xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision 8a4dda33d67586ca2624f2a38417baa03a533a7f)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 #include <optional>
45 
46 namespace llvm {
47 class BasicBlock;
48 class LLVMContext;
49 class MDNode;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 class CanonicalLoopInfo;
54 }
55 
56 namespace clang {
57 class ASTContext;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 class OMPUseDevicePtrClause;
80 class OMPUseDeviceAddrClause;
81 class SVETypeFlags;
82 class OMPExecutableDirective;
83 
84 namespace analyze_os_log {
85 class OSLogBufferLayout;
86 }
87 
88 namespace CodeGen {
89 class CodeGenTypes;
90 class CGCallee;
91 class CGFunctionInfo;
92 class CGBlockInfo;
93 class CGCXXABI;
94 class BlockByrefHelpers;
95 class BlockByrefInfo;
96 class BlockFieldFlags;
97 class RegionCodeGenTy;
98 class TargetCodeGenInfo;
99 struct OMPTaskDataTy;
100 struct CGCoroData;
101 
102 /// The kind of evaluation to perform on values of a particular
103 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
104 /// CGExprAgg?
105 ///
106 /// TODO: should vectors maybe be split out into their own thing?
107 enum TypeEvaluationKind {
108   TEK_Scalar,
109   TEK_Complex,
110   TEK_Aggregate
111 };
112 
113 #define LIST_SANITIZER_CHECKS                                                  \
114   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
115   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
116   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
117   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
118   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
119   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
120   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
121   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
122   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
123   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
124   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
125   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
126   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
127   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
128   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
129   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
130   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
131   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
132   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
133   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
134   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
135   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
136   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
137   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
138   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
139 
140 enum SanitizerHandler {
141 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
142   LIST_SANITIZER_CHECKS
143 #undef SANITIZER_CHECK
144 };
145 
146 /// Helper class with most of the code for saving a value for a
147 /// conditional expression cleanup.
148 struct DominatingLLVMValue {
149   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
150 
151   /// Answer whether the given value needs extra work to be saved.
152   static bool needsSaving(llvm::Value *value) {
153     // If it's not an instruction, we don't need to save.
154     if (!isa<llvm::Instruction>(value)) return false;
155 
156     // If it's an instruction in the entry block, we don't need to save.
157     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
158     return (block != &block->getParent()->getEntryBlock());
159   }
160 
161   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
162   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
163 };
164 
165 /// A partial specialization of DominatingValue for llvm::Values that
166 /// might be llvm::Instructions.
167 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
168   typedef T *type;
169   static type restore(CodeGenFunction &CGF, saved_type value) {
170     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
171   }
172 };
173 
174 /// A specialization of DominatingValue for Address.
175 template <> struct DominatingValue<Address> {
176   typedef Address type;
177 
178   struct saved_type {
179     DominatingLLVMValue::saved_type SavedValue;
180     llvm::Type *ElementType;
181     CharUnits Alignment;
182   };
183 
184   static bool needsSaving(type value) {
185     return DominatingLLVMValue::needsSaving(value.getPointer());
186   }
187   static saved_type save(CodeGenFunction &CGF, type value) {
188     return { DominatingLLVMValue::save(CGF, value.getPointer()),
189              value.getElementType(), value.getAlignment() };
190   }
191   static type restore(CodeGenFunction &CGF, saved_type value) {
192     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
193                    value.ElementType, value.Alignment);
194   }
195 };
196 
197 /// A specialization of DominatingValue for RValue.
198 template <> struct DominatingValue<RValue> {
199   typedef RValue type;
200   class saved_type {
201     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
202                 AggregateAddress, ComplexAddress };
203 
204     llvm::Value *Value;
205     llvm::Type *ElementType;
206     unsigned K : 3;
207     unsigned Align : 29;
208     saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
209       : Value(v), ElementType(e), K(k), Align(a) {}
210 
211   public:
212     static bool needsSaving(RValue value);
213     static saved_type save(CodeGenFunction &CGF, RValue value);
214     RValue restore(CodeGenFunction &CGF);
215 
216     // implementations in CGCleanup.cpp
217   };
218 
219   static bool needsSaving(type value) {
220     return saved_type::needsSaving(value);
221   }
222   static saved_type save(CodeGenFunction &CGF, type value) {
223     return saved_type::save(CGF, value);
224   }
225   static type restore(CodeGenFunction &CGF, saved_type value) {
226     return value.restore(CGF);
227   }
228 };
229 
230 /// CodeGenFunction - This class organizes the per-function state that is used
231 /// while generating LLVM code.
232 class CodeGenFunction : public CodeGenTypeCache {
233   CodeGenFunction(const CodeGenFunction &) = delete;
234   void operator=(const CodeGenFunction &) = delete;
235 
236   friend class CGCXXABI;
237 public:
238   /// A jump destination is an abstract label, branching to which may
239   /// require a jump out through normal cleanups.
240   struct JumpDest {
241     JumpDest() : Block(nullptr), Index(0) {}
242     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
243              unsigned Index)
244         : Block(Block), ScopeDepth(Depth), Index(Index) {}
245 
246     bool isValid() const { return Block != nullptr; }
247     llvm::BasicBlock *getBlock() const { return Block; }
248     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
249     unsigned getDestIndex() const { return Index; }
250 
251     // This should be used cautiously.
252     void setScopeDepth(EHScopeStack::stable_iterator depth) {
253       ScopeDepth = depth;
254     }
255 
256   private:
257     llvm::BasicBlock *Block;
258     EHScopeStack::stable_iterator ScopeDepth;
259     unsigned Index;
260   };
261 
262   CodeGenModule &CGM;  // Per-module state.
263   const TargetInfo &Target;
264 
265   // For EH/SEH outlined funclets, this field points to parent's CGF
266   CodeGenFunction *ParentCGF = nullptr;
267 
268   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
269   LoopInfoStack LoopStack;
270   CGBuilderTy Builder;
271 
272   // Stores variables for which we can't generate correct lifetime markers
273   // because of jumps.
274   VarBypassDetector Bypasses;
275 
276   /// List of recently emitted OMPCanonicalLoops.
277   ///
278   /// Since OMPCanonicalLoops are nested inside other statements (in particular
279   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
280   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
281   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
282   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
283   /// this stack when done. Entering a new loop requires clearing this list; it
284   /// either means we start parsing a new loop nest (in which case the previous
285   /// loop nest goes out of scope) or a second loop in the same level in which
286   /// case it would be ambiguous into which of the two (or more) loops the loop
287   /// nest would extend.
288   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
289 
290   /// Number of nested loop to be consumed by the last surrounding
291   /// loop-associated directive.
292   int ExpectedOMPLoopDepth = 0;
293 
294   // CodeGen lambda for loops and support for ordered clause
295   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
296                                   JumpDest)>
297       CodeGenLoopTy;
298   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
299                                   const unsigned, const bool)>
300       CodeGenOrderedTy;
301 
302   // Codegen lambda for loop bounds in worksharing loop constructs
303   typedef llvm::function_ref<std::pair<LValue, LValue>(
304       CodeGenFunction &, const OMPExecutableDirective &S)>
305       CodeGenLoopBoundsTy;
306 
307   // Codegen lambda for loop bounds in dispatch-based loop implementation
308   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
309       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
310       Address UB)>
311       CodeGenDispatchBoundsTy;
312 
313   /// CGBuilder insert helper. This function is called after an
314   /// instruction is created using Builder.
315   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
316                     llvm::BasicBlock *BB,
317                     llvm::BasicBlock::iterator InsertPt) const;
318 
319   /// CurFuncDecl - Holds the Decl for the current outermost
320   /// non-closure context.
321   const Decl *CurFuncDecl = nullptr;
322   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
323   const Decl *CurCodeDecl = nullptr;
324   const CGFunctionInfo *CurFnInfo = nullptr;
325   QualType FnRetTy;
326   llvm::Function *CurFn = nullptr;
327 
328   /// Save Parameter Decl for coroutine.
329   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
330 
331   // Holds coroutine data if the current function is a coroutine. We use a
332   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
333   // in this header.
334   struct CGCoroInfo {
335     std::unique_ptr<CGCoroData> Data;
336     bool InSuspendBlock = false;
337     bool MayCoroHandleEscape = false;
338     CGCoroInfo();
339     ~CGCoroInfo();
340   };
341   CGCoroInfo CurCoro;
342 
343   bool isCoroutine() const {
344     return CurCoro.Data != nullptr;
345   }
346 
347   bool inSuspendBlock() const {
348     return isCoroutine() && CurCoro.InSuspendBlock;
349   }
350 
351   bool mayCoroHandleEscape() const {
352     return isCoroutine() && CurCoro.MayCoroHandleEscape;
353   }
354 
355   /// CurGD - The GlobalDecl for the current function being compiled.
356   GlobalDecl CurGD;
357 
358   /// PrologueCleanupDepth - The cleanup depth enclosing all the
359   /// cleanups associated with the parameters.
360   EHScopeStack::stable_iterator PrologueCleanupDepth;
361 
362   /// ReturnBlock - Unified return block.
363   JumpDest ReturnBlock;
364 
365   /// ReturnValue - The temporary alloca to hold the return
366   /// value. This is invalid iff the function has no return value.
367   Address ReturnValue = Address::invalid();
368 
369   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
370   /// This is invalid if sret is not in use.
371   Address ReturnValuePointer = Address::invalid();
372 
373   /// If a return statement is being visited, this holds the return statment's
374   /// result expression.
375   const Expr *RetExpr = nullptr;
376 
377   /// Return true if a label was seen in the current scope.
378   bool hasLabelBeenSeenInCurrentScope() const {
379     if (CurLexicalScope)
380       return CurLexicalScope->hasLabels();
381     return !LabelMap.empty();
382   }
383 
384   /// AllocaInsertPoint - This is an instruction in the entry block before which
385   /// we prefer to insert allocas.
386   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
387 
388 private:
389   /// PostAllocaInsertPt - This is a place in the prologue where code can be
390   /// inserted that will be dominated by all the static allocas. This helps
391   /// achieve two things:
392   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
393   ///   2. All other prologue code (which are dominated by static allocas) do
394   ///      appear in the source order immediately after all static allocas.
395   ///
396   /// PostAllocaInsertPt will be lazily created when it is *really* required.
397   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
398 
399 public:
400   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
401   /// immediately after AllocaInsertPt.
402   llvm::Instruction *getPostAllocaInsertPoint() {
403     if (!PostAllocaInsertPt) {
404       assert(AllocaInsertPt &&
405              "Expected static alloca insertion point at function prologue");
406       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
407              "EBB should be entry block of the current code gen function");
408       PostAllocaInsertPt = AllocaInsertPt->clone();
409       PostAllocaInsertPt->setName("postallocapt");
410       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
411     }
412 
413     return PostAllocaInsertPt;
414   }
415 
416   /// API for captured statement code generation.
417   class CGCapturedStmtInfo {
418   public:
419     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
420         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
421     explicit CGCapturedStmtInfo(const CapturedStmt &S,
422                                 CapturedRegionKind K = CR_Default)
423       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
424 
425       RecordDecl::field_iterator Field =
426         S.getCapturedRecordDecl()->field_begin();
427       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
428                                                 E = S.capture_end();
429            I != E; ++I, ++Field) {
430         if (I->capturesThis())
431           CXXThisFieldDecl = *Field;
432         else if (I->capturesVariable())
433           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
434         else if (I->capturesVariableByCopy())
435           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
436       }
437     }
438 
439     virtual ~CGCapturedStmtInfo();
440 
441     CapturedRegionKind getKind() const { return Kind; }
442 
443     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
444     // Retrieve the value of the context parameter.
445     virtual llvm::Value *getContextValue() const { return ThisValue; }
446 
447     /// Lookup the captured field decl for a variable.
448     virtual const FieldDecl *lookup(const VarDecl *VD) const {
449       return CaptureFields.lookup(VD->getCanonicalDecl());
450     }
451 
452     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
453     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
454 
455     static bool classof(const CGCapturedStmtInfo *) {
456       return true;
457     }
458 
459     /// Emit the captured statement body.
460     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
461       CGF.incrementProfileCounter(S);
462       CGF.EmitStmt(S);
463     }
464 
465     /// Get the name of the capture helper.
466     virtual StringRef getHelperName() const { return "__captured_stmt"; }
467 
468     /// Get the CaptureFields
469     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
470       return CaptureFields;
471     }
472 
473   private:
474     /// The kind of captured statement being generated.
475     CapturedRegionKind Kind;
476 
477     /// Keep the map between VarDecl and FieldDecl.
478     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
479 
480     /// The base address of the captured record, passed in as the first
481     /// argument of the parallel region function.
482     llvm::Value *ThisValue;
483 
484     /// Captured 'this' type.
485     FieldDecl *CXXThisFieldDecl;
486   };
487   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
488 
489   /// RAII for correct setting/restoring of CapturedStmtInfo.
490   class CGCapturedStmtRAII {
491   private:
492     CodeGenFunction &CGF;
493     CGCapturedStmtInfo *PrevCapturedStmtInfo;
494   public:
495     CGCapturedStmtRAII(CodeGenFunction &CGF,
496                        CGCapturedStmtInfo *NewCapturedStmtInfo)
497         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
498       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
499     }
500     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
501   };
502 
503   /// An abstract representation of regular/ObjC call/message targets.
504   class AbstractCallee {
505     /// The function declaration of the callee.
506     const Decl *CalleeDecl;
507 
508   public:
509     AbstractCallee() : CalleeDecl(nullptr) {}
510     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
511     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
512     bool hasFunctionDecl() const {
513       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
514     }
515     const Decl *getDecl() const { return CalleeDecl; }
516     unsigned getNumParams() const {
517       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
518         return FD->getNumParams();
519       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
520     }
521     const ParmVarDecl *getParamDecl(unsigned I) const {
522       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
523         return FD->getParamDecl(I);
524       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
525     }
526   };
527 
528   /// Sanitizers enabled for this function.
529   SanitizerSet SanOpts;
530 
531   /// True if CodeGen currently emits code implementing sanitizer checks.
532   bool IsSanitizerScope = false;
533 
534   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
535   class SanitizerScope {
536     CodeGenFunction *CGF;
537   public:
538     SanitizerScope(CodeGenFunction *CGF);
539     ~SanitizerScope();
540   };
541 
542   /// In C++, whether we are code generating a thunk.  This controls whether we
543   /// should emit cleanups.
544   bool CurFuncIsThunk = false;
545 
546   /// In ARC, whether we should autorelease the return value.
547   bool AutoreleaseResult = false;
548 
549   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
550   /// potentially set the return value.
551   bool SawAsmBlock = false;
552 
553   GlobalDecl CurSEHParent;
554 
555   /// True if the current function is an outlined SEH helper. This can be a
556   /// finally block or filter expression.
557   bool IsOutlinedSEHHelper = false;
558 
559   /// True if CodeGen currently emits code inside presereved access index
560   /// region.
561   bool IsInPreservedAIRegion = false;
562 
563   /// True if the current statement has nomerge attribute.
564   bool InNoMergeAttributedStmt = false;
565 
566   /// True if the current statement has noinline attribute.
567   bool InNoInlineAttributedStmt = false;
568 
569   /// True if the current statement has always_inline attribute.
570   bool InAlwaysInlineAttributedStmt = false;
571 
572   // The CallExpr within the current statement that the musttail attribute
573   // applies to.  nullptr if there is no 'musttail' on the current statement.
574   const CallExpr *MustTailCall = nullptr;
575 
576   /// Returns true if a function must make progress, which means the
577   /// mustprogress attribute can be added.
578   bool checkIfFunctionMustProgress() {
579     if (CGM.getCodeGenOpts().getFiniteLoops() ==
580         CodeGenOptions::FiniteLoopsKind::Never)
581       return false;
582 
583     // C++11 and later guarantees that a thread eventually will do one of the
584     // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1):
585     // - terminate,
586     //  - make a call to a library I/O function,
587     //  - perform an access through a volatile glvalue, or
588     //  - perform a synchronization operation or an atomic operation.
589     //
590     // Hence each function is 'mustprogress' in C++11 or later.
591     return getLangOpts().CPlusPlus11;
592   }
593 
594   /// Returns true if a loop must make progress, which means the mustprogress
595   /// attribute can be added. \p HasConstantCond indicates whether the branch
596   /// condition is a known constant.
597   bool checkIfLoopMustProgress(bool HasConstantCond) {
598     if (CGM.getCodeGenOpts().getFiniteLoops() ==
599         CodeGenOptions::FiniteLoopsKind::Always)
600       return true;
601     if (CGM.getCodeGenOpts().getFiniteLoops() ==
602         CodeGenOptions::FiniteLoopsKind::Never)
603       return false;
604 
605     // If the containing function must make progress, loops also must make
606     // progress (as in C++11 and later).
607     if (checkIfFunctionMustProgress())
608       return true;
609 
610     // Now apply rules for plain C (see  6.8.5.6 in C11).
611     // Loops with constant conditions do not have to make progress in any C
612     // version.
613     if (HasConstantCond)
614       return false;
615 
616     // Loops with non-constant conditions must make progress in C11 and later.
617     return getLangOpts().C11;
618   }
619 
620   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
621   llvm::Value *BlockPointer = nullptr;
622 
623   llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
624   FieldDecl *LambdaThisCaptureField = nullptr;
625 
626   /// A mapping from NRVO variables to the flags used to indicate
627   /// when the NRVO has been applied to this variable.
628   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
629 
630   EHScopeStack EHStack;
631   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
632   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
633 
634   llvm::Instruction *CurrentFuncletPad = nullptr;
635 
636   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
637     bool isRedundantBeforeReturn() override { return true; }
638 
639     llvm::Value *Addr;
640     llvm::Value *Size;
641 
642   public:
643     CallLifetimeEnd(Address addr, llvm::Value *size)
644         : Addr(addr.getPointer()), Size(size) {}
645 
646     void Emit(CodeGenFunction &CGF, Flags flags) override {
647       CGF.EmitLifetimeEnd(Size, Addr);
648     }
649   };
650 
651   /// Header for data within LifetimeExtendedCleanupStack.
652   struct LifetimeExtendedCleanupHeader {
653     /// The size of the following cleanup object.
654     unsigned Size;
655     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
656     unsigned Kind : 31;
657     /// Whether this is a conditional cleanup.
658     unsigned IsConditional : 1;
659 
660     size_t getSize() const { return Size; }
661     CleanupKind getKind() const { return (CleanupKind)Kind; }
662     bool isConditional() const { return IsConditional; }
663   };
664 
665   /// i32s containing the indexes of the cleanup destinations.
666   Address NormalCleanupDest = Address::invalid();
667 
668   unsigned NextCleanupDestIndex = 1;
669 
670   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
671   llvm::BasicBlock *EHResumeBlock = nullptr;
672 
673   /// The exception slot.  All landing pads write the current exception pointer
674   /// into this alloca.
675   llvm::Value *ExceptionSlot = nullptr;
676 
677   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
678   /// write the current selector value into this alloca.
679   llvm::AllocaInst *EHSelectorSlot = nullptr;
680 
681   /// A stack of exception code slots. Entering an __except block pushes a slot
682   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
683   /// a value from the top of the stack.
684   SmallVector<Address, 1> SEHCodeSlotStack;
685 
686   /// Value returned by __exception_info intrinsic.
687   llvm::Value *SEHInfo = nullptr;
688 
689   /// Emits a landing pad for the current EH stack.
690   llvm::BasicBlock *EmitLandingPad();
691 
692   llvm::BasicBlock *getInvokeDestImpl();
693 
694   /// Parent loop-based directive for scan directive.
695   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
696   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
697   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
698   llvm::BasicBlock *OMPScanExitBlock = nullptr;
699   llvm::BasicBlock *OMPScanDispatch = nullptr;
700   bool OMPFirstScanLoop = false;
701 
702   /// Manages parent directive for scan directives.
703   class ParentLoopDirectiveForScanRegion {
704     CodeGenFunction &CGF;
705     const OMPExecutableDirective *ParentLoopDirectiveForScan;
706 
707   public:
708     ParentLoopDirectiveForScanRegion(
709         CodeGenFunction &CGF,
710         const OMPExecutableDirective &ParentLoopDirectiveForScan)
711         : CGF(CGF),
712           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
713       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
714     }
715     ~ParentLoopDirectiveForScanRegion() {
716       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
717     }
718   };
719 
720   template <class T>
721   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
722     return DominatingValue<T>::save(*this, value);
723   }
724 
725   class CGFPOptionsRAII {
726   public:
727     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
728     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
729     ~CGFPOptionsRAII();
730 
731   private:
732     void ConstructorHelper(FPOptions FPFeatures);
733     CodeGenFunction &CGF;
734     FPOptions OldFPFeatures;
735     llvm::fp::ExceptionBehavior OldExcept;
736     llvm::RoundingMode OldRounding;
737     std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
738   };
739   FPOptions CurFPFeatures;
740 
741 public:
742   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
743   /// rethrows.
744   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
745 
746   /// A class controlling the emission of a finally block.
747   class FinallyInfo {
748     /// Where the catchall's edge through the cleanup should go.
749     JumpDest RethrowDest;
750 
751     /// A function to call to enter the catch.
752     llvm::FunctionCallee BeginCatchFn;
753 
754     /// An i1 variable indicating whether or not the @finally is
755     /// running for an exception.
756     llvm::AllocaInst *ForEHVar = nullptr;
757 
758     /// An i8* variable into which the exception pointer to rethrow
759     /// has been saved.
760     llvm::AllocaInst *SavedExnVar = nullptr;
761 
762   public:
763     void enter(CodeGenFunction &CGF, const Stmt *Finally,
764                llvm::FunctionCallee beginCatchFn,
765                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
766     void exit(CodeGenFunction &CGF);
767   };
768 
769   /// Returns true inside SEH __try blocks.
770   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
771 
772   /// Returns true while emitting a cleanuppad.
773   bool isCleanupPadScope() const {
774     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
775   }
776 
777   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
778   /// current full-expression.  Safe against the possibility that
779   /// we're currently inside a conditionally-evaluated expression.
780   template <class T, class... As>
781   void pushFullExprCleanup(CleanupKind kind, As... A) {
782     // If we're not in a conditional branch, or if none of the
783     // arguments requires saving, then use the unconditional cleanup.
784     if (!isInConditionalBranch())
785       return EHStack.pushCleanup<T>(kind, A...);
786 
787     // Stash values in a tuple so we can guarantee the order of saves.
788     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
789     SavedTuple Saved{saveValueInCond(A)...};
790 
791     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
792     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
793     initFullExprCleanup();
794   }
795 
796   /// Queue a cleanup to be pushed after finishing the current full-expression,
797   /// potentially with an active flag.
798   template <class T, class... As>
799   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
800     if (!isInConditionalBranch())
801       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
802                                                        A...);
803 
804     Address ActiveFlag = createCleanupActiveFlag();
805     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
806            "cleanup active flag should never need saving");
807 
808     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
809     SavedTuple Saved{saveValueInCond(A)...};
810 
811     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
812     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
813   }
814 
815   template <class T, class... As>
816   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
817                                               Address ActiveFlag, As... A) {
818     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
819                                             ActiveFlag.isValid()};
820 
821     size_t OldSize = LifetimeExtendedCleanupStack.size();
822     LifetimeExtendedCleanupStack.resize(
823         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
824         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
825 
826     static_assert(sizeof(Header) % alignof(T) == 0,
827                   "Cleanup will be allocated on misaligned address");
828     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
829     new (Buffer) LifetimeExtendedCleanupHeader(Header);
830     new (Buffer + sizeof(Header)) T(A...);
831     if (Header.IsConditional)
832       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
833   }
834 
835   /// Set up the last cleanup that was pushed as a conditional
836   /// full-expression cleanup.
837   void initFullExprCleanup() {
838     initFullExprCleanupWithFlag(createCleanupActiveFlag());
839   }
840 
841   void initFullExprCleanupWithFlag(Address ActiveFlag);
842   Address createCleanupActiveFlag();
843 
844   /// PushDestructorCleanup - Push a cleanup to call the
845   /// complete-object destructor of an object of the given type at the
846   /// given address.  Does nothing if T is not a C++ class type with a
847   /// non-trivial destructor.
848   void PushDestructorCleanup(QualType T, Address Addr);
849 
850   /// PushDestructorCleanup - Push a cleanup to call the
851   /// complete-object variant of the given destructor on the object at
852   /// the given address.
853   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
854                              Address Addr);
855 
856   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
857   /// process all branch fixups.
858   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
859 
860   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
861   /// The block cannot be reactivated.  Pops it if it's the top of the
862   /// stack.
863   ///
864   /// \param DominatingIP - An instruction which is known to
865   ///   dominate the current IP (if set) and which lies along
866   ///   all paths of execution between the current IP and the
867   ///   the point at which the cleanup comes into scope.
868   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
869                               llvm::Instruction *DominatingIP);
870 
871   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
872   /// Cannot be used to resurrect a deactivated cleanup.
873   ///
874   /// \param DominatingIP - An instruction which is known to
875   ///   dominate the current IP (if set) and which lies along
876   ///   all paths of execution between the current IP and the
877   ///   the point at which the cleanup comes into scope.
878   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
879                             llvm::Instruction *DominatingIP);
880 
881   /// Enters a new scope for capturing cleanups, all of which
882   /// will be executed once the scope is exited.
883   class RunCleanupsScope {
884     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
885     size_t LifetimeExtendedCleanupStackSize;
886     bool OldDidCallStackSave;
887   protected:
888     bool PerformCleanup;
889   private:
890 
891     RunCleanupsScope(const RunCleanupsScope &) = delete;
892     void operator=(const RunCleanupsScope &) = delete;
893 
894   protected:
895     CodeGenFunction& CGF;
896 
897   public:
898     /// Enter a new cleanup scope.
899     explicit RunCleanupsScope(CodeGenFunction &CGF)
900       : PerformCleanup(true), CGF(CGF)
901     {
902       CleanupStackDepth = CGF.EHStack.stable_begin();
903       LifetimeExtendedCleanupStackSize =
904           CGF.LifetimeExtendedCleanupStack.size();
905       OldDidCallStackSave = CGF.DidCallStackSave;
906       CGF.DidCallStackSave = false;
907       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
908       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
909     }
910 
911     /// Exit this cleanup scope, emitting any accumulated cleanups.
912     ~RunCleanupsScope() {
913       if (PerformCleanup)
914         ForceCleanup();
915     }
916 
917     /// Determine whether this scope requires any cleanups.
918     bool requiresCleanups() const {
919       return CGF.EHStack.stable_begin() != CleanupStackDepth;
920     }
921 
922     /// Force the emission of cleanups now, instead of waiting
923     /// until this object is destroyed.
924     /// \param ValuesToReload - A list of values that need to be available at
925     /// the insertion point after cleanup emission. If cleanup emission created
926     /// a shared cleanup block, these value pointers will be rewritten.
927     /// Otherwise, they not will be modified.
928     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
929       assert(PerformCleanup && "Already forced cleanup");
930       CGF.DidCallStackSave = OldDidCallStackSave;
931       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
932                            ValuesToReload);
933       PerformCleanup = false;
934       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
935     }
936   };
937 
938   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
939   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
940       EHScopeStack::stable_end();
941 
942   class LexicalScope : public RunCleanupsScope {
943     SourceRange Range;
944     SmallVector<const LabelDecl*, 4> Labels;
945     LexicalScope *ParentScope;
946 
947     LexicalScope(const LexicalScope &) = delete;
948     void operator=(const LexicalScope &) = delete;
949 
950   public:
951     /// Enter a new cleanup scope.
952     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
953       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
954       CGF.CurLexicalScope = this;
955       if (CGDebugInfo *DI = CGF.getDebugInfo())
956         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
957     }
958 
959     void addLabel(const LabelDecl *label) {
960       assert(PerformCleanup && "adding label to dead scope?");
961       Labels.push_back(label);
962     }
963 
964     /// Exit this cleanup scope, emitting any accumulated
965     /// cleanups.
966     ~LexicalScope() {
967       if (CGDebugInfo *DI = CGF.getDebugInfo())
968         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
969 
970       // If we should perform a cleanup, force them now.  Note that
971       // this ends the cleanup scope before rescoping any labels.
972       if (PerformCleanup) {
973         ApplyDebugLocation DL(CGF, Range.getEnd());
974         ForceCleanup();
975       }
976     }
977 
978     /// Force the emission of cleanups now, instead of waiting
979     /// until this object is destroyed.
980     void ForceCleanup() {
981       CGF.CurLexicalScope = ParentScope;
982       RunCleanupsScope::ForceCleanup();
983 
984       if (!Labels.empty())
985         rescopeLabels();
986     }
987 
988     bool hasLabels() const {
989       return !Labels.empty();
990     }
991 
992     void rescopeLabels();
993   };
994 
995   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
996 
997   /// The class used to assign some variables some temporarily addresses.
998   class OMPMapVars {
999     DeclMapTy SavedLocals;
1000     DeclMapTy SavedTempAddresses;
1001     OMPMapVars(const OMPMapVars &) = delete;
1002     void operator=(const OMPMapVars &) = delete;
1003 
1004   public:
1005     explicit OMPMapVars() = default;
1006     ~OMPMapVars() {
1007       assert(SavedLocals.empty() && "Did not restored original addresses.");
1008     };
1009 
1010     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1011     /// function \p CGF.
1012     /// \return true if at least one variable was set already, false otherwise.
1013     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1014                     Address TempAddr) {
1015       LocalVD = LocalVD->getCanonicalDecl();
1016       // Only save it once.
1017       if (SavedLocals.count(LocalVD)) return false;
1018 
1019       // Copy the existing local entry to SavedLocals.
1020       auto it = CGF.LocalDeclMap.find(LocalVD);
1021       if (it != CGF.LocalDeclMap.end())
1022         SavedLocals.try_emplace(LocalVD, it->second);
1023       else
1024         SavedLocals.try_emplace(LocalVD, Address::invalid());
1025 
1026       // Generate the private entry.
1027       QualType VarTy = LocalVD->getType();
1028       if (VarTy->isReferenceType()) {
1029         Address Temp = CGF.CreateMemTemp(VarTy);
1030         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1031         TempAddr = Temp;
1032       }
1033       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1034 
1035       return true;
1036     }
1037 
1038     /// Applies new addresses to the list of the variables.
1039     /// \return true if at least one variable is using new address, false
1040     /// otherwise.
1041     bool apply(CodeGenFunction &CGF) {
1042       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1043       SavedTempAddresses.clear();
1044       return !SavedLocals.empty();
1045     }
1046 
1047     /// Restores original addresses of the variables.
1048     void restore(CodeGenFunction &CGF) {
1049       if (!SavedLocals.empty()) {
1050         copyInto(SavedLocals, CGF.LocalDeclMap);
1051         SavedLocals.clear();
1052       }
1053     }
1054 
1055   private:
1056     /// Copy all the entries in the source map over the corresponding
1057     /// entries in the destination, which must exist.
1058     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1059       for (auto &Pair : Src) {
1060         if (!Pair.second.isValid()) {
1061           Dest.erase(Pair.first);
1062           continue;
1063         }
1064 
1065         auto I = Dest.find(Pair.first);
1066         if (I != Dest.end())
1067           I->second = Pair.second;
1068         else
1069           Dest.insert(Pair);
1070       }
1071     }
1072   };
1073 
1074   /// The scope used to remap some variables as private in the OpenMP loop body
1075   /// (or other captured region emitted without outlining), and to restore old
1076   /// vars back on exit.
1077   class OMPPrivateScope : public RunCleanupsScope {
1078     OMPMapVars MappedVars;
1079     OMPPrivateScope(const OMPPrivateScope &) = delete;
1080     void operator=(const OMPPrivateScope &) = delete;
1081 
1082   public:
1083     /// Enter a new OpenMP private scope.
1084     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1085 
1086     /// Registers \p LocalVD variable as a private with \p Addr as the address
1087     /// of the corresponding private variable. \p
1088     /// PrivateGen is the address of the generated private variable.
1089     /// \return true if the variable is registered as private, false if it has
1090     /// been privatized already.
1091     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1092       assert(PerformCleanup && "adding private to dead scope");
1093       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1094     }
1095 
1096     /// Privatizes local variables previously registered as private.
1097     /// Registration is separate from the actual privatization to allow
1098     /// initializers use values of the original variables, not the private one.
1099     /// This is important, for example, if the private variable is a class
1100     /// variable initialized by a constructor that references other private
1101     /// variables. But at initialization original variables must be used, not
1102     /// private copies.
1103     /// \return true if at least one variable was privatized, false otherwise.
1104     bool Privatize() { return MappedVars.apply(CGF); }
1105 
1106     void ForceCleanup() {
1107       RunCleanupsScope::ForceCleanup();
1108       restoreMap();
1109     }
1110 
1111     /// Exit scope - all the mapped variables are restored.
1112     ~OMPPrivateScope() {
1113       if (PerformCleanup)
1114         ForceCleanup();
1115     }
1116 
1117     /// Checks if the global variable is captured in current function.
1118     bool isGlobalVarCaptured(const VarDecl *VD) const {
1119       VD = VD->getCanonicalDecl();
1120       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1121     }
1122 
1123     /// Restore all mapped variables w/o clean up. This is usefully when we want
1124     /// to reference the original variables but don't want the clean up because
1125     /// that could emit lifetime end too early, causing backend issue #56913.
1126     void restoreMap() { MappedVars.restore(CGF); }
1127   };
1128 
1129   /// Save/restore original map of previously emitted local vars in case when we
1130   /// need to duplicate emission of the same code several times in the same
1131   /// function for OpenMP code.
1132   class OMPLocalDeclMapRAII {
1133     CodeGenFunction &CGF;
1134     DeclMapTy SavedMap;
1135 
1136   public:
1137     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1138         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1139     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1140   };
1141 
1142   /// Takes the old cleanup stack size and emits the cleanup blocks
1143   /// that have been added.
1144   void
1145   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1146                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1147 
1148   /// Takes the old cleanup stack size and emits the cleanup blocks
1149   /// that have been added, then adds all lifetime-extended cleanups from
1150   /// the given position to the stack.
1151   void
1152   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1153                    size_t OldLifetimeExtendedStackSize,
1154                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1155 
1156   void ResolveBranchFixups(llvm::BasicBlock *Target);
1157 
1158   /// The given basic block lies in the current EH scope, but may be a
1159   /// target of a potentially scope-crossing jump; get a stable handle
1160   /// to which we can perform this jump later.
1161   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1162     return JumpDest(Target,
1163                     EHStack.getInnermostNormalCleanup(),
1164                     NextCleanupDestIndex++);
1165   }
1166 
1167   /// The given basic block lies in the current EH scope, but may be a
1168   /// target of a potentially scope-crossing jump; get a stable handle
1169   /// to which we can perform this jump later.
1170   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1171     return getJumpDestInCurrentScope(createBasicBlock(Name));
1172   }
1173 
1174   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1175   /// block through the normal cleanup handling code (if any) and then
1176   /// on to \arg Dest.
1177   void EmitBranchThroughCleanup(JumpDest Dest);
1178 
1179   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1180   /// specified destination obviously has no cleanups to run.  'false' is always
1181   /// a conservatively correct answer for this method.
1182   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1183 
1184   /// popCatchScope - Pops the catch scope at the top of the EHScope
1185   /// stack, emitting any required code (other than the catch handlers
1186   /// themselves).
1187   void popCatchScope();
1188 
1189   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1190   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1191   llvm::BasicBlock *
1192   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1193 
1194   /// An object to manage conditionally-evaluated expressions.
1195   class ConditionalEvaluation {
1196     llvm::BasicBlock *StartBB;
1197 
1198   public:
1199     ConditionalEvaluation(CodeGenFunction &CGF)
1200       : StartBB(CGF.Builder.GetInsertBlock()) {}
1201 
1202     void begin(CodeGenFunction &CGF) {
1203       assert(CGF.OutermostConditional != this);
1204       if (!CGF.OutermostConditional)
1205         CGF.OutermostConditional = this;
1206     }
1207 
1208     void end(CodeGenFunction &CGF) {
1209       assert(CGF.OutermostConditional != nullptr);
1210       if (CGF.OutermostConditional == this)
1211         CGF.OutermostConditional = nullptr;
1212     }
1213 
1214     /// Returns a block which will be executed prior to each
1215     /// evaluation of the conditional code.
1216     llvm::BasicBlock *getStartingBlock() const {
1217       return StartBB;
1218     }
1219   };
1220 
1221   /// isInConditionalBranch - Return true if we're currently emitting
1222   /// one branch or the other of a conditional expression.
1223   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1224 
1225   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1226     assert(isInConditionalBranch());
1227     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1228     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1229     store->setAlignment(addr.getAlignment().getAsAlign());
1230   }
1231 
1232   /// An RAII object to record that we're evaluating a statement
1233   /// expression.
1234   class StmtExprEvaluation {
1235     CodeGenFunction &CGF;
1236 
1237     /// We have to save the outermost conditional: cleanups in a
1238     /// statement expression aren't conditional just because the
1239     /// StmtExpr is.
1240     ConditionalEvaluation *SavedOutermostConditional;
1241 
1242   public:
1243     StmtExprEvaluation(CodeGenFunction &CGF)
1244       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1245       CGF.OutermostConditional = nullptr;
1246     }
1247 
1248     ~StmtExprEvaluation() {
1249       CGF.OutermostConditional = SavedOutermostConditional;
1250       CGF.EnsureInsertPoint();
1251     }
1252   };
1253 
1254   /// An object which temporarily prevents a value from being
1255   /// destroyed by aggressive peephole optimizations that assume that
1256   /// all uses of a value have been realized in the IR.
1257   class PeepholeProtection {
1258     llvm::Instruction *Inst;
1259     friend class CodeGenFunction;
1260 
1261   public:
1262     PeepholeProtection() : Inst(nullptr) {}
1263   };
1264 
1265   /// A non-RAII class containing all the information about a bound
1266   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1267   /// this which makes individual mappings very simple; using this
1268   /// class directly is useful when you have a variable number of
1269   /// opaque values or don't want the RAII functionality for some
1270   /// reason.
1271   class OpaqueValueMappingData {
1272     const OpaqueValueExpr *OpaqueValue;
1273     bool BoundLValue;
1274     CodeGenFunction::PeepholeProtection Protection;
1275 
1276     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1277                            bool boundLValue)
1278       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1279   public:
1280     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1281 
1282     static bool shouldBindAsLValue(const Expr *expr) {
1283       // gl-values should be bound as l-values for obvious reasons.
1284       // Records should be bound as l-values because IR generation
1285       // always keeps them in memory.  Expressions of function type
1286       // act exactly like l-values but are formally required to be
1287       // r-values in C.
1288       return expr->isGLValue() ||
1289              expr->getType()->isFunctionType() ||
1290              hasAggregateEvaluationKind(expr->getType());
1291     }
1292 
1293     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1294                                        const OpaqueValueExpr *ov,
1295                                        const Expr *e) {
1296       if (shouldBindAsLValue(ov))
1297         return bind(CGF, ov, CGF.EmitLValue(e));
1298       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1299     }
1300 
1301     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1302                                        const OpaqueValueExpr *ov,
1303                                        const LValue &lv) {
1304       assert(shouldBindAsLValue(ov));
1305       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1306       return OpaqueValueMappingData(ov, true);
1307     }
1308 
1309     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1310                                        const OpaqueValueExpr *ov,
1311                                        const RValue &rv) {
1312       assert(!shouldBindAsLValue(ov));
1313       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1314 
1315       OpaqueValueMappingData data(ov, false);
1316 
1317       // Work around an extremely aggressive peephole optimization in
1318       // EmitScalarConversion which assumes that all other uses of a
1319       // value are extant.
1320       data.Protection = CGF.protectFromPeepholes(rv);
1321 
1322       return data;
1323     }
1324 
1325     bool isValid() const { return OpaqueValue != nullptr; }
1326     void clear() { OpaqueValue = nullptr; }
1327 
1328     void unbind(CodeGenFunction &CGF) {
1329       assert(OpaqueValue && "no data to unbind!");
1330 
1331       if (BoundLValue) {
1332         CGF.OpaqueLValues.erase(OpaqueValue);
1333       } else {
1334         CGF.OpaqueRValues.erase(OpaqueValue);
1335         CGF.unprotectFromPeepholes(Protection);
1336       }
1337     }
1338   };
1339 
1340   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1341   class OpaqueValueMapping {
1342     CodeGenFunction &CGF;
1343     OpaqueValueMappingData Data;
1344 
1345   public:
1346     static bool shouldBindAsLValue(const Expr *expr) {
1347       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1348     }
1349 
1350     /// Build the opaque value mapping for the given conditional
1351     /// operator if it's the GNU ?: extension.  This is a common
1352     /// enough pattern that the convenience operator is really
1353     /// helpful.
1354     ///
1355     OpaqueValueMapping(CodeGenFunction &CGF,
1356                        const AbstractConditionalOperator *op) : CGF(CGF) {
1357       if (isa<ConditionalOperator>(op))
1358         // Leave Data empty.
1359         return;
1360 
1361       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1362       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1363                                           e->getCommon());
1364     }
1365 
1366     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1367     /// expression is set to the expression the OVE represents.
1368     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1369         : CGF(CGF) {
1370       if (OV) {
1371         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1372                                       "for OVE with no source expression");
1373         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1374       }
1375     }
1376 
1377     OpaqueValueMapping(CodeGenFunction &CGF,
1378                        const OpaqueValueExpr *opaqueValue,
1379                        LValue lvalue)
1380       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1381     }
1382 
1383     OpaqueValueMapping(CodeGenFunction &CGF,
1384                        const OpaqueValueExpr *opaqueValue,
1385                        RValue rvalue)
1386       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1387     }
1388 
1389     void pop() {
1390       Data.unbind(CGF);
1391       Data.clear();
1392     }
1393 
1394     ~OpaqueValueMapping() {
1395       if (Data.isValid()) Data.unbind(CGF);
1396     }
1397   };
1398 
1399 private:
1400   CGDebugInfo *DebugInfo;
1401   /// Used to create unique names for artificial VLA size debug info variables.
1402   unsigned VLAExprCounter = 0;
1403   bool DisableDebugInfo = false;
1404 
1405   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1406   /// calling llvm.stacksave for multiple VLAs in the same scope.
1407   bool DidCallStackSave = false;
1408 
1409   /// IndirectBranch - The first time an indirect goto is seen we create a block
1410   /// with an indirect branch.  Every time we see the address of a label taken,
1411   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1412   /// codegen'd as a jump to the IndirectBranch's basic block.
1413   llvm::IndirectBrInst *IndirectBranch = nullptr;
1414 
1415   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1416   /// decls.
1417   DeclMapTy LocalDeclMap;
1418 
1419   // Keep track of the cleanups for callee-destructed parameters pushed to the
1420   // cleanup stack so that they can be deactivated later.
1421   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1422       CalleeDestructedParamCleanups;
1423 
1424   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1425   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1426   /// parameter.
1427   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1428       SizeArguments;
1429 
1430   /// Track escaped local variables with auto storage. Used during SEH
1431   /// outlining to produce a call to llvm.localescape.
1432   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1433 
1434   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1435   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1436 
1437   // BreakContinueStack - This keeps track of where break and continue
1438   // statements should jump to.
1439   struct BreakContinue {
1440     BreakContinue(JumpDest Break, JumpDest Continue)
1441       : BreakBlock(Break), ContinueBlock(Continue) {}
1442 
1443     JumpDest BreakBlock;
1444     JumpDest ContinueBlock;
1445   };
1446   SmallVector<BreakContinue, 8> BreakContinueStack;
1447 
1448   /// Handles cancellation exit points in OpenMP-related constructs.
1449   class OpenMPCancelExitStack {
1450     /// Tracks cancellation exit point and join point for cancel-related exit
1451     /// and normal exit.
1452     struct CancelExit {
1453       CancelExit() = default;
1454       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1455                  JumpDest ContBlock)
1456           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1457       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1458       /// true if the exit block has been emitted already by the special
1459       /// emitExit() call, false if the default codegen is used.
1460       bool HasBeenEmitted = false;
1461       JumpDest ExitBlock;
1462       JumpDest ContBlock;
1463     };
1464 
1465     SmallVector<CancelExit, 8> Stack;
1466 
1467   public:
1468     OpenMPCancelExitStack() : Stack(1) {}
1469     ~OpenMPCancelExitStack() = default;
1470     /// Fetches the exit block for the current OpenMP construct.
1471     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1472     /// Emits exit block with special codegen procedure specific for the related
1473     /// OpenMP construct + emits code for normal construct cleanup.
1474     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1475                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1476       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1477         assert(CGF.getOMPCancelDestination(Kind).isValid());
1478         assert(CGF.HaveInsertPoint());
1479         assert(!Stack.back().HasBeenEmitted);
1480         auto IP = CGF.Builder.saveAndClearIP();
1481         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1482         CodeGen(CGF);
1483         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1484         CGF.Builder.restoreIP(IP);
1485         Stack.back().HasBeenEmitted = true;
1486       }
1487       CodeGen(CGF);
1488     }
1489     /// Enter the cancel supporting \a Kind construct.
1490     /// \param Kind OpenMP directive that supports cancel constructs.
1491     /// \param HasCancel true, if the construct has inner cancel directive,
1492     /// false otherwise.
1493     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1494       Stack.push_back({Kind,
1495                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1496                                  : JumpDest(),
1497                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1498                                  : JumpDest()});
1499     }
1500     /// Emits default exit point for the cancel construct (if the special one
1501     /// has not be used) + join point for cancel/normal exits.
1502     void exit(CodeGenFunction &CGF) {
1503       if (getExitBlock().isValid()) {
1504         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1505         bool HaveIP = CGF.HaveInsertPoint();
1506         if (!Stack.back().HasBeenEmitted) {
1507           if (HaveIP)
1508             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1509           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1510           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1511         }
1512         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1513         if (!HaveIP) {
1514           CGF.Builder.CreateUnreachable();
1515           CGF.Builder.ClearInsertionPoint();
1516         }
1517       }
1518       Stack.pop_back();
1519     }
1520   };
1521   OpenMPCancelExitStack OMPCancelStack;
1522 
1523   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1524   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1525                                                     Stmt::Likelihood LH);
1526 
1527   CodeGenPGO PGO;
1528 
1529   /// Calculate branch weights appropriate for PGO data
1530   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1531                                      uint64_t FalseCount) const;
1532   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1533   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1534                                             uint64_t LoopCount) const;
1535 
1536 public:
1537   /// Increment the profiler's counter for the given statement by \p StepV.
1538   /// If \p StepV is null, the default increment is 1.
1539   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1540     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1541         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) &&
1542         !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile))
1543       PGO.emitCounterIncrement(Builder, S, StepV);
1544     PGO.setCurrentStmt(S);
1545   }
1546 
1547   /// Get the profiler's count for the given statement.
1548   uint64_t getProfileCount(const Stmt *S) {
1549     return PGO.getStmtCount(S).value_or(0);
1550   }
1551 
1552   /// Set the profiler's current count.
1553   void setCurrentProfileCount(uint64_t Count) {
1554     PGO.setCurrentRegionCount(Count);
1555   }
1556 
1557   /// Get the profiler's current count. This is generally the count for the most
1558   /// recently incremented counter.
1559   uint64_t getCurrentProfileCount() {
1560     return PGO.getCurrentRegionCount();
1561   }
1562 
1563 private:
1564 
1565   /// SwitchInsn - This is nearest current switch instruction. It is null if
1566   /// current context is not in a switch.
1567   llvm::SwitchInst *SwitchInsn = nullptr;
1568   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1569   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1570 
1571   /// The likelihood attributes of the SwitchCase.
1572   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1573 
1574   /// CaseRangeBlock - This block holds if condition check for last case
1575   /// statement range in current switch instruction.
1576   llvm::BasicBlock *CaseRangeBlock = nullptr;
1577 
1578   /// OpaqueLValues - Keeps track of the current set of opaque value
1579   /// expressions.
1580   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1581   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1582 
1583   // VLASizeMap - This keeps track of the associated size for each VLA type.
1584   // We track this by the size expression rather than the type itself because
1585   // in certain situations, like a const qualifier applied to an VLA typedef,
1586   // multiple VLA types can share the same size expression.
1587   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1588   // enter/leave scopes.
1589   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1590 
1591   /// A block containing a single 'unreachable' instruction.  Created
1592   /// lazily by getUnreachableBlock().
1593   llvm::BasicBlock *UnreachableBlock = nullptr;
1594 
1595   /// Counts of the number return expressions in the function.
1596   unsigned NumReturnExprs = 0;
1597 
1598   /// Count the number of simple (constant) return expressions in the function.
1599   unsigned NumSimpleReturnExprs = 0;
1600 
1601   /// The last regular (non-return) debug location (breakpoint) in the function.
1602   SourceLocation LastStopPoint;
1603 
1604 public:
1605   /// Source location information about the default argument or member
1606   /// initializer expression we're evaluating, if any.
1607   CurrentSourceLocExprScope CurSourceLocExprScope;
1608   using SourceLocExprScopeGuard =
1609       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1610 
1611   /// A scope within which we are constructing the fields of an object which
1612   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1613   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1614   class FieldConstructionScope {
1615   public:
1616     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1617         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1618       CGF.CXXDefaultInitExprThis = This;
1619     }
1620     ~FieldConstructionScope() {
1621       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1622     }
1623 
1624   private:
1625     CodeGenFunction &CGF;
1626     Address OldCXXDefaultInitExprThis;
1627   };
1628 
1629   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1630   /// is overridden to be the object under construction.
1631   class CXXDefaultInitExprScope  {
1632   public:
1633     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1634         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1635           OldCXXThisAlignment(CGF.CXXThisAlignment),
1636           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1637       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1638       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1639     }
1640     ~CXXDefaultInitExprScope() {
1641       CGF.CXXThisValue = OldCXXThisValue;
1642       CGF.CXXThisAlignment = OldCXXThisAlignment;
1643     }
1644 
1645   public:
1646     CodeGenFunction &CGF;
1647     llvm::Value *OldCXXThisValue;
1648     CharUnits OldCXXThisAlignment;
1649     SourceLocExprScopeGuard SourceLocScope;
1650   };
1651 
1652   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1653     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1654         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1655   };
1656 
1657   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1658   /// current loop index is overridden.
1659   class ArrayInitLoopExprScope {
1660   public:
1661     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1662       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1663       CGF.ArrayInitIndex = Index;
1664     }
1665     ~ArrayInitLoopExprScope() {
1666       CGF.ArrayInitIndex = OldArrayInitIndex;
1667     }
1668 
1669   private:
1670     CodeGenFunction &CGF;
1671     llvm::Value *OldArrayInitIndex;
1672   };
1673 
1674   class InlinedInheritingConstructorScope {
1675   public:
1676     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1677         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1678           OldCurCodeDecl(CGF.CurCodeDecl),
1679           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1680           OldCXXABIThisValue(CGF.CXXABIThisValue),
1681           OldCXXThisValue(CGF.CXXThisValue),
1682           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1683           OldCXXThisAlignment(CGF.CXXThisAlignment),
1684           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1685           OldCXXInheritedCtorInitExprArgs(
1686               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1687       CGF.CurGD = GD;
1688       CGF.CurFuncDecl = CGF.CurCodeDecl =
1689           cast<CXXConstructorDecl>(GD.getDecl());
1690       CGF.CXXABIThisDecl = nullptr;
1691       CGF.CXXABIThisValue = nullptr;
1692       CGF.CXXThisValue = nullptr;
1693       CGF.CXXABIThisAlignment = CharUnits();
1694       CGF.CXXThisAlignment = CharUnits();
1695       CGF.ReturnValue = Address::invalid();
1696       CGF.FnRetTy = QualType();
1697       CGF.CXXInheritedCtorInitExprArgs.clear();
1698     }
1699     ~InlinedInheritingConstructorScope() {
1700       CGF.CurGD = OldCurGD;
1701       CGF.CurFuncDecl = OldCurFuncDecl;
1702       CGF.CurCodeDecl = OldCurCodeDecl;
1703       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1704       CGF.CXXABIThisValue = OldCXXABIThisValue;
1705       CGF.CXXThisValue = OldCXXThisValue;
1706       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1707       CGF.CXXThisAlignment = OldCXXThisAlignment;
1708       CGF.ReturnValue = OldReturnValue;
1709       CGF.FnRetTy = OldFnRetTy;
1710       CGF.CXXInheritedCtorInitExprArgs =
1711           std::move(OldCXXInheritedCtorInitExprArgs);
1712     }
1713 
1714   private:
1715     CodeGenFunction &CGF;
1716     GlobalDecl OldCurGD;
1717     const Decl *OldCurFuncDecl;
1718     const Decl *OldCurCodeDecl;
1719     ImplicitParamDecl *OldCXXABIThisDecl;
1720     llvm::Value *OldCXXABIThisValue;
1721     llvm::Value *OldCXXThisValue;
1722     CharUnits OldCXXABIThisAlignment;
1723     CharUnits OldCXXThisAlignment;
1724     Address OldReturnValue;
1725     QualType OldFnRetTy;
1726     CallArgList OldCXXInheritedCtorInitExprArgs;
1727   };
1728 
1729   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1730   // region body, and finalization codegen callbacks. This will class will also
1731   // contain privatization functions used by the privatization call backs
1732   //
1733   // TODO: this is temporary class for things that are being moved out of
1734   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1735   // utility function for use with the OMPBuilder. Once that move to use the
1736   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1737   // directly, or a new helper class that will contain functions used by both
1738   // this and the OMPBuilder
1739 
1740   struct OMPBuilderCBHelpers {
1741 
1742     OMPBuilderCBHelpers() = delete;
1743     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1744     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1745 
1746     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1747 
1748     /// Cleanup action for allocate support.
1749     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1750 
1751     private:
1752       llvm::CallInst *RTLFnCI;
1753 
1754     public:
1755       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1756         RLFnCI->removeFromParent();
1757       }
1758 
1759       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1760         if (!CGF.HaveInsertPoint())
1761           return;
1762         CGF.Builder.Insert(RTLFnCI);
1763       }
1764     };
1765 
1766     /// Returns address of the threadprivate variable for the current
1767     /// thread. This Also create any necessary OMP runtime calls.
1768     ///
1769     /// \param VD VarDecl for Threadprivate variable.
1770     /// \param VDAddr Address of the Vardecl
1771     /// \param Loc  The location where the barrier directive was encountered
1772     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1773                                           const VarDecl *VD, Address VDAddr,
1774                                           SourceLocation Loc);
1775 
1776     /// Gets the OpenMP-specific address of the local variable /p VD.
1777     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1778                                              const VarDecl *VD);
1779     /// Get the platform-specific name separator.
1780     /// \param Parts different parts of the final name that needs separation
1781     /// \param FirstSeparator First separator used between the initial two
1782     ///        parts of the name.
1783     /// \param Separator separator used between all of the rest consecutinve
1784     ///        parts of the name
1785     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1786                                              StringRef FirstSeparator = ".",
1787                                              StringRef Separator = ".");
1788     /// Emit the Finalization for an OMP region
1789     /// \param CGF	The Codegen function this belongs to
1790     /// \param IP	Insertion point for generating the finalization code.
1791     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1792       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1793       assert(IP.getBlock()->end() != IP.getPoint() &&
1794              "OpenMP IR Builder should cause terminated block!");
1795 
1796       llvm::BasicBlock *IPBB = IP.getBlock();
1797       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1798       assert(DestBB && "Finalization block should have one successor!");
1799 
1800       // erase and replace with cleanup branch.
1801       IPBB->getTerminator()->eraseFromParent();
1802       CGF.Builder.SetInsertPoint(IPBB);
1803       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1804       CGF.EmitBranchThroughCleanup(Dest);
1805     }
1806 
1807     /// Emit the body of an OMP region
1808     /// \param CGF	          The Codegen function this belongs to
1809     /// \param RegionBodyStmt The body statement for the OpenMP region being
1810     ///                       generated
1811     /// \param AllocaIP       Where to insert alloca instructions
1812     /// \param CodeGenIP      Where to insert the region code
1813     /// \param RegionName     Name to be used for new blocks
1814     static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1815                                          const Stmt *RegionBodyStmt,
1816                                          InsertPointTy AllocaIP,
1817                                          InsertPointTy CodeGenIP,
1818                                          Twine RegionName);
1819 
1820     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1821                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1822                                 ArrayRef<llvm::Value *> Args) {
1823       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1824       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1825         CodeGenIPBBTI->eraseFromParent();
1826 
1827       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1828 
1829       if (Fn->doesNotThrow())
1830         CGF.EmitNounwindRuntimeCall(Fn, Args);
1831       else
1832         CGF.EmitRuntimeCall(Fn, Args);
1833 
1834       if (CGF.Builder.saveIP().isSet())
1835         CGF.Builder.CreateBr(&FiniBB);
1836     }
1837 
1838     /// Emit the body of an OMP region that will be outlined in
1839     /// OpenMPIRBuilder::finalize().
1840     /// \param CGF	          The Codegen function this belongs to
1841     /// \param RegionBodyStmt The body statement for the OpenMP region being
1842     ///                       generated
1843     /// \param AllocaIP       Where to insert alloca instructions
1844     /// \param CodeGenIP      Where to insert the region code
1845     /// \param RegionName     Name to be used for new blocks
1846     static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1847                                           const Stmt *RegionBodyStmt,
1848                                           InsertPointTy AllocaIP,
1849                                           InsertPointTy CodeGenIP,
1850                                           Twine RegionName);
1851 
1852     /// RAII for preserving necessary info during Outlined region body codegen.
1853     class OutlinedRegionBodyRAII {
1854 
1855       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1856       CodeGenFunction::JumpDest OldReturnBlock;
1857       CodeGenFunction &CGF;
1858 
1859     public:
1860       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1861                              llvm::BasicBlock &RetBB)
1862           : CGF(cgf) {
1863         assert(AllocaIP.isSet() &&
1864                "Must specify Insertion point for allocas of outlined function");
1865         OldAllocaIP = CGF.AllocaInsertPt;
1866         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1867 
1868         OldReturnBlock = CGF.ReturnBlock;
1869         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1870       }
1871 
1872       ~OutlinedRegionBodyRAII() {
1873         CGF.AllocaInsertPt = OldAllocaIP;
1874         CGF.ReturnBlock = OldReturnBlock;
1875       }
1876     };
1877 
1878     /// RAII for preserving necessary info during inlined region body codegen.
1879     class InlinedRegionBodyRAII {
1880 
1881       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1882       CodeGenFunction &CGF;
1883 
1884     public:
1885       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1886                             llvm::BasicBlock &FiniBB)
1887           : CGF(cgf) {
1888         // Alloca insertion block should be in the entry block of the containing
1889         // function so it expects an empty AllocaIP in which case will reuse the
1890         // old alloca insertion point, or a new AllocaIP in the same block as
1891         // the old one
1892         assert((!AllocaIP.isSet() ||
1893                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1894                "Insertion point should be in the entry block of containing "
1895                "function!");
1896         OldAllocaIP = CGF.AllocaInsertPt;
1897         if (AllocaIP.isSet())
1898           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1899 
1900         // TODO: Remove the call, after making sure the counter is not used by
1901         //       the EHStack.
1902         // Since this is an inlined region, it should not modify the
1903         // ReturnBlock, and should reuse the one for the enclosing outlined
1904         // region. So, the JumpDest being return by the function is discarded
1905         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1906       }
1907 
1908       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1909     };
1910   };
1911 
1912 private:
1913   /// CXXThisDecl - When generating code for a C++ member function,
1914   /// this will hold the implicit 'this' declaration.
1915   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1916   llvm::Value *CXXABIThisValue = nullptr;
1917   llvm::Value *CXXThisValue = nullptr;
1918   CharUnits CXXABIThisAlignment;
1919   CharUnits CXXThisAlignment;
1920 
1921   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1922   /// this expression.
1923   Address CXXDefaultInitExprThis = Address::invalid();
1924 
1925   /// The current array initialization index when evaluating an
1926   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1927   llvm::Value *ArrayInitIndex = nullptr;
1928 
1929   /// The values of function arguments to use when evaluating
1930   /// CXXInheritedCtorInitExprs within this context.
1931   CallArgList CXXInheritedCtorInitExprArgs;
1932 
1933   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1934   /// destructor, this will hold the implicit argument (e.g. VTT).
1935   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1936   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1937 
1938   /// OutermostConditional - Points to the outermost active
1939   /// conditional control.  This is used so that we know if a
1940   /// temporary should be destroyed conditionally.
1941   ConditionalEvaluation *OutermostConditional = nullptr;
1942 
1943   /// The current lexical scope.
1944   LexicalScope *CurLexicalScope = nullptr;
1945 
1946   /// The current source location that should be used for exception
1947   /// handling code.
1948   SourceLocation CurEHLocation;
1949 
1950   /// BlockByrefInfos - For each __block variable, contains
1951   /// information about the layout of the variable.
1952   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1953 
1954   /// Used by -fsanitize=nullability-return to determine whether the return
1955   /// value can be checked.
1956   llvm::Value *RetValNullabilityPrecondition = nullptr;
1957 
1958   /// Check if -fsanitize=nullability-return instrumentation is required for
1959   /// this function.
1960   bool requiresReturnValueNullabilityCheck() const {
1961     return RetValNullabilityPrecondition;
1962   }
1963 
1964   /// Used to store precise source locations for return statements by the
1965   /// runtime return value checks.
1966   Address ReturnLocation = Address::invalid();
1967 
1968   /// Check if the return value of this function requires sanitization.
1969   bool requiresReturnValueCheck() const;
1970 
1971   bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty);
1972   bool hasInAllocaArg(const CXXMethodDecl *MD);
1973 
1974   llvm::BasicBlock *TerminateLandingPad = nullptr;
1975   llvm::BasicBlock *TerminateHandler = nullptr;
1976   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1977 
1978   /// Terminate funclets keyed by parent funclet pad.
1979   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1980 
1981   /// Largest vector width used in ths function. Will be used to create a
1982   /// function attribute.
1983   unsigned LargestVectorWidth = 0;
1984 
1985   /// True if we need emit the life-time markers. This is initially set in
1986   /// the constructor, but could be overwritten to true if this is a coroutine.
1987   bool ShouldEmitLifetimeMarkers;
1988 
1989   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1990   /// the function metadata.
1991   void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
1992 
1993 public:
1994   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1995   ~CodeGenFunction();
1996 
1997   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1998   ASTContext &getContext() const { return CGM.getContext(); }
1999   CGDebugInfo *getDebugInfo() {
2000     if (DisableDebugInfo)
2001       return nullptr;
2002     return DebugInfo;
2003   }
2004   void disableDebugInfo() { DisableDebugInfo = true; }
2005   void enableDebugInfo() { DisableDebugInfo = false; }
2006 
2007   bool shouldUseFusedARCCalls() {
2008     return CGM.getCodeGenOpts().OptimizationLevel == 0;
2009   }
2010 
2011   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
2012 
2013   /// Returns a pointer to the function's exception object and selector slot,
2014   /// which is assigned in every landing pad.
2015   Address getExceptionSlot();
2016   Address getEHSelectorSlot();
2017 
2018   /// Returns the contents of the function's exception object and selector
2019   /// slots.
2020   llvm::Value *getExceptionFromSlot();
2021   llvm::Value *getSelectorFromSlot();
2022 
2023   Address getNormalCleanupDestSlot();
2024 
2025   llvm::BasicBlock *getUnreachableBlock() {
2026     if (!UnreachableBlock) {
2027       UnreachableBlock = createBasicBlock("unreachable");
2028       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2029     }
2030     return UnreachableBlock;
2031   }
2032 
2033   llvm::BasicBlock *getInvokeDest() {
2034     if (!EHStack.requiresLandingPad()) return nullptr;
2035     return getInvokeDestImpl();
2036   }
2037 
2038   bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; }
2039 
2040   const TargetInfo &getTarget() const { return Target; }
2041   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2042   const TargetCodeGenInfo &getTargetHooks() const {
2043     return CGM.getTargetCodeGenInfo();
2044   }
2045 
2046   //===--------------------------------------------------------------------===//
2047   //                                  Cleanups
2048   //===--------------------------------------------------------------------===//
2049 
2050   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2051 
2052   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2053                                         Address arrayEndPointer,
2054                                         QualType elementType,
2055                                         CharUnits elementAlignment,
2056                                         Destroyer *destroyer);
2057   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2058                                       llvm::Value *arrayEnd,
2059                                       QualType elementType,
2060                                       CharUnits elementAlignment,
2061                                       Destroyer *destroyer);
2062 
2063   void pushDestroy(QualType::DestructionKind dtorKind,
2064                    Address addr, QualType type);
2065   void pushEHDestroy(QualType::DestructionKind dtorKind,
2066                      Address addr, QualType type);
2067   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2068                    Destroyer *destroyer, bool useEHCleanupForArray);
2069   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2070                                    QualType type, Destroyer *destroyer,
2071                                    bool useEHCleanupForArray);
2072   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2073                                    llvm::Value *CompletePtr,
2074                                    QualType ElementType);
2075   void pushStackRestore(CleanupKind kind, Address SPMem);
2076   void pushKmpcAllocFree(CleanupKind Kind,
2077                          std::pair<llvm::Value *, llvm::Value *> AddrSizePair);
2078   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2079                    bool useEHCleanupForArray);
2080   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2081                                         Destroyer *destroyer,
2082                                         bool useEHCleanupForArray,
2083                                         const VarDecl *VD);
2084   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2085                         QualType elementType, CharUnits elementAlign,
2086                         Destroyer *destroyer,
2087                         bool checkZeroLength, bool useEHCleanup);
2088 
2089   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2090 
2091   /// Determines whether an EH cleanup is required to destroy a type
2092   /// with the given destruction kind.
2093   bool needsEHCleanup(QualType::DestructionKind kind) {
2094     switch (kind) {
2095     case QualType::DK_none:
2096       return false;
2097     case QualType::DK_cxx_destructor:
2098     case QualType::DK_objc_weak_lifetime:
2099     case QualType::DK_nontrivial_c_struct:
2100       return getLangOpts().Exceptions;
2101     case QualType::DK_objc_strong_lifetime:
2102       return getLangOpts().Exceptions &&
2103              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2104     }
2105     llvm_unreachable("bad destruction kind");
2106   }
2107 
2108   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2109     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2110   }
2111 
2112   //===--------------------------------------------------------------------===//
2113   //                                  Objective-C
2114   //===--------------------------------------------------------------------===//
2115 
2116   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2117 
2118   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2119 
2120   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2121   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2122                           const ObjCPropertyImplDecl *PID);
2123   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2124                               const ObjCPropertyImplDecl *propImpl,
2125                               const ObjCMethodDecl *GetterMothodDecl,
2126                               llvm::Constant *AtomicHelperFn);
2127 
2128   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2129                                   ObjCMethodDecl *MD, bool ctor);
2130 
2131   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2132   /// for the given property.
2133   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2134                           const ObjCPropertyImplDecl *PID);
2135   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2136                               const ObjCPropertyImplDecl *propImpl,
2137                               llvm::Constant *AtomicHelperFn);
2138 
2139   //===--------------------------------------------------------------------===//
2140   //                                  Block Bits
2141   //===--------------------------------------------------------------------===//
2142 
2143   /// Emit block literal.
2144   /// \return an LLVM value which is a pointer to a struct which contains
2145   /// information about the block, including the block invoke function, the
2146   /// captured variables, etc.
2147   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2148 
2149   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2150                                         const CGBlockInfo &Info,
2151                                         const DeclMapTy &ldm,
2152                                         bool IsLambdaConversionToBlock,
2153                                         bool BuildGlobalBlock);
2154 
2155   /// Check if \p T is a C++ class that has a destructor that can throw.
2156   static bool cxxDestructorCanThrow(QualType T);
2157 
2158   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2159   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2160   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2161                                              const ObjCPropertyImplDecl *PID);
2162   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2163                                              const ObjCPropertyImplDecl *PID);
2164   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2165 
2166   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2167                          bool CanThrow);
2168 
2169   class AutoVarEmission;
2170 
2171   void emitByrefStructureInit(const AutoVarEmission &emission);
2172 
2173   /// Enter a cleanup to destroy a __block variable.  Note that this
2174   /// cleanup should be a no-op if the variable hasn't left the stack
2175   /// yet; if a cleanup is required for the variable itself, that needs
2176   /// to be done externally.
2177   ///
2178   /// \param Kind Cleanup kind.
2179   ///
2180   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2181   /// structure that will be passed to _Block_object_dispose. When
2182   /// \p LoadBlockVarAddr is true, the address of the field of the block
2183   /// structure that holds the address of the __block structure.
2184   ///
2185   /// \param Flags The flag that will be passed to _Block_object_dispose.
2186   ///
2187   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2188   /// \p Addr to get the address of the __block structure.
2189   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2190                          bool LoadBlockVarAddr, bool CanThrow);
2191 
2192   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2193                                 llvm::Value *ptr);
2194 
2195   Address LoadBlockStruct();
2196   Address GetAddrOfBlockDecl(const VarDecl *var);
2197 
2198   /// BuildBlockByrefAddress - Computes the location of the
2199   /// data in a variable which is declared as __block.
2200   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2201                                 bool followForward = true);
2202   Address emitBlockByrefAddress(Address baseAddr,
2203                                 const BlockByrefInfo &info,
2204                                 bool followForward,
2205                                 const llvm::Twine &name);
2206 
2207   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2208 
2209   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2210 
2211   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2212                     const CGFunctionInfo &FnInfo);
2213 
2214   /// Annotate the function with an attribute that disables TSan checking at
2215   /// runtime.
2216   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2217 
2218   /// Emit code for the start of a function.
2219   /// \param Loc       The location to be associated with the function.
2220   /// \param StartLoc  The location of the function body.
2221   void StartFunction(GlobalDecl GD,
2222                      QualType RetTy,
2223                      llvm::Function *Fn,
2224                      const CGFunctionInfo &FnInfo,
2225                      const FunctionArgList &Args,
2226                      SourceLocation Loc = SourceLocation(),
2227                      SourceLocation StartLoc = SourceLocation());
2228 
2229   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2230 
2231   void EmitConstructorBody(FunctionArgList &Args);
2232   void EmitDestructorBody(FunctionArgList &Args);
2233   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2234   void EmitFunctionBody(const Stmt *Body);
2235   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2236 
2237   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2238                                   CallArgList &CallArgs,
2239                                   const CGFunctionInfo *CallOpFnInfo = nullptr,
2240                                   llvm::Constant *CallOpFn = nullptr);
2241   void EmitLambdaBlockInvokeBody();
2242   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2243   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
2244                                       CallArgList &CallArgs);
2245   void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp,
2246                                 const CGFunctionInfo **ImplFnInfo,
2247                                 llvm::Function **ImplFn);
2248   void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD);
2249   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2250     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2251   }
2252   void EmitAsanPrologueOrEpilogue(bool Prologue);
2253 
2254   /// Emit the unified return block, trying to avoid its emission when
2255   /// possible.
2256   /// \return The debug location of the user written return statement if the
2257   /// return block is avoided.
2258   llvm::DebugLoc EmitReturnBlock();
2259 
2260   /// FinishFunction - Complete IR generation of the current function. It is
2261   /// legal to call this function even if there is no current insertion point.
2262   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2263 
2264   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2265                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2266 
2267   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2268                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2269 
2270   void FinishThunk();
2271 
2272   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2273   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2274                          llvm::FunctionCallee Callee);
2275 
2276   /// Generate a thunk for the given method.
2277   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2278                      GlobalDecl GD, const ThunkInfo &Thunk,
2279                      bool IsUnprototyped);
2280 
2281   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2282                                        const CGFunctionInfo &FnInfo,
2283                                        GlobalDecl GD, const ThunkInfo &Thunk);
2284 
2285   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2286                         FunctionArgList &Args);
2287 
2288   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2289 
2290   /// Struct with all information about dynamic [sub]class needed to set vptr.
2291   struct VPtr {
2292     BaseSubobject Base;
2293     const CXXRecordDecl *NearestVBase;
2294     CharUnits OffsetFromNearestVBase;
2295     const CXXRecordDecl *VTableClass;
2296   };
2297 
2298   /// Initialize the vtable pointer of the given subobject.
2299   void InitializeVTablePointer(const VPtr &vptr);
2300 
2301   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2302 
2303   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2304   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2305 
2306   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2307                          CharUnits OffsetFromNearestVBase,
2308                          bool BaseIsNonVirtualPrimaryBase,
2309                          const CXXRecordDecl *VTableClass,
2310                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2311 
2312   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2313 
2314   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2315   /// to by This.
2316   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2317                             const CXXRecordDecl *VTableClass);
2318 
2319   enum CFITypeCheckKind {
2320     CFITCK_VCall,
2321     CFITCK_NVCall,
2322     CFITCK_DerivedCast,
2323     CFITCK_UnrelatedCast,
2324     CFITCK_ICall,
2325     CFITCK_NVMFCall,
2326     CFITCK_VMFCall,
2327   };
2328 
2329   /// Derived is the presumed address of an object of type T after a
2330   /// cast. If T is a polymorphic class type, emit a check that the virtual
2331   /// table for Derived belongs to a class derived from T.
2332   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2333                                  CFITypeCheckKind TCK, SourceLocation Loc);
2334 
2335   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2336   /// If vptr CFI is enabled, emit a check that VTable is valid.
2337   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2338                                  CFITypeCheckKind TCK, SourceLocation Loc);
2339 
2340   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2341   /// RD using llvm.type.test.
2342   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2343                           CFITypeCheckKind TCK, SourceLocation Loc);
2344 
2345   /// If whole-program virtual table optimization is enabled, emit an assumption
2346   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2347   /// enabled, emit a check that VTable is a member of RD's type identifier.
2348   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2349                                     llvm::Value *VTable, SourceLocation Loc);
2350 
2351   /// Returns whether we should perform a type checked load when loading a
2352   /// virtual function for virtual calls to members of RD. This is generally
2353   /// true when both vcall CFI and whole-program-vtables are enabled.
2354   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2355 
2356   /// Emit a type checked load from the given vtable.
2357   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2358                                          llvm::Value *VTable,
2359                                          llvm::Type *VTableTy,
2360                                          uint64_t VTableByteOffset);
2361 
2362   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2363   /// given phase of destruction for a destructor.  The end result
2364   /// should call destructors on members and base classes in reverse
2365   /// order of their construction.
2366   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2367 
2368   /// ShouldInstrumentFunction - Return true if the current function should be
2369   /// instrumented with __cyg_profile_func_* calls
2370   bool ShouldInstrumentFunction();
2371 
2372   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2373   /// should not be instrumented with sanitizers.
2374   bool ShouldSkipSanitizerInstrumentation();
2375 
2376   /// ShouldXRayInstrument - Return true if the current function should be
2377   /// instrumented with XRay nop sleds.
2378   bool ShouldXRayInstrumentFunction() const;
2379 
2380   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2381   /// XRay custom event handling calls.
2382   bool AlwaysEmitXRayCustomEvents() const;
2383 
2384   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2385   /// XRay typed event handling calls.
2386   bool AlwaysEmitXRayTypedEvents() const;
2387 
2388   /// Return a type hash constant for a function instrumented by
2389   /// -fsanitize=function.
2390   llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const;
2391 
2392   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2393   /// arguments for the given function. This is also responsible for naming the
2394   /// LLVM function arguments.
2395   void EmitFunctionProlog(const CGFunctionInfo &FI,
2396                           llvm::Function *Fn,
2397                           const FunctionArgList &Args);
2398 
2399   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2400   /// given temporary.
2401   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2402                           SourceLocation EndLoc);
2403 
2404   /// Emit a test that checks if the return value \p RV is nonnull.
2405   void EmitReturnValueCheck(llvm::Value *RV);
2406 
2407   /// EmitStartEHSpec - Emit the start of the exception spec.
2408   void EmitStartEHSpec(const Decl *D);
2409 
2410   /// EmitEndEHSpec - Emit the end of the exception spec.
2411   void EmitEndEHSpec(const Decl *D);
2412 
2413   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2414   llvm::BasicBlock *getTerminateLandingPad();
2415 
2416   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2417   /// terminate.
2418   llvm::BasicBlock *getTerminateFunclet();
2419 
2420   /// getTerminateHandler - Return a handler (not a landing pad, just
2421   /// a catch handler) that just calls terminate.  This is used when
2422   /// a terminate scope encloses a try.
2423   llvm::BasicBlock *getTerminateHandler();
2424 
2425   llvm::Type *ConvertTypeForMem(QualType T);
2426   llvm::Type *ConvertType(QualType T);
2427   llvm::Type *ConvertType(const TypeDecl *T) {
2428     return ConvertType(getContext().getTypeDeclType(T));
2429   }
2430 
2431   /// LoadObjCSelf - Load the value of self. This function is only valid while
2432   /// generating code for an Objective-C method.
2433   llvm::Value *LoadObjCSelf();
2434 
2435   /// TypeOfSelfObject - Return type of object that this self represents.
2436   QualType TypeOfSelfObject();
2437 
2438   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2439   static TypeEvaluationKind getEvaluationKind(QualType T);
2440 
2441   static bool hasScalarEvaluationKind(QualType T) {
2442     return getEvaluationKind(T) == TEK_Scalar;
2443   }
2444 
2445   static bool hasAggregateEvaluationKind(QualType T) {
2446     return getEvaluationKind(T) == TEK_Aggregate;
2447   }
2448 
2449   /// createBasicBlock - Create an LLVM basic block.
2450   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2451                                      llvm::Function *parent = nullptr,
2452                                      llvm::BasicBlock *before = nullptr) {
2453     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2454   }
2455 
2456   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2457   /// label maps to.
2458   JumpDest getJumpDestForLabel(const LabelDecl *S);
2459 
2460   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2461   /// another basic block, simplify it. This assumes that no other code could
2462   /// potentially reference the basic block.
2463   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2464 
2465   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2466   /// adding a fall-through branch from the current insert block if
2467   /// necessary. It is legal to call this function even if there is no current
2468   /// insertion point.
2469   ///
2470   /// IsFinished - If true, indicates that the caller has finished emitting
2471   /// branches to the given block and does not expect to emit code into it. This
2472   /// means the block can be ignored if it is unreachable.
2473   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2474 
2475   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2476   /// near its uses, and leave the insertion point in it.
2477   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2478 
2479   /// EmitBranch - Emit a branch to the specified basic block from the current
2480   /// insert block, taking care to avoid creation of branches from dummy
2481   /// blocks. It is legal to call this function even if there is no current
2482   /// insertion point.
2483   ///
2484   /// This function clears the current insertion point. The caller should follow
2485   /// calls to this function with calls to Emit*Block prior to generation new
2486   /// code.
2487   void EmitBranch(llvm::BasicBlock *Block);
2488 
2489   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2490   /// indicates that the current code being emitted is unreachable.
2491   bool HaveInsertPoint() const {
2492     return Builder.GetInsertBlock() != nullptr;
2493   }
2494 
2495   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2496   /// emitted IR has a place to go. Note that by definition, if this function
2497   /// creates a block then that block is unreachable; callers may do better to
2498   /// detect when no insertion point is defined and simply skip IR generation.
2499   void EnsureInsertPoint() {
2500     if (!HaveInsertPoint())
2501       EmitBlock(createBasicBlock());
2502   }
2503 
2504   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2505   /// specified stmt yet.
2506   void ErrorUnsupported(const Stmt *S, const char *Type);
2507 
2508   //===--------------------------------------------------------------------===//
2509   //                                  Helpers
2510   //===--------------------------------------------------------------------===//
2511 
2512   LValue MakeAddrLValue(Address Addr, QualType T,
2513                         AlignmentSource Source = AlignmentSource::Type) {
2514     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2515                             CGM.getTBAAAccessInfo(T));
2516   }
2517 
2518   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2519                         TBAAAccessInfo TBAAInfo) {
2520     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2521   }
2522 
2523   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2524                         AlignmentSource Source = AlignmentSource::Type) {
2525     Address Addr(V, ConvertTypeForMem(T), Alignment);
2526     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2527                             CGM.getTBAAAccessInfo(T));
2528   }
2529 
2530   LValue
2531   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2532                             AlignmentSource Source = AlignmentSource::Type) {
2533     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2534                             TBAAAccessInfo());
2535   }
2536 
2537   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2538   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2539 
2540   Address EmitLoadOfReference(LValue RefLVal,
2541                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2542                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2543   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2544   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2545                                    AlignmentSource Source =
2546                                        AlignmentSource::Type) {
2547     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2548                                     CGM.getTBAAAccessInfo(RefTy));
2549     return EmitLoadOfReferenceLValue(RefLVal);
2550   }
2551 
2552   /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2553   /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2554   /// it is loaded from.
2555   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2556                             LValueBaseInfo *BaseInfo = nullptr,
2557                             TBAAAccessInfo *TBAAInfo = nullptr);
2558   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2559 
2560   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2561   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2562   /// insertion point of the builder. The caller is responsible for setting an
2563   /// appropriate alignment on
2564   /// the alloca.
2565   ///
2566   /// \p ArraySize is the number of array elements to be allocated if it
2567   ///    is not nullptr.
2568   ///
2569   /// LangAS::Default is the address space of pointers to local variables and
2570   /// temporaries, as exposed in the source language. In certain
2571   /// configurations, this is not the same as the alloca address space, and a
2572   /// cast is needed to lift the pointer from the alloca AS into
2573   /// LangAS::Default. This can happen when the target uses a restricted
2574   /// address space for the stack but the source language requires
2575   /// LangAS::Default to be a generic address space. The latter condition is
2576   /// common for most programming languages; OpenCL is an exception in that
2577   /// LangAS::Default is the private address space, which naturally maps
2578   /// to the stack.
2579   ///
2580   /// Because the address of a temporary is often exposed to the program in
2581   /// various ways, this function will perform the cast. The original alloca
2582   /// instruction is returned through \p Alloca if it is not nullptr.
2583   ///
2584   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2585   /// more efficient if the caller knows that the address will not be exposed.
2586   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2587                                      llvm::Value *ArraySize = nullptr);
2588   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2589                            const Twine &Name = "tmp",
2590                            llvm::Value *ArraySize = nullptr,
2591                            Address *Alloca = nullptr);
2592   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2593                                       const Twine &Name = "tmp",
2594                                       llvm::Value *ArraySize = nullptr);
2595 
2596   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2597   /// default ABI alignment of the given LLVM type.
2598   ///
2599   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2600   /// any given AST type that happens to have been lowered to the
2601   /// given IR type.  This should only ever be used for function-local,
2602   /// IR-driven manipulations like saving and restoring a value.  Do
2603   /// not hand this address off to arbitrary IRGen routines, and especially
2604   /// do not pass it as an argument to a function that might expect a
2605   /// properly ABI-aligned value.
2606   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2607                                        const Twine &Name = "tmp");
2608 
2609   /// CreateIRTemp - Create a temporary IR object of the given type, with
2610   /// appropriate alignment. This routine should only be used when an temporary
2611   /// value needs to be stored into an alloca (for example, to avoid explicit
2612   /// PHI construction), but the type is the IR type, not the type appropriate
2613   /// for storing in memory.
2614   ///
2615   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2616   /// ConvertType instead of ConvertTypeForMem.
2617   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2618 
2619   /// CreateMemTemp - Create a temporary memory object of the given type, with
2620   /// appropriate alignmen and cast it to the default address space. Returns
2621   /// the original alloca instruction by \p Alloca if it is not nullptr.
2622   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2623                         Address *Alloca = nullptr);
2624   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2625                         Address *Alloca = nullptr);
2626 
2627   /// CreateMemTemp - Create a temporary memory object of the given type, with
2628   /// appropriate alignmen without casting it to the default address space.
2629   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2630   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2631                                    const Twine &Name = "tmp");
2632 
2633   /// CreateAggTemp - Create a temporary memory object for the given
2634   /// aggregate type.
2635   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2636                              Address *Alloca = nullptr) {
2637     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2638                                  T.getQualifiers(),
2639                                  AggValueSlot::IsNotDestructed,
2640                                  AggValueSlot::DoesNotNeedGCBarriers,
2641                                  AggValueSlot::IsNotAliased,
2642                                  AggValueSlot::DoesNotOverlap);
2643   }
2644 
2645   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2646   /// expression and compare the result against zero, returning an Int1Ty value.
2647   llvm::Value *EvaluateExprAsBool(const Expr *E);
2648 
2649   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2650   void EmitIgnoredExpr(const Expr *E);
2651 
2652   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2653   /// any type.  The result is returned as an RValue struct.  If this is an
2654   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2655   /// the result should be returned.
2656   ///
2657   /// \param ignoreResult True if the resulting value isn't used.
2658   RValue EmitAnyExpr(const Expr *E,
2659                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2660                      bool ignoreResult = false);
2661 
2662   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2663   // or the value of the expression, depending on how va_list is defined.
2664   Address EmitVAListRef(const Expr *E);
2665 
2666   /// Emit a "reference" to a __builtin_ms_va_list; this is
2667   /// always the value of the expression, because a __builtin_ms_va_list is a
2668   /// pointer to a char.
2669   Address EmitMSVAListRef(const Expr *E);
2670 
2671   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2672   /// always be accessible even if no aggregate location is provided.
2673   RValue EmitAnyExprToTemp(const Expr *E);
2674 
2675   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2676   /// arbitrary expression into the given memory location.
2677   void EmitAnyExprToMem(const Expr *E, Address Location,
2678                         Qualifiers Quals, bool IsInitializer);
2679 
2680   void EmitAnyExprToExn(const Expr *E, Address Addr);
2681 
2682   /// EmitExprAsInit - Emits the code necessary to initialize a
2683   /// location in memory with the given initializer.
2684   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2685                       bool capturedByInit);
2686 
2687   /// hasVolatileMember - returns true if aggregate type has a volatile
2688   /// member.
2689   bool hasVolatileMember(QualType T) {
2690     if (const RecordType *RT = T->getAs<RecordType>()) {
2691       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2692       return RD->hasVolatileMember();
2693     }
2694     return false;
2695   }
2696 
2697   /// Determine whether a return value slot may overlap some other object.
2698   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2699     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2700     // class subobjects. These cases may need to be revisited depending on the
2701     // resolution of the relevant core issue.
2702     return AggValueSlot::DoesNotOverlap;
2703   }
2704 
2705   /// Determine whether a field initialization may overlap some other object.
2706   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2707 
2708   /// Determine whether a base class initialization may overlap some other
2709   /// object.
2710   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2711                                                 const CXXRecordDecl *BaseRD,
2712                                                 bool IsVirtual);
2713 
2714   /// Emit an aggregate assignment.
2715   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2716     bool IsVolatile = hasVolatileMember(EltTy);
2717     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2718   }
2719 
2720   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2721                              AggValueSlot::Overlap_t MayOverlap) {
2722     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2723   }
2724 
2725   /// EmitAggregateCopy - Emit an aggregate copy.
2726   ///
2727   /// \param isVolatile \c true iff either the source or the destination is
2728   ///        volatile.
2729   /// \param MayOverlap Whether the tail padding of the destination might be
2730   ///        occupied by some other object. More efficient code can often be
2731   ///        generated if not.
2732   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2733                          AggValueSlot::Overlap_t MayOverlap,
2734                          bool isVolatile = false);
2735 
2736   /// GetAddrOfLocalVar - Return the address of a local variable.
2737   Address GetAddrOfLocalVar(const VarDecl *VD) {
2738     auto it = LocalDeclMap.find(VD);
2739     assert(it != LocalDeclMap.end() &&
2740            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2741     return it->second;
2742   }
2743 
2744   /// Given an opaque value expression, return its LValue mapping if it exists,
2745   /// otherwise create one.
2746   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2747 
2748   /// Given an opaque value expression, return its RValue mapping if it exists,
2749   /// otherwise create one.
2750   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2751 
2752   /// Get the index of the current ArrayInitLoopExpr, if any.
2753   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2754 
2755   /// getAccessedFieldNo - Given an encoded value and a result number, return
2756   /// the input field number being accessed.
2757   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2758 
2759   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2760   llvm::BasicBlock *GetIndirectGotoBlock();
2761 
2762   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2763   static bool IsWrappedCXXThis(const Expr *E);
2764 
2765   /// EmitNullInitialization - Generate code to set a value of the given type to
2766   /// null, If the type contains data member pointers, they will be initialized
2767   /// to -1 in accordance with the Itanium C++ ABI.
2768   void EmitNullInitialization(Address DestPtr, QualType Ty);
2769 
2770   /// Emits a call to an LLVM variable-argument intrinsic, either
2771   /// \c llvm.va_start or \c llvm.va_end.
2772   /// \param ArgValue A reference to the \c va_list as emitted by either
2773   /// \c EmitVAListRef or \c EmitMSVAListRef.
2774   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2775   /// calls \c llvm.va_end.
2776   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2777 
2778   /// Generate code to get an argument from the passed in pointer
2779   /// and update it accordingly.
2780   /// \param VE The \c VAArgExpr for which to generate code.
2781   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2782   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2783   /// \returns A pointer to the argument.
2784   // FIXME: We should be able to get rid of this method and use the va_arg
2785   // instruction in LLVM instead once it works well enough.
2786   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2787 
2788   /// emitArrayLength - Compute the length of an array, even if it's a
2789   /// VLA, and drill down to the base element type.
2790   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2791                                QualType &baseType,
2792                                Address &addr);
2793 
2794   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2795   /// the given variably-modified type and store them in the VLASizeMap.
2796   ///
2797   /// This function can be called with a null (unreachable) insert point.
2798   void EmitVariablyModifiedType(QualType Ty);
2799 
2800   struct VlaSizePair {
2801     llvm::Value *NumElts;
2802     QualType Type;
2803 
2804     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2805   };
2806 
2807   /// Return the number of elements for a single dimension
2808   /// for the given array type.
2809   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2810   VlaSizePair getVLAElements1D(QualType vla);
2811 
2812   /// Returns an LLVM value that corresponds to the size,
2813   /// in non-variably-sized elements, of a variable length array type,
2814   /// plus that largest non-variably-sized element type.  Assumes that
2815   /// the type has already been emitted with EmitVariablyModifiedType.
2816   VlaSizePair getVLASize(const VariableArrayType *vla);
2817   VlaSizePair getVLASize(QualType vla);
2818 
2819   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2820   /// generating code for an C++ member function.
2821   llvm::Value *LoadCXXThis() {
2822     assert(CXXThisValue && "no 'this' value for this function");
2823     return CXXThisValue;
2824   }
2825   Address LoadCXXThisAddress();
2826 
2827   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2828   /// virtual bases.
2829   // FIXME: Every place that calls LoadCXXVTT is something
2830   // that needs to be abstracted properly.
2831   llvm::Value *LoadCXXVTT() {
2832     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2833     return CXXStructorImplicitParamValue;
2834   }
2835 
2836   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2837   /// complete class to the given direct base.
2838   Address
2839   GetAddressOfDirectBaseInCompleteClass(Address Value,
2840                                         const CXXRecordDecl *Derived,
2841                                         const CXXRecordDecl *Base,
2842                                         bool BaseIsVirtual);
2843 
2844   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2845 
2846   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2847   /// load of 'this' and returns address of the base class.
2848   Address GetAddressOfBaseClass(Address Value,
2849                                 const CXXRecordDecl *Derived,
2850                                 CastExpr::path_const_iterator PathBegin,
2851                                 CastExpr::path_const_iterator PathEnd,
2852                                 bool NullCheckValue, SourceLocation Loc);
2853 
2854   Address GetAddressOfDerivedClass(Address Value,
2855                                    const CXXRecordDecl *Derived,
2856                                    CastExpr::path_const_iterator PathBegin,
2857                                    CastExpr::path_const_iterator PathEnd,
2858                                    bool NullCheckValue);
2859 
2860   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2861   /// base constructor/destructor with virtual bases.
2862   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2863   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2864   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2865                                bool Delegating);
2866 
2867   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2868                                       CXXCtorType CtorType,
2869                                       const FunctionArgList &Args,
2870                                       SourceLocation Loc);
2871   // It's important not to confuse this and the previous function. Delegating
2872   // constructors are the C++0x feature. The constructor delegate optimization
2873   // is used to reduce duplication in the base and complete consturctors where
2874   // they are substantially the same.
2875   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2876                                         const FunctionArgList &Args);
2877 
2878   /// Emit a call to an inheriting constructor (that is, one that invokes a
2879   /// constructor inherited from a base class) by inlining its definition. This
2880   /// is necessary if the ABI does not support forwarding the arguments to the
2881   /// base class constructor (because they're variadic or similar).
2882   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2883                                                CXXCtorType CtorType,
2884                                                bool ForVirtualBase,
2885                                                bool Delegating,
2886                                                CallArgList &Args);
2887 
2888   /// Emit a call to a constructor inherited from a base class, passing the
2889   /// current constructor's arguments along unmodified (without even making
2890   /// a copy).
2891   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2892                                        bool ForVirtualBase, Address This,
2893                                        bool InheritedFromVBase,
2894                                        const CXXInheritedCtorInitExpr *E);
2895 
2896   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2897                               bool ForVirtualBase, bool Delegating,
2898                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2899 
2900   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2901                               bool ForVirtualBase, bool Delegating,
2902                               Address This, CallArgList &Args,
2903                               AggValueSlot::Overlap_t Overlap,
2904                               SourceLocation Loc, bool NewPointerIsChecked);
2905 
2906   /// Emit assumption load for all bases. Requires to be called only on
2907   /// most-derived class and not under construction of the object.
2908   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2909 
2910   /// Emit assumption that vptr load == global vtable.
2911   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2912 
2913   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2914                                       Address This, Address Src,
2915                                       const CXXConstructExpr *E);
2916 
2917   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2918                                   const ArrayType *ArrayTy,
2919                                   Address ArrayPtr,
2920                                   const CXXConstructExpr *E,
2921                                   bool NewPointerIsChecked,
2922                                   bool ZeroInitialization = false);
2923 
2924   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2925                                   llvm::Value *NumElements,
2926                                   Address ArrayPtr,
2927                                   const CXXConstructExpr *E,
2928                                   bool NewPointerIsChecked,
2929                                   bool ZeroInitialization = false);
2930 
2931   static Destroyer destroyCXXObject;
2932 
2933   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2934                              bool ForVirtualBase, bool Delegating, Address This,
2935                              QualType ThisTy);
2936 
2937   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2938                                llvm::Type *ElementTy, Address NewPtr,
2939                                llvm::Value *NumElements,
2940                                llvm::Value *AllocSizeWithoutCookie);
2941 
2942   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2943                         Address Ptr);
2944 
2945   void EmitSehCppScopeBegin();
2946   void EmitSehCppScopeEnd();
2947   void EmitSehTryScopeBegin();
2948   void EmitSehTryScopeEnd();
2949 
2950   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2951   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2952 
2953   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2954   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2955 
2956   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2957                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2958                       CharUnits CookieSize = CharUnits());
2959 
2960   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2961                                   const CallExpr *TheCallExpr, bool IsDelete);
2962 
2963   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2964   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2965   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2966 
2967   /// Situations in which we might emit a check for the suitability of a
2968   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2969   /// compiler-rt.
2970   enum TypeCheckKind {
2971     /// Checking the operand of a load. Must be suitably sized and aligned.
2972     TCK_Load,
2973     /// Checking the destination of a store. Must be suitably sized and aligned.
2974     TCK_Store,
2975     /// Checking the bound value in a reference binding. Must be suitably sized
2976     /// and aligned, but is not required to refer to an object (until the
2977     /// reference is used), per core issue 453.
2978     TCK_ReferenceBinding,
2979     /// Checking the object expression in a non-static data member access. Must
2980     /// be an object within its lifetime.
2981     TCK_MemberAccess,
2982     /// Checking the 'this' pointer for a call to a non-static member function.
2983     /// Must be an object within its lifetime.
2984     TCK_MemberCall,
2985     /// Checking the 'this' pointer for a constructor call.
2986     TCK_ConstructorCall,
2987     /// Checking the operand of a static_cast to a derived pointer type. Must be
2988     /// null or an object within its lifetime.
2989     TCK_DowncastPointer,
2990     /// Checking the operand of a static_cast to a derived reference type. Must
2991     /// be an object within its lifetime.
2992     TCK_DowncastReference,
2993     /// Checking the operand of a cast to a base object. Must be suitably sized
2994     /// and aligned.
2995     TCK_Upcast,
2996     /// Checking the operand of a cast to a virtual base object. Must be an
2997     /// object within its lifetime.
2998     TCK_UpcastToVirtualBase,
2999     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
3000     TCK_NonnullAssign,
3001     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
3002     /// null or an object within its lifetime.
3003     TCK_DynamicOperation
3004   };
3005 
3006   /// Determine whether the pointer type check \p TCK permits null pointers.
3007   static bool isNullPointerAllowed(TypeCheckKind TCK);
3008 
3009   /// Determine whether the pointer type check \p TCK requires a vptr check.
3010   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
3011 
3012   /// Whether any type-checking sanitizers are enabled. If \c false,
3013   /// calls to EmitTypeCheck can be skipped.
3014   bool sanitizePerformTypeCheck() const;
3015 
3016   /// Emit a check that \p V is the address of storage of the
3017   /// appropriate size and alignment for an object of type \p Type
3018   /// (or if ArraySize is provided, for an array of that bound).
3019   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3020                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3021                      SanitizerSet SkippedChecks = SanitizerSet(),
3022                      llvm::Value *ArraySize = nullptr);
3023 
3024   /// Emit a check that \p Base points into an array object, which
3025   /// we can access at index \p Index. \p Accessed should be \c false if we
3026   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3027   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3028                        QualType IndexType, bool Accessed);
3029 
3030   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3031                                        bool isInc, bool isPre);
3032   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3033                                          bool isInc, bool isPre);
3034 
3035   /// Converts Location to a DebugLoc, if debug information is enabled.
3036   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3037 
3038   /// Get the record field index as represented in debug info.
3039   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3040 
3041 
3042   //===--------------------------------------------------------------------===//
3043   //                            Declaration Emission
3044   //===--------------------------------------------------------------------===//
3045 
3046   /// EmitDecl - Emit a declaration.
3047   ///
3048   /// This function can be called with a null (unreachable) insert point.
3049   void EmitDecl(const Decl &D);
3050 
3051   /// EmitVarDecl - Emit a local variable declaration.
3052   ///
3053   /// This function can be called with a null (unreachable) insert point.
3054   void EmitVarDecl(const VarDecl &D);
3055 
3056   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3057                       bool capturedByInit);
3058 
3059   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3060                              llvm::Value *Address);
3061 
3062   /// Determine whether the given initializer is trivial in the sense
3063   /// that it requires no code to be generated.
3064   bool isTrivialInitializer(const Expr *Init);
3065 
3066   /// EmitAutoVarDecl - Emit an auto variable declaration.
3067   ///
3068   /// This function can be called with a null (unreachable) insert point.
3069   void EmitAutoVarDecl(const VarDecl &D);
3070 
3071   class AutoVarEmission {
3072     friend class CodeGenFunction;
3073 
3074     const VarDecl *Variable;
3075 
3076     /// The address of the alloca for languages with explicit address space
3077     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3078     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3079     /// as a global constant.
3080     Address Addr;
3081 
3082     llvm::Value *NRVOFlag;
3083 
3084     /// True if the variable is a __block variable that is captured by an
3085     /// escaping block.
3086     bool IsEscapingByRef;
3087 
3088     /// True if the variable is of aggregate type and has a constant
3089     /// initializer.
3090     bool IsConstantAggregate;
3091 
3092     /// Non-null if we should use lifetime annotations.
3093     llvm::Value *SizeForLifetimeMarkers;
3094 
3095     /// Address with original alloca instruction. Invalid if the variable was
3096     /// emitted as a global constant.
3097     Address AllocaAddr;
3098 
3099     struct Invalid {};
3100     AutoVarEmission(Invalid)
3101         : Variable(nullptr), Addr(Address::invalid()),
3102           AllocaAddr(Address::invalid()) {}
3103 
3104     AutoVarEmission(const VarDecl &variable)
3105         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3106           IsEscapingByRef(false), IsConstantAggregate(false),
3107           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3108 
3109     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3110 
3111   public:
3112     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3113 
3114     bool useLifetimeMarkers() const {
3115       return SizeForLifetimeMarkers != nullptr;
3116     }
3117     llvm::Value *getSizeForLifetimeMarkers() const {
3118       assert(useLifetimeMarkers());
3119       return SizeForLifetimeMarkers;
3120     }
3121 
3122     /// Returns the raw, allocated address, which is not necessarily
3123     /// the address of the object itself. It is casted to default
3124     /// address space for address space agnostic languages.
3125     Address getAllocatedAddress() const {
3126       return Addr;
3127     }
3128 
3129     /// Returns the address for the original alloca instruction.
3130     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3131 
3132     /// Returns the address of the object within this declaration.
3133     /// Note that this does not chase the forwarding pointer for
3134     /// __block decls.
3135     Address getObjectAddress(CodeGenFunction &CGF) const {
3136       if (!IsEscapingByRef) return Addr;
3137 
3138       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3139     }
3140   };
3141   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3142   void EmitAutoVarInit(const AutoVarEmission &emission);
3143   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3144   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3145                               QualType::DestructionKind dtorKind);
3146 
3147   /// Emits the alloca and debug information for the size expressions for each
3148   /// dimension of an array. It registers the association of its (1-dimensional)
3149   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3150   /// reference this node when creating the DISubrange object to describe the
3151   /// array types.
3152   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3153                                               const VarDecl &D,
3154                                               bool EmitDebugInfo);
3155 
3156   void EmitStaticVarDecl(const VarDecl &D,
3157                          llvm::GlobalValue::LinkageTypes Linkage);
3158 
3159   class ParamValue {
3160     llvm::Value *Value;
3161     llvm::Type *ElementType;
3162     unsigned Alignment;
3163     ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3164         : Value(V), ElementType(T), Alignment(A) {}
3165   public:
3166     static ParamValue forDirect(llvm::Value *value) {
3167       return ParamValue(value, nullptr, 0);
3168     }
3169     static ParamValue forIndirect(Address addr) {
3170       assert(!addr.getAlignment().isZero());
3171       return ParamValue(addr.getPointer(), addr.getElementType(),
3172                         addr.getAlignment().getQuantity());
3173     }
3174 
3175     bool isIndirect() const { return Alignment != 0; }
3176     llvm::Value *getAnyValue() const { return Value; }
3177 
3178     llvm::Value *getDirectValue() const {
3179       assert(!isIndirect());
3180       return Value;
3181     }
3182 
3183     Address getIndirectAddress() const {
3184       assert(isIndirect());
3185       return Address(Value, ElementType, CharUnits::fromQuantity(Alignment),
3186                      KnownNonNull);
3187     }
3188   };
3189 
3190   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3191   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3192 
3193   /// protectFromPeepholes - Protect a value that we're intending to
3194   /// store to the side, but which will probably be used later, from
3195   /// aggressive peepholing optimizations that might delete it.
3196   ///
3197   /// Pass the result to unprotectFromPeepholes to declare that
3198   /// protection is no longer required.
3199   ///
3200   /// There's no particular reason why this shouldn't apply to
3201   /// l-values, it's just that no existing peepholes work on pointers.
3202   PeepholeProtection protectFromPeepholes(RValue rvalue);
3203   void unprotectFromPeepholes(PeepholeProtection protection);
3204 
3205   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3206                                     SourceLocation Loc,
3207                                     SourceLocation AssumptionLoc,
3208                                     llvm::Value *Alignment,
3209                                     llvm::Value *OffsetValue,
3210                                     llvm::Value *TheCheck,
3211                                     llvm::Instruction *Assumption);
3212 
3213   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3214                                SourceLocation Loc, SourceLocation AssumptionLoc,
3215                                llvm::Value *Alignment,
3216                                llvm::Value *OffsetValue = nullptr);
3217 
3218   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3219                                SourceLocation AssumptionLoc,
3220                                llvm::Value *Alignment,
3221                                llvm::Value *OffsetValue = nullptr);
3222 
3223   //===--------------------------------------------------------------------===//
3224   //                             Statement Emission
3225   //===--------------------------------------------------------------------===//
3226 
3227   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3228   void EmitStopPoint(const Stmt *S);
3229 
3230   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3231   /// this function even if there is no current insertion point.
3232   ///
3233   /// This function may clear the current insertion point; callers should use
3234   /// EnsureInsertPoint if they wish to subsequently generate code without first
3235   /// calling EmitBlock, EmitBranch, or EmitStmt.
3236   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt);
3237 
3238   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3239   /// necessarily require an insertion point or debug information; typically
3240   /// because the statement amounts to a jump or a container of other
3241   /// statements.
3242   ///
3243   /// \return True if the statement was handled.
3244   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3245 
3246   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3247                            AggValueSlot AVS = AggValueSlot::ignored());
3248   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3249                                        bool GetLast = false,
3250                                        AggValueSlot AVS =
3251                                                 AggValueSlot::ignored());
3252 
3253   /// EmitLabel - Emit the block for the given label. It is legal to call this
3254   /// function even if there is no current insertion point.
3255   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3256 
3257   void EmitLabelStmt(const LabelStmt &S);
3258   void EmitAttributedStmt(const AttributedStmt &S);
3259   void EmitGotoStmt(const GotoStmt &S);
3260   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3261   void EmitIfStmt(const IfStmt &S);
3262 
3263   void EmitWhileStmt(const WhileStmt &S,
3264                      ArrayRef<const Attr *> Attrs = std::nullopt);
3265   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt);
3266   void EmitForStmt(const ForStmt &S,
3267                    ArrayRef<const Attr *> Attrs = std::nullopt);
3268   void EmitReturnStmt(const ReturnStmt &S);
3269   void EmitDeclStmt(const DeclStmt &S);
3270   void EmitBreakStmt(const BreakStmt &S);
3271   void EmitContinueStmt(const ContinueStmt &S);
3272   void EmitSwitchStmt(const SwitchStmt &S);
3273   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3274   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3275   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3276   void EmitAsmStmt(const AsmStmt &S);
3277 
3278   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3279   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3280   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3281   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3282   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3283 
3284   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3285   void EmitCoreturnStmt(const CoreturnStmt &S);
3286   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3287                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3288                          bool ignoreResult = false);
3289   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3290   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3291                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3292                          bool ignoreResult = false);
3293   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3294   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3295 
3296   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3297   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3298 
3299   void EmitCXXTryStmt(const CXXTryStmt &S);
3300   void EmitSEHTryStmt(const SEHTryStmt &S);
3301   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3302   void EnterSEHTryStmt(const SEHTryStmt &S);
3303   void ExitSEHTryStmt(const SEHTryStmt &S);
3304   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3305                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3306 
3307   void pushSEHCleanup(CleanupKind kind,
3308                       llvm::Function *FinallyFunc);
3309   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3310                               const Stmt *OutlinedStmt);
3311 
3312   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3313                                             const SEHExceptStmt &Except);
3314 
3315   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3316                                              const SEHFinallyStmt &Finally);
3317 
3318   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3319                                 llvm::Value *ParentFP,
3320                                 llvm::Value *EntryEBP);
3321   llvm::Value *EmitSEHExceptionCode();
3322   llvm::Value *EmitSEHExceptionInfo();
3323   llvm::Value *EmitSEHAbnormalTermination();
3324 
3325   /// Emit simple code for OpenMP directives in Simd-only mode.
3326   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3327 
3328   /// Scan the outlined statement for captures from the parent function. For
3329   /// each capture, mark the capture as escaped and emit a call to
3330   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3331   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3332                           bool IsFilter);
3333 
3334   /// Recovers the address of a local in a parent function. ParentVar is the
3335   /// address of the variable used in the immediate parent function. It can
3336   /// either be an alloca or a call to llvm.localrecover if there are nested
3337   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3338   /// frame.
3339   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3340                                     Address ParentVar,
3341                                     llvm::Value *ParentFP);
3342 
3343   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3344                            ArrayRef<const Attr *> Attrs = std::nullopt);
3345 
3346   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3347   class OMPCancelStackRAII {
3348     CodeGenFunction &CGF;
3349 
3350   public:
3351     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3352                        bool HasCancel)
3353         : CGF(CGF) {
3354       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3355     }
3356     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3357   };
3358 
3359   /// Returns calculated size of the specified type.
3360   llvm::Value *getTypeSize(QualType Ty);
3361   LValue InitCapturedStruct(const CapturedStmt &S);
3362   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3363   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3364   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3365   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3366                                                      SourceLocation Loc);
3367   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3368                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3369   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3370                           SourceLocation Loc);
3371   /// Perform element by element copying of arrays with type \a
3372   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3373   /// generated by \a CopyGen.
3374   ///
3375   /// \param DestAddr Address of the destination array.
3376   /// \param SrcAddr Address of the source array.
3377   /// \param OriginalType Type of destination and source arrays.
3378   /// \param CopyGen Copying procedure that copies value of single array element
3379   /// to another single array element.
3380   void EmitOMPAggregateAssign(
3381       Address DestAddr, Address SrcAddr, QualType OriginalType,
3382       const llvm::function_ref<void(Address, Address)> CopyGen);
3383   /// Emit proper copying of data from one variable to another.
3384   ///
3385   /// \param OriginalType Original type of the copied variables.
3386   /// \param DestAddr Destination address.
3387   /// \param SrcAddr Source address.
3388   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3389   /// type of the base array element).
3390   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3391   /// the base array element).
3392   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3393   /// DestVD.
3394   void EmitOMPCopy(QualType OriginalType,
3395                    Address DestAddr, Address SrcAddr,
3396                    const VarDecl *DestVD, const VarDecl *SrcVD,
3397                    const Expr *Copy);
3398   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3399   /// \a X = \a E \a BO \a E.
3400   ///
3401   /// \param X Value to be updated.
3402   /// \param E Update value.
3403   /// \param BO Binary operation for update operation.
3404   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3405   /// expression, false otherwise.
3406   /// \param AO Atomic ordering of the generated atomic instructions.
3407   /// \param CommonGen Code generator for complex expressions that cannot be
3408   /// expressed through atomicrmw instruction.
3409   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3410   /// generated, <false, RValue::get(nullptr)> otherwise.
3411   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3412       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3413       llvm::AtomicOrdering AO, SourceLocation Loc,
3414       const llvm::function_ref<RValue(RValue)> CommonGen);
3415   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3416                                  OMPPrivateScope &PrivateScope);
3417   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3418                             OMPPrivateScope &PrivateScope);
3419   void EmitOMPUseDevicePtrClause(
3420       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3421       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3422           CaptureDeviceAddrMap);
3423   void EmitOMPUseDeviceAddrClause(
3424       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3425       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3426           CaptureDeviceAddrMap);
3427   /// Emit code for copyin clause in \a D directive. The next code is
3428   /// generated at the start of outlined functions for directives:
3429   /// \code
3430   /// threadprivate_var1 = master_threadprivate_var1;
3431   /// operator=(threadprivate_var2, master_threadprivate_var2);
3432   /// ...
3433   /// __kmpc_barrier(&loc, global_tid);
3434   /// \endcode
3435   ///
3436   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3437   /// \returns true if at least one copyin variable is found, false otherwise.
3438   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3439   /// Emit initial code for lastprivate variables. If some variable is
3440   /// not also firstprivate, then the default initialization is used. Otherwise
3441   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3442   /// method.
3443   ///
3444   /// \param D Directive that may have 'lastprivate' directives.
3445   /// \param PrivateScope Private scope for capturing lastprivate variables for
3446   /// proper codegen in internal captured statement.
3447   ///
3448   /// \returns true if there is at least one lastprivate variable, false
3449   /// otherwise.
3450   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3451                                     OMPPrivateScope &PrivateScope);
3452   /// Emit final copying of lastprivate values to original variables at
3453   /// the end of the worksharing or simd directive.
3454   ///
3455   /// \param D Directive that has at least one 'lastprivate' directives.
3456   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3457   /// it is the last iteration of the loop code in associated directive, or to
3458   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3459   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3460                                      bool NoFinals,
3461                                      llvm::Value *IsLastIterCond = nullptr);
3462   /// Emit initial code for linear clauses.
3463   void EmitOMPLinearClause(const OMPLoopDirective &D,
3464                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3465   /// Emit final code for linear clauses.
3466   /// \param CondGen Optional conditional code for final part of codegen for
3467   /// linear clause.
3468   void EmitOMPLinearClauseFinal(
3469       const OMPLoopDirective &D,
3470       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3471   /// Emit initial code for reduction variables. Creates reduction copies
3472   /// and initializes them with the values according to OpenMP standard.
3473   ///
3474   /// \param D Directive (possibly) with the 'reduction' clause.
3475   /// \param PrivateScope Private scope for capturing reduction variables for
3476   /// proper codegen in internal captured statement.
3477   ///
3478   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3479                                   OMPPrivateScope &PrivateScope,
3480                                   bool ForInscan = false);
3481   /// Emit final update of reduction values to original variables at
3482   /// the end of the directive.
3483   ///
3484   /// \param D Directive that has at least one 'reduction' directives.
3485   /// \param ReductionKind The kind of reduction to perform.
3486   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3487                                    const OpenMPDirectiveKind ReductionKind);
3488   /// Emit initial code for linear variables. Creates private copies
3489   /// and initializes them with the values according to OpenMP standard.
3490   ///
3491   /// \param D Directive (possibly) with the 'linear' clause.
3492   /// \return true if at least one linear variable is found that should be
3493   /// initialized with the value of the original variable, false otherwise.
3494   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3495 
3496   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3497                                         llvm::Function * /*OutlinedFn*/,
3498                                         const OMPTaskDataTy & /*Data*/)>
3499       TaskGenTy;
3500   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3501                                  const OpenMPDirectiveKind CapturedRegion,
3502                                  const RegionCodeGenTy &BodyGen,
3503                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3504   struct OMPTargetDataInfo {
3505     Address BasePointersArray = Address::invalid();
3506     Address PointersArray = Address::invalid();
3507     Address SizesArray = Address::invalid();
3508     Address MappersArray = Address::invalid();
3509     unsigned NumberOfTargetItems = 0;
3510     explicit OMPTargetDataInfo() = default;
3511     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3512                       Address SizesArray, Address MappersArray,
3513                       unsigned NumberOfTargetItems)
3514         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3515           SizesArray(SizesArray), MappersArray(MappersArray),
3516           NumberOfTargetItems(NumberOfTargetItems) {}
3517   };
3518   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3519                                        const RegionCodeGenTy &BodyGen,
3520                                        OMPTargetDataInfo &InputInfo);
3521   void processInReduction(const OMPExecutableDirective &S,
3522                           OMPTaskDataTy &Data,
3523                           CodeGenFunction &CGF,
3524                           const CapturedStmt *CS,
3525                           OMPPrivateScope &Scope);
3526   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3527   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3528   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3529   void EmitOMPTileDirective(const OMPTileDirective &S);
3530   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3531   void EmitOMPForDirective(const OMPForDirective &S);
3532   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3533   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3534   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3535   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3536   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3537   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3538   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3539   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3540   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3541   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3542   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3543   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3544   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3545   void EmitOMPErrorDirective(const OMPErrorDirective &S);
3546   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3547   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3548   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3549   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3550   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3551   void EmitOMPScanDirective(const OMPScanDirective &S);
3552   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3553   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3554   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3555   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3556   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3557   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3558   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3559   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3560   void
3561   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3562   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3563   void
3564   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3565   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3566   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3567   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3568   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3569   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3570   void
3571   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3572   void EmitOMPParallelMasterTaskLoopDirective(
3573       const OMPParallelMasterTaskLoopDirective &S);
3574   void EmitOMPParallelMasterTaskLoopSimdDirective(
3575       const OMPParallelMasterTaskLoopSimdDirective &S);
3576   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3577   void EmitOMPDistributeParallelForDirective(
3578       const OMPDistributeParallelForDirective &S);
3579   void EmitOMPDistributeParallelForSimdDirective(
3580       const OMPDistributeParallelForSimdDirective &S);
3581   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3582   void EmitOMPTargetParallelForSimdDirective(
3583       const OMPTargetParallelForSimdDirective &S);
3584   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3585   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3586   void
3587   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3588   void EmitOMPTeamsDistributeParallelForSimdDirective(
3589       const OMPTeamsDistributeParallelForSimdDirective &S);
3590   void EmitOMPTeamsDistributeParallelForDirective(
3591       const OMPTeamsDistributeParallelForDirective &S);
3592   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3593   void EmitOMPTargetTeamsDistributeDirective(
3594       const OMPTargetTeamsDistributeDirective &S);
3595   void EmitOMPTargetTeamsDistributeParallelForDirective(
3596       const OMPTargetTeamsDistributeParallelForDirective &S);
3597   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3598       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3599   void EmitOMPTargetTeamsDistributeSimdDirective(
3600       const OMPTargetTeamsDistributeSimdDirective &S);
3601   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3602   void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S);
3603   void EmitOMPTargetParallelGenericLoopDirective(
3604       const OMPTargetParallelGenericLoopDirective &S);
3605   void EmitOMPTargetTeamsGenericLoopDirective(
3606       const OMPTargetTeamsGenericLoopDirective &S);
3607   void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S);
3608   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3609   void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S);
3610 
3611   /// Emit device code for the target directive.
3612   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3613                                           StringRef ParentName,
3614                                           const OMPTargetDirective &S);
3615   static void
3616   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3617                                       const OMPTargetParallelDirective &S);
3618   /// Emit device code for the target parallel for directive.
3619   static void EmitOMPTargetParallelForDeviceFunction(
3620       CodeGenModule &CGM, StringRef ParentName,
3621       const OMPTargetParallelForDirective &S);
3622   /// Emit device code for the target parallel for simd directive.
3623   static void EmitOMPTargetParallelForSimdDeviceFunction(
3624       CodeGenModule &CGM, StringRef ParentName,
3625       const OMPTargetParallelForSimdDirective &S);
3626   /// Emit device code for the target teams directive.
3627   static void
3628   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3629                                    const OMPTargetTeamsDirective &S);
3630   /// Emit device code for the target teams distribute directive.
3631   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3632       CodeGenModule &CGM, StringRef ParentName,
3633       const OMPTargetTeamsDistributeDirective &S);
3634   /// Emit device code for the target teams distribute simd directive.
3635   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3636       CodeGenModule &CGM, StringRef ParentName,
3637       const OMPTargetTeamsDistributeSimdDirective &S);
3638   /// Emit device code for the target simd directive.
3639   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3640                                               StringRef ParentName,
3641                                               const OMPTargetSimdDirective &S);
3642   /// Emit device code for the target teams distribute parallel for simd
3643   /// directive.
3644   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3645       CodeGenModule &CGM, StringRef ParentName,
3646       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3647 
3648   /// Emit device code for the target teams loop directive.
3649   static void EmitOMPTargetTeamsGenericLoopDeviceFunction(
3650       CodeGenModule &CGM, StringRef ParentName,
3651       const OMPTargetTeamsGenericLoopDirective &S);
3652 
3653   /// Emit device code for the target parallel loop directive.
3654   static void EmitOMPTargetParallelGenericLoopDeviceFunction(
3655       CodeGenModule &CGM, StringRef ParentName,
3656       const OMPTargetParallelGenericLoopDirective &S);
3657 
3658   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3659       CodeGenModule &CGM, StringRef ParentName,
3660       const OMPTargetTeamsDistributeParallelForDirective &S);
3661 
3662   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3663   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3664   /// future it is meant to be the number of loops expected in the loop nests
3665   /// (usually specified by the "collapse" clause) that are collapsed to a
3666   /// single loop by this function.
3667   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3668                                                              int Depth);
3669 
3670   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3671   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3672 
3673   /// Emit inner loop of the worksharing/simd construct.
3674   ///
3675   /// \param S Directive, for which the inner loop must be emitted.
3676   /// \param RequiresCleanup true, if directive has some associated private
3677   /// variables.
3678   /// \param LoopCond Bollean condition for loop continuation.
3679   /// \param IncExpr Increment expression for loop control variable.
3680   /// \param BodyGen Generator for the inner body of the inner loop.
3681   /// \param PostIncGen Genrator for post-increment code (required for ordered
3682   /// loop directvies).
3683   void EmitOMPInnerLoop(
3684       const OMPExecutableDirective &S, bool RequiresCleanup,
3685       const Expr *LoopCond, const Expr *IncExpr,
3686       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3687       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3688 
3689   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3690   /// Emit initial code for loop counters of loop-based directives.
3691   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3692                                   OMPPrivateScope &LoopScope);
3693 
3694   /// Helper for the OpenMP loop directives.
3695   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3696 
3697   /// Emit code for the worksharing loop-based directive.
3698   /// \return true, if this construct has any lastprivate clause, false -
3699   /// otherwise.
3700   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3701                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3702                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3703 
3704   /// Emit code for the distribute loop-based directive.
3705   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3706                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3707 
3708   /// Helpers for the OpenMP loop directives.
3709   void EmitOMPSimdInit(const OMPLoopDirective &D);
3710   void EmitOMPSimdFinal(
3711       const OMPLoopDirective &D,
3712       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3713 
3714   /// Emits the lvalue for the expression with possibly captured variable.
3715   LValue EmitOMPSharedLValue(const Expr *E);
3716 
3717 private:
3718   /// Helpers for blocks.
3719   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3720 
3721   /// struct with the values to be passed to the OpenMP loop-related functions
3722   struct OMPLoopArguments {
3723     /// loop lower bound
3724     Address LB = Address::invalid();
3725     /// loop upper bound
3726     Address UB = Address::invalid();
3727     /// loop stride
3728     Address ST = Address::invalid();
3729     /// isLastIteration argument for runtime functions
3730     Address IL = Address::invalid();
3731     /// Chunk value generated by sema
3732     llvm::Value *Chunk = nullptr;
3733     /// EnsureUpperBound
3734     Expr *EUB = nullptr;
3735     /// IncrementExpression
3736     Expr *IncExpr = nullptr;
3737     /// Loop initialization
3738     Expr *Init = nullptr;
3739     /// Loop exit condition
3740     Expr *Cond = nullptr;
3741     /// Update of LB after a whole chunk has been executed
3742     Expr *NextLB = nullptr;
3743     /// Update of UB after a whole chunk has been executed
3744     Expr *NextUB = nullptr;
3745     OMPLoopArguments() = default;
3746     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3747                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3748                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3749                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3750                      Expr *NextUB = nullptr)
3751         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3752           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3753           NextUB(NextUB) {}
3754   };
3755   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3756                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3757                         const OMPLoopArguments &LoopArgs,
3758                         const CodeGenLoopTy &CodeGenLoop,
3759                         const CodeGenOrderedTy &CodeGenOrdered);
3760   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3761                            bool IsMonotonic, const OMPLoopDirective &S,
3762                            OMPPrivateScope &LoopScope, bool Ordered,
3763                            const OMPLoopArguments &LoopArgs,
3764                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3765   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3766                                   const OMPLoopDirective &S,
3767                                   OMPPrivateScope &LoopScope,
3768                                   const OMPLoopArguments &LoopArgs,
3769                                   const CodeGenLoopTy &CodeGenLoopContent);
3770   /// Emit code for sections directive.
3771   void EmitSections(const OMPExecutableDirective &S);
3772 
3773 public:
3774 
3775   //===--------------------------------------------------------------------===//
3776   //                         LValue Expression Emission
3777   //===--------------------------------------------------------------------===//
3778 
3779   /// Create a check that a scalar RValue is non-null.
3780   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3781 
3782   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3783   RValue GetUndefRValue(QualType Ty);
3784 
3785   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3786   /// and issue an ErrorUnsupported style diagnostic (using the
3787   /// provided Name).
3788   RValue EmitUnsupportedRValue(const Expr *E,
3789                                const char *Name);
3790 
3791   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3792   /// an ErrorUnsupported style diagnostic (using the provided Name).
3793   LValue EmitUnsupportedLValue(const Expr *E,
3794                                const char *Name);
3795 
3796   /// EmitLValue - Emit code to compute a designator that specifies the location
3797   /// of the expression.
3798   ///
3799   /// This can return one of two things: a simple address or a bitfield
3800   /// reference.  In either case, the LLVM Value* in the LValue structure is
3801   /// guaranteed to be an LLVM pointer type.
3802   ///
3803   /// If this returns a bitfield reference, nothing about the pointee type of
3804   /// the LLVM value is known: For example, it may not be a pointer to an
3805   /// integer.
3806   ///
3807   /// If this returns a normal address, and if the lvalue's C type is fixed
3808   /// size, this method guarantees that the returned pointer type will point to
3809   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3810   /// variable length type, this is not possible.
3811   ///
3812   LValue EmitLValue(const Expr *E,
3813                     KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
3814 
3815 private:
3816   LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull);
3817 
3818 public:
3819   /// Same as EmitLValue but additionally we generate checking code to
3820   /// guard against undefined behavior.  This is only suitable when we know
3821   /// that the address will be used to access the object.
3822   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3823 
3824   RValue convertTempToRValue(Address addr, QualType type,
3825                              SourceLocation Loc);
3826 
3827   void EmitAtomicInit(Expr *E, LValue lvalue);
3828 
3829   bool LValueIsSuitableForInlineAtomic(LValue Src);
3830 
3831   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3832                         AggValueSlot Slot = AggValueSlot::ignored());
3833 
3834   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3835                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3836                         AggValueSlot slot = AggValueSlot::ignored());
3837 
3838   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3839 
3840   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3841                        bool IsVolatile, bool isInit);
3842 
3843   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3844       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3845       llvm::AtomicOrdering Success =
3846           llvm::AtomicOrdering::SequentiallyConsistent,
3847       llvm::AtomicOrdering Failure =
3848           llvm::AtomicOrdering::SequentiallyConsistent,
3849       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3850 
3851   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3852                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3853                         bool IsVolatile);
3854 
3855   /// EmitToMemory - Change a scalar value from its value
3856   /// representation to its in-memory representation.
3857   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3858 
3859   /// EmitFromMemory - Change a scalar value from its memory
3860   /// representation to its value representation.
3861   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3862 
3863   /// Check if the scalar \p Value is within the valid range for the given
3864   /// type \p Ty.
3865   ///
3866   /// Returns true if a check is needed (even if the range is unknown).
3867   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3868                             SourceLocation Loc);
3869 
3870   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3871   /// care to appropriately convert from the memory representation to
3872   /// the LLVM value representation.
3873   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3874                                 SourceLocation Loc,
3875                                 AlignmentSource Source = AlignmentSource::Type,
3876                                 bool isNontemporal = false) {
3877     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3878                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3879   }
3880 
3881   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3882                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3883                                 TBAAAccessInfo TBAAInfo,
3884                                 bool isNontemporal = false);
3885 
3886   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3887   /// care to appropriately convert from the memory representation to
3888   /// the LLVM value representation.  The l-value must be a simple
3889   /// l-value.
3890   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3891 
3892   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3893   /// care to appropriately convert from the memory representation to
3894   /// the LLVM value representation.
3895   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3896                          bool Volatile, QualType Ty,
3897                          AlignmentSource Source = AlignmentSource::Type,
3898                          bool isInit = false, bool isNontemporal = false) {
3899     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3900                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3901   }
3902 
3903   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3904                          bool Volatile, QualType Ty,
3905                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3906                          bool isInit = false, bool isNontemporal = false);
3907 
3908   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3909   /// care to appropriately convert from the memory representation to
3910   /// the LLVM value representation.  The l-value must be a simple
3911   /// l-value.  The isInit flag indicates whether this is an initialization.
3912   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3913   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3914 
3915   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3916   /// this method emits the address of the lvalue, then loads the result as an
3917   /// rvalue, returning the rvalue.
3918   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3919   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3920   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3921   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3922 
3923   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3924   /// lvalue, where both are guaranteed to the have the same type, and that type
3925   /// is 'Ty'.
3926   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3927   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3928   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3929 
3930   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3931   /// as EmitStoreThroughLValue.
3932   ///
3933   /// \param Result [out] - If non-null, this will be set to a Value* for the
3934   /// bit-field contents after the store, appropriate for use as the result of
3935   /// an assignment to the bit-field.
3936   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3937                                       llvm::Value **Result=nullptr);
3938 
3939   /// Emit an l-value for an assignment (simple or compound) of complex type.
3940   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3941   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3942   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3943                                              llvm::Value *&Result);
3944 
3945   // Note: only available for agg return types
3946   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3947   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3948   // Note: only available for agg return types
3949   LValue EmitCallExprLValue(const CallExpr *E);
3950   // Note: only available for agg return types
3951   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3952   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3953   LValue EmitStringLiteralLValue(const StringLiteral *E);
3954   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3955   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3956   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3957   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3958                                 bool Accessed = false);
3959   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3960   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3961                                  bool IsLowerBound = true);
3962   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3963   LValue EmitMemberExpr(const MemberExpr *E);
3964   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3965   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3966   LValue EmitInitListLValue(const InitListExpr *E);
3967   void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
3968   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3969   LValue EmitCastLValue(const CastExpr *E);
3970   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3971   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3972 
3973   Address EmitExtVectorElementLValue(LValue V);
3974 
3975   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3976 
3977   Address EmitArrayToPointerDecay(const Expr *Array,
3978                                   LValueBaseInfo *BaseInfo = nullptr,
3979                                   TBAAAccessInfo *TBAAInfo = nullptr);
3980 
3981   class ConstantEmission {
3982     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3983     ConstantEmission(llvm::Constant *C, bool isReference)
3984       : ValueAndIsReference(C, isReference) {}
3985   public:
3986     ConstantEmission() {}
3987     static ConstantEmission forReference(llvm::Constant *C) {
3988       return ConstantEmission(C, true);
3989     }
3990     static ConstantEmission forValue(llvm::Constant *C) {
3991       return ConstantEmission(C, false);
3992     }
3993 
3994     explicit operator bool() const {
3995       return ValueAndIsReference.getOpaqueValue() != nullptr;
3996     }
3997 
3998     bool isReference() const { return ValueAndIsReference.getInt(); }
3999     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
4000       assert(isReference());
4001       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
4002                                             refExpr->getType());
4003     }
4004 
4005     llvm::Constant *getValue() const {
4006       assert(!isReference());
4007       return ValueAndIsReference.getPointer();
4008     }
4009   };
4010 
4011   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
4012   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
4013   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
4014 
4015   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
4016                                 AggValueSlot slot = AggValueSlot::ignored());
4017   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
4018 
4019   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4020                               const ObjCIvarDecl *Ivar);
4021   llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
4022                                            const ObjCIvarDecl *Ivar);
4023   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
4024   LValue EmitLValueForLambdaField(const FieldDecl *Field);
4025 
4026   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
4027   /// if the Field is a reference, this will return the address of the reference
4028   /// and not the address of the value stored in the reference.
4029   LValue EmitLValueForFieldInitialization(LValue Base,
4030                                           const FieldDecl* Field);
4031 
4032   LValue EmitLValueForIvar(QualType ObjectTy,
4033                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
4034                            unsigned CVRQualifiers);
4035 
4036   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
4037   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
4038   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
4039   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
4040 
4041   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
4042   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
4043   LValue EmitStmtExprLValue(const StmtExpr *E);
4044   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
4045   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
4046   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
4047 
4048   //===--------------------------------------------------------------------===//
4049   //                         Scalar Expression Emission
4050   //===--------------------------------------------------------------------===//
4051 
4052   /// EmitCall - Generate a call of the given function, expecting the given
4053   /// result type, and using the given argument list which specifies both the
4054   /// LLVM arguments and the types they were derived from.
4055   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4056                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4057                   llvm::CallBase **callOrInvoke, bool IsMustTail,
4058                   SourceLocation Loc);
4059   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4060                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4061                   llvm::CallBase **callOrInvoke = nullptr,
4062                   bool IsMustTail = false) {
4063     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4064                     IsMustTail, SourceLocation());
4065   }
4066   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4067                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4068   RValue EmitCallExpr(const CallExpr *E,
4069                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4070   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4071   CGCallee EmitCallee(const Expr *E);
4072 
4073   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4074   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4075 
4076   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4077                                   const Twine &name = "");
4078   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4079                                   ArrayRef<llvm::Value *> args,
4080                                   const Twine &name = "");
4081   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4082                                           const Twine &name = "");
4083   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4084                                           ArrayRef<llvm::Value *> args,
4085                                           const Twine &name = "");
4086 
4087   SmallVector<llvm::OperandBundleDef, 1>
4088   getBundlesForFunclet(llvm::Value *Callee);
4089 
4090   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4091                                    ArrayRef<llvm::Value *> Args,
4092                                    const Twine &Name = "");
4093   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4094                                           ArrayRef<llvm::Value *> args,
4095                                           const Twine &name = "");
4096   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4097                                           const Twine &name = "");
4098   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4099                                        ArrayRef<llvm::Value *> args);
4100 
4101   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4102                                      NestedNameSpecifier *Qual,
4103                                      llvm::Type *Ty);
4104 
4105   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4106                                                CXXDtorType Type,
4107                                                const CXXRecordDecl *RD);
4108 
4109   // Return the copy constructor name with the prefix "__copy_constructor_"
4110   // removed.
4111   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4112                                                      CharUnits Alignment,
4113                                                      bool IsVolatile,
4114                                                      ASTContext &Ctx);
4115 
4116   // Return the destructor name with the prefix "__destructor_" removed.
4117   static std::string getNonTrivialDestructorStr(QualType QT,
4118                                                 CharUnits Alignment,
4119                                                 bool IsVolatile,
4120                                                 ASTContext &Ctx);
4121 
4122   // These functions emit calls to the special functions of non-trivial C
4123   // structs.
4124   void defaultInitNonTrivialCStructVar(LValue Dst);
4125   void callCStructDefaultConstructor(LValue Dst);
4126   void callCStructDestructor(LValue Dst);
4127   void callCStructCopyConstructor(LValue Dst, LValue Src);
4128   void callCStructMoveConstructor(LValue Dst, LValue Src);
4129   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4130   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4131 
4132   RValue
4133   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4134                               const CGCallee &Callee,
4135                               ReturnValueSlot ReturnValue, llvm::Value *This,
4136                               llvm::Value *ImplicitParam,
4137                               QualType ImplicitParamTy, const CallExpr *E,
4138                               CallArgList *RtlArgs);
4139   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4140                                llvm::Value *This, QualType ThisTy,
4141                                llvm::Value *ImplicitParam,
4142                                QualType ImplicitParamTy, const CallExpr *E);
4143   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4144                                ReturnValueSlot ReturnValue);
4145   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4146                                                const CXXMethodDecl *MD,
4147                                                ReturnValueSlot ReturnValue,
4148                                                bool HasQualifier,
4149                                                NestedNameSpecifier *Qualifier,
4150                                                bool IsArrow, const Expr *Base);
4151   // Compute the object pointer.
4152   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4153                                           llvm::Value *memberPtr,
4154                                           const MemberPointerType *memberPtrType,
4155                                           LValueBaseInfo *BaseInfo = nullptr,
4156                                           TBAAAccessInfo *TBAAInfo = nullptr);
4157   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4158                                       ReturnValueSlot ReturnValue);
4159 
4160   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4161                                        const CXXMethodDecl *MD,
4162                                        ReturnValueSlot ReturnValue);
4163   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4164 
4165   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4166                                 ReturnValueSlot ReturnValue);
4167 
4168   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4169   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4170   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4171 
4172   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4173                          const CallExpr *E, ReturnValueSlot ReturnValue);
4174 
4175   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4176 
4177   /// Emit IR for __builtin_os_log_format.
4178   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4179 
4180   /// Emit IR for __builtin_is_aligned.
4181   RValue EmitBuiltinIsAligned(const CallExpr *E);
4182   /// Emit IR for __builtin_align_up/__builtin_align_down.
4183   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4184 
4185   llvm::Function *generateBuiltinOSLogHelperFunction(
4186       const analyze_os_log::OSLogBufferLayout &Layout,
4187       CharUnits BufferAlignment);
4188 
4189   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4190 
4191   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4192   /// is unhandled by the current target.
4193   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4194                                      ReturnValueSlot ReturnValue);
4195 
4196   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4197                                              const llvm::CmpInst::Predicate Fp,
4198                                              const llvm::CmpInst::Predicate Ip,
4199                                              const llvm::Twine &Name = "");
4200   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4201                                   ReturnValueSlot ReturnValue,
4202                                   llvm::Triple::ArchType Arch);
4203   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4204                                      ReturnValueSlot ReturnValue,
4205                                      llvm::Triple::ArchType Arch);
4206   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4207                                      ReturnValueSlot ReturnValue,
4208                                      llvm::Triple::ArchType Arch);
4209   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4210                                    QualType RTy);
4211   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4212                                    QualType RTy);
4213 
4214   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4215                                          unsigned LLVMIntrinsic,
4216                                          unsigned AltLLVMIntrinsic,
4217                                          const char *NameHint,
4218                                          unsigned Modifier,
4219                                          const CallExpr *E,
4220                                          SmallVectorImpl<llvm::Value *> &Ops,
4221                                          Address PtrOp0, Address PtrOp1,
4222                                          llvm::Triple::ArchType Arch);
4223 
4224   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4225                                           unsigned Modifier, llvm::Type *ArgTy,
4226                                           const CallExpr *E);
4227   llvm::Value *EmitNeonCall(llvm::Function *F,
4228                             SmallVectorImpl<llvm::Value*> &O,
4229                             const char *name,
4230                             unsigned shift = 0, bool rightshift = false);
4231   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4232                              const llvm::ElementCount &Count);
4233   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4234   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4235                                    bool negateForRightShift);
4236   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4237                                  llvm::Type *Ty, bool usgn, const char *name);
4238   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4239   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4240   /// access builtin.  Only required if it can't be inferred from the base
4241   /// pointer operand.
4242   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4243 
4244   SmallVector<llvm::Type *, 2>
4245   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4246                       ArrayRef<llvm::Value *> Ops);
4247   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4248   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4249   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4250   llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
4251                                     llvm::Type *ReturnType,
4252                                     ArrayRef<llvm::Value *> Ops);
4253   llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
4254                                   llvm::Type *ReturnType,
4255                                   ArrayRef<llvm::Value *> Ops);
4256   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4257   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4258   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4259   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4260   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4261                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4262                             unsigned BuiltinID);
4263   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4264                            llvm::ArrayRef<llvm::Value *> Ops,
4265                            unsigned BuiltinID);
4266   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4267                                     llvm::ScalableVectorType *VTy);
4268   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4269                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4270                                  unsigned IntID);
4271   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4272                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4273                                    unsigned IntID);
4274   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4275                                  SmallVectorImpl<llvm::Value *> &Ops,
4276                                  unsigned BuiltinID, bool IsZExtReturn);
4277   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4278                                   SmallVectorImpl<llvm::Value *> &Ops,
4279                                   unsigned BuiltinID);
4280   llvm::Value *EmitTileslice(llvm::Value *Offset, llvm::Value *Base);
4281   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4282                                    SmallVectorImpl<llvm::Value *> &Ops,
4283                                    unsigned BuiltinID);
4284   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4285                                      SmallVectorImpl<llvm::Value *> &Ops,
4286                                      unsigned IntID);
4287   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4288                                  SmallVectorImpl<llvm::Value *> &Ops,
4289                                  unsigned IntID);
4290   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4291                                   SmallVectorImpl<llvm::Value *> &Ops,
4292                                   unsigned IntID);
4293   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4294 
4295   llvm::Value *EmitSMELd1St1(SVETypeFlags TypeFlags,
4296                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4297                              unsigned IntID);
4298   llvm::Value *EmitSMEReadWrite(SVETypeFlags TypeFlags,
4299                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4300                                 unsigned IntID);
4301   llvm::Value *EmitSMEZero(SVETypeFlags TypeFlags,
4302                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4303                            unsigned IntID);
4304   llvm::Value *EmitSMELdrStr(SVETypeFlags TypeFlags,
4305                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4306                              unsigned IntID);
4307   llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4308 
4309   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4310                                       llvm::Triple::ArchType Arch);
4311   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4312 
4313   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4314   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4315   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4316   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4317   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4318   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4319   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4320                                           const CallExpr *E);
4321   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4322   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4323                                     ReturnValueSlot ReturnValue);
4324   llvm::Value *EmitLoongArchBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4325   void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4326                                llvm::AtomicOrdering &AO,
4327                                llvm::SyncScope::ID &SSID);
4328 
4329   enum class MSVCIntrin;
4330   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4331 
4332   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4333 
4334   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4335   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4336   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4337   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4338   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4339   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4340                                 const ObjCMethodDecl *MethodWithObjects);
4341   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4342   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4343                              ReturnValueSlot Return = ReturnValueSlot());
4344 
4345   /// Retrieves the default cleanup kind for an ARC cleanup.
4346   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4347   CleanupKind getARCCleanupKind() {
4348     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4349              ? NormalAndEHCleanup : NormalCleanup;
4350   }
4351 
4352   // ARC primitives.
4353   void EmitARCInitWeak(Address addr, llvm::Value *value);
4354   void EmitARCDestroyWeak(Address addr);
4355   llvm::Value *EmitARCLoadWeak(Address addr);
4356   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4357   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4358   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4359   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4360   void EmitARCCopyWeak(Address dst, Address src);
4361   void EmitARCMoveWeak(Address dst, Address src);
4362   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4363   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4364   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4365                                   bool resultIgnored);
4366   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4367                                       bool resultIgnored);
4368   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4369   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4370   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4371   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4372   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4373   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4374   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4375   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4376   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4377   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4378 
4379   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4380   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4381                                       llvm::Type *returnType);
4382   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4383 
4384   std::pair<LValue,llvm::Value*>
4385   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4386   std::pair<LValue,llvm::Value*>
4387   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4388   std::pair<LValue,llvm::Value*>
4389   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4390 
4391   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4392                              llvm::Type *returnType);
4393   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4394                                      llvm::Type *returnType);
4395   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4396 
4397   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4398   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4399   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4400 
4401   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4402   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4403                                             bool allowUnsafeClaim);
4404   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4405   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4406   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4407 
4408   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4409 
4410   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4411 
4412   static Destroyer destroyARCStrongImprecise;
4413   static Destroyer destroyARCStrongPrecise;
4414   static Destroyer destroyARCWeak;
4415   static Destroyer emitARCIntrinsicUse;
4416   static Destroyer destroyNonTrivialCStruct;
4417 
4418   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4419   llvm::Value *EmitObjCAutoreleasePoolPush();
4420   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4421   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4422   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4423 
4424   /// Emits a reference binding to the passed in expression.
4425   RValue EmitReferenceBindingToExpr(const Expr *E);
4426 
4427   //===--------------------------------------------------------------------===//
4428   //                           Expression Emission
4429   //===--------------------------------------------------------------------===//
4430 
4431   // Expressions are broken into three classes: scalar, complex, aggregate.
4432 
4433   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4434   /// scalar type, returning the result.
4435   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4436 
4437   /// Emit a conversion from the specified type to the specified destination
4438   /// type, both of which are LLVM scalar types.
4439   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4440                                     QualType DstTy, SourceLocation Loc);
4441 
4442   /// Emit a conversion from the specified complex type to the specified
4443   /// destination type, where the destination type is an LLVM scalar type.
4444   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4445                                              QualType DstTy,
4446                                              SourceLocation Loc);
4447 
4448   /// EmitAggExpr - Emit the computation of the specified expression
4449   /// of aggregate type.  The result is computed into the given slot,
4450   /// which may be null to indicate that the value is not needed.
4451   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4452 
4453   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4454   /// aggregate type into a temporary LValue.
4455   LValue EmitAggExprToLValue(const Expr *E);
4456 
4457   /// Build all the stores needed to initialize an aggregate at Dest with the
4458   /// value Val.
4459   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4460 
4461   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4462   /// make sure it survives garbage collection until this point.
4463   void EmitExtendGCLifetime(llvm::Value *object);
4464 
4465   /// EmitComplexExpr - Emit the computation of the specified expression of
4466   /// complex type, returning the result.
4467   ComplexPairTy EmitComplexExpr(const Expr *E,
4468                                 bool IgnoreReal = false,
4469                                 bool IgnoreImag = false);
4470 
4471   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4472   /// type and place its result into the specified l-value.
4473   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4474 
4475   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4476   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4477 
4478   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4479   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4480 
4481   ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType);
4482   llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType);
4483   ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType);
4484   ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType);
4485 
4486   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4487   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4488 
4489   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4490   /// global variable that has already been created for it.  If the initializer
4491   /// has a different type than GV does, this may free GV and return a different
4492   /// one.  Otherwise it just returns GV.
4493   llvm::GlobalVariable *
4494   AddInitializerToStaticVarDecl(const VarDecl &D,
4495                                 llvm::GlobalVariable *GV);
4496 
4497   // Emit an @llvm.invariant.start call for the given memory region.
4498   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4499 
4500   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4501   /// variable with global storage.
4502   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4503                                 bool PerformInit);
4504 
4505   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4506                                    llvm::Constant *Addr);
4507 
4508   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4509                                       llvm::FunctionCallee Dtor,
4510                                       llvm::Constant *Addr,
4511                                       llvm::FunctionCallee &AtExit);
4512 
4513   /// Call atexit() with a function that passes the given argument to
4514   /// the given function.
4515   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4516                                     llvm::Constant *addr);
4517 
4518   /// Call atexit() with function dtorStub.
4519   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4520 
4521   /// Call unatexit() with function dtorStub.
4522   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4523 
4524   /// Emit code in this function to perform a guarded variable
4525   /// initialization.  Guarded initializations are used when it's not
4526   /// possible to prove that an initialization will be done exactly
4527   /// once, e.g. with a static local variable or a static data member
4528   /// of a class template.
4529   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4530                           bool PerformInit);
4531 
4532   enum class GuardKind { VariableGuard, TlsGuard };
4533 
4534   /// Emit a branch to select whether or not to perform guarded initialization.
4535   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4536                                 llvm::BasicBlock *InitBlock,
4537                                 llvm::BasicBlock *NoInitBlock,
4538                                 GuardKind Kind, const VarDecl *D);
4539 
4540   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4541   /// variables.
4542   void
4543   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4544                             ArrayRef<llvm::Function *> CXXThreadLocals,
4545                             ConstantAddress Guard = ConstantAddress::invalid());
4546 
4547   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4548   /// variables.
4549   void GenerateCXXGlobalCleanUpFunc(
4550       llvm::Function *Fn,
4551       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4552                           llvm::Constant *>>
4553           DtorsOrStermFinalizers);
4554 
4555   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4556                                         const VarDecl *D,
4557                                         llvm::GlobalVariable *Addr,
4558                                         bool PerformInit);
4559 
4560   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4561 
4562   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4563 
4564   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4565 
4566   RValue EmitAtomicExpr(AtomicExpr *E);
4567 
4568   //===--------------------------------------------------------------------===//
4569   //                         Annotations Emission
4570   //===--------------------------------------------------------------------===//
4571 
4572   /// Emit an annotation call (intrinsic).
4573   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4574                                   llvm::Value *AnnotatedVal,
4575                                   StringRef AnnotationStr,
4576                                   SourceLocation Location,
4577                                   const AnnotateAttr *Attr);
4578 
4579   /// Emit local annotations for the local variable V, declared by D.
4580   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4581 
4582   /// Emit field annotations for the given field & value. Returns the
4583   /// annotation result.
4584   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4585 
4586   //===--------------------------------------------------------------------===//
4587   //                             Internal Helpers
4588   //===--------------------------------------------------------------------===//
4589 
4590   /// ContainsLabel - Return true if the statement contains a label in it.  If
4591   /// this statement is not executed normally, it not containing a label means
4592   /// that we can just remove the code.
4593   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4594 
4595   /// containsBreak - Return true if the statement contains a break out of it.
4596   /// If the statement (recursively) contains a switch or loop with a break
4597   /// inside of it, this is fine.
4598   static bool containsBreak(const Stmt *S);
4599 
4600   /// Determine if the given statement might introduce a declaration into the
4601   /// current scope, by being a (possibly-labelled) DeclStmt.
4602   static bool mightAddDeclToScope(const Stmt *S);
4603 
4604   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4605   /// to a constant, or if it does but contains a label, return false.  If it
4606   /// constant folds return true and set the boolean result in Result.
4607   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4608                                     bool AllowLabels = false);
4609 
4610   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4611   /// to a constant, or if it does but contains a label, return false.  If it
4612   /// constant folds return true and set the folded value.
4613   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4614                                     bool AllowLabels = false);
4615 
4616   /// isInstrumentedCondition - Determine whether the given condition is an
4617   /// instrumentable condition (i.e. no "&&" or "||").
4618   static bool isInstrumentedCondition(const Expr *C);
4619 
4620   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4621   /// increments a profile counter based on the semantics of the given logical
4622   /// operator opcode.  This is used to instrument branch condition coverage
4623   /// for logical operators.
4624   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4625                                 llvm::BasicBlock *TrueBlock,
4626                                 llvm::BasicBlock *FalseBlock,
4627                                 uint64_t TrueCount = 0,
4628                                 Stmt::Likelihood LH = Stmt::LH_None,
4629                                 const Expr *CntrIdx = nullptr);
4630 
4631   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4632   /// if statement) to the specified blocks.  Based on the condition, this might
4633   /// try to simplify the codegen of the conditional based on the branch.
4634   /// TrueCount should be the number of times we expect the condition to
4635   /// evaluate to true based on PGO data.
4636   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4637                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4638                             Stmt::Likelihood LH = Stmt::LH_None);
4639 
4640   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4641   /// nonnull, if \p LHS is marked _Nonnull.
4642   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4643 
4644   /// An enumeration which makes it easier to specify whether or not an
4645   /// operation is a subtraction.
4646   enum { NotSubtraction = false, IsSubtraction = true };
4647 
4648   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4649   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4650   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4651   /// \p IsSubtraction indicates whether the expression used to form the GEP
4652   /// is a subtraction.
4653   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4654                                       ArrayRef<llvm::Value *> IdxList,
4655                                       bool SignedIndices,
4656                                       bool IsSubtraction,
4657                                       SourceLocation Loc,
4658                                       const Twine &Name = "");
4659 
4660   /// Specifies which type of sanitizer check to apply when handling a
4661   /// particular builtin.
4662   enum BuiltinCheckKind {
4663     BCK_CTZPassedZero,
4664     BCK_CLZPassedZero,
4665   };
4666 
4667   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4668   /// enabled, a runtime check specified by \p Kind is also emitted.
4669   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4670 
4671   /// Emit a description of a type in a format suitable for passing to
4672   /// a runtime sanitizer handler.
4673   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4674 
4675   /// Convert a value into a format suitable for passing to a runtime
4676   /// sanitizer handler.
4677   llvm::Value *EmitCheckValue(llvm::Value *V);
4678 
4679   /// Emit a description of a source location in a format suitable for
4680   /// passing to a runtime sanitizer handler.
4681   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4682 
4683   void EmitKCFIOperandBundle(const CGCallee &Callee,
4684                              SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
4685 
4686   /// Create a basic block that will either trap or call a handler function in
4687   /// the UBSan runtime with the provided arguments, and create a conditional
4688   /// branch to it.
4689   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4690                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4691                  ArrayRef<llvm::Value *> DynamicArgs);
4692 
4693   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4694   /// if Cond if false.
4695   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4696                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4697                             ArrayRef<llvm::Constant *> StaticArgs);
4698 
4699   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4700   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4701   void EmitUnreachable(SourceLocation Loc);
4702 
4703   /// Create a basic block that will call the trap intrinsic, and emit a
4704   /// conditional branch to it, for the -ftrapv checks.
4705   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4706 
4707   /// Emit a call to trap or debugtrap and attach function attribute
4708   /// "trap-func-name" if specified.
4709   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4710 
4711   /// Emit a stub for the cross-DSO CFI check function.
4712   void EmitCfiCheckStub();
4713 
4714   /// Emit a cross-DSO CFI failure handling function.
4715   void EmitCfiCheckFail();
4716 
4717   /// Create a check for a function parameter that may potentially be
4718   /// declared as non-null.
4719   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4720                            AbstractCallee AC, unsigned ParmNum);
4721 
4722   /// EmitCallArg - Emit a single call argument.
4723   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4724 
4725   /// EmitDelegateCallArg - We are performing a delegate call; that
4726   /// is, the current function is delegating to another one.  Produce
4727   /// a r-value suitable for passing the given parameter.
4728   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4729                            SourceLocation loc);
4730 
4731   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4732   /// point operation, expressed as the maximum relative error in ulp.
4733   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4734 
4735   /// Set the minimum required accuracy of the given sqrt operation
4736   /// based on CodeGenOpts.
4737   void SetSqrtFPAccuracy(llvm::Value *Val);
4738 
4739   /// Set the minimum required accuracy of the given sqrt operation based on
4740   /// CodeGenOpts.
4741   void SetDivFPAccuracy(llvm::Value *Val);
4742 
4743   /// Set the codegen fast-math flags.
4744   void SetFastMathFlags(FPOptions FPFeatures);
4745 
4746   // Truncate or extend a boolean vector to the requested number of elements.
4747   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
4748                                      unsigned NumElementsDst,
4749                                      const llvm::Twine &Name = "");
4750 
4751 private:
4752   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4753   void EmitReturnOfRValue(RValue RV, QualType Ty);
4754 
4755   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4756 
4757   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4758       DeferredReplacements;
4759 
4760   /// Set the address of a local variable.
4761   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4762     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4763     LocalDeclMap.insert({VD, Addr});
4764   }
4765 
4766   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4767   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4768   ///
4769   /// \param AI - The first function argument of the expansion.
4770   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4771                           llvm::Function::arg_iterator &AI);
4772 
4773   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4774   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4775   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4776   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4777                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4778                         unsigned &IRCallArgPos);
4779 
4780   std::pair<llvm::Value *, llvm::Type *>
4781   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4782                std::string &ConstraintStr);
4783 
4784   std::pair<llvm::Value *, llvm::Type *>
4785   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4786                      QualType InputType, std::string &ConstraintStr,
4787                      SourceLocation Loc);
4788 
4789   /// Attempts to statically evaluate the object size of E. If that
4790   /// fails, emits code to figure the size of E out for us. This is
4791   /// pass_object_size aware.
4792   ///
4793   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4794   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4795                                                llvm::IntegerType *ResType,
4796                                                llvm::Value *EmittedE,
4797                                                bool IsDynamic);
4798 
4799   /// Emits the size of E, as required by __builtin_object_size. This
4800   /// function is aware of pass_object_size parameters, and will act accordingly
4801   /// if E is a parameter with the pass_object_size attribute.
4802   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4803                                      llvm::IntegerType *ResType,
4804                                      llvm::Value *EmittedE,
4805                                      bool IsDynamic);
4806 
4807   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4808                                        Address Loc);
4809 
4810 public:
4811   enum class EvaluationOrder {
4812     ///! No language constraints on evaluation order.
4813     Default,
4814     ///! Language semantics require left-to-right evaluation.
4815     ForceLeftToRight,
4816     ///! Language semantics require right-to-left evaluation.
4817     ForceRightToLeft
4818   };
4819 
4820   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4821   // an ObjCMethodDecl.
4822   struct PrototypeWrapper {
4823     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4824 
4825     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4826     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4827   };
4828 
4829   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4830                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4831                     AbstractCallee AC = AbstractCallee(),
4832                     unsigned ParamsToSkip = 0,
4833                     EvaluationOrder Order = EvaluationOrder::Default);
4834 
4835   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4836   /// emit the value and compute our best estimate of the alignment of the
4837   /// pointee.
4838   ///
4839   /// \param BaseInfo - If non-null, this will be initialized with
4840   /// information about the source of the alignment and the may-alias
4841   /// attribute.  Note that this function will conservatively fall back on
4842   /// the type when it doesn't recognize the expression and may-alias will
4843   /// be set to false.
4844   ///
4845   /// One reasonable way to use this information is when there's a language
4846   /// guarantee that the pointer must be aligned to some stricter value, and
4847   /// we're simply trying to ensure that sufficiently obvious uses of under-
4848   /// aligned objects don't get miscompiled; for example, a placement new
4849   /// into the address of a local variable.  In such a case, it's quite
4850   /// reasonable to just ignore the returned alignment when it isn't from an
4851   /// explicit source.
4852   Address
4853   EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr,
4854                            TBAAAccessInfo *TBAAInfo = nullptr,
4855                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
4856 
4857   /// If \p E references a parameter with pass_object_size info or a constant
4858   /// array size modifier, emit the object size divided by the size of \p EltTy.
4859   /// Otherwise return null.
4860   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4861 
4862   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4863 
4864   struct MultiVersionResolverOption {
4865     llvm::Function *Function;
4866     struct Conds {
4867       StringRef Architecture;
4868       llvm::SmallVector<StringRef, 8> Features;
4869 
4870       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4871           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4872     } Conditions;
4873 
4874     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4875                                ArrayRef<StringRef> Feats)
4876         : Function(F), Conditions(Arch, Feats) {}
4877   };
4878 
4879   // Emits the body of a multiversion function's resolver. Assumes that the
4880   // options are already sorted in the proper order, with the 'default' option
4881   // last (if it exists).
4882   void EmitMultiVersionResolver(llvm::Function *Resolver,
4883                                 ArrayRef<MultiVersionResolverOption> Options);
4884   void
4885   EmitX86MultiVersionResolver(llvm::Function *Resolver,
4886                               ArrayRef<MultiVersionResolverOption> Options);
4887   void
4888   EmitAArch64MultiVersionResolver(llvm::Function *Resolver,
4889                                   ArrayRef<MultiVersionResolverOption> Options);
4890 
4891 private:
4892   QualType getVarArgType(const Expr *Arg);
4893 
4894   void EmitDeclMetadata();
4895 
4896   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4897                                   const AutoVarEmission &emission);
4898 
4899   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4900 
4901   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4902   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4903   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4904   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4905   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4906   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4907   llvm::Value *EmitX86CpuInit();
4908   llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO);
4909   llvm::Value *EmitAArch64CpuInit();
4910   llvm::Value *
4911   FormAArch64ResolverCondition(const MultiVersionResolverOption &RO);
4912   llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs);
4913 };
4914 
4915 
4916 inline DominatingLLVMValue::saved_type
4917 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4918   if (!needsSaving(value)) return saved_type(value, false);
4919 
4920   // Otherwise, we need an alloca.
4921   auto align = CharUnits::fromQuantity(
4922       CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType()));
4923   Address alloca =
4924       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4925   CGF.Builder.CreateStore(value, alloca);
4926 
4927   return saved_type(alloca.getPointer(), true);
4928 }
4929 
4930 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4931                                                  saved_type value) {
4932   // If the value says it wasn't saved, trust that it's still dominating.
4933   if (!value.getInt()) return value.getPointer();
4934 
4935   // Otherwise, it should be an alloca instruction, as set up in save().
4936   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4937   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4938                                        alloca->getAlign());
4939 }
4940 
4941 }  // end namespace CodeGen
4942 
4943 // Map the LangOption for floating point exception behavior into
4944 // the corresponding enum in the IR.
4945 llvm::fp::ExceptionBehavior
4946 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4947 }  // end namespace clang
4948 
4949 #endif
4950