1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class Module; 50 class SwitchInst; 51 class Twine; 52 class Value; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class BlockDecl; 58 class CXXDestructorDecl; 59 class CXXForRangeStmt; 60 class CXXTryStmt; 61 class Decl; 62 class LabelDecl; 63 class EnumConstantDecl; 64 class FunctionDecl; 65 class FunctionProtoType; 66 class LabelStmt; 67 class ObjCContainerDecl; 68 class ObjCInterfaceDecl; 69 class ObjCIvarDecl; 70 class ObjCMethodDecl; 71 class ObjCImplementationDecl; 72 class ObjCPropertyImplDecl; 73 class TargetInfo; 74 class VarDecl; 75 class ObjCForCollectionStmt; 76 class ObjCAtTryStmt; 77 class ObjCAtThrowStmt; 78 class ObjCAtSynchronizedStmt; 79 class ObjCAutoreleasePoolStmt; 80 class OMPUseDevicePtrClause; 81 class OMPUseDeviceAddrClause; 82 class ReturnsNonNullAttr; 83 class SVETypeFlags; 84 class OMPExecutableDirective; 85 86 namespace analyze_os_log { 87 class OSLogBufferLayout; 88 } 89 90 namespace CodeGen { 91 class CodeGenTypes; 92 class CGCallee; 93 class CGFunctionInfo; 94 class CGRecordLayout; 95 class CGBlockInfo; 96 class CGCXXABI; 97 class BlockByrefHelpers; 98 class BlockByrefInfo; 99 class BlockFlags; 100 class BlockFieldFlags; 101 class RegionCodeGenTy; 102 class TargetCodeGenInfo; 103 struct OMPTaskDataTy; 104 struct CGCoroData; 105 106 /// The kind of evaluation to perform on values of a particular 107 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 108 /// CGExprAgg? 109 /// 110 /// TODO: should vectors maybe be split out into their own thing? 111 enum TypeEvaluationKind { 112 TEK_Scalar, 113 TEK_Complex, 114 TEK_Aggregate 115 }; 116 117 #define LIST_SANITIZER_CHECKS \ 118 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 119 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 120 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 121 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 122 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 123 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 124 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 125 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 126 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 127 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 128 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 129 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 130 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 131 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 132 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 133 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 134 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 135 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 136 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 137 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 138 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 139 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 140 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 141 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 142 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 143 144 enum SanitizerHandler { 145 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 146 LIST_SANITIZER_CHECKS 147 #undef SANITIZER_CHECK 148 }; 149 150 /// Helper class with most of the code for saving a value for a 151 /// conditional expression cleanup. 152 struct DominatingLLVMValue { 153 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 154 155 /// Answer whether the given value needs extra work to be saved. 156 static bool needsSaving(llvm::Value *value) { 157 // If it's not an instruction, we don't need to save. 158 if (!isa<llvm::Instruction>(value)) return false; 159 160 // If it's an instruction in the entry block, we don't need to save. 161 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 162 return (block != &block->getParent()->getEntryBlock()); 163 } 164 165 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 166 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 167 }; 168 169 /// A partial specialization of DominatingValue for llvm::Values that 170 /// might be llvm::Instructions. 171 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 172 typedef T *type; 173 static type restore(CodeGenFunction &CGF, saved_type value) { 174 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 175 } 176 }; 177 178 /// A specialization of DominatingValue for Address. 179 template <> struct DominatingValue<Address> { 180 typedef Address type; 181 182 struct saved_type { 183 DominatingLLVMValue::saved_type SavedValue; 184 CharUnits Alignment; 185 }; 186 187 static bool needsSaving(type value) { 188 return DominatingLLVMValue::needsSaving(value.getPointer()); 189 } 190 static saved_type save(CodeGenFunction &CGF, type value) { 191 return { DominatingLLVMValue::save(CGF, value.getPointer()), 192 value.getAlignment() }; 193 } 194 static type restore(CodeGenFunction &CGF, saved_type value) { 195 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 196 value.Alignment); 197 } 198 }; 199 200 /// A specialization of DominatingValue for RValue. 201 template <> struct DominatingValue<RValue> { 202 typedef RValue type; 203 class saved_type { 204 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 205 AggregateAddress, ComplexAddress }; 206 207 llvm::Value *Value; 208 unsigned K : 3; 209 unsigned Align : 29; 210 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 211 : Value(v), K(k), Align(a) {} 212 213 public: 214 static bool needsSaving(RValue value); 215 static saved_type save(CodeGenFunction &CGF, RValue value); 216 RValue restore(CodeGenFunction &CGF); 217 218 // implementations in CGCleanup.cpp 219 }; 220 221 static bool needsSaving(type value) { 222 return saved_type::needsSaving(value); 223 } 224 static saved_type save(CodeGenFunction &CGF, type value) { 225 return saved_type::save(CGF, value); 226 } 227 static type restore(CodeGenFunction &CGF, saved_type value) { 228 return value.restore(CGF); 229 } 230 }; 231 232 /// CodeGenFunction - This class organizes the per-function state that is used 233 /// while generating LLVM code. 234 class CodeGenFunction : public CodeGenTypeCache { 235 CodeGenFunction(const CodeGenFunction &) = delete; 236 void operator=(const CodeGenFunction &) = delete; 237 238 friend class CGCXXABI; 239 public: 240 /// A jump destination is an abstract label, branching to which may 241 /// require a jump out through normal cleanups. 242 struct JumpDest { 243 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 244 JumpDest(llvm::BasicBlock *Block, 245 EHScopeStack::stable_iterator Depth, 246 unsigned Index) 247 : Block(Block), ScopeDepth(Depth), Index(Index) {} 248 249 bool isValid() const { return Block != nullptr; } 250 llvm::BasicBlock *getBlock() const { return Block; } 251 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 252 unsigned getDestIndex() const { return Index; } 253 254 // This should be used cautiously. 255 void setScopeDepth(EHScopeStack::stable_iterator depth) { 256 ScopeDepth = depth; 257 } 258 259 private: 260 llvm::BasicBlock *Block; 261 EHScopeStack::stable_iterator ScopeDepth; 262 unsigned Index; 263 }; 264 265 CodeGenModule &CGM; // Per-module state. 266 const TargetInfo &Target; 267 268 // For EH/SEH outlined funclets, this field points to parent's CGF 269 CodeGenFunction *ParentCGF = nullptr; 270 271 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 272 LoopInfoStack LoopStack; 273 CGBuilderTy Builder; 274 275 // Stores variables for which we can't generate correct lifetime markers 276 // because of jumps. 277 VarBypassDetector Bypasses; 278 279 // CodeGen lambda for loops and support for ordered clause 280 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 281 JumpDest)> 282 CodeGenLoopTy; 283 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 284 const unsigned, const bool)> 285 CodeGenOrderedTy; 286 287 // Codegen lambda for loop bounds in worksharing loop constructs 288 typedef llvm::function_ref<std::pair<LValue, LValue>( 289 CodeGenFunction &, const OMPExecutableDirective &S)> 290 CodeGenLoopBoundsTy; 291 292 // Codegen lambda for loop bounds in dispatch-based loop implementation 293 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 294 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 295 Address UB)> 296 CodeGenDispatchBoundsTy; 297 298 /// CGBuilder insert helper. This function is called after an 299 /// instruction is created using Builder. 300 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 301 llvm::BasicBlock *BB, 302 llvm::BasicBlock::iterator InsertPt) const; 303 304 /// CurFuncDecl - Holds the Decl for the current outermost 305 /// non-closure context. 306 const Decl *CurFuncDecl; 307 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 308 const Decl *CurCodeDecl; 309 const CGFunctionInfo *CurFnInfo; 310 QualType FnRetTy; 311 llvm::Function *CurFn = nullptr; 312 313 // Holds coroutine data if the current function is a coroutine. We use a 314 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 315 // in this header. 316 struct CGCoroInfo { 317 std::unique_ptr<CGCoroData> Data; 318 CGCoroInfo(); 319 ~CGCoroInfo(); 320 }; 321 CGCoroInfo CurCoro; 322 323 bool isCoroutine() const { 324 return CurCoro.Data != nullptr; 325 } 326 327 /// CurGD - The GlobalDecl for the current function being compiled. 328 GlobalDecl CurGD; 329 330 /// PrologueCleanupDepth - The cleanup depth enclosing all the 331 /// cleanups associated with the parameters. 332 EHScopeStack::stable_iterator PrologueCleanupDepth; 333 334 /// ReturnBlock - Unified return block. 335 JumpDest ReturnBlock; 336 337 /// ReturnValue - The temporary alloca to hold the return 338 /// value. This is invalid iff the function has no return value. 339 Address ReturnValue = Address::invalid(); 340 341 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 342 /// This is invalid if sret is not in use. 343 Address ReturnValuePointer = Address::invalid(); 344 345 /// If a return statement is being visited, this holds the return statment's 346 /// result expression. 347 const Expr *RetExpr = nullptr; 348 349 /// Return true if a label was seen in the current scope. 350 bool hasLabelBeenSeenInCurrentScope() const { 351 if (CurLexicalScope) 352 return CurLexicalScope->hasLabels(); 353 return !LabelMap.empty(); 354 } 355 356 /// AllocaInsertPoint - This is an instruction in the entry block before which 357 /// we prefer to insert allocas. 358 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 359 360 /// API for captured statement code generation. 361 class CGCapturedStmtInfo { 362 public: 363 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 364 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 365 explicit CGCapturedStmtInfo(const CapturedStmt &S, 366 CapturedRegionKind K = CR_Default) 367 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 368 369 RecordDecl::field_iterator Field = 370 S.getCapturedRecordDecl()->field_begin(); 371 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 372 E = S.capture_end(); 373 I != E; ++I, ++Field) { 374 if (I->capturesThis()) 375 CXXThisFieldDecl = *Field; 376 else if (I->capturesVariable()) 377 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 378 else if (I->capturesVariableByCopy()) 379 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 380 } 381 } 382 383 virtual ~CGCapturedStmtInfo(); 384 385 CapturedRegionKind getKind() const { return Kind; } 386 387 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 388 // Retrieve the value of the context parameter. 389 virtual llvm::Value *getContextValue() const { return ThisValue; } 390 391 /// Lookup the captured field decl for a variable. 392 virtual const FieldDecl *lookup(const VarDecl *VD) const { 393 return CaptureFields.lookup(VD->getCanonicalDecl()); 394 } 395 396 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 397 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 398 399 static bool classof(const CGCapturedStmtInfo *) { 400 return true; 401 } 402 403 /// Emit the captured statement body. 404 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 405 CGF.incrementProfileCounter(S); 406 CGF.EmitStmt(S); 407 } 408 409 /// Get the name of the capture helper. 410 virtual StringRef getHelperName() const { return "__captured_stmt"; } 411 412 private: 413 /// The kind of captured statement being generated. 414 CapturedRegionKind Kind; 415 416 /// Keep the map between VarDecl and FieldDecl. 417 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 418 419 /// The base address of the captured record, passed in as the first 420 /// argument of the parallel region function. 421 llvm::Value *ThisValue; 422 423 /// Captured 'this' type. 424 FieldDecl *CXXThisFieldDecl; 425 }; 426 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 427 428 /// RAII for correct setting/restoring of CapturedStmtInfo. 429 class CGCapturedStmtRAII { 430 private: 431 CodeGenFunction &CGF; 432 CGCapturedStmtInfo *PrevCapturedStmtInfo; 433 public: 434 CGCapturedStmtRAII(CodeGenFunction &CGF, 435 CGCapturedStmtInfo *NewCapturedStmtInfo) 436 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 437 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 438 } 439 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 440 }; 441 442 /// An abstract representation of regular/ObjC call/message targets. 443 class AbstractCallee { 444 /// The function declaration of the callee. 445 const Decl *CalleeDecl; 446 447 public: 448 AbstractCallee() : CalleeDecl(nullptr) {} 449 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 450 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 451 bool hasFunctionDecl() const { 452 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 453 } 454 const Decl *getDecl() const { return CalleeDecl; } 455 unsigned getNumParams() const { 456 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 457 return FD->getNumParams(); 458 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 459 } 460 const ParmVarDecl *getParamDecl(unsigned I) const { 461 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 462 return FD->getParamDecl(I); 463 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 464 } 465 }; 466 467 /// Sanitizers enabled for this function. 468 SanitizerSet SanOpts; 469 470 /// True if CodeGen currently emits code implementing sanitizer checks. 471 bool IsSanitizerScope = false; 472 473 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 474 class SanitizerScope { 475 CodeGenFunction *CGF; 476 public: 477 SanitizerScope(CodeGenFunction *CGF); 478 ~SanitizerScope(); 479 }; 480 481 /// In C++, whether we are code generating a thunk. This controls whether we 482 /// should emit cleanups. 483 bool CurFuncIsThunk = false; 484 485 /// In ARC, whether we should autorelease the return value. 486 bool AutoreleaseResult = false; 487 488 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 489 /// potentially set the return value. 490 bool SawAsmBlock = false; 491 492 const NamedDecl *CurSEHParent = nullptr; 493 494 /// True if the current function is an outlined SEH helper. This can be a 495 /// finally block or filter expression. 496 bool IsOutlinedSEHHelper = false; 497 498 /// True if CodeGen currently emits code inside presereved access index 499 /// region. 500 bool IsInPreservedAIRegion = false; 501 502 /// True if the current statement has nomerge attribute. 503 bool InNoMergeAttributedStmt = false; 504 505 /// True if the current function should be marked mustprogress. 506 bool FnIsMustProgress = false; 507 508 /// True if the C++ Standard Requires Progress. 509 bool CPlusPlusWithProgress() { 510 return getLangOpts().CPlusPlus11 || getLangOpts().CPlusPlus14 || 511 getLangOpts().CPlusPlus17 || getLangOpts().CPlusPlus20; 512 } 513 514 /// True if the C Standard Requires Progress. 515 bool CWithProgress() { 516 return getLangOpts().C11 || getLangOpts().C17 || getLangOpts().C2x; 517 } 518 519 /// True if the language standard requires progress in functions or 520 /// in infinite loops with non-constant conditionals. 521 bool LanguageRequiresProgress() { 522 return CWithProgress() || CPlusPlusWithProgress(); 523 } 524 525 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 526 llvm::Value *BlockPointer = nullptr; 527 528 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 529 FieldDecl *LambdaThisCaptureField = nullptr; 530 531 /// A mapping from NRVO variables to the flags used to indicate 532 /// when the NRVO has been applied to this variable. 533 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 534 535 EHScopeStack EHStack; 536 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 537 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 538 539 llvm::Instruction *CurrentFuncletPad = nullptr; 540 541 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 542 llvm::Value *Addr; 543 llvm::Value *Size; 544 545 public: 546 CallLifetimeEnd(Address addr, llvm::Value *size) 547 : Addr(addr.getPointer()), Size(size) {} 548 549 void Emit(CodeGenFunction &CGF, Flags flags) override { 550 CGF.EmitLifetimeEnd(Size, Addr); 551 } 552 }; 553 554 /// Header for data within LifetimeExtendedCleanupStack. 555 struct LifetimeExtendedCleanupHeader { 556 /// The size of the following cleanup object. 557 unsigned Size; 558 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 559 unsigned Kind : 31; 560 /// Whether this is a conditional cleanup. 561 unsigned IsConditional : 1; 562 563 size_t getSize() const { return Size; } 564 CleanupKind getKind() const { return (CleanupKind)Kind; } 565 bool isConditional() const { return IsConditional; } 566 }; 567 568 /// i32s containing the indexes of the cleanup destinations. 569 Address NormalCleanupDest = Address::invalid(); 570 571 unsigned NextCleanupDestIndex = 1; 572 573 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 574 llvm::BasicBlock *EHResumeBlock = nullptr; 575 576 /// The exception slot. All landing pads write the current exception pointer 577 /// into this alloca. 578 llvm::Value *ExceptionSlot = nullptr; 579 580 /// The selector slot. Under the MandatoryCleanup model, all landing pads 581 /// write the current selector value into this alloca. 582 llvm::AllocaInst *EHSelectorSlot = nullptr; 583 584 /// A stack of exception code slots. Entering an __except block pushes a slot 585 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 586 /// a value from the top of the stack. 587 SmallVector<Address, 1> SEHCodeSlotStack; 588 589 /// Value returned by __exception_info intrinsic. 590 llvm::Value *SEHInfo = nullptr; 591 592 /// Emits a landing pad for the current EH stack. 593 llvm::BasicBlock *EmitLandingPad(); 594 595 llvm::BasicBlock *getInvokeDestImpl(); 596 597 /// Parent loop-based directive for scan directive. 598 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 599 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 600 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 601 llvm::BasicBlock *OMPScanExitBlock = nullptr; 602 llvm::BasicBlock *OMPScanDispatch = nullptr; 603 bool OMPFirstScanLoop = false; 604 605 /// Manages parent directive for scan directives. 606 class ParentLoopDirectiveForScanRegion { 607 CodeGenFunction &CGF; 608 const OMPExecutableDirective *ParentLoopDirectiveForScan; 609 610 public: 611 ParentLoopDirectiveForScanRegion( 612 CodeGenFunction &CGF, 613 const OMPExecutableDirective &ParentLoopDirectiveForScan) 614 : CGF(CGF), 615 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 616 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 617 } 618 ~ParentLoopDirectiveForScanRegion() { 619 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 620 } 621 }; 622 623 template <class T> 624 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 625 return DominatingValue<T>::save(*this, value); 626 } 627 628 class CGFPOptionsRAII { 629 public: 630 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 631 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 632 ~CGFPOptionsRAII(); 633 634 private: 635 void ConstructorHelper(FPOptions FPFeatures); 636 CodeGenFunction &CGF; 637 FPOptions OldFPFeatures; 638 llvm::fp::ExceptionBehavior OldExcept; 639 llvm::RoundingMode OldRounding; 640 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 641 }; 642 FPOptions CurFPFeatures; 643 644 public: 645 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 646 /// rethrows. 647 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 648 649 /// A class controlling the emission of a finally block. 650 class FinallyInfo { 651 /// Where the catchall's edge through the cleanup should go. 652 JumpDest RethrowDest; 653 654 /// A function to call to enter the catch. 655 llvm::FunctionCallee BeginCatchFn; 656 657 /// An i1 variable indicating whether or not the @finally is 658 /// running for an exception. 659 llvm::AllocaInst *ForEHVar; 660 661 /// An i8* variable into which the exception pointer to rethrow 662 /// has been saved. 663 llvm::AllocaInst *SavedExnVar; 664 665 public: 666 void enter(CodeGenFunction &CGF, const Stmt *Finally, 667 llvm::FunctionCallee beginCatchFn, 668 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 669 void exit(CodeGenFunction &CGF); 670 }; 671 672 /// Returns true inside SEH __try blocks. 673 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 674 675 /// Returns true while emitting a cleanuppad. 676 bool isCleanupPadScope() const { 677 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 678 } 679 680 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 681 /// current full-expression. Safe against the possibility that 682 /// we're currently inside a conditionally-evaluated expression. 683 template <class T, class... As> 684 void pushFullExprCleanup(CleanupKind kind, As... A) { 685 // If we're not in a conditional branch, or if none of the 686 // arguments requires saving, then use the unconditional cleanup. 687 if (!isInConditionalBranch()) 688 return EHStack.pushCleanup<T>(kind, A...); 689 690 // Stash values in a tuple so we can guarantee the order of saves. 691 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 692 SavedTuple Saved{saveValueInCond(A)...}; 693 694 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 695 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 696 initFullExprCleanup(); 697 } 698 699 /// Queue a cleanup to be pushed after finishing the current full-expression, 700 /// potentially with an active flag. 701 template <class T, class... As> 702 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 703 if (!isInConditionalBranch()) 704 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 705 A...); 706 707 Address ActiveFlag = createCleanupActiveFlag(); 708 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 709 "cleanup active flag should never need saving"); 710 711 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 712 SavedTuple Saved{saveValueInCond(A)...}; 713 714 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 715 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 716 } 717 718 template <class T, class... As> 719 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 720 Address ActiveFlag, As... A) { 721 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 722 ActiveFlag.isValid()}; 723 724 size_t OldSize = LifetimeExtendedCleanupStack.size(); 725 LifetimeExtendedCleanupStack.resize( 726 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 727 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 728 729 static_assert(sizeof(Header) % alignof(T) == 0, 730 "Cleanup will be allocated on misaligned address"); 731 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 732 new (Buffer) LifetimeExtendedCleanupHeader(Header); 733 new (Buffer + sizeof(Header)) T(A...); 734 if (Header.IsConditional) 735 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 736 } 737 738 /// Set up the last cleanup that was pushed as a conditional 739 /// full-expression cleanup. 740 void initFullExprCleanup() { 741 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 742 } 743 744 void initFullExprCleanupWithFlag(Address ActiveFlag); 745 Address createCleanupActiveFlag(); 746 747 /// PushDestructorCleanup - Push a cleanup to call the 748 /// complete-object destructor of an object of the given type at the 749 /// given address. Does nothing if T is not a C++ class type with a 750 /// non-trivial destructor. 751 void PushDestructorCleanup(QualType T, Address Addr); 752 753 /// PushDestructorCleanup - Push a cleanup to call the 754 /// complete-object variant of the given destructor on the object at 755 /// the given address. 756 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 757 Address Addr); 758 759 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 760 /// process all branch fixups. 761 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 762 763 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 764 /// The block cannot be reactivated. Pops it if it's the top of the 765 /// stack. 766 /// 767 /// \param DominatingIP - An instruction which is known to 768 /// dominate the current IP (if set) and which lies along 769 /// all paths of execution between the current IP and the 770 /// the point at which the cleanup comes into scope. 771 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 772 llvm::Instruction *DominatingIP); 773 774 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 775 /// Cannot be used to resurrect a deactivated cleanup. 776 /// 777 /// \param DominatingIP - An instruction which is known to 778 /// dominate the current IP (if set) and which lies along 779 /// all paths of execution between the current IP and the 780 /// the point at which the cleanup comes into scope. 781 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 782 llvm::Instruction *DominatingIP); 783 784 /// Enters a new scope for capturing cleanups, all of which 785 /// will be executed once the scope is exited. 786 class RunCleanupsScope { 787 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 788 size_t LifetimeExtendedCleanupStackSize; 789 bool OldDidCallStackSave; 790 protected: 791 bool PerformCleanup; 792 private: 793 794 RunCleanupsScope(const RunCleanupsScope &) = delete; 795 void operator=(const RunCleanupsScope &) = delete; 796 797 protected: 798 CodeGenFunction& CGF; 799 800 public: 801 /// Enter a new cleanup scope. 802 explicit RunCleanupsScope(CodeGenFunction &CGF) 803 : PerformCleanup(true), CGF(CGF) 804 { 805 CleanupStackDepth = CGF.EHStack.stable_begin(); 806 LifetimeExtendedCleanupStackSize = 807 CGF.LifetimeExtendedCleanupStack.size(); 808 OldDidCallStackSave = CGF.DidCallStackSave; 809 CGF.DidCallStackSave = false; 810 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 811 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 812 } 813 814 /// Exit this cleanup scope, emitting any accumulated cleanups. 815 ~RunCleanupsScope() { 816 if (PerformCleanup) 817 ForceCleanup(); 818 } 819 820 /// Determine whether this scope requires any cleanups. 821 bool requiresCleanups() const { 822 return CGF.EHStack.stable_begin() != CleanupStackDepth; 823 } 824 825 /// Force the emission of cleanups now, instead of waiting 826 /// until this object is destroyed. 827 /// \param ValuesToReload - A list of values that need to be available at 828 /// the insertion point after cleanup emission. If cleanup emission created 829 /// a shared cleanup block, these value pointers will be rewritten. 830 /// Otherwise, they not will be modified. 831 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 832 assert(PerformCleanup && "Already forced cleanup"); 833 CGF.DidCallStackSave = OldDidCallStackSave; 834 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 835 ValuesToReload); 836 PerformCleanup = false; 837 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 838 } 839 }; 840 841 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 842 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 843 EHScopeStack::stable_end(); 844 845 class LexicalScope : public RunCleanupsScope { 846 SourceRange Range; 847 SmallVector<const LabelDecl*, 4> Labels; 848 LexicalScope *ParentScope; 849 850 LexicalScope(const LexicalScope &) = delete; 851 void operator=(const LexicalScope &) = delete; 852 853 public: 854 /// Enter a new cleanup scope. 855 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 856 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 857 CGF.CurLexicalScope = this; 858 if (CGDebugInfo *DI = CGF.getDebugInfo()) 859 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 860 } 861 862 void addLabel(const LabelDecl *label) { 863 assert(PerformCleanup && "adding label to dead scope?"); 864 Labels.push_back(label); 865 } 866 867 /// Exit this cleanup scope, emitting any accumulated 868 /// cleanups. 869 ~LexicalScope() { 870 if (CGDebugInfo *DI = CGF.getDebugInfo()) 871 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 872 873 // If we should perform a cleanup, force them now. Note that 874 // this ends the cleanup scope before rescoping any labels. 875 if (PerformCleanup) { 876 ApplyDebugLocation DL(CGF, Range.getEnd()); 877 ForceCleanup(); 878 } 879 } 880 881 /// Force the emission of cleanups now, instead of waiting 882 /// until this object is destroyed. 883 void ForceCleanup() { 884 CGF.CurLexicalScope = ParentScope; 885 RunCleanupsScope::ForceCleanup(); 886 887 if (!Labels.empty()) 888 rescopeLabels(); 889 } 890 891 bool hasLabels() const { 892 return !Labels.empty(); 893 } 894 895 void rescopeLabels(); 896 }; 897 898 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 899 900 /// The class used to assign some variables some temporarily addresses. 901 class OMPMapVars { 902 DeclMapTy SavedLocals; 903 DeclMapTy SavedTempAddresses; 904 OMPMapVars(const OMPMapVars &) = delete; 905 void operator=(const OMPMapVars &) = delete; 906 907 public: 908 explicit OMPMapVars() = default; 909 ~OMPMapVars() { 910 assert(SavedLocals.empty() && "Did not restored original addresses."); 911 }; 912 913 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 914 /// function \p CGF. 915 /// \return true if at least one variable was set already, false otherwise. 916 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 917 Address TempAddr) { 918 LocalVD = LocalVD->getCanonicalDecl(); 919 // Only save it once. 920 if (SavedLocals.count(LocalVD)) return false; 921 922 // Copy the existing local entry to SavedLocals. 923 auto it = CGF.LocalDeclMap.find(LocalVD); 924 if (it != CGF.LocalDeclMap.end()) 925 SavedLocals.try_emplace(LocalVD, it->second); 926 else 927 SavedLocals.try_emplace(LocalVD, Address::invalid()); 928 929 // Generate the private entry. 930 QualType VarTy = LocalVD->getType(); 931 if (VarTy->isReferenceType()) { 932 Address Temp = CGF.CreateMemTemp(VarTy); 933 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 934 TempAddr = Temp; 935 } 936 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 937 938 return true; 939 } 940 941 /// Applies new addresses to the list of the variables. 942 /// \return true if at least one variable is using new address, false 943 /// otherwise. 944 bool apply(CodeGenFunction &CGF) { 945 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 946 SavedTempAddresses.clear(); 947 return !SavedLocals.empty(); 948 } 949 950 /// Restores original addresses of the variables. 951 void restore(CodeGenFunction &CGF) { 952 if (!SavedLocals.empty()) { 953 copyInto(SavedLocals, CGF.LocalDeclMap); 954 SavedLocals.clear(); 955 } 956 } 957 958 private: 959 /// Copy all the entries in the source map over the corresponding 960 /// entries in the destination, which must exist. 961 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 962 for (auto &Pair : Src) { 963 if (!Pair.second.isValid()) { 964 Dest.erase(Pair.first); 965 continue; 966 } 967 968 auto I = Dest.find(Pair.first); 969 if (I != Dest.end()) 970 I->second = Pair.second; 971 else 972 Dest.insert(Pair); 973 } 974 } 975 }; 976 977 /// The scope used to remap some variables as private in the OpenMP loop body 978 /// (or other captured region emitted without outlining), and to restore old 979 /// vars back on exit. 980 class OMPPrivateScope : public RunCleanupsScope { 981 OMPMapVars MappedVars; 982 OMPPrivateScope(const OMPPrivateScope &) = delete; 983 void operator=(const OMPPrivateScope &) = delete; 984 985 public: 986 /// Enter a new OpenMP private scope. 987 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 988 989 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 990 /// function for it to generate corresponding private variable. \p 991 /// PrivateGen returns an address of the generated private variable. 992 /// \return true if the variable is registered as private, false if it has 993 /// been privatized already. 994 bool addPrivate(const VarDecl *LocalVD, 995 const llvm::function_ref<Address()> PrivateGen) { 996 assert(PerformCleanup && "adding private to dead scope"); 997 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 998 } 999 1000 /// Privatizes local variables previously registered as private. 1001 /// Registration is separate from the actual privatization to allow 1002 /// initializers use values of the original variables, not the private one. 1003 /// This is important, for example, if the private variable is a class 1004 /// variable initialized by a constructor that references other private 1005 /// variables. But at initialization original variables must be used, not 1006 /// private copies. 1007 /// \return true if at least one variable was privatized, false otherwise. 1008 bool Privatize() { return MappedVars.apply(CGF); } 1009 1010 void ForceCleanup() { 1011 RunCleanupsScope::ForceCleanup(); 1012 MappedVars.restore(CGF); 1013 } 1014 1015 /// Exit scope - all the mapped variables are restored. 1016 ~OMPPrivateScope() { 1017 if (PerformCleanup) 1018 ForceCleanup(); 1019 } 1020 1021 /// Checks if the global variable is captured in current function. 1022 bool isGlobalVarCaptured(const VarDecl *VD) const { 1023 VD = VD->getCanonicalDecl(); 1024 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1025 } 1026 }; 1027 1028 /// Save/restore original map of previously emitted local vars in case when we 1029 /// need to duplicate emission of the same code several times in the same 1030 /// function for OpenMP code. 1031 class OMPLocalDeclMapRAII { 1032 CodeGenFunction &CGF; 1033 DeclMapTy SavedMap; 1034 1035 public: 1036 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1037 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1038 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1039 }; 1040 1041 /// Takes the old cleanup stack size and emits the cleanup blocks 1042 /// that have been added. 1043 void 1044 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1045 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1046 1047 /// Takes the old cleanup stack size and emits the cleanup blocks 1048 /// that have been added, then adds all lifetime-extended cleanups from 1049 /// the given position to the stack. 1050 void 1051 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1052 size_t OldLifetimeExtendedStackSize, 1053 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1054 1055 void ResolveBranchFixups(llvm::BasicBlock *Target); 1056 1057 /// The given basic block lies in the current EH scope, but may be a 1058 /// target of a potentially scope-crossing jump; get a stable handle 1059 /// to which we can perform this jump later. 1060 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1061 return JumpDest(Target, 1062 EHStack.getInnermostNormalCleanup(), 1063 NextCleanupDestIndex++); 1064 } 1065 1066 /// The given basic block lies in the current EH scope, but may be a 1067 /// target of a potentially scope-crossing jump; get a stable handle 1068 /// to which we can perform this jump later. 1069 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1070 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1071 } 1072 1073 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1074 /// block through the normal cleanup handling code (if any) and then 1075 /// on to \arg Dest. 1076 void EmitBranchThroughCleanup(JumpDest Dest); 1077 1078 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1079 /// specified destination obviously has no cleanups to run. 'false' is always 1080 /// a conservatively correct answer for this method. 1081 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1082 1083 /// popCatchScope - Pops the catch scope at the top of the EHScope 1084 /// stack, emitting any required code (other than the catch handlers 1085 /// themselves). 1086 void popCatchScope(); 1087 1088 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1089 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1090 llvm::BasicBlock * 1091 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1092 1093 /// An object to manage conditionally-evaluated expressions. 1094 class ConditionalEvaluation { 1095 llvm::BasicBlock *StartBB; 1096 1097 public: 1098 ConditionalEvaluation(CodeGenFunction &CGF) 1099 : StartBB(CGF.Builder.GetInsertBlock()) {} 1100 1101 void begin(CodeGenFunction &CGF) { 1102 assert(CGF.OutermostConditional != this); 1103 if (!CGF.OutermostConditional) 1104 CGF.OutermostConditional = this; 1105 } 1106 1107 void end(CodeGenFunction &CGF) { 1108 assert(CGF.OutermostConditional != nullptr); 1109 if (CGF.OutermostConditional == this) 1110 CGF.OutermostConditional = nullptr; 1111 } 1112 1113 /// Returns a block which will be executed prior to each 1114 /// evaluation of the conditional code. 1115 llvm::BasicBlock *getStartingBlock() const { 1116 return StartBB; 1117 } 1118 }; 1119 1120 /// isInConditionalBranch - Return true if we're currently emitting 1121 /// one branch or the other of a conditional expression. 1122 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1123 1124 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1125 assert(isInConditionalBranch()); 1126 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1127 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1128 store->setAlignment(addr.getAlignment().getAsAlign()); 1129 } 1130 1131 /// An RAII object to record that we're evaluating a statement 1132 /// expression. 1133 class StmtExprEvaluation { 1134 CodeGenFunction &CGF; 1135 1136 /// We have to save the outermost conditional: cleanups in a 1137 /// statement expression aren't conditional just because the 1138 /// StmtExpr is. 1139 ConditionalEvaluation *SavedOutermostConditional; 1140 1141 public: 1142 StmtExprEvaluation(CodeGenFunction &CGF) 1143 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1144 CGF.OutermostConditional = nullptr; 1145 } 1146 1147 ~StmtExprEvaluation() { 1148 CGF.OutermostConditional = SavedOutermostConditional; 1149 CGF.EnsureInsertPoint(); 1150 } 1151 }; 1152 1153 /// An object which temporarily prevents a value from being 1154 /// destroyed by aggressive peephole optimizations that assume that 1155 /// all uses of a value have been realized in the IR. 1156 class PeepholeProtection { 1157 llvm::Instruction *Inst; 1158 friend class CodeGenFunction; 1159 1160 public: 1161 PeepholeProtection() : Inst(nullptr) {} 1162 }; 1163 1164 /// A non-RAII class containing all the information about a bound 1165 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1166 /// this which makes individual mappings very simple; using this 1167 /// class directly is useful when you have a variable number of 1168 /// opaque values or don't want the RAII functionality for some 1169 /// reason. 1170 class OpaqueValueMappingData { 1171 const OpaqueValueExpr *OpaqueValue; 1172 bool BoundLValue; 1173 CodeGenFunction::PeepholeProtection Protection; 1174 1175 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1176 bool boundLValue) 1177 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1178 public: 1179 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1180 1181 static bool shouldBindAsLValue(const Expr *expr) { 1182 // gl-values should be bound as l-values for obvious reasons. 1183 // Records should be bound as l-values because IR generation 1184 // always keeps them in memory. Expressions of function type 1185 // act exactly like l-values but are formally required to be 1186 // r-values in C. 1187 return expr->isGLValue() || 1188 expr->getType()->isFunctionType() || 1189 hasAggregateEvaluationKind(expr->getType()); 1190 } 1191 1192 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1193 const OpaqueValueExpr *ov, 1194 const Expr *e) { 1195 if (shouldBindAsLValue(ov)) 1196 return bind(CGF, ov, CGF.EmitLValue(e)); 1197 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1198 } 1199 1200 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1201 const OpaqueValueExpr *ov, 1202 const LValue &lv) { 1203 assert(shouldBindAsLValue(ov)); 1204 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1205 return OpaqueValueMappingData(ov, true); 1206 } 1207 1208 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1209 const OpaqueValueExpr *ov, 1210 const RValue &rv) { 1211 assert(!shouldBindAsLValue(ov)); 1212 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1213 1214 OpaqueValueMappingData data(ov, false); 1215 1216 // Work around an extremely aggressive peephole optimization in 1217 // EmitScalarConversion which assumes that all other uses of a 1218 // value are extant. 1219 data.Protection = CGF.protectFromPeepholes(rv); 1220 1221 return data; 1222 } 1223 1224 bool isValid() const { return OpaqueValue != nullptr; } 1225 void clear() { OpaqueValue = nullptr; } 1226 1227 void unbind(CodeGenFunction &CGF) { 1228 assert(OpaqueValue && "no data to unbind!"); 1229 1230 if (BoundLValue) { 1231 CGF.OpaqueLValues.erase(OpaqueValue); 1232 } else { 1233 CGF.OpaqueRValues.erase(OpaqueValue); 1234 CGF.unprotectFromPeepholes(Protection); 1235 } 1236 } 1237 }; 1238 1239 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1240 class OpaqueValueMapping { 1241 CodeGenFunction &CGF; 1242 OpaqueValueMappingData Data; 1243 1244 public: 1245 static bool shouldBindAsLValue(const Expr *expr) { 1246 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1247 } 1248 1249 /// Build the opaque value mapping for the given conditional 1250 /// operator if it's the GNU ?: extension. This is a common 1251 /// enough pattern that the convenience operator is really 1252 /// helpful. 1253 /// 1254 OpaqueValueMapping(CodeGenFunction &CGF, 1255 const AbstractConditionalOperator *op) : CGF(CGF) { 1256 if (isa<ConditionalOperator>(op)) 1257 // Leave Data empty. 1258 return; 1259 1260 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1261 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1262 e->getCommon()); 1263 } 1264 1265 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1266 /// expression is set to the expression the OVE represents. 1267 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1268 : CGF(CGF) { 1269 if (OV) { 1270 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1271 "for OVE with no source expression"); 1272 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1273 } 1274 } 1275 1276 OpaqueValueMapping(CodeGenFunction &CGF, 1277 const OpaqueValueExpr *opaqueValue, 1278 LValue lvalue) 1279 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1280 } 1281 1282 OpaqueValueMapping(CodeGenFunction &CGF, 1283 const OpaqueValueExpr *opaqueValue, 1284 RValue rvalue) 1285 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1286 } 1287 1288 void pop() { 1289 Data.unbind(CGF); 1290 Data.clear(); 1291 } 1292 1293 ~OpaqueValueMapping() { 1294 if (Data.isValid()) Data.unbind(CGF); 1295 } 1296 }; 1297 1298 private: 1299 CGDebugInfo *DebugInfo; 1300 /// Used to create unique names for artificial VLA size debug info variables. 1301 unsigned VLAExprCounter = 0; 1302 bool DisableDebugInfo = false; 1303 1304 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1305 /// calling llvm.stacksave for multiple VLAs in the same scope. 1306 bool DidCallStackSave = false; 1307 1308 /// IndirectBranch - The first time an indirect goto is seen we create a block 1309 /// with an indirect branch. Every time we see the address of a label taken, 1310 /// we add the label to the indirect goto. Every subsequent indirect goto is 1311 /// codegen'd as a jump to the IndirectBranch's basic block. 1312 llvm::IndirectBrInst *IndirectBranch = nullptr; 1313 1314 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1315 /// decls. 1316 DeclMapTy LocalDeclMap; 1317 1318 // Keep track of the cleanups for callee-destructed parameters pushed to the 1319 // cleanup stack so that they can be deactivated later. 1320 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1321 CalleeDestructedParamCleanups; 1322 1323 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1324 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1325 /// parameter. 1326 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1327 SizeArguments; 1328 1329 /// Track escaped local variables with auto storage. Used during SEH 1330 /// outlining to produce a call to llvm.localescape. 1331 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1332 1333 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1334 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1335 1336 // BreakContinueStack - This keeps track of where break and continue 1337 // statements should jump to. 1338 struct BreakContinue { 1339 BreakContinue(JumpDest Break, JumpDest Continue) 1340 : BreakBlock(Break), ContinueBlock(Continue) {} 1341 1342 JumpDest BreakBlock; 1343 JumpDest ContinueBlock; 1344 }; 1345 SmallVector<BreakContinue, 8> BreakContinueStack; 1346 1347 /// Handles cancellation exit points in OpenMP-related constructs. 1348 class OpenMPCancelExitStack { 1349 /// Tracks cancellation exit point and join point for cancel-related exit 1350 /// and normal exit. 1351 struct CancelExit { 1352 CancelExit() = default; 1353 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1354 JumpDest ContBlock) 1355 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1356 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1357 /// true if the exit block has been emitted already by the special 1358 /// emitExit() call, false if the default codegen is used. 1359 bool HasBeenEmitted = false; 1360 JumpDest ExitBlock; 1361 JumpDest ContBlock; 1362 }; 1363 1364 SmallVector<CancelExit, 8> Stack; 1365 1366 public: 1367 OpenMPCancelExitStack() : Stack(1) {} 1368 ~OpenMPCancelExitStack() = default; 1369 /// Fetches the exit block for the current OpenMP construct. 1370 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1371 /// Emits exit block with special codegen procedure specific for the related 1372 /// OpenMP construct + emits code for normal construct cleanup. 1373 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1374 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1375 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1376 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1377 assert(CGF.HaveInsertPoint()); 1378 assert(!Stack.back().HasBeenEmitted); 1379 auto IP = CGF.Builder.saveAndClearIP(); 1380 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1381 CodeGen(CGF); 1382 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1383 CGF.Builder.restoreIP(IP); 1384 Stack.back().HasBeenEmitted = true; 1385 } 1386 CodeGen(CGF); 1387 } 1388 /// Enter the cancel supporting \a Kind construct. 1389 /// \param Kind OpenMP directive that supports cancel constructs. 1390 /// \param HasCancel true, if the construct has inner cancel directive, 1391 /// false otherwise. 1392 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1393 Stack.push_back({Kind, 1394 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1395 : JumpDest(), 1396 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1397 : JumpDest()}); 1398 } 1399 /// Emits default exit point for the cancel construct (if the special one 1400 /// has not be used) + join point for cancel/normal exits. 1401 void exit(CodeGenFunction &CGF) { 1402 if (getExitBlock().isValid()) { 1403 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1404 bool HaveIP = CGF.HaveInsertPoint(); 1405 if (!Stack.back().HasBeenEmitted) { 1406 if (HaveIP) 1407 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1408 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1409 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1410 } 1411 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1412 if (!HaveIP) { 1413 CGF.Builder.CreateUnreachable(); 1414 CGF.Builder.ClearInsertionPoint(); 1415 } 1416 } 1417 Stack.pop_back(); 1418 } 1419 }; 1420 OpenMPCancelExitStack OMPCancelStack; 1421 1422 /// Calculate branch weights for the likelihood attribute 1423 llvm::MDNode *createBranchWeights(Stmt::Likelihood LH) const; 1424 1425 CodeGenPGO PGO; 1426 1427 /// Calculate branch weights appropriate for PGO data 1428 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1429 uint64_t FalseCount) const; 1430 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1431 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1432 uint64_t LoopCount) const; 1433 1434 /// Calculate the branch weight for PGO data or the likelihood attribute. 1435 /// The function tries to get the weight of \ref createProfileWeightsForLoop. 1436 /// If that fails it gets the weight of \ref createBranchWeights. 1437 llvm::MDNode *createProfileOrBranchWeightsForLoop(const Stmt *Cond, 1438 uint64_t LoopCount, 1439 const Stmt *Body) const; 1440 1441 public: 1442 /// Increment the profiler's counter for the given statement by \p StepV. 1443 /// If \p StepV is null, the default increment is 1. 1444 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1445 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1446 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1447 PGO.emitCounterIncrement(Builder, S, StepV); 1448 PGO.setCurrentStmt(S); 1449 } 1450 1451 /// Get the profiler's count for the given statement. 1452 uint64_t getProfileCount(const Stmt *S) { 1453 Optional<uint64_t> Count = PGO.getStmtCount(S); 1454 if (!Count.hasValue()) 1455 return 0; 1456 return *Count; 1457 } 1458 1459 /// Set the profiler's current count. 1460 void setCurrentProfileCount(uint64_t Count) { 1461 PGO.setCurrentRegionCount(Count); 1462 } 1463 1464 /// Get the profiler's current count. This is generally the count for the most 1465 /// recently incremented counter. 1466 uint64_t getCurrentProfileCount() { 1467 return PGO.getCurrentRegionCount(); 1468 } 1469 1470 private: 1471 1472 /// SwitchInsn - This is nearest current switch instruction. It is null if 1473 /// current context is not in a switch. 1474 llvm::SwitchInst *SwitchInsn = nullptr; 1475 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1476 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1477 1478 /// The likelihood attributes of the SwitchCase. 1479 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1480 1481 /// CaseRangeBlock - This block holds if condition check for last case 1482 /// statement range in current switch instruction. 1483 llvm::BasicBlock *CaseRangeBlock = nullptr; 1484 1485 /// OpaqueLValues - Keeps track of the current set of opaque value 1486 /// expressions. 1487 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1488 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1489 1490 // VLASizeMap - This keeps track of the associated size for each VLA type. 1491 // We track this by the size expression rather than the type itself because 1492 // in certain situations, like a const qualifier applied to an VLA typedef, 1493 // multiple VLA types can share the same size expression. 1494 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1495 // enter/leave scopes. 1496 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1497 1498 /// A block containing a single 'unreachable' instruction. Created 1499 /// lazily by getUnreachableBlock(). 1500 llvm::BasicBlock *UnreachableBlock = nullptr; 1501 1502 /// Counts of the number return expressions in the function. 1503 unsigned NumReturnExprs = 0; 1504 1505 /// Count the number of simple (constant) return expressions in the function. 1506 unsigned NumSimpleReturnExprs = 0; 1507 1508 /// The last regular (non-return) debug location (breakpoint) in the function. 1509 SourceLocation LastStopPoint; 1510 1511 public: 1512 /// Source location information about the default argument or member 1513 /// initializer expression we're evaluating, if any. 1514 CurrentSourceLocExprScope CurSourceLocExprScope; 1515 using SourceLocExprScopeGuard = 1516 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1517 1518 /// A scope within which we are constructing the fields of an object which 1519 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1520 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1521 class FieldConstructionScope { 1522 public: 1523 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1524 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1525 CGF.CXXDefaultInitExprThis = This; 1526 } 1527 ~FieldConstructionScope() { 1528 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1529 } 1530 1531 private: 1532 CodeGenFunction &CGF; 1533 Address OldCXXDefaultInitExprThis; 1534 }; 1535 1536 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1537 /// is overridden to be the object under construction. 1538 class CXXDefaultInitExprScope { 1539 public: 1540 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1541 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1542 OldCXXThisAlignment(CGF.CXXThisAlignment), 1543 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1544 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1545 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1546 } 1547 ~CXXDefaultInitExprScope() { 1548 CGF.CXXThisValue = OldCXXThisValue; 1549 CGF.CXXThisAlignment = OldCXXThisAlignment; 1550 } 1551 1552 public: 1553 CodeGenFunction &CGF; 1554 llvm::Value *OldCXXThisValue; 1555 CharUnits OldCXXThisAlignment; 1556 SourceLocExprScopeGuard SourceLocScope; 1557 }; 1558 1559 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1560 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1561 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1562 }; 1563 1564 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1565 /// current loop index is overridden. 1566 class ArrayInitLoopExprScope { 1567 public: 1568 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1569 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1570 CGF.ArrayInitIndex = Index; 1571 } 1572 ~ArrayInitLoopExprScope() { 1573 CGF.ArrayInitIndex = OldArrayInitIndex; 1574 } 1575 1576 private: 1577 CodeGenFunction &CGF; 1578 llvm::Value *OldArrayInitIndex; 1579 }; 1580 1581 class InlinedInheritingConstructorScope { 1582 public: 1583 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1584 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1585 OldCurCodeDecl(CGF.CurCodeDecl), 1586 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1587 OldCXXABIThisValue(CGF.CXXABIThisValue), 1588 OldCXXThisValue(CGF.CXXThisValue), 1589 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1590 OldCXXThisAlignment(CGF.CXXThisAlignment), 1591 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1592 OldCXXInheritedCtorInitExprArgs( 1593 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1594 CGF.CurGD = GD; 1595 CGF.CurFuncDecl = CGF.CurCodeDecl = 1596 cast<CXXConstructorDecl>(GD.getDecl()); 1597 CGF.CXXABIThisDecl = nullptr; 1598 CGF.CXXABIThisValue = nullptr; 1599 CGF.CXXThisValue = nullptr; 1600 CGF.CXXABIThisAlignment = CharUnits(); 1601 CGF.CXXThisAlignment = CharUnits(); 1602 CGF.ReturnValue = Address::invalid(); 1603 CGF.FnRetTy = QualType(); 1604 CGF.CXXInheritedCtorInitExprArgs.clear(); 1605 } 1606 ~InlinedInheritingConstructorScope() { 1607 CGF.CurGD = OldCurGD; 1608 CGF.CurFuncDecl = OldCurFuncDecl; 1609 CGF.CurCodeDecl = OldCurCodeDecl; 1610 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1611 CGF.CXXABIThisValue = OldCXXABIThisValue; 1612 CGF.CXXThisValue = OldCXXThisValue; 1613 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1614 CGF.CXXThisAlignment = OldCXXThisAlignment; 1615 CGF.ReturnValue = OldReturnValue; 1616 CGF.FnRetTy = OldFnRetTy; 1617 CGF.CXXInheritedCtorInitExprArgs = 1618 std::move(OldCXXInheritedCtorInitExprArgs); 1619 } 1620 1621 private: 1622 CodeGenFunction &CGF; 1623 GlobalDecl OldCurGD; 1624 const Decl *OldCurFuncDecl; 1625 const Decl *OldCurCodeDecl; 1626 ImplicitParamDecl *OldCXXABIThisDecl; 1627 llvm::Value *OldCXXABIThisValue; 1628 llvm::Value *OldCXXThisValue; 1629 CharUnits OldCXXABIThisAlignment; 1630 CharUnits OldCXXThisAlignment; 1631 Address OldReturnValue; 1632 QualType OldFnRetTy; 1633 CallArgList OldCXXInheritedCtorInitExprArgs; 1634 }; 1635 1636 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1637 // region body, and finalization codegen callbacks. This will class will also 1638 // contain privatization functions used by the privatization call backs 1639 // 1640 // TODO: this is temporary class for things that are being moved out of 1641 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1642 // utility function for use with the OMPBuilder. Once that move to use the 1643 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1644 // directly, or a new helper class that will contain functions used by both 1645 // this and the OMPBuilder 1646 1647 struct OMPBuilderCBHelpers { 1648 1649 OMPBuilderCBHelpers() = delete; 1650 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1651 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1652 1653 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1654 1655 /// Cleanup action for allocate support. 1656 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1657 1658 private: 1659 llvm::CallInst *RTLFnCI; 1660 1661 public: 1662 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1663 RLFnCI->removeFromParent(); 1664 } 1665 1666 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1667 if (!CGF.HaveInsertPoint()) 1668 return; 1669 CGF.Builder.Insert(RTLFnCI); 1670 } 1671 }; 1672 1673 /// Returns address of the threadprivate variable for the current 1674 /// thread. This Also create any necessary OMP runtime calls. 1675 /// 1676 /// \param VD VarDecl for Threadprivate variable. 1677 /// \param VDAddr Address of the Vardecl 1678 /// \param Loc The location where the barrier directive was encountered 1679 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1680 const VarDecl *VD, Address VDAddr, 1681 SourceLocation Loc); 1682 1683 /// Gets the OpenMP-specific address of the local variable /p VD. 1684 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1685 const VarDecl *VD); 1686 /// Get the platform-specific name separator. 1687 /// \param Parts different parts of the final name that needs separation 1688 /// \param FirstSeparator First separator used between the initial two 1689 /// parts of the name. 1690 /// \param Separator separator used between all of the rest consecutinve 1691 /// parts of the name 1692 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1693 StringRef FirstSeparator = ".", 1694 StringRef Separator = "."); 1695 /// Emit the Finalization for an OMP region 1696 /// \param CGF The Codegen function this belongs to 1697 /// \param IP Insertion point for generating the finalization code. 1698 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1699 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1700 assert(IP.getBlock()->end() != IP.getPoint() && 1701 "OpenMP IR Builder should cause terminated block!"); 1702 1703 llvm::BasicBlock *IPBB = IP.getBlock(); 1704 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1705 assert(DestBB && "Finalization block should have one successor!"); 1706 1707 // erase and replace with cleanup branch. 1708 IPBB->getTerminator()->eraseFromParent(); 1709 CGF.Builder.SetInsertPoint(IPBB); 1710 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1711 CGF.EmitBranchThroughCleanup(Dest); 1712 } 1713 1714 /// Emit the body of an OMP region 1715 /// \param CGF The Codegen function this belongs to 1716 /// \param RegionBodyStmt The body statement for the OpenMP region being 1717 /// generated 1718 /// \param CodeGenIP Insertion point for generating the body code. 1719 /// \param FiniBB The finalization basic block 1720 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1721 const Stmt *RegionBodyStmt, 1722 InsertPointTy CodeGenIP, 1723 llvm::BasicBlock &FiniBB) { 1724 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1725 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1726 CodeGenIPBBTI->eraseFromParent(); 1727 1728 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1729 1730 CGF.EmitStmt(RegionBodyStmt); 1731 1732 if (CGF.Builder.saveIP().isSet()) 1733 CGF.Builder.CreateBr(&FiniBB); 1734 } 1735 1736 /// RAII for preserving necessary info during Outlined region body codegen. 1737 class OutlinedRegionBodyRAII { 1738 1739 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1740 CodeGenFunction::JumpDest OldReturnBlock; 1741 CGBuilderTy::InsertPoint IP; 1742 CodeGenFunction &CGF; 1743 1744 public: 1745 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1746 llvm::BasicBlock &RetBB) 1747 : CGF(cgf) { 1748 assert(AllocaIP.isSet() && 1749 "Must specify Insertion point for allocas of outlined function"); 1750 OldAllocaIP = CGF.AllocaInsertPt; 1751 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1752 IP = CGF.Builder.saveIP(); 1753 1754 OldReturnBlock = CGF.ReturnBlock; 1755 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1756 } 1757 1758 ~OutlinedRegionBodyRAII() { 1759 CGF.AllocaInsertPt = OldAllocaIP; 1760 CGF.ReturnBlock = OldReturnBlock; 1761 CGF.Builder.restoreIP(IP); 1762 } 1763 }; 1764 1765 /// RAII for preserving necessary info during inlined region body codegen. 1766 class InlinedRegionBodyRAII { 1767 1768 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1769 CodeGenFunction &CGF; 1770 1771 public: 1772 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1773 llvm::BasicBlock &FiniBB) 1774 : CGF(cgf) { 1775 // Alloca insertion block should be in the entry block of the containing 1776 // function so it expects an empty AllocaIP in which case will reuse the 1777 // old alloca insertion point, or a new AllocaIP in the same block as 1778 // the old one 1779 assert((!AllocaIP.isSet() || 1780 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1781 "Insertion point should be in the entry block of containing " 1782 "function!"); 1783 OldAllocaIP = CGF.AllocaInsertPt; 1784 if (AllocaIP.isSet()) 1785 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1786 1787 // TODO: Remove the call, after making sure the counter is not used by 1788 // the EHStack. 1789 // Since this is an inlined region, it should not modify the 1790 // ReturnBlock, and should reuse the one for the enclosing outlined 1791 // region. So, the JumpDest being return by the function is discarded 1792 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1793 } 1794 1795 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1796 }; 1797 }; 1798 1799 private: 1800 /// CXXThisDecl - When generating code for a C++ member function, 1801 /// this will hold the implicit 'this' declaration. 1802 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1803 llvm::Value *CXXABIThisValue = nullptr; 1804 llvm::Value *CXXThisValue = nullptr; 1805 CharUnits CXXABIThisAlignment; 1806 CharUnits CXXThisAlignment; 1807 1808 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1809 /// this expression. 1810 Address CXXDefaultInitExprThis = Address::invalid(); 1811 1812 /// The current array initialization index when evaluating an 1813 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1814 llvm::Value *ArrayInitIndex = nullptr; 1815 1816 /// The values of function arguments to use when evaluating 1817 /// CXXInheritedCtorInitExprs within this context. 1818 CallArgList CXXInheritedCtorInitExprArgs; 1819 1820 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1821 /// destructor, this will hold the implicit argument (e.g. VTT). 1822 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1823 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1824 1825 /// OutermostConditional - Points to the outermost active 1826 /// conditional control. This is used so that we know if a 1827 /// temporary should be destroyed conditionally. 1828 ConditionalEvaluation *OutermostConditional = nullptr; 1829 1830 /// The current lexical scope. 1831 LexicalScope *CurLexicalScope = nullptr; 1832 1833 /// The current source location that should be used for exception 1834 /// handling code. 1835 SourceLocation CurEHLocation; 1836 1837 /// BlockByrefInfos - For each __block variable, contains 1838 /// information about the layout of the variable. 1839 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1840 1841 /// Used by -fsanitize=nullability-return to determine whether the return 1842 /// value can be checked. 1843 llvm::Value *RetValNullabilityPrecondition = nullptr; 1844 1845 /// Check if -fsanitize=nullability-return instrumentation is required for 1846 /// this function. 1847 bool requiresReturnValueNullabilityCheck() const { 1848 return RetValNullabilityPrecondition; 1849 } 1850 1851 /// Used to store precise source locations for return statements by the 1852 /// runtime return value checks. 1853 Address ReturnLocation = Address::invalid(); 1854 1855 /// Check if the return value of this function requires sanitization. 1856 bool requiresReturnValueCheck() const; 1857 1858 llvm::BasicBlock *TerminateLandingPad = nullptr; 1859 llvm::BasicBlock *TerminateHandler = nullptr; 1860 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1861 1862 /// Terminate funclets keyed by parent funclet pad. 1863 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1864 1865 /// Largest vector width used in ths function. Will be used to create a 1866 /// function attribute. 1867 unsigned LargestVectorWidth = 0; 1868 1869 /// True if we need emit the life-time markers. 1870 const bool ShouldEmitLifetimeMarkers; 1871 1872 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1873 /// the function metadata. 1874 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1875 llvm::Function *Fn); 1876 1877 public: 1878 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1879 ~CodeGenFunction(); 1880 1881 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1882 ASTContext &getContext() const { return CGM.getContext(); } 1883 CGDebugInfo *getDebugInfo() { 1884 if (DisableDebugInfo) 1885 return nullptr; 1886 return DebugInfo; 1887 } 1888 void disableDebugInfo() { DisableDebugInfo = true; } 1889 void enableDebugInfo() { DisableDebugInfo = false; } 1890 1891 bool shouldUseFusedARCCalls() { 1892 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1893 } 1894 1895 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1896 1897 /// Returns a pointer to the function's exception object and selector slot, 1898 /// which is assigned in every landing pad. 1899 Address getExceptionSlot(); 1900 Address getEHSelectorSlot(); 1901 1902 /// Returns the contents of the function's exception object and selector 1903 /// slots. 1904 llvm::Value *getExceptionFromSlot(); 1905 llvm::Value *getSelectorFromSlot(); 1906 1907 Address getNormalCleanupDestSlot(); 1908 1909 llvm::BasicBlock *getUnreachableBlock() { 1910 if (!UnreachableBlock) { 1911 UnreachableBlock = createBasicBlock("unreachable"); 1912 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1913 } 1914 return UnreachableBlock; 1915 } 1916 1917 llvm::BasicBlock *getInvokeDest() { 1918 if (!EHStack.requiresLandingPad()) return nullptr; 1919 return getInvokeDestImpl(); 1920 } 1921 1922 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1923 1924 const TargetInfo &getTarget() const { return Target; } 1925 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1926 const TargetCodeGenInfo &getTargetHooks() const { 1927 return CGM.getTargetCodeGenInfo(); 1928 } 1929 1930 //===--------------------------------------------------------------------===// 1931 // Cleanups 1932 //===--------------------------------------------------------------------===// 1933 1934 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1935 1936 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1937 Address arrayEndPointer, 1938 QualType elementType, 1939 CharUnits elementAlignment, 1940 Destroyer *destroyer); 1941 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1942 llvm::Value *arrayEnd, 1943 QualType elementType, 1944 CharUnits elementAlignment, 1945 Destroyer *destroyer); 1946 1947 void pushDestroy(QualType::DestructionKind dtorKind, 1948 Address addr, QualType type); 1949 void pushEHDestroy(QualType::DestructionKind dtorKind, 1950 Address addr, QualType type); 1951 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1952 Destroyer *destroyer, bool useEHCleanupForArray); 1953 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1954 QualType type, Destroyer *destroyer, 1955 bool useEHCleanupForArray); 1956 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1957 llvm::Value *CompletePtr, 1958 QualType ElementType); 1959 void pushStackRestore(CleanupKind kind, Address SPMem); 1960 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1961 bool useEHCleanupForArray); 1962 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1963 Destroyer *destroyer, 1964 bool useEHCleanupForArray, 1965 const VarDecl *VD); 1966 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1967 QualType elementType, CharUnits elementAlign, 1968 Destroyer *destroyer, 1969 bool checkZeroLength, bool useEHCleanup); 1970 1971 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1972 1973 /// Determines whether an EH cleanup is required to destroy a type 1974 /// with the given destruction kind. 1975 bool needsEHCleanup(QualType::DestructionKind kind) { 1976 switch (kind) { 1977 case QualType::DK_none: 1978 return false; 1979 case QualType::DK_cxx_destructor: 1980 case QualType::DK_objc_weak_lifetime: 1981 case QualType::DK_nontrivial_c_struct: 1982 return getLangOpts().Exceptions; 1983 case QualType::DK_objc_strong_lifetime: 1984 return getLangOpts().Exceptions && 1985 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1986 } 1987 llvm_unreachable("bad destruction kind"); 1988 } 1989 1990 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1991 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1992 } 1993 1994 //===--------------------------------------------------------------------===// 1995 // Objective-C 1996 //===--------------------------------------------------------------------===// 1997 1998 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1999 2000 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2001 2002 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2003 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2004 const ObjCPropertyImplDecl *PID); 2005 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2006 const ObjCPropertyImplDecl *propImpl, 2007 const ObjCMethodDecl *GetterMothodDecl, 2008 llvm::Constant *AtomicHelperFn); 2009 2010 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2011 ObjCMethodDecl *MD, bool ctor); 2012 2013 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2014 /// for the given property. 2015 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2016 const ObjCPropertyImplDecl *PID); 2017 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2018 const ObjCPropertyImplDecl *propImpl, 2019 llvm::Constant *AtomicHelperFn); 2020 2021 //===--------------------------------------------------------------------===// 2022 // Block Bits 2023 //===--------------------------------------------------------------------===// 2024 2025 /// Emit block literal. 2026 /// \return an LLVM value which is a pointer to a struct which contains 2027 /// information about the block, including the block invoke function, the 2028 /// captured variables, etc. 2029 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2030 2031 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2032 const CGBlockInfo &Info, 2033 const DeclMapTy &ldm, 2034 bool IsLambdaConversionToBlock, 2035 bool BuildGlobalBlock); 2036 2037 /// Check if \p T is a C++ class that has a destructor that can throw. 2038 static bool cxxDestructorCanThrow(QualType T); 2039 2040 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2041 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2042 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2043 const ObjCPropertyImplDecl *PID); 2044 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2045 const ObjCPropertyImplDecl *PID); 2046 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2047 2048 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2049 bool CanThrow); 2050 2051 class AutoVarEmission; 2052 2053 void emitByrefStructureInit(const AutoVarEmission &emission); 2054 2055 /// Enter a cleanup to destroy a __block variable. Note that this 2056 /// cleanup should be a no-op if the variable hasn't left the stack 2057 /// yet; if a cleanup is required for the variable itself, that needs 2058 /// to be done externally. 2059 /// 2060 /// \param Kind Cleanup kind. 2061 /// 2062 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2063 /// structure that will be passed to _Block_object_dispose. When 2064 /// \p LoadBlockVarAddr is true, the address of the field of the block 2065 /// structure that holds the address of the __block structure. 2066 /// 2067 /// \param Flags The flag that will be passed to _Block_object_dispose. 2068 /// 2069 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2070 /// \p Addr to get the address of the __block structure. 2071 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2072 bool LoadBlockVarAddr, bool CanThrow); 2073 2074 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2075 llvm::Value *ptr); 2076 2077 Address LoadBlockStruct(); 2078 Address GetAddrOfBlockDecl(const VarDecl *var); 2079 2080 /// BuildBlockByrefAddress - Computes the location of the 2081 /// data in a variable which is declared as __block. 2082 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2083 bool followForward = true); 2084 Address emitBlockByrefAddress(Address baseAddr, 2085 const BlockByrefInfo &info, 2086 bool followForward, 2087 const llvm::Twine &name); 2088 2089 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2090 2091 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2092 2093 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2094 const CGFunctionInfo &FnInfo); 2095 2096 /// Annotate the function with an attribute that disables TSan checking at 2097 /// runtime. 2098 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2099 2100 /// Emit code for the start of a function. 2101 /// \param Loc The location to be associated with the function. 2102 /// \param StartLoc The location of the function body. 2103 void StartFunction(GlobalDecl GD, 2104 QualType RetTy, 2105 llvm::Function *Fn, 2106 const CGFunctionInfo &FnInfo, 2107 const FunctionArgList &Args, 2108 SourceLocation Loc = SourceLocation(), 2109 SourceLocation StartLoc = SourceLocation()); 2110 2111 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2112 2113 void EmitConstructorBody(FunctionArgList &Args); 2114 void EmitDestructorBody(FunctionArgList &Args); 2115 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2116 void EmitFunctionBody(const Stmt *Body); 2117 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2118 2119 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2120 CallArgList &CallArgs); 2121 void EmitLambdaBlockInvokeBody(); 2122 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2123 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2124 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2125 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2126 } 2127 void EmitAsanPrologueOrEpilogue(bool Prologue); 2128 2129 /// Emit the unified return block, trying to avoid its emission when 2130 /// possible. 2131 /// \return The debug location of the user written return statement if the 2132 /// return block is is avoided. 2133 llvm::DebugLoc EmitReturnBlock(); 2134 2135 /// FinishFunction - Complete IR generation of the current function. It is 2136 /// legal to call this function even if there is no current insertion point. 2137 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2138 2139 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2140 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2141 2142 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2143 const ThunkInfo *Thunk, bool IsUnprototyped); 2144 2145 void FinishThunk(); 2146 2147 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2148 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2149 llvm::FunctionCallee Callee); 2150 2151 /// Generate a thunk for the given method. 2152 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2153 GlobalDecl GD, const ThunkInfo &Thunk, 2154 bool IsUnprototyped); 2155 2156 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2157 const CGFunctionInfo &FnInfo, 2158 GlobalDecl GD, const ThunkInfo &Thunk); 2159 2160 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2161 FunctionArgList &Args); 2162 2163 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2164 2165 /// Struct with all information about dynamic [sub]class needed to set vptr. 2166 struct VPtr { 2167 BaseSubobject Base; 2168 const CXXRecordDecl *NearestVBase; 2169 CharUnits OffsetFromNearestVBase; 2170 const CXXRecordDecl *VTableClass; 2171 }; 2172 2173 /// Initialize the vtable pointer of the given subobject. 2174 void InitializeVTablePointer(const VPtr &vptr); 2175 2176 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2177 2178 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2179 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2180 2181 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2182 CharUnits OffsetFromNearestVBase, 2183 bool BaseIsNonVirtualPrimaryBase, 2184 const CXXRecordDecl *VTableClass, 2185 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2186 2187 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2188 2189 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2190 /// to by This. 2191 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2192 const CXXRecordDecl *VTableClass); 2193 2194 enum CFITypeCheckKind { 2195 CFITCK_VCall, 2196 CFITCK_NVCall, 2197 CFITCK_DerivedCast, 2198 CFITCK_UnrelatedCast, 2199 CFITCK_ICall, 2200 CFITCK_NVMFCall, 2201 CFITCK_VMFCall, 2202 }; 2203 2204 /// Derived is the presumed address of an object of type T after a 2205 /// cast. If T is a polymorphic class type, emit a check that the virtual 2206 /// table for Derived belongs to a class derived from T. 2207 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2208 bool MayBeNull, CFITypeCheckKind TCK, 2209 SourceLocation Loc); 2210 2211 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2212 /// If vptr CFI is enabled, emit a check that VTable is valid. 2213 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2214 CFITypeCheckKind TCK, SourceLocation Loc); 2215 2216 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2217 /// RD using llvm.type.test. 2218 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2219 CFITypeCheckKind TCK, SourceLocation Loc); 2220 2221 /// If whole-program virtual table optimization is enabled, emit an assumption 2222 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2223 /// enabled, emit a check that VTable is a member of RD's type identifier. 2224 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2225 llvm::Value *VTable, SourceLocation Loc); 2226 2227 /// Returns whether we should perform a type checked load when loading a 2228 /// virtual function for virtual calls to members of RD. This is generally 2229 /// true when both vcall CFI and whole-program-vtables are enabled. 2230 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2231 2232 /// Emit a type checked load from the given vtable. 2233 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2234 uint64_t VTableByteOffset); 2235 2236 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2237 /// given phase of destruction for a destructor. The end result 2238 /// should call destructors on members and base classes in reverse 2239 /// order of their construction. 2240 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2241 2242 /// ShouldInstrumentFunction - Return true if the current function should be 2243 /// instrumented with __cyg_profile_func_* calls 2244 bool ShouldInstrumentFunction(); 2245 2246 /// ShouldXRayInstrument - Return true if the current function should be 2247 /// instrumented with XRay nop sleds. 2248 bool ShouldXRayInstrumentFunction() const; 2249 2250 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2251 /// XRay custom event handling calls. 2252 bool AlwaysEmitXRayCustomEvents() const; 2253 2254 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2255 /// XRay typed event handling calls. 2256 bool AlwaysEmitXRayTypedEvents() const; 2257 2258 /// Encode an address into a form suitable for use in a function prologue. 2259 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2260 llvm::Constant *Addr); 2261 2262 /// Decode an address used in a function prologue, encoded by \c 2263 /// EncodeAddrForUseInPrologue. 2264 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2265 llvm::Value *EncodedAddr); 2266 2267 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2268 /// arguments for the given function. This is also responsible for naming the 2269 /// LLVM function arguments. 2270 void EmitFunctionProlog(const CGFunctionInfo &FI, 2271 llvm::Function *Fn, 2272 const FunctionArgList &Args); 2273 2274 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2275 /// given temporary. 2276 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2277 SourceLocation EndLoc); 2278 2279 /// Emit a test that checks if the return value \p RV is nonnull. 2280 void EmitReturnValueCheck(llvm::Value *RV); 2281 2282 /// EmitStartEHSpec - Emit the start of the exception spec. 2283 void EmitStartEHSpec(const Decl *D); 2284 2285 /// EmitEndEHSpec - Emit the end of the exception spec. 2286 void EmitEndEHSpec(const Decl *D); 2287 2288 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2289 llvm::BasicBlock *getTerminateLandingPad(); 2290 2291 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2292 /// terminate. 2293 llvm::BasicBlock *getTerminateFunclet(); 2294 2295 /// getTerminateHandler - Return a handler (not a landing pad, just 2296 /// a catch handler) that just calls terminate. This is used when 2297 /// a terminate scope encloses a try. 2298 llvm::BasicBlock *getTerminateHandler(); 2299 2300 llvm::Type *ConvertTypeForMem(QualType T); 2301 llvm::Type *ConvertType(QualType T); 2302 llvm::Type *ConvertType(const TypeDecl *T) { 2303 return ConvertType(getContext().getTypeDeclType(T)); 2304 } 2305 2306 /// LoadObjCSelf - Load the value of self. This function is only valid while 2307 /// generating code for an Objective-C method. 2308 llvm::Value *LoadObjCSelf(); 2309 2310 /// TypeOfSelfObject - Return type of object that this self represents. 2311 QualType TypeOfSelfObject(); 2312 2313 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2314 static TypeEvaluationKind getEvaluationKind(QualType T); 2315 2316 static bool hasScalarEvaluationKind(QualType T) { 2317 return getEvaluationKind(T) == TEK_Scalar; 2318 } 2319 2320 static bool hasAggregateEvaluationKind(QualType T) { 2321 return getEvaluationKind(T) == TEK_Aggregate; 2322 } 2323 2324 /// createBasicBlock - Create an LLVM basic block. 2325 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2326 llvm::Function *parent = nullptr, 2327 llvm::BasicBlock *before = nullptr) { 2328 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2329 } 2330 2331 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2332 /// label maps to. 2333 JumpDest getJumpDestForLabel(const LabelDecl *S); 2334 2335 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2336 /// another basic block, simplify it. This assumes that no other code could 2337 /// potentially reference the basic block. 2338 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2339 2340 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2341 /// adding a fall-through branch from the current insert block if 2342 /// necessary. It is legal to call this function even if there is no current 2343 /// insertion point. 2344 /// 2345 /// IsFinished - If true, indicates that the caller has finished emitting 2346 /// branches to the given block and does not expect to emit code into it. This 2347 /// means the block can be ignored if it is unreachable. 2348 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2349 2350 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2351 /// near its uses, and leave the insertion point in it. 2352 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2353 2354 /// EmitBranch - Emit a branch to the specified basic block from the current 2355 /// insert block, taking care to avoid creation of branches from dummy 2356 /// blocks. It is legal to call this function even if there is no current 2357 /// insertion point. 2358 /// 2359 /// This function clears the current insertion point. The caller should follow 2360 /// calls to this function with calls to Emit*Block prior to generation new 2361 /// code. 2362 void EmitBranch(llvm::BasicBlock *Block); 2363 2364 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2365 /// indicates that the current code being emitted is unreachable. 2366 bool HaveInsertPoint() const { 2367 return Builder.GetInsertBlock() != nullptr; 2368 } 2369 2370 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2371 /// emitted IR has a place to go. Note that by definition, if this function 2372 /// creates a block then that block is unreachable; callers may do better to 2373 /// detect when no insertion point is defined and simply skip IR generation. 2374 void EnsureInsertPoint() { 2375 if (!HaveInsertPoint()) 2376 EmitBlock(createBasicBlock()); 2377 } 2378 2379 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2380 /// specified stmt yet. 2381 void ErrorUnsupported(const Stmt *S, const char *Type); 2382 2383 //===--------------------------------------------------------------------===// 2384 // Helpers 2385 //===--------------------------------------------------------------------===// 2386 2387 LValue MakeAddrLValue(Address Addr, QualType T, 2388 AlignmentSource Source = AlignmentSource::Type) { 2389 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2390 CGM.getTBAAAccessInfo(T)); 2391 } 2392 2393 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2394 TBAAAccessInfo TBAAInfo) { 2395 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2396 } 2397 2398 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2399 AlignmentSource Source = AlignmentSource::Type) { 2400 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2401 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2402 } 2403 2404 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2405 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2406 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2407 BaseInfo, TBAAInfo); 2408 } 2409 2410 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2411 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2412 2413 Address EmitLoadOfReference(LValue RefLVal, 2414 LValueBaseInfo *PointeeBaseInfo = nullptr, 2415 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2416 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2417 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2418 AlignmentSource Source = 2419 AlignmentSource::Type) { 2420 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2421 CGM.getTBAAAccessInfo(RefTy)); 2422 return EmitLoadOfReferenceLValue(RefLVal); 2423 } 2424 2425 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2426 LValueBaseInfo *BaseInfo = nullptr, 2427 TBAAAccessInfo *TBAAInfo = nullptr); 2428 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2429 2430 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2431 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2432 /// insertion point of the builder. The caller is responsible for setting an 2433 /// appropriate alignment on 2434 /// the alloca. 2435 /// 2436 /// \p ArraySize is the number of array elements to be allocated if it 2437 /// is not nullptr. 2438 /// 2439 /// LangAS::Default is the address space of pointers to local variables and 2440 /// temporaries, as exposed in the source language. In certain 2441 /// configurations, this is not the same as the alloca address space, and a 2442 /// cast is needed to lift the pointer from the alloca AS into 2443 /// LangAS::Default. This can happen when the target uses a restricted 2444 /// address space for the stack but the source language requires 2445 /// LangAS::Default to be a generic address space. The latter condition is 2446 /// common for most programming languages; OpenCL is an exception in that 2447 /// LangAS::Default is the private address space, which naturally maps 2448 /// to the stack. 2449 /// 2450 /// Because the address of a temporary is often exposed to the program in 2451 /// various ways, this function will perform the cast. The original alloca 2452 /// instruction is returned through \p Alloca if it is not nullptr. 2453 /// 2454 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2455 /// more efficient if the caller knows that the address will not be exposed. 2456 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2457 llvm::Value *ArraySize = nullptr); 2458 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2459 const Twine &Name = "tmp", 2460 llvm::Value *ArraySize = nullptr, 2461 Address *Alloca = nullptr); 2462 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2463 const Twine &Name = "tmp", 2464 llvm::Value *ArraySize = nullptr); 2465 2466 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2467 /// default ABI alignment of the given LLVM type. 2468 /// 2469 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2470 /// any given AST type that happens to have been lowered to the 2471 /// given IR type. This should only ever be used for function-local, 2472 /// IR-driven manipulations like saving and restoring a value. Do 2473 /// not hand this address off to arbitrary IRGen routines, and especially 2474 /// do not pass it as an argument to a function that might expect a 2475 /// properly ABI-aligned value. 2476 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2477 const Twine &Name = "tmp"); 2478 2479 /// InitTempAlloca - Provide an initial value for the given alloca which 2480 /// will be observable at all locations in the function. 2481 /// 2482 /// The address should be something that was returned from one of 2483 /// the CreateTempAlloca or CreateMemTemp routines, and the 2484 /// initializer must be valid in the entry block (i.e. it must 2485 /// either be a constant or an argument value). 2486 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2487 2488 /// CreateIRTemp - Create a temporary IR object of the given type, with 2489 /// appropriate alignment. This routine should only be used when an temporary 2490 /// value needs to be stored into an alloca (for example, to avoid explicit 2491 /// PHI construction), but the type is the IR type, not the type appropriate 2492 /// for storing in memory. 2493 /// 2494 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2495 /// ConvertType instead of ConvertTypeForMem. 2496 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2497 2498 /// CreateMemTemp - Create a temporary memory object of the given type, with 2499 /// appropriate alignmen and cast it to the default address space. Returns 2500 /// the original alloca instruction by \p Alloca if it is not nullptr. 2501 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2502 Address *Alloca = nullptr); 2503 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2504 Address *Alloca = nullptr); 2505 2506 /// CreateMemTemp - Create a temporary memory object of the given type, with 2507 /// appropriate alignmen without casting it to the default address space. 2508 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2509 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2510 const Twine &Name = "tmp"); 2511 2512 /// CreateAggTemp - Create a temporary memory object for the given 2513 /// aggregate type. 2514 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2515 Address *Alloca = nullptr) { 2516 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2517 T.getQualifiers(), 2518 AggValueSlot::IsNotDestructed, 2519 AggValueSlot::DoesNotNeedGCBarriers, 2520 AggValueSlot::IsNotAliased, 2521 AggValueSlot::DoesNotOverlap); 2522 } 2523 2524 /// Emit a cast to void* in the appropriate address space. 2525 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2526 2527 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2528 /// expression and compare the result against zero, returning an Int1Ty value. 2529 llvm::Value *EvaluateExprAsBool(const Expr *E); 2530 2531 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2532 void EmitIgnoredExpr(const Expr *E); 2533 2534 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2535 /// any type. The result is returned as an RValue struct. If this is an 2536 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2537 /// the result should be returned. 2538 /// 2539 /// \param ignoreResult True if the resulting value isn't used. 2540 RValue EmitAnyExpr(const Expr *E, 2541 AggValueSlot aggSlot = AggValueSlot::ignored(), 2542 bool ignoreResult = false); 2543 2544 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2545 // or the value of the expression, depending on how va_list is defined. 2546 Address EmitVAListRef(const Expr *E); 2547 2548 /// Emit a "reference" to a __builtin_ms_va_list; this is 2549 /// always the value of the expression, because a __builtin_ms_va_list is a 2550 /// pointer to a char. 2551 Address EmitMSVAListRef(const Expr *E); 2552 2553 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2554 /// always be accessible even if no aggregate location is provided. 2555 RValue EmitAnyExprToTemp(const Expr *E); 2556 2557 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2558 /// arbitrary expression into the given memory location. 2559 void EmitAnyExprToMem(const Expr *E, Address Location, 2560 Qualifiers Quals, bool IsInitializer); 2561 2562 void EmitAnyExprToExn(const Expr *E, Address Addr); 2563 2564 /// EmitExprAsInit - Emits the code necessary to initialize a 2565 /// location in memory with the given initializer. 2566 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2567 bool capturedByInit); 2568 2569 /// hasVolatileMember - returns true if aggregate type has a volatile 2570 /// member. 2571 bool hasVolatileMember(QualType T) { 2572 if (const RecordType *RT = T->getAs<RecordType>()) { 2573 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2574 return RD->hasVolatileMember(); 2575 } 2576 return false; 2577 } 2578 2579 /// Determine whether a return value slot may overlap some other object. 2580 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2581 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2582 // class subobjects. These cases may need to be revisited depending on the 2583 // resolution of the relevant core issue. 2584 return AggValueSlot::DoesNotOverlap; 2585 } 2586 2587 /// Determine whether a field initialization may overlap some other object. 2588 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2589 2590 /// Determine whether a base class initialization may overlap some other 2591 /// object. 2592 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2593 const CXXRecordDecl *BaseRD, 2594 bool IsVirtual); 2595 2596 /// Emit an aggregate assignment. 2597 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2598 bool IsVolatile = hasVolatileMember(EltTy); 2599 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2600 } 2601 2602 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2603 AggValueSlot::Overlap_t MayOverlap) { 2604 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2605 } 2606 2607 /// EmitAggregateCopy - Emit an aggregate copy. 2608 /// 2609 /// \param isVolatile \c true iff either the source or the destination is 2610 /// volatile. 2611 /// \param MayOverlap Whether the tail padding of the destination might be 2612 /// occupied by some other object. More efficient code can often be 2613 /// generated if not. 2614 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2615 AggValueSlot::Overlap_t MayOverlap, 2616 bool isVolatile = false); 2617 2618 /// GetAddrOfLocalVar - Return the address of a local variable. 2619 Address GetAddrOfLocalVar(const VarDecl *VD) { 2620 auto it = LocalDeclMap.find(VD); 2621 assert(it != LocalDeclMap.end() && 2622 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2623 return it->second; 2624 } 2625 2626 /// Given an opaque value expression, return its LValue mapping if it exists, 2627 /// otherwise create one. 2628 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2629 2630 /// Given an opaque value expression, return its RValue mapping if it exists, 2631 /// otherwise create one. 2632 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2633 2634 /// Get the index of the current ArrayInitLoopExpr, if any. 2635 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2636 2637 /// getAccessedFieldNo - Given an encoded value and a result number, return 2638 /// the input field number being accessed. 2639 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2640 2641 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2642 llvm::BasicBlock *GetIndirectGotoBlock(); 2643 2644 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2645 static bool IsWrappedCXXThis(const Expr *E); 2646 2647 /// EmitNullInitialization - Generate code to set a value of the given type to 2648 /// null, If the type contains data member pointers, they will be initialized 2649 /// to -1 in accordance with the Itanium C++ ABI. 2650 void EmitNullInitialization(Address DestPtr, QualType Ty); 2651 2652 /// Emits a call to an LLVM variable-argument intrinsic, either 2653 /// \c llvm.va_start or \c llvm.va_end. 2654 /// \param ArgValue A reference to the \c va_list as emitted by either 2655 /// \c EmitVAListRef or \c EmitMSVAListRef. 2656 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2657 /// calls \c llvm.va_end. 2658 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2659 2660 /// Generate code to get an argument from the passed in pointer 2661 /// and update it accordingly. 2662 /// \param VE The \c VAArgExpr for which to generate code. 2663 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2664 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2665 /// \returns A pointer to the argument. 2666 // FIXME: We should be able to get rid of this method and use the va_arg 2667 // instruction in LLVM instead once it works well enough. 2668 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2669 2670 /// emitArrayLength - Compute the length of an array, even if it's a 2671 /// VLA, and drill down to the base element type. 2672 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2673 QualType &baseType, 2674 Address &addr); 2675 2676 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2677 /// the given variably-modified type and store them in the VLASizeMap. 2678 /// 2679 /// This function can be called with a null (unreachable) insert point. 2680 void EmitVariablyModifiedType(QualType Ty); 2681 2682 struct VlaSizePair { 2683 llvm::Value *NumElts; 2684 QualType Type; 2685 2686 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2687 }; 2688 2689 /// Return the number of elements for a single dimension 2690 /// for the given array type. 2691 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2692 VlaSizePair getVLAElements1D(QualType vla); 2693 2694 /// Returns an LLVM value that corresponds to the size, 2695 /// in non-variably-sized elements, of a variable length array type, 2696 /// plus that largest non-variably-sized element type. Assumes that 2697 /// the type has already been emitted with EmitVariablyModifiedType. 2698 VlaSizePair getVLASize(const VariableArrayType *vla); 2699 VlaSizePair getVLASize(QualType vla); 2700 2701 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2702 /// generating code for an C++ member function. 2703 llvm::Value *LoadCXXThis() { 2704 assert(CXXThisValue && "no 'this' value for this function"); 2705 return CXXThisValue; 2706 } 2707 Address LoadCXXThisAddress(); 2708 2709 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2710 /// virtual bases. 2711 // FIXME: Every place that calls LoadCXXVTT is something 2712 // that needs to be abstracted properly. 2713 llvm::Value *LoadCXXVTT() { 2714 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2715 return CXXStructorImplicitParamValue; 2716 } 2717 2718 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2719 /// complete class to the given direct base. 2720 Address 2721 GetAddressOfDirectBaseInCompleteClass(Address Value, 2722 const CXXRecordDecl *Derived, 2723 const CXXRecordDecl *Base, 2724 bool BaseIsVirtual); 2725 2726 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2727 2728 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2729 /// load of 'this' and returns address of the base class. 2730 Address GetAddressOfBaseClass(Address Value, 2731 const CXXRecordDecl *Derived, 2732 CastExpr::path_const_iterator PathBegin, 2733 CastExpr::path_const_iterator PathEnd, 2734 bool NullCheckValue, SourceLocation Loc); 2735 2736 Address GetAddressOfDerivedClass(Address Value, 2737 const CXXRecordDecl *Derived, 2738 CastExpr::path_const_iterator PathBegin, 2739 CastExpr::path_const_iterator PathEnd, 2740 bool NullCheckValue); 2741 2742 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2743 /// base constructor/destructor with virtual bases. 2744 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2745 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2746 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2747 bool Delegating); 2748 2749 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2750 CXXCtorType CtorType, 2751 const FunctionArgList &Args, 2752 SourceLocation Loc); 2753 // It's important not to confuse this and the previous function. Delegating 2754 // constructors are the C++0x feature. The constructor delegate optimization 2755 // is used to reduce duplication in the base and complete consturctors where 2756 // they are substantially the same. 2757 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2758 const FunctionArgList &Args); 2759 2760 /// Emit a call to an inheriting constructor (that is, one that invokes a 2761 /// constructor inherited from a base class) by inlining its definition. This 2762 /// is necessary if the ABI does not support forwarding the arguments to the 2763 /// base class constructor (because they're variadic or similar). 2764 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2765 CXXCtorType CtorType, 2766 bool ForVirtualBase, 2767 bool Delegating, 2768 CallArgList &Args); 2769 2770 /// Emit a call to a constructor inherited from a base class, passing the 2771 /// current constructor's arguments along unmodified (without even making 2772 /// a copy). 2773 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2774 bool ForVirtualBase, Address This, 2775 bool InheritedFromVBase, 2776 const CXXInheritedCtorInitExpr *E); 2777 2778 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2779 bool ForVirtualBase, bool Delegating, 2780 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2781 2782 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2783 bool ForVirtualBase, bool Delegating, 2784 Address This, CallArgList &Args, 2785 AggValueSlot::Overlap_t Overlap, 2786 SourceLocation Loc, bool NewPointerIsChecked); 2787 2788 /// Emit assumption load for all bases. Requires to be be called only on 2789 /// most-derived class and not under construction of the object. 2790 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2791 2792 /// Emit assumption that vptr load == global vtable. 2793 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2794 2795 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2796 Address This, Address Src, 2797 const CXXConstructExpr *E); 2798 2799 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2800 const ArrayType *ArrayTy, 2801 Address ArrayPtr, 2802 const CXXConstructExpr *E, 2803 bool NewPointerIsChecked, 2804 bool ZeroInitialization = false); 2805 2806 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2807 llvm::Value *NumElements, 2808 Address ArrayPtr, 2809 const CXXConstructExpr *E, 2810 bool NewPointerIsChecked, 2811 bool ZeroInitialization = false); 2812 2813 static Destroyer destroyCXXObject; 2814 2815 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2816 bool ForVirtualBase, bool Delegating, Address This, 2817 QualType ThisTy); 2818 2819 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2820 llvm::Type *ElementTy, Address NewPtr, 2821 llvm::Value *NumElements, 2822 llvm::Value *AllocSizeWithoutCookie); 2823 2824 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2825 Address Ptr); 2826 2827 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2828 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2829 2830 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2831 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2832 2833 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2834 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2835 CharUnits CookieSize = CharUnits()); 2836 2837 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2838 const CallExpr *TheCallExpr, bool IsDelete); 2839 2840 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2841 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2842 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2843 2844 /// Situations in which we might emit a check for the suitability of a 2845 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2846 /// compiler-rt. 2847 enum TypeCheckKind { 2848 /// Checking the operand of a load. Must be suitably sized and aligned. 2849 TCK_Load, 2850 /// Checking the destination of a store. Must be suitably sized and aligned. 2851 TCK_Store, 2852 /// Checking the bound value in a reference binding. Must be suitably sized 2853 /// and aligned, but is not required to refer to an object (until the 2854 /// reference is used), per core issue 453. 2855 TCK_ReferenceBinding, 2856 /// Checking the object expression in a non-static data member access. Must 2857 /// be an object within its lifetime. 2858 TCK_MemberAccess, 2859 /// Checking the 'this' pointer for a call to a non-static member function. 2860 /// Must be an object within its lifetime. 2861 TCK_MemberCall, 2862 /// Checking the 'this' pointer for a constructor call. 2863 TCK_ConstructorCall, 2864 /// Checking the operand of a static_cast to a derived pointer type. Must be 2865 /// null or an object within its lifetime. 2866 TCK_DowncastPointer, 2867 /// Checking the operand of a static_cast to a derived reference type. Must 2868 /// be an object within its lifetime. 2869 TCK_DowncastReference, 2870 /// Checking the operand of a cast to a base object. Must be suitably sized 2871 /// and aligned. 2872 TCK_Upcast, 2873 /// Checking the operand of a cast to a virtual base object. Must be an 2874 /// object within its lifetime. 2875 TCK_UpcastToVirtualBase, 2876 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2877 TCK_NonnullAssign, 2878 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2879 /// null or an object within its lifetime. 2880 TCK_DynamicOperation 2881 }; 2882 2883 /// Determine whether the pointer type check \p TCK permits null pointers. 2884 static bool isNullPointerAllowed(TypeCheckKind TCK); 2885 2886 /// Determine whether the pointer type check \p TCK requires a vptr check. 2887 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2888 2889 /// Whether any type-checking sanitizers are enabled. If \c false, 2890 /// calls to EmitTypeCheck can be skipped. 2891 bool sanitizePerformTypeCheck() const; 2892 2893 /// Emit a check that \p V is the address of storage of the 2894 /// appropriate size and alignment for an object of type \p Type 2895 /// (or if ArraySize is provided, for an array of that bound). 2896 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2897 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2898 SanitizerSet SkippedChecks = SanitizerSet(), 2899 llvm::Value *ArraySize = nullptr); 2900 2901 /// Emit a check that \p Base points into an array object, which 2902 /// we can access at index \p Index. \p Accessed should be \c false if we 2903 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2904 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2905 QualType IndexType, bool Accessed); 2906 2907 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2908 bool isInc, bool isPre); 2909 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2910 bool isInc, bool isPre); 2911 2912 /// Converts Location to a DebugLoc, if debug information is enabled. 2913 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2914 2915 /// Get the record field index as represented in debug info. 2916 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2917 2918 2919 //===--------------------------------------------------------------------===// 2920 // Declaration Emission 2921 //===--------------------------------------------------------------------===// 2922 2923 /// EmitDecl - Emit a declaration. 2924 /// 2925 /// This function can be called with a null (unreachable) insert point. 2926 void EmitDecl(const Decl &D); 2927 2928 /// EmitVarDecl - Emit a local variable declaration. 2929 /// 2930 /// This function can be called with a null (unreachable) insert point. 2931 void EmitVarDecl(const VarDecl &D); 2932 2933 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2934 bool capturedByInit); 2935 2936 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2937 llvm::Value *Address); 2938 2939 /// Determine whether the given initializer is trivial in the sense 2940 /// that it requires no code to be generated. 2941 bool isTrivialInitializer(const Expr *Init); 2942 2943 /// EmitAutoVarDecl - Emit an auto variable declaration. 2944 /// 2945 /// This function can be called with a null (unreachable) insert point. 2946 void EmitAutoVarDecl(const VarDecl &D); 2947 2948 class AutoVarEmission { 2949 friend class CodeGenFunction; 2950 2951 const VarDecl *Variable; 2952 2953 /// The address of the alloca for languages with explicit address space 2954 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2955 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2956 /// as a global constant. 2957 Address Addr; 2958 2959 llvm::Value *NRVOFlag; 2960 2961 /// True if the variable is a __block variable that is captured by an 2962 /// escaping block. 2963 bool IsEscapingByRef; 2964 2965 /// True if the variable is of aggregate type and has a constant 2966 /// initializer. 2967 bool IsConstantAggregate; 2968 2969 /// Non-null if we should use lifetime annotations. 2970 llvm::Value *SizeForLifetimeMarkers; 2971 2972 /// Address with original alloca instruction. Invalid if the variable was 2973 /// emitted as a global constant. 2974 Address AllocaAddr; 2975 2976 struct Invalid {}; 2977 AutoVarEmission(Invalid) 2978 : Variable(nullptr), Addr(Address::invalid()), 2979 AllocaAddr(Address::invalid()) {} 2980 2981 AutoVarEmission(const VarDecl &variable) 2982 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2983 IsEscapingByRef(false), IsConstantAggregate(false), 2984 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2985 2986 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2987 2988 public: 2989 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2990 2991 bool useLifetimeMarkers() const { 2992 return SizeForLifetimeMarkers != nullptr; 2993 } 2994 llvm::Value *getSizeForLifetimeMarkers() const { 2995 assert(useLifetimeMarkers()); 2996 return SizeForLifetimeMarkers; 2997 } 2998 2999 /// Returns the raw, allocated address, which is not necessarily 3000 /// the address of the object itself. It is casted to default 3001 /// address space for address space agnostic languages. 3002 Address getAllocatedAddress() const { 3003 return Addr; 3004 } 3005 3006 /// Returns the address for the original alloca instruction. 3007 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3008 3009 /// Returns the address of the object within this declaration. 3010 /// Note that this does not chase the forwarding pointer for 3011 /// __block decls. 3012 Address getObjectAddress(CodeGenFunction &CGF) const { 3013 if (!IsEscapingByRef) return Addr; 3014 3015 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3016 } 3017 }; 3018 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3019 void EmitAutoVarInit(const AutoVarEmission &emission); 3020 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3021 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3022 QualType::DestructionKind dtorKind); 3023 3024 /// Emits the alloca and debug information for the size expressions for each 3025 /// dimension of an array. It registers the association of its (1-dimensional) 3026 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3027 /// reference this node when creating the DISubrange object to describe the 3028 /// array types. 3029 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3030 const VarDecl &D, 3031 bool EmitDebugInfo); 3032 3033 void EmitStaticVarDecl(const VarDecl &D, 3034 llvm::GlobalValue::LinkageTypes Linkage); 3035 3036 class ParamValue { 3037 llvm::Value *Value; 3038 unsigned Alignment; 3039 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 3040 public: 3041 static ParamValue forDirect(llvm::Value *value) { 3042 return ParamValue(value, 0); 3043 } 3044 static ParamValue forIndirect(Address addr) { 3045 assert(!addr.getAlignment().isZero()); 3046 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 3047 } 3048 3049 bool isIndirect() const { return Alignment != 0; } 3050 llvm::Value *getAnyValue() const { return Value; } 3051 3052 llvm::Value *getDirectValue() const { 3053 assert(!isIndirect()); 3054 return Value; 3055 } 3056 3057 Address getIndirectAddress() const { 3058 assert(isIndirect()); 3059 return Address(Value, CharUnits::fromQuantity(Alignment)); 3060 } 3061 }; 3062 3063 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3064 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3065 3066 /// protectFromPeepholes - Protect a value that we're intending to 3067 /// store to the side, but which will probably be used later, from 3068 /// aggressive peepholing optimizations that might delete it. 3069 /// 3070 /// Pass the result to unprotectFromPeepholes to declare that 3071 /// protection is no longer required. 3072 /// 3073 /// There's no particular reason why this shouldn't apply to 3074 /// l-values, it's just that no existing peepholes work on pointers. 3075 PeepholeProtection protectFromPeepholes(RValue rvalue); 3076 void unprotectFromPeepholes(PeepholeProtection protection); 3077 3078 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3079 SourceLocation Loc, 3080 SourceLocation AssumptionLoc, 3081 llvm::Value *Alignment, 3082 llvm::Value *OffsetValue, 3083 llvm::Value *TheCheck, 3084 llvm::Instruction *Assumption); 3085 3086 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3087 SourceLocation Loc, SourceLocation AssumptionLoc, 3088 llvm::Value *Alignment, 3089 llvm::Value *OffsetValue = nullptr); 3090 3091 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3092 SourceLocation AssumptionLoc, 3093 llvm::Value *Alignment, 3094 llvm::Value *OffsetValue = nullptr); 3095 3096 //===--------------------------------------------------------------------===// 3097 // Statement Emission 3098 //===--------------------------------------------------------------------===// 3099 3100 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3101 void EmitStopPoint(const Stmt *S); 3102 3103 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3104 /// this function even if there is no current insertion point. 3105 /// 3106 /// This function may clear the current insertion point; callers should use 3107 /// EnsureInsertPoint if they wish to subsequently generate code without first 3108 /// calling EmitBlock, EmitBranch, or EmitStmt. 3109 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3110 3111 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3112 /// necessarily require an insertion point or debug information; typically 3113 /// because the statement amounts to a jump or a container of other 3114 /// statements. 3115 /// 3116 /// \return True if the statement was handled. 3117 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3118 3119 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3120 AggValueSlot AVS = AggValueSlot::ignored()); 3121 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3122 bool GetLast = false, 3123 AggValueSlot AVS = 3124 AggValueSlot::ignored()); 3125 3126 /// EmitLabel - Emit the block for the given label. It is legal to call this 3127 /// function even if there is no current insertion point. 3128 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3129 3130 void EmitLabelStmt(const LabelStmt &S); 3131 void EmitAttributedStmt(const AttributedStmt &S); 3132 void EmitGotoStmt(const GotoStmt &S); 3133 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3134 void EmitIfStmt(const IfStmt &S); 3135 3136 void EmitWhileStmt(const WhileStmt &S, 3137 ArrayRef<const Attr *> Attrs = None); 3138 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3139 void EmitForStmt(const ForStmt &S, 3140 ArrayRef<const Attr *> Attrs = None); 3141 void EmitReturnStmt(const ReturnStmt &S); 3142 void EmitDeclStmt(const DeclStmt &S); 3143 void EmitBreakStmt(const BreakStmt &S); 3144 void EmitContinueStmt(const ContinueStmt &S); 3145 void EmitSwitchStmt(const SwitchStmt &S); 3146 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3147 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3148 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3149 void EmitAsmStmt(const AsmStmt &S); 3150 3151 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3152 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3153 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3154 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3155 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3156 3157 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3158 void EmitCoreturnStmt(const CoreturnStmt &S); 3159 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3160 AggValueSlot aggSlot = AggValueSlot::ignored(), 3161 bool ignoreResult = false); 3162 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3163 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3164 AggValueSlot aggSlot = AggValueSlot::ignored(), 3165 bool ignoreResult = false); 3166 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3167 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3168 3169 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3170 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3171 3172 void EmitCXXTryStmt(const CXXTryStmt &S); 3173 void EmitSEHTryStmt(const SEHTryStmt &S); 3174 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3175 void EnterSEHTryStmt(const SEHTryStmt &S); 3176 void ExitSEHTryStmt(const SEHTryStmt &S); 3177 3178 void pushSEHCleanup(CleanupKind kind, 3179 llvm::Function *FinallyFunc); 3180 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3181 const Stmt *OutlinedStmt); 3182 3183 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3184 const SEHExceptStmt &Except); 3185 3186 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3187 const SEHFinallyStmt &Finally); 3188 3189 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3190 llvm::Value *ParentFP, 3191 llvm::Value *EntryEBP); 3192 llvm::Value *EmitSEHExceptionCode(); 3193 llvm::Value *EmitSEHExceptionInfo(); 3194 llvm::Value *EmitSEHAbnormalTermination(); 3195 3196 /// Emit simple code for OpenMP directives in Simd-only mode. 3197 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3198 3199 /// Scan the outlined statement for captures from the parent function. For 3200 /// each capture, mark the capture as escaped and emit a call to 3201 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3202 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3203 bool IsFilter); 3204 3205 /// Recovers the address of a local in a parent function. ParentVar is the 3206 /// address of the variable used in the immediate parent function. It can 3207 /// either be an alloca or a call to llvm.localrecover if there are nested 3208 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3209 /// frame. 3210 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3211 Address ParentVar, 3212 llvm::Value *ParentFP); 3213 3214 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3215 ArrayRef<const Attr *> Attrs = None); 3216 3217 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3218 class OMPCancelStackRAII { 3219 CodeGenFunction &CGF; 3220 3221 public: 3222 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3223 bool HasCancel) 3224 : CGF(CGF) { 3225 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3226 } 3227 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3228 }; 3229 3230 /// Returns calculated size of the specified type. 3231 llvm::Value *getTypeSize(QualType Ty); 3232 LValue InitCapturedStruct(const CapturedStmt &S); 3233 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3234 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3235 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3236 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3237 SourceLocation Loc); 3238 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3239 SmallVectorImpl<llvm::Value *> &CapturedVars); 3240 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3241 SourceLocation Loc); 3242 /// Perform element by element copying of arrays with type \a 3243 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3244 /// generated by \a CopyGen. 3245 /// 3246 /// \param DestAddr Address of the destination array. 3247 /// \param SrcAddr Address of the source array. 3248 /// \param OriginalType Type of destination and source arrays. 3249 /// \param CopyGen Copying procedure that copies value of single array element 3250 /// to another single array element. 3251 void EmitOMPAggregateAssign( 3252 Address DestAddr, Address SrcAddr, QualType OriginalType, 3253 const llvm::function_ref<void(Address, Address)> CopyGen); 3254 /// Emit proper copying of data from one variable to another. 3255 /// 3256 /// \param OriginalType Original type of the copied variables. 3257 /// \param DestAddr Destination address. 3258 /// \param SrcAddr Source address. 3259 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3260 /// type of the base array element). 3261 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3262 /// the base array element). 3263 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3264 /// DestVD. 3265 void EmitOMPCopy(QualType OriginalType, 3266 Address DestAddr, Address SrcAddr, 3267 const VarDecl *DestVD, const VarDecl *SrcVD, 3268 const Expr *Copy); 3269 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3270 /// \a X = \a E \a BO \a E. 3271 /// 3272 /// \param X Value to be updated. 3273 /// \param E Update value. 3274 /// \param BO Binary operation for update operation. 3275 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3276 /// expression, false otherwise. 3277 /// \param AO Atomic ordering of the generated atomic instructions. 3278 /// \param CommonGen Code generator for complex expressions that cannot be 3279 /// expressed through atomicrmw instruction. 3280 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3281 /// generated, <false, RValue::get(nullptr)> otherwise. 3282 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3283 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3284 llvm::AtomicOrdering AO, SourceLocation Loc, 3285 const llvm::function_ref<RValue(RValue)> CommonGen); 3286 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3287 OMPPrivateScope &PrivateScope); 3288 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3289 OMPPrivateScope &PrivateScope); 3290 void EmitOMPUseDevicePtrClause( 3291 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3292 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3293 void EmitOMPUseDeviceAddrClause( 3294 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3295 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3296 /// Emit code for copyin clause in \a D directive. The next code is 3297 /// generated at the start of outlined functions for directives: 3298 /// \code 3299 /// threadprivate_var1 = master_threadprivate_var1; 3300 /// operator=(threadprivate_var2, master_threadprivate_var2); 3301 /// ... 3302 /// __kmpc_barrier(&loc, global_tid); 3303 /// \endcode 3304 /// 3305 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3306 /// \returns true if at least one copyin variable is found, false otherwise. 3307 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3308 /// Emit initial code for lastprivate variables. If some variable is 3309 /// not also firstprivate, then the default initialization is used. Otherwise 3310 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3311 /// method. 3312 /// 3313 /// \param D Directive that may have 'lastprivate' directives. 3314 /// \param PrivateScope Private scope for capturing lastprivate variables for 3315 /// proper codegen in internal captured statement. 3316 /// 3317 /// \returns true if there is at least one lastprivate variable, false 3318 /// otherwise. 3319 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3320 OMPPrivateScope &PrivateScope); 3321 /// Emit final copying of lastprivate values to original variables at 3322 /// the end of the worksharing or simd directive. 3323 /// 3324 /// \param D Directive that has at least one 'lastprivate' directives. 3325 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3326 /// it is the last iteration of the loop code in associated directive, or to 3327 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3328 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3329 bool NoFinals, 3330 llvm::Value *IsLastIterCond = nullptr); 3331 /// Emit initial code for linear clauses. 3332 void EmitOMPLinearClause(const OMPLoopDirective &D, 3333 CodeGenFunction::OMPPrivateScope &PrivateScope); 3334 /// Emit final code for linear clauses. 3335 /// \param CondGen Optional conditional code for final part of codegen for 3336 /// linear clause. 3337 void EmitOMPLinearClauseFinal( 3338 const OMPLoopDirective &D, 3339 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3340 /// Emit initial code for reduction variables. Creates reduction copies 3341 /// and initializes them with the values according to OpenMP standard. 3342 /// 3343 /// \param D Directive (possibly) with the 'reduction' clause. 3344 /// \param PrivateScope Private scope for capturing reduction variables for 3345 /// proper codegen in internal captured statement. 3346 /// 3347 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3348 OMPPrivateScope &PrivateScope, 3349 bool ForInscan = false); 3350 /// Emit final update of reduction values to original variables at 3351 /// the end of the directive. 3352 /// 3353 /// \param D Directive that has at least one 'reduction' directives. 3354 /// \param ReductionKind The kind of reduction to perform. 3355 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3356 const OpenMPDirectiveKind ReductionKind); 3357 /// Emit initial code for linear variables. Creates private copies 3358 /// and initializes them with the values according to OpenMP standard. 3359 /// 3360 /// \param D Directive (possibly) with the 'linear' clause. 3361 /// \return true if at least one linear variable is found that should be 3362 /// initialized with the value of the original variable, false otherwise. 3363 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3364 3365 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3366 llvm::Function * /*OutlinedFn*/, 3367 const OMPTaskDataTy & /*Data*/)> 3368 TaskGenTy; 3369 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3370 const OpenMPDirectiveKind CapturedRegion, 3371 const RegionCodeGenTy &BodyGen, 3372 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3373 struct OMPTargetDataInfo { 3374 Address BasePointersArray = Address::invalid(); 3375 Address PointersArray = Address::invalid(); 3376 Address SizesArray = Address::invalid(); 3377 Address MappersArray = Address::invalid(); 3378 unsigned NumberOfTargetItems = 0; 3379 explicit OMPTargetDataInfo() = default; 3380 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3381 Address SizesArray, Address MappersArray, 3382 unsigned NumberOfTargetItems) 3383 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3384 SizesArray(SizesArray), MappersArray(MappersArray), 3385 NumberOfTargetItems(NumberOfTargetItems) {} 3386 }; 3387 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3388 const RegionCodeGenTy &BodyGen, 3389 OMPTargetDataInfo &InputInfo); 3390 3391 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3392 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3393 void EmitOMPForDirective(const OMPForDirective &S); 3394 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3395 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3396 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3397 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3398 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3399 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3400 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3401 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3402 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3403 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3404 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3405 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3406 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3407 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3408 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3409 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3410 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3411 void EmitOMPScanDirective(const OMPScanDirective &S); 3412 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3413 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3414 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3415 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3416 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3417 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3418 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3419 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3420 void 3421 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3422 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3423 void 3424 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3425 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3426 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3427 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3428 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3429 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3430 void 3431 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3432 void EmitOMPParallelMasterTaskLoopDirective( 3433 const OMPParallelMasterTaskLoopDirective &S); 3434 void EmitOMPParallelMasterTaskLoopSimdDirective( 3435 const OMPParallelMasterTaskLoopSimdDirective &S); 3436 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3437 void EmitOMPDistributeParallelForDirective( 3438 const OMPDistributeParallelForDirective &S); 3439 void EmitOMPDistributeParallelForSimdDirective( 3440 const OMPDistributeParallelForSimdDirective &S); 3441 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3442 void EmitOMPTargetParallelForSimdDirective( 3443 const OMPTargetParallelForSimdDirective &S); 3444 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3445 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3446 void 3447 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3448 void EmitOMPTeamsDistributeParallelForSimdDirective( 3449 const OMPTeamsDistributeParallelForSimdDirective &S); 3450 void EmitOMPTeamsDistributeParallelForDirective( 3451 const OMPTeamsDistributeParallelForDirective &S); 3452 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3453 void EmitOMPTargetTeamsDistributeDirective( 3454 const OMPTargetTeamsDistributeDirective &S); 3455 void EmitOMPTargetTeamsDistributeParallelForDirective( 3456 const OMPTargetTeamsDistributeParallelForDirective &S); 3457 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3458 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3459 void EmitOMPTargetTeamsDistributeSimdDirective( 3460 const OMPTargetTeamsDistributeSimdDirective &S); 3461 3462 /// Emit device code for the target directive. 3463 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3464 StringRef ParentName, 3465 const OMPTargetDirective &S); 3466 static void 3467 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3468 const OMPTargetParallelDirective &S); 3469 /// Emit device code for the target parallel for directive. 3470 static void EmitOMPTargetParallelForDeviceFunction( 3471 CodeGenModule &CGM, StringRef ParentName, 3472 const OMPTargetParallelForDirective &S); 3473 /// Emit device code for the target parallel for simd directive. 3474 static void EmitOMPTargetParallelForSimdDeviceFunction( 3475 CodeGenModule &CGM, StringRef ParentName, 3476 const OMPTargetParallelForSimdDirective &S); 3477 /// Emit device code for the target teams directive. 3478 static void 3479 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3480 const OMPTargetTeamsDirective &S); 3481 /// Emit device code for the target teams distribute directive. 3482 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3483 CodeGenModule &CGM, StringRef ParentName, 3484 const OMPTargetTeamsDistributeDirective &S); 3485 /// Emit device code for the target teams distribute simd directive. 3486 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3487 CodeGenModule &CGM, StringRef ParentName, 3488 const OMPTargetTeamsDistributeSimdDirective &S); 3489 /// Emit device code for the target simd directive. 3490 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3491 StringRef ParentName, 3492 const OMPTargetSimdDirective &S); 3493 /// Emit device code for the target teams distribute parallel for simd 3494 /// directive. 3495 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3496 CodeGenModule &CGM, StringRef ParentName, 3497 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3498 3499 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3500 CodeGenModule &CGM, StringRef ParentName, 3501 const OMPTargetTeamsDistributeParallelForDirective &S); 3502 /// Emit inner loop of the worksharing/simd construct. 3503 /// 3504 /// \param S Directive, for which the inner loop must be emitted. 3505 /// \param RequiresCleanup true, if directive has some associated private 3506 /// variables. 3507 /// \param LoopCond Bollean condition for loop continuation. 3508 /// \param IncExpr Increment expression for loop control variable. 3509 /// \param BodyGen Generator for the inner body of the inner loop. 3510 /// \param PostIncGen Genrator for post-increment code (required for ordered 3511 /// loop directvies). 3512 void EmitOMPInnerLoop( 3513 const OMPExecutableDirective &S, bool RequiresCleanup, 3514 const Expr *LoopCond, const Expr *IncExpr, 3515 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3516 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3517 3518 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3519 /// Emit initial code for loop counters of loop-based directives. 3520 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3521 OMPPrivateScope &LoopScope); 3522 3523 /// Helper for the OpenMP loop directives. 3524 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3525 3526 /// Emit code for the worksharing loop-based directive. 3527 /// \return true, if this construct has any lastprivate clause, false - 3528 /// otherwise. 3529 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3530 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3531 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3532 3533 /// Emit code for the distribute loop-based directive. 3534 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3535 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3536 3537 /// Helpers for the OpenMP loop directives. 3538 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3539 void EmitOMPSimdFinal( 3540 const OMPLoopDirective &D, 3541 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3542 3543 /// Emits the lvalue for the expression with possibly captured variable. 3544 LValue EmitOMPSharedLValue(const Expr *E); 3545 3546 private: 3547 /// Helpers for blocks. 3548 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3549 3550 /// struct with the values to be passed to the OpenMP loop-related functions 3551 struct OMPLoopArguments { 3552 /// loop lower bound 3553 Address LB = Address::invalid(); 3554 /// loop upper bound 3555 Address UB = Address::invalid(); 3556 /// loop stride 3557 Address ST = Address::invalid(); 3558 /// isLastIteration argument for runtime functions 3559 Address IL = Address::invalid(); 3560 /// Chunk value generated by sema 3561 llvm::Value *Chunk = nullptr; 3562 /// EnsureUpperBound 3563 Expr *EUB = nullptr; 3564 /// IncrementExpression 3565 Expr *IncExpr = nullptr; 3566 /// Loop initialization 3567 Expr *Init = nullptr; 3568 /// Loop exit condition 3569 Expr *Cond = nullptr; 3570 /// Update of LB after a whole chunk has been executed 3571 Expr *NextLB = nullptr; 3572 /// Update of UB after a whole chunk has been executed 3573 Expr *NextUB = nullptr; 3574 OMPLoopArguments() = default; 3575 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3576 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3577 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3578 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3579 Expr *NextUB = nullptr) 3580 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3581 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3582 NextUB(NextUB) {} 3583 }; 3584 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3585 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3586 const OMPLoopArguments &LoopArgs, 3587 const CodeGenLoopTy &CodeGenLoop, 3588 const CodeGenOrderedTy &CodeGenOrdered); 3589 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3590 bool IsMonotonic, const OMPLoopDirective &S, 3591 OMPPrivateScope &LoopScope, bool Ordered, 3592 const OMPLoopArguments &LoopArgs, 3593 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3594 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3595 const OMPLoopDirective &S, 3596 OMPPrivateScope &LoopScope, 3597 const OMPLoopArguments &LoopArgs, 3598 const CodeGenLoopTy &CodeGenLoopContent); 3599 /// Emit code for sections directive. 3600 void EmitSections(const OMPExecutableDirective &S); 3601 3602 public: 3603 3604 //===--------------------------------------------------------------------===// 3605 // LValue Expression Emission 3606 //===--------------------------------------------------------------------===// 3607 3608 /// Create a check that a scalar RValue is non-null. 3609 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3610 3611 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3612 RValue GetUndefRValue(QualType Ty); 3613 3614 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3615 /// and issue an ErrorUnsupported style diagnostic (using the 3616 /// provided Name). 3617 RValue EmitUnsupportedRValue(const Expr *E, 3618 const char *Name); 3619 3620 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3621 /// an ErrorUnsupported style diagnostic (using the provided Name). 3622 LValue EmitUnsupportedLValue(const Expr *E, 3623 const char *Name); 3624 3625 /// EmitLValue - Emit code to compute a designator that specifies the location 3626 /// of the expression. 3627 /// 3628 /// This can return one of two things: a simple address or a bitfield 3629 /// reference. In either case, the LLVM Value* in the LValue structure is 3630 /// guaranteed to be an LLVM pointer type. 3631 /// 3632 /// If this returns a bitfield reference, nothing about the pointee type of 3633 /// the LLVM value is known: For example, it may not be a pointer to an 3634 /// integer. 3635 /// 3636 /// If this returns a normal address, and if the lvalue's C type is fixed 3637 /// size, this method guarantees that the returned pointer type will point to 3638 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3639 /// variable length type, this is not possible. 3640 /// 3641 LValue EmitLValue(const Expr *E); 3642 3643 /// Same as EmitLValue but additionally we generate checking code to 3644 /// guard against undefined behavior. This is only suitable when we know 3645 /// that the address will be used to access the object. 3646 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3647 3648 RValue convertTempToRValue(Address addr, QualType type, 3649 SourceLocation Loc); 3650 3651 void EmitAtomicInit(Expr *E, LValue lvalue); 3652 3653 bool LValueIsSuitableForInlineAtomic(LValue Src); 3654 3655 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3656 AggValueSlot Slot = AggValueSlot::ignored()); 3657 3658 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3659 llvm::AtomicOrdering AO, bool IsVolatile = false, 3660 AggValueSlot slot = AggValueSlot::ignored()); 3661 3662 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3663 3664 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3665 bool IsVolatile, bool isInit); 3666 3667 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3668 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3669 llvm::AtomicOrdering Success = 3670 llvm::AtomicOrdering::SequentiallyConsistent, 3671 llvm::AtomicOrdering Failure = 3672 llvm::AtomicOrdering::SequentiallyConsistent, 3673 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3674 3675 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3676 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3677 bool IsVolatile); 3678 3679 /// EmitToMemory - Change a scalar value from its value 3680 /// representation to its in-memory representation. 3681 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3682 3683 /// EmitFromMemory - Change a scalar value from its memory 3684 /// representation to its value representation. 3685 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3686 3687 /// Check if the scalar \p Value is within the valid range for the given 3688 /// type \p Ty. 3689 /// 3690 /// Returns true if a check is needed (even if the range is unknown). 3691 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3692 SourceLocation Loc); 3693 3694 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3695 /// care to appropriately convert from the memory representation to 3696 /// the LLVM value representation. 3697 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3698 SourceLocation Loc, 3699 AlignmentSource Source = AlignmentSource::Type, 3700 bool isNontemporal = false) { 3701 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3702 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3703 } 3704 3705 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3706 SourceLocation Loc, LValueBaseInfo BaseInfo, 3707 TBAAAccessInfo TBAAInfo, 3708 bool isNontemporal = false); 3709 3710 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3711 /// care to appropriately convert from the memory representation to 3712 /// the LLVM value representation. The l-value must be a simple 3713 /// l-value. 3714 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3715 3716 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3717 /// care to appropriately convert from the memory representation to 3718 /// the LLVM value representation. 3719 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3720 bool Volatile, QualType Ty, 3721 AlignmentSource Source = AlignmentSource::Type, 3722 bool isInit = false, bool isNontemporal = false) { 3723 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3724 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3725 } 3726 3727 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3728 bool Volatile, QualType Ty, 3729 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3730 bool isInit = false, bool isNontemporal = false); 3731 3732 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3733 /// care to appropriately convert from the memory representation to 3734 /// the LLVM value representation. The l-value must be a simple 3735 /// l-value. The isInit flag indicates whether this is an initialization. 3736 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3737 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3738 3739 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3740 /// this method emits the address of the lvalue, then loads the result as an 3741 /// rvalue, returning the rvalue. 3742 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3743 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3744 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3745 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3746 3747 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3748 /// lvalue, where both are guaranteed to the have the same type, and that type 3749 /// is 'Ty'. 3750 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3751 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3752 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3753 3754 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3755 /// as EmitStoreThroughLValue. 3756 /// 3757 /// \param Result [out] - If non-null, this will be set to a Value* for the 3758 /// bit-field contents after the store, appropriate for use as the result of 3759 /// an assignment to the bit-field. 3760 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3761 llvm::Value **Result=nullptr); 3762 3763 /// Emit an l-value for an assignment (simple or compound) of complex type. 3764 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3765 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3766 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3767 llvm::Value *&Result); 3768 3769 // Note: only available for agg return types 3770 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3771 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3772 // Note: only available for agg return types 3773 LValue EmitCallExprLValue(const CallExpr *E); 3774 // Note: only available for agg return types 3775 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3776 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3777 LValue EmitStringLiteralLValue(const StringLiteral *E); 3778 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3779 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3780 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3781 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3782 bool Accessed = false); 3783 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3784 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3785 bool IsLowerBound = true); 3786 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3787 LValue EmitMemberExpr(const MemberExpr *E); 3788 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3789 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3790 LValue EmitInitListLValue(const InitListExpr *E); 3791 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3792 LValue EmitCastLValue(const CastExpr *E); 3793 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3794 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3795 3796 Address EmitExtVectorElementLValue(LValue V); 3797 3798 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3799 3800 Address EmitArrayToPointerDecay(const Expr *Array, 3801 LValueBaseInfo *BaseInfo = nullptr, 3802 TBAAAccessInfo *TBAAInfo = nullptr); 3803 3804 class ConstantEmission { 3805 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3806 ConstantEmission(llvm::Constant *C, bool isReference) 3807 : ValueAndIsReference(C, isReference) {} 3808 public: 3809 ConstantEmission() {} 3810 static ConstantEmission forReference(llvm::Constant *C) { 3811 return ConstantEmission(C, true); 3812 } 3813 static ConstantEmission forValue(llvm::Constant *C) { 3814 return ConstantEmission(C, false); 3815 } 3816 3817 explicit operator bool() const { 3818 return ValueAndIsReference.getOpaqueValue() != nullptr; 3819 } 3820 3821 bool isReference() const { return ValueAndIsReference.getInt(); } 3822 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3823 assert(isReference()); 3824 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3825 refExpr->getType()); 3826 } 3827 3828 llvm::Constant *getValue() const { 3829 assert(!isReference()); 3830 return ValueAndIsReference.getPointer(); 3831 } 3832 }; 3833 3834 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3835 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3836 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3837 3838 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3839 AggValueSlot slot = AggValueSlot::ignored()); 3840 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3841 3842 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3843 const ObjCIvarDecl *Ivar); 3844 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3845 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3846 3847 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3848 /// if the Field is a reference, this will return the address of the reference 3849 /// and not the address of the value stored in the reference. 3850 LValue EmitLValueForFieldInitialization(LValue Base, 3851 const FieldDecl* Field); 3852 3853 LValue EmitLValueForIvar(QualType ObjectTy, 3854 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3855 unsigned CVRQualifiers); 3856 3857 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3858 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3859 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3860 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3861 3862 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3863 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3864 LValue EmitStmtExprLValue(const StmtExpr *E); 3865 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3866 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3867 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3868 3869 //===--------------------------------------------------------------------===// 3870 // Scalar Expression Emission 3871 //===--------------------------------------------------------------------===// 3872 3873 /// EmitCall - Generate a call of the given function, expecting the given 3874 /// result type, and using the given argument list which specifies both the 3875 /// LLVM arguments and the types they were derived from. 3876 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3877 ReturnValueSlot ReturnValue, const CallArgList &Args, 3878 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3879 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3880 ReturnValueSlot ReturnValue, const CallArgList &Args, 3881 llvm::CallBase **callOrInvoke = nullptr) { 3882 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3883 SourceLocation()); 3884 } 3885 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3886 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3887 RValue EmitCallExpr(const CallExpr *E, 3888 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3889 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3890 CGCallee EmitCallee(const Expr *E); 3891 3892 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3893 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3894 3895 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3896 const Twine &name = ""); 3897 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3898 ArrayRef<llvm::Value *> args, 3899 const Twine &name = ""); 3900 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3901 const Twine &name = ""); 3902 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3903 ArrayRef<llvm::Value *> args, 3904 const Twine &name = ""); 3905 3906 SmallVector<llvm::OperandBundleDef, 1> 3907 getBundlesForFunclet(llvm::Value *Callee); 3908 3909 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3910 ArrayRef<llvm::Value *> Args, 3911 const Twine &Name = ""); 3912 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3913 ArrayRef<llvm::Value *> args, 3914 const Twine &name = ""); 3915 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3916 const Twine &name = ""); 3917 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3918 ArrayRef<llvm::Value *> args); 3919 3920 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3921 NestedNameSpecifier *Qual, 3922 llvm::Type *Ty); 3923 3924 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3925 CXXDtorType Type, 3926 const CXXRecordDecl *RD); 3927 3928 // Return the copy constructor name with the prefix "__copy_constructor_" 3929 // removed. 3930 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3931 CharUnits Alignment, 3932 bool IsVolatile, 3933 ASTContext &Ctx); 3934 3935 // Return the destructor name with the prefix "__destructor_" removed. 3936 static std::string getNonTrivialDestructorStr(QualType QT, 3937 CharUnits Alignment, 3938 bool IsVolatile, 3939 ASTContext &Ctx); 3940 3941 // These functions emit calls to the special functions of non-trivial C 3942 // structs. 3943 void defaultInitNonTrivialCStructVar(LValue Dst); 3944 void callCStructDefaultConstructor(LValue Dst); 3945 void callCStructDestructor(LValue Dst); 3946 void callCStructCopyConstructor(LValue Dst, LValue Src); 3947 void callCStructMoveConstructor(LValue Dst, LValue Src); 3948 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3949 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3950 3951 RValue 3952 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3953 const CGCallee &Callee, 3954 ReturnValueSlot ReturnValue, llvm::Value *This, 3955 llvm::Value *ImplicitParam, 3956 QualType ImplicitParamTy, const CallExpr *E, 3957 CallArgList *RtlArgs); 3958 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3959 llvm::Value *This, QualType ThisTy, 3960 llvm::Value *ImplicitParam, 3961 QualType ImplicitParamTy, const CallExpr *E); 3962 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3963 ReturnValueSlot ReturnValue); 3964 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3965 const CXXMethodDecl *MD, 3966 ReturnValueSlot ReturnValue, 3967 bool HasQualifier, 3968 NestedNameSpecifier *Qualifier, 3969 bool IsArrow, const Expr *Base); 3970 // Compute the object pointer. 3971 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3972 llvm::Value *memberPtr, 3973 const MemberPointerType *memberPtrType, 3974 LValueBaseInfo *BaseInfo = nullptr, 3975 TBAAAccessInfo *TBAAInfo = nullptr); 3976 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3977 ReturnValueSlot ReturnValue); 3978 3979 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3980 const CXXMethodDecl *MD, 3981 ReturnValueSlot ReturnValue); 3982 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3983 3984 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3985 ReturnValueSlot ReturnValue); 3986 3987 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3988 ReturnValueSlot ReturnValue); 3989 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, 3990 ReturnValueSlot ReturnValue); 3991 3992 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3993 const CallExpr *E, ReturnValueSlot ReturnValue); 3994 3995 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3996 3997 /// Emit IR for __builtin_os_log_format. 3998 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3999 4000 /// Emit IR for __builtin_is_aligned. 4001 RValue EmitBuiltinIsAligned(const CallExpr *E); 4002 /// Emit IR for __builtin_align_up/__builtin_align_down. 4003 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4004 4005 llvm::Function *generateBuiltinOSLogHelperFunction( 4006 const analyze_os_log::OSLogBufferLayout &Layout, 4007 CharUnits BufferAlignment); 4008 4009 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4010 4011 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4012 /// is unhandled by the current target. 4013 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4014 ReturnValueSlot ReturnValue); 4015 4016 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4017 const llvm::CmpInst::Predicate Fp, 4018 const llvm::CmpInst::Predicate Ip, 4019 const llvm::Twine &Name = ""); 4020 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4021 ReturnValueSlot ReturnValue, 4022 llvm::Triple::ArchType Arch); 4023 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4024 ReturnValueSlot ReturnValue, 4025 llvm::Triple::ArchType Arch); 4026 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4027 ReturnValueSlot ReturnValue, 4028 llvm::Triple::ArchType Arch); 4029 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4030 QualType RTy); 4031 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4032 QualType RTy); 4033 4034 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4035 unsigned LLVMIntrinsic, 4036 unsigned AltLLVMIntrinsic, 4037 const char *NameHint, 4038 unsigned Modifier, 4039 const CallExpr *E, 4040 SmallVectorImpl<llvm::Value *> &Ops, 4041 Address PtrOp0, Address PtrOp1, 4042 llvm::Triple::ArchType Arch); 4043 4044 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4045 unsigned Modifier, llvm::Type *ArgTy, 4046 const CallExpr *E); 4047 llvm::Value *EmitNeonCall(llvm::Function *F, 4048 SmallVectorImpl<llvm::Value*> &O, 4049 const char *name, 4050 unsigned shift = 0, bool rightshift = false); 4051 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4052 const llvm::ElementCount &Count); 4053 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4054 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4055 bool negateForRightShift); 4056 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4057 llvm::Type *Ty, bool usgn, const char *name); 4058 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4059 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4060 /// access builtin. Only required if it can't be inferred from the base 4061 /// pointer operand. 4062 llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags); 4063 4064 SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags, 4065 llvm::Type *ReturnType, 4066 ArrayRef<llvm::Value *> Ops); 4067 llvm::Type *getEltType(SVETypeFlags TypeFlags); 4068 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4069 llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags); 4070 llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags); 4071 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4072 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4073 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4074 llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags, 4075 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4076 unsigned BuiltinID); 4077 llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags, 4078 llvm::ArrayRef<llvm::Value *> Ops, 4079 unsigned BuiltinID); 4080 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4081 llvm::ScalableVectorType *VTy); 4082 llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags, 4083 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4084 unsigned IntID); 4085 llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags, 4086 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4087 unsigned IntID); 4088 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4089 SmallVectorImpl<llvm::Value *> &Ops, 4090 unsigned BuiltinID, bool IsZExtReturn); 4091 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4092 SmallVectorImpl<llvm::Value *> &Ops, 4093 unsigned BuiltinID); 4094 llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 4095 SmallVectorImpl<llvm::Value *> &Ops, 4096 unsigned BuiltinID); 4097 llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 4098 SmallVectorImpl<llvm::Value *> &Ops, 4099 unsigned IntID); 4100 llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags, 4101 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID); 4102 llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags, 4103 SmallVectorImpl<llvm::Value *> &Ops, 4104 unsigned IntID); 4105 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4106 4107 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4108 llvm::Triple::ArchType Arch); 4109 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4110 4111 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4112 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4113 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4114 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4115 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4116 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4117 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4118 const CallExpr *E); 4119 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4120 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4121 llvm::AtomicOrdering &AO, 4122 llvm::SyncScope::ID &SSID); 4123 4124 enum class MSVCIntrin; 4125 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4126 4127 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4128 4129 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4130 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4131 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4132 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4133 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4134 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4135 const ObjCMethodDecl *MethodWithObjects); 4136 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4137 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4138 ReturnValueSlot Return = ReturnValueSlot()); 4139 4140 /// Retrieves the default cleanup kind for an ARC cleanup. 4141 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4142 CleanupKind getARCCleanupKind() { 4143 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4144 ? NormalAndEHCleanup : NormalCleanup; 4145 } 4146 4147 // ARC primitives. 4148 void EmitARCInitWeak(Address addr, llvm::Value *value); 4149 void EmitARCDestroyWeak(Address addr); 4150 llvm::Value *EmitARCLoadWeak(Address addr); 4151 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4152 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4153 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4154 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4155 void EmitARCCopyWeak(Address dst, Address src); 4156 void EmitARCMoveWeak(Address dst, Address src); 4157 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4158 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4159 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4160 bool resultIgnored); 4161 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4162 bool resultIgnored); 4163 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4164 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4165 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4166 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4167 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4168 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4169 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4170 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4171 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4172 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4173 4174 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4175 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4176 llvm::Type *returnType); 4177 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4178 4179 std::pair<LValue,llvm::Value*> 4180 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4181 std::pair<LValue,llvm::Value*> 4182 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4183 std::pair<LValue,llvm::Value*> 4184 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4185 4186 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4187 llvm::Type *returnType); 4188 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4189 llvm::Type *returnType); 4190 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4191 4192 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4193 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4194 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4195 4196 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4197 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4198 bool allowUnsafeClaim); 4199 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4200 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4201 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4202 4203 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4204 4205 static Destroyer destroyARCStrongImprecise; 4206 static Destroyer destroyARCStrongPrecise; 4207 static Destroyer destroyARCWeak; 4208 static Destroyer emitARCIntrinsicUse; 4209 static Destroyer destroyNonTrivialCStruct; 4210 4211 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4212 llvm::Value *EmitObjCAutoreleasePoolPush(); 4213 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4214 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4215 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4216 4217 /// Emits a reference binding to the passed in expression. 4218 RValue EmitReferenceBindingToExpr(const Expr *E); 4219 4220 //===--------------------------------------------------------------------===// 4221 // Expression Emission 4222 //===--------------------------------------------------------------------===// 4223 4224 // Expressions are broken into three classes: scalar, complex, aggregate. 4225 4226 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4227 /// scalar type, returning the result. 4228 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4229 4230 /// Emit a conversion from the specified type to the specified destination 4231 /// type, both of which are LLVM scalar types. 4232 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4233 QualType DstTy, SourceLocation Loc); 4234 4235 /// Emit a conversion from the specified complex type to the specified 4236 /// destination type, where the destination type is an LLVM scalar type. 4237 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4238 QualType DstTy, 4239 SourceLocation Loc); 4240 4241 /// EmitAggExpr - Emit the computation of the specified expression 4242 /// of aggregate type. The result is computed into the given slot, 4243 /// which may be null to indicate that the value is not needed. 4244 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4245 4246 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4247 /// aggregate type into a temporary LValue. 4248 LValue EmitAggExprToLValue(const Expr *E); 4249 4250 /// Build all the stores needed to initialize an aggregate at Dest with the 4251 /// value Val. 4252 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4253 4254 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4255 /// make sure it survives garbage collection until this point. 4256 void EmitExtendGCLifetime(llvm::Value *object); 4257 4258 /// EmitComplexExpr - Emit the computation of the specified expression of 4259 /// complex type, returning the result. 4260 ComplexPairTy EmitComplexExpr(const Expr *E, 4261 bool IgnoreReal = false, 4262 bool IgnoreImag = false); 4263 4264 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4265 /// type and place its result into the specified l-value. 4266 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4267 4268 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4269 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4270 4271 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4272 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4273 4274 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4275 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4276 4277 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4278 /// global variable that has already been created for it. If the initializer 4279 /// has a different type than GV does, this may free GV and return a different 4280 /// one. Otherwise it just returns GV. 4281 llvm::GlobalVariable * 4282 AddInitializerToStaticVarDecl(const VarDecl &D, 4283 llvm::GlobalVariable *GV); 4284 4285 // Emit an @llvm.invariant.start call for the given memory region. 4286 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4287 4288 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4289 /// variable with global storage. 4290 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 4291 bool PerformInit); 4292 4293 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4294 llvm::Constant *Addr); 4295 4296 /// Call atexit() with a function that passes the given argument to 4297 /// the given function. 4298 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4299 llvm::Constant *addr); 4300 4301 /// Call atexit() with function dtorStub. 4302 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4303 4304 /// Call unatexit() with function dtorStub. 4305 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4306 4307 /// Emit code in this function to perform a guarded variable 4308 /// initialization. Guarded initializations are used when it's not 4309 /// possible to prove that an initialization will be done exactly 4310 /// once, e.g. with a static local variable or a static data member 4311 /// of a class template. 4312 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4313 bool PerformInit); 4314 4315 enum class GuardKind { VariableGuard, TlsGuard }; 4316 4317 /// Emit a branch to select whether or not to perform guarded initialization. 4318 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4319 llvm::BasicBlock *InitBlock, 4320 llvm::BasicBlock *NoInitBlock, 4321 GuardKind Kind, const VarDecl *D); 4322 4323 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4324 /// variables. 4325 void 4326 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4327 ArrayRef<llvm::Function *> CXXThreadLocals, 4328 ConstantAddress Guard = ConstantAddress::invalid()); 4329 4330 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4331 /// variables. 4332 void GenerateCXXGlobalCleanUpFunc( 4333 llvm::Function *Fn, 4334 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4335 llvm::Constant *>> &DtorsOrStermFinalizers); 4336 4337 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4338 const VarDecl *D, 4339 llvm::GlobalVariable *Addr, 4340 bool PerformInit); 4341 4342 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4343 4344 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4345 4346 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4347 4348 RValue EmitAtomicExpr(AtomicExpr *E); 4349 4350 //===--------------------------------------------------------------------===// 4351 // Annotations Emission 4352 //===--------------------------------------------------------------------===// 4353 4354 /// Emit an annotation call (intrinsic). 4355 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4356 llvm::Value *AnnotatedVal, 4357 StringRef AnnotationStr, 4358 SourceLocation Location, 4359 const AnnotateAttr *Attr); 4360 4361 /// Emit local annotations for the local variable V, declared by D. 4362 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4363 4364 /// Emit field annotations for the given field & value. Returns the 4365 /// annotation result. 4366 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4367 4368 //===--------------------------------------------------------------------===// 4369 // Internal Helpers 4370 //===--------------------------------------------------------------------===// 4371 4372 /// ContainsLabel - Return true if the statement contains a label in it. If 4373 /// this statement is not executed normally, it not containing a label means 4374 /// that we can just remove the code. 4375 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4376 4377 /// containsBreak - Return true if the statement contains a break out of it. 4378 /// If the statement (recursively) contains a switch or loop with a break 4379 /// inside of it, this is fine. 4380 static bool containsBreak(const Stmt *S); 4381 4382 /// Determine if the given statement might introduce a declaration into the 4383 /// current scope, by being a (possibly-labelled) DeclStmt. 4384 static bool mightAddDeclToScope(const Stmt *S); 4385 4386 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4387 /// to a constant, or if it does but contains a label, return false. If it 4388 /// constant folds return true and set the boolean result in Result. 4389 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4390 bool AllowLabels = false); 4391 4392 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4393 /// to a constant, or if it does but contains a label, return false. If it 4394 /// constant folds return true and set the folded value. 4395 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4396 bool AllowLabels = false); 4397 4398 /// isInstrumentedCondition - Determine whether the given condition is an 4399 /// instrumentable condition (i.e. no "&&" or "||"). 4400 static bool isInstrumentedCondition(const Expr *C); 4401 4402 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4403 /// increments a profile counter based on the semantics of the given logical 4404 /// operator opcode. This is used to instrument branch condition coverage 4405 /// for logical operators. 4406 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4407 llvm::BasicBlock *TrueBlock, 4408 llvm::BasicBlock *FalseBlock, 4409 uint64_t TrueCount = 0, 4410 Stmt::Likelihood LH = Stmt::LH_None, 4411 const Expr *CntrIdx = nullptr); 4412 4413 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4414 /// if statement) to the specified blocks. Based on the condition, this might 4415 /// try to simplify the codegen of the conditional based on the branch. 4416 /// TrueCount should be the number of times we expect the condition to 4417 /// evaluate to true based on PGO data. 4418 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4419 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4420 Stmt::Likelihood LH = Stmt::LH_None); 4421 4422 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4423 /// nonnull, if \p LHS is marked _Nonnull. 4424 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4425 4426 /// An enumeration which makes it easier to specify whether or not an 4427 /// operation is a subtraction. 4428 enum { NotSubtraction = false, IsSubtraction = true }; 4429 4430 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4431 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4432 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4433 /// \p IsSubtraction indicates whether the expression used to form the GEP 4434 /// is a subtraction. 4435 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4436 ArrayRef<llvm::Value *> IdxList, 4437 bool SignedIndices, 4438 bool IsSubtraction, 4439 SourceLocation Loc, 4440 const Twine &Name = ""); 4441 4442 /// Specifies which type of sanitizer check to apply when handling a 4443 /// particular builtin. 4444 enum BuiltinCheckKind { 4445 BCK_CTZPassedZero, 4446 BCK_CLZPassedZero, 4447 }; 4448 4449 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4450 /// enabled, a runtime check specified by \p Kind is also emitted. 4451 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4452 4453 /// Emit a description of a type in a format suitable for passing to 4454 /// a runtime sanitizer handler. 4455 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4456 4457 /// Convert a value into a format suitable for passing to a runtime 4458 /// sanitizer handler. 4459 llvm::Value *EmitCheckValue(llvm::Value *V); 4460 4461 /// Emit a description of a source location in a format suitable for 4462 /// passing to a runtime sanitizer handler. 4463 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4464 4465 /// Create a basic block that will either trap or call a handler function in 4466 /// the UBSan runtime with the provided arguments, and create a conditional 4467 /// branch to it. 4468 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4469 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4470 ArrayRef<llvm::Value *> DynamicArgs); 4471 4472 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4473 /// if Cond if false. 4474 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4475 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4476 ArrayRef<llvm::Constant *> StaticArgs); 4477 4478 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4479 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4480 void EmitUnreachable(SourceLocation Loc); 4481 4482 /// Create a basic block that will call the trap intrinsic, and emit a 4483 /// conditional branch to it, for the -ftrapv checks. 4484 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4485 4486 /// Emit a call to trap or debugtrap and attach function attribute 4487 /// "trap-func-name" if specified. 4488 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4489 4490 /// Emit a stub for the cross-DSO CFI check function. 4491 void EmitCfiCheckStub(); 4492 4493 /// Emit a cross-DSO CFI failure handling function. 4494 void EmitCfiCheckFail(); 4495 4496 /// Create a check for a function parameter that may potentially be 4497 /// declared as non-null. 4498 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4499 AbstractCallee AC, unsigned ParmNum); 4500 4501 /// EmitCallArg - Emit a single call argument. 4502 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4503 4504 /// EmitDelegateCallArg - We are performing a delegate call; that 4505 /// is, the current function is delegating to another one. Produce 4506 /// a r-value suitable for passing the given parameter. 4507 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4508 SourceLocation loc); 4509 4510 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4511 /// point operation, expressed as the maximum relative error in ulp. 4512 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4513 4514 /// SetFPModel - Control floating point behavior via fp-model settings. 4515 void SetFPModel(); 4516 4517 /// Set the codegen fast-math flags. 4518 void SetFastMathFlags(FPOptions FPFeatures); 4519 4520 private: 4521 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4522 void EmitReturnOfRValue(RValue RV, QualType Ty); 4523 4524 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4525 4526 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4527 DeferredReplacements; 4528 4529 /// Set the address of a local variable. 4530 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4531 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4532 LocalDeclMap.insert({VD, Addr}); 4533 } 4534 4535 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4536 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4537 /// 4538 /// \param AI - The first function argument of the expansion. 4539 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4540 llvm::Function::arg_iterator &AI); 4541 4542 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4543 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4544 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4545 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4546 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4547 unsigned &IRCallArgPos); 4548 4549 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4550 const Expr *InputExpr, std::string &ConstraintStr); 4551 4552 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4553 LValue InputValue, QualType InputType, 4554 std::string &ConstraintStr, 4555 SourceLocation Loc); 4556 4557 /// Attempts to statically evaluate the object size of E. If that 4558 /// fails, emits code to figure the size of E out for us. This is 4559 /// pass_object_size aware. 4560 /// 4561 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4562 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4563 llvm::IntegerType *ResType, 4564 llvm::Value *EmittedE, 4565 bool IsDynamic); 4566 4567 /// Emits the size of E, as required by __builtin_object_size. This 4568 /// function is aware of pass_object_size parameters, and will act accordingly 4569 /// if E is a parameter with the pass_object_size attribute. 4570 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4571 llvm::IntegerType *ResType, 4572 llvm::Value *EmittedE, 4573 bool IsDynamic); 4574 4575 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4576 Address Loc); 4577 4578 public: 4579 enum class EvaluationOrder { 4580 ///! No language constraints on evaluation order. 4581 Default, 4582 ///! Language semantics require left-to-right evaluation. 4583 ForceLeftToRight, 4584 ///! Language semantics require right-to-left evaluation. 4585 ForceRightToLeft 4586 }; 4587 4588 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4589 // an ObjCMethodDecl. 4590 struct PrototypeWrapper { 4591 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4592 4593 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4594 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4595 }; 4596 4597 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4598 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4599 AbstractCallee AC = AbstractCallee(), 4600 unsigned ParamsToSkip = 0, 4601 EvaluationOrder Order = EvaluationOrder::Default); 4602 4603 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4604 /// emit the value and compute our best estimate of the alignment of the 4605 /// pointee. 4606 /// 4607 /// \param BaseInfo - If non-null, this will be initialized with 4608 /// information about the source of the alignment and the may-alias 4609 /// attribute. Note that this function will conservatively fall back on 4610 /// the type when it doesn't recognize the expression and may-alias will 4611 /// be set to false. 4612 /// 4613 /// One reasonable way to use this information is when there's a language 4614 /// guarantee that the pointer must be aligned to some stricter value, and 4615 /// we're simply trying to ensure that sufficiently obvious uses of under- 4616 /// aligned objects don't get miscompiled; for example, a placement new 4617 /// into the address of a local variable. In such a case, it's quite 4618 /// reasonable to just ignore the returned alignment when it isn't from an 4619 /// explicit source. 4620 Address EmitPointerWithAlignment(const Expr *Addr, 4621 LValueBaseInfo *BaseInfo = nullptr, 4622 TBAAAccessInfo *TBAAInfo = nullptr); 4623 4624 /// If \p E references a parameter with pass_object_size info or a constant 4625 /// array size modifier, emit the object size divided by the size of \p EltTy. 4626 /// Otherwise return null. 4627 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4628 4629 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4630 4631 struct MultiVersionResolverOption { 4632 llvm::Function *Function; 4633 FunctionDecl *FD; 4634 struct Conds { 4635 StringRef Architecture; 4636 llvm::SmallVector<StringRef, 8> Features; 4637 4638 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4639 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4640 } Conditions; 4641 4642 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4643 ArrayRef<StringRef> Feats) 4644 : Function(F), Conditions(Arch, Feats) {} 4645 }; 4646 4647 // Emits the body of a multiversion function's resolver. Assumes that the 4648 // options are already sorted in the proper order, with the 'default' option 4649 // last (if it exists). 4650 void EmitMultiVersionResolver(llvm::Function *Resolver, 4651 ArrayRef<MultiVersionResolverOption> Options); 4652 4653 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4654 4655 private: 4656 QualType getVarArgType(const Expr *Arg); 4657 4658 void EmitDeclMetadata(); 4659 4660 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4661 const AutoVarEmission &emission); 4662 4663 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4664 4665 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4666 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4667 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4668 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4669 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4670 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4671 llvm::Value *EmitX86CpuInit(); 4672 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4673 }; 4674 4675 /// TargetFeatures - This class is used to check whether the builtin function 4676 /// has the required tagert specific features. It is able to support the 4677 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4678 /// ',' is higher than that of '|' . 4679 /// E.g: 4680 /// A,B|C means the builtin function requires both A and B, or C. 4681 /// If we want the builtin function requires both A and B, or both A and C, 4682 /// there are two ways: A,B|A,C or A,(B|C). 4683 /// The FeaturesList should not contain spaces, and brackets must appear in 4684 /// pairs. 4685 class TargetFeatures { 4686 struct FeatureListStatus { 4687 bool HasFeatures; 4688 StringRef CurFeaturesList; 4689 }; 4690 4691 const llvm::StringMap<bool> &CallerFeatureMap; 4692 4693 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4694 int InParentheses = 0; 4695 bool HasFeatures = true; 4696 size_t SubexpressionStart = 0; 4697 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4698 char CurrentToken = FeatureList[i]; 4699 switch (CurrentToken) { 4700 default: 4701 break; 4702 case '(': 4703 if (InParentheses == 0) 4704 SubexpressionStart = i + 1; 4705 ++InParentheses; 4706 break; 4707 case ')': 4708 --InParentheses; 4709 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4710 LLVM_FALLTHROUGH; 4711 case '|': 4712 case ',': 4713 if (InParentheses == 0) { 4714 if (HasFeatures && i != SubexpressionStart) { 4715 StringRef F = FeatureList.slice(SubexpressionStart, i); 4716 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4717 : CallerFeatureMap.lookup(F); 4718 } 4719 SubexpressionStart = i + 1; 4720 if (CurrentToken == '|') { 4721 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4722 } 4723 } 4724 break; 4725 } 4726 } 4727 assert(InParentheses == 0 && "Parentheses are not in pair"); 4728 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4729 HasFeatures = 4730 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4731 return {HasFeatures, StringRef()}; 4732 } 4733 4734 public: 4735 bool hasRequiredFeatures(StringRef FeatureList) { 4736 FeatureListStatus FS = {false, FeatureList}; 4737 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4738 FS = getAndFeatures(FS.CurFeaturesList); 4739 return FS.HasFeatures; 4740 } 4741 4742 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4743 : CallerFeatureMap(CallerFeatureMap) {} 4744 }; 4745 4746 inline DominatingLLVMValue::saved_type 4747 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4748 if (!needsSaving(value)) return saved_type(value, false); 4749 4750 // Otherwise, we need an alloca. 4751 auto align = CharUnits::fromQuantity( 4752 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4753 Address alloca = 4754 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4755 CGF.Builder.CreateStore(value, alloca); 4756 4757 return saved_type(alloca.getPointer(), true); 4758 } 4759 4760 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4761 saved_type value) { 4762 // If the value says it wasn't saved, trust that it's still dominating. 4763 if (!value.getInt()) return value.getPointer(); 4764 4765 // Otherwise, it should be an alloca instruction, as set up in save(). 4766 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4767 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign()); 4768 } 4769 4770 } // end namespace CodeGen 4771 4772 // Map the LangOption for floating point exception behavior into 4773 // the corresponding enum in the IR. 4774 llvm::fp::ExceptionBehavior 4775 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4776 } // end namespace clang 4777 4778 #endif 4779