1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class SwitchInst; 50 class Twine; 51 class Value; 52 class CanonicalLoopInfo; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 class OMPUseDevicePtrClause; 79 class OMPUseDeviceAddrClause; 80 class SVETypeFlags; 81 class OMPExecutableDirective; 82 83 namespace analyze_os_log { 84 class OSLogBufferLayout; 85 } 86 87 namespace CodeGen { 88 class CodeGenTypes; 89 class CGCallee; 90 class CGFunctionInfo; 91 class CGBlockInfo; 92 class CGCXXABI; 93 class BlockByrefHelpers; 94 class BlockByrefInfo; 95 class BlockFieldFlags; 96 class RegionCodeGenTy; 97 class TargetCodeGenInfo; 98 struct OMPTaskDataTy; 99 struct CGCoroData; 100 101 /// The kind of evaluation to perform on values of a particular 102 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 103 /// CGExprAgg? 104 /// 105 /// TODO: should vectors maybe be split out into their own thing? 106 enum TypeEvaluationKind { 107 TEK_Scalar, 108 TEK_Complex, 109 TEK_Aggregate 110 }; 111 112 #define LIST_SANITIZER_CHECKS \ 113 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 114 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 115 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 116 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 117 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 118 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 119 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 120 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 121 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 122 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 123 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 124 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 125 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 126 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 127 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 128 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 129 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 130 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 131 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 132 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 133 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 134 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 135 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 136 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 137 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 138 139 enum SanitizerHandler { 140 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 141 LIST_SANITIZER_CHECKS 142 #undef SANITIZER_CHECK 143 }; 144 145 /// Helper class with most of the code for saving a value for a 146 /// conditional expression cleanup. 147 struct DominatingLLVMValue { 148 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 149 150 /// Answer whether the given value needs extra work to be saved. 151 static bool needsSaving(llvm::Value *value) { 152 // If it's not an instruction, we don't need to save. 153 if (!isa<llvm::Instruction>(value)) return false; 154 155 // If it's an instruction in the entry block, we don't need to save. 156 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 157 return (block != &block->getParent()->getEntryBlock()); 158 } 159 160 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 161 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 162 }; 163 164 /// A partial specialization of DominatingValue for llvm::Values that 165 /// might be llvm::Instructions. 166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 167 typedef T *type; 168 static type restore(CodeGenFunction &CGF, saved_type value) { 169 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 170 } 171 }; 172 173 /// A specialization of DominatingValue for Address. 174 template <> struct DominatingValue<Address> { 175 typedef Address type; 176 177 struct saved_type { 178 DominatingLLVMValue::saved_type SavedValue; 179 llvm::Type *ElementType; 180 CharUnits Alignment; 181 }; 182 183 static bool needsSaving(type value) { 184 return DominatingLLVMValue::needsSaving(value.getPointer()); 185 } 186 static saved_type save(CodeGenFunction &CGF, type value) { 187 return { DominatingLLVMValue::save(CGF, value.getPointer()), 188 value.getElementType(), value.getAlignment() }; 189 } 190 static type restore(CodeGenFunction &CGF, saved_type value) { 191 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 192 value.ElementType, value.Alignment); 193 } 194 }; 195 196 /// A specialization of DominatingValue for RValue. 197 template <> struct DominatingValue<RValue> { 198 typedef RValue type; 199 class saved_type { 200 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 201 AggregateAddress, ComplexAddress }; 202 203 llvm::Value *Value; 204 llvm::Type *ElementType; 205 unsigned K : 3; 206 unsigned Align : 29; 207 saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0) 208 : Value(v), ElementType(e), K(k), Align(a) {} 209 210 public: 211 static bool needsSaving(RValue value); 212 static saved_type save(CodeGenFunction &CGF, RValue value); 213 RValue restore(CodeGenFunction &CGF); 214 215 // implementations in CGCleanup.cpp 216 }; 217 218 static bool needsSaving(type value) { 219 return saved_type::needsSaving(value); 220 } 221 static saved_type save(CodeGenFunction &CGF, type value) { 222 return saved_type::save(CGF, value); 223 } 224 static type restore(CodeGenFunction &CGF, saved_type value) { 225 return value.restore(CGF); 226 } 227 }; 228 229 /// CodeGenFunction - This class organizes the per-function state that is used 230 /// while generating LLVM code. 231 class CodeGenFunction : public CodeGenTypeCache { 232 CodeGenFunction(const CodeGenFunction &) = delete; 233 void operator=(const CodeGenFunction &) = delete; 234 235 friend class CGCXXABI; 236 public: 237 /// A jump destination is an abstract label, branching to which may 238 /// require a jump out through normal cleanups. 239 struct JumpDest { 240 JumpDest() : Block(nullptr), Index(0) {} 241 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 242 unsigned Index) 243 : Block(Block), ScopeDepth(Depth), Index(Index) {} 244 245 bool isValid() const { return Block != nullptr; } 246 llvm::BasicBlock *getBlock() const { return Block; } 247 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 248 unsigned getDestIndex() const { return Index; } 249 250 // This should be used cautiously. 251 void setScopeDepth(EHScopeStack::stable_iterator depth) { 252 ScopeDepth = depth; 253 } 254 255 private: 256 llvm::BasicBlock *Block; 257 EHScopeStack::stable_iterator ScopeDepth; 258 unsigned Index; 259 }; 260 261 CodeGenModule &CGM; // Per-module state. 262 const TargetInfo &Target; 263 264 // For EH/SEH outlined funclets, this field points to parent's CGF 265 CodeGenFunction *ParentCGF = nullptr; 266 267 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 268 LoopInfoStack LoopStack; 269 CGBuilderTy Builder; 270 271 // Stores variables for which we can't generate correct lifetime markers 272 // because of jumps. 273 VarBypassDetector Bypasses; 274 275 /// List of recently emitted OMPCanonicalLoops. 276 /// 277 /// Since OMPCanonicalLoops are nested inside other statements (in particular 278 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 279 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 280 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 281 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 282 /// this stack when done. Entering a new loop requires clearing this list; it 283 /// either means we start parsing a new loop nest (in which case the previous 284 /// loop nest goes out of scope) or a second loop in the same level in which 285 /// case it would be ambiguous into which of the two (or more) loops the loop 286 /// nest would extend. 287 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 288 289 /// Number of nested loop to be consumed by the last surrounding 290 /// loop-associated directive. 291 int ExpectedOMPLoopDepth = 0; 292 293 // CodeGen lambda for loops and support for ordered clause 294 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 295 JumpDest)> 296 CodeGenLoopTy; 297 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 298 const unsigned, const bool)> 299 CodeGenOrderedTy; 300 301 // Codegen lambda for loop bounds in worksharing loop constructs 302 typedef llvm::function_ref<std::pair<LValue, LValue>( 303 CodeGenFunction &, const OMPExecutableDirective &S)> 304 CodeGenLoopBoundsTy; 305 306 // Codegen lambda for loop bounds in dispatch-based loop implementation 307 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 308 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 309 Address UB)> 310 CodeGenDispatchBoundsTy; 311 312 /// CGBuilder insert helper. This function is called after an 313 /// instruction is created using Builder. 314 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 315 llvm::BasicBlock *BB, 316 llvm::BasicBlock::iterator InsertPt) const; 317 318 /// CurFuncDecl - Holds the Decl for the current outermost 319 /// non-closure context. 320 const Decl *CurFuncDecl; 321 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 322 const Decl *CurCodeDecl; 323 const CGFunctionInfo *CurFnInfo; 324 QualType FnRetTy; 325 llvm::Function *CurFn = nullptr; 326 327 /// Save Parameter Decl for coroutine. 328 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 329 330 // Holds coroutine data if the current function is a coroutine. We use a 331 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 332 // in this header. 333 struct CGCoroInfo { 334 std::unique_ptr<CGCoroData> Data; 335 CGCoroInfo(); 336 ~CGCoroInfo(); 337 }; 338 CGCoroInfo CurCoro; 339 340 bool isCoroutine() const { 341 return CurCoro.Data != nullptr; 342 } 343 344 /// CurGD - The GlobalDecl for the current function being compiled. 345 GlobalDecl CurGD; 346 347 /// PrologueCleanupDepth - The cleanup depth enclosing all the 348 /// cleanups associated with the parameters. 349 EHScopeStack::stable_iterator PrologueCleanupDepth; 350 351 /// ReturnBlock - Unified return block. 352 JumpDest ReturnBlock; 353 354 /// ReturnValue - The temporary alloca to hold the return 355 /// value. This is invalid iff the function has no return value. 356 Address ReturnValue = Address::invalid(); 357 358 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 359 /// This is invalid if sret is not in use. 360 Address ReturnValuePointer = Address::invalid(); 361 362 /// If a return statement is being visited, this holds the return statment's 363 /// result expression. 364 const Expr *RetExpr = nullptr; 365 366 /// Return true if a label was seen in the current scope. 367 bool hasLabelBeenSeenInCurrentScope() const { 368 if (CurLexicalScope) 369 return CurLexicalScope->hasLabels(); 370 return !LabelMap.empty(); 371 } 372 373 /// AllocaInsertPoint - This is an instruction in the entry block before which 374 /// we prefer to insert allocas. 375 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 376 377 private: 378 /// PostAllocaInsertPt - This is a place in the prologue where code can be 379 /// inserted that will be dominated by all the static allocas. This helps 380 /// achieve two things: 381 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 382 /// 2. All other prologue code (which are dominated by static allocas) do 383 /// appear in the source order immediately after all static allocas. 384 /// 385 /// PostAllocaInsertPt will be lazily created when it is *really* required. 386 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 387 388 public: 389 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 390 /// immediately after AllocaInsertPt. 391 llvm::Instruction *getPostAllocaInsertPoint() { 392 if (!PostAllocaInsertPt) { 393 assert(AllocaInsertPt && 394 "Expected static alloca insertion point at function prologue"); 395 assert(AllocaInsertPt->getParent()->isEntryBlock() && 396 "EBB should be entry block of the current code gen function"); 397 PostAllocaInsertPt = AllocaInsertPt->clone(); 398 PostAllocaInsertPt->setName("postallocapt"); 399 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 400 } 401 402 return PostAllocaInsertPt; 403 } 404 405 /// API for captured statement code generation. 406 class CGCapturedStmtInfo { 407 public: 408 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 409 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 410 explicit CGCapturedStmtInfo(const CapturedStmt &S, 411 CapturedRegionKind K = CR_Default) 412 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 413 414 RecordDecl::field_iterator Field = 415 S.getCapturedRecordDecl()->field_begin(); 416 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 417 E = S.capture_end(); 418 I != E; ++I, ++Field) { 419 if (I->capturesThis()) 420 CXXThisFieldDecl = *Field; 421 else if (I->capturesVariable()) 422 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 423 else if (I->capturesVariableByCopy()) 424 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 425 } 426 } 427 428 virtual ~CGCapturedStmtInfo(); 429 430 CapturedRegionKind getKind() const { return Kind; } 431 432 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 433 // Retrieve the value of the context parameter. 434 virtual llvm::Value *getContextValue() const { return ThisValue; } 435 436 /// Lookup the captured field decl for a variable. 437 virtual const FieldDecl *lookup(const VarDecl *VD) const { 438 return CaptureFields.lookup(VD->getCanonicalDecl()); 439 } 440 441 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 442 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 443 444 static bool classof(const CGCapturedStmtInfo *) { 445 return true; 446 } 447 448 /// Emit the captured statement body. 449 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 450 CGF.incrementProfileCounter(S); 451 CGF.EmitStmt(S); 452 } 453 454 /// Get the name of the capture helper. 455 virtual StringRef getHelperName() const { return "__captured_stmt"; } 456 457 /// Get the CaptureFields 458 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 459 return CaptureFields; 460 } 461 462 private: 463 /// The kind of captured statement being generated. 464 CapturedRegionKind Kind; 465 466 /// Keep the map between VarDecl and FieldDecl. 467 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 468 469 /// The base address of the captured record, passed in as the first 470 /// argument of the parallel region function. 471 llvm::Value *ThisValue; 472 473 /// Captured 'this' type. 474 FieldDecl *CXXThisFieldDecl; 475 }; 476 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 477 478 /// RAII for correct setting/restoring of CapturedStmtInfo. 479 class CGCapturedStmtRAII { 480 private: 481 CodeGenFunction &CGF; 482 CGCapturedStmtInfo *PrevCapturedStmtInfo; 483 public: 484 CGCapturedStmtRAII(CodeGenFunction &CGF, 485 CGCapturedStmtInfo *NewCapturedStmtInfo) 486 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 487 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 488 } 489 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 490 }; 491 492 /// An abstract representation of regular/ObjC call/message targets. 493 class AbstractCallee { 494 /// The function declaration of the callee. 495 const Decl *CalleeDecl; 496 497 public: 498 AbstractCallee() : CalleeDecl(nullptr) {} 499 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 500 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 501 bool hasFunctionDecl() const { 502 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 503 } 504 const Decl *getDecl() const { return CalleeDecl; } 505 unsigned getNumParams() const { 506 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 507 return FD->getNumParams(); 508 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 509 } 510 const ParmVarDecl *getParamDecl(unsigned I) const { 511 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 512 return FD->getParamDecl(I); 513 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 514 } 515 }; 516 517 /// Sanitizers enabled for this function. 518 SanitizerSet SanOpts; 519 520 /// True if CodeGen currently emits code implementing sanitizer checks. 521 bool IsSanitizerScope = false; 522 523 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 524 class SanitizerScope { 525 CodeGenFunction *CGF; 526 public: 527 SanitizerScope(CodeGenFunction *CGF); 528 ~SanitizerScope(); 529 }; 530 531 /// In C++, whether we are code generating a thunk. This controls whether we 532 /// should emit cleanups. 533 bool CurFuncIsThunk = false; 534 535 /// In ARC, whether we should autorelease the return value. 536 bool AutoreleaseResult = false; 537 538 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 539 /// potentially set the return value. 540 bool SawAsmBlock = false; 541 542 const NamedDecl *CurSEHParent = nullptr; 543 544 /// True if the current function is an outlined SEH helper. This can be a 545 /// finally block or filter expression. 546 bool IsOutlinedSEHHelper = false; 547 548 /// True if CodeGen currently emits code inside presereved access index 549 /// region. 550 bool IsInPreservedAIRegion = false; 551 552 /// True if the current statement has nomerge attribute. 553 bool InNoMergeAttributedStmt = false; 554 555 /// True if the current statement has noinline attribute. 556 bool InNoInlineAttributedStmt = false; 557 558 /// True if the current statement has always_inline attribute. 559 bool InAlwaysInlineAttributedStmt = false; 560 561 // The CallExpr within the current statement that the musttail attribute 562 // applies to. nullptr if there is no 'musttail' on the current statement. 563 const CallExpr *MustTailCall = nullptr; 564 565 /// Returns true if a function must make progress, which means the 566 /// mustprogress attribute can be added. 567 bool checkIfFunctionMustProgress() { 568 if (CGM.getCodeGenOpts().getFiniteLoops() == 569 CodeGenOptions::FiniteLoopsKind::Never) 570 return false; 571 572 // C++11 and later guarantees that a thread eventually will do one of the 573 // following (6.9.2.3.1 in C++11): 574 // - terminate, 575 // - make a call to a library I/O function, 576 // - perform an access through a volatile glvalue, or 577 // - perform a synchronization operation or an atomic operation. 578 // 579 // Hence each function is 'mustprogress' in C++11 or later. 580 return getLangOpts().CPlusPlus11; 581 } 582 583 /// Returns true if a loop must make progress, which means the mustprogress 584 /// attribute can be added. \p HasConstantCond indicates whether the branch 585 /// condition is a known constant. 586 bool checkIfLoopMustProgress(bool HasConstantCond) { 587 if (CGM.getCodeGenOpts().getFiniteLoops() == 588 CodeGenOptions::FiniteLoopsKind::Always) 589 return true; 590 if (CGM.getCodeGenOpts().getFiniteLoops() == 591 CodeGenOptions::FiniteLoopsKind::Never) 592 return false; 593 594 // If the containing function must make progress, loops also must make 595 // progress (as in C++11 and later). 596 if (checkIfFunctionMustProgress()) 597 return true; 598 599 // Now apply rules for plain C (see 6.8.5.6 in C11). 600 // Loops with constant conditions do not have to make progress in any C 601 // version. 602 if (HasConstantCond) 603 return false; 604 605 // Loops with non-constant conditions must make progress in C11 and later. 606 return getLangOpts().C11; 607 } 608 609 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 610 llvm::Value *BlockPointer = nullptr; 611 612 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 613 FieldDecl *LambdaThisCaptureField = nullptr; 614 615 /// A mapping from NRVO variables to the flags used to indicate 616 /// when the NRVO has been applied to this variable. 617 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 618 619 EHScopeStack EHStack; 620 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 621 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 622 623 llvm::Instruction *CurrentFuncletPad = nullptr; 624 625 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 626 bool isRedundantBeforeReturn() override { return true; } 627 628 llvm::Value *Addr; 629 llvm::Value *Size; 630 631 public: 632 CallLifetimeEnd(Address addr, llvm::Value *size) 633 : Addr(addr.getPointer()), Size(size) {} 634 635 void Emit(CodeGenFunction &CGF, Flags flags) override { 636 CGF.EmitLifetimeEnd(Size, Addr); 637 } 638 }; 639 640 /// Header for data within LifetimeExtendedCleanupStack. 641 struct LifetimeExtendedCleanupHeader { 642 /// The size of the following cleanup object. 643 unsigned Size; 644 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 645 unsigned Kind : 31; 646 /// Whether this is a conditional cleanup. 647 unsigned IsConditional : 1; 648 649 size_t getSize() const { return Size; } 650 CleanupKind getKind() const { return (CleanupKind)Kind; } 651 bool isConditional() const { return IsConditional; } 652 }; 653 654 /// i32s containing the indexes of the cleanup destinations. 655 Address NormalCleanupDest = Address::invalid(); 656 657 unsigned NextCleanupDestIndex = 1; 658 659 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 660 llvm::BasicBlock *EHResumeBlock = nullptr; 661 662 /// The exception slot. All landing pads write the current exception pointer 663 /// into this alloca. 664 llvm::Value *ExceptionSlot = nullptr; 665 666 /// The selector slot. Under the MandatoryCleanup model, all landing pads 667 /// write the current selector value into this alloca. 668 llvm::AllocaInst *EHSelectorSlot = nullptr; 669 670 /// A stack of exception code slots. Entering an __except block pushes a slot 671 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 672 /// a value from the top of the stack. 673 SmallVector<Address, 1> SEHCodeSlotStack; 674 675 /// Value returned by __exception_info intrinsic. 676 llvm::Value *SEHInfo = nullptr; 677 678 /// Emits a landing pad for the current EH stack. 679 llvm::BasicBlock *EmitLandingPad(); 680 681 llvm::BasicBlock *getInvokeDestImpl(); 682 683 /// Parent loop-based directive for scan directive. 684 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 685 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 686 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 687 llvm::BasicBlock *OMPScanExitBlock = nullptr; 688 llvm::BasicBlock *OMPScanDispatch = nullptr; 689 bool OMPFirstScanLoop = false; 690 691 /// Manages parent directive for scan directives. 692 class ParentLoopDirectiveForScanRegion { 693 CodeGenFunction &CGF; 694 const OMPExecutableDirective *ParentLoopDirectiveForScan; 695 696 public: 697 ParentLoopDirectiveForScanRegion( 698 CodeGenFunction &CGF, 699 const OMPExecutableDirective &ParentLoopDirectiveForScan) 700 : CGF(CGF), 701 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 702 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 703 } 704 ~ParentLoopDirectiveForScanRegion() { 705 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 706 } 707 }; 708 709 template <class T> 710 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 711 return DominatingValue<T>::save(*this, value); 712 } 713 714 class CGFPOptionsRAII { 715 public: 716 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 717 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 718 ~CGFPOptionsRAII(); 719 720 private: 721 void ConstructorHelper(FPOptions FPFeatures); 722 CodeGenFunction &CGF; 723 FPOptions OldFPFeatures; 724 llvm::fp::ExceptionBehavior OldExcept; 725 llvm::RoundingMode OldRounding; 726 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 727 }; 728 FPOptions CurFPFeatures; 729 730 public: 731 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 732 /// rethrows. 733 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 734 735 /// A class controlling the emission of a finally block. 736 class FinallyInfo { 737 /// Where the catchall's edge through the cleanup should go. 738 JumpDest RethrowDest; 739 740 /// A function to call to enter the catch. 741 llvm::FunctionCallee BeginCatchFn; 742 743 /// An i1 variable indicating whether or not the @finally is 744 /// running for an exception. 745 llvm::AllocaInst *ForEHVar; 746 747 /// An i8* variable into which the exception pointer to rethrow 748 /// has been saved. 749 llvm::AllocaInst *SavedExnVar; 750 751 public: 752 void enter(CodeGenFunction &CGF, const Stmt *Finally, 753 llvm::FunctionCallee beginCatchFn, 754 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 755 void exit(CodeGenFunction &CGF); 756 }; 757 758 /// Returns true inside SEH __try blocks. 759 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 760 761 /// Returns true while emitting a cleanuppad. 762 bool isCleanupPadScope() const { 763 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 764 } 765 766 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 767 /// current full-expression. Safe against the possibility that 768 /// we're currently inside a conditionally-evaluated expression. 769 template <class T, class... As> 770 void pushFullExprCleanup(CleanupKind kind, As... A) { 771 // If we're not in a conditional branch, or if none of the 772 // arguments requires saving, then use the unconditional cleanup. 773 if (!isInConditionalBranch()) 774 return EHStack.pushCleanup<T>(kind, A...); 775 776 // Stash values in a tuple so we can guarantee the order of saves. 777 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 778 SavedTuple Saved{saveValueInCond(A)...}; 779 780 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 781 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 782 initFullExprCleanup(); 783 } 784 785 /// Queue a cleanup to be pushed after finishing the current full-expression, 786 /// potentially with an active flag. 787 template <class T, class... As> 788 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 789 if (!isInConditionalBranch()) 790 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 791 A...); 792 793 Address ActiveFlag = createCleanupActiveFlag(); 794 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 795 "cleanup active flag should never need saving"); 796 797 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 798 SavedTuple Saved{saveValueInCond(A)...}; 799 800 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 801 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 802 } 803 804 template <class T, class... As> 805 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 806 Address ActiveFlag, As... A) { 807 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 808 ActiveFlag.isValid()}; 809 810 size_t OldSize = LifetimeExtendedCleanupStack.size(); 811 LifetimeExtendedCleanupStack.resize( 812 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 813 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 814 815 static_assert(sizeof(Header) % alignof(T) == 0, 816 "Cleanup will be allocated on misaligned address"); 817 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 818 new (Buffer) LifetimeExtendedCleanupHeader(Header); 819 new (Buffer + sizeof(Header)) T(A...); 820 if (Header.IsConditional) 821 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 822 } 823 824 /// Set up the last cleanup that was pushed as a conditional 825 /// full-expression cleanup. 826 void initFullExprCleanup() { 827 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 828 } 829 830 void initFullExprCleanupWithFlag(Address ActiveFlag); 831 Address createCleanupActiveFlag(); 832 833 /// PushDestructorCleanup - Push a cleanup to call the 834 /// complete-object destructor of an object of the given type at the 835 /// given address. Does nothing if T is not a C++ class type with a 836 /// non-trivial destructor. 837 void PushDestructorCleanup(QualType T, Address Addr); 838 839 /// PushDestructorCleanup - Push a cleanup to call the 840 /// complete-object variant of the given destructor on the object at 841 /// the given address. 842 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 843 Address Addr); 844 845 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 846 /// process all branch fixups. 847 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 848 849 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 850 /// The block cannot be reactivated. Pops it if it's the top of the 851 /// stack. 852 /// 853 /// \param DominatingIP - An instruction which is known to 854 /// dominate the current IP (if set) and which lies along 855 /// all paths of execution between the current IP and the 856 /// the point at which the cleanup comes into scope. 857 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 858 llvm::Instruction *DominatingIP); 859 860 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 861 /// Cannot be used to resurrect a deactivated cleanup. 862 /// 863 /// \param DominatingIP - An instruction which is known to 864 /// dominate the current IP (if set) and which lies along 865 /// all paths of execution between the current IP and the 866 /// the point at which the cleanup comes into scope. 867 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 868 llvm::Instruction *DominatingIP); 869 870 /// Enters a new scope for capturing cleanups, all of which 871 /// will be executed once the scope is exited. 872 class RunCleanupsScope { 873 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 874 size_t LifetimeExtendedCleanupStackSize; 875 bool OldDidCallStackSave; 876 protected: 877 bool PerformCleanup; 878 private: 879 880 RunCleanupsScope(const RunCleanupsScope &) = delete; 881 void operator=(const RunCleanupsScope &) = delete; 882 883 protected: 884 CodeGenFunction& CGF; 885 886 public: 887 /// Enter a new cleanup scope. 888 explicit RunCleanupsScope(CodeGenFunction &CGF) 889 : PerformCleanup(true), CGF(CGF) 890 { 891 CleanupStackDepth = CGF.EHStack.stable_begin(); 892 LifetimeExtendedCleanupStackSize = 893 CGF.LifetimeExtendedCleanupStack.size(); 894 OldDidCallStackSave = CGF.DidCallStackSave; 895 CGF.DidCallStackSave = false; 896 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 897 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 898 } 899 900 /// Exit this cleanup scope, emitting any accumulated cleanups. 901 ~RunCleanupsScope() { 902 if (PerformCleanup) 903 ForceCleanup(); 904 } 905 906 /// Determine whether this scope requires any cleanups. 907 bool requiresCleanups() const { 908 return CGF.EHStack.stable_begin() != CleanupStackDepth; 909 } 910 911 /// Force the emission of cleanups now, instead of waiting 912 /// until this object is destroyed. 913 /// \param ValuesToReload - A list of values that need to be available at 914 /// the insertion point after cleanup emission. If cleanup emission created 915 /// a shared cleanup block, these value pointers will be rewritten. 916 /// Otherwise, they not will be modified. 917 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 918 assert(PerformCleanup && "Already forced cleanup"); 919 CGF.DidCallStackSave = OldDidCallStackSave; 920 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 921 ValuesToReload); 922 PerformCleanup = false; 923 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 924 } 925 }; 926 927 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 928 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 929 EHScopeStack::stable_end(); 930 931 class LexicalScope : public RunCleanupsScope { 932 SourceRange Range; 933 SmallVector<const LabelDecl*, 4> Labels; 934 LexicalScope *ParentScope; 935 936 LexicalScope(const LexicalScope &) = delete; 937 void operator=(const LexicalScope &) = delete; 938 939 public: 940 /// Enter a new cleanup scope. 941 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 942 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 943 CGF.CurLexicalScope = this; 944 if (CGDebugInfo *DI = CGF.getDebugInfo()) 945 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 946 } 947 948 void addLabel(const LabelDecl *label) { 949 assert(PerformCleanup && "adding label to dead scope?"); 950 Labels.push_back(label); 951 } 952 953 /// Exit this cleanup scope, emitting any accumulated 954 /// cleanups. 955 ~LexicalScope() { 956 if (CGDebugInfo *DI = CGF.getDebugInfo()) 957 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 958 959 // If we should perform a cleanup, force them now. Note that 960 // this ends the cleanup scope before rescoping any labels. 961 if (PerformCleanup) { 962 ApplyDebugLocation DL(CGF, Range.getEnd()); 963 ForceCleanup(); 964 } 965 } 966 967 /// Force the emission of cleanups now, instead of waiting 968 /// until this object is destroyed. 969 void ForceCleanup() { 970 CGF.CurLexicalScope = ParentScope; 971 RunCleanupsScope::ForceCleanup(); 972 973 if (!Labels.empty()) 974 rescopeLabels(); 975 } 976 977 bool hasLabels() const { 978 return !Labels.empty(); 979 } 980 981 void rescopeLabels(); 982 }; 983 984 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 985 986 /// The class used to assign some variables some temporarily addresses. 987 class OMPMapVars { 988 DeclMapTy SavedLocals; 989 DeclMapTy SavedTempAddresses; 990 OMPMapVars(const OMPMapVars &) = delete; 991 void operator=(const OMPMapVars &) = delete; 992 993 public: 994 explicit OMPMapVars() = default; 995 ~OMPMapVars() { 996 assert(SavedLocals.empty() && "Did not restored original addresses."); 997 }; 998 999 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1000 /// function \p CGF. 1001 /// \return true if at least one variable was set already, false otherwise. 1002 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1003 Address TempAddr) { 1004 LocalVD = LocalVD->getCanonicalDecl(); 1005 // Only save it once. 1006 if (SavedLocals.count(LocalVD)) return false; 1007 1008 // Copy the existing local entry to SavedLocals. 1009 auto it = CGF.LocalDeclMap.find(LocalVD); 1010 if (it != CGF.LocalDeclMap.end()) 1011 SavedLocals.try_emplace(LocalVD, it->second); 1012 else 1013 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1014 1015 // Generate the private entry. 1016 QualType VarTy = LocalVD->getType(); 1017 if (VarTy->isReferenceType()) { 1018 Address Temp = CGF.CreateMemTemp(VarTy); 1019 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1020 TempAddr = Temp; 1021 } 1022 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1023 1024 return true; 1025 } 1026 1027 /// Applies new addresses to the list of the variables. 1028 /// \return true if at least one variable is using new address, false 1029 /// otherwise. 1030 bool apply(CodeGenFunction &CGF) { 1031 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1032 SavedTempAddresses.clear(); 1033 return !SavedLocals.empty(); 1034 } 1035 1036 /// Restores original addresses of the variables. 1037 void restore(CodeGenFunction &CGF) { 1038 if (!SavedLocals.empty()) { 1039 copyInto(SavedLocals, CGF.LocalDeclMap); 1040 SavedLocals.clear(); 1041 } 1042 } 1043 1044 private: 1045 /// Copy all the entries in the source map over the corresponding 1046 /// entries in the destination, which must exist. 1047 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1048 for (auto &Pair : Src) { 1049 if (!Pair.second.isValid()) { 1050 Dest.erase(Pair.first); 1051 continue; 1052 } 1053 1054 auto I = Dest.find(Pair.first); 1055 if (I != Dest.end()) 1056 I->second = Pair.second; 1057 else 1058 Dest.insert(Pair); 1059 } 1060 } 1061 }; 1062 1063 /// The scope used to remap some variables as private in the OpenMP loop body 1064 /// (or other captured region emitted without outlining), and to restore old 1065 /// vars back on exit. 1066 class OMPPrivateScope : public RunCleanupsScope { 1067 OMPMapVars MappedVars; 1068 OMPPrivateScope(const OMPPrivateScope &) = delete; 1069 void operator=(const OMPPrivateScope &) = delete; 1070 1071 public: 1072 /// Enter a new OpenMP private scope. 1073 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1074 1075 /// Registers \p LocalVD variable as a private with \p Addr as the address 1076 /// of the corresponding private variable. \p 1077 /// PrivateGen is the address of the generated private variable. 1078 /// \return true if the variable is registered as private, false if it has 1079 /// been privatized already. 1080 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1081 assert(PerformCleanup && "adding private to dead scope"); 1082 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1083 } 1084 1085 /// Privatizes local variables previously registered as private. 1086 /// Registration is separate from the actual privatization to allow 1087 /// initializers use values of the original variables, not the private one. 1088 /// This is important, for example, if the private variable is a class 1089 /// variable initialized by a constructor that references other private 1090 /// variables. But at initialization original variables must be used, not 1091 /// private copies. 1092 /// \return true if at least one variable was privatized, false otherwise. 1093 bool Privatize() { return MappedVars.apply(CGF); } 1094 1095 void ForceCleanup() { 1096 RunCleanupsScope::ForceCleanup(); 1097 MappedVars.restore(CGF); 1098 } 1099 1100 /// Exit scope - all the mapped variables are restored. 1101 ~OMPPrivateScope() { 1102 if (PerformCleanup) 1103 ForceCleanup(); 1104 } 1105 1106 /// Checks if the global variable is captured in current function. 1107 bool isGlobalVarCaptured(const VarDecl *VD) const { 1108 VD = VD->getCanonicalDecl(); 1109 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1110 } 1111 }; 1112 1113 /// Save/restore original map of previously emitted local vars in case when we 1114 /// need to duplicate emission of the same code several times in the same 1115 /// function for OpenMP code. 1116 class OMPLocalDeclMapRAII { 1117 CodeGenFunction &CGF; 1118 DeclMapTy SavedMap; 1119 1120 public: 1121 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1122 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1123 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1124 }; 1125 1126 /// Takes the old cleanup stack size and emits the cleanup blocks 1127 /// that have been added. 1128 void 1129 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1130 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1131 1132 /// Takes the old cleanup stack size and emits the cleanup blocks 1133 /// that have been added, then adds all lifetime-extended cleanups from 1134 /// the given position to the stack. 1135 void 1136 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1137 size_t OldLifetimeExtendedStackSize, 1138 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1139 1140 void ResolveBranchFixups(llvm::BasicBlock *Target); 1141 1142 /// The given basic block lies in the current EH scope, but may be a 1143 /// target of a potentially scope-crossing jump; get a stable handle 1144 /// to which we can perform this jump later. 1145 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1146 return JumpDest(Target, 1147 EHStack.getInnermostNormalCleanup(), 1148 NextCleanupDestIndex++); 1149 } 1150 1151 /// The given basic block lies in the current EH scope, but may be a 1152 /// target of a potentially scope-crossing jump; get a stable handle 1153 /// to which we can perform this jump later. 1154 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1155 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1156 } 1157 1158 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1159 /// block through the normal cleanup handling code (if any) and then 1160 /// on to \arg Dest. 1161 void EmitBranchThroughCleanup(JumpDest Dest); 1162 1163 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1164 /// specified destination obviously has no cleanups to run. 'false' is always 1165 /// a conservatively correct answer for this method. 1166 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1167 1168 /// popCatchScope - Pops the catch scope at the top of the EHScope 1169 /// stack, emitting any required code (other than the catch handlers 1170 /// themselves). 1171 void popCatchScope(); 1172 1173 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1174 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1175 llvm::BasicBlock * 1176 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1177 1178 /// An object to manage conditionally-evaluated expressions. 1179 class ConditionalEvaluation { 1180 llvm::BasicBlock *StartBB; 1181 1182 public: 1183 ConditionalEvaluation(CodeGenFunction &CGF) 1184 : StartBB(CGF.Builder.GetInsertBlock()) {} 1185 1186 void begin(CodeGenFunction &CGF) { 1187 assert(CGF.OutermostConditional != this); 1188 if (!CGF.OutermostConditional) 1189 CGF.OutermostConditional = this; 1190 } 1191 1192 void end(CodeGenFunction &CGF) { 1193 assert(CGF.OutermostConditional != nullptr); 1194 if (CGF.OutermostConditional == this) 1195 CGF.OutermostConditional = nullptr; 1196 } 1197 1198 /// Returns a block which will be executed prior to each 1199 /// evaluation of the conditional code. 1200 llvm::BasicBlock *getStartingBlock() const { 1201 return StartBB; 1202 } 1203 }; 1204 1205 /// isInConditionalBranch - Return true if we're currently emitting 1206 /// one branch or the other of a conditional expression. 1207 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1208 1209 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1210 assert(isInConditionalBranch()); 1211 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1212 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1213 store->setAlignment(addr.getAlignment().getAsAlign()); 1214 } 1215 1216 /// An RAII object to record that we're evaluating a statement 1217 /// expression. 1218 class StmtExprEvaluation { 1219 CodeGenFunction &CGF; 1220 1221 /// We have to save the outermost conditional: cleanups in a 1222 /// statement expression aren't conditional just because the 1223 /// StmtExpr is. 1224 ConditionalEvaluation *SavedOutermostConditional; 1225 1226 public: 1227 StmtExprEvaluation(CodeGenFunction &CGF) 1228 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1229 CGF.OutermostConditional = nullptr; 1230 } 1231 1232 ~StmtExprEvaluation() { 1233 CGF.OutermostConditional = SavedOutermostConditional; 1234 CGF.EnsureInsertPoint(); 1235 } 1236 }; 1237 1238 /// An object which temporarily prevents a value from being 1239 /// destroyed by aggressive peephole optimizations that assume that 1240 /// all uses of a value have been realized in the IR. 1241 class PeepholeProtection { 1242 llvm::Instruction *Inst; 1243 friend class CodeGenFunction; 1244 1245 public: 1246 PeepholeProtection() : Inst(nullptr) {} 1247 }; 1248 1249 /// A non-RAII class containing all the information about a bound 1250 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1251 /// this which makes individual mappings very simple; using this 1252 /// class directly is useful when you have a variable number of 1253 /// opaque values or don't want the RAII functionality for some 1254 /// reason. 1255 class OpaqueValueMappingData { 1256 const OpaqueValueExpr *OpaqueValue; 1257 bool BoundLValue; 1258 CodeGenFunction::PeepholeProtection Protection; 1259 1260 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1261 bool boundLValue) 1262 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1263 public: 1264 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1265 1266 static bool shouldBindAsLValue(const Expr *expr) { 1267 // gl-values should be bound as l-values for obvious reasons. 1268 // Records should be bound as l-values because IR generation 1269 // always keeps them in memory. Expressions of function type 1270 // act exactly like l-values but are formally required to be 1271 // r-values in C. 1272 return expr->isGLValue() || 1273 expr->getType()->isFunctionType() || 1274 hasAggregateEvaluationKind(expr->getType()); 1275 } 1276 1277 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1278 const OpaqueValueExpr *ov, 1279 const Expr *e) { 1280 if (shouldBindAsLValue(ov)) 1281 return bind(CGF, ov, CGF.EmitLValue(e)); 1282 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1283 } 1284 1285 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1286 const OpaqueValueExpr *ov, 1287 const LValue &lv) { 1288 assert(shouldBindAsLValue(ov)); 1289 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1290 return OpaqueValueMappingData(ov, true); 1291 } 1292 1293 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1294 const OpaqueValueExpr *ov, 1295 const RValue &rv) { 1296 assert(!shouldBindAsLValue(ov)); 1297 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1298 1299 OpaqueValueMappingData data(ov, false); 1300 1301 // Work around an extremely aggressive peephole optimization in 1302 // EmitScalarConversion which assumes that all other uses of a 1303 // value are extant. 1304 data.Protection = CGF.protectFromPeepholes(rv); 1305 1306 return data; 1307 } 1308 1309 bool isValid() const { return OpaqueValue != nullptr; } 1310 void clear() { OpaqueValue = nullptr; } 1311 1312 void unbind(CodeGenFunction &CGF) { 1313 assert(OpaqueValue && "no data to unbind!"); 1314 1315 if (BoundLValue) { 1316 CGF.OpaqueLValues.erase(OpaqueValue); 1317 } else { 1318 CGF.OpaqueRValues.erase(OpaqueValue); 1319 CGF.unprotectFromPeepholes(Protection); 1320 } 1321 } 1322 }; 1323 1324 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1325 class OpaqueValueMapping { 1326 CodeGenFunction &CGF; 1327 OpaqueValueMappingData Data; 1328 1329 public: 1330 static bool shouldBindAsLValue(const Expr *expr) { 1331 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1332 } 1333 1334 /// Build the opaque value mapping for the given conditional 1335 /// operator if it's the GNU ?: extension. This is a common 1336 /// enough pattern that the convenience operator is really 1337 /// helpful. 1338 /// 1339 OpaqueValueMapping(CodeGenFunction &CGF, 1340 const AbstractConditionalOperator *op) : CGF(CGF) { 1341 if (isa<ConditionalOperator>(op)) 1342 // Leave Data empty. 1343 return; 1344 1345 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1346 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1347 e->getCommon()); 1348 } 1349 1350 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1351 /// expression is set to the expression the OVE represents. 1352 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1353 : CGF(CGF) { 1354 if (OV) { 1355 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1356 "for OVE with no source expression"); 1357 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1358 } 1359 } 1360 1361 OpaqueValueMapping(CodeGenFunction &CGF, 1362 const OpaqueValueExpr *opaqueValue, 1363 LValue lvalue) 1364 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1365 } 1366 1367 OpaqueValueMapping(CodeGenFunction &CGF, 1368 const OpaqueValueExpr *opaqueValue, 1369 RValue rvalue) 1370 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1371 } 1372 1373 void pop() { 1374 Data.unbind(CGF); 1375 Data.clear(); 1376 } 1377 1378 ~OpaqueValueMapping() { 1379 if (Data.isValid()) Data.unbind(CGF); 1380 } 1381 }; 1382 1383 private: 1384 CGDebugInfo *DebugInfo; 1385 /// Used to create unique names for artificial VLA size debug info variables. 1386 unsigned VLAExprCounter = 0; 1387 bool DisableDebugInfo = false; 1388 1389 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1390 /// calling llvm.stacksave for multiple VLAs in the same scope. 1391 bool DidCallStackSave = false; 1392 1393 /// IndirectBranch - The first time an indirect goto is seen we create a block 1394 /// with an indirect branch. Every time we see the address of a label taken, 1395 /// we add the label to the indirect goto. Every subsequent indirect goto is 1396 /// codegen'd as a jump to the IndirectBranch's basic block. 1397 llvm::IndirectBrInst *IndirectBranch = nullptr; 1398 1399 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1400 /// decls. 1401 DeclMapTy LocalDeclMap; 1402 1403 // Keep track of the cleanups for callee-destructed parameters pushed to the 1404 // cleanup stack so that they can be deactivated later. 1405 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1406 CalleeDestructedParamCleanups; 1407 1408 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1409 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1410 /// parameter. 1411 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1412 SizeArguments; 1413 1414 /// Track escaped local variables with auto storage. Used during SEH 1415 /// outlining to produce a call to llvm.localescape. 1416 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1417 1418 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1419 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1420 1421 // BreakContinueStack - This keeps track of where break and continue 1422 // statements should jump to. 1423 struct BreakContinue { 1424 BreakContinue(JumpDest Break, JumpDest Continue) 1425 : BreakBlock(Break), ContinueBlock(Continue) {} 1426 1427 JumpDest BreakBlock; 1428 JumpDest ContinueBlock; 1429 }; 1430 SmallVector<BreakContinue, 8> BreakContinueStack; 1431 1432 /// Handles cancellation exit points in OpenMP-related constructs. 1433 class OpenMPCancelExitStack { 1434 /// Tracks cancellation exit point and join point for cancel-related exit 1435 /// and normal exit. 1436 struct CancelExit { 1437 CancelExit() = default; 1438 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1439 JumpDest ContBlock) 1440 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1441 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1442 /// true if the exit block has been emitted already by the special 1443 /// emitExit() call, false if the default codegen is used. 1444 bool HasBeenEmitted = false; 1445 JumpDest ExitBlock; 1446 JumpDest ContBlock; 1447 }; 1448 1449 SmallVector<CancelExit, 8> Stack; 1450 1451 public: 1452 OpenMPCancelExitStack() : Stack(1) {} 1453 ~OpenMPCancelExitStack() = default; 1454 /// Fetches the exit block for the current OpenMP construct. 1455 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1456 /// Emits exit block with special codegen procedure specific for the related 1457 /// OpenMP construct + emits code for normal construct cleanup. 1458 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1459 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1460 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1461 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1462 assert(CGF.HaveInsertPoint()); 1463 assert(!Stack.back().HasBeenEmitted); 1464 auto IP = CGF.Builder.saveAndClearIP(); 1465 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1466 CodeGen(CGF); 1467 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1468 CGF.Builder.restoreIP(IP); 1469 Stack.back().HasBeenEmitted = true; 1470 } 1471 CodeGen(CGF); 1472 } 1473 /// Enter the cancel supporting \a Kind construct. 1474 /// \param Kind OpenMP directive that supports cancel constructs. 1475 /// \param HasCancel true, if the construct has inner cancel directive, 1476 /// false otherwise. 1477 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1478 Stack.push_back({Kind, 1479 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1480 : JumpDest(), 1481 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1482 : JumpDest()}); 1483 } 1484 /// Emits default exit point for the cancel construct (if the special one 1485 /// has not be used) + join point for cancel/normal exits. 1486 void exit(CodeGenFunction &CGF) { 1487 if (getExitBlock().isValid()) { 1488 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1489 bool HaveIP = CGF.HaveInsertPoint(); 1490 if (!Stack.back().HasBeenEmitted) { 1491 if (HaveIP) 1492 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1493 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1494 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1495 } 1496 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1497 if (!HaveIP) { 1498 CGF.Builder.CreateUnreachable(); 1499 CGF.Builder.ClearInsertionPoint(); 1500 } 1501 } 1502 Stack.pop_back(); 1503 } 1504 }; 1505 OpenMPCancelExitStack OMPCancelStack; 1506 1507 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1508 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1509 Stmt::Likelihood LH); 1510 1511 CodeGenPGO PGO; 1512 1513 /// Calculate branch weights appropriate for PGO data 1514 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1515 uint64_t FalseCount) const; 1516 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1517 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1518 uint64_t LoopCount) const; 1519 1520 public: 1521 /// Increment the profiler's counter for the given statement by \p StepV. 1522 /// If \p StepV is null, the default increment is 1. 1523 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1524 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1525 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1526 PGO.emitCounterIncrement(Builder, S, StepV); 1527 PGO.setCurrentStmt(S); 1528 } 1529 1530 /// Get the profiler's count for the given statement. 1531 uint64_t getProfileCount(const Stmt *S) { 1532 return PGO.getStmtCount(S).value_or(0); 1533 } 1534 1535 /// Set the profiler's current count. 1536 void setCurrentProfileCount(uint64_t Count) { 1537 PGO.setCurrentRegionCount(Count); 1538 } 1539 1540 /// Get the profiler's current count. This is generally the count for the most 1541 /// recently incremented counter. 1542 uint64_t getCurrentProfileCount() { 1543 return PGO.getCurrentRegionCount(); 1544 } 1545 1546 private: 1547 1548 /// SwitchInsn - This is nearest current switch instruction. It is null if 1549 /// current context is not in a switch. 1550 llvm::SwitchInst *SwitchInsn = nullptr; 1551 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1552 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1553 1554 /// The likelihood attributes of the SwitchCase. 1555 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1556 1557 /// CaseRangeBlock - This block holds if condition check for last case 1558 /// statement range in current switch instruction. 1559 llvm::BasicBlock *CaseRangeBlock = nullptr; 1560 1561 /// OpaqueLValues - Keeps track of the current set of opaque value 1562 /// expressions. 1563 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1564 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1565 1566 // VLASizeMap - This keeps track of the associated size for each VLA type. 1567 // We track this by the size expression rather than the type itself because 1568 // in certain situations, like a const qualifier applied to an VLA typedef, 1569 // multiple VLA types can share the same size expression. 1570 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1571 // enter/leave scopes. 1572 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1573 1574 /// A block containing a single 'unreachable' instruction. Created 1575 /// lazily by getUnreachableBlock(). 1576 llvm::BasicBlock *UnreachableBlock = nullptr; 1577 1578 /// Counts of the number return expressions in the function. 1579 unsigned NumReturnExprs = 0; 1580 1581 /// Count the number of simple (constant) return expressions in the function. 1582 unsigned NumSimpleReturnExprs = 0; 1583 1584 /// The last regular (non-return) debug location (breakpoint) in the function. 1585 SourceLocation LastStopPoint; 1586 1587 public: 1588 /// Source location information about the default argument or member 1589 /// initializer expression we're evaluating, if any. 1590 CurrentSourceLocExprScope CurSourceLocExprScope; 1591 using SourceLocExprScopeGuard = 1592 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1593 1594 /// A scope within which we are constructing the fields of an object which 1595 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1596 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1597 class FieldConstructionScope { 1598 public: 1599 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1600 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1601 CGF.CXXDefaultInitExprThis = This; 1602 } 1603 ~FieldConstructionScope() { 1604 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1605 } 1606 1607 private: 1608 CodeGenFunction &CGF; 1609 Address OldCXXDefaultInitExprThis; 1610 }; 1611 1612 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1613 /// is overridden to be the object under construction. 1614 class CXXDefaultInitExprScope { 1615 public: 1616 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1617 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1618 OldCXXThisAlignment(CGF.CXXThisAlignment), 1619 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1620 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1621 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1622 } 1623 ~CXXDefaultInitExprScope() { 1624 CGF.CXXThisValue = OldCXXThisValue; 1625 CGF.CXXThisAlignment = OldCXXThisAlignment; 1626 } 1627 1628 public: 1629 CodeGenFunction &CGF; 1630 llvm::Value *OldCXXThisValue; 1631 CharUnits OldCXXThisAlignment; 1632 SourceLocExprScopeGuard SourceLocScope; 1633 }; 1634 1635 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1636 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1637 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1638 }; 1639 1640 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1641 /// current loop index is overridden. 1642 class ArrayInitLoopExprScope { 1643 public: 1644 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1645 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1646 CGF.ArrayInitIndex = Index; 1647 } 1648 ~ArrayInitLoopExprScope() { 1649 CGF.ArrayInitIndex = OldArrayInitIndex; 1650 } 1651 1652 private: 1653 CodeGenFunction &CGF; 1654 llvm::Value *OldArrayInitIndex; 1655 }; 1656 1657 class InlinedInheritingConstructorScope { 1658 public: 1659 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1660 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1661 OldCurCodeDecl(CGF.CurCodeDecl), 1662 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1663 OldCXXABIThisValue(CGF.CXXABIThisValue), 1664 OldCXXThisValue(CGF.CXXThisValue), 1665 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1666 OldCXXThisAlignment(CGF.CXXThisAlignment), 1667 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1668 OldCXXInheritedCtorInitExprArgs( 1669 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1670 CGF.CurGD = GD; 1671 CGF.CurFuncDecl = CGF.CurCodeDecl = 1672 cast<CXXConstructorDecl>(GD.getDecl()); 1673 CGF.CXXABIThisDecl = nullptr; 1674 CGF.CXXABIThisValue = nullptr; 1675 CGF.CXXThisValue = nullptr; 1676 CGF.CXXABIThisAlignment = CharUnits(); 1677 CGF.CXXThisAlignment = CharUnits(); 1678 CGF.ReturnValue = Address::invalid(); 1679 CGF.FnRetTy = QualType(); 1680 CGF.CXXInheritedCtorInitExprArgs.clear(); 1681 } 1682 ~InlinedInheritingConstructorScope() { 1683 CGF.CurGD = OldCurGD; 1684 CGF.CurFuncDecl = OldCurFuncDecl; 1685 CGF.CurCodeDecl = OldCurCodeDecl; 1686 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1687 CGF.CXXABIThisValue = OldCXXABIThisValue; 1688 CGF.CXXThisValue = OldCXXThisValue; 1689 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1690 CGF.CXXThisAlignment = OldCXXThisAlignment; 1691 CGF.ReturnValue = OldReturnValue; 1692 CGF.FnRetTy = OldFnRetTy; 1693 CGF.CXXInheritedCtorInitExprArgs = 1694 std::move(OldCXXInheritedCtorInitExprArgs); 1695 } 1696 1697 private: 1698 CodeGenFunction &CGF; 1699 GlobalDecl OldCurGD; 1700 const Decl *OldCurFuncDecl; 1701 const Decl *OldCurCodeDecl; 1702 ImplicitParamDecl *OldCXXABIThisDecl; 1703 llvm::Value *OldCXXABIThisValue; 1704 llvm::Value *OldCXXThisValue; 1705 CharUnits OldCXXABIThisAlignment; 1706 CharUnits OldCXXThisAlignment; 1707 Address OldReturnValue; 1708 QualType OldFnRetTy; 1709 CallArgList OldCXXInheritedCtorInitExprArgs; 1710 }; 1711 1712 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1713 // region body, and finalization codegen callbacks. This will class will also 1714 // contain privatization functions used by the privatization call backs 1715 // 1716 // TODO: this is temporary class for things that are being moved out of 1717 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1718 // utility function for use with the OMPBuilder. Once that move to use the 1719 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1720 // directly, or a new helper class that will contain functions used by both 1721 // this and the OMPBuilder 1722 1723 struct OMPBuilderCBHelpers { 1724 1725 OMPBuilderCBHelpers() = delete; 1726 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1727 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1728 1729 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1730 1731 /// Cleanup action for allocate support. 1732 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1733 1734 private: 1735 llvm::CallInst *RTLFnCI; 1736 1737 public: 1738 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1739 RLFnCI->removeFromParent(); 1740 } 1741 1742 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1743 if (!CGF.HaveInsertPoint()) 1744 return; 1745 CGF.Builder.Insert(RTLFnCI); 1746 } 1747 }; 1748 1749 /// Returns address of the threadprivate variable for the current 1750 /// thread. This Also create any necessary OMP runtime calls. 1751 /// 1752 /// \param VD VarDecl for Threadprivate variable. 1753 /// \param VDAddr Address of the Vardecl 1754 /// \param Loc The location where the barrier directive was encountered 1755 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1756 const VarDecl *VD, Address VDAddr, 1757 SourceLocation Loc); 1758 1759 /// Gets the OpenMP-specific address of the local variable /p VD. 1760 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1761 const VarDecl *VD); 1762 /// Get the platform-specific name separator. 1763 /// \param Parts different parts of the final name that needs separation 1764 /// \param FirstSeparator First separator used between the initial two 1765 /// parts of the name. 1766 /// \param Separator separator used between all of the rest consecutinve 1767 /// parts of the name 1768 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1769 StringRef FirstSeparator = ".", 1770 StringRef Separator = "."); 1771 /// Emit the Finalization for an OMP region 1772 /// \param CGF The Codegen function this belongs to 1773 /// \param IP Insertion point for generating the finalization code. 1774 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1775 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1776 assert(IP.getBlock()->end() != IP.getPoint() && 1777 "OpenMP IR Builder should cause terminated block!"); 1778 1779 llvm::BasicBlock *IPBB = IP.getBlock(); 1780 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1781 assert(DestBB && "Finalization block should have one successor!"); 1782 1783 // erase and replace with cleanup branch. 1784 IPBB->getTerminator()->eraseFromParent(); 1785 CGF.Builder.SetInsertPoint(IPBB); 1786 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1787 CGF.EmitBranchThroughCleanup(Dest); 1788 } 1789 1790 /// Emit the body of an OMP region 1791 /// \param CGF The Codegen function this belongs to 1792 /// \param RegionBodyStmt The body statement for the OpenMP region being 1793 /// generated 1794 /// \param AllocaIP Where to insert alloca instructions 1795 /// \param CodeGenIP Where to insert the region code 1796 /// \param RegionName Name to be used for new blocks 1797 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1798 const Stmt *RegionBodyStmt, 1799 InsertPointTy AllocaIP, 1800 InsertPointTy CodeGenIP, 1801 Twine RegionName); 1802 1803 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1804 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1805 ArrayRef<llvm::Value *> Args) { 1806 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1807 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1808 CodeGenIPBBTI->eraseFromParent(); 1809 1810 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1811 1812 if (Fn->doesNotThrow()) 1813 CGF.EmitNounwindRuntimeCall(Fn, Args); 1814 else 1815 CGF.EmitRuntimeCall(Fn, Args); 1816 1817 if (CGF.Builder.saveIP().isSet()) 1818 CGF.Builder.CreateBr(&FiniBB); 1819 } 1820 1821 /// Emit the body of an OMP region that will be outlined in 1822 /// OpenMPIRBuilder::finalize(). 1823 /// \param CGF The Codegen function this belongs to 1824 /// \param RegionBodyStmt The body statement for the OpenMP region being 1825 /// generated 1826 /// \param AllocaIP Where to insert alloca instructions 1827 /// \param CodeGenIP Where to insert the region code 1828 /// \param RegionName Name to be used for new blocks 1829 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1830 const Stmt *RegionBodyStmt, 1831 InsertPointTy AllocaIP, 1832 InsertPointTy CodeGenIP, 1833 Twine RegionName); 1834 1835 /// RAII for preserving necessary info during Outlined region body codegen. 1836 class OutlinedRegionBodyRAII { 1837 1838 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1839 CodeGenFunction::JumpDest OldReturnBlock; 1840 CodeGenFunction &CGF; 1841 1842 public: 1843 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1844 llvm::BasicBlock &RetBB) 1845 : CGF(cgf) { 1846 assert(AllocaIP.isSet() && 1847 "Must specify Insertion point for allocas of outlined function"); 1848 OldAllocaIP = CGF.AllocaInsertPt; 1849 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1850 1851 OldReturnBlock = CGF.ReturnBlock; 1852 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1853 } 1854 1855 ~OutlinedRegionBodyRAII() { 1856 CGF.AllocaInsertPt = OldAllocaIP; 1857 CGF.ReturnBlock = OldReturnBlock; 1858 } 1859 }; 1860 1861 /// RAII for preserving necessary info during inlined region body codegen. 1862 class InlinedRegionBodyRAII { 1863 1864 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1865 CodeGenFunction &CGF; 1866 1867 public: 1868 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1869 llvm::BasicBlock &FiniBB) 1870 : CGF(cgf) { 1871 // Alloca insertion block should be in the entry block of the containing 1872 // function so it expects an empty AllocaIP in which case will reuse the 1873 // old alloca insertion point, or a new AllocaIP in the same block as 1874 // the old one 1875 assert((!AllocaIP.isSet() || 1876 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1877 "Insertion point should be in the entry block of containing " 1878 "function!"); 1879 OldAllocaIP = CGF.AllocaInsertPt; 1880 if (AllocaIP.isSet()) 1881 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1882 1883 // TODO: Remove the call, after making sure the counter is not used by 1884 // the EHStack. 1885 // Since this is an inlined region, it should not modify the 1886 // ReturnBlock, and should reuse the one for the enclosing outlined 1887 // region. So, the JumpDest being return by the function is discarded 1888 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1889 } 1890 1891 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1892 }; 1893 }; 1894 1895 private: 1896 /// CXXThisDecl - When generating code for a C++ member function, 1897 /// this will hold the implicit 'this' declaration. 1898 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1899 llvm::Value *CXXABIThisValue = nullptr; 1900 llvm::Value *CXXThisValue = nullptr; 1901 CharUnits CXXABIThisAlignment; 1902 CharUnits CXXThisAlignment; 1903 1904 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1905 /// this expression. 1906 Address CXXDefaultInitExprThis = Address::invalid(); 1907 1908 /// The current array initialization index when evaluating an 1909 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1910 llvm::Value *ArrayInitIndex = nullptr; 1911 1912 /// The values of function arguments to use when evaluating 1913 /// CXXInheritedCtorInitExprs within this context. 1914 CallArgList CXXInheritedCtorInitExprArgs; 1915 1916 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1917 /// destructor, this will hold the implicit argument (e.g. VTT). 1918 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1919 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1920 1921 /// OutermostConditional - Points to the outermost active 1922 /// conditional control. This is used so that we know if a 1923 /// temporary should be destroyed conditionally. 1924 ConditionalEvaluation *OutermostConditional = nullptr; 1925 1926 /// The current lexical scope. 1927 LexicalScope *CurLexicalScope = nullptr; 1928 1929 /// The current source location that should be used for exception 1930 /// handling code. 1931 SourceLocation CurEHLocation; 1932 1933 /// BlockByrefInfos - For each __block variable, contains 1934 /// information about the layout of the variable. 1935 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1936 1937 /// Used by -fsanitize=nullability-return to determine whether the return 1938 /// value can be checked. 1939 llvm::Value *RetValNullabilityPrecondition = nullptr; 1940 1941 /// Check if -fsanitize=nullability-return instrumentation is required for 1942 /// this function. 1943 bool requiresReturnValueNullabilityCheck() const { 1944 return RetValNullabilityPrecondition; 1945 } 1946 1947 /// Used to store precise source locations for return statements by the 1948 /// runtime return value checks. 1949 Address ReturnLocation = Address::invalid(); 1950 1951 /// Check if the return value of this function requires sanitization. 1952 bool requiresReturnValueCheck() const; 1953 1954 llvm::BasicBlock *TerminateLandingPad = nullptr; 1955 llvm::BasicBlock *TerminateHandler = nullptr; 1956 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1957 1958 /// Terminate funclets keyed by parent funclet pad. 1959 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1960 1961 /// Largest vector width used in ths function. Will be used to create a 1962 /// function attribute. 1963 unsigned LargestVectorWidth = 0; 1964 1965 /// True if we need emit the life-time markers. This is initially set in 1966 /// the constructor, but could be overwritten to true if this is a coroutine. 1967 bool ShouldEmitLifetimeMarkers; 1968 1969 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1970 /// the function metadata. 1971 void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); 1972 1973 public: 1974 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1975 ~CodeGenFunction(); 1976 1977 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1978 ASTContext &getContext() const { return CGM.getContext(); } 1979 CGDebugInfo *getDebugInfo() { 1980 if (DisableDebugInfo) 1981 return nullptr; 1982 return DebugInfo; 1983 } 1984 void disableDebugInfo() { DisableDebugInfo = true; } 1985 void enableDebugInfo() { DisableDebugInfo = false; } 1986 1987 bool shouldUseFusedARCCalls() { 1988 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1989 } 1990 1991 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1992 1993 /// Returns a pointer to the function's exception object and selector slot, 1994 /// which is assigned in every landing pad. 1995 Address getExceptionSlot(); 1996 Address getEHSelectorSlot(); 1997 1998 /// Returns the contents of the function's exception object and selector 1999 /// slots. 2000 llvm::Value *getExceptionFromSlot(); 2001 llvm::Value *getSelectorFromSlot(); 2002 2003 Address getNormalCleanupDestSlot(); 2004 2005 llvm::BasicBlock *getUnreachableBlock() { 2006 if (!UnreachableBlock) { 2007 UnreachableBlock = createBasicBlock("unreachable"); 2008 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2009 } 2010 return UnreachableBlock; 2011 } 2012 2013 llvm::BasicBlock *getInvokeDest() { 2014 if (!EHStack.requiresLandingPad()) return nullptr; 2015 return getInvokeDestImpl(); 2016 } 2017 2018 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 2019 2020 const TargetInfo &getTarget() const { return Target; } 2021 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2022 const TargetCodeGenInfo &getTargetHooks() const { 2023 return CGM.getTargetCodeGenInfo(); 2024 } 2025 2026 //===--------------------------------------------------------------------===// 2027 // Cleanups 2028 //===--------------------------------------------------------------------===// 2029 2030 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2031 2032 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2033 Address arrayEndPointer, 2034 QualType elementType, 2035 CharUnits elementAlignment, 2036 Destroyer *destroyer); 2037 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2038 llvm::Value *arrayEnd, 2039 QualType elementType, 2040 CharUnits elementAlignment, 2041 Destroyer *destroyer); 2042 2043 void pushDestroy(QualType::DestructionKind dtorKind, 2044 Address addr, QualType type); 2045 void pushEHDestroy(QualType::DestructionKind dtorKind, 2046 Address addr, QualType type); 2047 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2048 Destroyer *destroyer, bool useEHCleanupForArray); 2049 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2050 QualType type, Destroyer *destroyer, 2051 bool useEHCleanupForArray); 2052 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2053 llvm::Value *CompletePtr, 2054 QualType ElementType); 2055 void pushStackRestore(CleanupKind kind, Address SPMem); 2056 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2057 bool useEHCleanupForArray); 2058 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2059 Destroyer *destroyer, 2060 bool useEHCleanupForArray, 2061 const VarDecl *VD); 2062 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2063 QualType elementType, CharUnits elementAlign, 2064 Destroyer *destroyer, 2065 bool checkZeroLength, bool useEHCleanup); 2066 2067 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2068 2069 /// Determines whether an EH cleanup is required to destroy a type 2070 /// with the given destruction kind. 2071 bool needsEHCleanup(QualType::DestructionKind kind) { 2072 switch (kind) { 2073 case QualType::DK_none: 2074 return false; 2075 case QualType::DK_cxx_destructor: 2076 case QualType::DK_objc_weak_lifetime: 2077 case QualType::DK_nontrivial_c_struct: 2078 return getLangOpts().Exceptions; 2079 case QualType::DK_objc_strong_lifetime: 2080 return getLangOpts().Exceptions && 2081 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2082 } 2083 llvm_unreachable("bad destruction kind"); 2084 } 2085 2086 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2087 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2088 } 2089 2090 //===--------------------------------------------------------------------===// 2091 // Objective-C 2092 //===--------------------------------------------------------------------===// 2093 2094 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2095 2096 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2097 2098 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2099 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2100 const ObjCPropertyImplDecl *PID); 2101 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2102 const ObjCPropertyImplDecl *propImpl, 2103 const ObjCMethodDecl *GetterMothodDecl, 2104 llvm::Constant *AtomicHelperFn); 2105 2106 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2107 ObjCMethodDecl *MD, bool ctor); 2108 2109 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2110 /// for the given property. 2111 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2112 const ObjCPropertyImplDecl *PID); 2113 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2114 const ObjCPropertyImplDecl *propImpl, 2115 llvm::Constant *AtomicHelperFn); 2116 2117 //===--------------------------------------------------------------------===// 2118 // Block Bits 2119 //===--------------------------------------------------------------------===// 2120 2121 /// Emit block literal. 2122 /// \return an LLVM value which is a pointer to a struct which contains 2123 /// information about the block, including the block invoke function, the 2124 /// captured variables, etc. 2125 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2126 2127 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2128 const CGBlockInfo &Info, 2129 const DeclMapTy &ldm, 2130 bool IsLambdaConversionToBlock, 2131 bool BuildGlobalBlock); 2132 2133 /// Check if \p T is a C++ class that has a destructor that can throw. 2134 static bool cxxDestructorCanThrow(QualType T); 2135 2136 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2137 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2138 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2139 const ObjCPropertyImplDecl *PID); 2140 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2141 const ObjCPropertyImplDecl *PID); 2142 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2143 2144 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2145 bool CanThrow); 2146 2147 class AutoVarEmission; 2148 2149 void emitByrefStructureInit(const AutoVarEmission &emission); 2150 2151 /// Enter a cleanup to destroy a __block variable. Note that this 2152 /// cleanup should be a no-op if the variable hasn't left the stack 2153 /// yet; if a cleanup is required for the variable itself, that needs 2154 /// to be done externally. 2155 /// 2156 /// \param Kind Cleanup kind. 2157 /// 2158 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2159 /// structure that will be passed to _Block_object_dispose. When 2160 /// \p LoadBlockVarAddr is true, the address of the field of the block 2161 /// structure that holds the address of the __block structure. 2162 /// 2163 /// \param Flags The flag that will be passed to _Block_object_dispose. 2164 /// 2165 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2166 /// \p Addr to get the address of the __block structure. 2167 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2168 bool LoadBlockVarAddr, bool CanThrow); 2169 2170 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2171 llvm::Value *ptr); 2172 2173 Address LoadBlockStruct(); 2174 Address GetAddrOfBlockDecl(const VarDecl *var); 2175 2176 /// BuildBlockByrefAddress - Computes the location of the 2177 /// data in a variable which is declared as __block. 2178 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2179 bool followForward = true); 2180 Address emitBlockByrefAddress(Address baseAddr, 2181 const BlockByrefInfo &info, 2182 bool followForward, 2183 const llvm::Twine &name); 2184 2185 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2186 2187 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2188 2189 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2190 const CGFunctionInfo &FnInfo); 2191 2192 /// Annotate the function with an attribute that disables TSan checking at 2193 /// runtime. 2194 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2195 2196 /// Emit code for the start of a function. 2197 /// \param Loc The location to be associated with the function. 2198 /// \param StartLoc The location of the function body. 2199 void StartFunction(GlobalDecl GD, 2200 QualType RetTy, 2201 llvm::Function *Fn, 2202 const CGFunctionInfo &FnInfo, 2203 const FunctionArgList &Args, 2204 SourceLocation Loc = SourceLocation(), 2205 SourceLocation StartLoc = SourceLocation()); 2206 2207 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2208 2209 void EmitConstructorBody(FunctionArgList &Args); 2210 void EmitDestructorBody(FunctionArgList &Args); 2211 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2212 void EmitFunctionBody(const Stmt *Body); 2213 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2214 2215 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2216 CallArgList &CallArgs); 2217 void EmitLambdaBlockInvokeBody(); 2218 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2219 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2220 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2221 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2222 } 2223 void EmitAsanPrologueOrEpilogue(bool Prologue); 2224 2225 /// Emit the unified return block, trying to avoid its emission when 2226 /// possible. 2227 /// \return The debug location of the user written return statement if the 2228 /// return block is is avoided. 2229 llvm::DebugLoc EmitReturnBlock(); 2230 2231 /// FinishFunction - Complete IR generation of the current function. It is 2232 /// legal to call this function even if there is no current insertion point. 2233 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2234 2235 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2236 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2237 2238 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2239 const ThunkInfo *Thunk, bool IsUnprototyped); 2240 2241 void FinishThunk(); 2242 2243 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2244 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2245 llvm::FunctionCallee Callee); 2246 2247 /// Generate a thunk for the given method. 2248 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2249 GlobalDecl GD, const ThunkInfo &Thunk, 2250 bool IsUnprototyped); 2251 2252 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2253 const CGFunctionInfo &FnInfo, 2254 GlobalDecl GD, const ThunkInfo &Thunk); 2255 2256 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2257 FunctionArgList &Args); 2258 2259 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2260 2261 /// Struct with all information about dynamic [sub]class needed to set vptr. 2262 struct VPtr { 2263 BaseSubobject Base; 2264 const CXXRecordDecl *NearestVBase; 2265 CharUnits OffsetFromNearestVBase; 2266 const CXXRecordDecl *VTableClass; 2267 }; 2268 2269 /// Initialize the vtable pointer of the given subobject. 2270 void InitializeVTablePointer(const VPtr &vptr); 2271 2272 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2273 2274 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2275 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2276 2277 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2278 CharUnits OffsetFromNearestVBase, 2279 bool BaseIsNonVirtualPrimaryBase, 2280 const CXXRecordDecl *VTableClass, 2281 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2282 2283 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2284 2285 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2286 /// to by This. 2287 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2288 const CXXRecordDecl *VTableClass); 2289 2290 enum CFITypeCheckKind { 2291 CFITCK_VCall, 2292 CFITCK_NVCall, 2293 CFITCK_DerivedCast, 2294 CFITCK_UnrelatedCast, 2295 CFITCK_ICall, 2296 CFITCK_NVMFCall, 2297 CFITCK_VMFCall, 2298 }; 2299 2300 /// Derived is the presumed address of an object of type T after a 2301 /// cast. If T is a polymorphic class type, emit a check that the virtual 2302 /// table for Derived belongs to a class derived from T. 2303 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2304 CFITypeCheckKind TCK, SourceLocation Loc); 2305 2306 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2307 /// If vptr CFI is enabled, emit a check that VTable is valid. 2308 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2309 CFITypeCheckKind TCK, SourceLocation Loc); 2310 2311 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2312 /// RD using llvm.type.test. 2313 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2314 CFITypeCheckKind TCK, SourceLocation Loc); 2315 2316 /// If whole-program virtual table optimization is enabled, emit an assumption 2317 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2318 /// enabled, emit a check that VTable is a member of RD's type identifier. 2319 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2320 llvm::Value *VTable, SourceLocation Loc); 2321 2322 /// Returns whether we should perform a type checked load when loading a 2323 /// virtual function for virtual calls to members of RD. This is generally 2324 /// true when both vcall CFI and whole-program-vtables are enabled. 2325 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2326 2327 /// Emit a type checked load from the given vtable. 2328 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2329 llvm::Value *VTable, 2330 llvm::Type *VTableTy, 2331 uint64_t VTableByteOffset); 2332 2333 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2334 /// given phase of destruction for a destructor. The end result 2335 /// should call destructors on members and base classes in reverse 2336 /// order of their construction. 2337 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2338 2339 /// ShouldInstrumentFunction - Return true if the current function should be 2340 /// instrumented with __cyg_profile_func_* calls 2341 bool ShouldInstrumentFunction(); 2342 2343 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2344 /// should not be instrumented with sanitizers. 2345 bool ShouldSkipSanitizerInstrumentation(); 2346 2347 /// ShouldXRayInstrument - Return true if the current function should be 2348 /// instrumented with XRay nop sleds. 2349 bool ShouldXRayInstrumentFunction() const; 2350 2351 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2352 /// XRay custom event handling calls. 2353 bool AlwaysEmitXRayCustomEvents() const; 2354 2355 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2356 /// XRay typed event handling calls. 2357 bool AlwaysEmitXRayTypedEvents() const; 2358 2359 /// Decode an address used in a function prologue, encoded by \c 2360 /// EncodeAddrForUseInPrologue. 2361 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2362 llvm::Value *EncodedAddr); 2363 2364 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2365 /// arguments for the given function. This is also responsible for naming the 2366 /// LLVM function arguments. 2367 void EmitFunctionProlog(const CGFunctionInfo &FI, 2368 llvm::Function *Fn, 2369 const FunctionArgList &Args); 2370 2371 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2372 /// given temporary. 2373 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2374 SourceLocation EndLoc); 2375 2376 /// Emit a test that checks if the return value \p RV is nonnull. 2377 void EmitReturnValueCheck(llvm::Value *RV); 2378 2379 /// EmitStartEHSpec - Emit the start of the exception spec. 2380 void EmitStartEHSpec(const Decl *D); 2381 2382 /// EmitEndEHSpec - Emit the end of the exception spec. 2383 void EmitEndEHSpec(const Decl *D); 2384 2385 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2386 llvm::BasicBlock *getTerminateLandingPad(); 2387 2388 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2389 /// terminate. 2390 llvm::BasicBlock *getTerminateFunclet(); 2391 2392 /// getTerminateHandler - Return a handler (not a landing pad, just 2393 /// a catch handler) that just calls terminate. This is used when 2394 /// a terminate scope encloses a try. 2395 llvm::BasicBlock *getTerminateHandler(); 2396 2397 llvm::Type *ConvertTypeForMem(QualType T); 2398 llvm::Type *ConvertType(QualType T); 2399 llvm::Type *ConvertType(const TypeDecl *T) { 2400 return ConvertType(getContext().getTypeDeclType(T)); 2401 } 2402 2403 /// LoadObjCSelf - Load the value of self. This function is only valid while 2404 /// generating code for an Objective-C method. 2405 llvm::Value *LoadObjCSelf(); 2406 2407 /// TypeOfSelfObject - Return type of object that this self represents. 2408 QualType TypeOfSelfObject(); 2409 2410 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2411 static TypeEvaluationKind getEvaluationKind(QualType T); 2412 2413 static bool hasScalarEvaluationKind(QualType T) { 2414 return getEvaluationKind(T) == TEK_Scalar; 2415 } 2416 2417 static bool hasAggregateEvaluationKind(QualType T) { 2418 return getEvaluationKind(T) == TEK_Aggregate; 2419 } 2420 2421 /// createBasicBlock - Create an LLVM basic block. 2422 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2423 llvm::Function *parent = nullptr, 2424 llvm::BasicBlock *before = nullptr) { 2425 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2426 } 2427 2428 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2429 /// label maps to. 2430 JumpDest getJumpDestForLabel(const LabelDecl *S); 2431 2432 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2433 /// another basic block, simplify it. This assumes that no other code could 2434 /// potentially reference the basic block. 2435 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2436 2437 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2438 /// adding a fall-through branch from the current insert block if 2439 /// necessary. It is legal to call this function even if there is no current 2440 /// insertion point. 2441 /// 2442 /// IsFinished - If true, indicates that the caller has finished emitting 2443 /// branches to the given block and does not expect to emit code into it. This 2444 /// means the block can be ignored if it is unreachable. 2445 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2446 2447 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2448 /// near its uses, and leave the insertion point in it. 2449 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2450 2451 /// EmitBranch - Emit a branch to the specified basic block from the current 2452 /// insert block, taking care to avoid creation of branches from dummy 2453 /// blocks. It is legal to call this function even if there is no current 2454 /// insertion point. 2455 /// 2456 /// This function clears the current insertion point. The caller should follow 2457 /// calls to this function with calls to Emit*Block prior to generation new 2458 /// code. 2459 void EmitBranch(llvm::BasicBlock *Block); 2460 2461 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2462 /// indicates that the current code being emitted is unreachable. 2463 bool HaveInsertPoint() const { 2464 return Builder.GetInsertBlock() != nullptr; 2465 } 2466 2467 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2468 /// emitted IR has a place to go. Note that by definition, if this function 2469 /// creates a block then that block is unreachable; callers may do better to 2470 /// detect when no insertion point is defined and simply skip IR generation. 2471 void EnsureInsertPoint() { 2472 if (!HaveInsertPoint()) 2473 EmitBlock(createBasicBlock()); 2474 } 2475 2476 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2477 /// specified stmt yet. 2478 void ErrorUnsupported(const Stmt *S, const char *Type); 2479 2480 //===--------------------------------------------------------------------===// 2481 // Helpers 2482 //===--------------------------------------------------------------------===// 2483 2484 LValue MakeAddrLValue(Address Addr, QualType T, 2485 AlignmentSource Source = AlignmentSource::Type) { 2486 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2487 CGM.getTBAAAccessInfo(T)); 2488 } 2489 2490 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2491 TBAAAccessInfo TBAAInfo) { 2492 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2493 } 2494 2495 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2496 AlignmentSource Source = AlignmentSource::Type) { 2497 Address Addr(V, ConvertTypeForMem(T), Alignment); 2498 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2499 CGM.getTBAAAccessInfo(T)); 2500 } 2501 2502 LValue 2503 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2504 AlignmentSource Source = AlignmentSource::Type) { 2505 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2506 TBAAAccessInfo()); 2507 } 2508 2509 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2510 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2511 2512 Address EmitLoadOfReference(LValue RefLVal, 2513 LValueBaseInfo *PointeeBaseInfo = nullptr, 2514 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2515 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2516 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2517 AlignmentSource Source = 2518 AlignmentSource::Type) { 2519 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2520 CGM.getTBAAAccessInfo(RefTy)); 2521 return EmitLoadOfReferenceLValue(RefLVal); 2522 } 2523 2524 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2525 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2526 /// it is loaded from. 2527 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2528 LValueBaseInfo *BaseInfo = nullptr, 2529 TBAAAccessInfo *TBAAInfo = nullptr); 2530 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2531 2532 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2533 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2534 /// insertion point of the builder. The caller is responsible for setting an 2535 /// appropriate alignment on 2536 /// the alloca. 2537 /// 2538 /// \p ArraySize is the number of array elements to be allocated if it 2539 /// is not nullptr. 2540 /// 2541 /// LangAS::Default is the address space of pointers to local variables and 2542 /// temporaries, as exposed in the source language. In certain 2543 /// configurations, this is not the same as the alloca address space, and a 2544 /// cast is needed to lift the pointer from the alloca AS into 2545 /// LangAS::Default. This can happen when the target uses a restricted 2546 /// address space for the stack but the source language requires 2547 /// LangAS::Default to be a generic address space. The latter condition is 2548 /// common for most programming languages; OpenCL is an exception in that 2549 /// LangAS::Default is the private address space, which naturally maps 2550 /// to the stack. 2551 /// 2552 /// Because the address of a temporary is often exposed to the program in 2553 /// various ways, this function will perform the cast. The original alloca 2554 /// instruction is returned through \p Alloca if it is not nullptr. 2555 /// 2556 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2557 /// more efficient if the caller knows that the address will not be exposed. 2558 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2559 llvm::Value *ArraySize = nullptr); 2560 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2561 const Twine &Name = "tmp", 2562 llvm::Value *ArraySize = nullptr, 2563 Address *Alloca = nullptr); 2564 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2565 const Twine &Name = "tmp", 2566 llvm::Value *ArraySize = nullptr); 2567 2568 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2569 /// default ABI alignment of the given LLVM type. 2570 /// 2571 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2572 /// any given AST type that happens to have been lowered to the 2573 /// given IR type. This should only ever be used for function-local, 2574 /// IR-driven manipulations like saving and restoring a value. Do 2575 /// not hand this address off to arbitrary IRGen routines, and especially 2576 /// do not pass it as an argument to a function that might expect a 2577 /// properly ABI-aligned value. 2578 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2579 const Twine &Name = "tmp"); 2580 2581 /// CreateIRTemp - Create a temporary IR object of the given type, with 2582 /// appropriate alignment. This routine should only be used when an temporary 2583 /// value needs to be stored into an alloca (for example, to avoid explicit 2584 /// PHI construction), but the type is the IR type, not the type appropriate 2585 /// for storing in memory. 2586 /// 2587 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2588 /// ConvertType instead of ConvertTypeForMem. 2589 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2590 2591 /// CreateMemTemp - Create a temporary memory object of the given type, with 2592 /// appropriate alignmen and cast it to the default address space. Returns 2593 /// the original alloca instruction by \p Alloca if it is not nullptr. 2594 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2595 Address *Alloca = nullptr); 2596 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2597 Address *Alloca = nullptr); 2598 2599 /// CreateMemTemp - Create a temporary memory object of the given type, with 2600 /// appropriate alignmen without casting it to the default address space. 2601 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2602 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2603 const Twine &Name = "tmp"); 2604 2605 /// CreateAggTemp - Create a temporary memory object for the given 2606 /// aggregate type. 2607 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2608 Address *Alloca = nullptr) { 2609 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2610 T.getQualifiers(), 2611 AggValueSlot::IsNotDestructed, 2612 AggValueSlot::DoesNotNeedGCBarriers, 2613 AggValueSlot::IsNotAliased, 2614 AggValueSlot::DoesNotOverlap); 2615 } 2616 2617 /// Emit a cast to void* in the appropriate address space. 2618 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2619 2620 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2621 /// expression and compare the result against zero, returning an Int1Ty value. 2622 llvm::Value *EvaluateExprAsBool(const Expr *E); 2623 2624 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2625 void EmitIgnoredExpr(const Expr *E); 2626 2627 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2628 /// any type. The result is returned as an RValue struct. If this is an 2629 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2630 /// the result should be returned. 2631 /// 2632 /// \param ignoreResult True if the resulting value isn't used. 2633 RValue EmitAnyExpr(const Expr *E, 2634 AggValueSlot aggSlot = AggValueSlot::ignored(), 2635 bool ignoreResult = false); 2636 2637 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2638 // or the value of the expression, depending on how va_list is defined. 2639 Address EmitVAListRef(const Expr *E); 2640 2641 /// Emit a "reference" to a __builtin_ms_va_list; this is 2642 /// always the value of the expression, because a __builtin_ms_va_list is a 2643 /// pointer to a char. 2644 Address EmitMSVAListRef(const Expr *E); 2645 2646 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2647 /// always be accessible even if no aggregate location is provided. 2648 RValue EmitAnyExprToTemp(const Expr *E); 2649 2650 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2651 /// arbitrary expression into the given memory location. 2652 void EmitAnyExprToMem(const Expr *E, Address Location, 2653 Qualifiers Quals, bool IsInitializer); 2654 2655 void EmitAnyExprToExn(const Expr *E, Address Addr); 2656 2657 /// EmitExprAsInit - Emits the code necessary to initialize a 2658 /// location in memory with the given initializer. 2659 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2660 bool capturedByInit); 2661 2662 /// hasVolatileMember - returns true if aggregate type has a volatile 2663 /// member. 2664 bool hasVolatileMember(QualType T) { 2665 if (const RecordType *RT = T->getAs<RecordType>()) { 2666 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2667 return RD->hasVolatileMember(); 2668 } 2669 return false; 2670 } 2671 2672 /// Determine whether a return value slot may overlap some other object. 2673 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2674 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2675 // class subobjects. These cases may need to be revisited depending on the 2676 // resolution of the relevant core issue. 2677 return AggValueSlot::DoesNotOverlap; 2678 } 2679 2680 /// Determine whether a field initialization may overlap some other object. 2681 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2682 2683 /// Determine whether a base class initialization may overlap some other 2684 /// object. 2685 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2686 const CXXRecordDecl *BaseRD, 2687 bool IsVirtual); 2688 2689 /// Emit an aggregate assignment. 2690 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2691 bool IsVolatile = hasVolatileMember(EltTy); 2692 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2693 } 2694 2695 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2696 AggValueSlot::Overlap_t MayOverlap) { 2697 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2698 } 2699 2700 /// EmitAggregateCopy - Emit an aggregate copy. 2701 /// 2702 /// \param isVolatile \c true iff either the source or the destination is 2703 /// volatile. 2704 /// \param MayOverlap Whether the tail padding of the destination might be 2705 /// occupied by some other object. More efficient code can often be 2706 /// generated if not. 2707 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2708 AggValueSlot::Overlap_t MayOverlap, 2709 bool isVolatile = false); 2710 2711 /// GetAddrOfLocalVar - Return the address of a local variable. 2712 Address GetAddrOfLocalVar(const VarDecl *VD) { 2713 auto it = LocalDeclMap.find(VD); 2714 assert(it != LocalDeclMap.end() && 2715 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2716 return it->second; 2717 } 2718 2719 /// Given an opaque value expression, return its LValue mapping if it exists, 2720 /// otherwise create one. 2721 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2722 2723 /// Given an opaque value expression, return its RValue mapping if it exists, 2724 /// otherwise create one. 2725 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2726 2727 /// Get the index of the current ArrayInitLoopExpr, if any. 2728 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2729 2730 /// getAccessedFieldNo - Given an encoded value and a result number, return 2731 /// the input field number being accessed. 2732 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2733 2734 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2735 llvm::BasicBlock *GetIndirectGotoBlock(); 2736 2737 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2738 static bool IsWrappedCXXThis(const Expr *E); 2739 2740 /// EmitNullInitialization - Generate code to set a value of the given type to 2741 /// null, If the type contains data member pointers, they will be initialized 2742 /// to -1 in accordance with the Itanium C++ ABI. 2743 void EmitNullInitialization(Address DestPtr, QualType Ty); 2744 2745 /// Emits a call to an LLVM variable-argument intrinsic, either 2746 /// \c llvm.va_start or \c llvm.va_end. 2747 /// \param ArgValue A reference to the \c va_list as emitted by either 2748 /// \c EmitVAListRef or \c EmitMSVAListRef. 2749 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2750 /// calls \c llvm.va_end. 2751 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2752 2753 /// Generate code to get an argument from the passed in pointer 2754 /// and update it accordingly. 2755 /// \param VE The \c VAArgExpr for which to generate code. 2756 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2757 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2758 /// \returns A pointer to the argument. 2759 // FIXME: We should be able to get rid of this method and use the va_arg 2760 // instruction in LLVM instead once it works well enough. 2761 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2762 2763 /// emitArrayLength - Compute the length of an array, even if it's a 2764 /// VLA, and drill down to the base element type. 2765 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2766 QualType &baseType, 2767 Address &addr); 2768 2769 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2770 /// the given variably-modified type and store them in the VLASizeMap. 2771 /// 2772 /// This function can be called with a null (unreachable) insert point. 2773 void EmitVariablyModifiedType(QualType Ty); 2774 2775 struct VlaSizePair { 2776 llvm::Value *NumElts; 2777 QualType Type; 2778 2779 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2780 }; 2781 2782 /// Return the number of elements for a single dimension 2783 /// for the given array type. 2784 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2785 VlaSizePair getVLAElements1D(QualType vla); 2786 2787 /// Returns an LLVM value that corresponds to the size, 2788 /// in non-variably-sized elements, of a variable length array type, 2789 /// plus that largest non-variably-sized element type. Assumes that 2790 /// the type has already been emitted with EmitVariablyModifiedType. 2791 VlaSizePair getVLASize(const VariableArrayType *vla); 2792 VlaSizePair getVLASize(QualType vla); 2793 2794 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2795 /// generating code for an C++ member function. 2796 llvm::Value *LoadCXXThis() { 2797 assert(CXXThisValue && "no 'this' value for this function"); 2798 return CXXThisValue; 2799 } 2800 Address LoadCXXThisAddress(); 2801 2802 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2803 /// virtual bases. 2804 // FIXME: Every place that calls LoadCXXVTT is something 2805 // that needs to be abstracted properly. 2806 llvm::Value *LoadCXXVTT() { 2807 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2808 return CXXStructorImplicitParamValue; 2809 } 2810 2811 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2812 /// complete class to the given direct base. 2813 Address 2814 GetAddressOfDirectBaseInCompleteClass(Address Value, 2815 const CXXRecordDecl *Derived, 2816 const CXXRecordDecl *Base, 2817 bool BaseIsVirtual); 2818 2819 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2820 2821 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2822 /// load of 'this' and returns address of the base class. 2823 Address GetAddressOfBaseClass(Address Value, 2824 const CXXRecordDecl *Derived, 2825 CastExpr::path_const_iterator PathBegin, 2826 CastExpr::path_const_iterator PathEnd, 2827 bool NullCheckValue, SourceLocation Loc); 2828 2829 Address GetAddressOfDerivedClass(Address Value, 2830 const CXXRecordDecl *Derived, 2831 CastExpr::path_const_iterator PathBegin, 2832 CastExpr::path_const_iterator PathEnd, 2833 bool NullCheckValue); 2834 2835 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2836 /// base constructor/destructor with virtual bases. 2837 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2838 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2839 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2840 bool Delegating); 2841 2842 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2843 CXXCtorType CtorType, 2844 const FunctionArgList &Args, 2845 SourceLocation Loc); 2846 // It's important not to confuse this and the previous function. Delegating 2847 // constructors are the C++0x feature. The constructor delegate optimization 2848 // is used to reduce duplication in the base and complete consturctors where 2849 // they are substantially the same. 2850 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2851 const FunctionArgList &Args); 2852 2853 /// Emit a call to an inheriting constructor (that is, one that invokes a 2854 /// constructor inherited from a base class) by inlining its definition. This 2855 /// is necessary if the ABI does not support forwarding the arguments to the 2856 /// base class constructor (because they're variadic or similar). 2857 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2858 CXXCtorType CtorType, 2859 bool ForVirtualBase, 2860 bool Delegating, 2861 CallArgList &Args); 2862 2863 /// Emit a call to a constructor inherited from a base class, passing the 2864 /// current constructor's arguments along unmodified (without even making 2865 /// a copy). 2866 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2867 bool ForVirtualBase, Address This, 2868 bool InheritedFromVBase, 2869 const CXXInheritedCtorInitExpr *E); 2870 2871 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2872 bool ForVirtualBase, bool Delegating, 2873 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2874 2875 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2876 bool ForVirtualBase, bool Delegating, 2877 Address This, CallArgList &Args, 2878 AggValueSlot::Overlap_t Overlap, 2879 SourceLocation Loc, bool NewPointerIsChecked); 2880 2881 /// Emit assumption load for all bases. Requires to be be called only on 2882 /// most-derived class and not under construction of the object. 2883 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2884 2885 /// Emit assumption that vptr load == global vtable. 2886 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2887 2888 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2889 Address This, Address Src, 2890 const CXXConstructExpr *E); 2891 2892 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2893 const ArrayType *ArrayTy, 2894 Address ArrayPtr, 2895 const CXXConstructExpr *E, 2896 bool NewPointerIsChecked, 2897 bool ZeroInitialization = false); 2898 2899 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2900 llvm::Value *NumElements, 2901 Address ArrayPtr, 2902 const CXXConstructExpr *E, 2903 bool NewPointerIsChecked, 2904 bool ZeroInitialization = false); 2905 2906 static Destroyer destroyCXXObject; 2907 2908 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2909 bool ForVirtualBase, bool Delegating, Address This, 2910 QualType ThisTy); 2911 2912 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2913 llvm::Type *ElementTy, Address NewPtr, 2914 llvm::Value *NumElements, 2915 llvm::Value *AllocSizeWithoutCookie); 2916 2917 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2918 Address Ptr); 2919 2920 void EmitSehCppScopeBegin(); 2921 void EmitSehCppScopeEnd(); 2922 void EmitSehTryScopeBegin(); 2923 void EmitSehTryScopeEnd(); 2924 2925 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 2926 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2927 2928 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2929 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2930 2931 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2932 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2933 CharUnits CookieSize = CharUnits()); 2934 2935 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2936 const CallExpr *TheCallExpr, bool IsDelete); 2937 2938 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2939 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2940 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2941 2942 /// Situations in which we might emit a check for the suitability of a 2943 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2944 /// compiler-rt. 2945 enum TypeCheckKind { 2946 /// Checking the operand of a load. Must be suitably sized and aligned. 2947 TCK_Load, 2948 /// Checking the destination of a store. Must be suitably sized and aligned. 2949 TCK_Store, 2950 /// Checking the bound value in a reference binding. Must be suitably sized 2951 /// and aligned, but is not required to refer to an object (until the 2952 /// reference is used), per core issue 453. 2953 TCK_ReferenceBinding, 2954 /// Checking the object expression in a non-static data member access. Must 2955 /// be an object within its lifetime. 2956 TCK_MemberAccess, 2957 /// Checking the 'this' pointer for a call to a non-static member function. 2958 /// Must be an object within its lifetime. 2959 TCK_MemberCall, 2960 /// Checking the 'this' pointer for a constructor call. 2961 TCK_ConstructorCall, 2962 /// Checking the operand of a static_cast to a derived pointer type. Must be 2963 /// null or an object within its lifetime. 2964 TCK_DowncastPointer, 2965 /// Checking the operand of a static_cast to a derived reference type. Must 2966 /// be an object within its lifetime. 2967 TCK_DowncastReference, 2968 /// Checking the operand of a cast to a base object. Must be suitably sized 2969 /// and aligned. 2970 TCK_Upcast, 2971 /// Checking the operand of a cast to a virtual base object. Must be an 2972 /// object within its lifetime. 2973 TCK_UpcastToVirtualBase, 2974 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2975 TCK_NonnullAssign, 2976 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2977 /// null or an object within its lifetime. 2978 TCK_DynamicOperation 2979 }; 2980 2981 /// Determine whether the pointer type check \p TCK permits null pointers. 2982 static bool isNullPointerAllowed(TypeCheckKind TCK); 2983 2984 /// Determine whether the pointer type check \p TCK requires a vptr check. 2985 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2986 2987 /// Whether any type-checking sanitizers are enabled. If \c false, 2988 /// calls to EmitTypeCheck can be skipped. 2989 bool sanitizePerformTypeCheck() const; 2990 2991 /// Emit a check that \p V is the address of storage of the 2992 /// appropriate size and alignment for an object of type \p Type 2993 /// (or if ArraySize is provided, for an array of that bound). 2994 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2995 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2996 SanitizerSet SkippedChecks = SanitizerSet(), 2997 llvm::Value *ArraySize = nullptr); 2998 2999 /// Emit a check that \p Base points into an array object, which 3000 /// we can access at index \p Index. \p Accessed should be \c false if we 3001 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3002 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3003 QualType IndexType, bool Accessed); 3004 3005 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3006 bool isInc, bool isPre); 3007 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3008 bool isInc, bool isPre); 3009 3010 /// Converts Location to a DebugLoc, if debug information is enabled. 3011 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3012 3013 /// Get the record field index as represented in debug info. 3014 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3015 3016 3017 //===--------------------------------------------------------------------===// 3018 // Declaration Emission 3019 //===--------------------------------------------------------------------===// 3020 3021 /// EmitDecl - Emit a declaration. 3022 /// 3023 /// This function can be called with a null (unreachable) insert point. 3024 void EmitDecl(const Decl &D); 3025 3026 /// EmitVarDecl - Emit a local variable declaration. 3027 /// 3028 /// This function can be called with a null (unreachable) insert point. 3029 void EmitVarDecl(const VarDecl &D); 3030 3031 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3032 bool capturedByInit); 3033 3034 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3035 llvm::Value *Address); 3036 3037 /// Determine whether the given initializer is trivial in the sense 3038 /// that it requires no code to be generated. 3039 bool isTrivialInitializer(const Expr *Init); 3040 3041 /// EmitAutoVarDecl - Emit an auto variable declaration. 3042 /// 3043 /// This function can be called with a null (unreachable) insert point. 3044 void EmitAutoVarDecl(const VarDecl &D); 3045 3046 class AutoVarEmission { 3047 friend class CodeGenFunction; 3048 3049 const VarDecl *Variable; 3050 3051 /// The address of the alloca for languages with explicit address space 3052 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3053 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3054 /// as a global constant. 3055 Address Addr; 3056 3057 llvm::Value *NRVOFlag; 3058 3059 /// True if the variable is a __block variable that is captured by an 3060 /// escaping block. 3061 bool IsEscapingByRef; 3062 3063 /// True if the variable is of aggregate type and has a constant 3064 /// initializer. 3065 bool IsConstantAggregate; 3066 3067 /// Non-null if we should use lifetime annotations. 3068 llvm::Value *SizeForLifetimeMarkers; 3069 3070 /// Address with original alloca instruction. Invalid if the variable was 3071 /// emitted as a global constant. 3072 Address AllocaAddr; 3073 3074 struct Invalid {}; 3075 AutoVarEmission(Invalid) 3076 : Variable(nullptr), Addr(Address::invalid()), 3077 AllocaAddr(Address::invalid()) {} 3078 3079 AutoVarEmission(const VarDecl &variable) 3080 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3081 IsEscapingByRef(false), IsConstantAggregate(false), 3082 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3083 3084 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3085 3086 public: 3087 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3088 3089 bool useLifetimeMarkers() const { 3090 return SizeForLifetimeMarkers != nullptr; 3091 } 3092 llvm::Value *getSizeForLifetimeMarkers() const { 3093 assert(useLifetimeMarkers()); 3094 return SizeForLifetimeMarkers; 3095 } 3096 3097 /// Returns the raw, allocated address, which is not necessarily 3098 /// the address of the object itself. It is casted to default 3099 /// address space for address space agnostic languages. 3100 Address getAllocatedAddress() const { 3101 return Addr; 3102 } 3103 3104 /// Returns the address for the original alloca instruction. 3105 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3106 3107 /// Returns the address of the object within this declaration. 3108 /// Note that this does not chase the forwarding pointer for 3109 /// __block decls. 3110 Address getObjectAddress(CodeGenFunction &CGF) const { 3111 if (!IsEscapingByRef) return Addr; 3112 3113 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3114 } 3115 }; 3116 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3117 void EmitAutoVarInit(const AutoVarEmission &emission); 3118 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3119 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3120 QualType::DestructionKind dtorKind); 3121 3122 /// Emits the alloca and debug information for the size expressions for each 3123 /// dimension of an array. It registers the association of its (1-dimensional) 3124 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3125 /// reference this node when creating the DISubrange object to describe the 3126 /// array types. 3127 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3128 const VarDecl &D, 3129 bool EmitDebugInfo); 3130 3131 void EmitStaticVarDecl(const VarDecl &D, 3132 llvm::GlobalValue::LinkageTypes Linkage); 3133 3134 class ParamValue { 3135 llvm::Value *Value; 3136 llvm::Type *ElementType; 3137 unsigned Alignment; 3138 ParamValue(llvm::Value *V, llvm::Type *T, unsigned A) 3139 : Value(V), ElementType(T), Alignment(A) {} 3140 public: 3141 static ParamValue forDirect(llvm::Value *value) { 3142 return ParamValue(value, nullptr, 0); 3143 } 3144 static ParamValue forIndirect(Address addr) { 3145 assert(!addr.getAlignment().isZero()); 3146 return ParamValue(addr.getPointer(), addr.getElementType(), 3147 addr.getAlignment().getQuantity()); 3148 } 3149 3150 bool isIndirect() const { return Alignment != 0; } 3151 llvm::Value *getAnyValue() const { return Value; } 3152 3153 llvm::Value *getDirectValue() const { 3154 assert(!isIndirect()); 3155 return Value; 3156 } 3157 3158 Address getIndirectAddress() const { 3159 assert(isIndirect()); 3160 return Address(Value, ElementType, CharUnits::fromQuantity(Alignment)); 3161 } 3162 }; 3163 3164 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3165 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3166 3167 /// protectFromPeepholes - Protect a value that we're intending to 3168 /// store to the side, but which will probably be used later, from 3169 /// aggressive peepholing optimizations that might delete it. 3170 /// 3171 /// Pass the result to unprotectFromPeepholes to declare that 3172 /// protection is no longer required. 3173 /// 3174 /// There's no particular reason why this shouldn't apply to 3175 /// l-values, it's just that no existing peepholes work on pointers. 3176 PeepholeProtection protectFromPeepholes(RValue rvalue); 3177 void unprotectFromPeepholes(PeepholeProtection protection); 3178 3179 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3180 SourceLocation Loc, 3181 SourceLocation AssumptionLoc, 3182 llvm::Value *Alignment, 3183 llvm::Value *OffsetValue, 3184 llvm::Value *TheCheck, 3185 llvm::Instruction *Assumption); 3186 3187 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3188 SourceLocation Loc, SourceLocation AssumptionLoc, 3189 llvm::Value *Alignment, 3190 llvm::Value *OffsetValue = nullptr); 3191 3192 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3193 SourceLocation AssumptionLoc, 3194 llvm::Value *Alignment, 3195 llvm::Value *OffsetValue = nullptr); 3196 3197 //===--------------------------------------------------------------------===// 3198 // Statement Emission 3199 //===--------------------------------------------------------------------===// 3200 3201 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3202 void EmitStopPoint(const Stmt *S); 3203 3204 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3205 /// this function even if there is no current insertion point. 3206 /// 3207 /// This function may clear the current insertion point; callers should use 3208 /// EnsureInsertPoint if they wish to subsequently generate code without first 3209 /// calling EmitBlock, EmitBranch, or EmitStmt. 3210 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3211 3212 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3213 /// necessarily require an insertion point or debug information; typically 3214 /// because the statement amounts to a jump or a container of other 3215 /// statements. 3216 /// 3217 /// \return True if the statement was handled. 3218 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3219 3220 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3221 AggValueSlot AVS = AggValueSlot::ignored()); 3222 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3223 bool GetLast = false, 3224 AggValueSlot AVS = 3225 AggValueSlot::ignored()); 3226 3227 /// EmitLabel - Emit the block for the given label. It is legal to call this 3228 /// function even if there is no current insertion point. 3229 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3230 3231 void EmitLabelStmt(const LabelStmt &S); 3232 void EmitAttributedStmt(const AttributedStmt &S); 3233 void EmitGotoStmt(const GotoStmt &S); 3234 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3235 void EmitIfStmt(const IfStmt &S); 3236 3237 void EmitWhileStmt(const WhileStmt &S, 3238 ArrayRef<const Attr *> Attrs = None); 3239 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3240 void EmitForStmt(const ForStmt &S, 3241 ArrayRef<const Attr *> Attrs = None); 3242 void EmitReturnStmt(const ReturnStmt &S); 3243 void EmitDeclStmt(const DeclStmt &S); 3244 void EmitBreakStmt(const BreakStmt &S); 3245 void EmitContinueStmt(const ContinueStmt &S); 3246 void EmitSwitchStmt(const SwitchStmt &S); 3247 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3248 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3249 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3250 void EmitAsmStmt(const AsmStmt &S); 3251 3252 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3253 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3254 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3255 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3256 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3257 3258 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3259 void EmitCoreturnStmt(const CoreturnStmt &S); 3260 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3261 AggValueSlot aggSlot = AggValueSlot::ignored(), 3262 bool ignoreResult = false); 3263 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3264 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3265 AggValueSlot aggSlot = AggValueSlot::ignored(), 3266 bool ignoreResult = false); 3267 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3268 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3269 3270 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3271 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3272 3273 void EmitCXXTryStmt(const CXXTryStmt &S); 3274 void EmitSEHTryStmt(const SEHTryStmt &S); 3275 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3276 void EnterSEHTryStmt(const SEHTryStmt &S); 3277 void ExitSEHTryStmt(const SEHTryStmt &S); 3278 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3279 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3280 3281 void pushSEHCleanup(CleanupKind kind, 3282 llvm::Function *FinallyFunc); 3283 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3284 const Stmt *OutlinedStmt); 3285 3286 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3287 const SEHExceptStmt &Except); 3288 3289 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3290 const SEHFinallyStmt &Finally); 3291 3292 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3293 llvm::Value *ParentFP, 3294 llvm::Value *EntryEBP); 3295 llvm::Value *EmitSEHExceptionCode(); 3296 llvm::Value *EmitSEHExceptionInfo(); 3297 llvm::Value *EmitSEHAbnormalTermination(); 3298 3299 /// Emit simple code for OpenMP directives in Simd-only mode. 3300 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3301 3302 /// Scan the outlined statement for captures from the parent function. For 3303 /// each capture, mark the capture as escaped and emit a call to 3304 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3305 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3306 bool IsFilter); 3307 3308 /// Recovers the address of a local in a parent function. ParentVar is the 3309 /// address of the variable used in the immediate parent function. It can 3310 /// either be an alloca or a call to llvm.localrecover if there are nested 3311 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3312 /// frame. 3313 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3314 Address ParentVar, 3315 llvm::Value *ParentFP); 3316 3317 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3318 ArrayRef<const Attr *> Attrs = None); 3319 3320 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3321 class OMPCancelStackRAII { 3322 CodeGenFunction &CGF; 3323 3324 public: 3325 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3326 bool HasCancel) 3327 : CGF(CGF) { 3328 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3329 } 3330 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3331 }; 3332 3333 /// Returns calculated size of the specified type. 3334 llvm::Value *getTypeSize(QualType Ty); 3335 LValue InitCapturedStruct(const CapturedStmt &S); 3336 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3337 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3338 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3339 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3340 SourceLocation Loc); 3341 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3342 SmallVectorImpl<llvm::Value *> &CapturedVars); 3343 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3344 SourceLocation Loc); 3345 /// Perform element by element copying of arrays with type \a 3346 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3347 /// generated by \a CopyGen. 3348 /// 3349 /// \param DestAddr Address of the destination array. 3350 /// \param SrcAddr Address of the source array. 3351 /// \param OriginalType Type of destination and source arrays. 3352 /// \param CopyGen Copying procedure that copies value of single array element 3353 /// to another single array element. 3354 void EmitOMPAggregateAssign( 3355 Address DestAddr, Address SrcAddr, QualType OriginalType, 3356 const llvm::function_ref<void(Address, Address)> CopyGen); 3357 /// Emit proper copying of data from one variable to another. 3358 /// 3359 /// \param OriginalType Original type of the copied variables. 3360 /// \param DestAddr Destination address. 3361 /// \param SrcAddr Source address. 3362 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3363 /// type of the base array element). 3364 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3365 /// the base array element). 3366 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3367 /// DestVD. 3368 void EmitOMPCopy(QualType OriginalType, 3369 Address DestAddr, Address SrcAddr, 3370 const VarDecl *DestVD, const VarDecl *SrcVD, 3371 const Expr *Copy); 3372 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3373 /// \a X = \a E \a BO \a E. 3374 /// 3375 /// \param X Value to be updated. 3376 /// \param E Update value. 3377 /// \param BO Binary operation for update operation. 3378 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3379 /// expression, false otherwise. 3380 /// \param AO Atomic ordering of the generated atomic instructions. 3381 /// \param CommonGen Code generator for complex expressions that cannot be 3382 /// expressed through atomicrmw instruction. 3383 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3384 /// generated, <false, RValue::get(nullptr)> otherwise. 3385 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3386 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3387 llvm::AtomicOrdering AO, SourceLocation Loc, 3388 const llvm::function_ref<RValue(RValue)> CommonGen); 3389 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3390 OMPPrivateScope &PrivateScope); 3391 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3392 OMPPrivateScope &PrivateScope); 3393 void EmitOMPUseDevicePtrClause( 3394 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3395 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3396 void EmitOMPUseDeviceAddrClause( 3397 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3398 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3399 /// Emit code for copyin clause in \a D directive. The next code is 3400 /// generated at the start of outlined functions for directives: 3401 /// \code 3402 /// threadprivate_var1 = master_threadprivate_var1; 3403 /// operator=(threadprivate_var2, master_threadprivate_var2); 3404 /// ... 3405 /// __kmpc_barrier(&loc, global_tid); 3406 /// \endcode 3407 /// 3408 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3409 /// \returns true if at least one copyin variable is found, false otherwise. 3410 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3411 /// Emit initial code for lastprivate variables. If some variable is 3412 /// not also firstprivate, then the default initialization is used. Otherwise 3413 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3414 /// method. 3415 /// 3416 /// \param D Directive that may have 'lastprivate' directives. 3417 /// \param PrivateScope Private scope for capturing lastprivate variables for 3418 /// proper codegen in internal captured statement. 3419 /// 3420 /// \returns true if there is at least one lastprivate variable, false 3421 /// otherwise. 3422 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3423 OMPPrivateScope &PrivateScope); 3424 /// Emit final copying of lastprivate values to original variables at 3425 /// the end of the worksharing or simd directive. 3426 /// 3427 /// \param D Directive that has at least one 'lastprivate' directives. 3428 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3429 /// it is the last iteration of the loop code in associated directive, or to 3430 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3431 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3432 bool NoFinals, 3433 llvm::Value *IsLastIterCond = nullptr); 3434 /// Emit initial code for linear clauses. 3435 void EmitOMPLinearClause(const OMPLoopDirective &D, 3436 CodeGenFunction::OMPPrivateScope &PrivateScope); 3437 /// Emit final code for linear clauses. 3438 /// \param CondGen Optional conditional code for final part of codegen for 3439 /// linear clause. 3440 void EmitOMPLinearClauseFinal( 3441 const OMPLoopDirective &D, 3442 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3443 /// Emit initial code for reduction variables. Creates reduction copies 3444 /// and initializes them with the values according to OpenMP standard. 3445 /// 3446 /// \param D Directive (possibly) with the 'reduction' clause. 3447 /// \param PrivateScope Private scope for capturing reduction variables for 3448 /// proper codegen in internal captured statement. 3449 /// 3450 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3451 OMPPrivateScope &PrivateScope, 3452 bool ForInscan = false); 3453 /// Emit final update of reduction values to original variables at 3454 /// the end of the directive. 3455 /// 3456 /// \param D Directive that has at least one 'reduction' directives. 3457 /// \param ReductionKind The kind of reduction to perform. 3458 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3459 const OpenMPDirectiveKind ReductionKind); 3460 /// Emit initial code for linear variables. Creates private copies 3461 /// and initializes them with the values according to OpenMP standard. 3462 /// 3463 /// \param D Directive (possibly) with the 'linear' clause. 3464 /// \return true if at least one linear variable is found that should be 3465 /// initialized with the value of the original variable, false otherwise. 3466 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3467 3468 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3469 llvm::Function * /*OutlinedFn*/, 3470 const OMPTaskDataTy & /*Data*/)> 3471 TaskGenTy; 3472 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3473 const OpenMPDirectiveKind CapturedRegion, 3474 const RegionCodeGenTy &BodyGen, 3475 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3476 struct OMPTargetDataInfo { 3477 Address BasePointersArray = Address::invalid(); 3478 Address PointersArray = Address::invalid(); 3479 Address SizesArray = Address::invalid(); 3480 Address MappersArray = Address::invalid(); 3481 unsigned NumberOfTargetItems = 0; 3482 explicit OMPTargetDataInfo() = default; 3483 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3484 Address SizesArray, Address MappersArray, 3485 unsigned NumberOfTargetItems) 3486 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3487 SizesArray(SizesArray), MappersArray(MappersArray), 3488 NumberOfTargetItems(NumberOfTargetItems) {} 3489 }; 3490 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3491 const RegionCodeGenTy &BodyGen, 3492 OMPTargetDataInfo &InputInfo); 3493 void processInReduction(const OMPExecutableDirective &S, 3494 OMPTaskDataTy &Data, 3495 CodeGenFunction &CGF, 3496 const CapturedStmt *CS, 3497 OMPPrivateScope &Scope); 3498 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3499 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3500 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3501 void EmitOMPTileDirective(const OMPTileDirective &S); 3502 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3503 void EmitOMPForDirective(const OMPForDirective &S); 3504 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3505 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3506 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3507 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3508 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3509 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3510 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3511 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3512 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3513 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3514 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3515 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3516 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3517 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3518 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3519 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3520 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3521 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3522 void EmitOMPScanDirective(const OMPScanDirective &S); 3523 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3524 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3525 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3526 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3527 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3528 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3529 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3530 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3531 void 3532 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3533 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3534 void 3535 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3536 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3537 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3538 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3539 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3540 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3541 void 3542 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3543 void EmitOMPParallelMasterTaskLoopDirective( 3544 const OMPParallelMasterTaskLoopDirective &S); 3545 void EmitOMPParallelMasterTaskLoopSimdDirective( 3546 const OMPParallelMasterTaskLoopSimdDirective &S); 3547 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3548 void EmitOMPDistributeParallelForDirective( 3549 const OMPDistributeParallelForDirective &S); 3550 void EmitOMPDistributeParallelForSimdDirective( 3551 const OMPDistributeParallelForSimdDirective &S); 3552 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3553 void EmitOMPTargetParallelForSimdDirective( 3554 const OMPTargetParallelForSimdDirective &S); 3555 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3556 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3557 void 3558 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3559 void EmitOMPTeamsDistributeParallelForSimdDirective( 3560 const OMPTeamsDistributeParallelForSimdDirective &S); 3561 void EmitOMPTeamsDistributeParallelForDirective( 3562 const OMPTeamsDistributeParallelForDirective &S); 3563 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3564 void EmitOMPTargetTeamsDistributeDirective( 3565 const OMPTargetTeamsDistributeDirective &S); 3566 void EmitOMPTargetTeamsDistributeParallelForDirective( 3567 const OMPTargetTeamsDistributeParallelForDirective &S); 3568 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3569 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3570 void EmitOMPTargetTeamsDistributeSimdDirective( 3571 const OMPTargetTeamsDistributeSimdDirective &S); 3572 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3573 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3574 3575 /// Emit device code for the target directive. 3576 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3577 StringRef ParentName, 3578 const OMPTargetDirective &S); 3579 static void 3580 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3581 const OMPTargetParallelDirective &S); 3582 /// Emit device code for the target parallel for directive. 3583 static void EmitOMPTargetParallelForDeviceFunction( 3584 CodeGenModule &CGM, StringRef ParentName, 3585 const OMPTargetParallelForDirective &S); 3586 /// Emit device code for the target parallel for simd directive. 3587 static void EmitOMPTargetParallelForSimdDeviceFunction( 3588 CodeGenModule &CGM, StringRef ParentName, 3589 const OMPTargetParallelForSimdDirective &S); 3590 /// Emit device code for the target teams directive. 3591 static void 3592 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3593 const OMPTargetTeamsDirective &S); 3594 /// Emit device code for the target teams distribute directive. 3595 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3596 CodeGenModule &CGM, StringRef ParentName, 3597 const OMPTargetTeamsDistributeDirective &S); 3598 /// Emit device code for the target teams distribute simd directive. 3599 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3600 CodeGenModule &CGM, StringRef ParentName, 3601 const OMPTargetTeamsDistributeSimdDirective &S); 3602 /// Emit device code for the target simd directive. 3603 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3604 StringRef ParentName, 3605 const OMPTargetSimdDirective &S); 3606 /// Emit device code for the target teams distribute parallel for simd 3607 /// directive. 3608 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3609 CodeGenModule &CGM, StringRef ParentName, 3610 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3611 3612 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3613 CodeGenModule &CGM, StringRef ParentName, 3614 const OMPTargetTeamsDistributeParallelForDirective &S); 3615 3616 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3617 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3618 /// future it is meant to be the number of loops expected in the loop nests 3619 /// (usually specified by the "collapse" clause) that are collapsed to a 3620 /// single loop by this function. 3621 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3622 int Depth); 3623 3624 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3625 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3626 3627 /// Emit inner loop of the worksharing/simd construct. 3628 /// 3629 /// \param S Directive, for which the inner loop must be emitted. 3630 /// \param RequiresCleanup true, if directive has some associated private 3631 /// variables. 3632 /// \param LoopCond Bollean condition for loop continuation. 3633 /// \param IncExpr Increment expression for loop control variable. 3634 /// \param BodyGen Generator for the inner body of the inner loop. 3635 /// \param PostIncGen Genrator for post-increment code (required for ordered 3636 /// loop directvies). 3637 void EmitOMPInnerLoop( 3638 const OMPExecutableDirective &S, bool RequiresCleanup, 3639 const Expr *LoopCond, const Expr *IncExpr, 3640 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3641 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3642 3643 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3644 /// Emit initial code for loop counters of loop-based directives. 3645 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3646 OMPPrivateScope &LoopScope); 3647 3648 /// Helper for the OpenMP loop directives. 3649 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3650 3651 /// Emit code for the worksharing loop-based directive. 3652 /// \return true, if this construct has any lastprivate clause, false - 3653 /// otherwise. 3654 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3655 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3656 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3657 3658 /// Emit code for the distribute loop-based directive. 3659 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3660 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3661 3662 /// Helpers for the OpenMP loop directives. 3663 void EmitOMPSimdInit(const OMPLoopDirective &D); 3664 void EmitOMPSimdFinal( 3665 const OMPLoopDirective &D, 3666 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3667 3668 /// Emits the lvalue for the expression with possibly captured variable. 3669 LValue EmitOMPSharedLValue(const Expr *E); 3670 3671 private: 3672 /// Helpers for blocks. 3673 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3674 3675 /// struct with the values to be passed to the OpenMP loop-related functions 3676 struct OMPLoopArguments { 3677 /// loop lower bound 3678 Address LB = Address::invalid(); 3679 /// loop upper bound 3680 Address UB = Address::invalid(); 3681 /// loop stride 3682 Address ST = Address::invalid(); 3683 /// isLastIteration argument for runtime functions 3684 Address IL = Address::invalid(); 3685 /// Chunk value generated by sema 3686 llvm::Value *Chunk = nullptr; 3687 /// EnsureUpperBound 3688 Expr *EUB = nullptr; 3689 /// IncrementExpression 3690 Expr *IncExpr = nullptr; 3691 /// Loop initialization 3692 Expr *Init = nullptr; 3693 /// Loop exit condition 3694 Expr *Cond = nullptr; 3695 /// Update of LB after a whole chunk has been executed 3696 Expr *NextLB = nullptr; 3697 /// Update of UB after a whole chunk has been executed 3698 Expr *NextUB = nullptr; 3699 OMPLoopArguments() = default; 3700 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3701 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3702 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3703 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3704 Expr *NextUB = nullptr) 3705 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3706 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3707 NextUB(NextUB) {} 3708 }; 3709 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3710 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3711 const OMPLoopArguments &LoopArgs, 3712 const CodeGenLoopTy &CodeGenLoop, 3713 const CodeGenOrderedTy &CodeGenOrdered); 3714 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3715 bool IsMonotonic, const OMPLoopDirective &S, 3716 OMPPrivateScope &LoopScope, bool Ordered, 3717 const OMPLoopArguments &LoopArgs, 3718 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3719 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3720 const OMPLoopDirective &S, 3721 OMPPrivateScope &LoopScope, 3722 const OMPLoopArguments &LoopArgs, 3723 const CodeGenLoopTy &CodeGenLoopContent); 3724 /// Emit code for sections directive. 3725 void EmitSections(const OMPExecutableDirective &S); 3726 3727 public: 3728 3729 //===--------------------------------------------------------------------===// 3730 // LValue Expression Emission 3731 //===--------------------------------------------------------------------===// 3732 3733 /// Create a check that a scalar RValue is non-null. 3734 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3735 3736 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3737 RValue GetUndefRValue(QualType Ty); 3738 3739 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3740 /// and issue an ErrorUnsupported style diagnostic (using the 3741 /// provided Name). 3742 RValue EmitUnsupportedRValue(const Expr *E, 3743 const char *Name); 3744 3745 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3746 /// an ErrorUnsupported style diagnostic (using the provided Name). 3747 LValue EmitUnsupportedLValue(const Expr *E, 3748 const char *Name); 3749 3750 /// EmitLValue - Emit code to compute a designator that specifies the location 3751 /// of the expression. 3752 /// 3753 /// This can return one of two things: a simple address or a bitfield 3754 /// reference. In either case, the LLVM Value* in the LValue structure is 3755 /// guaranteed to be an LLVM pointer type. 3756 /// 3757 /// If this returns a bitfield reference, nothing about the pointee type of 3758 /// the LLVM value is known: For example, it may not be a pointer to an 3759 /// integer. 3760 /// 3761 /// If this returns a normal address, and if the lvalue's C type is fixed 3762 /// size, this method guarantees that the returned pointer type will point to 3763 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3764 /// variable length type, this is not possible. 3765 /// 3766 LValue EmitLValue(const Expr *E); 3767 3768 /// Same as EmitLValue but additionally we generate checking code to 3769 /// guard against undefined behavior. This is only suitable when we know 3770 /// that the address will be used to access the object. 3771 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3772 3773 RValue convertTempToRValue(Address addr, QualType type, 3774 SourceLocation Loc); 3775 3776 void EmitAtomicInit(Expr *E, LValue lvalue); 3777 3778 bool LValueIsSuitableForInlineAtomic(LValue Src); 3779 3780 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3781 AggValueSlot Slot = AggValueSlot::ignored()); 3782 3783 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3784 llvm::AtomicOrdering AO, bool IsVolatile = false, 3785 AggValueSlot slot = AggValueSlot::ignored()); 3786 3787 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3788 3789 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3790 bool IsVolatile, bool isInit); 3791 3792 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3793 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3794 llvm::AtomicOrdering Success = 3795 llvm::AtomicOrdering::SequentiallyConsistent, 3796 llvm::AtomicOrdering Failure = 3797 llvm::AtomicOrdering::SequentiallyConsistent, 3798 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3799 3800 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3801 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3802 bool IsVolatile); 3803 3804 /// EmitToMemory - Change a scalar value from its value 3805 /// representation to its in-memory representation. 3806 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3807 3808 /// EmitFromMemory - Change a scalar value from its memory 3809 /// representation to its value representation. 3810 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3811 3812 /// Check if the scalar \p Value is within the valid range for the given 3813 /// type \p Ty. 3814 /// 3815 /// Returns true if a check is needed (even if the range is unknown). 3816 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3817 SourceLocation Loc); 3818 3819 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3820 /// care to appropriately convert from the memory representation to 3821 /// the LLVM value representation. 3822 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3823 SourceLocation Loc, 3824 AlignmentSource Source = AlignmentSource::Type, 3825 bool isNontemporal = false) { 3826 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3827 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3828 } 3829 3830 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3831 SourceLocation Loc, LValueBaseInfo BaseInfo, 3832 TBAAAccessInfo TBAAInfo, 3833 bool isNontemporal = false); 3834 3835 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3836 /// care to appropriately convert from the memory representation to 3837 /// the LLVM value representation. The l-value must be a simple 3838 /// l-value. 3839 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3840 3841 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3842 /// care to appropriately convert from the memory representation to 3843 /// the LLVM value representation. 3844 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3845 bool Volatile, QualType Ty, 3846 AlignmentSource Source = AlignmentSource::Type, 3847 bool isInit = false, bool isNontemporal = false) { 3848 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3849 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3850 } 3851 3852 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3853 bool Volatile, QualType Ty, 3854 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3855 bool isInit = false, bool isNontemporal = false); 3856 3857 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3858 /// care to appropriately convert from the memory representation to 3859 /// the LLVM value representation. The l-value must be a simple 3860 /// l-value. The isInit flag indicates whether this is an initialization. 3861 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3862 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3863 3864 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3865 /// this method emits the address of the lvalue, then loads the result as an 3866 /// rvalue, returning the rvalue. 3867 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3868 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3869 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3870 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3871 3872 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3873 /// lvalue, where both are guaranteed to the have the same type, and that type 3874 /// is 'Ty'. 3875 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3876 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3877 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3878 3879 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3880 /// as EmitStoreThroughLValue. 3881 /// 3882 /// \param Result [out] - If non-null, this will be set to a Value* for the 3883 /// bit-field contents after the store, appropriate for use as the result of 3884 /// an assignment to the bit-field. 3885 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3886 llvm::Value **Result=nullptr); 3887 3888 /// Emit an l-value for an assignment (simple or compound) of complex type. 3889 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3890 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3891 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3892 llvm::Value *&Result); 3893 3894 // Note: only available for agg return types 3895 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3896 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3897 // Note: only available for agg return types 3898 LValue EmitCallExprLValue(const CallExpr *E); 3899 // Note: only available for agg return types 3900 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3901 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3902 LValue EmitStringLiteralLValue(const StringLiteral *E); 3903 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3904 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3905 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3906 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3907 bool Accessed = false); 3908 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3909 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3910 bool IsLowerBound = true); 3911 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3912 LValue EmitMemberExpr(const MemberExpr *E); 3913 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3914 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3915 LValue EmitInitListLValue(const InitListExpr *E); 3916 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 3917 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3918 LValue EmitCastLValue(const CastExpr *E); 3919 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3920 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3921 3922 Address EmitExtVectorElementLValue(LValue V); 3923 3924 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3925 3926 Address EmitArrayToPointerDecay(const Expr *Array, 3927 LValueBaseInfo *BaseInfo = nullptr, 3928 TBAAAccessInfo *TBAAInfo = nullptr); 3929 3930 class ConstantEmission { 3931 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3932 ConstantEmission(llvm::Constant *C, bool isReference) 3933 : ValueAndIsReference(C, isReference) {} 3934 public: 3935 ConstantEmission() {} 3936 static ConstantEmission forReference(llvm::Constant *C) { 3937 return ConstantEmission(C, true); 3938 } 3939 static ConstantEmission forValue(llvm::Constant *C) { 3940 return ConstantEmission(C, false); 3941 } 3942 3943 explicit operator bool() const { 3944 return ValueAndIsReference.getOpaqueValue() != nullptr; 3945 } 3946 3947 bool isReference() const { return ValueAndIsReference.getInt(); } 3948 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3949 assert(isReference()); 3950 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3951 refExpr->getType()); 3952 } 3953 3954 llvm::Constant *getValue() const { 3955 assert(!isReference()); 3956 return ValueAndIsReference.getPointer(); 3957 } 3958 }; 3959 3960 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3961 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3962 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3963 3964 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3965 AggValueSlot slot = AggValueSlot::ignored()); 3966 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3967 3968 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3969 const ObjCIvarDecl *Ivar); 3970 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3971 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3972 3973 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3974 /// if the Field is a reference, this will return the address of the reference 3975 /// and not the address of the value stored in the reference. 3976 LValue EmitLValueForFieldInitialization(LValue Base, 3977 const FieldDecl* Field); 3978 3979 LValue EmitLValueForIvar(QualType ObjectTy, 3980 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3981 unsigned CVRQualifiers); 3982 3983 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3984 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3985 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3986 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3987 3988 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3989 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3990 LValue EmitStmtExprLValue(const StmtExpr *E); 3991 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3992 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3993 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3994 3995 //===--------------------------------------------------------------------===// 3996 // Scalar Expression Emission 3997 //===--------------------------------------------------------------------===// 3998 3999 /// EmitCall - Generate a call of the given function, expecting the given 4000 /// result type, and using the given argument list which specifies both the 4001 /// LLVM arguments and the types they were derived from. 4002 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4003 ReturnValueSlot ReturnValue, const CallArgList &Args, 4004 llvm::CallBase **callOrInvoke, bool IsMustTail, 4005 SourceLocation Loc); 4006 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4007 ReturnValueSlot ReturnValue, const CallArgList &Args, 4008 llvm::CallBase **callOrInvoke = nullptr, 4009 bool IsMustTail = false) { 4010 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4011 IsMustTail, SourceLocation()); 4012 } 4013 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4014 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4015 RValue EmitCallExpr(const CallExpr *E, 4016 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4017 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4018 CGCallee EmitCallee(const Expr *E); 4019 4020 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4021 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4022 4023 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4024 const Twine &name = ""); 4025 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4026 ArrayRef<llvm::Value *> args, 4027 const Twine &name = ""); 4028 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4029 const Twine &name = ""); 4030 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4031 ArrayRef<llvm::Value *> args, 4032 const Twine &name = ""); 4033 4034 SmallVector<llvm::OperandBundleDef, 1> 4035 getBundlesForFunclet(llvm::Value *Callee); 4036 4037 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4038 ArrayRef<llvm::Value *> Args, 4039 const Twine &Name = ""); 4040 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4041 ArrayRef<llvm::Value *> args, 4042 const Twine &name = ""); 4043 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4044 const Twine &name = ""); 4045 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4046 ArrayRef<llvm::Value *> args); 4047 4048 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4049 NestedNameSpecifier *Qual, 4050 llvm::Type *Ty); 4051 4052 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4053 CXXDtorType Type, 4054 const CXXRecordDecl *RD); 4055 4056 // Return the copy constructor name with the prefix "__copy_constructor_" 4057 // removed. 4058 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4059 CharUnits Alignment, 4060 bool IsVolatile, 4061 ASTContext &Ctx); 4062 4063 // Return the destructor name with the prefix "__destructor_" removed. 4064 static std::string getNonTrivialDestructorStr(QualType QT, 4065 CharUnits Alignment, 4066 bool IsVolatile, 4067 ASTContext &Ctx); 4068 4069 // These functions emit calls to the special functions of non-trivial C 4070 // structs. 4071 void defaultInitNonTrivialCStructVar(LValue Dst); 4072 void callCStructDefaultConstructor(LValue Dst); 4073 void callCStructDestructor(LValue Dst); 4074 void callCStructCopyConstructor(LValue Dst, LValue Src); 4075 void callCStructMoveConstructor(LValue Dst, LValue Src); 4076 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4077 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4078 4079 RValue 4080 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4081 const CGCallee &Callee, 4082 ReturnValueSlot ReturnValue, llvm::Value *This, 4083 llvm::Value *ImplicitParam, 4084 QualType ImplicitParamTy, const CallExpr *E, 4085 CallArgList *RtlArgs); 4086 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4087 llvm::Value *This, QualType ThisTy, 4088 llvm::Value *ImplicitParam, 4089 QualType ImplicitParamTy, const CallExpr *E); 4090 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4091 ReturnValueSlot ReturnValue); 4092 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4093 const CXXMethodDecl *MD, 4094 ReturnValueSlot ReturnValue, 4095 bool HasQualifier, 4096 NestedNameSpecifier *Qualifier, 4097 bool IsArrow, const Expr *Base); 4098 // Compute the object pointer. 4099 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4100 llvm::Value *memberPtr, 4101 const MemberPointerType *memberPtrType, 4102 LValueBaseInfo *BaseInfo = nullptr, 4103 TBAAAccessInfo *TBAAInfo = nullptr); 4104 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4105 ReturnValueSlot ReturnValue); 4106 4107 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4108 const CXXMethodDecl *MD, 4109 ReturnValueSlot ReturnValue); 4110 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4111 4112 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4113 ReturnValueSlot ReturnValue); 4114 4115 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4116 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4117 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4118 4119 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4120 const CallExpr *E, ReturnValueSlot ReturnValue); 4121 4122 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4123 4124 /// Emit IR for __builtin_os_log_format. 4125 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4126 4127 /// Emit IR for __builtin_is_aligned. 4128 RValue EmitBuiltinIsAligned(const CallExpr *E); 4129 /// Emit IR for __builtin_align_up/__builtin_align_down. 4130 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4131 4132 llvm::Function *generateBuiltinOSLogHelperFunction( 4133 const analyze_os_log::OSLogBufferLayout &Layout, 4134 CharUnits BufferAlignment); 4135 4136 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4137 4138 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4139 /// is unhandled by the current target. 4140 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4141 ReturnValueSlot ReturnValue); 4142 4143 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4144 const llvm::CmpInst::Predicate Fp, 4145 const llvm::CmpInst::Predicate Ip, 4146 const llvm::Twine &Name = ""); 4147 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4148 ReturnValueSlot ReturnValue, 4149 llvm::Triple::ArchType Arch); 4150 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4151 ReturnValueSlot ReturnValue, 4152 llvm::Triple::ArchType Arch); 4153 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4154 ReturnValueSlot ReturnValue, 4155 llvm::Triple::ArchType Arch); 4156 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4157 QualType RTy); 4158 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4159 QualType RTy); 4160 4161 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4162 unsigned LLVMIntrinsic, 4163 unsigned AltLLVMIntrinsic, 4164 const char *NameHint, 4165 unsigned Modifier, 4166 const CallExpr *E, 4167 SmallVectorImpl<llvm::Value *> &Ops, 4168 Address PtrOp0, Address PtrOp1, 4169 llvm::Triple::ArchType Arch); 4170 4171 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4172 unsigned Modifier, llvm::Type *ArgTy, 4173 const CallExpr *E); 4174 llvm::Value *EmitNeonCall(llvm::Function *F, 4175 SmallVectorImpl<llvm::Value*> &O, 4176 const char *name, 4177 unsigned shift = 0, bool rightshift = false); 4178 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4179 const llvm::ElementCount &Count); 4180 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4181 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4182 bool negateForRightShift); 4183 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4184 llvm::Type *Ty, bool usgn, const char *name); 4185 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4186 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4187 /// access builtin. Only required if it can't be inferred from the base 4188 /// pointer operand. 4189 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4190 4191 SmallVector<llvm::Type *, 2> 4192 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4193 ArrayRef<llvm::Value *> Ops); 4194 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4195 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4196 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4197 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4198 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4199 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4200 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4201 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4202 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4203 unsigned BuiltinID); 4204 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4205 llvm::ArrayRef<llvm::Value *> Ops, 4206 unsigned BuiltinID); 4207 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4208 llvm::ScalableVectorType *VTy); 4209 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4210 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4211 unsigned IntID); 4212 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4213 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4214 unsigned IntID); 4215 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4216 SmallVectorImpl<llvm::Value *> &Ops, 4217 unsigned BuiltinID, bool IsZExtReturn); 4218 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4219 SmallVectorImpl<llvm::Value *> &Ops, 4220 unsigned BuiltinID); 4221 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4222 SmallVectorImpl<llvm::Value *> &Ops, 4223 unsigned BuiltinID); 4224 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4225 SmallVectorImpl<llvm::Value *> &Ops, 4226 unsigned IntID); 4227 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4228 SmallVectorImpl<llvm::Value *> &Ops, 4229 unsigned IntID); 4230 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4231 SmallVectorImpl<llvm::Value *> &Ops, 4232 unsigned IntID); 4233 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4234 4235 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4236 llvm::Triple::ArchType Arch); 4237 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4238 4239 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4240 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4241 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4242 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4243 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4244 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4245 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4246 const CallExpr *E); 4247 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4248 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4249 ReturnValueSlot ReturnValue); 4250 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4251 llvm::AtomicOrdering &AO, 4252 llvm::SyncScope::ID &SSID); 4253 4254 enum class MSVCIntrin; 4255 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4256 4257 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4258 4259 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4260 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4261 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4262 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4263 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4264 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4265 const ObjCMethodDecl *MethodWithObjects); 4266 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4267 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4268 ReturnValueSlot Return = ReturnValueSlot()); 4269 4270 /// Retrieves the default cleanup kind for an ARC cleanup. 4271 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4272 CleanupKind getARCCleanupKind() { 4273 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4274 ? NormalAndEHCleanup : NormalCleanup; 4275 } 4276 4277 // ARC primitives. 4278 void EmitARCInitWeak(Address addr, llvm::Value *value); 4279 void EmitARCDestroyWeak(Address addr); 4280 llvm::Value *EmitARCLoadWeak(Address addr); 4281 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4282 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4283 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4284 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4285 void EmitARCCopyWeak(Address dst, Address src); 4286 void EmitARCMoveWeak(Address dst, Address src); 4287 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4288 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4289 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4290 bool resultIgnored); 4291 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4292 bool resultIgnored); 4293 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4294 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4295 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4296 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4297 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4298 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4299 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4300 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4301 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4302 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4303 4304 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4305 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4306 llvm::Type *returnType); 4307 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4308 4309 std::pair<LValue,llvm::Value*> 4310 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4311 std::pair<LValue,llvm::Value*> 4312 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4313 std::pair<LValue,llvm::Value*> 4314 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4315 4316 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4317 llvm::Type *returnType); 4318 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4319 llvm::Type *returnType); 4320 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4321 4322 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4323 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4324 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4325 4326 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4327 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4328 bool allowUnsafeClaim); 4329 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4330 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4331 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4332 4333 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4334 4335 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4336 4337 static Destroyer destroyARCStrongImprecise; 4338 static Destroyer destroyARCStrongPrecise; 4339 static Destroyer destroyARCWeak; 4340 static Destroyer emitARCIntrinsicUse; 4341 static Destroyer destroyNonTrivialCStruct; 4342 4343 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4344 llvm::Value *EmitObjCAutoreleasePoolPush(); 4345 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4346 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4347 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4348 4349 /// Emits a reference binding to the passed in expression. 4350 RValue EmitReferenceBindingToExpr(const Expr *E); 4351 4352 //===--------------------------------------------------------------------===// 4353 // Expression Emission 4354 //===--------------------------------------------------------------------===// 4355 4356 // Expressions are broken into three classes: scalar, complex, aggregate. 4357 4358 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4359 /// scalar type, returning the result. 4360 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4361 4362 /// Emit a conversion from the specified type to the specified destination 4363 /// type, both of which are LLVM scalar types. 4364 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4365 QualType DstTy, SourceLocation Loc); 4366 4367 /// Emit a conversion from the specified complex type to the specified 4368 /// destination type, where the destination type is an LLVM scalar type. 4369 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4370 QualType DstTy, 4371 SourceLocation Loc); 4372 4373 /// EmitAggExpr - Emit the computation of the specified expression 4374 /// of aggregate type. The result is computed into the given slot, 4375 /// which may be null to indicate that the value is not needed. 4376 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4377 4378 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4379 /// aggregate type into a temporary LValue. 4380 LValue EmitAggExprToLValue(const Expr *E); 4381 4382 /// Build all the stores needed to initialize an aggregate at Dest with the 4383 /// value Val. 4384 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4385 4386 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4387 /// make sure it survives garbage collection until this point. 4388 void EmitExtendGCLifetime(llvm::Value *object); 4389 4390 /// EmitComplexExpr - Emit the computation of the specified expression of 4391 /// complex type, returning the result. 4392 ComplexPairTy EmitComplexExpr(const Expr *E, 4393 bool IgnoreReal = false, 4394 bool IgnoreImag = false); 4395 4396 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4397 /// type and place its result into the specified l-value. 4398 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4399 4400 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4401 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4402 4403 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4404 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4405 4406 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4407 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4408 4409 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4410 /// global variable that has already been created for it. If the initializer 4411 /// has a different type than GV does, this may free GV and return a different 4412 /// one. Otherwise it just returns GV. 4413 llvm::GlobalVariable * 4414 AddInitializerToStaticVarDecl(const VarDecl &D, 4415 llvm::GlobalVariable *GV); 4416 4417 // Emit an @llvm.invariant.start call for the given memory region. 4418 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4419 4420 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4421 /// variable with global storage. 4422 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4423 bool PerformInit); 4424 4425 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4426 llvm::Constant *Addr); 4427 4428 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4429 llvm::FunctionCallee Dtor, 4430 llvm::Constant *Addr, 4431 llvm::FunctionCallee &AtExit); 4432 4433 /// Call atexit() with a function that passes the given argument to 4434 /// the given function. 4435 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4436 llvm::Constant *addr); 4437 4438 /// Call atexit() with function dtorStub. 4439 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4440 4441 /// Call unatexit() with function dtorStub. 4442 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4443 4444 /// Emit code in this function to perform a guarded variable 4445 /// initialization. Guarded initializations are used when it's not 4446 /// possible to prove that an initialization will be done exactly 4447 /// once, e.g. with a static local variable or a static data member 4448 /// of a class template. 4449 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4450 bool PerformInit); 4451 4452 enum class GuardKind { VariableGuard, TlsGuard }; 4453 4454 /// Emit a branch to select whether or not to perform guarded initialization. 4455 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4456 llvm::BasicBlock *InitBlock, 4457 llvm::BasicBlock *NoInitBlock, 4458 GuardKind Kind, const VarDecl *D); 4459 4460 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4461 /// variables. 4462 void 4463 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4464 ArrayRef<llvm::Function *> CXXThreadLocals, 4465 ConstantAddress Guard = ConstantAddress::invalid()); 4466 4467 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4468 /// variables. 4469 void GenerateCXXGlobalCleanUpFunc( 4470 llvm::Function *Fn, 4471 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4472 llvm::Constant *>> 4473 DtorsOrStermFinalizers); 4474 4475 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4476 const VarDecl *D, 4477 llvm::GlobalVariable *Addr, 4478 bool PerformInit); 4479 4480 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4481 4482 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4483 4484 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4485 4486 RValue EmitAtomicExpr(AtomicExpr *E); 4487 4488 //===--------------------------------------------------------------------===// 4489 // Annotations Emission 4490 //===--------------------------------------------------------------------===// 4491 4492 /// Emit an annotation call (intrinsic). 4493 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4494 llvm::Value *AnnotatedVal, 4495 StringRef AnnotationStr, 4496 SourceLocation Location, 4497 const AnnotateAttr *Attr); 4498 4499 /// Emit local annotations for the local variable V, declared by D. 4500 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4501 4502 /// Emit field annotations for the given field & value. Returns the 4503 /// annotation result. 4504 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4505 4506 //===--------------------------------------------------------------------===// 4507 // Internal Helpers 4508 //===--------------------------------------------------------------------===// 4509 4510 /// ContainsLabel - Return true if the statement contains a label in it. If 4511 /// this statement is not executed normally, it not containing a label means 4512 /// that we can just remove the code. 4513 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4514 4515 /// containsBreak - Return true if the statement contains a break out of it. 4516 /// If the statement (recursively) contains a switch or loop with a break 4517 /// inside of it, this is fine. 4518 static bool containsBreak(const Stmt *S); 4519 4520 /// Determine if the given statement might introduce a declaration into the 4521 /// current scope, by being a (possibly-labelled) DeclStmt. 4522 static bool mightAddDeclToScope(const Stmt *S); 4523 4524 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4525 /// to a constant, or if it does but contains a label, return false. If it 4526 /// constant folds return true and set the boolean result in Result. 4527 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4528 bool AllowLabels = false); 4529 4530 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4531 /// to a constant, or if it does but contains a label, return false. If it 4532 /// constant folds return true and set the folded value. 4533 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4534 bool AllowLabels = false); 4535 4536 /// isInstrumentedCondition - Determine whether the given condition is an 4537 /// instrumentable condition (i.e. no "&&" or "||"). 4538 static bool isInstrumentedCondition(const Expr *C); 4539 4540 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4541 /// increments a profile counter based on the semantics of the given logical 4542 /// operator opcode. This is used to instrument branch condition coverage 4543 /// for logical operators. 4544 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4545 llvm::BasicBlock *TrueBlock, 4546 llvm::BasicBlock *FalseBlock, 4547 uint64_t TrueCount = 0, 4548 Stmt::Likelihood LH = Stmt::LH_None, 4549 const Expr *CntrIdx = nullptr); 4550 4551 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4552 /// if statement) to the specified blocks. Based on the condition, this might 4553 /// try to simplify the codegen of the conditional based on the branch. 4554 /// TrueCount should be the number of times we expect the condition to 4555 /// evaluate to true based on PGO data. 4556 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4557 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4558 Stmt::Likelihood LH = Stmt::LH_None); 4559 4560 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4561 /// nonnull, if \p LHS is marked _Nonnull. 4562 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4563 4564 /// An enumeration which makes it easier to specify whether or not an 4565 /// operation is a subtraction. 4566 enum { NotSubtraction = false, IsSubtraction = true }; 4567 4568 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4569 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4570 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4571 /// \p IsSubtraction indicates whether the expression used to form the GEP 4572 /// is a subtraction. 4573 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 4574 ArrayRef<llvm::Value *> IdxList, 4575 bool SignedIndices, 4576 bool IsSubtraction, 4577 SourceLocation Loc, 4578 const Twine &Name = ""); 4579 4580 /// Specifies which type of sanitizer check to apply when handling a 4581 /// particular builtin. 4582 enum BuiltinCheckKind { 4583 BCK_CTZPassedZero, 4584 BCK_CLZPassedZero, 4585 }; 4586 4587 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4588 /// enabled, a runtime check specified by \p Kind is also emitted. 4589 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4590 4591 /// Emit a description of a type in a format suitable for passing to 4592 /// a runtime sanitizer handler. 4593 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4594 4595 /// Convert a value into a format suitable for passing to a runtime 4596 /// sanitizer handler. 4597 llvm::Value *EmitCheckValue(llvm::Value *V); 4598 4599 /// Emit a description of a source location in a format suitable for 4600 /// passing to a runtime sanitizer handler. 4601 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4602 4603 /// Create a basic block that will either trap or call a handler function in 4604 /// the UBSan runtime with the provided arguments, and create a conditional 4605 /// branch to it. 4606 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4607 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4608 ArrayRef<llvm::Value *> DynamicArgs); 4609 4610 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4611 /// if Cond if false. 4612 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4613 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4614 ArrayRef<llvm::Constant *> StaticArgs); 4615 4616 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4617 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4618 void EmitUnreachable(SourceLocation Loc); 4619 4620 /// Create a basic block that will call the trap intrinsic, and emit a 4621 /// conditional branch to it, for the -ftrapv checks. 4622 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4623 4624 /// Emit a call to trap or debugtrap and attach function attribute 4625 /// "trap-func-name" if specified. 4626 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4627 4628 /// Emit a stub for the cross-DSO CFI check function. 4629 void EmitCfiCheckStub(); 4630 4631 /// Emit a cross-DSO CFI failure handling function. 4632 void EmitCfiCheckFail(); 4633 4634 /// Create a check for a function parameter that may potentially be 4635 /// declared as non-null. 4636 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4637 AbstractCallee AC, unsigned ParmNum); 4638 4639 /// EmitCallArg - Emit a single call argument. 4640 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4641 4642 /// EmitDelegateCallArg - We are performing a delegate call; that 4643 /// is, the current function is delegating to another one. Produce 4644 /// a r-value suitable for passing the given parameter. 4645 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4646 SourceLocation loc); 4647 4648 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4649 /// point operation, expressed as the maximum relative error in ulp. 4650 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4651 4652 /// Set the codegen fast-math flags. 4653 void SetFastMathFlags(FPOptions FPFeatures); 4654 4655 // Truncate or extend a boolean vector to the requested number of elements. 4656 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 4657 unsigned NumElementsDst, 4658 const llvm::Twine &Name = ""); 4659 4660 private: 4661 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4662 void EmitReturnOfRValue(RValue RV, QualType Ty); 4663 4664 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4665 4666 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4667 DeferredReplacements; 4668 4669 /// Set the address of a local variable. 4670 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4671 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4672 LocalDeclMap.insert({VD, Addr}); 4673 } 4674 4675 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4676 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4677 /// 4678 /// \param AI - The first function argument of the expansion. 4679 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4680 llvm::Function::arg_iterator &AI); 4681 4682 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4683 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4684 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4685 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4686 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4687 unsigned &IRCallArgPos); 4688 4689 std::pair<llvm::Value *, llvm::Type *> 4690 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 4691 std::string &ConstraintStr); 4692 4693 std::pair<llvm::Value *, llvm::Type *> 4694 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 4695 QualType InputType, std::string &ConstraintStr, 4696 SourceLocation Loc); 4697 4698 /// Attempts to statically evaluate the object size of E. If that 4699 /// fails, emits code to figure the size of E out for us. This is 4700 /// pass_object_size aware. 4701 /// 4702 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4703 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4704 llvm::IntegerType *ResType, 4705 llvm::Value *EmittedE, 4706 bool IsDynamic); 4707 4708 /// Emits the size of E, as required by __builtin_object_size. This 4709 /// function is aware of pass_object_size parameters, and will act accordingly 4710 /// if E is a parameter with the pass_object_size attribute. 4711 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4712 llvm::IntegerType *ResType, 4713 llvm::Value *EmittedE, 4714 bool IsDynamic); 4715 4716 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4717 Address Loc); 4718 4719 public: 4720 enum class EvaluationOrder { 4721 ///! No language constraints on evaluation order. 4722 Default, 4723 ///! Language semantics require left-to-right evaluation. 4724 ForceLeftToRight, 4725 ///! Language semantics require right-to-left evaluation. 4726 ForceRightToLeft 4727 }; 4728 4729 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4730 // an ObjCMethodDecl. 4731 struct PrototypeWrapper { 4732 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4733 4734 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4735 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4736 }; 4737 4738 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4739 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4740 AbstractCallee AC = AbstractCallee(), 4741 unsigned ParamsToSkip = 0, 4742 EvaluationOrder Order = EvaluationOrder::Default); 4743 4744 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4745 /// emit the value and compute our best estimate of the alignment of the 4746 /// pointee. 4747 /// 4748 /// \param BaseInfo - If non-null, this will be initialized with 4749 /// information about the source of the alignment and the may-alias 4750 /// attribute. Note that this function will conservatively fall back on 4751 /// the type when it doesn't recognize the expression and may-alias will 4752 /// be set to false. 4753 /// 4754 /// One reasonable way to use this information is when there's a language 4755 /// guarantee that the pointer must be aligned to some stricter value, and 4756 /// we're simply trying to ensure that sufficiently obvious uses of under- 4757 /// aligned objects don't get miscompiled; for example, a placement new 4758 /// into the address of a local variable. In such a case, it's quite 4759 /// reasonable to just ignore the returned alignment when it isn't from an 4760 /// explicit source. 4761 Address EmitPointerWithAlignment(const Expr *Addr, 4762 LValueBaseInfo *BaseInfo = nullptr, 4763 TBAAAccessInfo *TBAAInfo = nullptr); 4764 4765 /// If \p E references a parameter with pass_object_size info or a constant 4766 /// array size modifier, emit the object size divided by the size of \p EltTy. 4767 /// Otherwise return null. 4768 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4769 4770 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4771 4772 struct MultiVersionResolverOption { 4773 llvm::Function *Function; 4774 struct Conds { 4775 StringRef Architecture; 4776 llvm::SmallVector<StringRef, 8> Features; 4777 4778 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4779 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4780 } Conditions; 4781 4782 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4783 ArrayRef<StringRef> Feats) 4784 : Function(F), Conditions(Arch, Feats) {} 4785 }; 4786 4787 // Emits the body of a multiversion function's resolver. Assumes that the 4788 // options are already sorted in the proper order, with the 'default' option 4789 // last (if it exists). 4790 void EmitMultiVersionResolver(llvm::Function *Resolver, 4791 ArrayRef<MultiVersionResolverOption> Options); 4792 4793 private: 4794 QualType getVarArgType(const Expr *Arg); 4795 4796 void EmitDeclMetadata(); 4797 4798 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4799 const AutoVarEmission &emission); 4800 4801 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4802 4803 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4804 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4805 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4806 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4807 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4808 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4809 llvm::Value *EmitX86CpuInit(); 4810 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4811 }; 4812 4813 4814 inline DominatingLLVMValue::saved_type 4815 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4816 if (!needsSaving(value)) return saved_type(value, false); 4817 4818 // Otherwise, we need an alloca. 4819 auto align = CharUnits::fromQuantity( 4820 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4821 Address alloca = 4822 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4823 CGF.Builder.CreateStore(value, alloca); 4824 4825 return saved_type(alloca.getPointer(), true); 4826 } 4827 4828 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4829 saved_type value) { 4830 // If the value says it wasn't saved, trust that it's still dominating. 4831 if (!value.getInt()) return value.getPointer(); 4832 4833 // Otherwise, it should be an alloca instruction, as set up in save(). 4834 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4835 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4836 alloca->getAlign()); 4837 } 4838 4839 } // end namespace CodeGen 4840 4841 // Map the LangOption for floating point exception behavior into 4842 // the corresponding enum in the IR. 4843 llvm::fp::ExceptionBehavior 4844 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4845 } // end namespace clang 4846 4847 #endif 4848