959 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5960 break; 5961 case Decl::UsingDirective: // using namespace X; [C++] 5962 if (CGDebugInfo *DI = getModuleDebugInfo()) 5963 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5964 break; 5965 case Decl::CXXConstructor: 5966 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5967 break; 5968 case Decl::CXXDestructor: 5969 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5970 break; 5971 5972 case Decl::StaticAssert: 5973 // Nothing to do. 5974 break; 5975 5976 // Objective-C Decls 5977 5978 // Forward declarations, no (immediate) code generation. 5979 case Decl::ObjCInterface: 5980 case Decl::ObjCCategory: 5981 break; 5982 5983 case Decl::ObjCProtocol: { 5984 auto *Proto = cast<ObjCProtocolDecl>(D); 5985 if (Proto->isThisDeclarationADefinition()) 5986 ObjCRuntime->GenerateProtocol(Proto); 5987 break; 5988 } 5989 5990 case Decl::ObjCCategoryImpl: 5991 // Categories have properties but don't support synthesize so we 5992 // can ignore them here. 5993 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5994 break; 5995 5996 case Decl::ObjCImplementation: { 5997 auto *OMD = cast<ObjCImplementationDecl>(D); 5998 EmitObjCPropertyImplementations(OMD); 5999 EmitObjCIvarInitializations(OMD); 6000 ObjCRuntime->GenerateClass(OMD); 6001 // Emit global variable debug information. 6002 if (CGDebugInfo *DI = getModuleDebugInfo()) 6003 if (getCodeGenOpts().hasReducedDebugInfo()) 6004 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6005 OMD->getClassInterface()), OMD->getLocation()); 6006 break; 6007 } 6008 case Decl::ObjCMethod: { 6009 auto *OMD = cast<ObjCMethodDecl>(D); 6010 // If this is not a prototype, emit the body. 6011 if (OMD->getBody()) 6012 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6013 break; 6014 } 6015 case Decl::ObjCCompatibleAlias: 6016 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6017 break; 6018 6019 case Decl::PragmaComment: { 6020 const auto *PCD = cast<PragmaCommentDecl>(D); 6021 switch (PCD->getCommentKind()) { 6022 case PCK_Unknown: 6023 llvm_unreachable("unexpected pragma comment kind"); 6024 case PCK_Linker: 6025 AppendLinkerOptions(PCD->getArg()); 6026 break; 6027 case PCK_Lib: 6028 AddDependentLib(PCD->getArg()); 6029 break; 6030 case PCK_Compiler: 6031 case PCK_ExeStr: 6032 case PCK_User: 6033 break; // We ignore all of these. 6034 } 6035 break; 6036 } 6037 6038 case Decl::PragmaDetectMismatch: { 6039 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6040 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6041 break; 6042 } 6043 6044 case Decl::LinkageSpec: 6045 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6046 break; 6047 6048 case Decl::FileScopeAsm: { 6049 // File-scope asm is ignored during device-side CUDA compilation. 6050 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6051 break; 6052 // File-scope asm is ignored during device-side OpenMP compilation. 6053 if (LangOpts.OpenMPIsDevice) 6054 break; 6055 // File-scope asm is ignored during device-side SYCL compilation. 6056 if (LangOpts.SYCLIsDevice) 6057 break; 6058 auto *AD = cast<FileScopeAsmDecl>(D); 6059 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6060 break; 6061 } 6062 6063 case Decl::Import: { 6064 auto *Import = cast<ImportDecl>(D); 6065 6066 // If we've already imported this module, we're done. 6067 if (!ImportedModules.insert(Import->getImportedModule())) 6068 break; 6069 6070 // Emit debug information for direct imports. 6071 if (!Import->getImportedOwningModule()) { 6072 if (CGDebugInfo *DI = getModuleDebugInfo()) 6073 DI->EmitImportDecl(*Import); 6074 } 6075 6076 // Find all of the submodules and emit the module initializers. 6077 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6078 SmallVector<clang::Module *, 16> Stack; 6079 Visited.insert(Import->getImportedModule()); 6080 Stack.push_back(Import->getImportedModule()); 6081 6082 while (!Stack.empty()) { 6083 clang::Module *Mod = Stack.pop_back_val(); 6084 if (!EmittedModuleInitializers.insert(Mod).second) 6085 continue; 6086 6087 for (auto *D : Context.getModuleInitializers(Mod)) 6088 EmitTopLevelDecl(D); 6089 6090 // Visit the submodules of this module. 6091 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6092 SubEnd = Mod->submodule_end(); 6093 Sub != SubEnd; ++Sub) { 6094 // Skip explicit children; they need to be explicitly imported to emit 6095 // the initializers. 6096 if ((*Sub)->IsExplicit) 6097 continue; 6098 6099 if (Visited.insert(*Sub).second) 6100 Stack.push_back(*Sub); 6101 } 6102 } 6103 break; 6104 } 6105 6106 case Decl::Export: 6107 EmitDeclContext(cast<ExportDecl>(D)); 6108 break; 6109 6110 case Decl::OMPThreadPrivate: 6111 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6112 break; 6113 6114 case Decl::OMPAllocate: 6115 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6116 break; 6117 6118 case Decl::OMPDeclareReduction: 6119 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6120 break; 6121 6122 case Decl::OMPDeclareMapper: 6123 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6124 break; 6125 6126 case Decl::OMPRequires: 6127 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6128 break; 6129 6130 case Decl::Typedef: 6131 case Decl::TypeAlias: // using foo = bar; [C++11] 6132 if (CGDebugInfo *DI = getModuleDebugInfo()) 6133 DI->EmitAndRetainType( 6134 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6135 break; 6136 6137 case Decl::Record: 6138 if (CGDebugInfo *DI = getModuleDebugInfo()) 6139 if (cast<RecordDecl>(D)->getDefinition()) 6140 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6141 break; 6142 6143 case Decl::Enum: 6144 if (CGDebugInfo *DI = getModuleDebugInfo()) 6145 if (cast<EnumDecl>(D)->getDefinition()) 6146 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6147 break; 6148 6149 default: 6150 // Make sure we handled everything we should, every other kind is a 6151 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6152 // function. Need to recode Decl::Kind to do that easily. 6153 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6154 break; 6155 } 6156 } 6157 6158 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6159 // Do we need to generate coverage mapping? 6160 if (!CodeGenOpts.CoverageMapping) 6161 return; 6162 switch (D->getKind()) { 6163 case Decl::CXXConversion: 6164 case Decl::CXXMethod: 6165 case Decl::Function: 6166 case Decl::ObjCMethod: 6167 case Decl::CXXConstructor: 6168 case Decl::CXXDestructor: { 6169 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6170 break; 6171 SourceManager &SM = getContext().getSourceManager(); 6172 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6173 break; 6174 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6175 if (I == DeferredEmptyCoverageMappingDecls.end()) 6176 DeferredEmptyCoverageMappingDecls[D] = true; 6177 break; 6178 } 6179 default: 6180 break; 6181 }; 6182 } 6183 6184 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6185 // Do we need to generate coverage mapping? 6186 if (!CodeGenOpts.CoverageMapping) 6187 return; 6188 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6189 if (Fn->isTemplateInstantiation()) 6190 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6191 } 6192 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6193 if (I == DeferredEmptyCoverageMappingDecls.end()) 6194 DeferredEmptyCoverageMappingDecls[D] = false; 6195 else 6196 I->second = false; 6197 } 6198 6199 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6200 // We call takeVector() here to avoid use-after-free. 6201 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6202 // we deserialize function bodies to emit coverage info for them, and that 6203 // deserializes more declarations. How should we handle that case? 6204 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6205 if (!Entry.second) 6206 continue; 6207 const Decl *D = Entry.first; 6208 switch (D->getKind()) { 6209 case Decl::CXXConversion: 6210 case Decl::CXXMethod: 6211 case Decl::Function: 6212 case Decl::ObjCMethod: { 6213 CodeGenPGO PGO(*this); 6214 GlobalDecl GD(cast<FunctionDecl>(D)); 6215 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6216 getFunctionLinkage(GD)); 6217 break; 6218 } 6219 case Decl::CXXConstructor: { 6220 CodeGenPGO PGO(*this); 6221 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6222 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6223 getFunctionLinkage(GD)); 6224 break; 6225 } 6226 case Decl::CXXDestructor: { 6227 CodeGenPGO PGO(*this); 6228 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6229 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6230 getFunctionLinkage(GD)); 6231 break; 6232 } 6233 default: 6234 break; 6235 }; 6236 } 6237 } 6238 6239 void CodeGenModule::EmitMainVoidAlias() { 6240 // In order to transition away from "__original_main" gracefully, emit an 6241 // alias for "main" in the no-argument case so that libc can detect when 6242 // new-style no-argument main is in used. 6243 if (llvm::Function *F = getModule().getFunction("main")) { 6244 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6245 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6246 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6247 } 6248 } 6249 6250 /// Turns the given pointer into a constant. 6251 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6252 const void *Ptr) { 6253 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6254 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6255 return llvm::ConstantInt::get(i64, PtrInt); 6256 } 6257 6258 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6259 llvm::NamedMDNode *&GlobalMetadata, 6260 GlobalDecl D, 6261 llvm::GlobalValue *Addr) { 6262 if (!GlobalMetadata) 6263 GlobalMetadata = 6264 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6265 6266 // TODO: should we report variant information for ctors/dtors? 6267 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6268 llvm::ConstantAsMetadata::get(GetPointerConstant( 6269 CGM.getLLVMContext(), D.getDecl()))}; 6270 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6271 } 6272 6273 /// For each function which is declared within an extern "C" region and marked 6274 /// as 'used', but has internal linkage, create an alias from the unmangled 6275 /// name to the mangled name if possible. People expect to be able to refer 6276 /// to such functions with an unmangled name from inline assembly within the 6277 /// same translation unit. 6278 void CodeGenModule::EmitStaticExternCAliases() { 6279 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6280 return; 6281 for (auto &I : StaticExternCValues) { 6282 IdentifierInfo *Name = I.first; 6283 llvm::GlobalValue *Val = I.second; 6284 if (Val && !getModule().getNamedValue(Name->getName())) 6285 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6286 } 6287 } 6288 6289 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6290 GlobalDecl &Result) const { 6291 auto Res = Manglings.find(MangledName); 6292 if (Res == Manglings.end()) 6293 return false; 6294 Result = Res->getValue(); 6295 return true; 6296 } 6297 6298 /// Emits metadata nodes associating all the global values in the 6299 /// current module with the Decls they came from. This is useful for 6300 /// projects using IR gen as a subroutine. 6301 /// 6302 /// Since there's currently no way to associate an MDNode directly 6303 /// with an llvm::GlobalValue, we create a global named metadata 6304 /// with the name 'clang.global.decl.ptrs'. 6305 void CodeGenModule::EmitDeclMetadata() { 6306 llvm::NamedMDNode *GlobalMetadata = nullptr; 6307 6308 for (auto &I : MangledDeclNames) { 6309 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6310 // Some mangled names don't necessarily have an associated GlobalValue 6311 // in this module, e.g. if we mangled it for DebugInfo. 6312 if (Addr) 6313 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6314 } 6315 } 6316 6317 /// Emits metadata nodes for all the local variables in the current 6318 /// function. 6319 void CodeGenFunction::EmitDeclMetadata() { 6320 if (LocalDeclMap.empty()) return; 6321 6322 llvm::LLVMContext &Context = getLLVMContext(); 6323 6324 // Find the unique metadata ID for this name. 6325 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6326 6327 llvm::NamedMDNode *GlobalMetadata = nullptr; 6328 6329 for (auto &I : LocalDeclMap) { 6330 const Decl *D = I.first; 6331 llvm::Value *Addr = I.second.getPointer(); 6332 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6333 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6334 Alloca->setMetadata( 6335 DeclPtrKind, llvm::MDNode::get( 6336 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6337 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6338 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6339 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6340 } 6341 } 6342 } 6343 6344 void CodeGenModule::EmitVersionIdentMetadata() { 6345 llvm::NamedMDNode *IdentMetadata = 6346 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6347 std::string Version = getClangFullVersion(); 6348 llvm::LLVMContext &Ctx = TheModule.getContext(); 6349 6350 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6351 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6352 } 6353 6354 void CodeGenModule::EmitCommandLineMetadata() { 6355 llvm::NamedMDNode *CommandLineMetadata = 6356 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6357 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6358 llvm::LLVMContext &Ctx = TheModule.getContext(); 6359 6360 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6361 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6362 } 6363 6364 void CodeGenModule::EmitCoverageFile() { 6365 if (getCodeGenOpts().CoverageDataFile.empty() && 6366 getCodeGenOpts().CoverageNotesFile.empty()) 6367 return; 6368 6369 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6370 if (!CUNode) 6371 return; 6372 6373 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6374 llvm::LLVMContext &Ctx = TheModule.getContext(); 6375 auto *CoverageDataFile = 6376 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6377 auto *CoverageNotesFile = 6378 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6379 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6380 llvm::MDNode *CU = CUNode->getOperand(i); 6381 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6382 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6383 } 6384 } 6385 6386 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6387 bool ForEH) { 6388 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6389 // FIXME: should we even be calling this method if RTTI is disabled 6390 // and it's not for EH? 6391 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6392 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6393 getTriple().isNVPTX())) 6394 return llvm::Constant::getNullValue(Int8PtrTy); 6395 6396 if (ForEH && Ty->isObjCObjectPointerType() && 6397 LangOpts.ObjCRuntime.isGNUFamily()) 6398 return ObjCRuntime->GetEHType(Ty); 6399 6400 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6401 } 6402 6403 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6404 // Do not emit threadprivates in simd-only mode. 6405 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6406 return; 6407 for (auto RefExpr : D->varlists()) { 6408 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6409 bool PerformInit = 6410 VD->getAnyInitializer() && 6411 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6412 /*ForRef=*/false); 6413 6414 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6415 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6416 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6417 CXXGlobalInits.push_back(InitFunction); 6418 } 6419 } 6420 6421 llvm::Metadata * 6422 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6423 StringRef Suffix) { 6424 if (auto *FnType = T->getAs<FunctionProtoType>()) 6425 T = getContext().getFunctionType( 6426 FnType->getReturnType(), FnType->getParamTypes(), 6427 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6428 6429 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6430 if (InternalId) 6431 return InternalId; 6432 6433 if (isExternallyVisible(T->getLinkage())) { 6434 std::string OutName; 6435 llvm::raw_string_ostream Out(OutName); 6436 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6437 Out << Suffix; 6438 6439 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6440 } else { 6441 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6442 llvm::ArrayRef<llvm::Metadata *>()); 6443 } 6444 6445 return InternalId; 6446 } 6447 6448 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6449 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6450 } 6451 6452 llvm::Metadata * 6453 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6454 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6455 } 6456 6457 // Generalize pointer types to a void pointer with the qualifiers of the 6458 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6459 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6460 // 'void *'. 6461 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6462 if (!Ty->isPointerType()) 6463 return Ty; 6464 6465 return Ctx.getPointerType( 6466 QualType(Ctx.VoidTy).withCVRQualifiers( 6467 Ty->getPointeeType().getCVRQualifiers())); 6468 } 6469 6470 // Apply type generalization to a FunctionType's return and argument types 6471 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6472 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6473 SmallVector<QualType, 8> GeneralizedParams; 6474 for (auto &Param : FnType->param_types()) 6475 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6476 6477 return Ctx.getFunctionType( 6478 GeneralizeType(Ctx, FnType->getReturnType()), 6479 GeneralizedParams, FnType->getExtProtoInfo()); 6480 } 6481 6482 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6483 return Ctx.getFunctionNoProtoType( 6484 GeneralizeType(Ctx, FnType->getReturnType())); 6485 6486 llvm_unreachable("Encountered unknown FunctionType"); 6487 } 6488 6489 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6490 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6491 GeneralizedMetadataIdMap, ".generalized"); 6492 } 6493 6494 /// Returns whether this module needs the "all-vtables" type identifier. 6495 bool CodeGenModule::NeedAllVtablesTypeId() const { 6496 // Returns true if at least one of vtable-based CFI checkers is enabled and 6497 // is not in the trapping mode. 6498 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6499 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6500 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6501 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6502 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6503 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6504 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6505 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6506 } 6507 6508 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6509 CharUnits Offset, 6510 const CXXRecordDecl *RD) { 6511 llvm::Metadata *MD = 6512 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6513 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6514 6515 if (CodeGenOpts.SanitizeCfiCrossDso) 6516 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6517 VTable->addTypeMetadata(Offset.getQuantity(), 6518 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6519 6520 if (NeedAllVtablesTypeId()) { 6521 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6522 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6523 } 6524 } 6525 6526 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6527 if (!SanStats) 6528 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6529 6530 return *SanStats; 6531 } 6532 6533 llvm::Value * 6534 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6535 CodeGenFunction &CGF) { 6536 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6537 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6538 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6539 auto *Call = CGF.EmitRuntimeCall( 6540 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6541 return Call; 6542 } 6543 6544 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6545 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6546 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6547 /* forPointeeType= */ true); 6548 } 6549 6550 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6551 LValueBaseInfo *BaseInfo, 6552 TBAAAccessInfo *TBAAInfo, 6553 bool forPointeeType) { 6554 if (TBAAInfo) 6555 *TBAAInfo = getTBAAAccessInfo(T); 6556 6557 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6558 // that doesn't return the information we need to compute BaseInfo. 6559 6560 // Honor alignment typedef attributes even on incomplete types. 6561 // We also honor them straight for C++ class types, even as pointees; 6562 // there's an expressivity gap here. 6563 if (auto TT = T->getAs<TypedefType>()) { 6564 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6565 if (BaseInfo) 6566 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6567 return getContext().toCharUnitsFromBits(Align); 6568 } 6569 } 6570 6571 bool AlignForArray = T->isArrayType(); 6572 6573 // Analyze the base element type, so we don't get confused by incomplete 6574 // array types. 6575 T = getContext().getBaseElementType(T); 6576 6577 if (T->isIncompleteType()) { 6578 // We could try to replicate the logic from 6579 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6580 // type is incomplete, so it's impossible to test. We could try to reuse 6581 // getTypeAlignIfKnown, but that doesn't return the information we need 6582 // to set BaseInfo. So just ignore the possibility that the alignment is 6583 // greater than one. 6584 if (BaseInfo) 6585 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6586 return CharUnits::One(); 6587 } 6588 6589 if (BaseInfo) 6590 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6591 6592 CharUnits Alignment; 6593 const CXXRecordDecl *RD; 6594 if (T.getQualifiers().hasUnaligned()) { 6595 Alignment = CharUnits::One(); 6596 } else if (forPointeeType && !AlignForArray && 6597 (RD = T->getAsCXXRecordDecl())) { 6598 // For C++ class pointees, we don't know whether we're pointing at a 6599 // base or a complete object, so we generally need to use the 6600 // non-virtual alignment. 6601 Alignment = getClassPointerAlignment(RD); 6602 } else { 6603 Alignment = getContext().getTypeAlignInChars(T); 6604 } 6605 6606 // Cap to the global maximum type alignment unless the alignment 6607 // was somehow explicit on the type. 6608 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6609 if (Alignment.getQuantity() > MaxAlign && 6610 !getContext().isAlignmentRequired(T)) 6611 Alignment = CharUnits::fromQuantity(MaxAlign); 6612 } 6613 return Alignment; 6614 } 6615 6616 bool CodeGenModule::stopAutoInit() { 6617 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6618 if (StopAfter) { 6619 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6620 // used 6621 if (NumAutoVarInit >= StopAfter) { 6622 return true; 6623 } 6624 if (!NumAutoVarInit) { 6625 unsigned DiagID = getDiags().getCustomDiagID( 6626 DiagnosticsEngine::Warning, 6627 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6628 "number of times ftrivial-auto-var-init=%1 gets applied."); 6629 getDiags().Report(DiagID) 6630 << StopAfter 6631 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6632 LangOptions::TrivialAutoVarInitKind::Zero 6633 ? "zero" 6634 : "pattern"); 6635 } 6636 ++NumAutoVarInit; 6637 } 6638 return false; 6639 } 6640 6641 void CodeGenModule::printPostfixForExternalizedStaticVar( 6642 llvm::raw_ostream &OS) const { 6643 OS << "__static__" << getContext().getCUIDHash(); 6644 } 6645