xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class Module;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 class CanonicalLoopInfo;
54 }
55 
56 namespace clang {
57 class ASTContext;
58 class BlockDecl;
59 class CXXDestructorDecl;
60 class CXXForRangeStmt;
61 class CXXTryStmt;
62 class Decl;
63 class LabelDecl;
64 class EnumConstantDecl;
65 class FunctionDecl;
66 class FunctionProtoType;
67 class LabelStmt;
68 class ObjCContainerDecl;
69 class ObjCInterfaceDecl;
70 class ObjCIvarDecl;
71 class ObjCMethodDecl;
72 class ObjCImplementationDecl;
73 class ObjCPropertyImplDecl;
74 class TargetInfo;
75 class VarDecl;
76 class ObjCForCollectionStmt;
77 class ObjCAtTryStmt;
78 class ObjCAtThrowStmt;
79 class ObjCAtSynchronizedStmt;
80 class ObjCAutoreleasePoolStmt;
81 class OMPUseDevicePtrClause;
82 class OMPUseDeviceAddrClause;
83 class ReturnsNonNullAttr;
84 class SVETypeFlags;
85 class OMPExecutableDirective;
86 
87 namespace analyze_os_log {
88 class OSLogBufferLayout;
89 }
90 
91 namespace CodeGen {
92 class CodeGenTypes;
93 class CGCallee;
94 class CGFunctionInfo;
95 class CGRecordLayout;
96 class CGBlockInfo;
97 class CGCXXABI;
98 class BlockByrefHelpers;
99 class BlockByrefInfo;
100 class BlockFlags;
101 class BlockFieldFlags;
102 class RegionCodeGenTy;
103 class TargetCodeGenInfo;
104 struct OMPTaskDataTy;
105 struct CGCoroData;
106 
107 /// The kind of evaluation to perform on values of a particular
108 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
109 /// CGExprAgg?
110 ///
111 /// TODO: should vectors maybe be split out into their own thing?
112 enum TypeEvaluationKind {
113   TEK_Scalar,
114   TEK_Complex,
115   TEK_Aggregate
116 };
117 
118 #define LIST_SANITIZER_CHECKS                                                  \
119   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
120   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
121   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
122   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
123   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
124   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
125   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
126   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
127   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
128   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
129   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
130   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
131   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
132   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
133   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
134   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
135   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
136   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
137   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
138   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
139   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
140   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
141   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
142   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
143   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
144 
145 enum SanitizerHandler {
146 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
147   LIST_SANITIZER_CHECKS
148 #undef SANITIZER_CHECK
149 };
150 
151 /// Helper class with most of the code for saving a value for a
152 /// conditional expression cleanup.
153 struct DominatingLLVMValue {
154   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
155 
156   /// Answer whether the given value needs extra work to be saved.
157   static bool needsSaving(llvm::Value *value) {
158     // If it's not an instruction, we don't need to save.
159     if (!isa<llvm::Instruction>(value)) return false;
160 
161     // If it's an instruction in the entry block, we don't need to save.
162     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
163     return (block != &block->getParent()->getEntryBlock());
164   }
165 
166   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
167   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
168 };
169 
170 /// A partial specialization of DominatingValue for llvm::Values that
171 /// might be llvm::Instructions.
172 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
173   typedef T *type;
174   static type restore(CodeGenFunction &CGF, saved_type value) {
175     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
176   }
177 };
178 
179 /// A specialization of DominatingValue for Address.
180 template <> struct DominatingValue<Address> {
181   typedef Address type;
182 
183   struct saved_type {
184     DominatingLLVMValue::saved_type SavedValue;
185     CharUnits Alignment;
186   };
187 
188   static bool needsSaving(type value) {
189     return DominatingLLVMValue::needsSaving(value.getPointer());
190   }
191   static saved_type save(CodeGenFunction &CGF, type value) {
192     return { DominatingLLVMValue::save(CGF, value.getPointer()),
193              value.getAlignment() };
194   }
195   static type restore(CodeGenFunction &CGF, saved_type value) {
196     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
197                    value.Alignment);
198   }
199 };
200 
201 /// A specialization of DominatingValue for RValue.
202 template <> struct DominatingValue<RValue> {
203   typedef RValue type;
204   class saved_type {
205     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
206                 AggregateAddress, ComplexAddress };
207 
208     llvm::Value *Value;
209     unsigned K : 3;
210     unsigned Align : 29;
211     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
212       : Value(v), K(k), Align(a) {}
213 
214   public:
215     static bool needsSaving(RValue value);
216     static saved_type save(CodeGenFunction &CGF, RValue value);
217     RValue restore(CodeGenFunction &CGF);
218 
219     // implementations in CGCleanup.cpp
220   };
221 
222   static bool needsSaving(type value) {
223     return saved_type::needsSaving(value);
224   }
225   static saved_type save(CodeGenFunction &CGF, type value) {
226     return saved_type::save(CGF, value);
227   }
228   static type restore(CodeGenFunction &CGF, saved_type value) {
229     return value.restore(CGF);
230   }
231 };
232 
233 /// CodeGenFunction - This class organizes the per-function state that is used
234 /// while generating LLVM code.
235 class CodeGenFunction : public CodeGenTypeCache {
236   CodeGenFunction(const CodeGenFunction &) = delete;
237   void operator=(const CodeGenFunction &) = delete;
238 
239   friend class CGCXXABI;
240 public:
241   /// A jump destination is an abstract label, branching to which may
242   /// require a jump out through normal cleanups.
243   struct JumpDest {
244     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
245     JumpDest(llvm::BasicBlock *Block,
246              EHScopeStack::stable_iterator Depth,
247              unsigned Index)
248       : Block(Block), ScopeDepth(Depth), Index(Index) {}
249 
250     bool isValid() const { return Block != nullptr; }
251     llvm::BasicBlock *getBlock() const { return Block; }
252     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
253     unsigned getDestIndex() const { return Index; }
254 
255     // This should be used cautiously.
256     void setScopeDepth(EHScopeStack::stable_iterator depth) {
257       ScopeDepth = depth;
258     }
259 
260   private:
261     llvm::BasicBlock *Block;
262     EHScopeStack::stable_iterator ScopeDepth;
263     unsigned Index;
264   };
265 
266   CodeGenModule &CGM;  // Per-module state.
267   const TargetInfo &Target;
268 
269   // For EH/SEH outlined funclets, this field points to parent's CGF
270   CodeGenFunction *ParentCGF = nullptr;
271 
272   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
273   LoopInfoStack LoopStack;
274   CGBuilderTy Builder;
275 
276   // Stores variables for which we can't generate correct lifetime markers
277   // because of jumps.
278   VarBypassDetector Bypasses;
279 
280   /// List of recently emitted OMPCanonicalLoops.
281   ///
282   /// Since OMPCanonicalLoops are nested inside other statements (in particular
283   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
284   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
285   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
286   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
287   /// this stack when done. Entering a new loop requires clearing this list; it
288   /// either means we start parsing a new loop nest (in which case the previous
289   /// loop nest goes out of scope) or a second loop in the same level in which
290   /// case it would be ambiguous into which of the two (or more) loops the loop
291   /// nest would extend.
292   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
293 
294   /// Number of nested loop to be consumed by the last surrounding
295   /// loop-associated directive.
296   int ExpectedOMPLoopDepth = 0;
297 
298   // CodeGen lambda for loops and support for ordered clause
299   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
300                                   JumpDest)>
301       CodeGenLoopTy;
302   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
303                                   const unsigned, const bool)>
304       CodeGenOrderedTy;
305 
306   // Codegen lambda for loop bounds in worksharing loop constructs
307   typedef llvm::function_ref<std::pair<LValue, LValue>(
308       CodeGenFunction &, const OMPExecutableDirective &S)>
309       CodeGenLoopBoundsTy;
310 
311   // Codegen lambda for loop bounds in dispatch-based loop implementation
312   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
313       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
314       Address UB)>
315       CodeGenDispatchBoundsTy;
316 
317   /// CGBuilder insert helper. This function is called after an
318   /// instruction is created using Builder.
319   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
320                     llvm::BasicBlock *BB,
321                     llvm::BasicBlock::iterator InsertPt) const;
322 
323   /// CurFuncDecl - Holds the Decl for the current outermost
324   /// non-closure context.
325   const Decl *CurFuncDecl;
326   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
327   const Decl *CurCodeDecl;
328   const CGFunctionInfo *CurFnInfo;
329   QualType FnRetTy;
330   llvm::Function *CurFn = nullptr;
331 
332   /// Save Parameter Decl for coroutine.
333   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
334 
335   // Holds coroutine data if the current function is a coroutine. We use a
336   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
337   // in this header.
338   struct CGCoroInfo {
339     std::unique_ptr<CGCoroData> Data;
340     CGCoroInfo();
341     ~CGCoroInfo();
342   };
343   CGCoroInfo CurCoro;
344 
345   bool isCoroutine() const {
346     return CurCoro.Data != nullptr;
347   }
348 
349   /// CurGD - The GlobalDecl for the current function being compiled.
350   GlobalDecl CurGD;
351 
352   /// PrologueCleanupDepth - The cleanup depth enclosing all the
353   /// cleanups associated with the parameters.
354   EHScopeStack::stable_iterator PrologueCleanupDepth;
355 
356   /// ReturnBlock - Unified return block.
357   JumpDest ReturnBlock;
358 
359   /// ReturnValue - The temporary alloca to hold the return
360   /// value. This is invalid iff the function has no return value.
361   Address ReturnValue = Address::invalid();
362 
363   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
364   /// This is invalid if sret is not in use.
365   Address ReturnValuePointer = Address::invalid();
366 
367   /// If a return statement is being visited, this holds the return statment's
368   /// result expression.
369   const Expr *RetExpr = nullptr;
370 
371   /// Return true if a label was seen in the current scope.
372   bool hasLabelBeenSeenInCurrentScope() const {
373     if (CurLexicalScope)
374       return CurLexicalScope->hasLabels();
375     return !LabelMap.empty();
376   }
377 
378   /// AllocaInsertPoint - This is an instruction in the entry block before which
379   /// we prefer to insert allocas.
380   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
381 
382 private:
383   /// PostAllocaInsertPt - This is a place in the prologue where code can be
384   /// inserted that will be dominated by all the static allocas. This helps
385   /// achieve two things:
386   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
387   ///   2. All other prologue code (which are dominated by static allocas) do
388   ///      appear in the source order immediately after all static allocas.
389   ///
390   /// PostAllocaInsertPt will be lazily created when it is *really* required.
391   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
392 
393 public:
394   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
395   /// immediately after AllocaInsertPt.
396   llvm::Instruction *getPostAllocaInsertPoint() {
397     if (!PostAllocaInsertPt) {
398       assert(AllocaInsertPt &&
399              "Expected static alloca insertion point at function prologue");
400       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
401              "EBB should be entry block of the current code gen function");
402       PostAllocaInsertPt = AllocaInsertPt->clone();
403       PostAllocaInsertPt->setName("postallocapt");
404       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
405     }
406 
407     return PostAllocaInsertPt;
408   }
409 
410   /// API for captured statement code generation.
411   class CGCapturedStmtInfo {
412   public:
413     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
414         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
415     explicit CGCapturedStmtInfo(const CapturedStmt &S,
416                                 CapturedRegionKind K = CR_Default)
417       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
418 
419       RecordDecl::field_iterator Field =
420         S.getCapturedRecordDecl()->field_begin();
421       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
422                                                 E = S.capture_end();
423            I != E; ++I, ++Field) {
424         if (I->capturesThis())
425           CXXThisFieldDecl = *Field;
426         else if (I->capturesVariable())
427           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
428         else if (I->capturesVariableByCopy())
429           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
430       }
431     }
432 
433     virtual ~CGCapturedStmtInfo();
434 
435     CapturedRegionKind getKind() const { return Kind; }
436 
437     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
438     // Retrieve the value of the context parameter.
439     virtual llvm::Value *getContextValue() const { return ThisValue; }
440 
441     /// Lookup the captured field decl for a variable.
442     virtual const FieldDecl *lookup(const VarDecl *VD) const {
443       return CaptureFields.lookup(VD->getCanonicalDecl());
444     }
445 
446     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
447     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
448 
449     static bool classof(const CGCapturedStmtInfo *) {
450       return true;
451     }
452 
453     /// Emit the captured statement body.
454     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
455       CGF.incrementProfileCounter(S);
456       CGF.EmitStmt(S);
457     }
458 
459     /// Get the name of the capture helper.
460     virtual StringRef getHelperName() const { return "__captured_stmt"; }
461 
462     /// Get the CaptureFields
463     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
464       return CaptureFields;
465     }
466 
467   private:
468     /// The kind of captured statement being generated.
469     CapturedRegionKind Kind;
470 
471     /// Keep the map between VarDecl and FieldDecl.
472     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
473 
474     /// The base address of the captured record, passed in as the first
475     /// argument of the parallel region function.
476     llvm::Value *ThisValue;
477 
478     /// Captured 'this' type.
479     FieldDecl *CXXThisFieldDecl;
480   };
481   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
482 
483   /// RAII for correct setting/restoring of CapturedStmtInfo.
484   class CGCapturedStmtRAII {
485   private:
486     CodeGenFunction &CGF;
487     CGCapturedStmtInfo *PrevCapturedStmtInfo;
488   public:
489     CGCapturedStmtRAII(CodeGenFunction &CGF,
490                        CGCapturedStmtInfo *NewCapturedStmtInfo)
491         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
492       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
493     }
494     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
495   };
496 
497   /// An abstract representation of regular/ObjC call/message targets.
498   class AbstractCallee {
499     /// The function declaration of the callee.
500     const Decl *CalleeDecl;
501 
502   public:
503     AbstractCallee() : CalleeDecl(nullptr) {}
504     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
505     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
506     bool hasFunctionDecl() const {
507       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
508     }
509     const Decl *getDecl() const { return CalleeDecl; }
510     unsigned getNumParams() const {
511       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
512         return FD->getNumParams();
513       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
514     }
515     const ParmVarDecl *getParamDecl(unsigned I) const {
516       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
517         return FD->getParamDecl(I);
518       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
519     }
520   };
521 
522   /// Sanitizers enabled for this function.
523   SanitizerSet SanOpts;
524 
525   /// True if CodeGen currently emits code implementing sanitizer checks.
526   bool IsSanitizerScope = false;
527 
528   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
529   class SanitizerScope {
530     CodeGenFunction *CGF;
531   public:
532     SanitizerScope(CodeGenFunction *CGF);
533     ~SanitizerScope();
534   };
535 
536   /// In C++, whether we are code generating a thunk.  This controls whether we
537   /// should emit cleanups.
538   bool CurFuncIsThunk = false;
539 
540   /// In ARC, whether we should autorelease the return value.
541   bool AutoreleaseResult = false;
542 
543   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
544   /// potentially set the return value.
545   bool SawAsmBlock = false;
546 
547   const NamedDecl *CurSEHParent = nullptr;
548 
549   /// True if the current function is an outlined SEH helper. This can be a
550   /// finally block or filter expression.
551   bool IsOutlinedSEHHelper = false;
552 
553   /// True if CodeGen currently emits code inside presereved access index
554   /// region.
555   bool IsInPreservedAIRegion = false;
556 
557   /// True if the current statement has nomerge attribute.
558   bool InNoMergeAttributedStmt = false;
559 
560   // The CallExpr within the current statement that the musttail attribute
561   // applies to.  nullptr if there is no 'musttail' on the current statement.
562   const CallExpr *MustTailCall = nullptr;
563 
564   /// Returns true if a function must make progress, which means the
565   /// mustprogress attribute can be added.
566   bool checkIfFunctionMustProgress() {
567     if (CGM.getCodeGenOpts().getFiniteLoops() ==
568         CodeGenOptions::FiniteLoopsKind::Never)
569       return false;
570 
571     // C++11 and later guarantees that a thread eventually will do one of the
572     // following (6.9.2.3.1 in C++11):
573     // - terminate,
574     //  - make a call to a library I/O function,
575     //  - perform an access through a volatile glvalue, or
576     //  - perform a synchronization operation or an atomic operation.
577     //
578     // Hence each function is 'mustprogress' in C++11 or later.
579     return getLangOpts().CPlusPlus11;
580   }
581 
582   /// Returns true if a loop must make progress, which means the mustprogress
583   /// attribute can be added. \p HasConstantCond indicates whether the branch
584   /// condition is a known constant.
585   bool checkIfLoopMustProgress(bool HasConstantCond) {
586     if (CGM.getCodeGenOpts().getFiniteLoops() ==
587         CodeGenOptions::FiniteLoopsKind::Always)
588       return true;
589     if (CGM.getCodeGenOpts().getFiniteLoops() ==
590         CodeGenOptions::FiniteLoopsKind::Never)
591       return false;
592 
593     // If the containing function must make progress, loops also must make
594     // progress (as in C++11 and later).
595     if (checkIfFunctionMustProgress())
596       return true;
597 
598     // Now apply rules for plain C (see  6.8.5.6 in C11).
599     // Loops with constant conditions do not have to make progress in any C
600     // version.
601     if (HasConstantCond)
602       return false;
603 
604     // Loops with non-constant conditions must make progress in C11 and later.
605     return getLangOpts().C11;
606   }
607 
608   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
609   llvm::Value *BlockPointer = nullptr;
610 
611   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
612   FieldDecl *LambdaThisCaptureField = nullptr;
613 
614   /// A mapping from NRVO variables to the flags used to indicate
615   /// when the NRVO has been applied to this variable.
616   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
617 
618   EHScopeStack EHStack;
619   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
620   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
621 
622   llvm::Instruction *CurrentFuncletPad = nullptr;
623 
624   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
625     bool isRedundantBeforeReturn() override { return true; }
626 
627     llvm::Value *Addr;
628     llvm::Value *Size;
629 
630   public:
631     CallLifetimeEnd(Address addr, llvm::Value *size)
632         : Addr(addr.getPointer()), Size(size) {}
633 
634     void Emit(CodeGenFunction &CGF, Flags flags) override {
635       CGF.EmitLifetimeEnd(Size, Addr);
636     }
637   };
638 
639   /// Header for data within LifetimeExtendedCleanupStack.
640   struct LifetimeExtendedCleanupHeader {
641     /// The size of the following cleanup object.
642     unsigned Size;
643     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
644     unsigned Kind : 31;
645     /// Whether this is a conditional cleanup.
646     unsigned IsConditional : 1;
647 
648     size_t getSize() const { return Size; }
649     CleanupKind getKind() const { return (CleanupKind)Kind; }
650     bool isConditional() const { return IsConditional; }
651   };
652 
653   /// i32s containing the indexes of the cleanup destinations.
654   Address NormalCleanupDest = Address::invalid();
655 
656   unsigned NextCleanupDestIndex = 1;
657 
658   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
659   llvm::BasicBlock *EHResumeBlock = nullptr;
660 
661   /// The exception slot.  All landing pads write the current exception pointer
662   /// into this alloca.
663   llvm::Value *ExceptionSlot = nullptr;
664 
665   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
666   /// write the current selector value into this alloca.
667   llvm::AllocaInst *EHSelectorSlot = nullptr;
668 
669   /// A stack of exception code slots. Entering an __except block pushes a slot
670   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
671   /// a value from the top of the stack.
672   SmallVector<Address, 1> SEHCodeSlotStack;
673 
674   /// Value returned by __exception_info intrinsic.
675   llvm::Value *SEHInfo = nullptr;
676 
677   /// Emits a landing pad for the current EH stack.
678   llvm::BasicBlock *EmitLandingPad();
679 
680   llvm::BasicBlock *getInvokeDestImpl();
681 
682   /// Parent loop-based directive for scan directive.
683   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
684   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
685   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
686   llvm::BasicBlock *OMPScanExitBlock = nullptr;
687   llvm::BasicBlock *OMPScanDispatch = nullptr;
688   bool OMPFirstScanLoop = false;
689 
690   /// Manages parent directive for scan directives.
691   class ParentLoopDirectiveForScanRegion {
692     CodeGenFunction &CGF;
693     const OMPExecutableDirective *ParentLoopDirectiveForScan;
694 
695   public:
696     ParentLoopDirectiveForScanRegion(
697         CodeGenFunction &CGF,
698         const OMPExecutableDirective &ParentLoopDirectiveForScan)
699         : CGF(CGF),
700           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
701       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
702     }
703     ~ParentLoopDirectiveForScanRegion() {
704       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
705     }
706   };
707 
708   template <class T>
709   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
710     return DominatingValue<T>::save(*this, value);
711   }
712 
713   class CGFPOptionsRAII {
714   public:
715     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
716     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
717     ~CGFPOptionsRAII();
718 
719   private:
720     void ConstructorHelper(FPOptions FPFeatures);
721     CodeGenFunction &CGF;
722     FPOptions OldFPFeatures;
723     llvm::fp::ExceptionBehavior OldExcept;
724     llvm::RoundingMode OldRounding;
725     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
726   };
727   FPOptions CurFPFeatures;
728 
729 public:
730   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
731   /// rethrows.
732   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
733 
734   /// A class controlling the emission of a finally block.
735   class FinallyInfo {
736     /// Where the catchall's edge through the cleanup should go.
737     JumpDest RethrowDest;
738 
739     /// A function to call to enter the catch.
740     llvm::FunctionCallee BeginCatchFn;
741 
742     /// An i1 variable indicating whether or not the @finally is
743     /// running for an exception.
744     llvm::AllocaInst *ForEHVar;
745 
746     /// An i8* variable into which the exception pointer to rethrow
747     /// has been saved.
748     llvm::AllocaInst *SavedExnVar;
749 
750   public:
751     void enter(CodeGenFunction &CGF, const Stmt *Finally,
752                llvm::FunctionCallee beginCatchFn,
753                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
754     void exit(CodeGenFunction &CGF);
755   };
756 
757   /// Returns true inside SEH __try blocks.
758   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
759 
760   /// Returns true while emitting a cleanuppad.
761   bool isCleanupPadScope() const {
762     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
763   }
764 
765   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
766   /// current full-expression.  Safe against the possibility that
767   /// we're currently inside a conditionally-evaluated expression.
768   template <class T, class... As>
769   void pushFullExprCleanup(CleanupKind kind, As... A) {
770     // If we're not in a conditional branch, or if none of the
771     // arguments requires saving, then use the unconditional cleanup.
772     if (!isInConditionalBranch())
773       return EHStack.pushCleanup<T>(kind, A...);
774 
775     // Stash values in a tuple so we can guarantee the order of saves.
776     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
777     SavedTuple Saved{saveValueInCond(A)...};
778 
779     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
780     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
781     initFullExprCleanup();
782   }
783 
784   /// Queue a cleanup to be pushed after finishing the current full-expression,
785   /// potentially with an active flag.
786   template <class T, class... As>
787   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
788     if (!isInConditionalBranch())
789       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
790                                                        A...);
791 
792     Address ActiveFlag = createCleanupActiveFlag();
793     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
794            "cleanup active flag should never need saving");
795 
796     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
797     SavedTuple Saved{saveValueInCond(A)...};
798 
799     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
800     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
801   }
802 
803   template <class T, class... As>
804   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
805                                               Address ActiveFlag, As... A) {
806     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
807                                             ActiveFlag.isValid()};
808 
809     size_t OldSize = LifetimeExtendedCleanupStack.size();
810     LifetimeExtendedCleanupStack.resize(
811         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
812         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
813 
814     static_assert(sizeof(Header) % alignof(T) == 0,
815                   "Cleanup will be allocated on misaligned address");
816     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
817     new (Buffer) LifetimeExtendedCleanupHeader(Header);
818     new (Buffer + sizeof(Header)) T(A...);
819     if (Header.IsConditional)
820       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
821   }
822 
823   /// Set up the last cleanup that was pushed as a conditional
824   /// full-expression cleanup.
825   void initFullExprCleanup() {
826     initFullExprCleanupWithFlag(createCleanupActiveFlag());
827   }
828 
829   void initFullExprCleanupWithFlag(Address ActiveFlag);
830   Address createCleanupActiveFlag();
831 
832   /// PushDestructorCleanup - Push a cleanup to call the
833   /// complete-object destructor of an object of the given type at the
834   /// given address.  Does nothing if T is not a C++ class type with a
835   /// non-trivial destructor.
836   void PushDestructorCleanup(QualType T, Address Addr);
837 
838   /// PushDestructorCleanup - Push a cleanup to call the
839   /// complete-object variant of the given destructor on the object at
840   /// the given address.
841   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
842                              Address Addr);
843 
844   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
845   /// process all branch fixups.
846   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
847 
848   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
849   /// The block cannot be reactivated.  Pops it if it's the top of the
850   /// stack.
851   ///
852   /// \param DominatingIP - An instruction which is known to
853   ///   dominate the current IP (if set) and which lies along
854   ///   all paths of execution between the current IP and the
855   ///   the point at which the cleanup comes into scope.
856   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
857                               llvm::Instruction *DominatingIP);
858 
859   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
860   /// Cannot be used to resurrect a deactivated cleanup.
861   ///
862   /// \param DominatingIP - An instruction which is known to
863   ///   dominate the current IP (if set) and which lies along
864   ///   all paths of execution between the current IP and the
865   ///   the point at which the cleanup comes into scope.
866   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
867                             llvm::Instruction *DominatingIP);
868 
869   /// Enters a new scope for capturing cleanups, all of which
870   /// will be executed once the scope is exited.
871   class RunCleanupsScope {
872     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
873     size_t LifetimeExtendedCleanupStackSize;
874     bool OldDidCallStackSave;
875   protected:
876     bool PerformCleanup;
877   private:
878 
879     RunCleanupsScope(const RunCleanupsScope &) = delete;
880     void operator=(const RunCleanupsScope &) = delete;
881 
882   protected:
883     CodeGenFunction& CGF;
884 
885   public:
886     /// Enter a new cleanup scope.
887     explicit RunCleanupsScope(CodeGenFunction &CGF)
888       : PerformCleanup(true), CGF(CGF)
889     {
890       CleanupStackDepth = CGF.EHStack.stable_begin();
891       LifetimeExtendedCleanupStackSize =
892           CGF.LifetimeExtendedCleanupStack.size();
893       OldDidCallStackSave = CGF.DidCallStackSave;
894       CGF.DidCallStackSave = false;
895       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
896       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
897     }
898 
899     /// Exit this cleanup scope, emitting any accumulated cleanups.
900     ~RunCleanupsScope() {
901       if (PerformCleanup)
902         ForceCleanup();
903     }
904 
905     /// Determine whether this scope requires any cleanups.
906     bool requiresCleanups() const {
907       return CGF.EHStack.stable_begin() != CleanupStackDepth;
908     }
909 
910     /// Force the emission of cleanups now, instead of waiting
911     /// until this object is destroyed.
912     /// \param ValuesToReload - A list of values that need to be available at
913     /// the insertion point after cleanup emission. If cleanup emission created
914     /// a shared cleanup block, these value pointers will be rewritten.
915     /// Otherwise, they not will be modified.
916     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
917       assert(PerformCleanup && "Already forced cleanup");
918       CGF.DidCallStackSave = OldDidCallStackSave;
919       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
920                            ValuesToReload);
921       PerformCleanup = false;
922       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
923     }
924   };
925 
926   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
927   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
928       EHScopeStack::stable_end();
929 
930   class LexicalScope : public RunCleanupsScope {
931     SourceRange Range;
932     SmallVector<const LabelDecl*, 4> Labels;
933     LexicalScope *ParentScope;
934 
935     LexicalScope(const LexicalScope &) = delete;
936     void operator=(const LexicalScope &) = delete;
937 
938   public:
939     /// Enter a new cleanup scope.
940     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
941       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
942       CGF.CurLexicalScope = this;
943       if (CGDebugInfo *DI = CGF.getDebugInfo())
944         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
945     }
946 
947     void addLabel(const LabelDecl *label) {
948       assert(PerformCleanup && "adding label to dead scope?");
949       Labels.push_back(label);
950     }
951 
952     /// Exit this cleanup scope, emitting any accumulated
953     /// cleanups.
954     ~LexicalScope() {
955       if (CGDebugInfo *DI = CGF.getDebugInfo())
956         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
957 
958       // If we should perform a cleanup, force them now.  Note that
959       // this ends the cleanup scope before rescoping any labels.
960       if (PerformCleanup) {
961         ApplyDebugLocation DL(CGF, Range.getEnd());
962         ForceCleanup();
963       }
964     }
965 
966     /// Force the emission of cleanups now, instead of waiting
967     /// until this object is destroyed.
968     void ForceCleanup() {
969       CGF.CurLexicalScope = ParentScope;
970       RunCleanupsScope::ForceCleanup();
971 
972       if (!Labels.empty())
973         rescopeLabels();
974     }
975 
976     bool hasLabels() const {
977       return !Labels.empty();
978     }
979 
980     void rescopeLabels();
981   };
982 
983   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
984 
985   /// The class used to assign some variables some temporarily addresses.
986   class OMPMapVars {
987     DeclMapTy SavedLocals;
988     DeclMapTy SavedTempAddresses;
989     OMPMapVars(const OMPMapVars &) = delete;
990     void operator=(const OMPMapVars &) = delete;
991 
992   public:
993     explicit OMPMapVars() = default;
994     ~OMPMapVars() {
995       assert(SavedLocals.empty() && "Did not restored original addresses.");
996     };
997 
998     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
999     /// function \p CGF.
1000     /// \return true if at least one variable was set already, false otherwise.
1001     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1002                     Address TempAddr) {
1003       LocalVD = LocalVD->getCanonicalDecl();
1004       // Only save it once.
1005       if (SavedLocals.count(LocalVD)) return false;
1006 
1007       // Copy the existing local entry to SavedLocals.
1008       auto it = CGF.LocalDeclMap.find(LocalVD);
1009       if (it != CGF.LocalDeclMap.end())
1010         SavedLocals.try_emplace(LocalVD, it->second);
1011       else
1012         SavedLocals.try_emplace(LocalVD, Address::invalid());
1013 
1014       // Generate the private entry.
1015       QualType VarTy = LocalVD->getType();
1016       if (VarTy->isReferenceType()) {
1017         Address Temp = CGF.CreateMemTemp(VarTy);
1018         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1019         TempAddr = Temp;
1020       }
1021       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1022 
1023       return true;
1024     }
1025 
1026     /// Applies new addresses to the list of the variables.
1027     /// \return true if at least one variable is using new address, false
1028     /// otherwise.
1029     bool apply(CodeGenFunction &CGF) {
1030       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1031       SavedTempAddresses.clear();
1032       return !SavedLocals.empty();
1033     }
1034 
1035     /// Restores original addresses of the variables.
1036     void restore(CodeGenFunction &CGF) {
1037       if (!SavedLocals.empty()) {
1038         copyInto(SavedLocals, CGF.LocalDeclMap);
1039         SavedLocals.clear();
1040       }
1041     }
1042 
1043   private:
1044     /// Copy all the entries in the source map over the corresponding
1045     /// entries in the destination, which must exist.
1046     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1047       for (auto &Pair : Src) {
1048         if (!Pair.second.isValid()) {
1049           Dest.erase(Pair.first);
1050           continue;
1051         }
1052 
1053         auto I = Dest.find(Pair.first);
1054         if (I != Dest.end())
1055           I->second = Pair.second;
1056         else
1057           Dest.insert(Pair);
1058       }
1059     }
1060   };
1061 
1062   /// The scope used to remap some variables as private in the OpenMP loop body
1063   /// (or other captured region emitted without outlining), and to restore old
1064   /// vars back on exit.
1065   class OMPPrivateScope : public RunCleanupsScope {
1066     OMPMapVars MappedVars;
1067     OMPPrivateScope(const OMPPrivateScope &) = delete;
1068     void operator=(const OMPPrivateScope &) = delete;
1069 
1070   public:
1071     /// Enter a new OpenMP private scope.
1072     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1073 
1074     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
1075     /// function for it to generate corresponding private variable. \p
1076     /// PrivateGen returns an address of the generated private variable.
1077     /// \return true if the variable is registered as private, false if it has
1078     /// been privatized already.
1079     bool addPrivate(const VarDecl *LocalVD,
1080                     const llvm::function_ref<Address()> PrivateGen) {
1081       assert(PerformCleanup && "adding private to dead scope");
1082       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
1083     }
1084 
1085     /// Privatizes local variables previously registered as private.
1086     /// Registration is separate from the actual privatization to allow
1087     /// initializers use values of the original variables, not the private one.
1088     /// This is important, for example, if the private variable is a class
1089     /// variable initialized by a constructor that references other private
1090     /// variables. But at initialization original variables must be used, not
1091     /// private copies.
1092     /// \return true if at least one variable was privatized, false otherwise.
1093     bool Privatize() { return MappedVars.apply(CGF); }
1094 
1095     void ForceCleanup() {
1096       RunCleanupsScope::ForceCleanup();
1097       MappedVars.restore(CGF);
1098     }
1099 
1100     /// Exit scope - all the mapped variables are restored.
1101     ~OMPPrivateScope() {
1102       if (PerformCleanup)
1103         ForceCleanup();
1104     }
1105 
1106     /// Checks if the global variable is captured in current function.
1107     bool isGlobalVarCaptured(const VarDecl *VD) const {
1108       VD = VD->getCanonicalDecl();
1109       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1110     }
1111   };
1112 
1113   /// Save/restore original map of previously emitted local vars in case when we
1114   /// need to duplicate emission of the same code several times in the same
1115   /// function for OpenMP code.
1116   class OMPLocalDeclMapRAII {
1117     CodeGenFunction &CGF;
1118     DeclMapTy SavedMap;
1119 
1120   public:
1121     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1122         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1123     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1124   };
1125 
1126   /// Takes the old cleanup stack size and emits the cleanup blocks
1127   /// that have been added.
1128   void
1129   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1130                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1131 
1132   /// Takes the old cleanup stack size and emits the cleanup blocks
1133   /// that have been added, then adds all lifetime-extended cleanups from
1134   /// the given position to the stack.
1135   void
1136   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1137                    size_t OldLifetimeExtendedStackSize,
1138                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1139 
1140   void ResolveBranchFixups(llvm::BasicBlock *Target);
1141 
1142   /// The given basic block lies in the current EH scope, but may be a
1143   /// target of a potentially scope-crossing jump; get a stable handle
1144   /// to which we can perform this jump later.
1145   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1146     return JumpDest(Target,
1147                     EHStack.getInnermostNormalCleanup(),
1148                     NextCleanupDestIndex++);
1149   }
1150 
1151   /// The given basic block lies in the current EH scope, but may be a
1152   /// target of a potentially scope-crossing jump; get a stable handle
1153   /// to which we can perform this jump later.
1154   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1155     return getJumpDestInCurrentScope(createBasicBlock(Name));
1156   }
1157 
1158   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1159   /// block through the normal cleanup handling code (if any) and then
1160   /// on to \arg Dest.
1161   void EmitBranchThroughCleanup(JumpDest Dest);
1162 
1163   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1164   /// specified destination obviously has no cleanups to run.  'false' is always
1165   /// a conservatively correct answer for this method.
1166   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1167 
1168   /// popCatchScope - Pops the catch scope at the top of the EHScope
1169   /// stack, emitting any required code (other than the catch handlers
1170   /// themselves).
1171   void popCatchScope();
1172 
1173   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1174   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1175   llvm::BasicBlock *
1176   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1177 
1178   /// An object to manage conditionally-evaluated expressions.
1179   class ConditionalEvaluation {
1180     llvm::BasicBlock *StartBB;
1181 
1182   public:
1183     ConditionalEvaluation(CodeGenFunction &CGF)
1184       : StartBB(CGF.Builder.GetInsertBlock()) {}
1185 
1186     void begin(CodeGenFunction &CGF) {
1187       assert(CGF.OutermostConditional != this);
1188       if (!CGF.OutermostConditional)
1189         CGF.OutermostConditional = this;
1190     }
1191 
1192     void end(CodeGenFunction &CGF) {
1193       assert(CGF.OutermostConditional != nullptr);
1194       if (CGF.OutermostConditional == this)
1195         CGF.OutermostConditional = nullptr;
1196     }
1197 
1198     /// Returns a block which will be executed prior to each
1199     /// evaluation of the conditional code.
1200     llvm::BasicBlock *getStartingBlock() const {
1201       return StartBB;
1202     }
1203   };
1204 
1205   /// isInConditionalBranch - Return true if we're currently emitting
1206   /// one branch or the other of a conditional expression.
1207   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1208 
1209   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1210     assert(isInConditionalBranch());
1211     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1212     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1213     store->setAlignment(addr.getAlignment().getAsAlign());
1214   }
1215 
1216   /// An RAII object to record that we're evaluating a statement
1217   /// expression.
1218   class StmtExprEvaluation {
1219     CodeGenFunction &CGF;
1220 
1221     /// We have to save the outermost conditional: cleanups in a
1222     /// statement expression aren't conditional just because the
1223     /// StmtExpr is.
1224     ConditionalEvaluation *SavedOutermostConditional;
1225 
1226   public:
1227     StmtExprEvaluation(CodeGenFunction &CGF)
1228       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1229       CGF.OutermostConditional = nullptr;
1230     }
1231 
1232     ~StmtExprEvaluation() {
1233       CGF.OutermostConditional = SavedOutermostConditional;
1234       CGF.EnsureInsertPoint();
1235     }
1236   };
1237 
1238   /// An object which temporarily prevents a value from being
1239   /// destroyed by aggressive peephole optimizations that assume that
1240   /// all uses of a value have been realized in the IR.
1241   class PeepholeProtection {
1242     llvm::Instruction *Inst;
1243     friend class CodeGenFunction;
1244 
1245   public:
1246     PeepholeProtection() : Inst(nullptr) {}
1247   };
1248 
1249   /// A non-RAII class containing all the information about a bound
1250   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1251   /// this which makes individual mappings very simple; using this
1252   /// class directly is useful when you have a variable number of
1253   /// opaque values or don't want the RAII functionality for some
1254   /// reason.
1255   class OpaqueValueMappingData {
1256     const OpaqueValueExpr *OpaqueValue;
1257     bool BoundLValue;
1258     CodeGenFunction::PeepholeProtection Protection;
1259 
1260     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1261                            bool boundLValue)
1262       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1263   public:
1264     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1265 
1266     static bool shouldBindAsLValue(const Expr *expr) {
1267       // gl-values should be bound as l-values for obvious reasons.
1268       // Records should be bound as l-values because IR generation
1269       // always keeps them in memory.  Expressions of function type
1270       // act exactly like l-values but are formally required to be
1271       // r-values in C.
1272       return expr->isGLValue() ||
1273              expr->getType()->isFunctionType() ||
1274              hasAggregateEvaluationKind(expr->getType());
1275     }
1276 
1277     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1278                                        const OpaqueValueExpr *ov,
1279                                        const Expr *e) {
1280       if (shouldBindAsLValue(ov))
1281         return bind(CGF, ov, CGF.EmitLValue(e));
1282       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1283     }
1284 
1285     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1286                                        const OpaqueValueExpr *ov,
1287                                        const LValue &lv) {
1288       assert(shouldBindAsLValue(ov));
1289       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1290       return OpaqueValueMappingData(ov, true);
1291     }
1292 
1293     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1294                                        const OpaqueValueExpr *ov,
1295                                        const RValue &rv) {
1296       assert(!shouldBindAsLValue(ov));
1297       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1298 
1299       OpaqueValueMappingData data(ov, false);
1300 
1301       // Work around an extremely aggressive peephole optimization in
1302       // EmitScalarConversion which assumes that all other uses of a
1303       // value are extant.
1304       data.Protection = CGF.protectFromPeepholes(rv);
1305 
1306       return data;
1307     }
1308 
1309     bool isValid() const { return OpaqueValue != nullptr; }
1310     void clear() { OpaqueValue = nullptr; }
1311 
1312     void unbind(CodeGenFunction &CGF) {
1313       assert(OpaqueValue && "no data to unbind!");
1314 
1315       if (BoundLValue) {
1316         CGF.OpaqueLValues.erase(OpaqueValue);
1317       } else {
1318         CGF.OpaqueRValues.erase(OpaqueValue);
1319         CGF.unprotectFromPeepholes(Protection);
1320       }
1321     }
1322   };
1323 
1324   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1325   class OpaqueValueMapping {
1326     CodeGenFunction &CGF;
1327     OpaqueValueMappingData Data;
1328 
1329   public:
1330     static bool shouldBindAsLValue(const Expr *expr) {
1331       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1332     }
1333 
1334     /// Build the opaque value mapping for the given conditional
1335     /// operator if it's the GNU ?: extension.  This is a common
1336     /// enough pattern that the convenience operator is really
1337     /// helpful.
1338     ///
1339     OpaqueValueMapping(CodeGenFunction &CGF,
1340                        const AbstractConditionalOperator *op) : CGF(CGF) {
1341       if (isa<ConditionalOperator>(op))
1342         // Leave Data empty.
1343         return;
1344 
1345       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1346       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1347                                           e->getCommon());
1348     }
1349 
1350     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1351     /// expression is set to the expression the OVE represents.
1352     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1353         : CGF(CGF) {
1354       if (OV) {
1355         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1356                                       "for OVE with no source expression");
1357         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1358       }
1359     }
1360 
1361     OpaqueValueMapping(CodeGenFunction &CGF,
1362                        const OpaqueValueExpr *opaqueValue,
1363                        LValue lvalue)
1364       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1365     }
1366 
1367     OpaqueValueMapping(CodeGenFunction &CGF,
1368                        const OpaqueValueExpr *opaqueValue,
1369                        RValue rvalue)
1370       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1371     }
1372 
1373     void pop() {
1374       Data.unbind(CGF);
1375       Data.clear();
1376     }
1377 
1378     ~OpaqueValueMapping() {
1379       if (Data.isValid()) Data.unbind(CGF);
1380     }
1381   };
1382 
1383 private:
1384   CGDebugInfo *DebugInfo;
1385   /// Used to create unique names for artificial VLA size debug info variables.
1386   unsigned VLAExprCounter = 0;
1387   bool DisableDebugInfo = false;
1388 
1389   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1390   /// calling llvm.stacksave for multiple VLAs in the same scope.
1391   bool DidCallStackSave = false;
1392 
1393   /// IndirectBranch - The first time an indirect goto is seen we create a block
1394   /// with an indirect branch.  Every time we see the address of a label taken,
1395   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1396   /// codegen'd as a jump to the IndirectBranch's basic block.
1397   llvm::IndirectBrInst *IndirectBranch = nullptr;
1398 
1399   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1400   /// decls.
1401   DeclMapTy LocalDeclMap;
1402 
1403   // Keep track of the cleanups for callee-destructed parameters pushed to the
1404   // cleanup stack so that they can be deactivated later.
1405   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1406       CalleeDestructedParamCleanups;
1407 
1408   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1409   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1410   /// parameter.
1411   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1412       SizeArguments;
1413 
1414   /// Track escaped local variables with auto storage. Used during SEH
1415   /// outlining to produce a call to llvm.localescape.
1416   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1417 
1418   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1419   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1420 
1421   // BreakContinueStack - This keeps track of where break and continue
1422   // statements should jump to.
1423   struct BreakContinue {
1424     BreakContinue(JumpDest Break, JumpDest Continue)
1425       : BreakBlock(Break), ContinueBlock(Continue) {}
1426 
1427     JumpDest BreakBlock;
1428     JumpDest ContinueBlock;
1429   };
1430   SmallVector<BreakContinue, 8> BreakContinueStack;
1431 
1432   /// Handles cancellation exit points in OpenMP-related constructs.
1433   class OpenMPCancelExitStack {
1434     /// Tracks cancellation exit point and join point for cancel-related exit
1435     /// and normal exit.
1436     struct CancelExit {
1437       CancelExit() = default;
1438       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1439                  JumpDest ContBlock)
1440           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1441       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1442       /// true if the exit block has been emitted already by the special
1443       /// emitExit() call, false if the default codegen is used.
1444       bool HasBeenEmitted = false;
1445       JumpDest ExitBlock;
1446       JumpDest ContBlock;
1447     };
1448 
1449     SmallVector<CancelExit, 8> Stack;
1450 
1451   public:
1452     OpenMPCancelExitStack() : Stack(1) {}
1453     ~OpenMPCancelExitStack() = default;
1454     /// Fetches the exit block for the current OpenMP construct.
1455     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1456     /// Emits exit block with special codegen procedure specific for the related
1457     /// OpenMP construct + emits code for normal construct cleanup.
1458     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1459                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1460       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1461         assert(CGF.getOMPCancelDestination(Kind).isValid());
1462         assert(CGF.HaveInsertPoint());
1463         assert(!Stack.back().HasBeenEmitted);
1464         auto IP = CGF.Builder.saveAndClearIP();
1465         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1466         CodeGen(CGF);
1467         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1468         CGF.Builder.restoreIP(IP);
1469         Stack.back().HasBeenEmitted = true;
1470       }
1471       CodeGen(CGF);
1472     }
1473     /// Enter the cancel supporting \a Kind construct.
1474     /// \param Kind OpenMP directive that supports cancel constructs.
1475     /// \param HasCancel true, if the construct has inner cancel directive,
1476     /// false otherwise.
1477     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1478       Stack.push_back({Kind,
1479                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1480                                  : JumpDest(),
1481                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1482                                  : JumpDest()});
1483     }
1484     /// Emits default exit point for the cancel construct (if the special one
1485     /// has not be used) + join point for cancel/normal exits.
1486     void exit(CodeGenFunction &CGF) {
1487       if (getExitBlock().isValid()) {
1488         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1489         bool HaveIP = CGF.HaveInsertPoint();
1490         if (!Stack.back().HasBeenEmitted) {
1491           if (HaveIP)
1492             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1493           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1494           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1495         }
1496         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1497         if (!HaveIP) {
1498           CGF.Builder.CreateUnreachable();
1499           CGF.Builder.ClearInsertionPoint();
1500         }
1501       }
1502       Stack.pop_back();
1503     }
1504   };
1505   OpenMPCancelExitStack OMPCancelStack;
1506 
1507   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1508   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1509                                                     Stmt::Likelihood LH);
1510 
1511   CodeGenPGO PGO;
1512 
1513   /// Calculate branch weights appropriate for PGO data
1514   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1515                                      uint64_t FalseCount) const;
1516   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1517   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1518                                             uint64_t LoopCount) const;
1519 
1520 public:
1521   /// Increment the profiler's counter for the given statement by \p StepV.
1522   /// If \p StepV is null, the default increment is 1.
1523   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1524     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1525         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1526       PGO.emitCounterIncrement(Builder, S, StepV);
1527     PGO.setCurrentStmt(S);
1528   }
1529 
1530   /// Get the profiler's count for the given statement.
1531   uint64_t getProfileCount(const Stmt *S) {
1532     Optional<uint64_t> Count = PGO.getStmtCount(S);
1533     if (!Count.hasValue())
1534       return 0;
1535     return *Count;
1536   }
1537 
1538   /// Set the profiler's current count.
1539   void setCurrentProfileCount(uint64_t Count) {
1540     PGO.setCurrentRegionCount(Count);
1541   }
1542 
1543   /// Get the profiler's current count. This is generally the count for the most
1544   /// recently incremented counter.
1545   uint64_t getCurrentProfileCount() {
1546     return PGO.getCurrentRegionCount();
1547   }
1548 
1549 private:
1550 
1551   /// SwitchInsn - This is nearest current switch instruction. It is null if
1552   /// current context is not in a switch.
1553   llvm::SwitchInst *SwitchInsn = nullptr;
1554   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1555   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1556 
1557   /// The likelihood attributes of the SwitchCase.
1558   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1559 
1560   /// CaseRangeBlock - This block holds if condition check for last case
1561   /// statement range in current switch instruction.
1562   llvm::BasicBlock *CaseRangeBlock = nullptr;
1563 
1564   /// OpaqueLValues - Keeps track of the current set of opaque value
1565   /// expressions.
1566   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1567   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1568 
1569   // VLASizeMap - This keeps track of the associated size for each VLA type.
1570   // We track this by the size expression rather than the type itself because
1571   // in certain situations, like a const qualifier applied to an VLA typedef,
1572   // multiple VLA types can share the same size expression.
1573   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1574   // enter/leave scopes.
1575   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1576 
1577   /// A block containing a single 'unreachable' instruction.  Created
1578   /// lazily by getUnreachableBlock().
1579   llvm::BasicBlock *UnreachableBlock = nullptr;
1580 
1581   /// Counts of the number return expressions in the function.
1582   unsigned NumReturnExprs = 0;
1583 
1584   /// Count the number of simple (constant) return expressions in the function.
1585   unsigned NumSimpleReturnExprs = 0;
1586 
1587   /// The last regular (non-return) debug location (breakpoint) in the function.
1588   SourceLocation LastStopPoint;
1589 
1590 public:
1591   /// Source location information about the default argument or member
1592   /// initializer expression we're evaluating, if any.
1593   CurrentSourceLocExprScope CurSourceLocExprScope;
1594   using SourceLocExprScopeGuard =
1595       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1596 
1597   /// A scope within which we are constructing the fields of an object which
1598   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1599   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1600   class FieldConstructionScope {
1601   public:
1602     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1603         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1604       CGF.CXXDefaultInitExprThis = This;
1605     }
1606     ~FieldConstructionScope() {
1607       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1608     }
1609 
1610   private:
1611     CodeGenFunction &CGF;
1612     Address OldCXXDefaultInitExprThis;
1613   };
1614 
1615   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1616   /// is overridden to be the object under construction.
1617   class CXXDefaultInitExprScope  {
1618   public:
1619     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1620         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1621           OldCXXThisAlignment(CGF.CXXThisAlignment),
1622           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1623       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1624       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1625     }
1626     ~CXXDefaultInitExprScope() {
1627       CGF.CXXThisValue = OldCXXThisValue;
1628       CGF.CXXThisAlignment = OldCXXThisAlignment;
1629     }
1630 
1631   public:
1632     CodeGenFunction &CGF;
1633     llvm::Value *OldCXXThisValue;
1634     CharUnits OldCXXThisAlignment;
1635     SourceLocExprScopeGuard SourceLocScope;
1636   };
1637 
1638   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1639     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1640         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1641   };
1642 
1643   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1644   /// current loop index is overridden.
1645   class ArrayInitLoopExprScope {
1646   public:
1647     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1648       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1649       CGF.ArrayInitIndex = Index;
1650     }
1651     ~ArrayInitLoopExprScope() {
1652       CGF.ArrayInitIndex = OldArrayInitIndex;
1653     }
1654 
1655   private:
1656     CodeGenFunction &CGF;
1657     llvm::Value *OldArrayInitIndex;
1658   };
1659 
1660   class InlinedInheritingConstructorScope {
1661   public:
1662     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1663         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1664           OldCurCodeDecl(CGF.CurCodeDecl),
1665           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1666           OldCXXABIThisValue(CGF.CXXABIThisValue),
1667           OldCXXThisValue(CGF.CXXThisValue),
1668           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1669           OldCXXThisAlignment(CGF.CXXThisAlignment),
1670           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1671           OldCXXInheritedCtorInitExprArgs(
1672               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1673       CGF.CurGD = GD;
1674       CGF.CurFuncDecl = CGF.CurCodeDecl =
1675           cast<CXXConstructorDecl>(GD.getDecl());
1676       CGF.CXXABIThisDecl = nullptr;
1677       CGF.CXXABIThisValue = nullptr;
1678       CGF.CXXThisValue = nullptr;
1679       CGF.CXXABIThisAlignment = CharUnits();
1680       CGF.CXXThisAlignment = CharUnits();
1681       CGF.ReturnValue = Address::invalid();
1682       CGF.FnRetTy = QualType();
1683       CGF.CXXInheritedCtorInitExprArgs.clear();
1684     }
1685     ~InlinedInheritingConstructorScope() {
1686       CGF.CurGD = OldCurGD;
1687       CGF.CurFuncDecl = OldCurFuncDecl;
1688       CGF.CurCodeDecl = OldCurCodeDecl;
1689       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1690       CGF.CXXABIThisValue = OldCXXABIThisValue;
1691       CGF.CXXThisValue = OldCXXThisValue;
1692       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1693       CGF.CXXThisAlignment = OldCXXThisAlignment;
1694       CGF.ReturnValue = OldReturnValue;
1695       CGF.FnRetTy = OldFnRetTy;
1696       CGF.CXXInheritedCtorInitExprArgs =
1697           std::move(OldCXXInheritedCtorInitExprArgs);
1698     }
1699 
1700   private:
1701     CodeGenFunction &CGF;
1702     GlobalDecl OldCurGD;
1703     const Decl *OldCurFuncDecl;
1704     const Decl *OldCurCodeDecl;
1705     ImplicitParamDecl *OldCXXABIThisDecl;
1706     llvm::Value *OldCXXABIThisValue;
1707     llvm::Value *OldCXXThisValue;
1708     CharUnits OldCXXABIThisAlignment;
1709     CharUnits OldCXXThisAlignment;
1710     Address OldReturnValue;
1711     QualType OldFnRetTy;
1712     CallArgList OldCXXInheritedCtorInitExprArgs;
1713   };
1714 
1715   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1716   // region body, and finalization codegen callbacks. This will class will also
1717   // contain privatization functions used by the privatization call backs
1718   //
1719   // TODO: this is temporary class for things that are being moved out of
1720   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1721   // utility function for use with the OMPBuilder. Once that move to use the
1722   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1723   // directly, or a new helper class that will contain functions used by both
1724   // this and the OMPBuilder
1725 
1726   struct OMPBuilderCBHelpers {
1727 
1728     OMPBuilderCBHelpers() = delete;
1729     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1730     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1731 
1732     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1733 
1734     /// Cleanup action for allocate support.
1735     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1736 
1737     private:
1738       llvm::CallInst *RTLFnCI;
1739 
1740     public:
1741       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1742         RLFnCI->removeFromParent();
1743       }
1744 
1745       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1746         if (!CGF.HaveInsertPoint())
1747           return;
1748         CGF.Builder.Insert(RTLFnCI);
1749       }
1750     };
1751 
1752     /// Returns address of the threadprivate variable for the current
1753     /// thread. This Also create any necessary OMP runtime calls.
1754     ///
1755     /// \param VD VarDecl for Threadprivate variable.
1756     /// \param VDAddr Address of the Vardecl
1757     /// \param Loc  The location where the barrier directive was encountered
1758     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1759                                           const VarDecl *VD, Address VDAddr,
1760                                           SourceLocation Loc);
1761 
1762     /// Gets the OpenMP-specific address of the local variable /p VD.
1763     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1764                                              const VarDecl *VD);
1765     /// Get the platform-specific name separator.
1766     /// \param Parts different parts of the final name that needs separation
1767     /// \param FirstSeparator First separator used between the initial two
1768     ///        parts of the name.
1769     /// \param Separator separator used between all of the rest consecutinve
1770     ///        parts of the name
1771     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1772                                              StringRef FirstSeparator = ".",
1773                                              StringRef Separator = ".");
1774     /// Emit the Finalization for an OMP region
1775     /// \param CGF	The Codegen function this belongs to
1776     /// \param IP	Insertion point for generating the finalization code.
1777     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1778       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1779       assert(IP.getBlock()->end() != IP.getPoint() &&
1780              "OpenMP IR Builder should cause terminated block!");
1781 
1782       llvm::BasicBlock *IPBB = IP.getBlock();
1783       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1784       assert(DestBB && "Finalization block should have one successor!");
1785 
1786       // erase and replace with cleanup branch.
1787       IPBB->getTerminator()->eraseFromParent();
1788       CGF.Builder.SetInsertPoint(IPBB);
1789       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1790       CGF.EmitBranchThroughCleanup(Dest);
1791     }
1792 
1793     /// Emit the body of an OMP region
1794     /// \param CGF	The Codegen function this belongs to
1795     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1796     /// 			 generated
1797     /// \param CodeGenIP	Insertion point for generating the body code.
1798     /// \param FiniBB	The finalization basic block
1799     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1800                                   const Stmt *RegionBodyStmt,
1801                                   InsertPointTy CodeGenIP,
1802                                   llvm::BasicBlock &FiniBB) {
1803       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1804       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1805         CodeGenIPBBTI->eraseFromParent();
1806 
1807       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1808 
1809       CGF.EmitStmt(RegionBodyStmt);
1810 
1811       if (CGF.Builder.saveIP().isSet())
1812         CGF.Builder.CreateBr(&FiniBB);
1813     }
1814 
1815     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1816                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1817                                 ArrayRef<llvm::Value *> Args) {
1818       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1819       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1820         CodeGenIPBBTI->eraseFromParent();
1821 
1822       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1823 
1824       if (Fn->doesNotThrow())
1825         CGF.EmitNounwindRuntimeCall(Fn, Args);
1826       else
1827         CGF.EmitRuntimeCall(Fn, Args);
1828 
1829       if (CGF.Builder.saveIP().isSet())
1830         CGF.Builder.CreateBr(&FiniBB);
1831     }
1832 
1833     /// RAII for preserving necessary info during Outlined region body codegen.
1834     class OutlinedRegionBodyRAII {
1835 
1836       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1837       CodeGenFunction::JumpDest OldReturnBlock;
1838       CGBuilderTy::InsertPoint IP;
1839       CodeGenFunction &CGF;
1840 
1841     public:
1842       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1843                              llvm::BasicBlock &RetBB)
1844           : CGF(cgf) {
1845         assert(AllocaIP.isSet() &&
1846                "Must specify Insertion point for allocas of outlined function");
1847         OldAllocaIP = CGF.AllocaInsertPt;
1848         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1849         IP = CGF.Builder.saveIP();
1850 
1851         OldReturnBlock = CGF.ReturnBlock;
1852         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1853       }
1854 
1855       ~OutlinedRegionBodyRAII() {
1856         CGF.AllocaInsertPt = OldAllocaIP;
1857         CGF.ReturnBlock = OldReturnBlock;
1858         CGF.Builder.restoreIP(IP);
1859       }
1860     };
1861 
1862     /// RAII for preserving necessary info during inlined region body codegen.
1863     class InlinedRegionBodyRAII {
1864 
1865       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1866       CodeGenFunction &CGF;
1867 
1868     public:
1869       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1870                             llvm::BasicBlock &FiniBB)
1871           : CGF(cgf) {
1872         // Alloca insertion block should be in the entry block of the containing
1873         // function so it expects an empty AllocaIP in which case will reuse the
1874         // old alloca insertion point, or a new AllocaIP in the same block as
1875         // the old one
1876         assert((!AllocaIP.isSet() ||
1877                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1878                "Insertion point should be in the entry block of containing "
1879                "function!");
1880         OldAllocaIP = CGF.AllocaInsertPt;
1881         if (AllocaIP.isSet())
1882           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1883 
1884         // TODO: Remove the call, after making sure the counter is not used by
1885         //       the EHStack.
1886         // Since this is an inlined region, it should not modify the
1887         // ReturnBlock, and should reuse the one for the enclosing outlined
1888         // region. So, the JumpDest being return by the function is discarded
1889         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1890       }
1891 
1892       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1893     };
1894   };
1895 
1896 private:
1897   /// CXXThisDecl - When generating code for a C++ member function,
1898   /// this will hold the implicit 'this' declaration.
1899   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1900   llvm::Value *CXXABIThisValue = nullptr;
1901   llvm::Value *CXXThisValue = nullptr;
1902   CharUnits CXXABIThisAlignment;
1903   CharUnits CXXThisAlignment;
1904 
1905   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1906   /// this expression.
1907   Address CXXDefaultInitExprThis = Address::invalid();
1908 
1909   /// The current array initialization index when evaluating an
1910   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1911   llvm::Value *ArrayInitIndex = nullptr;
1912 
1913   /// The values of function arguments to use when evaluating
1914   /// CXXInheritedCtorInitExprs within this context.
1915   CallArgList CXXInheritedCtorInitExprArgs;
1916 
1917   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1918   /// destructor, this will hold the implicit argument (e.g. VTT).
1919   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1920   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1921 
1922   /// OutermostConditional - Points to the outermost active
1923   /// conditional control.  This is used so that we know if a
1924   /// temporary should be destroyed conditionally.
1925   ConditionalEvaluation *OutermostConditional = nullptr;
1926 
1927   /// The current lexical scope.
1928   LexicalScope *CurLexicalScope = nullptr;
1929 
1930   /// The current source location that should be used for exception
1931   /// handling code.
1932   SourceLocation CurEHLocation;
1933 
1934   /// BlockByrefInfos - For each __block variable, contains
1935   /// information about the layout of the variable.
1936   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1937 
1938   /// Used by -fsanitize=nullability-return to determine whether the return
1939   /// value can be checked.
1940   llvm::Value *RetValNullabilityPrecondition = nullptr;
1941 
1942   /// Check if -fsanitize=nullability-return instrumentation is required for
1943   /// this function.
1944   bool requiresReturnValueNullabilityCheck() const {
1945     return RetValNullabilityPrecondition;
1946   }
1947 
1948   /// Used to store precise source locations for return statements by the
1949   /// runtime return value checks.
1950   Address ReturnLocation = Address::invalid();
1951 
1952   /// Check if the return value of this function requires sanitization.
1953   bool requiresReturnValueCheck() const;
1954 
1955   llvm::BasicBlock *TerminateLandingPad = nullptr;
1956   llvm::BasicBlock *TerminateHandler = nullptr;
1957   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1958 
1959   /// Terminate funclets keyed by parent funclet pad.
1960   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1961 
1962   /// Largest vector width used in ths function. Will be used to create a
1963   /// function attribute.
1964   unsigned LargestVectorWidth = 0;
1965 
1966   /// True if we need emit the life-time markers. This is initially set in
1967   /// the constructor, but could be overwritten to true if this is a coroutine.
1968   bool ShouldEmitLifetimeMarkers;
1969 
1970   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1971   /// the function metadata.
1972   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1973                                 llvm::Function *Fn);
1974 
1975 public:
1976   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1977   ~CodeGenFunction();
1978 
1979   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1980   ASTContext &getContext() const { return CGM.getContext(); }
1981   CGDebugInfo *getDebugInfo() {
1982     if (DisableDebugInfo)
1983       return nullptr;
1984     return DebugInfo;
1985   }
1986   void disableDebugInfo() { DisableDebugInfo = true; }
1987   void enableDebugInfo() { DisableDebugInfo = false; }
1988 
1989   bool shouldUseFusedARCCalls() {
1990     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1991   }
1992 
1993   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1994 
1995   /// Returns a pointer to the function's exception object and selector slot,
1996   /// which is assigned in every landing pad.
1997   Address getExceptionSlot();
1998   Address getEHSelectorSlot();
1999 
2000   /// Returns the contents of the function's exception object and selector
2001   /// slots.
2002   llvm::Value *getExceptionFromSlot();
2003   llvm::Value *getSelectorFromSlot();
2004 
2005   Address getNormalCleanupDestSlot();
2006 
2007   llvm::BasicBlock *getUnreachableBlock() {
2008     if (!UnreachableBlock) {
2009       UnreachableBlock = createBasicBlock("unreachable");
2010       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2011     }
2012     return UnreachableBlock;
2013   }
2014 
2015   llvm::BasicBlock *getInvokeDest() {
2016     if (!EHStack.requiresLandingPad()) return nullptr;
2017     return getInvokeDestImpl();
2018   }
2019 
2020   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
2021 
2022   const TargetInfo &getTarget() const { return Target; }
2023   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2024   const TargetCodeGenInfo &getTargetHooks() const {
2025     return CGM.getTargetCodeGenInfo();
2026   }
2027 
2028   //===--------------------------------------------------------------------===//
2029   //                                  Cleanups
2030   //===--------------------------------------------------------------------===//
2031 
2032   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2033 
2034   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2035                                         Address arrayEndPointer,
2036                                         QualType elementType,
2037                                         CharUnits elementAlignment,
2038                                         Destroyer *destroyer);
2039   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2040                                       llvm::Value *arrayEnd,
2041                                       QualType elementType,
2042                                       CharUnits elementAlignment,
2043                                       Destroyer *destroyer);
2044 
2045   void pushDestroy(QualType::DestructionKind dtorKind,
2046                    Address addr, QualType type);
2047   void pushEHDestroy(QualType::DestructionKind dtorKind,
2048                      Address addr, QualType type);
2049   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2050                    Destroyer *destroyer, bool useEHCleanupForArray);
2051   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2052                                    QualType type, Destroyer *destroyer,
2053                                    bool useEHCleanupForArray);
2054   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2055                                    llvm::Value *CompletePtr,
2056                                    QualType ElementType);
2057   void pushStackRestore(CleanupKind kind, Address SPMem);
2058   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2059                    bool useEHCleanupForArray);
2060   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2061                                         Destroyer *destroyer,
2062                                         bool useEHCleanupForArray,
2063                                         const VarDecl *VD);
2064   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2065                         QualType elementType, CharUnits elementAlign,
2066                         Destroyer *destroyer,
2067                         bool checkZeroLength, bool useEHCleanup);
2068 
2069   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2070 
2071   /// Determines whether an EH cleanup is required to destroy a type
2072   /// with the given destruction kind.
2073   bool needsEHCleanup(QualType::DestructionKind kind) {
2074     switch (kind) {
2075     case QualType::DK_none:
2076       return false;
2077     case QualType::DK_cxx_destructor:
2078     case QualType::DK_objc_weak_lifetime:
2079     case QualType::DK_nontrivial_c_struct:
2080       return getLangOpts().Exceptions;
2081     case QualType::DK_objc_strong_lifetime:
2082       return getLangOpts().Exceptions &&
2083              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2084     }
2085     llvm_unreachable("bad destruction kind");
2086   }
2087 
2088   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2089     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2090   }
2091 
2092   //===--------------------------------------------------------------------===//
2093   //                                  Objective-C
2094   //===--------------------------------------------------------------------===//
2095 
2096   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2097 
2098   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2099 
2100   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2101   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2102                           const ObjCPropertyImplDecl *PID);
2103   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2104                               const ObjCPropertyImplDecl *propImpl,
2105                               const ObjCMethodDecl *GetterMothodDecl,
2106                               llvm::Constant *AtomicHelperFn);
2107 
2108   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2109                                   ObjCMethodDecl *MD, bool ctor);
2110 
2111   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2112   /// for the given property.
2113   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2114                           const ObjCPropertyImplDecl *PID);
2115   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2116                               const ObjCPropertyImplDecl *propImpl,
2117                               llvm::Constant *AtomicHelperFn);
2118 
2119   //===--------------------------------------------------------------------===//
2120   //                                  Block Bits
2121   //===--------------------------------------------------------------------===//
2122 
2123   /// Emit block literal.
2124   /// \return an LLVM value which is a pointer to a struct which contains
2125   /// information about the block, including the block invoke function, the
2126   /// captured variables, etc.
2127   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2128 
2129   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2130                                         const CGBlockInfo &Info,
2131                                         const DeclMapTy &ldm,
2132                                         bool IsLambdaConversionToBlock,
2133                                         bool BuildGlobalBlock);
2134 
2135   /// Check if \p T is a C++ class that has a destructor that can throw.
2136   static bool cxxDestructorCanThrow(QualType T);
2137 
2138   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2139   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2140   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2141                                              const ObjCPropertyImplDecl *PID);
2142   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2143                                              const ObjCPropertyImplDecl *PID);
2144   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2145 
2146   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2147                          bool CanThrow);
2148 
2149   class AutoVarEmission;
2150 
2151   void emitByrefStructureInit(const AutoVarEmission &emission);
2152 
2153   /// Enter a cleanup to destroy a __block variable.  Note that this
2154   /// cleanup should be a no-op if the variable hasn't left the stack
2155   /// yet; if a cleanup is required for the variable itself, that needs
2156   /// to be done externally.
2157   ///
2158   /// \param Kind Cleanup kind.
2159   ///
2160   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2161   /// structure that will be passed to _Block_object_dispose. When
2162   /// \p LoadBlockVarAddr is true, the address of the field of the block
2163   /// structure that holds the address of the __block structure.
2164   ///
2165   /// \param Flags The flag that will be passed to _Block_object_dispose.
2166   ///
2167   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2168   /// \p Addr to get the address of the __block structure.
2169   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2170                          bool LoadBlockVarAddr, bool CanThrow);
2171 
2172   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2173                                 llvm::Value *ptr);
2174 
2175   Address LoadBlockStruct();
2176   Address GetAddrOfBlockDecl(const VarDecl *var);
2177 
2178   /// BuildBlockByrefAddress - Computes the location of the
2179   /// data in a variable which is declared as __block.
2180   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2181                                 bool followForward = true);
2182   Address emitBlockByrefAddress(Address baseAddr,
2183                                 const BlockByrefInfo &info,
2184                                 bool followForward,
2185                                 const llvm::Twine &name);
2186 
2187   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2188 
2189   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2190 
2191   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2192                     const CGFunctionInfo &FnInfo);
2193 
2194   /// Annotate the function with an attribute that disables TSan checking at
2195   /// runtime.
2196   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2197 
2198   /// Emit code for the start of a function.
2199   /// \param Loc       The location to be associated with the function.
2200   /// \param StartLoc  The location of the function body.
2201   void StartFunction(GlobalDecl GD,
2202                      QualType RetTy,
2203                      llvm::Function *Fn,
2204                      const CGFunctionInfo &FnInfo,
2205                      const FunctionArgList &Args,
2206                      SourceLocation Loc = SourceLocation(),
2207                      SourceLocation StartLoc = SourceLocation());
2208 
2209   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2210 
2211   void EmitConstructorBody(FunctionArgList &Args);
2212   void EmitDestructorBody(FunctionArgList &Args);
2213   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2214   void EmitFunctionBody(const Stmt *Body);
2215   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2216 
2217   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2218                                   CallArgList &CallArgs);
2219   void EmitLambdaBlockInvokeBody();
2220   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2221   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2222   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2223     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2224   }
2225   void EmitAsanPrologueOrEpilogue(bool Prologue);
2226 
2227   /// Emit the unified return block, trying to avoid its emission when
2228   /// possible.
2229   /// \return The debug location of the user written return statement if the
2230   /// return block is is avoided.
2231   llvm::DebugLoc EmitReturnBlock();
2232 
2233   /// FinishFunction - Complete IR generation of the current function. It is
2234   /// legal to call this function even if there is no current insertion point.
2235   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2236 
2237   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2238                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2239 
2240   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2241                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2242 
2243   void FinishThunk();
2244 
2245   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2246   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2247                          llvm::FunctionCallee Callee);
2248 
2249   /// Generate a thunk for the given method.
2250   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2251                      GlobalDecl GD, const ThunkInfo &Thunk,
2252                      bool IsUnprototyped);
2253 
2254   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2255                                        const CGFunctionInfo &FnInfo,
2256                                        GlobalDecl GD, const ThunkInfo &Thunk);
2257 
2258   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2259                         FunctionArgList &Args);
2260 
2261   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2262 
2263   /// Struct with all information about dynamic [sub]class needed to set vptr.
2264   struct VPtr {
2265     BaseSubobject Base;
2266     const CXXRecordDecl *NearestVBase;
2267     CharUnits OffsetFromNearestVBase;
2268     const CXXRecordDecl *VTableClass;
2269   };
2270 
2271   /// Initialize the vtable pointer of the given subobject.
2272   void InitializeVTablePointer(const VPtr &vptr);
2273 
2274   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2275 
2276   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2277   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2278 
2279   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2280                          CharUnits OffsetFromNearestVBase,
2281                          bool BaseIsNonVirtualPrimaryBase,
2282                          const CXXRecordDecl *VTableClass,
2283                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2284 
2285   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2286 
2287   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2288   /// to by This.
2289   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2290                             const CXXRecordDecl *VTableClass);
2291 
2292   enum CFITypeCheckKind {
2293     CFITCK_VCall,
2294     CFITCK_NVCall,
2295     CFITCK_DerivedCast,
2296     CFITCK_UnrelatedCast,
2297     CFITCK_ICall,
2298     CFITCK_NVMFCall,
2299     CFITCK_VMFCall,
2300   };
2301 
2302   /// Derived is the presumed address of an object of type T after a
2303   /// cast. If T is a polymorphic class type, emit a check that the virtual
2304   /// table for Derived belongs to a class derived from T.
2305   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2306                                  bool MayBeNull, CFITypeCheckKind TCK,
2307                                  SourceLocation Loc);
2308 
2309   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2310   /// If vptr CFI is enabled, emit a check that VTable is valid.
2311   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2312                                  CFITypeCheckKind TCK, SourceLocation Loc);
2313 
2314   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2315   /// RD using llvm.type.test.
2316   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2317                           CFITypeCheckKind TCK, SourceLocation Loc);
2318 
2319   /// If whole-program virtual table optimization is enabled, emit an assumption
2320   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2321   /// enabled, emit a check that VTable is a member of RD's type identifier.
2322   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2323                                     llvm::Value *VTable, SourceLocation Loc);
2324 
2325   /// Returns whether we should perform a type checked load when loading a
2326   /// virtual function for virtual calls to members of RD. This is generally
2327   /// true when both vcall CFI and whole-program-vtables are enabled.
2328   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2329 
2330   /// Emit a type checked load from the given vtable.
2331   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2332                                          uint64_t VTableByteOffset);
2333 
2334   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2335   /// given phase of destruction for a destructor.  The end result
2336   /// should call destructors on members and base classes in reverse
2337   /// order of their construction.
2338   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2339 
2340   /// ShouldInstrumentFunction - Return true if the current function should be
2341   /// instrumented with __cyg_profile_func_* calls
2342   bool ShouldInstrumentFunction();
2343 
2344   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2345   /// should not be instrumented with sanitizers.
2346   bool ShouldSkipSanitizerInstrumentation();
2347 
2348   /// ShouldXRayInstrument - Return true if the current function should be
2349   /// instrumented with XRay nop sleds.
2350   bool ShouldXRayInstrumentFunction() const;
2351 
2352   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2353   /// XRay custom event handling calls.
2354   bool AlwaysEmitXRayCustomEvents() const;
2355 
2356   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2357   /// XRay typed event handling calls.
2358   bool AlwaysEmitXRayTypedEvents() const;
2359 
2360   /// Encode an address into a form suitable for use in a function prologue.
2361   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2362                                              llvm::Constant *Addr);
2363 
2364   /// Decode an address used in a function prologue, encoded by \c
2365   /// EncodeAddrForUseInPrologue.
2366   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2367                                         llvm::Value *EncodedAddr);
2368 
2369   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2370   /// arguments for the given function. This is also responsible for naming the
2371   /// LLVM function arguments.
2372   void EmitFunctionProlog(const CGFunctionInfo &FI,
2373                           llvm::Function *Fn,
2374                           const FunctionArgList &Args);
2375 
2376   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2377   /// given temporary.
2378   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2379                           SourceLocation EndLoc);
2380 
2381   /// Emit a test that checks if the return value \p RV is nonnull.
2382   void EmitReturnValueCheck(llvm::Value *RV);
2383 
2384   /// EmitStartEHSpec - Emit the start of the exception spec.
2385   void EmitStartEHSpec(const Decl *D);
2386 
2387   /// EmitEndEHSpec - Emit the end of the exception spec.
2388   void EmitEndEHSpec(const Decl *D);
2389 
2390   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2391   llvm::BasicBlock *getTerminateLandingPad();
2392 
2393   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2394   /// terminate.
2395   llvm::BasicBlock *getTerminateFunclet();
2396 
2397   /// getTerminateHandler - Return a handler (not a landing pad, just
2398   /// a catch handler) that just calls terminate.  This is used when
2399   /// a terminate scope encloses a try.
2400   llvm::BasicBlock *getTerminateHandler();
2401 
2402   llvm::Type *ConvertTypeForMem(QualType T);
2403   llvm::Type *ConvertType(QualType T);
2404   llvm::Type *ConvertType(const TypeDecl *T) {
2405     return ConvertType(getContext().getTypeDeclType(T));
2406   }
2407 
2408   /// LoadObjCSelf - Load the value of self. This function is only valid while
2409   /// generating code for an Objective-C method.
2410   llvm::Value *LoadObjCSelf();
2411 
2412   /// TypeOfSelfObject - Return type of object that this self represents.
2413   QualType TypeOfSelfObject();
2414 
2415   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2416   static TypeEvaluationKind getEvaluationKind(QualType T);
2417 
2418   static bool hasScalarEvaluationKind(QualType T) {
2419     return getEvaluationKind(T) == TEK_Scalar;
2420   }
2421 
2422   static bool hasAggregateEvaluationKind(QualType T) {
2423     return getEvaluationKind(T) == TEK_Aggregate;
2424   }
2425 
2426   /// createBasicBlock - Create an LLVM basic block.
2427   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2428                                      llvm::Function *parent = nullptr,
2429                                      llvm::BasicBlock *before = nullptr) {
2430     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2431   }
2432 
2433   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2434   /// label maps to.
2435   JumpDest getJumpDestForLabel(const LabelDecl *S);
2436 
2437   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2438   /// another basic block, simplify it. This assumes that no other code could
2439   /// potentially reference the basic block.
2440   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2441 
2442   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2443   /// adding a fall-through branch from the current insert block if
2444   /// necessary. It is legal to call this function even if there is no current
2445   /// insertion point.
2446   ///
2447   /// IsFinished - If true, indicates that the caller has finished emitting
2448   /// branches to the given block and does not expect to emit code into it. This
2449   /// means the block can be ignored if it is unreachable.
2450   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2451 
2452   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2453   /// near its uses, and leave the insertion point in it.
2454   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2455 
2456   /// EmitBranch - Emit a branch to the specified basic block from the current
2457   /// insert block, taking care to avoid creation of branches from dummy
2458   /// blocks. It is legal to call this function even if there is no current
2459   /// insertion point.
2460   ///
2461   /// This function clears the current insertion point. The caller should follow
2462   /// calls to this function with calls to Emit*Block prior to generation new
2463   /// code.
2464   void EmitBranch(llvm::BasicBlock *Block);
2465 
2466   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2467   /// indicates that the current code being emitted is unreachable.
2468   bool HaveInsertPoint() const {
2469     return Builder.GetInsertBlock() != nullptr;
2470   }
2471 
2472   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2473   /// emitted IR has a place to go. Note that by definition, if this function
2474   /// creates a block then that block is unreachable; callers may do better to
2475   /// detect when no insertion point is defined and simply skip IR generation.
2476   void EnsureInsertPoint() {
2477     if (!HaveInsertPoint())
2478       EmitBlock(createBasicBlock());
2479   }
2480 
2481   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2482   /// specified stmt yet.
2483   void ErrorUnsupported(const Stmt *S, const char *Type);
2484 
2485   //===--------------------------------------------------------------------===//
2486   //                                  Helpers
2487   //===--------------------------------------------------------------------===//
2488 
2489   LValue MakeAddrLValue(Address Addr, QualType T,
2490                         AlignmentSource Source = AlignmentSource::Type) {
2491     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2492                             CGM.getTBAAAccessInfo(T));
2493   }
2494 
2495   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2496                         TBAAAccessInfo TBAAInfo) {
2497     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2498   }
2499 
2500   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2501                         AlignmentSource Source = AlignmentSource::Type) {
2502     Address Addr(V, ConvertTypeForMem(T), Alignment);
2503     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2504                             CGM.getTBAAAccessInfo(T));
2505   }
2506 
2507   LValue
2508   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2509                             AlignmentSource Source = AlignmentSource::Type) {
2510     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2511                             TBAAAccessInfo());
2512   }
2513 
2514   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2515   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2516 
2517   Address EmitLoadOfReference(LValue RefLVal,
2518                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2519                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2520   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2521   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2522                                    AlignmentSource Source =
2523                                        AlignmentSource::Type) {
2524     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2525                                     CGM.getTBAAAccessInfo(RefTy));
2526     return EmitLoadOfReferenceLValue(RefLVal);
2527   }
2528 
2529   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2530                             LValueBaseInfo *BaseInfo = nullptr,
2531                             TBAAAccessInfo *TBAAInfo = nullptr);
2532   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2533 
2534   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2535   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2536   /// insertion point of the builder. The caller is responsible for setting an
2537   /// appropriate alignment on
2538   /// the alloca.
2539   ///
2540   /// \p ArraySize is the number of array elements to be allocated if it
2541   ///    is not nullptr.
2542   ///
2543   /// LangAS::Default is the address space of pointers to local variables and
2544   /// temporaries, as exposed in the source language. In certain
2545   /// configurations, this is not the same as the alloca address space, and a
2546   /// cast is needed to lift the pointer from the alloca AS into
2547   /// LangAS::Default. This can happen when the target uses a restricted
2548   /// address space for the stack but the source language requires
2549   /// LangAS::Default to be a generic address space. The latter condition is
2550   /// common for most programming languages; OpenCL is an exception in that
2551   /// LangAS::Default is the private address space, which naturally maps
2552   /// to the stack.
2553   ///
2554   /// Because the address of a temporary is often exposed to the program in
2555   /// various ways, this function will perform the cast. The original alloca
2556   /// instruction is returned through \p Alloca if it is not nullptr.
2557   ///
2558   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2559   /// more efficient if the caller knows that the address will not be exposed.
2560   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2561                                      llvm::Value *ArraySize = nullptr);
2562   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2563                            const Twine &Name = "tmp",
2564                            llvm::Value *ArraySize = nullptr,
2565                            Address *Alloca = nullptr);
2566   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2567                                       const Twine &Name = "tmp",
2568                                       llvm::Value *ArraySize = nullptr);
2569 
2570   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2571   /// default ABI alignment of the given LLVM type.
2572   ///
2573   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2574   /// any given AST type that happens to have been lowered to the
2575   /// given IR type.  This should only ever be used for function-local,
2576   /// IR-driven manipulations like saving and restoring a value.  Do
2577   /// not hand this address off to arbitrary IRGen routines, and especially
2578   /// do not pass it as an argument to a function that might expect a
2579   /// properly ABI-aligned value.
2580   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2581                                        const Twine &Name = "tmp");
2582 
2583   /// CreateIRTemp - Create a temporary IR object of the given type, with
2584   /// appropriate alignment. This routine should only be used when an temporary
2585   /// value needs to be stored into an alloca (for example, to avoid explicit
2586   /// PHI construction), but the type is the IR type, not the type appropriate
2587   /// for storing in memory.
2588   ///
2589   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2590   /// ConvertType instead of ConvertTypeForMem.
2591   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2592 
2593   /// CreateMemTemp - Create a temporary memory object of the given type, with
2594   /// appropriate alignmen and cast it to the default address space. Returns
2595   /// the original alloca instruction by \p Alloca if it is not nullptr.
2596   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2597                         Address *Alloca = nullptr);
2598   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2599                         Address *Alloca = nullptr);
2600 
2601   /// CreateMemTemp - Create a temporary memory object of the given type, with
2602   /// appropriate alignmen without casting it to the default address space.
2603   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2604   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2605                                    const Twine &Name = "tmp");
2606 
2607   /// CreateAggTemp - Create a temporary memory object for the given
2608   /// aggregate type.
2609   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2610                              Address *Alloca = nullptr) {
2611     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2612                                  T.getQualifiers(),
2613                                  AggValueSlot::IsNotDestructed,
2614                                  AggValueSlot::DoesNotNeedGCBarriers,
2615                                  AggValueSlot::IsNotAliased,
2616                                  AggValueSlot::DoesNotOverlap);
2617   }
2618 
2619   /// Emit a cast to void* in the appropriate address space.
2620   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2621 
2622   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2623   /// expression and compare the result against zero, returning an Int1Ty value.
2624   llvm::Value *EvaluateExprAsBool(const Expr *E);
2625 
2626   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2627   void EmitIgnoredExpr(const Expr *E);
2628 
2629   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2630   /// any type.  The result is returned as an RValue struct.  If this is an
2631   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2632   /// the result should be returned.
2633   ///
2634   /// \param ignoreResult True if the resulting value isn't used.
2635   RValue EmitAnyExpr(const Expr *E,
2636                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2637                      bool ignoreResult = false);
2638 
2639   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2640   // or the value of the expression, depending on how va_list is defined.
2641   Address EmitVAListRef(const Expr *E);
2642 
2643   /// Emit a "reference" to a __builtin_ms_va_list; this is
2644   /// always the value of the expression, because a __builtin_ms_va_list is a
2645   /// pointer to a char.
2646   Address EmitMSVAListRef(const Expr *E);
2647 
2648   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2649   /// always be accessible even if no aggregate location is provided.
2650   RValue EmitAnyExprToTemp(const Expr *E);
2651 
2652   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2653   /// arbitrary expression into the given memory location.
2654   void EmitAnyExprToMem(const Expr *E, Address Location,
2655                         Qualifiers Quals, bool IsInitializer);
2656 
2657   void EmitAnyExprToExn(const Expr *E, Address Addr);
2658 
2659   /// EmitExprAsInit - Emits the code necessary to initialize a
2660   /// location in memory with the given initializer.
2661   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2662                       bool capturedByInit);
2663 
2664   /// hasVolatileMember - returns true if aggregate type has a volatile
2665   /// member.
2666   bool hasVolatileMember(QualType T) {
2667     if (const RecordType *RT = T->getAs<RecordType>()) {
2668       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2669       return RD->hasVolatileMember();
2670     }
2671     return false;
2672   }
2673 
2674   /// Determine whether a return value slot may overlap some other object.
2675   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2676     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2677     // class subobjects. These cases may need to be revisited depending on the
2678     // resolution of the relevant core issue.
2679     return AggValueSlot::DoesNotOverlap;
2680   }
2681 
2682   /// Determine whether a field initialization may overlap some other object.
2683   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2684 
2685   /// Determine whether a base class initialization may overlap some other
2686   /// object.
2687   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2688                                                 const CXXRecordDecl *BaseRD,
2689                                                 bool IsVirtual);
2690 
2691   /// Emit an aggregate assignment.
2692   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2693     bool IsVolatile = hasVolatileMember(EltTy);
2694     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2695   }
2696 
2697   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2698                              AggValueSlot::Overlap_t MayOverlap) {
2699     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2700   }
2701 
2702   /// EmitAggregateCopy - Emit an aggregate copy.
2703   ///
2704   /// \param isVolatile \c true iff either the source or the destination is
2705   ///        volatile.
2706   /// \param MayOverlap Whether the tail padding of the destination might be
2707   ///        occupied by some other object. More efficient code can often be
2708   ///        generated if not.
2709   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2710                          AggValueSlot::Overlap_t MayOverlap,
2711                          bool isVolatile = false);
2712 
2713   /// GetAddrOfLocalVar - Return the address of a local variable.
2714   Address GetAddrOfLocalVar(const VarDecl *VD) {
2715     auto it = LocalDeclMap.find(VD);
2716     assert(it != LocalDeclMap.end() &&
2717            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2718     return it->second;
2719   }
2720 
2721   /// Given an opaque value expression, return its LValue mapping if it exists,
2722   /// otherwise create one.
2723   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2724 
2725   /// Given an opaque value expression, return its RValue mapping if it exists,
2726   /// otherwise create one.
2727   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2728 
2729   /// Get the index of the current ArrayInitLoopExpr, if any.
2730   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2731 
2732   /// getAccessedFieldNo - Given an encoded value and a result number, return
2733   /// the input field number being accessed.
2734   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2735 
2736   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2737   llvm::BasicBlock *GetIndirectGotoBlock();
2738 
2739   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2740   static bool IsWrappedCXXThis(const Expr *E);
2741 
2742   /// EmitNullInitialization - Generate code to set a value of the given type to
2743   /// null, If the type contains data member pointers, they will be initialized
2744   /// to -1 in accordance with the Itanium C++ ABI.
2745   void EmitNullInitialization(Address DestPtr, QualType Ty);
2746 
2747   /// Emits a call to an LLVM variable-argument intrinsic, either
2748   /// \c llvm.va_start or \c llvm.va_end.
2749   /// \param ArgValue A reference to the \c va_list as emitted by either
2750   /// \c EmitVAListRef or \c EmitMSVAListRef.
2751   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2752   /// calls \c llvm.va_end.
2753   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2754 
2755   /// Generate code to get an argument from the passed in pointer
2756   /// and update it accordingly.
2757   /// \param VE The \c VAArgExpr for which to generate code.
2758   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2759   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2760   /// \returns A pointer to the argument.
2761   // FIXME: We should be able to get rid of this method and use the va_arg
2762   // instruction in LLVM instead once it works well enough.
2763   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2764 
2765   /// emitArrayLength - Compute the length of an array, even if it's a
2766   /// VLA, and drill down to the base element type.
2767   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2768                                QualType &baseType,
2769                                Address &addr);
2770 
2771   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2772   /// the given variably-modified type and store them in the VLASizeMap.
2773   ///
2774   /// This function can be called with a null (unreachable) insert point.
2775   void EmitVariablyModifiedType(QualType Ty);
2776 
2777   struct VlaSizePair {
2778     llvm::Value *NumElts;
2779     QualType Type;
2780 
2781     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2782   };
2783 
2784   /// Return the number of elements for a single dimension
2785   /// for the given array type.
2786   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2787   VlaSizePair getVLAElements1D(QualType vla);
2788 
2789   /// Returns an LLVM value that corresponds to the size,
2790   /// in non-variably-sized elements, of a variable length array type,
2791   /// plus that largest non-variably-sized element type.  Assumes that
2792   /// the type has already been emitted with EmitVariablyModifiedType.
2793   VlaSizePair getVLASize(const VariableArrayType *vla);
2794   VlaSizePair getVLASize(QualType vla);
2795 
2796   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2797   /// generating code for an C++ member function.
2798   llvm::Value *LoadCXXThis() {
2799     assert(CXXThisValue && "no 'this' value for this function");
2800     return CXXThisValue;
2801   }
2802   Address LoadCXXThisAddress();
2803 
2804   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2805   /// virtual bases.
2806   // FIXME: Every place that calls LoadCXXVTT is something
2807   // that needs to be abstracted properly.
2808   llvm::Value *LoadCXXVTT() {
2809     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2810     return CXXStructorImplicitParamValue;
2811   }
2812 
2813   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2814   /// complete class to the given direct base.
2815   Address
2816   GetAddressOfDirectBaseInCompleteClass(Address Value,
2817                                         const CXXRecordDecl *Derived,
2818                                         const CXXRecordDecl *Base,
2819                                         bool BaseIsVirtual);
2820 
2821   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2822 
2823   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2824   /// load of 'this' and returns address of the base class.
2825   Address GetAddressOfBaseClass(Address Value,
2826                                 const CXXRecordDecl *Derived,
2827                                 CastExpr::path_const_iterator PathBegin,
2828                                 CastExpr::path_const_iterator PathEnd,
2829                                 bool NullCheckValue, SourceLocation Loc);
2830 
2831   Address GetAddressOfDerivedClass(Address Value,
2832                                    const CXXRecordDecl *Derived,
2833                                    CastExpr::path_const_iterator PathBegin,
2834                                    CastExpr::path_const_iterator PathEnd,
2835                                    bool NullCheckValue);
2836 
2837   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2838   /// base constructor/destructor with virtual bases.
2839   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2840   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2841   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2842                                bool Delegating);
2843 
2844   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2845                                       CXXCtorType CtorType,
2846                                       const FunctionArgList &Args,
2847                                       SourceLocation Loc);
2848   // It's important not to confuse this and the previous function. Delegating
2849   // constructors are the C++0x feature. The constructor delegate optimization
2850   // is used to reduce duplication in the base and complete consturctors where
2851   // they are substantially the same.
2852   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2853                                         const FunctionArgList &Args);
2854 
2855   /// Emit a call to an inheriting constructor (that is, one that invokes a
2856   /// constructor inherited from a base class) by inlining its definition. This
2857   /// is necessary if the ABI does not support forwarding the arguments to the
2858   /// base class constructor (because they're variadic or similar).
2859   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2860                                                CXXCtorType CtorType,
2861                                                bool ForVirtualBase,
2862                                                bool Delegating,
2863                                                CallArgList &Args);
2864 
2865   /// Emit a call to a constructor inherited from a base class, passing the
2866   /// current constructor's arguments along unmodified (without even making
2867   /// a copy).
2868   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2869                                        bool ForVirtualBase, Address This,
2870                                        bool InheritedFromVBase,
2871                                        const CXXInheritedCtorInitExpr *E);
2872 
2873   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2874                               bool ForVirtualBase, bool Delegating,
2875                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2876 
2877   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2878                               bool ForVirtualBase, bool Delegating,
2879                               Address This, CallArgList &Args,
2880                               AggValueSlot::Overlap_t Overlap,
2881                               SourceLocation Loc, bool NewPointerIsChecked);
2882 
2883   /// Emit assumption load for all bases. Requires to be be called only on
2884   /// most-derived class and not under construction of the object.
2885   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2886 
2887   /// Emit assumption that vptr load == global vtable.
2888   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2889 
2890   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2891                                       Address This, Address Src,
2892                                       const CXXConstructExpr *E);
2893 
2894   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2895                                   const ArrayType *ArrayTy,
2896                                   Address ArrayPtr,
2897                                   const CXXConstructExpr *E,
2898                                   bool NewPointerIsChecked,
2899                                   bool ZeroInitialization = false);
2900 
2901   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2902                                   llvm::Value *NumElements,
2903                                   Address ArrayPtr,
2904                                   const CXXConstructExpr *E,
2905                                   bool NewPointerIsChecked,
2906                                   bool ZeroInitialization = false);
2907 
2908   static Destroyer destroyCXXObject;
2909 
2910   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2911                              bool ForVirtualBase, bool Delegating, Address This,
2912                              QualType ThisTy);
2913 
2914   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2915                                llvm::Type *ElementTy, Address NewPtr,
2916                                llvm::Value *NumElements,
2917                                llvm::Value *AllocSizeWithoutCookie);
2918 
2919   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2920                         Address Ptr);
2921 
2922   void EmitSehCppScopeBegin();
2923   void EmitSehCppScopeEnd();
2924   void EmitSehTryScopeBegin();
2925   void EmitSehTryScopeEnd();
2926 
2927   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2928   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2929 
2930   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2931   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2932 
2933   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2934                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2935                       CharUnits CookieSize = CharUnits());
2936 
2937   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2938                                   const CallExpr *TheCallExpr, bool IsDelete);
2939 
2940   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2941   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2942   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2943 
2944   /// Situations in which we might emit a check for the suitability of a
2945   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2946   /// compiler-rt.
2947   enum TypeCheckKind {
2948     /// Checking the operand of a load. Must be suitably sized and aligned.
2949     TCK_Load,
2950     /// Checking the destination of a store. Must be suitably sized and aligned.
2951     TCK_Store,
2952     /// Checking the bound value in a reference binding. Must be suitably sized
2953     /// and aligned, but is not required to refer to an object (until the
2954     /// reference is used), per core issue 453.
2955     TCK_ReferenceBinding,
2956     /// Checking the object expression in a non-static data member access. Must
2957     /// be an object within its lifetime.
2958     TCK_MemberAccess,
2959     /// Checking the 'this' pointer for a call to a non-static member function.
2960     /// Must be an object within its lifetime.
2961     TCK_MemberCall,
2962     /// Checking the 'this' pointer for a constructor call.
2963     TCK_ConstructorCall,
2964     /// Checking the operand of a static_cast to a derived pointer type. Must be
2965     /// null or an object within its lifetime.
2966     TCK_DowncastPointer,
2967     /// Checking the operand of a static_cast to a derived reference type. Must
2968     /// be an object within its lifetime.
2969     TCK_DowncastReference,
2970     /// Checking the operand of a cast to a base object. Must be suitably sized
2971     /// and aligned.
2972     TCK_Upcast,
2973     /// Checking the operand of a cast to a virtual base object. Must be an
2974     /// object within its lifetime.
2975     TCK_UpcastToVirtualBase,
2976     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2977     TCK_NonnullAssign,
2978     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2979     /// null or an object within its lifetime.
2980     TCK_DynamicOperation
2981   };
2982 
2983   /// Determine whether the pointer type check \p TCK permits null pointers.
2984   static bool isNullPointerAllowed(TypeCheckKind TCK);
2985 
2986   /// Determine whether the pointer type check \p TCK requires a vptr check.
2987   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2988 
2989   /// Whether any type-checking sanitizers are enabled. If \c false,
2990   /// calls to EmitTypeCheck can be skipped.
2991   bool sanitizePerformTypeCheck() const;
2992 
2993   /// Emit a check that \p V is the address of storage of the
2994   /// appropriate size and alignment for an object of type \p Type
2995   /// (or if ArraySize is provided, for an array of that bound).
2996   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2997                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2998                      SanitizerSet SkippedChecks = SanitizerSet(),
2999                      llvm::Value *ArraySize = nullptr);
3000 
3001   /// Emit a check that \p Base points into an array object, which
3002   /// we can access at index \p Index. \p Accessed should be \c false if we
3003   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3004   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3005                        QualType IndexType, bool Accessed);
3006 
3007   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3008                                        bool isInc, bool isPre);
3009   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3010                                          bool isInc, bool isPre);
3011 
3012   /// Converts Location to a DebugLoc, if debug information is enabled.
3013   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3014 
3015   /// Get the record field index as represented in debug info.
3016   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3017 
3018 
3019   //===--------------------------------------------------------------------===//
3020   //                            Declaration Emission
3021   //===--------------------------------------------------------------------===//
3022 
3023   /// EmitDecl - Emit a declaration.
3024   ///
3025   /// This function can be called with a null (unreachable) insert point.
3026   void EmitDecl(const Decl &D);
3027 
3028   /// EmitVarDecl - Emit a local variable declaration.
3029   ///
3030   /// This function can be called with a null (unreachable) insert point.
3031   void EmitVarDecl(const VarDecl &D);
3032 
3033   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3034                       bool capturedByInit);
3035 
3036   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3037                              llvm::Value *Address);
3038 
3039   /// Determine whether the given initializer is trivial in the sense
3040   /// that it requires no code to be generated.
3041   bool isTrivialInitializer(const Expr *Init);
3042 
3043   /// EmitAutoVarDecl - Emit an auto variable declaration.
3044   ///
3045   /// This function can be called with a null (unreachable) insert point.
3046   void EmitAutoVarDecl(const VarDecl &D);
3047 
3048   class AutoVarEmission {
3049     friend class CodeGenFunction;
3050 
3051     const VarDecl *Variable;
3052 
3053     /// The address of the alloca for languages with explicit address space
3054     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3055     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3056     /// as a global constant.
3057     Address Addr;
3058 
3059     llvm::Value *NRVOFlag;
3060 
3061     /// True if the variable is a __block variable that is captured by an
3062     /// escaping block.
3063     bool IsEscapingByRef;
3064 
3065     /// True if the variable is of aggregate type and has a constant
3066     /// initializer.
3067     bool IsConstantAggregate;
3068 
3069     /// Non-null if we should use lifetime annotations.
3070     llvm::Value *SizeForLifetimeMarkers;
3071 
3072     /// Address with original alloca instruction. Invalid if the variable was
3073     /// emitted as a global constant.
3074     Address AllocaAddr;
3075 
3076     struct Invalid {};
3077     AutoVarEmission(Invalid)
3078         : Variable(nullptr), Addr(Address::invalid()),
3079           AllocaAddr(Address::invalid()) {}
3080 
3081     AutoVarEmission(const VarDecl &variable)
3082         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3083           IsEscapingByRef(false), IsConstantAggregate(false),
3084           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3085 
3086     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3087 
3088   public:
3089     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3090 
3091     bool useLifetimeMarkers() const {
3092       return SizeForLifetimeMarkers != nullptr;
3093     }
3094     llvm::Value *getSizeForLifetimeMarkers() const {
3095       assert(useLifetimeMarkers());
3096       return SizeForLifetimeMarkers;
3097     }
3098 
3099     /// Returns the raw, allocated address, which is not necessarily
3100     /// the address of the object itself. It is casted to default
3101     /// address space for address space agnostic languages.
3102     Address getAllocatedAddress() const {
3103       return Addr;
3104     }
3105 
3106     /// Returns the address for the original alloca instruction.
3107     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3108 
3109     /// Returns the address of the object within this declaration.
3110     /// Note that this does not chase the forwarding pointer for
3111     /// __block decls.
3112     Address getObjectAddress(CodeGenFunction &CGF) const {
3113       if (!IsEscapingByRef) return Addr;
3114 
3115       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3116     }
3117   };
3118   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3119   void EmitAutoVarInit(const AutoVarEmission &emission);
3120   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3121   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3122                               QualType::DestructionKind dtorKind);
3123 
3124   /// Emits the alloca and debug information for the size expressions for each
3125   /// dimension of an array. It registers the association of its (1-dimensional)
3126   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3127   /// reference this node when creating the DISubrange object to describe the
3128   /// array types.
3129   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3130                                               const VarDecl &D,
3131                                               bool EmitDebugInfo);
3132 
3133   void EmitStaticVarDecl(const VarDecl &D,
3134                          llvm::GlobalValue::LinkageTypes Linkage);
3135 
3136   class ParamValue {
3137     llvm::Value *Value;
3138     llvm::Type *ElementType;
3139     unsigned Alignment;
3140     ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3141         : Value(V), ElementType(T), Alignment(A) {}
3142   public:
3143     static ParamValue forDirect(llvm::Value *value) {
3144       return ParamValue(value, nullptr, 0);
3145     }
3146     static ParamValue forIndirect(Address addr) {
3147       assert(!addr.getAlignment().isZero());
3148       return ParamValue(addr.getPointer(), addr.getElementType(),
3149                         addr.getAlignment().getQuantity());
3150     }
3151 
3152     bool isIndirect() const { return Alignment != 0; }
3153     llvm::Value *getAnyValue() const { return Value; }
3154 
3155     llvm::Value *getDirectValue() const {
3156       assert(!isIndirect());
3157       return Value;
3158     }
3159 
3160     Address getIndirectAddress() const {
3161       assert(isIndirect());
3162       return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3163     }
3164   };
3165 
3166   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3167   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3168 
3169   /// protectFromPeepholes - Protect a value that we're intending to
3170   /// store to the side, but which will probably be used later, from
3171   /// aggressive peepholing optimizations that might delete it.
3172   ///
3173   /// Pass the result to unprotectFromPeepholes to declare that
3174   /// protection is no longer required.
3175   ///
3176   /// There's no particular reason why this shouldn't apply to
3177   /// l-values, it's just that no existing peepholes work on pointers.
3178   PeepholeProtection protectFromPeepholes(RValue rvalue);
3179   void unprotectFromPeepholes(PeepholeProtection protection);
3180 
3181   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3182                                     SourceLocation Loc,
3183                                     SourceLocation AssumptionLoc,
3184                                     llvm::Value *Alignment,
3185                                     llvm::Value *OffsetValue,
3186                                     llvm::Value *TheCheck,
3187                                     llvm::Instruction *Assumption);
3188 
3189   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3190                                SourceLocation Loc, SourceLocation AssumptionLoc,
3191                                llvm::Value *Alignment,
3192                                llvm::Value *OffsetValue = nullptr);
3193 
3194   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3195                                SourceLocation AssumptionLoc,
3196                                llvm::Value *Alignment,
3197                                llvm::Value *OffsetValue = nullptr);
3198 
3199   //===--------------------------------------------------------------------===//
3200   //                             Statement Emission
3201   //===--------------------------------------------------------------------===//
3202 
3203   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3204   void EmitStopPoint(const Stmt *S);
3205 
3206   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3207   /// this function even if there is no current insertion point.
3208   ///
3209   /// This function may clear the current insertion point; callers should use
3210   /// EnsureInsertPoint if they wish to subsequently generate code without first
3211   /// calling EmitBlock, EmitBranch, or EmitStmt.
3212   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3213 
3214   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3215   /// necessarily require an insertion point or debug information; typically
3216   /// because the statement amounts to a jump or a container of other
3217   /// statements.
3218   ///
3219   /// \return True if the statement was handled.
3220   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3221 
3222   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3223                            AggValueSlot AVS = AggValueSlot::ignored());
3224   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3225                                        bool GetLast = false,
3226                                        AggValueSlot AVS =
3227                                                 AggValueSlot::ignored());
3228 
3229   /// EmitLabel - Emit the block for the given label. It is legal to call this
3230   /// function even if there is no current insertion point.
3231   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3232 
3233   void EmitLabelStmt(const LabelStmt &S);
3234   void EmitAttributedStmt(const AttributedStmt &S);
3235   void EmitGotoStmt(const GotoStmt &S);
3236   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3237   void EmitIfStmt(const IfStmt &S);
3238 
3239   void EmitWhileStmt(const WhileStmt &S,
3240                      ArrayRef<const Attr *> Attrs = None);
3241   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3242   void EmitForStmt(const ForStmt &S,
3243                    ArrayRef<const Attr *> Attrs = None);
3244   void EmitReturnStmt(const ReturnStmt &S);
3245   void EmitDeclStmt(const DeclStmt &S);
3246   void EmitBreakStmt(const BreakStmt &S);
3247   void EmitContinueStmt(const ContinueStmt &S);
3248   void EmitSwitchStmt(const SwitchStmt &S);
3249   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3250   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3251   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3252   void EmitAsmStmt(const AsmStmt &S);
3253 
3254   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3255   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3256   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3257   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3258   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3259 
3260   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3261   void EmitCoreturnStmt(const CoreturnStmt &S);
3262   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3263                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3264                          bool ignoreResult = false);
3265   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3266   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3267                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3268                          bool ignoreResult = false);
3269   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3270   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3271 
3272   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3273   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3274 
3275   void EmitCXXTryStmt(const CXXTryStmt &S);
3276   void EmitSEHTryStmt(const SEHTryStmt &S);
3277   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3278   void EnterSEHTryStmt(const SEHTryStmt &S);
3279   void ExitSEHTryStmt(const SEHTryStmt &S);
3280   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3281                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3282 
3283   void pushSEHCleanup(CleanupKind kind,
3284                       llvm::Function *FinallyFunc);
3285   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3286                               const Stmt *OutlinedStmt);
3287 
3288   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3289                                             const SEHExceptStmt &Except);
3290 
3291   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3292                                              const SEHFinallyStmt &Finally);
3293 
3294   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3295                                 llvm::Value *ParentFP,
3296                                 llvm::Value *EntryEBP);
3297   llvm::Value *EmitSEHExceptionCode();
3298   llvm::Value *EmitSEHExceptionInfo();
3299   llvm::Value *EmitSEHAbnormalTermination();
3300 
3301   /// Emit simple code for OpenMP directives in Simd-only mode.
3302   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3303 
3304   /// Scan the outlined statement for captures from the parent function. For
3305   /// each capture, mark the capture as escaped and emit a call to
3306   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3307   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3308                           bool IsFilter);
3309 
3310   /// Recovers the address of a local in a parent function. ParentVar is the
3311   /// address of the variable used in the immediate parent function. It can
3312   /// either be an alloca or a call to llvm.localrecover if there are nested
3313   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3314   /// frame.
3315   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3316                                     Address ParentVar,
3317                                     llvm::Value *ParentFP);
3318 
3319   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3320                            ArrayRef<const Attr *> Attrs = None);
3321 
3322   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3323   class OMPCancelStackRAII {
3324     CodeGenFunction &CGF;
3325 
3326   public:
3327     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3328                        bool HasCancel)
3329         : CGF(CGF) {
3330       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3331     }
3332     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3333   };
3334 
3335   /// Returns calculated size of the specified type.
3336   llvm::Value *getTypeSize(QualType Ty);
3337   LValue InitCapturedStruct(const CapturedStmt &S);
3338   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3339   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3340   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3341   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3342                                                      SourceLocation Loc);
3343   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3344                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3345   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3346                           SourceLocation Loc);
3347   /// Perform element by element copying of arrays with type \a
3348   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3349   /// generated by \a CopyGen.
3350   ///
3351   /// \param DestAddr Address of the destination array.
3352   /// \param SrcAddr Address of the source array.
3353   /// \param OriginalType Type of destination and source arrays.
3354   /// \param CopyGen Copying procedure that copies value of single array element
3355   /// to another single array element.
3356   void EmitOMPAggregateAssign(
3357       Address DestAddr, Address SrcAddr, QualType OriginalType,
3358       const llvm::function_ref<void(Address, Address)> CopyGen);
3359   /// Emit proper copying of data from one variable to another.
3360   ///
3361   /// \param OriginalType Original type of the copied variables.
3362   /// \param DestAddr Destination address.
3363   /// \param SrcAddr Source address.
3364   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3365   /// type of the base array element).
3366   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3367   /// the base array element).
3368   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3369   /// DestVD.
3370   void EmitOMPCopy(QualType OriginalType,
3371                    Address DestAddr, Address SrcAddr,
3372                    const VarDecl *DestVD, const VarDecl *SrcVD,
3373                    const Expr *Copy);
3374   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3375   /// \a X = \a E \a BO \a E.
3376   ///
3377   /// \param X Value to be updated.
3378   /// \param E Update value.
3379   /// \param BO Binary operation for update operation.
3380   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3381   /// expression, false otherwise.
3382   /// \param AO Atomic ordering of the generated atomic instructions.
3383   /// \param CommonGen Code generator for complex expressions that cannot be
3384   /// expressed through atomicrmw instruction.
3385   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3386   /// generated, <false, RValue::get(nullptr)> otherwise.
3387   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3388       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3389       llvm::AtomicOrdering AO, SourceLocation Loc,
3390       const llvm::function_ref<RValue(RValue)> CommonGen);
3391   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3392                                  OMPPrivateScope &PrivateScope);
3393   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3394                             OMPPrivateScope &PrivateScope);
3395   void EmitOMPUseDevicePtrClause(
3396       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3397       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3398   void EmitOMPUseDeviceAddrClause(
3399       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3400       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3401   /// Emit code for copyin clause in \a D directive. The next code is
3402   /// generated at the start of outlined functions for directives:
3403   /// \code
3404   /// threadprivate_var1 = master_threadprivate_var1;
3405   /// operator=(threadprivate_var2, master_threadprivate_var2);
3406   /// ...
3407   /// __kmpc_barrier(&loc, global_tid);
3408   /// \endcode
3409   ///
3410   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3411   /// \returns true if at least one copyin variable is found, false otherwise.
3412   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3413   /// Emit initial code for lastprivate variables. If some variable is
3414   /// not also firstprivate, then the default initialization is used. Otherwise
3415   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3416   /// method.
3417   ///
3418   /// \param D Directive that may have 'lastprivate' directives.
3419   /// \param PrivateScope Private scope for capturing lastprivate variables for
3420   /// proper codegen in internal captured statement.
3421   ///
3422   /// \returns true if there is at least one lastprivate variable, false
3423   /// otherwise.
3424   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3425                                     OMPPrivateScope &PrivateScope);
3426   /// Emit final copying of lastprivate values to original variables at
3427   /// the end of the worksharing or simd directive.
3428   ///
3429   /// \param D Directive that has at least one 'lastprivate' directives.
3430   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3431   /// it is the last iteration of the loop code in associated directive, or to
3432   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3433   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3434                                      bool NoFinals,
3435                                      llvm::Value *IsLastIterCond = nullptr);
3436   /// Emit initial code for linear clauses.
3437   void EmitOMPLinearClause(const OMPLoopDirective &D,
3438                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3439   /// Emit final code for linear clauses.
3440   /// \param CondGen Optional conditional code for final part of codegen for
3441   /// linear clause.
3442   void EmitOMPLinearClauseFinal(
3443       const OMPLoopDirective &D,
3444       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3445   /// Emit initial code for reduction variables. Creates reduction copies
3446   /// and initializes them with the values according to OpenMP standard.
3447   ///
3448   /// \param D Directive (possibly) with the 'reduction' clause.
3449   /// \param PrivateScope Private scope for capturing reduction variables for
3450   /// proper codegen in internal captured statement.
3451   ///
3452   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3453                                   OMPPrivateScope &PrivateScope,
3454                                   bool ForInscan = false);
3455   /// Emit final update of reduction values to original variables at
3456   /// the end of the directive.
3457   ///
3458   /// \param D Directive that has at least one 'reduction' directives.
3459   /// \param ReductionKind The kind of reduction to perform.
3460   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3461                                    const OpenMPDirectiveKind ReductionKind);
3462   /// Emit initial code for linear variables. Creates private copies
3463   /// and initializes them with the values according to OpenMP standard.
3464   ///
3465   /// \param D Directive (possibly) with the 'linear' clause.
3466   /// \return true if at least one linear variable is found that should be
3467   /// initialized with the value of the original variable, false otherwise.
3468   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3469 
3470   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3471                                         llvm::Function * /*OutlinedFn*/,
3472                                         const OMPTaskDataTy & /*Data*/)>
3473       TaskGenTy;
3474   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3475                                  const OpenMPDirectiveKind CapturedRegion,
3476                                  const RegionCodeGenTy &BodyGen,
3477                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3478   struct OMPTargetDataInfo {
3479     Address BasePointersArray = Address::invalid();
3480     Address PointersArray = Address::invalid();
3481     Address SizesArray = Address::invalid();
3482     Address MappersArray = Address::invalid();
3483     unsigned NumberOfTargetItems = 0;
3484     explicit OMPTargetDataInfo() = default;
3485     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3486                       Address SizesArray, Address MappersArray,
3487                       unsigned NumberOfTargetItems)
3488         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3489           SizesArray(SizesArray), MappersArray(MappersArray),
3490           NumberOfTargetItems(NumberOfTargetItems) {}
3491   };
3492   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3493                                        const RegionCodeGenTy &BodyGen,
3494                                        OMPTargetDataInfo &InputInfo);
3495 
3496   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3497   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3498   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3499   void EmitOMPTileDirective(const OMPTileDirective &S);
3500   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3501   void EmitOMPForDirective(const OMPForDirective &S);
3502   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3503   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3504   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3505   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3506   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3507   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3508   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3509   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3510   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3511   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3512   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3513   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3514   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3515   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3516   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3517   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3518   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3519   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3520   void EmitOMPScanDirective(const OMPScanDirective &S);
3521   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3522   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3523   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3524   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3525   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3526   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3527   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3528   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3529   void
3530   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3531   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3532   void
3533   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3534   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3535   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3536   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3537   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3538   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3539   void
3540   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3541   void EmitOMPParallelMasterTaskLoopDirective(
3542       const OMPParallelMasterTaskLoopDirective &S);
3543   void EmitOMPParallelMasterTaskLoopSimdDirective(
3544       const OMPParallelMasterTaskLoopSimdDirective &S);
3545   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3546   void EmitOMPDistributeParallelForDirective(
3547       const OMPDistributeParallelForDirective &S);
3548   void EmitOMPDistributeParallelForSimdDirective(
3549       const OMPDistributeParallelForSimdDirective &S);
3550   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3551   void EmitOMPTargetParallelForSimdDirective(
3552       const OMPTargetParallelForSimdDirective &S);
3553   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3554   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3555   void
3556   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3557   void EmitOMPTeamsDistributeParallelForSimdDirective(
3558       const OMPTeamsDistributeParallelForSimdDirective &S);
3559   void EmitOMPTeamsDistributeParallelForDirective(
3560       const OMPTeamsDistributeParallelForDirective &S);
3561   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3562   void EmitOMPTargetTeamsDistributeDirective(
3563       const OMPTargetTeamsDistributeDirective &S);
3564   void EmitOMPTargetTeamsDistributeParallelForDirective(
3565       const OMPTargetTeamsDistributeParallelForDirective &S);
3566   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3567       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3568   void EmitOMPTargetTeamsDistributeSimdDirective(
3569       const OMPTargetTeamsDistributeSimdDirective &S);
3570   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3571 
3572   /// Emit device code for the target directive.
3573   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3574                                           StringRef ParentName,
3575                                           const OMPTargetDirective &S);
3576   static void
3577   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3578                                       const OMPTargetParallelDirective &S);
3579   /// Emit device code for the target parallel for directive.
3580   static void EmitOMPTargetParallelForDeviceFunction(
3581       CodeGenModule &CGM, StringRef ParentName,
3582       const OMPTargetParallelForDirective &S);
3583   /// Emit device code for the target parallel for simd directive.
3584   static void EmitOMPTargetParallelForSimdDeviceFunction(
3585       CodeGenModule &CGM, StringRef ParentName,
3586       const OMPTargetParallelForSimdDirective &S);
3587   /// Emit device code for the target teams directive.
3588   static void
3589   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3590                                    const OMPTargetTeamsDirective &S);
3591   /// Emit device code for the target teams distribute directive.
3592   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3593       CodeGenModule &CGM, StringRef ParentName,
3594       const OMPTargetTeamsDistributeDirective &S);
3595   /// Emit device code for the target teams distribute simd directive.
3596   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3597       CodeGenModule &CGM, StringRef ParentName,
3598       const OMPTargetTeamsDistributeSimdDirective &S);
3599   /// Emit device code for the target simd directive.
3600   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3601                                               StringRef ParentName,
3602                                               const OMPTargetSimdDirective &S);
3603   /// Emit device code for the target teams distribute parallel for simd
3604   /// directive.
3605   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3606       CodeGenModule &CGM, StringRef ParentName,
3607       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3608 
3609   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3610       CodeGenModule &CGM, StringRef ParentName,
3611       const OMPTargetTeamsDistributeParallelForDirective &S);
3612 
3613   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3614   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3615   /// future it is meant to be the number of loops expected in the loop nests
3616   /// (usually specified by the "collapse" clause) that are collapsed to a
3617   /// single loop by this function.
3618   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3619                                                              int Depth);
3620 
3621   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3622   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3623 
3624   /// Emit inner loop of the worksharing/simd construct.
3625   ///
3626   /// \param S Directive, for which the inner loop must be emitted.
3627   /// \param RequiresCleanup true, if directive has some associated private
3628   /// variables.
3629   /// \param LoopCond Bollean condition for loop continuation.
3630   /// \param IncExpr Increment expression for loop control variable.
3631   /// \param BodyGen Generator for the inner body of the inner loop.
3632   /// \param PostIncGen Genrator for post-increment code (required for ordered
3633   /// loop directvies).
3634   void EmitOMPInnerLoop(
3635       const OMPExecutableDirective &S, bool RequiresCleanup,
3636       const Expr *LoopCond, const Expr *IncExpr,
3637       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3638       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3639 
3640   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3641   /// Emit initial code for loop counters of loop-based directives.
3642   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3643                                   OMPPrivateScope &LoopScope);
3644 
3645   /// Helper for the OpenMP loop directives.
3646   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3647 
3648   /// Emit code for the worksharing loop-based directive.
3649   /// \return true, if this construct has any lastprivate clause, false -
3650   /// otherwise.
3651   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3652                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3653                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3654 
3655   /// Emit code for the distribute loop-based directive.
3656   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3657                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3658 
3659   /// Helpers for the OpenMP loop directives.
3660   void EmitOMPSimdInit(const OMPLoopDirective &D);
3661   void EmitOMPSimdFinal(
3662       const OMPLoopDirective &D,
3663       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3664 
3665   /// Emits the lvalue for the expression with possibly captured variable.
3666   LValue EmitOMPSharedLValue(const Expr *E);
3667 
3668 private:
3669   /// Helpers for blocks.
3670   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3671 
3672   /// struct with the values to be passed to the OpenMP loop-related functions
3673   struct OMPLoopArguments {
3674     /// loop lower bound
3675     Address LB = Address::invalid();
3676     /// loop upper bound
3677     Address UB = Address::invalid();
3678     /// loop stride
3679     Address ST = Address::invalid();
3680     /// isLastIteration argument for runtime functions
3681     Address IL = Address::invalid();
3682     /// Chunk value generated by sema
3683     llvm::Value *Chunk = nullptr;
3684     /// EnsureUpperBound
3685     Expr *EUB = nullptr;
3686     /// IncrementExpression
3687     Expr *IncExpr = nullptr;
3688     /// Loop initialization
3689     Expr *Init = nullptr;
3690     /// Loop exit condition
3691     Expr *Cond = nullptr;
3692     /// Update of LB after a whole chunk has been executed
3693     Expr *NextLB = nullptr;
3694     /// Update of UB after a whole chunk has been executed
3695     Expr *NextUB = nullptr;
3696     OMPLoopArguments() = default;
3697     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3698                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3699                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3700                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3701                      Expr *NextUB = nullptr)
3702         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3703           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3704           NextUB(NextUB) {}
3705   };
3706   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3707                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3708                         const OMPLoopArguments &LoopArgs,
3709                         const CodeGenLoopTy &CodeGenLoop,
3710                         const CodeGenOrderedTy &CodeGenOrdered);
3711   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3712                            bool IsMonotonic, const OMPLoopDirective &S,
3713                            OMPPrivateScope &LoopScope, bool Ordered,
3714                            const OMPLoopArguments &LoopArgs,
3715                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3716   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3717                                   const OMPLoopDirective &S,
3718                                   OMPPrivateScope &LoopScope,
3719                                   const OMPLoopArguments &LoopArgs,
3720                                   const CodeGenLoopTy &CodeGenLoopContent);
3721   /// Emit code for sections directive.
3722   void EmitSections(const OMPExecutableDirective &S);
3723 
3724 public:
3725 
3726   //===--------------------------------------------------------------------===//
3727   //                         LValue Expression Emission
3728   //===--------------------------------------------------------------------===//
3729 
3730   /// Create a check that a scalar RValue is non-null.
3731   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3732 
3733   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3734   RValue GetUndefRValue(QualType Ty);
3735 
3736   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3737   /// and issue an ErrorUnsupported style diagnostic (using the
3738   /// provided Name).
3739   RValue EmitUnsupportedRValue(const Expr *E,
3740                                const char *Name);
3741 
3742   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3743   /// an ErrorUnsupported style diagnostic (using the provided Name).
3744   LValue EmitUnsupportedLValue(const Expr *E,
3745                                const char *Name);
3746 
3747   /// EmitLValue - Emit code to compute a designator that specifies the location
3748   /// of the expression.
3749   ///
3750   /// This can return one of two things: a simple address or a bitfield
3751   /// reference.  In either case, the LLVM Value* in the LValue structure is
3752   /// guaranteed to be an LLVM pointer type.
3753   ///
3754   /// If this returns a bitfield reference, nothing about the pointee type of
3755   /// the LLVM value is known: For example, it may not be a pointer to an
3756   /// integer.
3757   ///
3758   /// If this returns a normal address, and if the lvalue's C type is fixed
3759   /// size, this method guarantees that the returned pointer type will point to
3760   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3761   /// variable length type, this is not possible.
3762   ///
3763   LValue EmitLValue(const Expr *E);
3764 
3765   /// Same as EmitLValue but additionally we generate checking code to
3766   /// guard against undefined behavior.  This is only suitable when we know
3767   /// that the address will be used to access the object.
3768   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3769 
3770   RValue convertTempToRValue(Address addr, QualType type,
3771                              SourceLocation Loc);
3772 
3773   void EmitAtomicInit(Expr *E, LValue lvalue);
3774 
3775   bool LValueIsSuitableForInlineAtomic(LValue Src);
3776 
3777   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3778                         AggValueSlot Slot = AggValueSlot::ignored());
3779 
3780   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3781                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3782                         AggValueSlot slot = AggValueSlot::ignored());
3783 
3784   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3785 
3786   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3787                        bool IsVolatile, bool isInit);
3788 
3789   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3790       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3791       llvm::AtomicOrdering Success =
3792           llvm::AtomicOrdering::SequentiallyConsistent,
3793       llvm::AtomicOrdering Failure =
3794           llvm::AtomicOrdering::SequentiallyConsistent,
3795       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3796 
3797   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3798                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3799                         bool IsVolatile);
3800 
3801   /// EmitToMemory - Change a scalar value from its value
3802   /// representation to its in-memory representation.
3803   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3804 
3805   /// EmitFromMemory - Change a scalar value from its memory
3806   /// representation to its value representation.
3807   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3808 
3809   /// Check if the scalar \p Value is within the valid range for the given
3810   /// type \p Ty.
3811   ///
3812   /// Returns true if a check is needed (even if the range is unknown).
3813   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3814                             SourceLocation Loc);
3815 
3816   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3817   /// care to appropriately convert from the memory representation to
3818   /// the LLVM value representation.
3819   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3820                                 SourceLocation Loc,
3821                                 AlignmentSource Source = AlignmentSource::Type,
3822                                 bool isNontemporal = false) {
3823     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3824                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3825   }
3826 
3827   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3828                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3829                                 TBAAAccessInfo TBAAInfo,
3830                                 bool isNontemporal = false);
3831 
3832   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3833   /// care to appropriately convert from the memory representation to
3834   /// the LLVM value representation.  The l-value must be a simple
3835   /// l-value.
3836   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3837 
3838   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3839   /// care to appropriately convert from the memory representation to
3840   /// the LLVM value representation.
3841   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3842                          bool Volatile, QualType Ty,
3843                          AlignmentSource Source = AlignmentSource::Type,
3844                          bool isInit = false, bool isNontemporal = false) {
3845     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3846                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3847   }
3848 
3849   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3850                          bool Volatile, QualType Ty,
3851                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3852                          bool isInit = false, bool isNontemporal = false);
3853 
3854   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3855   /// care to appropriately convert from the memory representation to
3856   /// the LLVM value representation.  The l-value must be a simple
3857   /// l-value.  The isInit flag indicates whether this is an initialization.
3858   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3859   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3860 
3861   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3862   /// this method emits the address of the lvalue, then loads the result as an
3863   /// rvalue, returning the rvalue.
3864   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3865   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3866   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3867   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3868 
3869   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3870   /// lvalue, where both are guaranteed to the have the same type, and that type
3871   /// is 'Ty'.
3872   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3873   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3874   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3875 
3876   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3877   /// as EmitStoreThroughLValue.
3878   ///
3879   /// \param Result [out] - If non-null, this will be set to a Value* for the
3880   /// bit-field contents after the store, appropriate for use as the result of
3881   /// an assignment to the bit-field.
3882   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3883                                       llvm::Value **Result=nullptr);
3884 
3885   /// Emit an l-value for an assignment (simple or compound) of complex type.
3886   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3887   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3888   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3889                                              llvm::Value *&Result);
3890 
3891   // Note: only available for agg return types
3892   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3893   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3894   // Note: only available for agg return types
3895   LValue EmitCallExprLValue(const CallExpr *E);
3896   // Note: only available for agg return types
3897   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3898   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3899   LValue EmitStringLiteralLValue(const StringLiteral *E);
3900   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3901   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3902   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3903   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3904                                 bool Accessed = false);
3905   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3906   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3907                                  bool IsLowerBound = true);
3908   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3909   LValue EmitMemberExpr(const MemberExpr *E);
3910   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3911   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3912   LValue EmitInitListLValue(const InitListExpr *E);
3913   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3914   LValue EmitCastLValue(const CastExpr *E);
3915   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3916   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3917 
3918   Address EmitExtVectorElementLValue(LValue V);
3919 
3920   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3921 
3922   Address EmitArrayToPointerDecay(const Expr *Array,
3923                                   LValueBaseInfo *BaseInfo = nullptr,
3924                                   TBAAAccessInfo *TBAAInfo = nullptr);
3925 
3926   class ConstantEmission {
3927     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3928     ConstantEmission(llvm::Constant *C, bool isReference)
3929       : ValueAndIsReference(C, isReference) {}
3930   public:
3931     ConstantEmission() {}
3932     static ConstantEmission forReference(llvm::Constant *C) {
3933       return ConstantEmission(C, true);
3934     }
3935     static ConstantEmission forValue(llvm::Constant *C) {
3936       return ConstantEmission(C, false);
3937     }
3938 
3939     explicit operator bool() const {
3940       return ValueAndIsReference.getOpaqueValue() != nullptr;
3941     }
3942 
3943     bool isReference() const { return ValueAndIsReference.getInt(); }
3944     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3945       assert(isReference());
3946       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3947                                             refExpr->getType());
3948     }
3949 
3950     llvm::Constant *getValue() const {
3951       assert(!isReference());
3952       return ValueAndIsReference.getPointer();
3953     }
3954   };
3955 
3956   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3957   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3958   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3959 
3960   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3961                                 AggValueSlot slot = AggValueSlot::ignored());
3962   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3963 
3964   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3965                               const ObjCIvarDecl *Ivar);
3966   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3967   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3968 
3969   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3970   /// if the Field is a reference, this will return the address of the reference
3971   /// and not the address of the value stored in the reference.
3972   LValue EmitLValueForFieldInitialization(LValue Base,
3973                                           const FieldDecl* Field);
3974 
3975   LValue EmitLValueForIvar(QualType ObjectTy,
3976                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3977                            unsigned CVRQualifiers);
3978 
3979   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3980   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3981   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3982   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3983 
3984   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3985   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3986   LValue EmitStmtExprLValue(const StmtExpr *E);
3987   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3988   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3989   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3990 
3991   //===--------------------------------------------------------------------===//
3992   //                         Scalar Expression Emission
3993   //===--------------------------------------------------------------------===//
3994 
3995   /// EmitCall - Generate a call of the given function, expecting the given
3996   /// result type, and using the given argument list which specifies both the
3997   /// LLVM arguments and the types they were derived from.
3998   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3999                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4000                   llvm::CallBase **callOrInvoke, bool IsMustTail,
4001                   SourceLocation Loc);
4002   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4003                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4004                   llvm::CallBase **callOrInvoke = nullptr,
4005                   bool IsMustTail = false) {
4006     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4007                     IsMustTail, SourceLocation());
4008   }
4009   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4010                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4011   RValue EmitCallExpr(const CallExpr *E,
4012                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4013   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4014   CGCallee EmitCallee(const Expr *E);
4015 
4016   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4017   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4018 
4019   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4020                                   const Twine &name = "");
4021   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4022                                   ArrayRef<llvm::Value *> args,
4023                                   const Twine &name = "");
4024   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4025                                           const Twine &name = "");
4026   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4027                                           ArrayRef<llvm::Value *> args,
4028                                           const Twine &name = "");
4029 
4030   SmallVector<llvm::OperandBundleDef, 1>
4031   getBundlesForFunclet(llvm::Value *Callee);
4032 
4033   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4034                                    ArrayRef<llvm::Value *> Args,
4035                                    const Twine &Name = "");
4036   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4037                                           ArrayRef<llvm::Value *> args,
4038                                           const Twine &name = "");
4039   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4040                                           const Twine &name = "");
4041   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4042                                        ArrayRef<llvm::Value *> args);
4043 
4044   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4045                                      NestedNameSpecifier *Qual,
4046                                      llvm::Type *Ty);
4047 
4048   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4049                                                CXXDtorType Type,
4050                                                const CXXRecordDecl *RD);
4051 
4052   // Return the copy constructor name with the prefix "__copy_constructor_"
4053   // removed.
4054   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4055                                                      CharUnits Alignment,
4056                                                      bool IsVolatile,
4057                                                      ASTContext &Ctx);
4058 
4059   // Return the destructor name with the prefix "__destructor_" removed.
4060   static std::string getNonTrivialDestructorStr(QualType QT,
4061                                                 CharUnits Alignment,
4062                                                 bool IsVolatile,
4063                                                 ASTContext &Ctx);
4064 
4065   // These functions emit calls to the special functions of non-trivial C
4066   // structs.
4067   void defaultInitNonTrivialCStructVar(LValue Dst);
4068   void callCStructDefaultConstructor(LValue Dst);
4069   void callCStructDestructor(LValue Dst);
4070   void callCStructCopyConstructor(LValue Dst, LValue Src);
4071   void callCStructMoveConstructor(LValue Dst, LValue Src);
4072   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4073   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4074 
4075   RValue
4076   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4077                               const CGCallee &Callee,
4078                               ReturnValueSlot ReturnValue, llvm::Value *This,
4079                               llvm::Value *ImplicitParam,
4080                               QualType ImplicitParamTy, const CallExpr *E,
4081                               CallArgList *RtlArgs);
4082   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4083                                llvm::Value *This, QualType ThisTy,
4084                                llvm::Value *ImplicitParam,
4085                                QualType ImplicitParamTy, const CallExpr *E);
4086   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4087                                ReturnValueSlot ReturnValue);
4088   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4089                                                const CXXMethodDecl *MD,
4090                                                ReturnValueSlot ReturnValue,
4091                                                bool HasQualifier,
4092                                                NestedNameSpecifier *Qualifier,
4093                                                bool IsArrow, const Expr *Base);
4094   // Compute the object pointer.
4095   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4096                                           llvm::Value *memberPtr,
4097                                           const MemberPointerType *memberPtrType,
4098                                           LValueBaseInfo *BaseInfo = nullptr,
4099                                           TBAAAccessInfo *TBAAInfo = nullptr);
4100   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4101                                       ReturnValueSlot ReturnValue);
4102 
4103   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4104                                        const CXXMethodDecl *MD,
4105                                        ReturnValueSlot ReturnValue);
4106   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4107 
4108   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4109                                 ReturnValueSlot ReturnValue);
4110 
4111   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4112   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4113   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4114 
4115   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4116                          const CallExpr *E, ReturnValueSlot ReturnValue);
4117 
4118   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4119 
4120   /// Emit IR for __builtin_os_log_format.
4121   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4122 
4123   /// Emit IR for __builtin_is_aligned.
4124   RValue EmitBuiltinIsAligned(const CallExpr *E);
4125   /// Emit IR for __builtin_align_up/__builtin_align_down.
4126   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4127 
4128   llvm::Function *generateBuiltinOSLogHelperFunction(
4129       const analyze_os_log::OSLogBufferLayout &Layout,
4130       CharUnits BufferAlignment);
4131 
4132   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4133 
4134   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4135   /// is unhandled by the current target.
4136   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4137                                      ReturnValueSlot ReturnValue);
4138 
4139   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4140                                              const llvm::CmpInst::Predicate Fp,
4141                                              const llvm::CmpInst::Predicate Ip,
4142                                              const llvm::Twine &Name = "");
4143   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4144                                   ReturnValueSlot ReturnValue,
4145                                   llvm::Triple::ArchType Arch);
4146   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4147                                      ReturnValueSlot ReturnValue,
4148                                      llvm::Triple::ArchType Arch);
4149   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4150                                      ReturnValueSlot ReturnValue,
4151                                      llvm::Triple::ArchType Arch);
4152   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4153                                    QualType RTy);
4154   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4155                                    QualType RTy);
4156 
4157   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4158                                          unsigned LLVMIntrinsic,
4159                                          unsigned AltLLVMIntrinsic,
4160                                          const char *NameHint,
4161                                          unsigned Modifier,
4162                                          const CallExpr *E,
4163                                          SmallVectorImpl<llvm::Value *> &Ops,
4164                                          Address PtrOp0, Address PtrOp1,
4165                                          llvm::Triple::ArchType Arch);
4166 
4167   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4168                                           unsigned Modifier, llvm::Type *ArgTy,
4169                                           const CallExpr *E);
4170   llvm::Value *EmitNeonCall(llvm::Function *F,
4171                             SmallVectorImpl<llvm::Value*> &O,
4172                             const char *name,
4173                             unsigned shift = 0, bool rightshift = false);
4174   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4175                              const llvm::ElementCount &Count);
4176   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4177   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4178                                    bool negateForRightShift);
4179   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4180                                  llvm::Type *Ty, bool usgn, const char *name);
4181   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4182   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4183   /// access builtin.  Only required if it can't be inferred from the base
4184   /// pointer operand.
4185   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4186 
4187   SmallVector<llvm::Type *, 2>
4188   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4189                       ArrayRef<llvm::Value *> Ops);
4190   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4191   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4192   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4193   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4194   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4195   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4196   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4197   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4198                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4199                             unsigned BuiltinID);
4200   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4201                            llvm::ArrayRef<llvm::Value *> Ops,
4202                            unsigned BuiltinID);
4203   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4204                                     llvm::ScalableVectorType *VTy);
4205   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4206                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4207                                  unsigned IntID);
4208   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4209                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4210                                    unsigned IntID);
4211   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4212                                  SmallVectorImpl<llvm::Value *> &Ops,
4213                                  unsigned BuiltinID, bool IsZExtReturn);
4214   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4215                                   SmallVectorImpl<llvm::Value *> &Ops,
4216                                   unsigned BuiltinID);
4217   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4218                                    SmallVectorImpl<llvm::Value *> &Ops,
4219                                    unsigned BuiltinID);
4220   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4221                                      SmallVectorImpl<llvm::Value *> &Ops,
4222                                      unsigned IntID);
4223   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4224                                  SmallVectorImpl<llvm::Value *> &Ops,
4225                                  unsigned IntID);
4226   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4227                                   SmallVectorImpl<llvm::Value *> &Ops,
4228                                   unsigned IntID);
4229   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4230 
4231   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4232                                       llvm::Triple::ArchType Arch);
4233   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4234 
4235   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4236   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4237   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4238   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4239   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4240   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4241   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4242                                           const CallExpr *E);
4243   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4244   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4245                                     ReturnValueSlot ReturnValue);
4246   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4247                                llvm::AtomicOrdering &AO,
4248                                llvm::SyncScope::ID &SSID);
4249 
4250   enum class MSVCIntrin;
4251   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4252 
4253   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4254 
4255   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4256   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4257   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4258   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4259   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4260   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4261                                 const ObjCMethodDecl *MethodWithObjects);
4262   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4263   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4264                              ReturnValueSlot Return = ReturnValueSlot());
4265 
4266   /// Retrieves the default cleanup kind for an ARC cleanup.
4267   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4268   CleanupKind getARCCleanupKind() {
4269     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4270              ? NormalAndEHCleanup : NormalCleanup;
4271   }
4272 
4273   // ARC primitives.
4274   void EmitARCInitWeak(Address addr, llvm::Value *value);
4275   void EmitARCDestroyWeak(Address addr);
4276   llvm::Value *EmitARCLoadWeak(Address addr);
4277   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4278   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4279   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4280   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4281   void EmitARCCopyWeak(Address dst, Address src);
4282   void EmitARCMoveWeak(Address dst, Address src);
4283   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4284   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4285   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4286                                   bool resultIgnored);
4287   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4288                                       bool resultIgnored);
4289   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4290   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4291   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4292   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4293   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4294   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4295   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4296   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4297   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4298   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4299 
4300   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4301   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4302                                       llvm::Type *returnType);
4303   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4304 
4305   std::pair<LValue,llvm::Value*>
4306   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4307   std::pair<LValue,llvm::Value*>
4308   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4309   std::pair<LValue,llvm::Value*>
4310   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4311 
4312   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4313                              llvm::Type *returnType);
4314   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4315                                      llvm::Type *returnType);
4316   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4317 
4318   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4319   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4320   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4321 
4322   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4323   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4324                                             bool allowUnsafeClaim);
4325   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4326   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4327   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4328 
4329   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4330 
4331   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4332 
4333   static Destroyer destroyARCStrongImprecise;
4334   static Destroyer destroyARCStrongPrecise;
4335   static Destroyer destroyARCWeak;
4336   static Destroyer emitARCIntrinsicUse;
4337   static Destroyer destroyNonTrivialCStruct;
4338 
4339   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4340   llvm::Value *EmitObjCAutoreleasePoolPush();
4341   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4342   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4343   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4344 
4345   /// Emits a reference binding to the passed in expression.
4346   RValue EmitReferenceBindingToExpr(const Expr *E);
4347 
4348   //===--------------------------------------------------------------------===//
4349   //                           Expression Emission
4350   //===--------------------------------------------------------------------===//
4351 
4352   // Expressions are broken into three classes: scalar, complex, aggregate.
4353 
4354   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4355   /// scalar type, returning the result.
4356   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4357 
4358   /// Emit a conversion from the specified type to the specified destination
4359   /// type, both of which are LLVM scalar types.
4360   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4361                                     QualType DstTy, SourceLocation Loc);
4362 
4363   /// Emit a conversion from the specified complex type to the specified
4364   /// destination type, where the destination type is an LLVM scalar type.
4365   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4366                                              QualType DstTy,
4367                                              SourceLocation Loc);
4368 
4369   /// EmitAggExpr - Emit the computation of the specified expression
4370   /// of aggregate type.  The result is computed into the given slot,
4371   /// which may be null to indicate that the value is not needed.
4372   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4373 
4374   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4375   /// aggregate type into a temporary LValue.
4376   LValue EmitAggExprToLValue(const Expr *E);
4377 
4378   /// Build all the stores needed to initialize an aggregate at Dest with the
4379   /// value Val.
4380   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4381 
4382   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4383   /// make sure it survives garbage collection until this point.
4384   void EmitExtendGCLifetime(llvm::Value *object);
4385 
4386   /// EmitComplexExpr - Emit the computation of the specified expression of
4387   /// complex type, returning the result.
4388   ComplexPairTy EmitComplexExpr(const Expr *E,
4389                                 bool IgnoreReal = false,
4390                                 bool IgnoreImag = false);
4391 
4392   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4393   /// type and place its result into the specified l-value.
4394   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4395 
4396   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4397   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4398 
4399   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4400   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4401 
4402   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4403   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4404 
4405   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4406   /// global variable that has already been created for it.  If the initializer
4407   /// has a different type than GV does, this may free GV and return a different
4408   /// one.  Otherwise it just returns GV.
4409   llvm::GlobalVariable *
4410   AddInitializerToStaticVarDecl(const VarDecl &D,
4411                                 llvm::GlobalVariable *GV);
4412 
4413   // Emit an @llvm.invariant.start call for the given memory region.
4414   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4415 
4416   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4417   /// variable with global storage.
4418   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4419                                 bool PerformInit);
4420 
4421   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4422                                    llvm::Constant *Addr);
4423 
4424   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4425                                       llvm::FunctionCallee Dtor,
4426                                       llvm::Constant *Addr,
4427                                       llvm::FunctionCallee &AtExit);
4428 
4429   /// Call atexit() with a function that passes the given argument to
4430   /// the given function.
4431   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4432                                     llvm::Constant *addr);
4433 
4434   /// Call atexit() with function dtorStub.
4435   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4436 
4437   /// Call unatexit() with function dtorStub.
4438   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4439 
4440   /// Emit code in this function to perform a guarded variable
4441   /// initialization.  Guarded initializations are used when it's not
4442   /// possible to prove that an initialization will be done exactly
4443   /// once, e.g. with a static local variable or a static data member
4444   /// of a class template.
4445   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4446                           bool PerformInit);
4447 
4448   enum class GuardKind { VariableGuard, TlsGuard };
4449 
4450   /// Emit a branch to select whether or not to perform guarded initialization.
4451   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4452                                 llvm::BasicBlock *InitBlock,
4453                                 llvm::BasicBlock *NoInitBlock,
4454                                 GuardKind Kind, const VarDecl *D);
4455 
4456   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4457   /// variables.
4458   void
4459   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4460                             ArrayRef<llvm::Function *> CXXThreadLocals,
4461                             ConstantAddress Guard = ConstantAddress::invalid());
4462 
4463   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4464   /// variables.
4465   void GenerateCXXGlobalCleanUpFunc(
4466       llvm::Function *Fn,
4467       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4468                           llvm::Constant *>>
4469           DtorsOrStermFinalizers);
4470 
4471   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4472                                         const VarDecl *D,
4473                                         llvm::GlobalVariable *Addr,
4474                                         bool PerformInit);
4475 
4476   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4477 
4478   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4479 
4480   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4481 
4482   RValue EmitAtomicExpr(AtomicExpr *E);
4483 
4484   //===--------------------------------------------------------------------===//
4485   //                         Annotations Emission
4486   //===--------------------------------------------------------------------===//
4487 
4488   /// Emit an annotation call (intrinsic).
4489   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4490                                   llvm::Value *AnnotatedVal,
4491                                   StringRef AnnotationStr,
4492                                   SourceLocation Location,
4493                                   const AnnotateAttr *Attr);
4494 
4495   /// Emit local annotations for the local variable V, declared by D.
4496   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4497 
4498   /// Emit field annotations for the given field & value. Returns the
4499   /// annotation result.
4500   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4501 
4502   //===--------------------------------------------------------------------===//
4503   //                             Internal Helpers
4504   //===--------------------------------------------------------------------===//
4505 
4506   /// ContainsLabel - Return true if the statement contains a label in it.  If
4507   /// this statement is not executed normally, it not containing a label means
4508   /// that we can just remove the code.
4509   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4510 
4511   /// containsBreak - Return true if the statement contains a break out of it.
4512   /// If the statement (recursively) contains a switch or loop with a break
4513   /// inside of it, this is fine.
4514   static bool containsBreak(const Stmt *S);
4515 
4516   /// Determine if the given statement might introduce a declaration into the
4517   /// current scope, by being a (possibly-labelled) DeclStmt.
4518   static bool mightAddDeclToScope(const Stmt *S);
4519 
4520   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4521   /// to a constant, or if it does but contains a label, return false.  If it
4522   /// constant folds return true and set the boolean result in Result.
4523   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4524                                     bool AllowLabels = false);
4525 
4526   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4527   /// to a constant, or if it does but contains a label, return false.  If it
4528   /// constant folds return true and set the folded value.
4529   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4530                                     bool AllowLabels = false);
4531 
4532   /// isInstrumentedCondition - Determine whether the given condition is an
4533   /// instrumentable condition (i.e. no "&&" or "||").
4534   static bool isInstrumentedCondition(const Expr *C);
4535 
4536   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4537   /// increments a profile counter based on the semantics of the given logical
4538   /// operator opcode.  This is used to instrument branch condition coverage
4539   /// for logical operators.
4540   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4541                                 llvm::BasicBlock *TrueBlock,
4542                                 llvm::BasicBlock *FalseBlock,
4543                                 uint64_t TrueCount = 0,
4544                                 Stmt::Likelihood LH = Stmt::LH_None,
4545                                 const Expr *CntrIdx = nullptr);
4546 
4547   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4548   /// if statement) to the specified blocks.  Based on the condition, this might
4549   /// try to simplify the codegen of the conditional based on the branch.
4550   /// TrueCount should be the number of times we expect the condition to
4551   /// evaluate to true based on PGO data.
4552   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4553                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4554                             Stmt::Likelihood LH = Stmt::LH_None);
4555 
4556   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4557   /// nonnull, if \p LHS is marked _Nonnull.
4558   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4559 
4560   /// An enumeration which makes it easier to specify whether or not an
4561   /// operation is a subtraction.
4562   enum { NotSubtraction = false, IsSubtraction = true };
4563 
4564   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4565   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4566   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4567   /// \p IsSubtraction indicates whether the expression used to form the GEP
4568   /// is a subtraction.
4569   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4570                                       ArrayRef<llvm::Value *> IdxList,
4571                                       bool SignedIndices,
4572                                       bool IsSubtraction,
4573                                       SourceLocation Loc,
4574                                       const Twine &Name = "");
4575 
4576   /// Specifies which type of sanitizer check to apply when handling a
4577   /// particular builtin.
4578   enum BuiltinCheckKind {
4579     BCK_CTZPassedZero,
4580     BCK_CLZPassedZero,
4581   };
4582 
4583   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4584   /// enabled, a runtime check specified by \p Kind is also emitted.
4585   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4586 
4587   /// Emit a description of a type in a format suitable for passing to
4588   /// a runtime sanitizer handler.
4589   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4590 
4591   /// Convert a value into a format suitable for passing to a runtime
4592   /// sanitizer handler.
4593   llvm::Value *EmitCheckValue(llvm::Value *V);
4594 
4595   /// Emit a description of a source location in a format suitable for
4596   /// passing to a runtime sanitizer handler.
4597   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4598 
4599   /// Create a basic block that will either trap or call a handler function in
4600   /// the UBSan runtime with the provided arguments, and create a conditional
4601   /// branch to it.
4602   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4603                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4604                  ArrayRef<llvm::Value *> DynamicArgs);
4605 
4606   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4607   /// if Cond if false.
4608   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4609                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4610                             ArrayRef<llvm::Constant *> StaticArgs);
4611 
4612   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4613   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4614   void EmitUnreachable(SourceLocation Loc);
4615 
4616   /// Create a basic block that will call the trap intrinsic, and emit a
4617   /// conditional branch to it, for the -ftrapv checks.
4618   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4619 
4620   /// Emit a call to trap or debugtrap and attach function attribute
4621   /// "trap-func-name" if specified.
4622   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4623 
4624   /// Emit a stub for the cross-DSO CFI check function.
4625   void EmitCfiCheckStub();
4626 
4627   /// Emit a cross-DSO CFI failure handling function.
4628   void EmitCfiCheckFail();
4629 
4630   /// Create a check for a function parameter that may potentially be
4631   /// declared as non-null.
4632   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4633                            AbstractCallee AC, unsigned ParmNum);
4634 
4635   /// EmitCallArg - Emit a single call argument.
4636   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4637 
4638   /// EmitDelegateCallArg - We are performing a delegate call; that
4639   /// is, the current function is delegating to another one.  Produce
4640   /// a r-value suitable for passing the given parameter.
4641   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4642                            SourceLocation loc);
4643 
4644   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4645   /// point operation, expressed as the maximum relative error in ulp.
4646   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4647 
4648   /// Set the codegen fast-math flags.
4649   void SetFastMathFlags(FPOptions FPFeatures);
4650 
4651 private:
4652   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4653   void EmitReturnOfRValue(RValue RV, QualType Ty);
4654 
4655   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4656 
4657   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4658       DeferredReplacements;
4659 
4660   /// Set the address of a local variable.
4661   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4662     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4663     LocalDeclMap.insert({VD, Addr});
4664   }
4665 
4666   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4667   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4668   ///
4669   /// \param AI - The first function argument of the expansion.
4670   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4671                           llvm::Function::arg_iterator &AI);
4672 
4673   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4674   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4675   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4676   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4677                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4678                         unsigned &IRCallArgPos);
4679 
4680   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4681                             const Expr *InputExpr, std::string &ConstraintStr);
4682 
4683   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4684                                   LValue InputValue, QualType InputType,
4685                                   std::string &ConstraintStr,
4686                                   SourceLocation Loc);
4687 
4688   /// Attempts to statically evaluate the object size of E. If that
4689   /// fails, emits code to figure the size of E out for us. This is
4690   /// pass_object_size aware.
4691   ///
4692   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4693   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4694                                                llvm::IntegerType *ResType,
4695                                                llvm::Value *EmittedE,
4696                                                bool IsDynamic);
4697 
4698   /// Emits the size of E, as required by __builtin_object_size. This
4699   /// function is aware of pass_object_size parameters, and will act accordingly
4700   /// if E is a parameter with the pass_object_size attribute.
4701   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4702                                      llvm::IntegerType *ResType,
4703                                      llvm::Value *EmittedE,
4704                                      bool IsDynamic);
4705 
4706   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4707                                        Address Loc);
4708 
4709 public:
4710   enum class EvaluationOrder {
4711     ///! No language constraints on evaluation order.
4712     Default,
4713     ///! Language semantics require left-to-right evaluation.
4714     ForceLeftToRight,
4715     ///! Language semantics require right-to-left evaluation.
4716     ForceRightToLeft
4717   };
4718 
4719   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4720   // an ObjCMethodDecl.
4721   struct PrototypeWrapper {
4722     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4723 
4724     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4725     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4726   };
4727 
4728   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4729                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4730                     AbstractCallee AC = AbstractCallee(),
4731                     unsigned ParamsToSkip = 0,
4732                     EvaluationOrder Order = EvaluationOrder::Default);
4733 
4734   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4735   /// emit the value and compute our best estimate of the alignment of the
4736   /// pointee.
4737   ///
4738   /// \param BaseInfo - If non-null, this will be initialized with
4739   /// information about the source of the alignment and the may-alias
4740   /// attribute.  Note that this function will conservatively fall back on
4741   /// the type when it doesn't recognize the expression and may-alias will
4742   /// be set to false.
4743   ///
4744   /// One reasonable way to use this information is when there's a language
4745   /// guarantee that the pointer must be aligned to some stricter value, and
4746   /// we're simply trying to ensure that sufficiently obvious uses of under-
4747   /// aligned objects don't get miscompiled; for example, a placement new
4748   /// into the address of a local variable.  In such a case, it's quite
4749   /// reasonable to just ignore the returned alignment when it isn't from an
4750   /// explicit source.
4751   Address EmitPointerWithAlignment(const Expr *Addr,
4752                                    LValueBaseInfo *BaseInfo = nullptr,
4753                                    TBAAAccessInfo *TBAAInfo = nullptr);
4754 
4755   /// If \p E references a parameter with pass_object_size info or a constant
4756   /// array size modifier, emit the object size divided by the size of \p EltTy.
4757   /// Otherwise return null.
4758   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4759 
4760   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4761 
4762   struct MultiVersionResolverOption {
4763     llvm::Function *Function;
4764     struct Conds {
4765       StringRef Architecture;
4766       llvm::SmallVector<StringRef, 8> Features;
4767 
4768       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4769           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4770     } Conditions;
4771 
4772     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4773                                ArrayRef<StringRef> Feats)
4774         : Function(F), Conditions(Arch, Feats) {}
4775   };
4776 
4777   // Emits the body of a multiversion function's resolver. Assumes that the
4778   // options are already sorted in the proper order, with the 'default' option
4779   // last (if it exists).
4780   void EmitMultiVersionResolver(llvm::Function *Resolver,
4781                                 ArrayRef<MultiVersionResolverOption> Options);
4782 
4783 private:
4784   QualType getVarArgType(const Expr *Arg);
4785 
4786   void EmitDeclMetadata();
4787 
4788   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4789                                   const AutoVarEmission &emission);
4790 
4791   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4792 
4793   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4794   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4795   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4796   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4797   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4798   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4799   llvm::Value *EmitX86CpuInit();
4800   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4801 };
4802 
4803 /// TargetFeatures - This class is used to check whether the builtin function
4804 /// has the required tagert specific features. It is able to support the
4805 /// combination of ','(and), '|'(or), and '()'. By default, the priority of
4806 /// ',' is higher than that of '|' .
4807 /// E.g:
4808 /// A,B|C means the builtin function requires both A and B, or C.
4809 /// If we want the builtin function requires both A and B, or both A and C,
4810 /// there are two ways: A,B|A,C or A,(B|C).
4811 /// The FeaturesList should not contain spaces, and brackets must appear in
4812 /// pairs.
4813 class TargetFeatures {
4814   struct FeatureListStatus {
4815     bool HasFeatures;
4816     StringRef CurFeaturesList;
4817   };
4818 
4819   const llvm::StringMap<bool> &CallerFeatureMap;
4820 
4821   FeatureListStatus getAndFeatures(StringRef FeatureList) {
4822     int InParentheses = 0;
4823     bool HasFeatures = true;
4824     size_t SubexpressionStart = 0;
4825     for (size_t i = 0, e = FeatureList.size(); i < e; ++i) {
4826       char CurrentToken = FeatureList[i];
4827       switch (CurrentToken) {
4828       default:
4829         break;
4830       case '(':
4831         if (InParentheses == 0)
4832           SubexpressionStart = i + 1;
4833         ++InParentheses;
4834         break;
4835       case ')':
4836         --InParentheses;
4837         assert(InParentheses >= 0 && "Parentheses are not in pair");
4838         LLVM_FALLTHROUGH;
4839       case '|':
4840       case ',':
4841         if (InParentheses == 0) {
4842           if (HasFeatures && i != SubexpressionStart) {
4843             StringRef F = FeatureList.slice(SubexpressionStart, i);
4844             HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F)
4845                                               : CallerFeatureMap.lookup(F);
4846           }
4847           SubexpressionStart = i + 1;
4848           if (CurrentToken == '|') {
4849             return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4850           }
4851         }
4852         break;
4853       }
4854     }
4855     assert(InParentheses == 0 && "Parentheses are not in pair");
4856     if (HasFeatures && SubexpressionStart != FeatureList.size())
4857       HasFeatures =
4858           CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4859     return {HasFeatures, StringRef()};
4860   }
4861 
4862 public:
4863   bool hasRequiredFeatures(StringRef FeatureList) {
4864     FeatureListStatus FS = {false, FeatureList};
4865     while (!FS.HasFeatures && !FS.CurFeaturesList.empty())
4866       FS = getAndFeatures(FS.CurFeaturesList);
4867     return FS.HasFeatures;
4868   }
4869 
4870   TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4871       : CallerFeatureMap(CallerFeatureMap) {}
4872 };
4873 
4874 inline DominatingLLVMValue::saved_type
4875 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4876   if (!needsSaving(value)) return saved_type(value, false);
4877 
4878   // Otherwise, we need an alloca.
4879   auto align = CharUnits::fromQuantity(
4880             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4881   Address alloca =
4882     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4883   CGF.Builder.CreateStore(value, alloca);
4884 
4885   return saved_type(alloca.getPointer(), true);
4886 }
4887 
4888 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4889                                                  saved_type value) {
4890   // If the value says it wasn't saved, trust that it's still dominating.
4891   if (!value.getInt()) return value.getPointer();
4892 
4893   // Otherwise, it should be an alloca instruction, as set up in save().
4894   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4895   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4896                                        alloca->getAlign());
4897 }
4898 
4899 }  // end namespace CodeGen
4900 
4901 // Map the LangOption for floating point exception behavior into
4902 // the corresponding enum in the IR.
4903 llvm::fp::ExceptionBehavior
4904 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4905 }  // end namespace clang
4906 
4907 #endif
4908