xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision fcaf7f8644a9988098ac6be2165bce3ea4786e91)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class SwitchInst;
50 class Twine;
51 class Value;
52 class CanonicalLoopInfo;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 class OMPUseDevicePtrClause;
79 class OMPUseDeviceAddrClause;
80 class SVETypeFlags;
81 class OMPExecutableDirective;
82 
83 namespace analyze_os_log {
84 class OSLogBufferLayout;
85 }
86 
87 namespace CodeGen {
88 class CodeGenTypes;
89 class CGCallee;
90 class CGFunctionInfo;
91 class CGBlockInfo;
92 class CGCXXABI;
93 class BlockByrefHelpers;
94 class BlockByrefInfo;
95 class BlockFieldFlags;
96 class RegionCodeGenTy;
97 class TargetCodeGenInfo;
98 struct OMPTaskDataTy;
99 struct CGCoroData;
100 
101 /// The kind of evaluation to perform on values of a particular
102 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
103 /// CGExprAgg?
104 ///
105 /// TODO: should vectors maybe be split out into their own thing?
106 enum TypeEvaluationKind {
107   TEK_Scalar,
108   TEK_Complex,
109   TEK_Aggregate
110 };
111 
112 #define LIST_SANITIZER_CHECKS                                                  \
113   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
114   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
115   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
116   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
117   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
118   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
119   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
120   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
121   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
122   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
123   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
124   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
125   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
126   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
127   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
128   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
129   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
130   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
131   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
132   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
133   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
134   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
135   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
136   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
137   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
138 
139 enum SanitizerHandler {
140 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
141   LIST_SANITIZER_CHECKS
142 #undef SANITIZER_CHECK
143 };
144 
145 /// Helper class with most of the code for saving a value for a
146 /// conditional expression cleanup.
147 struct DominatingLLVMValue {
148   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
149 
150   /// Answer whether the given value needs extra work to be saved.
151   static bool needsSaving(llvm::Value *value) {
152     // If it's not an instruction, we don't need to save.
153     if (!isa<llvm::Instruction>(value)) return false;
154 
155     // If it's an instruction in the entry block, we don't need to save.
156     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
157     return (block != &block->getParent()->getEntryBlock());
158   }
159 
160   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
161   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
162 };
163 
164 /// A partial specialization of DominatingValue for llvm::Values that
165 /// might be llvm::Instructions.
166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
167   typedef T *type;
168   static type restore(CodeGenFunction &CGF, saved_type value) {
169     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
170   }
171 };
172 
173 /// A specialization of DominatingValue for Address.
174 template <> struct DominatingValue<Address> {
175   typedef Address type;
176 
177   struct saved_type {
178     DominatingLLVMValue::saved_type SavedValue;
179     llvm::Type *ElementType;
180     CharUnits Alignment;
181   };
182 
183   static bool needsSaving(type value) {
184     return DominatingLLVMValue::needsSaving(value.getPointer());
185   }
186   static saved_type save(CodeGenFunction &CGF, type value) {
187     return { DominatingLLVMValue::save(CGF, value.getPointer()),
188              value.getElementType(), value.getAlignment() };
189   }
190   static type restore(CodeGenFunction &CGF, saved_type value) {
191     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
192                    value.ElementType, value.Alignment);
193   }
194 };
195 
196 /// A specialization of DominatingValue for RValue.
197 template <> struct DominatingValue<RValue> {
198   typedef RValue type;
199   class saved_type {
200     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
201                 AggregateAddress, ComplexAddress };
202 
203     llvm::Value *Value;
204     llvm::Type *ElementType;
205     unsigned K : 3;
206     unsigned Align : 29;
207     saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
208       : Value(v), ElementType(e), K(k), Align(a) {}
209 
210   public:
211     static bool needsSaving(RValue value);
212     static saved_type save(CodeGenFunction &CGF, RValue value);
213     RValue restore(CodeGenFunction &CGF);
214 
215     // implementations in CGCleanup.cpp
216   };
217 
218   static bool needsSaving(type value) {
219     return saved_type::needsSaving(value);
220   }
221   static saved_type save(CodeGenFunction &CGF, type value) {
222     return saved_type::save(CGF, value);
223   }
224   static type restore(CodeGenFunction &CGF, saved_type value) {
225     return value.restore(CGF);
226   }
227 };
228 
229 /// CodeGenFunction - This class organizes the per-function state that is used
230 /// while generating LLVM code.
231 class CodeGenFunction : public CodeGenTypeCache {
232   CodeGenFunction(const CodeGenFunction &) = delete;
233   void operator=(const CodeGenFunction &) = delete;
234 
235   friend class CGCXXABI;
236 public:
237   /// A jump destination is an abstract label, branching to which may
238   /// require a jump out through normal cleanups.
239   struct JumpDest {
240     JumpDest() : Block(nullptr), Index(0) {}
241     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
242              unsigned Index)
243         : Block(Block), ScopeDepth(Depth), Index(Index) {}
244 
245     bool isValid() const { return Block != nullptr; }
246     llvm::BasicBlock *getBlock() const { return Block; }
247     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
248     unsigned getDestIndex() const { return Index; }
249 
250     // This should be used cautiously.
251     void setScopeDepth(EHScopeStack::stable_iterator depth) {
252       ScopeDepth = depth;
253     }
254 
255   private:
256     llvm::BasicBlock *Block;
257     EHScopeStack::stable_iterator ScopeDepth;
258     unsigned Index;
259   };
260 
261   CodeGenModule &CGM;  // Per-module state.
262   const TargetInfo &Target;
263 
264   // For EH/SEH outlined funclets, this field points to parent's CGF
265   CodeGenFunction *ParentCGF = nullptr;
266 
267   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
268   LoopInfoStack LoopStack;
269   CGBuilderTy Builder;
270 
271   // Stores variables for which we can't generate correct lifetime markers
272   // because of jumps.
273   VarBypassDetector Bypasses;
274 
275   /// List of recently emitted OMPCanonicalLoops.
276   ///
277   /// Since OMPCanonicalLoops are nested inside other statements (in particular
278   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
279   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
280   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
281   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
282   /// this stack when done. Entering a new loop requires clearing this list; it
283   /// either means we start parsing a new loop nest (in which case the previous
284   /// loop nest goes out of scope) or a second loop in the same level in which
285   /// case it would be ambiguous into which of the two (or more) loops the loop
286   /// nest would extend.
287   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
288 
289   /// Number of nested loop to be consumed by the last surrounding
290   /// loop-associated directive.
291   int ExpectedOMPLoopDepth = 0;
292 
293   // CodeGen lambda for loops and support for ordered clause
294   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
295                                   JumpDest)>
296       CodeGenLoopTy;
297   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
298                                   const unsigned, const bool)>
299       CodeGenOrderedTy;
300 
301   // Codegen lambda for loop bounds in worksharing loop constructs
302   typedef llvm::function_ref<std::pair<LValue, LValue>(
303       CodeGenFunction &, const OMPExecutableDirective &S)>
304       CodeGenLoopBoundsTy;
305 
306   // Codegen lambda for loop bounds in dispatch-based loop implementation
307   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
308       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
309       Address UB)>
310       CodeGenDispatchBoundsTy;
311 
312   /// CGBuilder insert helper. This function is called after an
313   /// instruction is created using Builder.
314   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
315                     llvm::BasicBlock *BB,
316                     llvm::BasicBlock::iterator InsertPt) const;
317 
318   /// CurFuncDecl - Holds the Decl for the current outermost
319   /// non-closure context.
320   const Decl *CurFuncDecl;
321   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
322   const Decl *CurCodeDecl;
323   const CGFunctionInfo *CurFnInfo;
324   QualType FnRetTy;
325   llvm::Function *CurFn = nullptr;
326 
327   /// Save Parameter Decl for coroutine.
328   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
329 
330   // Holds coroutine data if the current function is a coroutine. We use a
331   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
332   // in this header.
333   struct CGCoroInfo {
334     std::unique_ptr<CGCoroData> Data;
335     CGCoroInfo();
336     ~CGCoroInfo();
337   };
338   CGCoroInfo CurCoro;
339 
340   bool isCoroutine() const {
341     return CurCoro.Data != nullptr;
342   }
343 
344   /// CurGD - The GlobalDecl for the current function being compiled.
345   GlobalDecl CurGD;
346 
347   /// PrologueCleanupDepth - The cleanup depth enclosing all the
348   /// cleanups associated with the parameters.
349   EHScopeStack::stable_iterator PrologueCleanupDepth;
350 
351   /// ReturnBlock - Unified return block.
352   JumpDest ReturnBlock;
353 
354   /// ReturnValue - The temporary alloca to hold the return
355   /// value. This is invalid iff the function has no return value.
356   Address ReturnValue = Address::invalid();
357 
358   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
359   /// This is invalid if sret is not in use.
360   Address ReturnValuePointer = Address::invalid();
361 
362   /// If a return statement is being visited, this holds the return statment's
363   /// result expression.
364   const Expr *RetExpr = nullptr;
365 
366   /// Return true if a label was seen in the current scope.
367   bool hasLabelBeenSeenInCurrentScope() const {
368     if (CurLexicalScope)
369       return CurLexicalScope->hasLabels();
370     return !LabelMap.empty();
371   }
372 
373   /// AllocaInsertPoint - This is an instruction in the entry block before which
374   /// we prefer to insert allocas.
375   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
376 
377 private:
378   /// PostAllocaInsertPt - This is a place in the prologue where code can be
379   /// inserted that will be dominated by all the static allocas. This helps
380   /// achieve two things:
381   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
382   ///   2. All other prologue code (which are dominated by static allocas) do
383   ///      appear in the source order immediately after all static allocas.
384   ///
385   /// PostAllocaInsertPt will be lazily created when it is *really* required.
386   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
387 
388 public:
389   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
390   /// immediately after AllocaInsertPt.
391   llvm::Instruction *getPostAllocaInsertPoint() {
392     if (!PostAllocaInsertPt) {
393       assert(AllocaInsertPt &&
394              "Expected static alloca insertion point at function prologue");
395       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
396              "EBB should be entry block of the current code gen function");
397       PostAllocaInsertPt = AllocaInsertPt->clone();
398       PostAllocaInsertPt->setName("postallocapt");
399       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
400     }
401 
402     return PostAllocaInsertPt;
403   }
404 
405   /// API for captured statement code generation.
406   class CGCapturedStmtInfo {
407   public:
408     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
409         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
410     explicit CGCapturedStmtInfo(const CapturedStmt &S,
411                                 CapturedRegionKind K = CR_Default)
412       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
413 
414       RecordDecl::field_iterator Field =
415         S.getCapturedRecordDecl()->field_begin();
416       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
417                                                 E = S.capture_end();
418            I != E; ++I, ++Field) {
419         if (I->capturesThis())
420           CXXThisFieldDecl = *Field;
421         else if (I->capturesVariable())
422           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
423         else if (I->capturesVariableByCopy())
424           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
425       }
426     }
427 
428     virtual ~CGCapturedStmtInfo();
429 
430     CapturedRegionKind getKind() const { return Kind; }
431 
432     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
433     // Retrieve the value of the context parameter.
434     virtual llvm::Value *getContextValue() const { return ThisValue; }
435 
436     /// Lookup the captured field decl for a variable.
437     virtual const FieldDecl *lookup(const VarDecl *VD) const {
438       return CaptureFields.lookup(VD->getCanonicalDecl());
439     }
440 
441     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
442     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
443 
444     static bool classof(const CGCapturedStmtInfo *) {
445       return true;
446     }
447 
448     /// Emit the captured statement body.
449     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
450       CGF.incrementProfileCounter(S);
451       CGF.EmitStmt(S);
452     }
453 
454     /// Get the name of the capture helper.
455     virtual StringRef getHelperName() const { return "__captured_stmt"; }
456 
457     /// Get the CaptureFields
458     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
459       return CaptureFields;
460     }
461 
462   private:
463     /// The kind of captured statement being generated.
464     CapturedRegionKind Kind;
465 
466     /// Keep the map between VarDecl and FieldDecl.
467     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
468 
469     /// The base address of the captured record, passed in as the first
470     /// argument of the parallel region function.
471     llvm::Value *ThisValue;
472 
473     /// Captured 'this' type.
474     FieldDecl *CXXThisFieldDecl;
475   };
476   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
477 
478   /// RAII for correct setting/restoring of CapturedStmtInfo.
479   class CGCapturedStmtRAII {
480   private:
481     CodeGenFunction &CGF;
482     CGCapturedStmtInfo *PrevCapturedStmtInfo;
483   public:
484     CGCapturedStmtRAII(CodeGenFunction &CGF,
485                        CGCapturedStmtInfo *NewCapturedStmtInfo)
486         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
487       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
488     }
489     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
490   };
491 
492   /// An abstract representation of regular/ObjC call/message targets.
493   class AbstractCallee {
494     /// The function declaration of the callee.
495     const Decl *CalleeDecl;
496 
497   public:
498     AbstractCallee() : CalleeDecl(nullptr) {}
499     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
500     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
501     bool hasFunctionDecl() const {
502       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
503     }
504     const Decl *getDecl() const { return CalleeDecl; }
505     unsigned getNumParams() const {
506       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
507         return FD->getNumParams();
508       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
509     }
510     const ParmVarDecl *getParamDecl(unsigned I) const {
511       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
512         return FD->getParamDecl(I);
513       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
514     }
515   };
516 
517   /// Sanitizers enabled for this function.
518   SanitizerSet SanOpts;
519 
520   /// True if CodeGen currently emits code implementing sanitizer checks.
521   bool IsSanitizerScope = false;
522 
523   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
524   class SanitizerScope {
525     CodeGenFunction *CGF;
526   public:
527     SanitizerScope(CodeGenFunction *CGF);
528     ~SanitizerScope();
529   };
530 
531   /// In C++, whether we are code generating a thunk.  This controls whether we
532   /// should emit cleanups.
533   bool CurFuncIsThunk = false;
534 
535   /// In ARC, whether we should autorelease the return value.
536   bool AutoreleaseResult = false;
537 
538   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
539   /// potentially set the return value.
540   bool SawAsmBlock = false;
541 
542   const NamedDecl *CurSEHParent = nullptr;
543 
544   /// True if the current function is an outlined SEH helper. This can be a
545   /// finally block or filter expression.
546   bool IsOutlinedSEHHelper = false;
547 
548   /// True if CodeGen currently emits code inside presereved access index
549   /// region.
550   bool IsInPreservedAIRegion = false;
551 
552   /// True if the current statement has nomerge attribute.
553   bool InNoMergeAttributedStmt = false;
554 
555   /// True if the current statement has noinline attribute.
556   bool InNoInlineAttributedStmt = false;
557 
558   /// True if the current statement has always_inline attribute.
559   bool InAlwaysInlineAttributedStmt = false;
560 
561   // The CallExpr within the current statement that the musttail attribute
562   // applies to.  nullptr if there is no 'musttail' on the current statement.
563   const CallExpr *MustTailCall = nullptr;
564 
565   /// Returns true if a function must make progress, which means the
566   /// mustprogress attribute can be added.
567   bool checkIfFunctionMustProgress() {
568     if (CGM.getCodeGenOpts().getFiniteLoops() ==
569         CodeGenOptions::FiniteLoopsKind::Never)
570       return false;
571 
572     // C++11 and later guarantees that a thread eventually will do one of the
573     // following (6.9.2.3.1 in C++11):
574     // - terminate,
575     //  - make a call to a library I/O function,
576     //  - perform an access through a volatile glvalue, or
577     //  - perform a synchronization operation or an atomic operation.
578     //
579     // Hence each function is 'mustprogress' in C++11 or later.
580     return getLangOpts().CPlusPlus11;
581   }
582 
583   /// Returns true if a loop must make progress, which means the mustprogress
584   /// attribute can be added. \p HasConstantCond indicates whether the branch
585   /// condition is a known constant.
586   bool checkIfLoopMustProgress(bool HasConstantCond) {
587     if (CGM.getCodeGenOpts().getFiniteLoops() ==
588         CodeGenOptions::FiniteLoopsKind::Always)
589       return true;
590     if (CGM.getCodeGenOpts().getFiniteLoops() ==
591         CodeGenOptions::FiniteLoopsKind::Never)
592       return false;
593 
594     // If the containing function must make progress, loops also must make
595     // progress (as in C++11 and later).
596     if (checkIfFunctionMustProgress())
597       return true;
598 
599     // Now apply rules for plain C (see  6.8.5.6 in C11).
600     // Loops with constant conditions do not have to make progress in any C
601     // version.
602     if (HasConstantCond)
603       return false;
604 
605     // Loops with non-constant conditions must make progress in C11 and later.
606     return getLangOpts().C11;
607   }
608 
609   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
610   llvm::Value *BlockPointer = nullptr;
611 
612   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
613   FieldDecl *LambdaThisCaptureField = nullptr;
614 
615   /// A mapping from NRVO variables to the flags used to indicate
616   /// when the NRVO has been applied to this variable.
617   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
618 
619   EHScopeStack EHStack;
620   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
621   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
622 
623   llvm::Instruction *CurrentFuncletPad = nullptr;
624 
625   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
626     bool isRedundantBeforeReturn() override { return true; }
627 
628     llvm::Value *Addr;
629     llvm::Value *Size;
630 
631   public:
632     CallLifetimeEnd(Address addr, llvm::Value *size)
633         : Addr(addr.getPointer()), Size(size) {}
634 
635     void Emit(CodeGenFunction &CGF, Flags flags) override {
636       CGF.EmitLifetimeEnd(Size, Addr);
637     }
638   };
639 
640   /// Header for data within LifetimeExtendedCleanupStack.
641   struct LifetimeExtendedCleanupHeader {
642     /// The size of the following cleanup object.
643     unsigned Size;
644     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
645     unsigned Kind : 31;
646     /// Whether this is a conditional cleanup.
647     unsigned IsConditional : 1;
648 
649     size_t getSize() const { return Size; }
650     CleanupKind getKind() const { return (CleanupKind)Kind; }
651     bool isConditional() const { return IsConditional; }
652   };
653 
654   /// i32s containing the indexes of the cleanup destinations.
655   Address NormalCleanupDest = Address::invalid();
656 
657   unsigned NextCleanupDestIndex = 1;
658 
659   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
660   llvm::BasicBlock *EHResumeBlock = nullptr;
661 
662   /// The exception slot.  All landing pads write the current exception pointer
663   /// into this alloca.
664   llvm::Value *ExceptionSlot = nullptr;
665 
666   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
667   /// write the current selector value into this alloca.
668   llvm::AllocaInst *EHSelectorSlot = nullptr;
669 
670   /// A stack of exception code slots. Entering an __except block pushes a slot
671   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
672   /// a value from the top of the stack.
673   SmallVector<Address, 1> SEHCodeSlotStack;
674 
675   /// Value returned by __exception_info intrinsic.
676   llvm::Value *SEHInfo = nullptr;
677 
678   /// Emits a landing pad for the current EH stack.
679   llvm::BasicBlock *EmitLandingPad();
680 
681   llvm::BasicBlock *getInvokeDestImpl();
682 
683   /// Parent loop-based directive for scan directive.
684   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
685   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
686   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
687   llvm::BasicBlock *OMPScanExitBlock = nullptr;
688   llvm::BasicBlock *OMPScanDispatch = nullptr;
689   bool OMPFirstScanLoop = false;
690 
691   /// Manages parent directive for scan directives.
692   class ParentLoopDirectiveForScanRegion {
693     CodeGenFunction &CGF;
694     const OMPExecutableDirective *ParentLoopDirectiveForScan;
695 
696   public:
697     ParentLoopDirectiveForScanRegion(
698         CodeGenFunction &CGF,
699         const OMPExecutableDirective &ParentLoopDirectiveForScan)
700         : CGF(CGF),
701           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
702       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
703     }
704     ~ParentLoopDirectiveForScanRegion() {
705       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
706     }
707   };
708 
709   template <class T>
710   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711     return DominatingValue<T>::save(*this, value);
712   }
713 
714   class CGFPOptionsRAII {
715   public:
716     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
717     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
718     ~CGFPOptionsRAII();
719 
720   private:
721     void ConstructorHelper(FPOptions FPFeatures);
722     CodeGenFunction &CGF;
723     FPOptions OldFPFeatures;
724     llvm::fp::ExceptionBehavior OldExcept;
725     llvm::RoundingMode OldRounding;
726     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
727   };
728   FPOptions CurFPFeatures;
729 
730 public:
731   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
732   /// rethrows.
733   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
734 
735   /// A class controlling the emission of a finally block.
736   class FinallyInfo {
737     /// Where the catchall's edge through the cleanup should go.
738     JumpDest RethrowDest;
739 
740     /// A function to call to enter the catch.
741     llvm::FunctionCallee BeginCatchFn;
742 
743     /// An i1 variable indicating whether or not the @finally is
744     /// running for an exception.
745     llvm::AllocaInst *ForEHVar;
746 
747     /// An i8* variable into which the exception pointer to rethrow
748     /// has been saved.
749     llvm::AllocaInst *SavedExnVar;
750 
751   public:
752     void enter(CodeGenFunction &CGF, const Stmt *Finally,
753                llvm::FunctionCallee beginCatchFn,
754                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
755     void exit(CodeGenFunction &CGF);
756   };
757 
758   /// Returns true inside SEH __try blocks.
759   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
760 
761   /// Returns true while emitting a cleanuppad.
762   bool isCleanupPadScope() const {
763     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
764   }
765 
766   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
767   /// current full-expression.  Safe against the possibility that
768   /// we're currently inside a conditionally-evaluated expression.
769   template <class T, class... As>
770   void pushFullExprCleanup(CleanupKind kind, As... A) {
771     // If we're not in a conditional branch, or if none of the
772     // arguments requires saving, then use the unconditional cleanup.
773     if (!isInConditionalBranch())
774       return EHStack.pushCleanup<T>(kind, A...);
775 
776     // Stash values in a tuple so we can guarantee the order of saves.
777     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778     SavedTuple Saved{saveValueInCond(A)...};
779 
780     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782     initFullExprCleanup();
783   }
784 
785   /// Queue a cleanup to be pushed after finishing the current full-expression,
786   /// potentially with an active flag.
787   template <class T, class... As>
788   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
789     if (!isInConditionalBranch())
790       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791                                                        A...);
792 
793     Address ActiveFlag = createCleanupActiveFlag();
794     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795            "cleanup active flag should never need saving");
796 
797     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798     SavedTuple Saved{saveValueInCond(A)...};
799 
800     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802   }
803 
804   template <class T, class... As>
805   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
806                                               Address ActiveFlag, As... A) {
807     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808                                             ActiveFlag.isValid()};
809 
810     size_t OldSize = LifetimeExtendedCleanupStack.size();
811     LifetimeExtendedCleanupStack.resize(
812         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
814 
815     static_assert(sizeof(Header) % alignof(T) == 0,
816                   "Cleanup will be allocated on misaligned address");
817     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818     new (Buffer) LifetimeExtendedCleanupHeader(Header);
819     new (Buffer + sizeof(Header)) T(A...);
820     if (Header.IsConditional)
821       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822   }
823 
824   /// Set up the last cleanup that was pushed as a conditional
825   /// full-expression cleanup.
826   void initFullExprCleanup() {
827     initFullExprCleanupWithFlag(createCleanupActiveFlag());
828   }
829 
830   void initFullExprCleanupWithFlag(Address ActiveFlag);
831   Address createCleanupActiveFlag();
832 
833   /// PushDestructorCleanup - Push a cleanup to call the
834   /// complete-object destructor of an object of the given type at the
835   /// given address.  Does nothing if T is not a C++ class type with a
836   /// non-trivial destructor.
837   void PushDestructorCleanup(QualType T, Address Addr);
838 
839   /// PushDestructorCleanup - Push a cleanup to call the
840   /// complete-object variant of the given destructor on the object at
841   /// the given address.
842   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
843                              Address Addr);
844 
845   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
846   /// process all branch fixups.
847   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
848 
849   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
850   /// The block cannot be reactivated.  Pops it if it's the top of the
851   /// stack.
852   ///
853   /// \param DominatingIP - An instruction which is known to
854   ///   dominate the current IP (if set) and which lies along
855   ///   all paths of execution between the current IP and the
856   ///   the point at which the cleanup comes into scope.
857   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
858                               llvm::Instruction *DominatingIP);
859 
860   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
861   /// Cannot be used to resurrect a deactivated cleanup.
862   ///
863   /// \param DominatingIP - An instruction which is known to
864   ///   dominate the current IP (if set) and which lies along
865   ///   all paths of execution between the current IP and the
866   ///   the point at which the cleanup comes into scope.
867   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
868                             llvm::Instruction *DominatingIP);
869 
870   /// Enters a new scope for capturing cleanups, all of which
871   /// will be executed once the scope is exited.
872   class RunCleanupsScope {
873     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
874     size_t LifetimeExtendedCleanupStackSize;
875     bool OldDidCallStackSave;
876   protected:
877     bool PerformCleanup;
878   private:
879 
880     RunCleanupsScope(const RunCleanupsScope &) = delete;
881     void operator=(const RunCleanupsScope &) = delete;
882 
883   protected:
884     CodeGenFunction& CGF;
885 
886   public:
887     /// Enter a new cleanup scope.
888     explicit RunCleanupsScope(CodeGenFunction &CGF)
889       : PerformCleanup(true), CGF(CGF)
890     {
891       CleanupStackDepth = CGF.EHStack.stable_begin();
892       LifetimeExtendedCleanupStackSize =
893           CGF.LifetimeExtendedCleanupStack.size();
894       OldDidCallStackSave = CGF.DidCallStackSave;
895       CGF.DidCallStackSave = false;
896       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
897       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
898     }
899 
900     /// Exit this cleanup scope, emitting any accumulated cleanups.
901     ~RunCleanupsScope() {
902       if (PerformCleanup)
903         ForceCleanup();
904     }
905 
906     /// Determine whether this scope requires any cleanups.
907     bool requiresCleanups() const {
908       return CGF.EHStack.stable_begin() != CleanupStackDepth;
909     }
910 
911     /// Force the emission of cleanups now, instead of waiting
912     /// until this object is destroyed.
913     /// \param ValuesToReload - A list of values that need to be available at
914     /// the insertion point after cleanup emission. If cleanup emission created
915     /// a shared cleanup block, these value pointers will be rewritten.
916     /// Otherwise, they not will be modified.
917     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
918       assert(PerformCleanup && "Already forced cleanup");
919       CGF.DidCallStackSave = OldDidCallStackSave;
920       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
921                            ValuesToReload);
922       PerformCleanup = false;
923       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
924     }
925   };
926 
927   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
928   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
929       EHScopeStack::stable_end();
930 
931   class LexicalScope : public RunCleanupsScope {
932     SourceRange Range;
933     SmallVector<const LabelDecl*, 4> Labels;
934     LexicalScope *ParentScope;
935 
936     LexicalScope(const LexicalScope &) = delete;
937     void operator=(const LexicalScope &) = delete;
938 
939   public:
940     /// Enter a new cleanup scope.
941     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
942       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
943       CGF.CurLexicalScope = this;
944       if (CGDebugInfo *DI = CGF.getDebugInfo())
945         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
946     }
947 
948     void addLabel(const LabelDecl *label) {
949       assert(PerformCleanup && "adding label to dead scope?");
950       Labels.push_back(label);
951     }
952 
953     /// Exit this cleanup scope, emitting any accumulated
954     /// cleanups.
955     ~LexicalScope() {
956       if (CGDebugInfo *DI = CGF.getDebugInfo())
957         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
958 
959       // If we should perform a cleanup, force them now.  Note that
960       // this ends the cleanup scope before rescoping any labels.
961       if (PerformCleanup) {
962         ApplyDebugLocation DL(CGF, Range.getEnd());
963         ForceCleanup();
964       }
965     }
966 
967     /// Force the emission of cleanups now, instead of waiting
968     /// until this object is destroyed.
969     void ForceCleanup() {
970       CGF.CurLexicalScope = ParentScope;
971       RunCleanupsScope::ForceCleanup();
972 
973       if (!Labels.empty())
974         rescopeLabels();
975     }
976 
977     bool hasLabels() const {
978       return !Labels.empty();
979     }
980 
981     void rescopeLabels();
982   };
983 
984   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
985 
986   /// The class used to assign some variables some temporarily addresses.
987   class OMPMapVars {
988     DeclMapTy SavedLocals;
989     DeclMapTy SavedTempAddresses;
990     OMPMapVars(const OMPMapVars &) = delete;
991     void operator=(const OMPMapVars &) = delete;
992 
993   public:
994     explicit OMPMapVars() = default;
995     ~OMPMapVars() {
996       assert(SavedLocals.empty() && "Did not restored original addresses.");
997     };
998 
999     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1000     /// function \p CGF.
1001     /// \return true if at least one variable was set already, false otherwise.
1002     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1003                     Address TempAddr) {
1004       LocalVD = LocalVD->getCanonicalDecl();
1005       // Only save it once.
1006       if (SavedLocals.count(LocalVD)) return false;
1007 
1008       // Copy the existing local entry to SavedLocals.
1009       auto it = CGF.LocalDeclMap.find(LocalVD);
1010       if (it != CGF.LocalDeclMap.end())
1011         SavedLocals.try_emplace(LocalVD, it->second);
1012       else
1013         SavedLocals.try_emplace(LocalVD, Address::invalid());
1014 
1015       // Generate the private entry.
1016       QualType VarTy = LocalVD->getType();
1017       if (VarTy->isReferenceType()) {
1018         Address Temp = CGF.CreateMemTemp(VarTy);
1019         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1020         TempAddr = Temp;
1021       }
1022       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1023 
1024       return true;
1025     }
1026 
1027     /// Applies new addresses to the list of the variables.
1028     /// \return true if at least one variable is using new address, false
1029     /// otherwise.
1030     bool apply(CodeGenFunction &CGF) {
1031       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1032       SavedTempAddresses.clear();
1033       return !SavedLocals.empty();
1034     }
1035 
1036     /// Restores original addresses of the variables.
1037     void restore(CodeGenFunction &CGF) {
1038       if (!SavedLocals.empty()) {
1039         copyInto(SavedLocals, CGF.LocalDeclMap);
1040         SavedLocals.clear();
1041       }
1042     }
1043 
1044   private:
1045     /// Copy all the entries in the source map over the corresponding
1046     /// entries in the destination, which must exist.
1047     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1048       for (auto &Pair : Src) {
1049         if (!Pair.second.isValid()) {
1050           Dest.erase(Pair.first);
1051           continue;
1052         }
1053 
1054         auto I = Dest.find(Pair.first);
1055         if (I != Dest.end())
1056           I->second = Pair.second;
1057         else
1058           Dest.insert(Pair);
1059       }
1060     }
1061   };
1062 
1063   /// The scope used to remap some variables as private in the OpenMP loop body
1064   /// (or other captured region emitted without outlining), and to restore old
1065   /// vars back on exit.
1066   class OMPPrivateScope : public RunCleanupsScope {
1067     OMPMapVars MappedVars;
1068     OMPPrivateScope(const OMPPrivateScope &) = delete;
1069     void operator=(const OMPPrivateScope &) = delete;
1070 
1071   public:
1072     /// Enter a new OpenMP private scope.
1073     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1074 
1075     /// Registers \p LocalVD variable as a private with \p Addr as the address
1076     /// of the corresponding private variable. \p
1077     /// PrivateGen is the address of the generated private variable.
1078     /// \return true if the variable is registered as private, false if it has
1079     /// been privatized already.
1080     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1081       assert(PerformCleanup && "adding private to dead scope");
1082       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1083     }
1084 
1085     /// Privatizes local variables previously registered as private.
1086     /// Registration is separate from the actual privatization to allow
1087     /// initializers use values of the original variables, not the private one.
1088     /// This is important, for example, if the private variable is a class
1089     /// variable initialized by a constructor that references other private
1090     /// variables. But at initialization original variables must be used, not
1091     /// private copies.
1092     /// \return true if at least one variable was privatized, false otherwise.
1093     bool Privatize() { return MappedVars.apply(CGF); }
1094 
1095     void ForceCleanup() {
1096       RunCleanupsScope::ForceCleanup();
1097       MappedVars.restore(CGF);
1098     }
1099 
1100     /// Exit scope - all the mapped variables are restored.
1101     ~OMPPrivateScope() {
1102       if (PerformCleanup)
1103         ForceCleanup();
1104     }
1105 
1106     /// Checks if the global variable is captured in current function.
1107     bool isGlobalVarCaptured(const VarDecl *VD) const {
1108       VD = VD->getCanonicalDecl();
1109       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1110     }
1111   };
1112 
1113   /// Save/restore original map of previously emitted local vars in case when we
1114   /// need to duplicate emission of the same code several times in the same
1115   /// function for OpenMP code.
1116   class OMPLocalDeclMapRAII {
1117     CodeGenFunction &CGF;
1118     DeclMapTy SavedMap;
1119 
1120   public:
1121     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1122         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1123     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1124   };
1125 
1126   /// Takes the old cleanup stack size and emits the cleanup blocks
1127   /// that have been added.
1128   void
1129   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1130                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1131 
1132   /// Takes the old cleanup stack size and emits the cleanup blocks
1133   /// that have been added, then adds all lifetime-extended cleanups from
1134   /// the given position to the stack.
1135   void
1136   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1137                    size_t OldLifetimeExtendedStackSize,
1138                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1139 
1140   void ResolveBranchFixups(llvm::BasicBlock *Target);
1141 
1142   /// The given basic block lies in the current EH scope, but may be a
1143   /// target of a potentially scope-crossing jump; get a stable handle
1144   /// to which we can perform this jump later.
1145   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1146     return JumpDest(Target,
1147                     EHStack.getInnermostNormalCleanup(),
1148                     NextCleanupDestIndex++);
1149   }
1150 
1151   /// The given basic block lies in the current EH scope, but may be a
1152   /// target of a potentially scope-crossing jump; get a stable handle
1153   /// to which we can perform this jump later.
1154   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1155     return getJumpDestInCurrentScope(createBasicBlock(Name));
1156   }
1157 
1158   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1159   /// block through the normal cleanup handling code (if any) and then
1160   /// on to \arg Dest.
1161   void EmitBranchThroughCleanup(JumpDest Dest);
1162 
1163   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1164   /// specified destination obviously has no cleanups to run.  'false' is always
1165   /// a conservatively correct answer for this method.
1166   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1167 
1168   /// popCatchScope - Pops the catch scope at the top of the EHScope
1169   /// stack, emitting any required code (other than the catch handlers
1170   /// themselves).
1171   void popCatchScope();
1172 
1173   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1174   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1175   llvm::BasicBlock *
1176   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1177 
1178   /// An object to manage conditionally-evaluated expressions.
1179   class ConditionalEvaluation {
1180     llvm::BasicBlock *StartBB;
1181 
1182   public:
1183     ConditionalEvaluation(CodeGenFunction &CGF)
1184       : StartBB(CGF.Builder.GetInsertBlock()) {}
1185 
1186     void begin(CodeGenFunction &CGF) {
1187       assert(CGF.OutermostConditional != this);
1188       if (!CGF.OutermostConditional)
1189         CGF.OutermostConditional = this;
1190     }
1191 
1192     void end(CodeGenFunction &CGF) {
1193       assert(CGF.OutermostConditional != nullptr);
1194       if (CGF.OutermostConditional == this)
1195         CGF.OutermostConditional = nullptr;
1196     }
1197 
1198     /// Returns a block which will be executed prior to each
1199     /// evaluation of the conditional code.
1200     llvm::BasicBlock *getStartingBlock() const {
1201       return StartBB;
1202     }
1203   };
1204 
1205   /// isInConditionalBranch - Return true if we're currently emitting
1206   /// one branch or the other of a conditional expression.
1207   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1208 
1209   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1210     assert(isInConditionalBranch());
1211     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1212     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1213     store->setAlignment(addr.getAlignment().getAsAlign());
1214   }
1215 
1216   /// An RAII object to record that we're evaluating a statement
1217   /// expression.
1218   class StmtExprEvaluation {
1219     CodeGenFunction &CGF;
1220 
1221     /// We have to save the outermost conditional: cleanups in a
1222     /// statement expression aren't conditional just because the
1223     /// StmtExpr is.
1224     ConditionalEvaluation *SavedOutermostConditional;
1225 
1226   public:
1227     StmtExprEvaluation(CodeGenFunction &CGF)
1228       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1229       CGF.OutermostConditional = nullptr;
1230     }
1231 
1232     ~StmtExprEvaluation() {
1233       CGF.OutermostConditional = SavedOutermostConditional;
1234       CGF.EnsureInsertPoint();
1235     }
1236   };
1237 
1238   /// An object which temporarily prevents a value from being
1239   /// destroyed by aggressive peephole optimizations that assume that
1240   /// all uses of a value have been realized in the IR.
1241   class PeepholeProtection {
1242     llvm::Instruction *Inst;
1243     friend class CodeGenFunction;
1244 
1245   public:
1246     PeepholeProtection() : Inst(nullptr) {}
1247   };
1248 
1249   /// A non-RAII class containing all the information about a bound
1250   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1251   /// this which makes individual mappings very simple; using this
1252   /// class directly is useful when you have a variable number of
1253   /// opaque values or don't want the RAII functionality for some
1254   /// reason.
1255   class OpaqueValueMappingData {
1256     const OpaqueValueExpr *OpaqueValue;
1257     bool BoundLValue;
1258     CodeGenFunction::PeepholeProtection Protection;
1259 
1260     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1261                            bool boundLValue)
1262       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1263   public:
1264     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1265 
1266     static bool shouldBindAsLValue(const Expr *expr) {
1267       // gl-values should be bound as l-values for obvious reasons.
1268       // Records should be bound as l-values because IR generation
1269       // always keeps them in memory.  Expressions of function type
1270       // act exactly like l-values but are formally required to be
1271       // r-values in C.
1272       return expr->isGLValue() ||
1273              expr->getType()->isFunctionType() ||
1274              hasAggregateEvaluationKind(expr->getType());
1275     }
1276 
1277     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1278                                        const OpaqueValueExpr *ov,
1279                                        const Expr *e) {
1280       if (shouldBindAsLValue(ov))
1281         return bind(CGF, ov, CGF.EmitLValue(e));
1282       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1283     }
1284 
1285     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1286                                        const OpaqueValueExpr *ov,
1287                                        const LValue &lv) {
1288       assert(shouldBindAsLValue(ov));
1289       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1290       return OpaqueValueMappingData(ov, true);
1291     }
1292 
1293     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1294                                        const OpaqueValueExpr *ov,
1295                                        const RValue &rv) {
1296       assert(!shouldBindAsLValue(ov));
1297       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1298 
1299       OpaqueValueMappingData data(ov, false);
1300 
1301       // Work around an extremely aggressive peephole optimization in
1302       // EmitScalarConversion which assumes that all other uses of a
1303       // value are extant.
1304       data.Protection = CGF.protectFromPeepholes(rv);
1305 
1306       return data;
1307     }
1308 
1309     bool isValid() const { return OpaqueValue != nullptr; }
1310     void clear() { OpaqueValue = nullptr; }
1311 
1312     void unbind(CodeGenFunction &CGF) {
1313       assert(OpaqueValue && "no data to unbind!");
1314 
1315       if (BoundLValue) {
1316         CGF.OpaqueLValues.erase(OpaqueValue);
1317       } else {
1318         CGF.OpaqueRValues.erase(OpaqueValue);
1319         CGF.unprotectFromPeepholes(Protection);
1320       }
1321     }
1322   };
1323 
1324   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1325   class OpaqueValueMapping {
1326     CodeGenFunction &CGF;
1327     OpaqueValueMappingData Data;
1328 
1329   public:
1330     static bool shouldBindAsLValue(const Expr *expr) {
1331       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1332     }
1333 
1334     /// Build the opaque value mapping for the given conditional
1335     /// operator if it's the GNU ?: extension.  This is a common
1336     /// enough pattern that the convenience operator is really
1337     /// helpful.
1338     ///
1339     OpaqueValueMapping(CodeGenFunction &CGF,
1340                        const AbstractConditionalOperator *op) : CGF(CGF) {
1341       if (isa<ConditionalOperator>(op))
1342         // Leave Data empty.
1343         return;
1344 
1345       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1346       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1347                                           e->getCommon());
1348     }
1349 
1350     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1351     /// expression is set to the expression the OVE represents.
1352     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1353         : CGF(CGF) {
1354       if (OV) {
1355         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1356                                       "for OVE with no source expression");
1357         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1358       }
1359     }
1360 
1361     OpaqueValueMapping(CodeGenFunction &CGF,
1362                        const OpaqueValueExpr *opaqueValue,
1363                        LValue lvalue)
1364       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1365     }
1366 
1367     OpaqueValueMapping(CodeGenFunction &CGF,
1368                        const OpaqueValueExpr *opaqueValue,
1369                        RValue rvalue)
1370       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1371     }
1372 
1373     void pop() {
1374       Data.unbind(CGF);
1375       Data.clear();
1376     }
1377 
1378     ~OpaqueValueMapping() {
1379       if (Data.isValid()) Data.unbind(CGF);
1380     }
1381   };
1382 
1383 private:
1384   CGDebugInfo *DebugInfo;
1385   /// Used to create unique names for artificial VLA size debug info variables.
1386   unsigned VLAExprCounter = 0;
1387   bool DisableDebugInfo = false;
1388 
1389   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1390   /// calling llvm.stacksave for multiple VLAs in the same scope.
1391   bool DidCallStackSave = false;
1392 
1393   /// IndirectBranch - The first time an indirect goto is seen we create a block
1394   /// with an indirect branch.  Every time we see the address of a label taken,
1395   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1396   /// codegen'd as a jump to the IndirectBranch's basic block.
1397   llvm::IndirectBrInst *IndirectBranch = nullptr;
1398 
1399   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1400   /// decls.
1401   DeclMapTy LocalDeclMap;
1402 
1403   // Keep track of the cleanups for callee-destructed parameters pushed to the
1404   // cleanup stack so that they can be deactivated later.
1405   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1406       CalleeDestructedParamCleanups;
1407 
1408   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1409   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1410   /// parameter.
1411   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1412       SizeArguments;
1413 
1414   /// Track escaped local variables with auto storage. Used during SEH
1415   /// outlining to produce a call to llvm.localescape.
1416   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1417 
1418   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1419   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1420 
1421   // BreakContinueStack - This keeps track of where break and continue
1422   // statements should jump to.
1423   struct BreakContinue {
1424     BreakContinue(JumpDest Break, JumpDest Continue)
1425       : BreakBlock(Break), ContinueBlock(Continue) {}
1426 
1427     JumpDest BreakBlock;
1428     JumpDest ContinueBlock;
1429   };
1430   SmallVector<BreakContinue, 8> BreakContinueStack;
1431 
1432   /// Handles cancellation exit points in OpenMP-related constructs.
1433   class OpenMPCancelExitStack {
1434     /// Tracks cancellation exit point and join point for cancel-related exit
1435     /// and normal exit.
1436     struct CancelExit {
1437       CancelExit() = default;
1438       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1439                  JumpDest ContBlock)
1440           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1441       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1442       /// true if the exit block has been emitted already by the special
1443       /// emitExit() call, false if the default codegen is used.
1444       bool HasBeenEmitted = false;
1445       JumpDest ExitBlock;
1446       JumpDest ContBlock;
1447     };
1448 
1449     SmallVector<CancelExit, 8> Stack;
1450 
1451   public:
1452     OpenMPCancelExitStack() : Stack(1) {}
1453     ~OpenMPCancelExitStack() = default;
1454     /// Fetches the exit block for the current OpenMP construct.
1455     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1456     /// Emits exit block with special codegen procedure specific for the related
1457     /// OpenMP construct + emits code for normal construct cleanup.
1458     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1459                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1460       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1461         assert(CGF.getOMPCancelDestination(Kind).isValid());
1462         assert(CGF.HaveInsertPoint());
1463         assert(!Stack.back().HasBeenEmitted);
1464         auto IP = CGF.Builder.saveAndClearIP();
1465         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1466         CodeGen(CGF);
1467         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1468         CGF.Builder.restoreIP(IP);
1469         Stack.back().HasBeenEmitted = true;
1470       }
1471       CodeGen(CGF);
1472     }
1473     /// Enter the cancel supporting \a Kind construct.
1474     /// \param Kind OpenMP directive that supports cancel constructs.
1475     /// \param HasCancel true, if the construct has inner cancel directive,
1476     /// false otherwise.
1477     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1478       Stack.push_back({Kind,
1479                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1480                                  : JumpDest(),
1481                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1482                                  : JumpDest()});
1483     }
1484     /// Emits default exit point for the cancel construct (if the special one
1485     /// has not be used) + join point for cancel/normal exits.
1486     void exit(CodeGenFunction &CGF) {
1487       if (getExitBlock().isValid()) {
1488         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1489         bool HaveIP = CGF.HaveInsertPoint();
1490         if (!Stack.back().HasBeenEmitted) {
1491           if (HaveIP)
1492             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1493           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1494           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1495         }
1496         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1497         if (!HaveIP) {
1498           CGF.Builder.CreateUnreachable();
1499           CGF.Builder.ClearInsertionPoint();
1500         }
1501       }
1502       Stack.pop_back();
1503     }
1504   };
1505   OpenMPCancelExitStack OMPCancelStack;
1506 
1507   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1508   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1509                                                     Stmt::Likelihood LH);
1510 
1511   CodeGenPGO PGO;
1512 
1513   /// Calculate branch weights appropriate for PGO data
1514   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1515                                      uint64_t FalseCount) const;
1516   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1517   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1518                                             uint64_t LoopCount) const;
1519 
1520 public:
1521   /// Increment the profiler's counter for the given statement by \p StepV.
1522   /// If \p StepV is null, the default increment is 1.
1523   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1524     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1525         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1526       PGO.emitCounterIncrement(Builder, S, StepV);
1527     PGO.setCurrentStmt(S);
1528   }
1529 
1530   /// Get the profiler's count for the given statement.
1531   uint64_t getProfileCount(const Stmt *S) {
1532     return PGO.getStmtCount(S).value_or(0);
1533   }
1534 
1535   /// Set the profiler's current count.
1536   void setCurrentProfileCount(uint64_t Count) {
1537     PGO.setCurrentRegionCount(Count);
1538   }
1539 
1540   /// Get the profiler's current count. This is generally the count for the most
1541   /// recently incremented counter.
1542   uint64_t getCurrentProfileCount() {
1543     return PGO.getCurrentRegionCount();
1544   }
1545 
1546 private:
1547 
1548   /// SwitchInsn - This is nearest current switch instruction. It is null if
1549   /// current context is not in a switch.
1550   llvm::SwitchInst *SwitchInsn = nullptr;
1551   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1552   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1553 
1554   /// The likelihood attributes of the SwitchCase.
1555   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1556 
1557   /// CaseRangeBlock - This block holds if condition check for last case
1558   /// statement range in current switch instruction.
1559   llvm::BasicBlock *CaseRangeBlock = nullptr;
1560 
1561   /// OpaqueLValues - Keeps track of the current set of opaque value
1562   /// expressions.
1563   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1564   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1565 
1566   // VLASizeMap - This keeps track of the associated size for each VLA type.
1567   // We track this by the size expression rather than the type itself because
1568   // in certain situations, like a const qualifier applied to an VLA typedef,
1569   // multiple VLA types can share the same size expression.
1570   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1571   // enter/leave scopes.
1572   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1573 
1574   /// A block containing a single 'unreachable' instruction.  Created
1575   /// lazily by getUnreachableBlock().
1576   llvm::BasicBlock *UnreachableBlock = nullptr;
1577 
1578   /// Counts of the number return expressions in the function.
1579   unsigned NumReturnExprs = 0;
1580 
1581   /// Count the number of simple (constant) return expressions in the function.
1582   unsigned NumSimpleReturnExprs = 0;
1583 
1584   /// The last regular (non-return) debug location (breakpoint) in the function.
1585   SourceLocation LastStopPoint;
1586 
1587 public:
1588   /// Source location information about the default argument or member
1589   /// initializer expression we're evaluating, if any.
1590   CurrentSourceLocExprScope CurSourceLocExprScope;
1591   using SourceLocExprScopeGuard =
1592       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1593 
1594   /// A scope within which we are constructing the fields of an object which
1595   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1596   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1597   class FieldConstructionScope {
1598   public:
1599     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1600         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1601       CGF.CXXDefaultInitExprThis = This;
1602     }
1603     ~FieldConstructionScope() {
1604       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1605     }
1606 
1607   private:
1608     CodeGenFunction &CGF;
1609     Address OldCXXDefaultInitExprThis;
1610   };
1611 
1612   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1613   /// is overridden to be the object under construction.
1614   class CXXDefaultInitExprScope  {
1615   public:
1616     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1617         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1618           OldCXXThisAlignment(CGF.CXXThisAlignment),
1619           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1620       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1621       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1622     }
1623     ~CXXDefaultInitExprScope() {
1624       CGF.CXXThisValue = OldCXXThisValue;
1625       CGF.CXXThisAlignment = OldCXXThisAlignment;
1626     }
1627 
1628   public:
1629     CodeGenFunction &CGF;
1630     llvm::Value *OldCXXThisValue;
1631     CharUnits OldCXXThisAlignment;
1632     SourceLocExprScopeGuard SourceLocScope;
1633   };
1634 
1635   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1636     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1637         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1638   };
1639 
1640   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1641   /// current loop index is overridden.
1642   class ArrayInitLoopExprScope {
1643   public:
1644     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1645       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1646       CGF.ArrayInitIndex = Index;
1647     }
1648     ~ArrayInitLoopExprScope() {
1649       CGF.ArrayInitIndex = OldArrayInitIndex;
1650     }
1651 
1652   private:
1653     CodeGenFunction &CGF;
1654     llvm::Value *OldArrayInitIndex;
1655   };
1656 
1657   class InlinedInheritingConstructorScope {
1658   public:
1659     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1660         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1661           OldCurCodeDecl(CGF.CurCodeDecl),
1662           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1663           OldCXXABIThisValue(CGF.CXXABIThisValue),
1664           OldCXXThisValue(CGF.CXXThisValue),
1665           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1666           OldCXXThisAlignment(CGF.CXXThisAlignment),
1667           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1668           OldCXXInheritedCtorInitExprArgs(
1669               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1670       CGF.CurGD = GD;
1671       CGF.CurFuncDecl = CGF.CurCodeDecl =
1672           cast<CXXConstructorDecl>(GD.getDecl());
1673       CGF.CXXABIThisDecl = nullptr;
1674       CGF.CXXABIThisValue = nullptr;
1675       CGF.CXXThisValue = nullptr;
1676       CGF.CXXABIThisAlignment = CharUnits();
1677       CGF.CXXThisAlignment = CharUnits();
1678       CGF.ReturnValue = Address::invalid();
1679       CGF.FnRetTy = QualType();
1680       CGF.CXXInheritedCtorInitExprArgs.clear();
1681     }
1682     ~InlinedInheritingConstructorScope() {
1683       CGF.CurGD = OldCurGD;
1684       CGF.CurFuncDecl = OldCurFuncDecl;
1685       CGF.CurCodeDecl = OldCurCodeDecl;
1686       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1687       CGF.CXXABIThisValue = OldCXXABIThisValue;
1688       CGF.CXXThisValue = OldCXXThisValue;
1689       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1690       CGF.CXXThisAlignment = OldCXXThisAlignment;
1691       CGF.ReturnValue = OldReturnValue;
1692       CGF.FnRetTy = OldFnRetTy;
1693       CGF.CXXInheritedCtorInitExprArgs =
1694           std::move(OldCXXInheritedCtorInitExprArgs);
1695     }
1696 
1697   private:
1698     CodeGenFunction &CGF;
1699     GlobalDecl OldCurGD;
1700     const Decl *OldCurFuncDecl;
1701     const Decl *OldCurCodeDecl;
1702     ImplicitParamDecl *OldCXXABIThisDecl;
1703     llvm::Value *OldCXXABIThisValue;
1704     llvm::Value *OldCXXThisValue;
1705     CharUnits OldCXXABIThisAlignment;
1706     CharUnits OldCXXThisAlignment;
1707     Address OldReturnValue;
1708     QualType OldFnRetTy;
1709     CallArgList OldCXXInheritedCtorInitExprArgs;
1710   };
1711 
1712   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1713   // region body, and finalization codegen callbacks. This will class will also
1714   // contain privatization functions used by the privatization call backs
1715   //
1716   // TODO: this is temporary class for things that are being moved out of
1717   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1718   // utility function for use with the OMPBuilder. Once that move to use the
1719   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1720   // directly, or a new helper class that will contain functions used by both
1721   // this and the OMPBuilder
1722 
1723   struct OMPBuilderCBHelpers {
1724 
1725     OMPBuilderCBHelpers() = delete;
1726     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1727     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1728 
1729     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1730 
1731     /// Cleanup action for allocate support.
1732     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1733 
1734     private:
1735       llvm::CallInst *RTLFnCI;
1736 
1737     public:
1738       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1739         RLFnCI->removeFromParent();
1740       }
1741 
1742       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1743         if (!CGF.HaveInsertPoint())
1744           return;
1745         CGF.Builder.Insert(RTLFnCI);
1746       }
1747     };
1748 
1749     /// Returns address of the threadprivate variable for the current
1750     /// thread. This Also create any necessary OMP runtime calls.
1751     ///
1752     /// \param VD VarDecl for Threadprivate variable.
1753     /// \param VDAddr Address of the Vardecl
1754     /// \param Loc  The location where the barrier directive was encountered
1755     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1756                                           const VarDecl *VD, Address VDAddr,
1757                                           SourceLocation Loc);
1758 
1759     /// Gets the OpenMP-specific address of the local variable /p VD.
1760     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1761                                              const VarDecl *VD);
1762     /// Get the platform-specific name separator.
1763     /// \param Parts different parts of the final name that needs separation
1764     /// \param FirstSeparator First separator used between the initial two
1765     ///        parts of the name.
1766     /// \param Separator separator used between all of the rest consecutinve
1767     ///        parts of the name
1768     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1769                                              StringRef FirstSeparator = ".",
1770                                              StringRef Separator = ".");
1771     /// Emit the Finalization for an OMP region
1772     /// \param CGF	The Codegen function this belongs to
1773     /// \param IP	Insertion point for generating the finalization code.
1774     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1775       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1776       assert(IP.getBlock()->end() != IP.getPoint() &&
1777              "OpenMP IR Builder should cause terminated block!");
1778 
1779       llvm::BasicBlock *IPBB = IP.getBlock();
1780       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1781       assert(DestBB && "Finalization block should have one successor!");
1782 
1783       // erase and replace with cleanup branch.
1784       IPBB->getTerminator()->eraseFromParent();
1785       CGF.Builder.SetInsertPoint(IPBB);
1786       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1787       CGF.EmitBranchThroughCleanup(Dest);
1788     }
1789 
1790     /// Emit the body of an OMP region
1791     /// \param CGF	          The Codegen function this belongs to
1792     /// \param RegionBodyStmt The body statement for the OpenMP region being
1793     ///                       generated
1794     /// \param AllocaIP       Where to insert alloca instructions
1795     /// \param CodeGenIP      Where to insert the region code
1796     /// \param RegionName     Name to be used for new blocks
1797     static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1798                                          const Stmt *RegionBodyStmt,
1799                                          InsertPointTy AllocaIP,
1800                                          InsertPointTy CodeGenIP,
1801                                          Twine RegionName);
1802 
1803     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1804                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1805                                 ArrayRef<llvm::Value *> Args) {
1806       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1807       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1808         CodeGenIPBBTI->eraseFromParent();
1809 
1810       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1811 
1812       if (Fn->doesNotThrow())
1813         CGF.EmitNounwindRuntimeCall(Fn, Args);
1814       else
1815         CGF.EmitRuntimeCall(Fn, Args);
1816 
1817       if (CGF.Builder.saveIP().isSet())
1818         CGF.Builder.CreateBr(&FiniBB);
1819     }
1820 
1821     /// Emit the body of an OMP region that will be outlined in
1822     /// OpenMPIRBuilder::finalize().
1823     /// \param CGF	          The Codegen function this belongs to
1824     /// \param RegionBodyStmt The body statement for the OpenMP region being
1825     ///                       generated
1826     /// \param AllocaIP       Where to insert alloca instructions
1827     /// \param CodeGenIP      Where to insert the region code
1828     /// \param RegionName     Name to be used for new blocks
1829     static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1830                                           const Stmt *RegionBodyStmt,
1831                                           InsertPointTy AllocaIP,
1832                                           InsertPointTy CodeGenIP,
1833                                           Twine RegionName);
1834 
1835     /// RAII for preserving necessary info during Outlined region body codegen.
1836     class OutlinedRegionBodyRAII {
1837 
1838       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1839       CodeGenFunction::JumpDest OldReturnBlock;
1840       CodeGenFunction &CGF;
1841 
1842     public:
1843       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1844                              llvm::BasicBlock &RetBB)
1845           : CGF(cgf) {
1846         assert(AllocaIP.isSet() &&
1847                "Must specify Insertion point for allocas of outlined function");
1848         OldAllocaIP = CGF.AllocaInsertPt;
1849         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1850 
1851         OldReturnBlock = CGF.ReturnBlock;
1852         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1853       }
1854 
1855       ~OutlinedRegionBodyRAII() {
1856         CGF.AllocaInsertPt = OldAllocaIP;
1857         CGF.ReturnBlock = OldReturnBlock;
1858       }
1859     };
1860 
1861     /// RAII for preserving necessary info during inlined region body codegen.
1862     class InlinedRegionBodyRAII {
1863 
1864       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1865       CodeGenFunction &CGF;
1866 
1867     public:
1868       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1869                             llvm::BasicBlock &FiniBB)
1870           : CGF(cgf) {
1871         // Alloca insertion block should be in the entry block of the containing
1872         // function so it expects an empty AllocaIP in which case will reuse the
1873         // old alloca insertion point, or a new AllocaIP in the same block as
1874         // the old one
1875         assert((!AllocaIP.isSet() ||
1876                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1877                "Insertion point should be in the entry block of containing "
1878                "function!");
1879         OldAllocaIP = CGF.AllocaInsertPt;
1880         if (AllocaIP.isSet())
1881           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1882 
1883         // TODO: Remove the call, after making sure the counter is not used by
1884         //       the EHStack.
1885         // Since this is an inlined region, it should not modify the
1886         // ReturnBlock, and should reuse the one for the enclosing outlined
1887         // region. So, the JumpDest being return by the function is discarded
1888         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1889       }
1890 
1891       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1892     };
1893   };
1894 
1895 private:
1896   /// CXXThisDecl - When generating code for a C++ member function,
1897   /// this will hold the implicit 'this' declaration.
1898   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1899   llvm::Value *CXXABIThisValue = nullptr;
1900   llvm::Value *CXXThisValue = nullptr;
1901   CharUnits CXXABIThisAlignment;
1902   CharUnits CXXThisAlignment;
1903 
1904   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1905   /// this expression.
1906   Address CXXDefaultInitExprThis = Address::invalid();
1907 
1908   /// The current array initialization index when evaluating an
1909   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1910   llvm::Value *ArrayInitIndex = nullptr;
1911 
1912   /// The values of function arguments to use when evaluating
1913   /// CXXInheritedCtorInitExprs within this context.
1914   CallArgList CXXInheritedCtorInitExprArgs;
1915 
1916   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1917   /// destructor, this will hold the implicit argument (e.g. VTT).
1918   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1919   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1920 
1921   /// OutermostConditional - Points to the outermost active
1922   /// conditional control.  This is used so that we know if a
1923   /// temporary should be destroyed conditionally.
1924   ConditionalEvaluation *OutermostConditional = nullptr;
1925 
1926   /// The current lexical scope.
1927   LexicalScope *CurLexicalScope = nullptr;
1928 
1929   /// The current source location that should be used for exception
1930   /// handling code.
1931   SourceLocation CurEHLocation;
1932 
1933   /// BlockByrefInfos - For each __block variable, contains
1934   /// information about the layout of the variable.
1935   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1936 
1937   /// Used by -fsanitize=nullability-return to determine whether the return
1938   /// value can be checked.
1939   llvm::Value *RetValNullabilityPrecondition = nullptr;
1940 
1941   /// Check if -fsanitize=nullability-return instrumentation is required for
1942   /// this function.
1943   bool requiresReturnValueNullabilityCheck() const {
1944     return RetValNullabilityPrecondition;
1945   }
1946 
1947   /// Used to store precise source locations for return statements by the
1948   /// runtime return value checks.
1949   Address ReturnLocation = Address::invalid();
1950 
1951   /// Check if the return value of this function requires sanitization.
1952   bool requiresReturnValueCheck() const;
1953 
1954   llvm::BasicBlock *TerminateLandingPad = nullptr;
1955   llvm::BasicBlock *TerminateHandler = nullptr;
1956   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1957 
1958   /// Terminate funclets keyed by parent funclet pad.
1959   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1960 
1961   /// Largest vector width used in ths function. Will be used to create a
1962   /// function attribute.
1963   unsigned LargestVectorWidth = 0;
1964 
1965   /// True if we need emit the life-time markers. This is initially set in
1966   /// the constructor, but could be overwritten to true if this is a coroutine.
1967   bool ShouldEmitLifetimeMarkers;
1968 
1969   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1970   /// the function metadata.
1971   void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
1972 
1973 public:
1974   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1975   ~CodeGenFunction();
1976 
1977   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1978   ASTContext &getContext() const { return CGM.getContext(); }
1979   CGDebugInfo *getDebugInfo() {
1980     if (DisableDebugInfo)
1981       return nullptr;
1982     return DebugInfo;
1983   }
1984   void disableDebugInfo() { DisableDebugInfo = true; }
1985   void enableDebugInfo() { DisableDebugInfo = false; }
1986 
1987   bool shouldUseFusedARCCalls() {
1988     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1989   }
1990 
1991   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1992 
1993   /// Returns a pointer to the function's exception object and selector slot,
1994   /// which is assigned in every landing pad.
1995   Address getExceptionSlot();
1996   Address getEHSelectorSlot();
1997 
1998   /// Returns the contents of the function's exception object and selector
1999   /// slots.
2000   llvm::Value *getExceptionFromSlot();
2001   llvm::Value *getSelectorFromSlot();
2002 
2003   Address getNormalCleanupDestSlot();
2004 
2005   llvm::BasicBlock *getUnreachableBlock() {
2006     if (!UnreachableBlock) {
2007       UnreachableBlock = createBasicBlock("unreachable");
2008       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2009     }
2010     return UnreachableBlock;
2011   }
2012 
2013   llvm::BasicBlock *getInvokeDest() {
2014     if (!EHStack.requiresLandingPad()) return nullptr;
2015     return getInvokeDestImpl();
2016   }
2017 
2018   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
2019 
2020   const TargetInfo &getTarget() const { return Target; }
2021   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2022   const TargetCodeGenInfo &getTargetHooks() const {
2023     return CGM.getTargetCodeGenInfo();
2024   }
2025 
2026   //===--------------------------------------------------------------------===//
2027   //                                  Cleanups
2028   //===--------------------------------------------------------------------===//
2029 
2030   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2031 
2032   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2033                                         Address arrayEndPointer,
2034                                         QualType elementType,
2035                                         CharUnits elementAlignment,
2036                                         Destroyer *destroyer);
2037   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2038                                       llvm::Value *arrayEnd,
2039                                       QualType elementType,
2040                                       CharUnits elementAlignment,
2041                                       Destroyer *destroyer);
2042 
2043   void pushDestroy(QualType::DestructionKind dtorKind,
2044                    Address addr, QualType type);
2045   void pushEHDestroy(QualType::DestructionKind dtorKind,
2046                      Address addr, QualType type);
2047   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2048                    Destroyer *destroyer, bool useEHCleanupForArray);
2049   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2050                                    QualType type, Destroyer *destroyer,
2051                                    bool useEHCleanupForArray);
2052   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2053                                    llvm::Value *CompletePtr,
2054                                    QualType ElementType);
2055   void pushStackRestore(CleanupKind kind, Address SPMem);
2056   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2057                    bool useEHCleanupForArray);
2058   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2059                                         Destroyer *destroyer,
2060                                         bool useEHCleanupForArray,
2061                                         const VarDecl *VD);
2062   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2063                         QualType elementType, CharUnits elementAlign,
2064                         Destroyer *destroyer,
2065                         bool checkZeroLength, bool useEHCleanup);
2066 
2067   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2068 
2069   /// Determines whether an EH cleanup is required to destroy a type
2070   /// with the given destruction kind.
2071   bool needsEHCleanup(QualType::DestructionKind kind) {
2072     switch (kind) {
2073     case QualType::DK_none:
2074       return false;
2075     case QualType::DK_cxx_destructor:
2076     case QualType::DK_objc_weak_lifetime:
2077     case QualType::DK_nontrivial_c_struct:
2078       return getLangOpts().Exceptions;
2079     case QualType::DK_objc_strong_lifetime:
2080       return getLangOpts().Exceptions &&
2081              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2082     }
2083     llvm_unreachable("bad destruction kind");
2084   }
2085 
2086   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2087     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2088   }
2089 
2090   //===--------------------------------------------------------------------===//
2091   //                                  Objective-C
2092   //===--------------------------------------------------------------------===//
2093 
2094   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2095 
2096   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2097 
2098   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2099   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2100                           const ObjCPropertyImplDecl *PID);
2101   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2102                               const ObjCPropertyImplDecl *propImpl,
2103                               const ObjCMethodDecl *GetterMothodDecl,
2104                               llvm::Constant *AtomicHelperFn);
2105 
2106   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2107                                   ObjCMethodDecl *MD, bool ctor);
2108 
2109   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2110   /// for the given property.
2111   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2112                           const ObjCPropertyImplDecl *PID);
2113   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2114                               const ObjCPropertyImplDecl *propImpl,
2115                               llvm::Constant *AtomicHelperFn);
2116 
2117   //===--------------------------------------------------------------------===//
2118   //                                  Block Bits
2119   //===--------------------------------------------------------------------===//
2120 
2121   /// Emit block literal.
2122   /// \return an LLVM value which is a pointer to a struct which contains
2123   /// information about the block, including the block invoke function, the
2124   /// captured variables, etc.
2125   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2126 
2127   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2128                                         const CGBlockInfo &Info,
2129                                         const DeclMapTy &ldm,
2130                                         bool IsLambdaConversionToBlock,
2131                                         bool BuildGlobalBlock);
2132 
2133   /// Check if \p T is a C++ class that has a destructor that can throw.
2134   static bool cxxDestructorCanThrow(QualType T);
2135 
2136   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2137   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2138   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2139                                              const ObjCPropertyImplDecl *PID);
2140   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2141                                              const ObjCPropertyImplDecl *PID);
2142   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2143 
2144   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2145                          bool CanThrow);
2146 
2147   class AutoVarEmission;
2148 
2149   void emitByrefStructureInit(const AutoVarEmission &emission);
2150 
2151   /// Enter a cleanup to destroy a __block variable.  Note that this
2152   /// cleanup should be a no-op if the variable hasn't left the stack
2153   /// yet; if a cleanup is required for the variable itself, that needs
2154   /// to be done externally.
2155   ///
2156   /// \param Kind Cleanup kind.
2157   ///
2158   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2159   /// structure that will be passed to _Block_object_dispose. When
2160   /// \p LoadBlockVarAddr is true, the address of the field of the block
2161   /// structure that holds the address of the __block structure.
2162   ///
2163   /// \param Flags The flag that will be passed to _Block_object_dispose.
2164   ///
2165   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2166   /// \p Addr to get the address of the __block structure.
2167   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2168                          bool LoadBlockVarAddr, bool CanThrow);
2169 
2170   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2171                                 llvm::Value *ptr);
2172 
2173   Address LoadBlockStruct();
2174   Address GetAddrOfBlockDecl(const VarDecl *var);
2175 
2176   /// BuildBlockByrefAddress - Computes the location of the
2177   /// data in a variable which is declared as __block.
2178   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2179                                 bool followForward = true);
2180   Address emitBlockByrefAddress(Address baseAddr,
2181                                 const BlockByrefInfo &info,
2182                                 bool followForward,
2183                                 const llvm::Twine &name);
2184 
2185   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2186 
2187   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2188 
2189   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2190                     const CGFunctionInfo &FnInfo);
2191 
2192   /// Annotate the function with an attribute that disables TSan checking at
2193   /// runtime.
2194   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2195 
2196   /// Emit code for the start of a function.
2197   /// \param Loc       The location to be associated with the function.
2198   /// \param StartLoc  The location of the function body.
2199   void StartFunction(GlobalDecl GD,
2200                      QualType RetTy,
2201                      llvm::Function *Fn,
2202                      const CGFunctionInfo &FnInfo,
2203                      const FunctionArgList &Args,
2204                      SourceLocation Loc = SourceLocation(),
2205                      SourceLocation StartLoc = SourceLocation());
2206 
2207   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2208 
2209   void EmitConstructorBody(FunctionArgList &Args);
2210   void EmitDestructorBody(FunctionArgList &Args);
2211   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2212   void EmitFunctionBody(const Stmt *Body);
2213   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2214 
2215   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2216                                   CallArgList &CallArgs);
2217   void EmitLambdaBlockInvokeBody();
2218   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2219   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2220   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2221     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2222   }
2223   void EmitAsanPrologueOrEpilogue(bool Prologue);
2224 
2225   /// Emit the unified return block, trying to avoid its emission when
2226   /// possible.
2227   /// \return The debug location of the user written return statement if the
2228   /// return block is is avoided.
2229   llvm::DebugLoc EmitReturnBlock();
2230 
2231   /// FinishFunction - Complete IR generation of the current function. It is
2232   /// legal to call this function even if there is no current insertion point.
2233   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2234 
2235   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2236                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2237 
2238   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2239                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2240 
2241   void FinishThunk();
2242 
2243   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2244   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2245                          llvm::FunctionCallee Callee);
2246 
2247   /// Generate a thunk for the given method.
2248   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2249                      GlobalDecl GD, const ThunkInfo &Thunk,
2250                      bool IsUnprototyped);
2251 
2252   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2253                                        const CGFunctionInfo &FnInfo,
2254                                        GlobalDecl GD, const ThunkInfo &Thunk);
2255 
2256   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2257                         FunctionArgList &Args);
2258 
2259   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2260 
2261   /// Struct with all information about dynamic [sub]class needed to set vptr.
2262   struct VPtr {
2263     BaseSubobject Base;
2264     const CXXRecordDecl *NearestVBase;
2265     CharUnits OffsetFromNearestVBase;
2266     const CXXRecordDecl *VTableClass;
2267   };
2268 
2269   /// Initialize the vtable pointer of the given subobject.
2270   void InitializeVTablePointer(const VPtr &vptr);
2271 
2272   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2273 
2274   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2275   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2276 
2277   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2278                          CharUnits OffsetFromNearestVBase,
2279                          bool BaseIsNonVirtualPrimaryBase,
2280                          const CXXRecordDecl *VTableClass,
2281                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2282 
2283   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2284 
2285   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2286   /// to by This.
2287   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2288                             const CXXRecordDecl *VTableClass);
2289 
2290   enum CFITypeCheckKind {
2291     CFITCK_VCall,
2292     CFITCK_NVCall,
2293     CFITCK_DerivedCast,
2294     CFITCK_UnrelatedCast,
2295     CFITCK_ICall,
2296     CFITCK_NVMFCall,
2297     CFITCK_VMFCall,
2298   };
2299 
2300   /// Derived is the presumed address of an object of type T after a
2301   /// cast. If T is a polymorphic class type, emit a check that the virtual
2302   /// table for Derived belongs to a class derived from T.
2303   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2304                                  CFITypeCheckKind TCK, SourceLocation Loc);
2305 
2306   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2307   /// If vptr CFI is enabled, emit a check that VTable is valid.
2308   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2309                                  CFITypeCheckKind TCK, SourceLocation Loc);
2310 
2311   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2312   /// RD using llvm.type.test.
2313   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2314                           CFITypeCheckKind TCK, SourceLocation Loc);
2315 
2316   /// If whole-program virtual table optimization is enabled, emit an assumption
2317   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2318   /// enabled, emit a check that VTable is a member of RD's type identifier.
2319   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2320                                     llvm::Value *VTable, SourceLocation Loc);
2321 
2322   /// Returns whether we should perform a type checked load when loading a
2323   /// virtual function for virtual calls to members of RD. This is generally
2324   /// true when both vcall CFI and whole-program-vtables are enabled.
2325   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2326 
2327   /// Emit a type checked load from the given vtable.
2328   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2329                                          llvm::Value *VTable,
2330                                          llvm::Type *VTableTy,
2331                                          uint64_t VTableByteOffset);
2332 
2333   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2334   /// given phase of destruction for a destructor.  The end result
2335   /// should call destructors on members and base classes in reverse
2336   /// order of their construction.
2337   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2338 
2339   /// ShouldInstrumentFunction - Return true if the current function should be
2340   /// instrumented with __cyg_profile_func_* calls
2341   bool ShouldInstrumentFunction();
2342 
2343   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2344   /// should not be instrumented with sanitizers.
2345   bool ShouldSkipSanitizerInstrumentation();
2346 
2347   /// ShouldXRayInstrument - Return true if the current function should be
2348   /// instrumented with XRay nop sleds.
2349   bool ShouldXRayInstrumentFunction() const;
2350 
2351   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2352   /// XRay custom event handling calls.
2353   bool AlwaysEmitXRayCustomEvents() const;
2354 
2355   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2356   /// XRay typed event handling calls.
2357   bool AlwaysEmitXRayTypedEvents() const;
2358 
2359   /// Decode an address used in a function prologue, encoded by \c
2360   /// EncodeAddrForUseInPrologue.
2361   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2362                                         llvm::Value *EncodedAddr);
2363 
2364   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2365   /// arguments for the given function. This is also responsible for naming the
2366   /// LLVM function arguments.
2367   void EmitFunctionProlog(const CGFunctionInfo &FI,
2368                           llvm::Function *Fn,
2369                           const FunctionArgList &Args);
2370 
2371   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2372   /// given temporary.
2373   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2374                           SourceLocation EndLoc);
2375 
2376   /// Emit a test that checks if the return value \p RV is nonnull.
2377   void EmitReturnValueCheck(llvm::Value *RV);
2378 
2379   /// EmitStartEHSpec - Emit the start of the exception spec.
2380   void EmitStartEHSpec(const Decl *D);
2381 
2382   /// EmitEndEHSpec - Emit the end of the exception spec.
2383   void EmitEndEHSpec(const Decl *D);
2384 
2385   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2386   llvm::BasicBlock *getTerminateLandingPad();
2387 
2388   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2389   /// terminate.
2390   llvm::BasicBlock *getTerminateFunclet();
2391 
2392   /// getTerminateHandler - Return a handler (not a landing pad, just
2393   /// a catch handler) that just calls terminate.  This is used when
2394   /// a terminate scope encloses a try.
2395   llvm::BasicBlock *getTerminateHandler();
2396 
2397   llvm::Type *ConvertTypeForMem(QualType T);
2398   llvm::Type *ConvertType(QualType T);
2399   llvm::Type *ConvertType(const TypeDecl *T) {
2400     return ConvertType(getContext().getTypeDeclType(T));
2401   }
2402 
2403   /// LoadObjCSelf - Load the value of self. This function is only valid while
2404   /// generating code for an Objective-C method.
2405   llvm::Value *LoadObjCSelf();
2406 
2407   /// TypeOfSelfObject - Return type of object that this self represents.
2408   QualType TypeOfSelfObject();
2409 
2410   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2411   static TypeEvaluationKind getEvaluationKind(QualType T);
2412 
2413   static bool hasScalarEvaluationKind(QualType T) {
2414     return getEvaluationKind(T) == TEK_Scalar;
2415   }
2416 
2417   static bool hasAggregateEvaluationKind(QualType T) {
2418     return getEvaluationKind(T) == TEK_Aggregate;
2419   }
2420 
2421   /// createBasicBlock - Create an LLVM basic block.
2422   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2423                                      llvm::Function *parent = nullptr,
2424                                      llvm::BasicBlock *before = nullptr) {
2425     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2426   }
2427 
2428   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2429   /// label maps to.
2430   JumpDest getJumpDestForLabel(const LabelDecl *S);
2431 
2432   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2433   /// another basic block, simplify it. This assumes that no other code could
2434   /// potentially reference the basic block.
2435   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2436 
2437   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2438   /// adding a fall-through branch from the current insert block if
2439   /// necessary. It is legal to call this function even if there is no current
2440   /// insertion point.
2441   ///
2442   /// IsFinished - If true, indicates that the caller has finished emitting
2443   /// branches to the given block and does not expect to emit code into it. This
2444   /// means the block can be ignored if it is unreachable.
2445   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2446 
2447   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2448   /// near its uses, and leave the insertion point in it.
2449   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2450 
2451   /// EmitBranch - Emit a branch to the specified basic block from the current
2452   /// insert block, taking care to avoid creation of branches from dummy
2453   /// blocks. It is legal to call this function even if there is no current
2454   /// insertion point.
2455   ///
2456   /// This function clears the current insertion point. The caller should follow
2457   /// calls to this function with calls to Emit*Block prior to generation new
2458   /// code.
2459   void EmitBranch(llvm::BasicBlock *Block);
2460 
2461   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2462   /// indicates that the current code being emitted is unreachable.
2463   bool HaveInsertPoint() const {
2464     return Builder.GetInsertBlock() != nullptr;
2465   }
2466 
2467   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2468   /// emitted IR has a place to go. Note that by definition, if this function
2469   /// creates a block then that block is unreachable; callers may do better to
2470   /// detect when no insertion point is defined and simply skip IR generation.
2471   void EnsureInsertPoint() {
2472     if (!HaveInsertPoint())
2473       EmitBlock(createBasicBlock());
2474   }
2475 
2476   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2477   /// specified stmt yet.
2478   void ErrorUnsupported(const Stmt *S, const char *Type);
2479 
2480   //===--------------------------------------------------------------------===//
2481   //                                  Helpers
2482   //===--------------------------------------------------------------------===//
2483 
2484   LValue MakeAddrLValue(Address Addr, QualType T,
2485                         AlignmentSource Source = AlignmentSource::Type) {
2486     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2487                             CGM.getTBAAAccessInfo(T));
2488   }
2489 
2490   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2491                         TBAAAccessInfo TBAAInfo) {
2492     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2493   }
2494 
2495   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2496                         AlignmentSource Source = AlignmentSource::Type) {
2497     Address Addr(V, ConvertTypeForMem(T), Alignment);
2498     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2499                             CGM.getTBAAAccessInfo(T));
2500   }
2501 
2502   LValue
2503   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2504                             AlignmentSource Source = AlignmentSource::Type) {
2505     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2506                             TBAAAccessInfo());
2507   }
2508 
2509   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2510   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2511 
2512   Address EmitLoadOfReference(LValue RefLVal,
2513                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2514                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2515   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2516   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2517                                    AlignmentSource Source =
2518                                        AlignmentSource::Type) {
2519     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2520                                     CGM.getTBAAAccessInfo(RefTy));
2521     return EmitLoadOfReferenceLValue(RefLVal);
2522   }
2523 
2524   /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2525   /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2526   /// it is loaded from.
2527   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2528                             LValueBaseInfo *BaseInfo = nullptr,
2529                             TBAAAccessInfo *TBAAInfo = nullptr);
2530   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2531 
2532   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2533   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2534   /// insertion point of the builder. The caller is responsible for setting an
2535   /// appropriate alignment on
2536   /// the alloca.
2537   ///
2538   /// \p ArraySize is the number of array elements to be allocated if it
2539   ///    is not nullptr.
2540   ///
2541   /// LangAS::Default is the address space of pointers to local variables and
2542   /// temporaries, as exposed in the source language. In certain
2543   /// configurations, this is not the same as the alloca address space, and a
2544   /// cast is needed to lift the pointer from the alloca AS into
2545   /// LangAS::Default. This can happen when the target uses a restricted
2546   /// address space for the stack but the source language requires
2547   /// LangAS::Default to be a generic address space. The latter condition is
2548   /// common for most programming languages; OpenCL is an exception in that
2549   /// LangAS::Default is the private address space, which naturally maps
2550   /// to the stack.
2551   ///
2552   /// Because the address of a temporary is often exposed to the program in
2553   /// various ways, this function will perform the cast. The original alloca
2554   /// instruction is returned through \p Alloca if it is not nullptr.
2555   ///
2556   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2557   /// more efficient if the caller knows that the address will not be exposed.
2558   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2559                                      llvm::Value *ArraySize = nullptr);
2560   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2561                            const Twine &Name = "tmp",
2562                            llvm::Value *ArraySize = nullptr,
2563                            Address *Alloca = nullptr);
2564   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2565                                       const Twine &Name = "tmp",
2566                                       llvm::Value *ArraySize = nullptr);
2567 
2568   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2569   /// default ABI alignment of the given LLVM type.
2570   ///
2571   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2572   /// any given AST type that happens to have been lowered to the
2573   /// given IR type.  This should only ever be used for function-local,
2574   /// IR-driven manipulations like saving and restoring a value.  Do
2575   /// not hand this address off to arbitrary IRGen routines, and especially
2576   /// do not pass it as an argument to a function that might expect a
2577   /// properly ABI-aligned value.
2578   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2579                                        const Twine &Name = "tmp");
2580 
2581   /// CreateIRTemp - Create a temporary IR object of the given type, with
2582   /// appropriate alignment. This routine should only be used when an temporary
2583   /// value needs to be stored into an alloca (for example, to avoid explicit
2584   /// PHI construction), but the type is the IR type, not the type appropriate
2585   /// for storing in memory.
2586   ///
2587   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2588   /// ConvertType instead of ConvertTypeForMem.
2589   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2590 
2591   /// CreateMemTemp - Create a temporary memory object of the given type, with
2592   /// appropriate alignmen and cast it to the default address space. Returns
2593   /// the original alloca instruction by \p Alloca if it is not nullptr.
2594   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2595                         Address *Alloca = nullptr);
2596   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2597                         Address *Alloca = nullptr);
2598 
2599   /// CreateMemTemp - Create a temporary memory object of the given type, with
2600   /// appropriate alignmen without casting it to the default address space.
2601   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2602   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2603                                    const Twine &Name = "tmp");
2604 
2605   /// CreateAggTemp - Create a temporary memory object for the given
2606   /// aggregate type.
2607   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2608                              Address *Alloca = nullptr) {
2609     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2610                                  T.getQualifiers(),
2611                                  AggValueSlot::IsNotDestructed,
2612                                  AggValueSlot::DoesNotNeedGCBarriers,
2613                                  AggValueSlot::IsNotAliased,
2614                                  AggValueSlot::DoesNotOverlap);
2615   }
2616 
2617   /// Emit a cast to void* in the appropriate address space.
2618   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2619 
2620   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2621   /// expression and compare the result against zero, returning an Int1Ty value.
2622   llvm::Value *EvaluateExprAsBool(const Expr *E);
2623 
2624   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2625   void EmitIgnoredExpr(const Expr *E);
2626 
2627   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2628   /// any type.  The result is returned as an RValue struct.  If this is an
2629   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2630   /// the result should be returned.
2631   ///
2632   /// \param ignoreResult True if the resulting value isn't used.
2633   RValue EmitAnyExpr(const Expr *E,
2634                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2635                      bool ignoreResult = false);
2636 
2637   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2638   // or the value of the expression, depending on how va_list is defined.
2639   Address EmitVAListRef(const Expr *E);
2640 
2641   /// Emit a "reference" to a __builtin_ms_va_list; this is
2642   /// always the value of the expression, because a __builtin_ms_va_list is a
2643   /// pointer to a char.
2644   Address EmitMSVAListRef(const Expr *E);
2645 
2646   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2647   /// always be accessible even if no aggregate location is provided.
2648   RValue EmitAnyExprToTemp(const Expr *E);
2649 
2650   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2651   /// arbitrary expression into the given memory location.
2652   void EmitAnyExprToMem(const Expr *E, Address Location,
2653                         Qualifiers Quals, bool IsInitializer);
2654 
2655   void EmitAnyExprToExn(const Expr *E, Address Addr);
2656 
2657   /// EmitExprAsInit - Emits the code necessary to initialize a
2658   /// location in memory with the given initializer.
2659   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2660                       bool capturedByInit);
2661 
2662   /// hasVolatileMember - returns true if aggregate type has a volatile
2663   /// member.
2664   bool hasVolatileMember(QualType T) {
2665     if (const RecordType *RT = T->getAs<RecordType>()) {
2666       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2667       return RD->hasVolatileMember();
2668     }
2669     return false;
2670   }
2671 
2672   /// Determine whether a return value slot may overlap some other object.
2673   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2674     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2675     // class subobjects. These cases may need to be revisited depending on the
2676     // resolution of the relevant core issue.
2677     return AggValueSlot::DoesNotOverlap;
2678   }
2679 
2680   /// Determine whether a field initialization may overlap some other object.
2681   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2682 
2683   /// Determine whether a base class initialization may overlap some other
2684   /// object.
2685   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2686                                                 const CXXRecordDecl *BaseRD,
2687                                                 bool IsVirtual);
2688 
2689   /// Emit an aggregate assignment.
2690   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2691     bool IsVolatile = hasVolatileMember(EltTy);
2692     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2693   }
2694 
2695   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2696                              AggValueSlot::Overlap_t MayOverlap) {
2697     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2698   }
2699 
2700   /// EmitAggregateCopy - Emit an aggregate copy.
2701   ///
2702   /// \param isVolatile \c true iff either the source or the destination is
2703   ///        volatile.
2704   /// \param MayOverlap Whether the tail padding of the destination might be
2705   ///        occupied by some other object. More efficient code can often be
2706   ///        generated if not.
2707   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2708                          AggValueSlot::Overlap_t MayOverlap,
2709                          bool isVolatile = false);
2710 
2711   /// GetAddrOfLocalVar - Return the address of a local variable.
2712   Address GetAddrOfLocalVar(const VarDecl *VD) {
2713     auto it = LocalDeclMap.find(VD);
2714     assert(it != LocalDeclMap.end() &&
2715            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2716     return it->second;
2717   }
2718 
2719   /// Given an opaque value expression, return its LValue mapping if it exists,
2720   /// otherwise create one.
2721   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2722 
2723   /// Given an opaque value expression, return its RValue mapping if it exists,
2724   /// otherwise create one.
2725   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2726 
2727   /// Get the index of the current ArrayInitLoopExpr, if any.
2728   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2729 
2730   /// getAccessedFieldNo - Given an encoded value and a result number, return
2731   /// the input field number being accessed.
2732   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2733 
2734   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2735   llvm::BasicBlock *GetIndirectGotoBlock();
2736 
2737   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2738   static bool IsWrappedCXXThis(const Expr *E);
2739 
2740   /// EmitNullInitialization - Generate code to set a value of the given type to
2741   /// null, If the type contains data member pointers, they will be initialized
2742   /// to -1 in accordance with the Itanium C++ ABI.
2743   void EmitNullInitialization(Address DestPtr, QualType Ty);
2744 
2745   /// Emits a call to an LLVM variable-argument intrinsic, either
2746   /// \c llvm.va_start or \c llvm.va_end.
2747   /// \param ArgValue A reference to the \c va_list as emitted by either
2748   /// \c EmitVAListRef or \c EmitMSVAListRef.
2749   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2750   /// calls \c llvm.va_end.
2751   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2752 
2753   /// Generate code to get an argument from the passed in pointer
2754   /// and update it accordingly.
2755   /// \param VE The \c VAArgExpr for which to generate code.
2756   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2757   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2758   /// \returns A pointer to the argument.
2759   // FIXME: We should be able to get rid of this method and use the va_arg
2760   // instruction in LLVM instead once it works well enough.
2761   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2762 
2763   /// emitArrayLength - Compute the length of an array, even if it's a
2764   /// VLA, and drill down to the base element type.
2765   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2766                                QualType &baseType,
2767                                Address &addr);
2768 
2769   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2770   /// the given variably-modified type and store them in the VLASizeMap.
2771   ///
2772   /// This function can be called with a null (unreachable) insert point.
2773   void EmitVariablyModifiedType(QualType Ty);
2774 
2775   struct VlaSizePair {
2776     llvm::Value *NumElts;
2777     QualType Type;
2778 
2779     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2780   };
2781 
2782   /// Return the number of elements for a single dimension
2783   /// for the given array type.
2784   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2785   VlaSizePair getVLAElements1D(QualType vla);
2786 
2787   /// Returns an LLVM value that corresponds to the size,
2788   /// in non-variably-sized elements, of a variable length array type,
2789   /// plus that largest non-variably-sized element type.  Assumes that
2790   /// the type has already been emitted with EmitVariablyModifiedType.
2791   VlaSizePair getVLASize(const VariableArrayType *vla);
2792   VlaSizePair getVLASize(QualType vla);
2793 
2794   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2795   /// generating code for an C++ member function.
2796   llvm::Value *LoadCXXThis() {
2797     assert(CXXThisValue && "no 'this' value for this function");
2798     return CXXThisValue;
2799   }
2800   Address LoadCXXThisAddress();
2801 
2802   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2803   /// virtual bases.
2804   // FIXME: Every place that calls LoadCXXVTT is something
2805   // that needs to be abstracted properly.
2806   llvm::Value *LoadCXXVTT() {
2807     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2808     return CXXStructorImplicitParamValue;
2809   }
2810 
2811   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2812   /// complete class to the given direct base.
2813   Address
2814   GetAddressOfDirectBaseInCompleteClass(Address Value,
2815                                         const CXXRecordDecl *Derived,
2816                                         const CXXRecordDecl *Base,
2817                                         bool BaseIsVirtual);
2818 
2819   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2820 
2821   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2822   /// load of 'this' and returns address of the base class.
2823   Address GetAddressOfBaseClass(Address Value,
2824                                 const CXXRecordDecl *Derived,
2825                                 CastExpr::path_const_iterator PathBegin,
2826                                 CastExpr::path_const_iterator PathEnd,
2827                                 bool NullCheckValue, SourceLocation Loc);
2828 
2829   Address GetAddressOfDerivedClass(Address Value,
2830                                    const CXXRecordDecl *Derived,
2831                                    CastExpr::path_const_iterator PathBegin,
2832                                    CastExpr::path_const_iterator PathEnd,
2833                                    bool NullCheckValue);
2834 
2835   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2836   /// base constructor/destructor with virtual bases.
2837   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2838   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2839   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2840                                bool Delegating);
2841 
2842   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2843                                       CXXCtorType CtorType,
2844                                       const FunctionArgList &Args,
2845                                       SourceLocation Loc);
2846   // It's important not to confuse this and the previous function. Delegating
2847   // constructors are the C++0x feature. The constructor delegate optimization
2848   // is used to reduce duplication in the base and complete consturctors where
2849   // they are substantially the same.
2850   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2851                                         const FunctionArgList &Args);
2852 
2853   /// Emit a call to an inheriting constructor (that is, one that invokes a
2854   /// constructor inherited from a base class) by inlining its definition. This
2855   /// is necessary if the ABI does not support forwarding the arguments to the
2856   /// base class constructor (because they're variadic or similar).
2857   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2858                                                CXXCtorType CtorType,
2859                                                bool ForVirtualBase,
2860                                                bool Delegating,
2861                                                CallArgList &Args);
2862 
2863   /// Emit a call to a constructor inherited from a base class, passing the
2864   /// current constructor's arguments along unmodified (without even making
2865   /// a copy).
2866   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2867                                        bool ForVirtualBase, Address This,
2868                                        bool InheritedFromVBase,
2869                                        const CXXInheritedCtorInitExpr *E);
2870 
2871   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2872                               bool ForVirtualBase, bool Delegating,
2873                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2874 
2875   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2876                               bool ForVirtualBase, bool Delegating,
2877                               Address This, CallArgList &Args,
2878                               AggValueSlot::Overlap_t Overlap,
2879                               SourceLocation Loc, bool NewPointerIsChecked);
2880 
2881   /// Emit assumption load for all bases. Requires to be be called only on
2882   /// most-derived class and not under construction of the object.
2883   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2884 
2885   /// Emit assumption that vptr load == global vtable.
2886   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2887 
2888   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2889                                       Address This, Address Src,
2890                                       const CXXConstructExpr *E);
2891 
2892   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2893                                   const ArrayType *ArrayTy,
2894                                   Address ArrayPtr,
2895                                   const CXXConstructExpr *E,
2896                                   bool NewPointerIsChecked,
2897                                   bool ZeroInitialization = false);
2898 
2899   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2900                                   llvm::Value *NumElements,
2901                                   Address ArrayPtr,
2902                                   const CXXConstructExpr *E,
2903                                   bool NewPointerIsChecked,
2904                                   bool ZeroInitialization = false);
2905 
2906   static Destroyer destroyCXXObject;
2907 
2908   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2909                              bool ForVirtualBase, bool Delegating, Address This,
2910                              QualType ThisTy);
2911 
2912   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2913                                llvm::Type *ElementTy, Address NewPtr,
2914                                llvm::Value *NumElements,
2915                                llvm::Value *AllocSizeWithoutCookie);
2916 
2917   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2918                         Address Ptr);
2919 
2920   void EmitSehCppScopeBegin();
2921   void EmitSehCppScopeEnd();
2922   void EmitSehTryScopeBegin();
2923   void EmitSehTryScopeEnd();
2924 
2925   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2926   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2927 
2928   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2929   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2930 
2931   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2932                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2933                       CharUnits CookieSize = CharUnits());
2934 
2935   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2936                                   const CallExpr *TheCallExpr, bool IsDelete);
2937 
2938   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2939   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2940   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2941 
2942   /// Situations in which we might emit a check for the suitability of a
2943   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2944   /// compiler-rt.
2945   enum TypeCheckKind {
2946     /// Checking the operand of a load. Must be suitably sized and aligned.
2947     TCK_Load,
2948     /// Checking the destination of a store. Must be suitably sized and aligned.
2949     TCK_Store,
2950     /// Checking the bound value in a reference binding. Must be suitably sized
2951     /// and aligned, but is not required to refer to an object (until the
2952     /// reference is used), per core issue 453.
2953     TCK_ReferenceBinding,
2954     /// Checking the object expression in a non-static data member access. Must
2955     /// be an object within its lifetime.
2956     TCK_MemberAccess,
2957     /// Checking the 'this' pointer for a call to a non-static member function.
2958     /// Must be an object within its lifetime.
2959     TCK_MemberCall,
2960     /// Checking the 'this' pointer for a constructor call.
2961     TCK_ConstructorCall,
2962     /// Checking the operand of a static_cast to a derived pointer type. Must be
2963     /// null or an object within its lifetime.
2964     TCK_DowncastPointer,
2965     /// Checking the operand of a static_cast to a derived reference type. Must
2966     /// be an object within its lifetime.
2967     TCK_DowncastReference,
2968     /// Checking the operand of a cast to a base object. Must be suitably sized
2969     /// and aligned.
2970     TCK_Upcast,
2971     /// Checking the operand of a cast to a virtual base object. Must be an
2972     /// object within its lifetime.
2973     TCK_UpcastToVirtualBase,
2974     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2975     TCK_NonnullAssign,
2976     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2977     /// null or an object within its lifetime.
2978     TCK_DynamicOperation
2979   };
2980 
2981   /// Determine whether the pointer type check \p TCK permits null pointers.
2982   static bool isNullPointerAllowed(TypeCheckKind TCK);
2983 
2984   /// Determine whether the pointer type check \p TCK requires a vptr check.
2985   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2986 
2987   /// Whether any type-checking sanitizers are enabled. If \c false,
2988   /// calls to EmitTypeCheck can be skipped.
2989   bool sanitizePerformTypeCheck() const;
2990 
2991   /// Emit a check that \p V is the address of storage of the
2992   /// appropriate size and alignment for an object of type \p Type
2993   /// (or if ArraySize is provided, for an array of that bound).
2994   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2995                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2996                      SanitizerSet SkippedChecks = SanitizerSet(),
2997                      llvm::Value *ArraySize = nullptr);
2998 
2999   /// Emit a check that \p Base points into an array object, which
3000   /// we can access at index \p Index. \p Accessed should be \c false if we
3001   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3002   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3003                        QualType IndexType, bool Accessed);
3004 
3005   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3006                                        bool isInc, bool isPre);
3007   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3008                                          bool isInc, bool isPre);
3009 
3010   /// Converts Location to a DebugLoc, if debug information is enabled.
3011   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3012 
3013   /// Get the record field index as represented in debug info.
3014   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3015 
3016 
3017   //===--------------------------------------------------------------------===//
3018   //                            Declaration Emission
3019   //===--------------------------------------------------------------------===//
3020 
3021   /// EmitDecl - Emit a declaration.
3022   ///
3023   /// This function can be called with a null (unreachable) insert point.
3024   void EmitDecl(const Decl &D);
3025 
3026   /// EmitVarDecl - Emit a local variable declaration.
3027   ///
3028   /// This function can be called with a null (unreachable) insert point.
3029   void EmitVarDecl(const VarDecl &D);
3030 
3031   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3032                       bool capturedByInit);
3033 
3034   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3035                              llvm::Value *Address);
3036 
3037   /// Determine whether the given initializer is trivial in the sense
3038   /// that it requires no code to be generated.
3039   bool isTrivialInitializer(const Expr *Init);
3040 
3041   /// EmitAutoVarDecl - Emit an auto variable declaration.
3042   ///
3043   /// This function can be called with a null (unreachable) insert point.
3044   void EmitAutoVarDecl(const VarDecl &D);
3045 
3046   class AutoVarEmission {
3047     friend class CodeGenFunction;
3048 
3049     const VarDecl *Variable;
3050 
3051     /// The address of the alloca for languages with explicit address space
3052     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3053     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3054     /// as a global constant.
3055     Address Addr;
3056 
3057     llvm::Value *NRVOFlag;
3058 
3059     /// True if the variable is a __block variable that is captured by an
3060     /// escaping block.
3061     bool IsEscapingByRef;
3062 
3063     /// True if the variable is of aggregate type and has a constant
3064     /// initializer.
3065     bool IsConstantAggregate;
3066 
3067     /// Non-null if we should use lifetime annotations.
3068     llvm::Value *SizeForLifetimeMarkers;
3069 
3070     /// Address with original alloca instruction. Invalid if the variable was
3071     /// emitted as a global constant.
3072     Address AllocaAddr;
3073 
3074     struct Invalid {};
3075     AutoVarEmission(Invalid)
3076         : Variable(nullptr), Addr(Address::invalid()),
3077           AllocaAddr(Address::invalid()) {}
3078 
3079     AutoVarEmission(const VarDecl &variable)
3080         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3081           IsEscapingByRef(false), IsConstantAggregate(false),
3082           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3083 
3084     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3085 
3086   public:
3087     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3088 
3089     bool useLifetimeMarkers() const {
3090       return SizeForLifetimeMarkers != nullptr;
3091     }
3092     llvm::Value *getSizeForLifetimeMarkers() const {
3093       assert(useLifetimeMarkers());
3094       return SizeForLifetimeMarkers;
3095     }
3096 
3097     /// Returns the raw, allocated address, which is not necessarily
3098     /// the address of the object itself. It is casted to default
3099     /// address space for address space agnostic languages.
3100     Address getAllocatedAddress() const {
3101       return Addr;
3102     }
3103 
3104     /// Returns the address for the original alloca instruction.
3105     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3106 
3107     /// Returns the address of the object within this declaration.
3108     /// Note that this does not chase the forwarding pointer for
3109     /// __block decls.
3110     Address getObjectAddress(CodeGenFunction &CGF) const {
3111       if (!IsEscapingByRef) return Addr;
3112 
3113       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3114     }
3115   };
3116   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3117   void EmitAutoVarInit(const AutoVarEmission &emission);
3118   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3119   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3120                               QualType::DestructionKind dtorKind);
3121 
3122   /// Emits the alloca and debug information for the size expressions for each
3123   /// dimension of an array. It registers the association of its (1-dimensional)
3124   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3125   /// reference this node when creating the DISubrange object to describe the
3126   /// array types.
3127   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3128                                               const VarDecl &D,
3129                                               bool EmitDebugInfo);
3130 
3131   void EmitStaticVarDecl(const VarDecl &D,
3132                          llvm::GlobalValue::LinkageTypes Linkage);
3133 
3134   class ParamValue {
3135     llvm::Value *Value;
3136     llvm::Type *ElementType;
3137     unsigned Alignment;
3138     ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3139         : Value(V), ElementType(T), Alignment(A) {}
3140   public:
3141     static ParamValue forDirect(llvm::Value *value) {
3142       return ParamValue(value, nullptr, 0);
3143     }
3144     static ParamValue forIndirect(Address addr) {
3145       assert(!addr.getAlignment().isZero());
3146       return ParamValue(addr.getPointer(), addr.getElementType(),
3147                         addr.getAlignment().getQuantity());
3148     }
3149 
3150     bool isIndirect() const { return Alignment != 0; }
3151     llvm::Value *getAnyValue() const { return Value; }
3152 
3153     llvm::Value *getDirectValue() const {
3154       assert(!isIndirect());
3155       return Value;
3156     }
3157 
3158     Address getIndirectAddress() const {
3159       assert(isIndirect());
3160       return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3161     }
3162   };
3163 
3164   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3165   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3166 
3167   /// protectFromPeepholes - Protect a value that we're intending to
3168   /// store to the side, but which will probably be used later, from
3169   /// aggressive peepholing optimizations that might delete it.
3170   ///
3171   /// Pass the result to unprotectFromPeepholes to declare that
3172   /// protection is no longer required.
3173   ///
3174   /// There's no particular reason why this shouldn't apply to
3175   /// l-values, it's just that no existing peepholes work on pointers.
3176   PeepholeProtection protectFromPeepholes(RValue rvalue);
3177   void unprotectFromPeepholes(PeepholeProtection protection);
3178 
3179   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3180                                     SourceLocation Loc,
3181                                     SourceLocation AssumptionLoc,
3182                                     llvm::Value *Alignment,
3183                                     llvm::Value *OffsetValue,
3184                                     llvm::Value *TheCheck,
3185                                     llvm::Instruction *Assumption);
3186 
3187   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3188                                SourceLocation Loc, SourceLocation AssumptionLoc,
3189                                llvm::Value *Alignment,
3190                                llvm::Value *OffsetValue = nullptr);
3191 
3192   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3193                                SourceLocation AssumptionLoc,
3194                                llvm::Value *Alignment,
3195                                llvm::Value *OffsetValue = nullptr);
3196 
3197   //===--------------------------------------------------------------------===//
3198   //                             Statement Emission
3199   //===--------------------------------------------------------------------===//
3200 
3201   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3202   void EmitStopPoint(const Stmt *S);
3203 
3204   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3205   /// this function even if there is no current insertion point.
3206   ///
3207   /// This function may clear the current insertion point; callers should use
3208   /// EnsureInsertPoint if they wish to subsequently generate code without first
3209   /// calling EmitBlock, EmitBranch, or EmitStmt.
3210   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3211 
3212   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3213   /// necessarily require an insertion point or debug information; typically
3214   /// because the statement amounts to a jump or a container of other
3215   /// statements.
3216   ///
3217   /// \return True if the statement was handled.
3218   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3219 
3220   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3221                            AggValueSlot AVS = AggValueSlot::ignored());
3222   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3223                                        bool GetLast = false,
3224                                        AggValueSlot AVS =
3225                                                 AggValueSlot::ignored());
3226 
3227   /// EmitLabel - Emit the block for the given label. It is legal to call this
3228   /// function even if there is no current insertion point.
3229   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3230 
3231   void EmitLabelStmt(const LabelStmt &S);
3232   void EmitAttributedStmt(const AttributedStmt &S);
3233   void EmitGotoStmt(const GotoStmt &S);
3234   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3235   void EmitIfStmt(const IfStmt &S);
3236 
3237   void EmitWhileStmt(const WhileStmt &S,
3238                      ArrayRef<const Attr *> Attrs = None);
3239   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3240   void EmitForStmt(const ForStmt &S,
3241                    ArrayRef<const Attr *> Attrs = None);
3242   void EmitReturnStmt(const ReturnStmt &S);
3243   void EmitDeclStmt(const DeclStmt &S);
3244   void EmitBreakStmt(const BreakStmt &S);
3245   void EmitContinueStmt(const ContinueStmt &S);
3246   void EmitSwitchStmt(const SwitchStmt &S);
3247   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3248   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3249   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3250   void EmitAsmStmt(const AsmStmt &S);
3251 
3252   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3253   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3254   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3255   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3256   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3257 
3258   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3259   void EmitCoreturnStmt(const CoreturnStmt &S);
3260   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3261                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3262                          bool ignoreResult = false);
3263   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3264   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3265                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3266                          bool ignoreResult = false);
3267   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3268   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3269 
3270   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3271   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3272 
3273   void EmitCXXTryStmt(const CXXTryStmt &S);
3274   void EmitSEHTryStmt(const SEHTryStmt &S);
3275   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3276   void EnterSEHTryStmt(const SEHTryStmt &S);
3277   void ExitSEHTryStmt(const SEHTryStmt &S);
3278   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3279                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3280 
3281   void pushSEHCleanup(CleanupKind kind,
3282                       llvm::Function *FinallyFunc);
3283   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3284                               const Stmt *OutlinedStmt);
3285 
3286   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3287                                             const SEHExceptStmt &Except);
3288 
3289   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3290                                              const SEHFinallyStmt &Finally);
3291 
3292   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3293                                 llvm::Value *ParentFP,
3294                                 llvm::Value *EntryEBP);
3295   llvm::Value *EmitSEHExceptionCode();
3296   llvm::Value *EmitSEHExceptionInfo();
3297   llvm::Value *EmitSEHAbnormalTermination();
3298 
3299   /// Emit simple code for OpenMP directives in Simd-only mode.
3300   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3301 
3302   /// Scan the outlined statement for captures from the parent function. For
3303   /// each capture, mark the capture as escaped and emit a call to
3304   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3305   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3306                           bool IsFilter);
3307 
3308   /// Recovers the address of a local in a parent function. ParentVar is the
3309   /// address of the variable used in the immediate parent function. It can
3310   /// either be an alloca or a call to llvm.localrecover if there are nested
3311   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3312   /// frame.
3313   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3314                                     Address ParentVar,
3315                                     llvm::Value *ParentFP);
3316 
3317   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3318                            ArrayRef<const Attr *> Attrs = None);
3319 
3320   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3321   class OMPCancelStackRAII {
3322     CodeGenFunction &CGF;
3323 
3324   public:
3325     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3326                        bool HasCancel)
3327         : CGF(CGF) {
3328       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3329     }
3330     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3331   };
3332 
3333   /// Returns calculated size of the specified type.
3334   llvm::Value *getTypeSize(QualType Ty);
3335   LValue InitCapturedStruct(const CapturedStmt &S);
3336   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3337   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3338   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3339   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3340                                                      SourceLocation Loc);
3341   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3342                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3343   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3344                           SourceLocation Loc);
3345   /// Perform element by element copying of arrays with type \a
3346   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3347   /// generated by \a CopyGen.
3348   ///
3349   /// \param DestAddr Address of the destination array.
3350   /// \param SrcAddr Address of the source array.
3351   /// \param OriginalType Type of destination and source arrays.
3352   /// \param CopyGen Copying procedure that copies value of single array element
3353   /// to another single array element.
3354   void EmitOMPAggregateAssign(
3355       Address DestAddr, Address SrcAddr, QualType OriginalType,
3356       const llvm::function_ref<void(Address, Address)> CopyGen);
3357   /// Emit proper copying of data from one variable to another.
3358   ///
3359   /// \param OriginalType Original type of the copied variables.
3360   /// \param DestAddr Destination address.
3361   /// \param SrcAddr Source address.
3362   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3363   /// type of the base array element).
3364   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3365   /// the base array element).
3366   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3367   /// DestVD.
3368   void EmitOMPCopy(QualType OriginalType,
3369                    Address DestAddr, Address SrcAddr,
3370                    const VarDecl *DestVD, const VarDecl *SrcVD,
3371                    const Expr *Copy);
3372   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3373   /// \a X = \a E \a BO \a E.
3374   ///
3375   /// \param X Value to be updated.
3376   /// \param E Update value.
3377   /// \param BO Binary operation for update operation.
3378   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3379   /// expression, false otherwise.
3380   /// \param AO Atomic ordering of the generated atomic instructions.
3381   /// \param CommonGen Code generator for complex expressions that cannot be
3382   /// expressed through atomicrmw instruction.
3383   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3384   /// generated, <false, RValue::get(nullptr)> otherwise.
3385   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3386       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3387       llvm::AtomicOrdering AO, SourceLocation Loc,
3388       const llvm::function_ref<RValue(RValue)> CommonGen);
3389   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3390                                  OMPPrivateScope &PrivateScope);
3391   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3392                             OMPPrivateScope &PrivateScope);
3393   void EmitOMPUseDevicePtrClause(
3394       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3395       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3396   void EmitOMPUseDeviceAddrClause(
3397       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3398       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3399   /// Emit code for copyin clause in \a D directive. The next code is
3400   /// generated at the start of outlined functions for directives:
3401   /// \code
3402   /// threadprivate_var1 = master_threadprivate_var1;
3403   /// operator=(threadprivate_var2, master_threadprivate_var2);
3404   /// ...
3405   /// __kmpc_barrier(&loc, global_tid);
3406   /// \endcode
3407   ///
3408   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3409   /// \returns true if at least one copyin variable is found, false otherwise.
3410   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3411   /// Emit initial code for lastprivate variables. If some variable is
3412   /// not also firstprivate, then the default initialization is used. Otherwise
3413   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3414   /// method.
3415   ///
3416   /// \param D Directive that may have 'lastprivate' directives.
3417   /// \param PrivateScope Private scope for capturing lastprivate variables for
3418   /// proper codegen in internal captured statement.
3419   ///
3420   /// \returns true if there is at least one lastprivate variable, false
3421   /// otherwise.
3422   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3423                                     OMPPrivateScope &PrivateScope);
3424   /// Emit final copying of lastprivate values to original variables at
3425   /// the end of the worksharing or simd directive.
3426   ///
3427   /// \param D Directive that has at least one 'lastprivate' directives.
3428   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3429   /// it is the last iteration of the loop code in associated directive, or to
3430   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3431   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3432                                      bool NoFinals,
3433                                      llvm::Value *IsLastIterCond = nullptr);
3434   /// Emit initial code for linear clauses.
3435   void EmitOMPLinearClause(const OMPLoopDirective &D,
3436                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3437   /// Emit final code for linear clauses.
3438   /// \param CondGen Optional conditional code for final part of codegen for
3439   /// linear clause.
3440   void EmitOMPLinearClauseFinal(
3441       const OMPLoopDirective &D,
3442       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3443   /// Emit initial code for reduction variables. Creates reduction copies
3444   /// and initializes them with the values according to OpenMP standard.
3445   ///
3446   /// \param D Directive (possibly) with the 'reduction' clause.
3447   /// \param PrivateScope Private scope for capturing reduction variables for
3448   /// proper codegen in internal captured statement.
3449   ///
3450   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3451                                   OMPPrivateScope &PrivateScope,
3452                                   bool ForInscan = false);
3453   /// Emit final update of reduction values to original variables at
3454   /// the end of the directive.
3455   ///
3456   /// \param D Directive that has at least one 'reduction' directives.
3457   /// \param ReductionKind The kind of reduction to perform.
3458   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3459                                    const OpenMPDirectiveKind ReductionKind);
3460   /// Emit initial code for linear variables. Creates private copies
3461   /// and initializes them with the values according to OpenMP standard.
3462   ///
3463   /// \param D Directive (possibly) with the 'linear' clause.
3464   /// \return true if at least one linear variable is found that should be
3465   /// initialized with the value of the original variable, false otherwise.
3466   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3467 
3468   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3469                                         llvm::Function * /*OutlinedFn*/,
3470                                         const OMPTaskDataTy & /*Data*/)>
3471       TaskGenTy;
3472   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3473                                  const OpenMPDirectiveKind CapturedRegion,
3474                                  const RegionCodeGenTy &BodyGen,
3475                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3476   struct OMPTargetDataInfo {
3477     Address BasePointersArray = Address::invalid();
3478     Address PointersArray = Address::invalid();
3479     Address SizesArray = Address::invalid();
3480     Address MappersArray = Address::invalid();
3481     unsigned NumberOfTargetItems = 0;
3482     explicit OMPTargetDataInfo() = default;
3483     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3484                       Address SizesArray, Address MappersArray,
3485                       unsigned NumberOfTargetItems)
3486         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3487           SizesArray(SizesArray), MappersArray(MappersArray),
3488           NumberOfTargetItems(NumberOfTargetItems) {}
3489   };
3490   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3491                                        const RegionCodeGenTy &BodyGen,
3492                                        OMPTargetDataInfo &InputInfo);
3493   void processInReduction(const OMPExecutableDirective &S,
3494                           OMPTaskDataTy &Data,
3495                           CodeGenFunction &CGF,
3496                           const CapturedStmt *CS,
3497                           OMPPrivateScope &Scope);
3498   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3499   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3500   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3501   void EmitOMPTileDirective(const OMPTileDirective &S);
3502   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3503   void EmitOMPForDirective(const OMPForDirective &S);
3504   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3505   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3506   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3507   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3508   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3509   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3510   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3511   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3512   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3513   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3514   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3515   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3516   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3517   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3518   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3519   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3520   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3521   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3522   void EmitOMPScanDirective(const OMPScanDirective &S);
3523   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3524   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3525   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3526   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3527   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3528   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3529   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3530   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3531   void
3532   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3533   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3534   void
3535   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3536   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3537   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3538   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3539   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3540   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3541   void
3542   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3543   void EmitOMPParallelMasterTaskLoopDirective(
3544       const OMPParallelMasterTaskLoopDirective &S);
3545   void EmitOMPParallelMasterTaskLoopSimdDirective(
3546       const OMPParallelMasterTaskLoopSimdDirective &S);
3547   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3548   void EmitOMPDistributeParallelForDirective(
3549       const OMPDistributeParallelForDirective &S);
3550   void EmitOMPDistributeParallelForSimdDirective(
3551       const OMPDistributeParallelForSimdDirective &S);
3552   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3553   void EmitOMPTargetParallelForSimdDirective(
3554       const OMPTargetParallelForSimdDirective &S);
3555   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3556   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3557   void
3558   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3559   void EmitOMPTeamsDistributeParallelForSimdDirective(
3560       const OMPTeamsDistributeParallelForSimdDirective &S);
3561   void EmitOMPTeamsDistributeParallelForDirective(
3562       const OMPTeamsDistributeParallelForDirective &S);
3563   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3564   void EmitOMPTargetTeamsDistributeDirective(
3565       const OMPTargetTeamsDistributeDirective &S);
3566   void EmitOMPTargetTeamsDistributeParallelForDirective(
3567       const OMPTargetTeamsDistributeParallelForDirective &S);
3568   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3569       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3570   void EmitOMPTargetTeamsDistributeSimdDirective(
3571       const OMPTargetTeamsDistributeSimdDirective &S);
3572   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3573   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3574 
3575   /// Emit device code for the target directive.
3576   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3577                                           StringRef ParentName,
3578                                           const OMPTargetDirective &S);
3579   static void
3580   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3581                                       const OMPTargetParallelDirective &S);
3582   /// Emit device code for the target parallel for directive.
3583   static void EmitOMPTargetParallelForDeviceFunction(
3584       CodeGenModule &CGM, StringRef ParentName,
3585       const OMPTargetParallelForDirective &S);
3586   /// Emit device code for the target parallel for simd directive.
3587   static void EmitOMPTargetParallelForSimdDeviceFunction(
3588       CodeGenModule &CGM, StringRef ParentName,
3589       const OMPTargetParallelForSimdDirective &S);
3590   /// Emit device code for the target teams directive.
3591   static void
3592   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3593                                    const OMPTargetTeamsDirective &S);
3594   /// Emit device code for the target teams distribute directive.
3595   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3596       CodeGenModule &CGM, StringRef ParentName,
3597       const OMPTargetTeamsDistributeDirective &S);
3598   /// Emit device code for the target teams distribute simd directive.
3599   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3600       CodeGenModule &CGM, StringRef ParentName,
3601       const OMPTargetTeamsDistributeSimdDirective &S);
3602   /// Emit device code for the target simd directive.
3603   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3604                                               StringRef ParentName,
3605                                               const OMPTargetSimdDirective &S);
3606   /// Emit device code for the target teams distribute parallel for simd
3607   /// directive.
3608   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3609       CodeGenModule &CGM, StringRef ParentName,
3610       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3611 
3612   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3613       CodeGenModule &CGM, StringRef ParentName,
3614       const OMPTargetTeamsDistributeParallelForDirective &S);
3615 
3616   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3617   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3618   /// future it is meant to be the number of loops expected in the loop nests
3619   /// (usually specified by the "collapse" clause) that are collapsed to a
3620   /// single loop by this function.
3621   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3622                                                              int Depth);
3623 
3624   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3625   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3626 
3627   /// Emit inner loop of the worksharing/simd construct.
3628   ///
3629   /// \param S Directive, for which the inner loop must be emitted.
3630   /// \param RequiresCleanup true, if directive has some associated private
3631   /// variables.
3632   /// \param LoopCond Bollean condition for loop continuation.
3633   /// \param IncExpr Increment expression for loop control variable.
3634   /// \param BodyGen Generator for the inner body of the inner loop.
3635   /// \param PostIncGen Genrator for post-increment code (required for ordered
3636   /// loop directvies).
3637   void EmitOMPInnerLoop(
3638       const OMPExecutableDirective &S, bool RequiresCleanup,
3639       const Expr *LoopCond, const Expr *IncExpr,
3640       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3641       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3642 
3643   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3644   /// Emit initial code for loop counters of loop-based directives.
3645   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3646                                   OMPPrivateScope &LoopScope);
3647 
3648   /// Helper for the OpenMP loop directives.
3649   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3650 
3651   /// Emit code for the worksharing loop-based directive.
3652   /// \return true, if this construct has any lastprivate clause, false -
3653   /// otherwise.
3654   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3655                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3656                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3657 
3658   /// Emit code for the distribute loop-based directive.
3659   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3660                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3661 
3662   /// Helpers for the OpenMP loop directives.
3663   void EmitOMPSimdInit(const OMPLoopDirective &D);
3664   void EmitOMPSimdFinal(
3665       const OMPLoopDirective &D,
3666       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3667 
3668   /// Emits the lvalue for the expression with possibly captured variable.
3669   LValue EmitOMPSharedLValue(const Expr *E);
3670 
3671 private:
3672   /// Helpers for blocks.
3673   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3674 
3675   /// struct with the values to be passed to the OpenMP loop-related functions
3676   struct OMPLoopArguments {
3677     /// loop lower bound
3678     Address LB = Address::invalid();
3679     /// loop upper bound
3680     Address UB = Address::invalid();
3681     /// loop stride
3682     Address ST = Address::invalid();
3683     /// isLastIteration argument for runtime functions
3684     Address IL = Address::invalid();
3685     /// Chunk value generated by sema
3686     llvm::Value *Chunk = nullptr;
3687     /// EnsureUpperBound
3688     Expr *EUB = nullptr;
3689     /// IncrementExpression
3690     Expr *IncExpr = nullptr;
3691     /// Loop initialization
3692     Expr *Init = nullptr;
3693     /// Loop exit condition
3694     Expr *Cond = nullptr;
3695     /// Update of LB after a whole chunk has been executed
3696     Expr *NextLB = nullptr;
3697     /// Update of UB after a whole chunk has been executed
3698     Expr *NextUB = nullptr;
3699     OMPLoopArguments() = default;
3700     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3701                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3702                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3703                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3704                      Expr *NextUB = nullptr)
3705         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3706           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3707           NextUB(NextUB) {}
3708   };
3709   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3710                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3711                         const OMPLoopArguments &LoopArgs,
3712                         const CodeGenLoopTy &CodeGenLoop,
3713                         const CodeGenOrderedTy &CodeGenOrdered);
3714   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3715                            bool IsMonotonic, const OMPLoopDirective &S,
3716                            OMPPrivateScope &LoopScope, bool Ordered,
3717                            const OMPLoopArguments &LoopArgs,
3718                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3719   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3720                                   const OMPLoopDirective &S,
3721                                   OMPPrivateScope &LoopScope,
3722                                   const OMPLoopArguments &LoopArgs,
3723                                   const CodeGenLoopTy &CodeGenLoopContent);
3724   /// Emit code for sections directive.
3725   void EmitSections(const OMPExecutableDirective &S);
3726 
3727 public:
3728 
3729   //===--------------------------------------------------------------------===//
3730   //                         LValue Expression Emission
3731   //===--------------------------------------------------------------------===//
3732 
3733   /// Create a check that a scalar RValue is non-null.
3734   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3735 
3736   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3737   RValue GetUndefRValue(QualType Ty);
3738 
3739   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3740   /// and issue an ErrorUnsupported style diagnostic (using the
3741   /// provided Name).
3742   RValue EmitUnsupportedRValue(const Expr *E,
3743                                const char *Name);
3744 
3745   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3746   /// an ErrorUnsupported style diagnostic (using the provided Name).
3747   LValue EmitUnsupportedLValue(const Expr *E,
3748                                const char *Name);
3749 
3750   /// EmitLValue - Emit code to compute a designator that specifies the location
3751   /// of the expression.
3752   ///
3753   /// This can return one of two things: a simple address or a bitfield
3754   /// reference.  In either case, the LLVM Value* in the LValue structure is
3755   /// guaranteed to be an LLVM pointer type.
3756   ///
3757   /// If this returns a bitfield reference, nothing about the pointee type of
3758   /// the LLVM value is known: For example, it may not be a pointer to an
3759   /// integer.
3760   ///
3761   /// If this returns a normal address, and if the lvalue's C type is fixed
3762   /// size, this method guarantees that the returned pointer type will point to
3763   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3764   /// variable length type, this is not possible.
3765   ///
3766   LValue EmitLValue(const Expr *E);
3767 
3768   /// Same as EmitLValue but additionally we generate checking code to
3769   /// guard against undefined behavior.  This is only suitable when we know
3770   /// that the address will be used to access the object.
3771   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3772 
3773   RValue convertTempToRValue(Address addr, QualType type,
3774                              SourceLocation Loc);
3775 
3776   void EmitAtomicInit(Expr *E, LValue lvalue);
3777 
3778   bool LValueIsSuitableForInlineAtomic(LValue Src);
3779 
3780   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3781                         AggValueSlot Slot = AggValueSlot::ignored());
3782 
3783   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3784                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3785                         AggValueSlot slot = AggValueSlot::ignored());
3786 
3787   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3788 
3789   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3790                        bool IsVolatile, bool isInit);
3791 
3792   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3793       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3794       llvm::AtomicOrdering Success =
3795           llvm::AtomicOrdering::SequentiallyConsistent,
3796       llvm::AtomicOrdering Failure =
3797           llvm::AtomicOrdering::SequentiallyConsistent,
3798       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3799 
3800   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3801                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3802                         bool IsVolatile);
3803 
3804   /// EmitToMemory - Change a scalar value from its value
3805   /// representation to its in-memory representation.
3806   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3807 
3808   /// EmitFromMemory - Change a scalar value from its memory
3809   /// representation to its value representation.
3810   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3811 
3812   /// Check if the scalar \p Value is within the valid range for the given
3813   /// type \p Ty.
3814   ///
3815   /// Returns true if a check is needed (even if the range is unknown).
3816   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3817                             SourceLocation Loc);
3818 
3819   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3820   /// care to appropriately convert from the memory representation to
3821   /// the LLVM value representation.
3822   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3823                                 SourceLocation Loc,
3824                                 AlignmentSource Source = AlignmentSource::Type,
3825                                 bool isNontemporal = false) {
3826     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3827                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3828   }
3829 
3830   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3831                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3832                                 TBAAAccessInfo TBAAInfo,
3833                                 bool isNontemporal = false);
3834 
3835   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3836   /// care to appropriately convert from the memory representation to
3837   /// the LLVM value representation.  The l-value must be a simple
3838   /// l-value.
3839   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3840 
3841   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3842   /// care to appropriately convert from the memory representation to
3843   /// the LLVM value representation.
3844   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3845                          bool Volatile, QualType Ty,
3846                          AlignmentSource Source = AlignmentSource::Type,
3847                          bool isInit = false, bool isNontemporal = false) {
3848     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3849                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3850   }
3851 
3852   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3853                          bool Volatile, QualType Ty,
3854                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3855                          bool isInit = false, bool isNontemporal = false);
3856 
3857   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3858   /// care to appropriately convert from the memory representation to
3859   /// the LLVM value representation.  The l-value must be a simple
3860   /// l-value.  The isInit flag indicates whether this is an initialization.
3861   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3862   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3863 
3864   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3865   /// this method emits the address of the lvalue, then loads the result as an
3866   /// rvalue, returning the rvalue.
3867   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3868   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3869   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3870   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3871 
3872   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3873   /// lvalue, where both are guaranteed to the have the same type, and that type
3874   /// is 'Ty'.
3875   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3876   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3877   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3878 
3879   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3880   /// as EmitStoreThroughLValue.
3881   ///
3882   /// \param Result [out] - If non-null, this will be set to a Value* for the
3883   /// bit-field contents after the store, appropriate for use as the result of
3884   /// an assignment to the bit-field.
3885   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3886                                       llvm::Value **Result=nullptr);
3887 
3888   /// Emit an l-value for an assignment (simple or compound) of complex type.
3889   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3890   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3891   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3892                                              llvm::Value *&Result);
3893 
3894   // Note: only available for agg return types
3895   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3896   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3897   // Note: only available for agg return types
3898   LValue EmitCallExprLValue(const CallExpr *E);
3899   // Note: only available for agg return types
3900   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3901   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3902   LValue EmitStringLiteralLValue(const StringLiteral *E);
3903   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3904   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3905   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3906   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3907                                 bool Accessed = false);
3908   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3909   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3910                                  bool IsLowerBound = true);
3911   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3912   LValue EmitMemberExpr(const MemberExpr *E);
3913   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3914   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3915   LValue EmitInitListLValue(const InitListExpr *E);
3916   void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
3917   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3918   LValue EmitCastLValue(const CastExpr *E);
3919   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3920   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3921 
3922   Address EmitExtVectorElementLValue(LValue V);
3923 
3924   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3925 
3926   Address EmitArrayToPointerDecay(const Expr *Array,
3927                                   LValueBaseInfo *BaseInfo = nullptr,
3928                                   TBAAAccessInfo *TBAAInfo = nullptr);
3929 
3930   class ConstantEmission {
3931     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3932     ConstantEmission(llvm::Constant *C, bool isReference)
3933       : ValueAndIsReference(C, isReference) {}
3934   public:
3935     ConstantEmission() {}
3936     static ConstantEmission forReference(llvm::Constant *C) {
3937       return ConstantEmission(C, true);
3938     }
3939     static ConstantEmission forValue(llvm::Constant *C) {
3940       return ConstantEmission(C, false);
3941     }
3942 
3943     explicit operator bool() const {
3944       return ValueAndIsReference.getOpaqueValue() != nullptr;
3945     }
3946 
3947     bool isReference() const { return ValueAndIsReference.getInt(); }
3948     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3949       assert(isReference());
3950       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3951                                             refExpr->getType());
3952     }
3953 
3954     llvm::Constant *getValue() const {
3955       assert(!isReference());
3956       return ValueAndIsReference.getPointer();
3957     }
3958   };
3959 
3960   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3961   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3962   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3963 
3964   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3965                                 AggValueSlot slot = AggValueSlot::ignored());
3966   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3967 
3968   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3969                               const ObjCIvarDecl *Ivar);
3970   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3971   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3972 
3973   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3974   /// if the Field is a reference, this will return the address of the reference
3975   /// and not the address of the value stored in the reference.
3976   LValue EmitLValueForFieldInitialization(LValue Base,
3977                                           const FieldDecl* Field);
3978 
3979   LValue EmitLValueForIvar(QualType ObjectTy,
3980                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3981                            unsigned CVRQualifiers);
3982 
3983   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3984   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3985   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3986   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3987 
3988   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3989   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3990   LValue EmitStmtExprLValue(const StmtExpr *E);
3991   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3992   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3993   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3994 
3995   //===--------------------------------------------------------------------===//
3996   //                         Scalar Expression Emission
3997   //===--------------------------------------------------------------------===//
3998 
3999   /// EmitCall - Generate a call of the given function, expecting the given
4000   /// result type, and using the given argument list which specifies both the
4001   /// LLVM arguments and the types they were derived from.
4002   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4003                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4004                   llvm::CallBase **callOrInvoke, bool IsMustTail,
4005                   SourceLocation Loc);
4006   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4007                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4008                   llvm::CallBase **callOrInvoke = nullptr,
4009                   bool IsMustTail = false) {
4010     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4011                     IsMustTail, SourceLocation());
4012   }
4013   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4014                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4015   RValue EmitCallExpr(const CallExpr *E,
4016                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4017   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4018   CGCallee EmitCallee(const Expr *E);
4019 
4020   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4021   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4022 
4023   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4024                                   const Twine &name = "");
4025   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4026                                   ArrayRef<llvm::Value *> args,
4027                                   const Twine &name = "");
4028   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4029                                           const Twine &name = "");
4030   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4031                                           ArrayRef<llvm::Value *> args,
4032                                           const Twine &name = "");
4033 
4034   SmallVector<llvm::OperandBundleDef, 1>
4035   getBundlesForFunclet(llvm::Value *Callee);
4036 
4037   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4038                                    ArrayRef<llvm::Value *> Args,
4039                                    const Twine &Name = "");
4040   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4041                                           ArrayRef<llvm::Value *> args,
4042                                           const Twine &name = "");
4043   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4044                                           const Twine &name = "");
4045   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4046                                        ArrayRef<llvm::Value *> args);
4047 
4048   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4049                                      NestedNameSpecifier *Qual,
4050                                      llvm::Type *Ty);
4051 
4052   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4053                                                CXXDtorType Type,
4054                                                const CXXRecordDecl *RD);
4055 
4056   // Return the copy constructor name with the prefix "__copy_constructor_"
4057   // removed.
4058   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4059                                                      CharUnits Alignment,
4060                                                      bool IsVolatile,
4061                                                      ASTContext &Ctx);
4062 
4063   // Return the destructor name with the prefix "__destructor_" removed.
4064   static std::string getNonTrivialDestructorStr(QualType QT,
4065                                                 CharUnits Alignment,
4066                                                 bool IsVolatile,
4067                                                 ASTContext &Ctx);
4068 
4069   // These functions emit calls to the special functions of non-trivial C
4070   // structs.
4071   void defaultInitNonTrivialCStructVar(LValue Dst);
4072   void callCStructDefaultConstructor(LValue Dst);
4073   void callCStructDestructor(LValue Dst);
4074   void callCStructCopyConstructor(LValue Dst, LValue Src);
4075   void callCStructMoveConstructor(LValue Dst, LValue Src);
4076   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4077   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4078 
4079   RValue
4080   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4081                               const CGCallee &Callee,
4082                               ReturnValueSlot ReturnValue, llvm::Value *This,
4083                               llvm::Value *ImplicitParam,
4084                               QualType ImplicitParamTy, const CallExpr *E,
4085                               CallArgList *RtlArgs);
4086   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4087                                llvm::Value *This, QualType ThisTy,
4088                                llvm::Value *ImplicitParam,
4089                                QualType ImplicitParamTy, const CallExpr *E);
4090   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4091                                ReturnValueSlot ReturnValue);
4092   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4093                                                const CXXMethodDecl *MD,
4094                                                ReturnValueSlot ReturnValue,
4095                                                bool HasQualifier,
4096                                                NestedNameSpecifier *Qualifier,
4097                                                bool IsArrow, const Expr *Base);
4098   // Compute the object pointer.
4099   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4100                                           llvm::Value *memberPtr,
4101                                           const MemberPointerType *memberPtrType,
4102                                           LValueBaseInfo *BaseInfo = nullptr,
4103                                           TBAAAccessInfo *TBAAInfo = nullptr);
4104   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4105                                       ReturnValueSlot ReturnValue);
4106 
4107   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4108                                        const CXXMethodDecl *MD,
4109                                        ReturnValueSlot ReturnValue);
4110   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4111 
4112   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4113                                 ReturnValueSlot ReturnValue);
4114 
4115   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4116   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4117   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4118 
4119   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4120                          const CallExpr *E, ReturnValueSlot ReturnValue);
4121 
4122   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4123 
4124   /// Emit IR for __builtin_os_log_format.
4125   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4126 
4127   /// Emit IR for __builtin_is_aligned.
4128   RValue EmitBuiltinIsAligned(const CallExpr *E);
4129   /// Emit IR for __builtin_align_up/__builtin_align_down.
4130   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4131 
4132   llvm::Function *generateBuiltinOSLogHelperFunction(
4133       const analyze_os_log::OSLogBufferLayout &Layout,
4134       CharUnits BufferAlignment);
4135 
4136   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4137 
4138   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4139   /// is unhandled by the current target.
4140   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4141                                      ReturnValueSlot ReturnValue);
4142 
4143   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4144                                              const llvm::CmpInst::Predicate Fp,
4145                                              const llvm::CmpInst::Predicate Ip,
4146                                              const llvm::Twine &Name = "");
4147   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4148                                   ReturnValueSlot ReturnValue,
4149                                   llvm::Triple::ArchType Arch);
4150   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4151                                      ReturnValueSlot ReturnValue,
4152                                      llvm::Triple::ArchType Arch);
4153   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4154                                      ReturnValueSlot ReturnValue,
4155                                      llvm::Triple::ArchType Arch);
4156   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4157                                    QualType RTy);
4158   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4159                                    QualType RTy);
4160 
4161   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4162                                          unsigned LLVMIntrinsic,
4163                                          unsigned AltLLVMIntrinsic,
4164                                          const char *NameHint,
4165                                          unsigned Modifier,
4166                                          const CallExpr *E,
4167                                          SmallVectorImpl<llvm::Value *> &Ops,
4168                                          Address PtrOp0, Address PtrOp1,
4169                                          llvm::Triple::ArchType Arch);
4170 
4171   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4172                                           unsigned Modifier, llvm::Type *ArgTy,
4173                                           const CallExpr *E);
4174   llvm::Value *EmitNeonCall(llvm::Function *F,
4175                             SmallVectorImpl<llvm::Value*> &O,
4176                             const char *name,
4177                             unsigned shift = 0, bool rightshift = false);
4178   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4179                              const llvm::ElementCount &Count);
4180   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4181   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4182                                    bool negateForRightShift);
4183   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4184                                  llvm::Type *Ty, bool usgn, const char *name);
4185   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4186   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4187   /// access builtin.  Only required if it can't be inferred from the base
4188   /// pointer operand.
4189   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4190 
4191   SmallVector<llvm::Type *, 2>
4192   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4193                       ArrayRef<llvm::Value *> Ops);
4194   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4195   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4196   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4197   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4198   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4199   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4200   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4201   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4202                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4203                             unsigned BuiltinID);
4204   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4205                            llvm::ArrayRef<llvm::Value *> Ops,
4206                            unsigned BuiltinID);
4207   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4208                                     llvm::ScalableVectorType *VTy);
4209   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4210                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4211                                  unsigned IntID);
4212   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4213                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4214                                    unsigned IntID);
4215   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4216                                  SmallVectorImpl<llvm::Value *> &Ops,
4217                                  unsigned BuiltinID, bool IsZExtReturn);
4218   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4219                                   SmallVectorImpl<llvm::Value *> &Ops,
4220                                   unsigned BuiltinID);
4221   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4222                                    SmallVectorImpl<llvm::Value *> &Ops,
4223                                    unsigned BuiltinID);
4224   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4225                                      SmallVectorImpl<llvm::Value *> &Ops,
4226                                      unsigned IntID);
4227   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4228                                  SmallVectorImpl<llvm::Value *> &Ops,
4229                                  unsigned IntID);
4230   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4231                                   SmallVectorImpl<llvm::Value *> &Ops,
4232                                   unsigned IntID);
4233   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4234 
4235   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4236                                       llvm::Triple::ArchType Arch);
4237   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4238 
4239   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4240   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4241   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4242   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4243   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4244   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4245   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4246                                           const CallExpr *E);
4247   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4248   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4249                                     ReturnValueSlot ReturnValue);
4250   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4251                                llvm::AtomicOrdering &AO,
4252                                llvm::SyncScope::ID &SSID);
4253 
4254   enum class MSVCIntrin;
4255   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4256 
4257   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4258 
4259   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4260   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4261   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4262   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4263   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4264   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4265                                 const ObjCMethodDecl *MethodWithObjects);
4266   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4267   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4268                              ReturnValueSlot Return = ReturnValueSlot());
4269 
4270   /// Retrieves the default cleanup kind for an ARC cleanup.
4271   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4272   CleanupKind getARCCleanupKind() {
4273     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4274              ? NormalAndEHCleanup : NormalCleanup;
4275   }
4276 
4277   // ARC primitives.
4278   void EmitARCInitWeak(Address addr, llvm::Value *value);
4279   void EmitARCDestroyWeak(Address addr);
4280   llvm::Value *EmitARCLoadWeak(Address addr);
4281   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4282   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4283   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4284   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4285   void EmitARCCopyWeak(Address dst, Address src);
4286   void EmitARCMoveWeak(Address dst, Address src);
4287   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4288   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4289   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4290                                   bool resultIgnored);
4291   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4292                                       bool resultIgnored);
4293   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4294   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4295   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4296   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4297   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4298   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4299   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4300   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4301   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4302   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4303 
4304   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4305   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4306                                       llvm::Type *returnType);
4307   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4308 
4309   std::pair<LValue,llvm::Value*>
4310   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4311   std::pair<LValue,llvm::Value*>
4312   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4313   std::pair<LValue,llvm::Value*>
4314   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4315 
4316   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4317                              llvm::Type *returnType);
4318   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4319                                      llvm::Type *returnType);
4320   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4321 
4322   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4323   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4324   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4325 
4326   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4327   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4328                                             bool allowUnsafeClaim);
4329   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4330   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4331   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4332 
4333   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4334 
4335   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4336 
4337   static Destroyer destroyARCStrongImprecise;
4338   static Destroyer destroyARCStrongPrecise;
4339   static Destroyer destroyARCWeak;
4340   static Destroyer emitARCIntrinsicUse;
4341   static Destroyer destroyNonTrivialCStruct;
4342 
4343   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4344   llvm::Value *EmitObjCAutoreleasePoolPush();
4345   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4346   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4347   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4348 
4349   /// Emits a reference binding to the passed in expression.
4350   RValue EmitReferenceBindingToExpr(const Expr *E);
4351 
4352   //===--------------------------------------------------------------------===//
4353   //                           Expression Emission
4354   //===--------------------------------------------------------------------===//
4355 
4356   // Expressions are broken into three classes: scalar, complex, aggregate.
4357 
4358   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4359   /// scalar type, returning the result.
4360   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4361 
4362   /// Emit a conversion from the specified type to the specified destination
4363   /// type, both of which are LLVM scalar types.
4364   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4365                                     QualType DstTy, SourceLocation Loc);
4366 
4367   /// Emit a conversion from the specified complex type to the specified
4368   /// destination type, where the destination type is an LLVM scalar type.
4369   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4370                                              QualType DstTy,
4371                                              SourceLocation Loc);
4372 
4373   /// EmitAggExpr - Emit the computation of the specified expression
4374   /// of aggregate type.  The result is computed into the given slot,
4375   /// which may be null to indicate that the value is not needed.
4376   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4377 
4378   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4379   /// aggregate type into a temporary LValue.
4380   LValue EmitAggExprToLValue(const Expr *E);
4381 
4382   /// Build all the stores needed to initialize an aggregate at Dest with the
4383   /// value Val.
4384   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4385 
4386   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4387   /// make sure it survives garbage collection until this point.
4388   void EmitExtendGCLifetime(llvm::Value *object);
4389 
4390   /// EmitComplexExpr - Emit the computation of the specified expression of
4391   /// complex type, returning the result.
4392   ComplexPairTy EmitComplexExpr(const Expr *E,
4393                                 bool IgnoreReal = false,
4394                                 bool IgnoreImag = false);
4395 
4396   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4397   /// type and place its result into the specified l-value.
4398   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4399 
4400   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4401   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4402 
4403   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4404   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4405 
4406   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4407   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4408 
4409   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4410   /// global variable that has already been created for it.  If the initializer
4411   /// has a different type than GV does, this may free GV and return a different
4412   /// one.  Otherwise it just returns GV.
4413   llvm::GlobalVariable *
4414   AddInitializerToStaticVarDecl(const VarDecl &D,
4415                                 llvm::GlobalVariable *GV);
4416 
4417   // Emit an @llvm.invariant.start call for the given memory region.
4418   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4419 
4420   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4421   /// variable with global storage.
4422   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4423                                 bool PerformInit);
4424 
4425   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4426                                    llvm::Constant *Addr);
4427 
4428   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4429                                       llvm::FunctionCallee Dtor,
4430                                       llvm::Constant *Addr,
4431                                       llvm::FunctionCallee &AtExit);
4432 
4433   /// Call atexit() with a function that passes the given argument to
4434   /// the given function.
4435   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4436                                     llvm::Constant *addr);
4437 
4438   /// Call atexit() with function dtorStub.
4439   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4440 
4441   /// Call unatexit() with function dtorStub.
4442   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4443 
4444   /// Emit code in this function to perform a guarded variable
4445   /// initialization.  Guarded initializations are used when it's not
4446   /// possible to prove that an initialization will be done exactly
4447   /// once, e.g. with a static local variable or a static data member
4448   /// of a class template.
4449   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4450                           bool PerformInit);
4451 
4452   enum class GuardKind { VariableGuard, TlsGuard };
4453 
4454   /// Emit a branch to select whether or not to perform guarded initialization.
4455   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4456                                 llvm::BasicBlock *InitBlock,
4457                                 llvm::BasicBlock *NoInitBlock,
4458                                 GuardKind Kind, const VarDecl *D);
4459 
4460   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4461   /// variables.
4462   void
4463   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4464                             ArrayRef<llvm::Function *> CXXThreadLocals,
4465                             ConstantAddress Guard = ConstantAddress::invalid());
4466 
4467   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4468   /// variables.
4469   void GenerateCXXGlobalCleanUpFunc(
4470       llvm::Function *Fn,
4471       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4472                           llvm::Constant *>>
4473           DtorsOrStermFinalizers);
4474 
4475   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4476                                         const VarDecl *D,
4477                                         llvm::GlobalVariable *Addr,
4478                                         bool PerformInit);
4479 
4480   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4481 
4482   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4483 
4484   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4485 
4486   RValue EmitAtomicExpr(AtomicExpr *E);
4487 
4488   //===--------------------------------------------------------------------===//
4489   //                         Annotations Emission
4490   //===--------------------------------------------------------------------===//
4491 
4492   /// Emit an annotation call (intrinsic).
4493   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4494                                   llvm::Value *AnnotatedVal,
4495                                   StringRef AnnotationStr,
4496                                   SourceLocation Location,
4497                                   const AnnotateAttr *Attr);
4498 
4499   /// Emit local annotations for the local variable V, declared by D.
4500   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4501 
4502   /// Emit field annotations for the given field & value. Returns the
4503   /// annotation result.
4504   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4505 
4506   //===--------------------------------------------------------------------===//
4507   //                             Internal Helpers
4508   //===--------------------------------------------------------------------===//
4509 
4510   /// ContainsLabel - Return true if the statement contains a label in it.  If
4511   /// this statement is not executed normally, it not containing a label means
4512   /// that we can just remove the code.
4513   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4514 
4515   /// containsBreak - Return true if the statement contains a break out of it.
4516   /// If the statement (recursively) contains a switch or loop with a break
4517   /// inside of it, this is fine.
4518   static bool containsBreak(const Stmt *S);
4519 
4520   /// Determine if the given statement might introduce a declaration into the
4521   /// current scope, by being a (possibly-labelled) DeclStmt.
4522   static bool mightAddDeclToScope(const Stmt *S);
4523 
4524   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4525   /// to a constant, or if it does but contains a label, return false.  If it
4526   /// constant folds return true and set the boolean result in Result.
4527   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4528                                     bool AllowLabels = false);
4529 
4530   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4531   /// to a constant, or if it does but contains a label, return false.  If it
4532   /// constant folds return true and set the folded value.
4533   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4534                                     bool AllowLabels = false);
4535 
4536   /// isInstrumentedCondition - Determine whether the given condition is an
4537   /// instrumentable condition (i.e. no "&&" or "||").
4538   static bool isInstrumentedCondition(const Expr *C);
4539 
4540   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4541   /// increments a profile counter based on the semantics of the given logical
4542   /// operator opcode.  This is used to instrument branch condition coverage
4543   /// for logical operators.
4544   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4545                                 llvm::BasicBlock *TrueBlock,
4546                                 llvm::BasicBlock *FalseBlock,
4547                                 uint64_t TrueCount = 0,
4548                                 Stmt::Likelihood LH = Stmt::LH_None,
4549                                 const Expr *CntrIdx = nullptr);
4550 
4551   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4552   /// if statement) to the specified blocks.  Based on the condition, this might
4553   /// try to simplify the codegen of the conditional based on the branch.
4554   /// TrueCount should be the number of times we expect the condition to
4555   /// evaluate to true based on PGO data.
4556   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4557                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4558                             Stmt::Likelihood LH = Stmt::LH_None);
4559 
4560   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4561   /// nonnull, if \p LHS is marked _Nonnull.
4562   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4563 
4564   /// An enumeration which makes it easier to specify whether or not an
4565   /// operation is a subtraction.
4566   enum { NotSubtraction = false, IsSubtraction = true };
4567 
4568   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4569   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4570   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4571   /// \p IsSubtraction indicates whether the expression used to form the GEP
4572   /// is a subtraction.
4573   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4574                                       ArrayRef<llvm::Value *> IdxList,
4575                                       bool SignedIndices,
4576                                       bool IsSubtraction,
4577                                       SourceLocation Loc,
4578                                       const Twine &Name = "");
4579 
4580   /// Specifies which type of sanitizer check to apply when handling a
4581   /// particular builtin.
4582   enum BuiltinCheckKind {
4583     BCK_CTZPassedZero,
4584     BCK_CLZPassedZero,
4585   };
4586 
4587   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4588   /// enabled, a runtime check specified by \p Kind is also emitted.
4589   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4590 
4591   /// Emit a description of a type in a format suitable for passing to
4592   /// a runtime sanitizer handler.
4593   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4594 
4595   /// Convert a value into a format suitable for passing to a runtime
4596   /// sanitizer handler.
4597   llvm::Value *EmitCheckValue(llvm::Value *V);
4598 
4599   /// Emit a description of a source location in a format suitable for
4600   /// passing to a runtime sanitizer handler.
4601   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4602 
4603   /// Create a basic block that will either trap or call a handler function in
4604   /// the UBSan runtime with the provided arguments, and create a conditional
4605   /// branch to it.
4606   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4607                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4608                  ArrayRef<llvm::Value *> DynamicArgs);
4609 
4610   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4611   /// if Cond if false.
4612   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4613                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4614                             ArrayRef<llvm::Constant *> StaticArgs);
4615 
4616   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4617   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4618   void EmitUnreachable(SourceLocation Loc);
4619 
4620   /// Create a basic block that will call the trap intrinsic, and emit a
4621   /// conditional branch to it, for the -ftrapv checks.
4622   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4623 
4624   /// Emit a call to trap or debugtrap and attach function attribute
4625   /// "trap-func-name" if specified.
4626   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4627 
4628   /// Emit a stub for the cross-DSO CFI check function.
4629   void EmitCfiCheckStub();
4630 
4631   /// Emit a cross-DSO CFI failure handling function.
4632   void EmitCfiCheckFail();
4633 
4634   /// Create a check for a function parameter that may potentially be
4635   /// declared as non-null.
4636   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4637                            AbstractCallee AC, unsigned ParmNum);
4638 
4639   /// EmitCallArg - Emit a single call argument.
4640   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4641 
4642   /// EmitDelegateCallArg - We are performing a delegate call; that
4643   /// is, the current function is delegating to another one.  Produce
4644   /// a r-value suitable for passing the given parameter.
4645   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4646                            SourceLocation loc);
4647 
4648   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4649   /// point operation, expressed as the maximum relative error in ulp.
4650   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4651 
4652   /// Set the codegen fast-math flags.
4653   void SetFastMathFlags(FPOptions FPFeatures);
4654 
4655   // Truncate or extend a boolean vector to the requested number of elements.
4656   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
4657                                      unsigned NumElementsDst,
4658                                      const llvm::Twine &Name = "");
4659 
4660 private:
4661   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4662   void EmitReturnOfRValue(RValue RV, QualType Ty);
4663 
4664   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4665 
4666   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4667       DeferredReplacements;
4668 
4669   /// Set the address of a local variable.
4670   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4671     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4672     LocalDeclMap.insert({VD, Addr});
4673   }
4674 
4675   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4676   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4677   ///
4678   /// \param AI - The first function argument of the expansion.
4679   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4680                           llvm::Function::arg_iterator &AI);
4681 
4682   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4683   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4684   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4685   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4686                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4687                         unsigned &IRCallArgPos);
4688 
4689   std::pair<llvm::Value *, llvm::Type *>
4690   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4691                std::string &ConstraintStr);
4692 
4693   std::pair<llvm::Value *, llvm::Type *>
4694   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4695                      QualType InputType, std::string &ConstraintStr,
4696                      SourceLocation Loc);
4697 
4698   /// Attempts to statically evaluate the object size of E. If that
4699   /// fails, emits code to figure the size of E out for us. This is
4700   /// pass_object_size aware.
4701   ///
4702   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4703   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4704                                                llvm::IntegerType *ResType,
4705                                                llvm::Value *EmittedE,
4706                                                bool IsDynamic);
4707 
4708   /// Emits the size of E, as required by __builtin_object_size. This
4709   /// function is aware of pass_object_size parameters, and will act accordingly
4710   /// if E is a parameter with the pass_object_size attribute.
4711   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4712                                      llvm::IntegerType *ResType,
4713                                      llvm::Value *EmittedE,
4714                                      bool IsDynamic);
4715 
4716   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4717                                        Address Loc);
4718 
4719 public:
4720   enum class EvaluationOrder {
4721     ///! No language constraints on evaluation order.
4722     Default,
4723     ///! Language semantics require left-to-right evaluation.
4724     ForceLeftToRight,
4725     ///! Language semantics require right-to-left evaluation.
4726     ForceRightToLeft
4727   };
4728 
4729   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4730   // an ObjCMethodDecl.
4731   struct PrototypeWrapper {
4732     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4733 
4734     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4735     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4736   };
4737 
4738   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4739                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4740                     AbstractCallee AC = AbstractCallee(),
4741                     unsigned ParamsToSkip = 0,
4742                     EvaluationOrder Order = EvaluationOrder::Default);
4743 
4744   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4745   /// emit the value and compute our best estimate of the alignment of the
4746   /// pointee.
4747   ///
4748   /// \param BaseInfo - If non-null, this will be initialized with
4749   /// information about the source of the alignment and the may-alias
4750   /// attribute.  Note that this function will conservatively fall back on
4751   /// the type when it doesn't recognize the expression and may-alias will
4752   /// be set to false.
4753   ///
4754   /// One reasonable way to use this information is when there's a language
4755   /// guarantee that the pointer must be aligned to some stricter value, and
4756   /// we're simply trying to ensure that sufficiently obvious uses of under-
4757   /// aligned objects don't get miscompiled; for example, a placement new
4758   /// into the address of a local variable.  In such a case, it's quite
4759   /// reasonable to just ignore the returned alignment when it isn't from an
4760   /// explicit source.
4761   Address EmitPointerWithAlignment(const Expr *Addr,
4762                                    LValueBaseInfo *BaseInfo = nullptr,
4763                                    TBAAAccessInfo *TBAAInfo = nullptr);
4764 
4765   /// If \p E references a parameter with pass_object_size info or a constant
4766   /// array size modifier, emit the object size divided by the size of \p EltTy.
4767   /// Otherwise return null.
4768   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4769 
4770   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4771 
4772   struct MultiVersionResolverOption {
4773     llvm::Function *Function;
4774     struct Conds {
4775       StringRef Architecture;
4776       llvm::SmallVector<StringRef, 8> Features;
4777 
4778       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4779           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4780     } Conditions;
4781 
4782     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4783                                ArrayRef<StringRef> Feats)
4784         : Function(F), Conditions(Arch, Feats) {}
4785   };
4786 
4787   // Emits the body of a multiversion function's resolver. Assumes that the
4788   // options are already sorted in the proper order, with the 'default' option
4789   // last (if it exists).
4790   void EmitMultiVersionResolver(llvm::Function *Resolver,
4791                                 ArrayRef<MultiVersionResolverOption> Options);
4792 
4793 private:
4794   QualType getVarArgType(const Expr *Arg);
4795 
4796   void EmitDeclMetadata();
4797 
4798   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4799                                   const AutoVarEmission &emission);
4800 
4801   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4802 
4803   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4804   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4805   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4806   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4807   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4808   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4809   llvm::Value *EmitX86CpuInit();
4810   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4811 };
4812 
4813 
4814 inline DominatingLLVMValue::saved_type
4815 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4816   if (!needsSaving(value)) return saved_type(value, false);
4817 
4818   // Otherwise, we need an alloca.
4819   auto align = CharUnits::fromQuantity(
4820             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4821   Address alloca =
4822     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4823   CGF.Builder.CreateStore(value, alloca);
4824 
4825   return saved_type(alloca.getPointer(), true);
4826 }
4827 
4828 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4829                                                  saved_type value) {
4830   // If the value says it wasn't saved, trust that it's still dominating.
4831   if (!value.getInt()) return value.getPointer();
4832 
4833   // Otherwise, it should be an alloca instruction, as set up in save().
4834   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4835   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4836                                        alloca->getAlign());
4837 }
4838 
4839 }  // end namespace CodeGen
4840 
4841 // Map the LangOption for floating point exception behavior into
4842 // the corresponding enum in the IR.
4843 llvm::fp::ExceptionBehavior
4844 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4845 }  // end namespace clang
4846 
4847 #endif
4848