xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 52418fc2be8efa5172b90a3a9e617017173612c4)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   // Apply fuzzing attribute to the function.
849   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
850     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
851 
852   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
853   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
854   if (SanOpts.has(SanitizerKind::Thread)) {
855     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
856       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
857       if (OMD->getMethodFamily() == OMF_dealloc ||
858           OMD->getMethodFamily() == OMF_initialize ||
859           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
860         markAsIgnoreThreadCheckingAtRuntime(Fn);
861       }
862     }
863   }
864 
865   // Ignore unrelated casts in STL allocate() since the allocator must cast
866   // from void* to T* before object initialization completes. Don't match on the
867   // namespace because not all allocators are in std::
868   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
869     if (matchesStlAllocatorFn(D, getContext()))
870       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
871   }
872 
873   // Ignore null checks in coroutine functions since the coroutines passes
874   // are not aware of how to move the extra UBSan instructions across the split
875   // coroutine boundaries.
876   if (D && SanOpts.has(SanitizerKind::Null))
877     if (FD && FD->getBody() &&
878         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
879       SanOpts.Mask &= ~SanitizerKind::Null;
880 
881   // Add pointer authentication attributes.
882   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
883   if (CodeGenOpts.PointerAuth.FunctionPointers)
884     Fn->addFnAttr("ptrauth-calls");
885   if (CodeGenOpts.PointerAuth.IndirectGotos)
886     Fn->addFnAttr("ptrauth-indirect-gotos");
887 
888   // Apply xray attributes to the function (as a string, for now)
889   bool AlwaysXRayAttr = false;
890   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
891     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
892             XRayInstrKind::FunctionEntry) ||
893         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
894             XRayInstrKind::FunctionExit)) {
895       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
896         Fn->addFnAttr("function-instrument", "xray-always");
897         AlwaysXRayAttr = true;
898       }
899       if (XRayAttr->neverXRayInstrument())
900         Fn->addFnAttr("function-instrument", "xray-never");
901       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
902         if (ShouldXRayInstrumentFunction())
903           Fn->addFnAttr("xray-log-args",
904                         llvm::utostr(LogArgs->getArgumentCount()));
905     }
906   } else {
907     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
908       Fn->addFnAttr(
909           "xray-instruction-threshold",
910           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
911   }
912 
913   if (ShouldXRayInstrumentFunction()) {
914     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
915       Fn->addFnAttr("xray-ignore-loops");
916 
917     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
918             XRayInstrKind::FunctionExit))
919       Fn->addFnAttr("xray-skip-exit");
920 
921     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
922             XRayInstrKind::FunctionEntry))
923       Fn->addFnAttr("xray-skip-entry");
924 
925     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
926     if (FuncGroups > 1) {
927       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
928                                               CurFn->getName().bytes_end());
929       auto Group = crc32(FuncName) % FuncGroups;
930       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
931           !AlwaysXRayAttr)
932         Fn->addFnAttr("function-instrument", "xray-never");
933     }
934   }
935 
936   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
937     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
938     case ProfileList::Skip:
939       Fn->addFnAttr(llvm::Attribute::SkipProfile);
940       break;
941     case ProfileList::Forbid:
942       Fn->addFnAttr(llvm::Attribute::NoProfile);
943       break;
944     case ProfileList::Allow:
945       break;
946     }
947   }
948 
949   unsigned Count, Offset;
950   if (const auto *Attr =
951           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
952     Count = Attr->getCount();
953     Offset = Attr->getOffset();
954   } else {
955     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
956     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
957   }
958   if (Count && Offset <= Count) {
959     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
960     if (Offset)
961       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
962   }
963   // Instruct that functions for COFF/CodeView targets should start with a
964   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
965   // backends as they don't need it -- instructions on these architectures are
966   // always atomically patchable at runtime.
967   if (CGM.getCodeGenOpts().HotPatch &&
968       getContext().getTargetInfo().getTriple().isX86() &&
969       getContext().getTargetInfo().getTriple().getEnvironment() !=
970           llvm::Triple::CODE16)
971     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
972 
973   // Add no-jump-tables value.
974   if (CGM.getCodeGenOpts().NoUseJumpTables)
975     Fn->addFnAttr("no-jump-tables", "true");
976 
977   // Add no-inline-line-tables value.
978   if (CGM.getCodeGenOpts().NoInlineLineTables)
979     Fn->addFnAttr("no-inline-line-tables");
980 
981   // Add profile-sample-accurate value.
982   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
983     Fn->addFnAttr("profile-sample-accurate");
984 
985   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
986     Fn->addFnAttr("use-sample-profile");
987 
988   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
989     Fn->addFnAttr("cfi-canonical-jump-table");
990 
991   if (D && D->hasAttr<NoProfileFunctionAttr>())
992     Fn->addFnAttr(llvm::Attribute::NoProfile);
993 
994   if (D && D->hasAttr<HybridPatchableAttr>())
995     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
996 
997   if (D) {
998     // Function attributes take precedence over command line flags.
999     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1000       switch (A->getThunkType()) {
1001       case FunctionReturnThunksAttr::Kind::Keep:
1002         break;
1003       case FunctionReturnThunksAttr::Kind::Extern:
1004         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1005         break;
1006       }
1007     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1008       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1009   }
1010 
1011   if (FD && (getLangOpts().OpenCL ||
1012              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
1013     // Add metadata for a kernel function.
1014     EmitKernelMetadata(FD, Fn);
1015   }
1016 
1017   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1018     Fn->setMetadata("clspv_libclc_builtin",
1019                     llvm::MDNode::get(getLLVMContext(), {}));
1020   }
1021 
1022   // If we are checking function types, emit a function type signature as
1023   // prologue data.
1024   if (FD && SanOpts.has(SanitizerKind::Function)) {
1025     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1026       llvm::LLVMContext &Ctx = Fn->getContext();
1027       llvm::MDBuilder MDB(Ctx);
1028       Fn->setMetadata(
1029           llvm::LLVMContext::MD_func_sanitize,
1030           MDB.createRTTIPointerPrologue(
1031               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1032     }
1033   }
1034 
1035   // If we're checking nullability, we need to know whether we can check the
1036   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1037   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1038     auto Nullability = FnRetTy->getNullability();
1039     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1040         !FnRetTy->isRecordType()) {
1041       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1042             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1043         RetValNullabilityPrecondition =
1044             llvm::ConstantInt::getTrue(getLLVMContext());
1045     }
1046   }
1047 
1048   // If we're in C++ mode and the function name is "main", it is guaranteed
1049   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1050   // used within a program").
1051   //
1052   // OpenCL C 2.0 v2.2-11 s6.9.i:
1053   //     Recursion is not supported.
1054   //
1055   // SYCL v1.2.1 s3.10:
1056   //     kernels cannot include RTTI information, exception classes,
1057   //     recursive code, virtual functions or make use of C++ libraries that
1058   //     are not compiled for the device.
1059   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1060              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1061              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1062     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1063 
1064   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1065   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1066       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1067   Builder.setDefaultConstrainedRounding(RM);
1068   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1069   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1070       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1071                RM != llvm::RoundingMode::NearestTiesToEven))) {
1072     Builder.setIsFPConstrained(true);
1073     Fn->addFnAttr(llvm::Attribute::StrictFP);
1074   }
1075 
1076   // If a custom alignment is used, force realigning to this alignment on
1077   // any main function which certainly will need it.
1078   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1079              CGM.getCodeGenOpts().StackAlignment))
1080     Fn->addFnAttr("stackrealign");
1081 
1082   // "main" doesn't need to zero out call-used registers.
1083   if (FD && FD->isMain())
1084     Fn->removeFnAttr("zero-call-used-regs");
1085 
1086   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1087 
1088   // Create a marker to make it easy to insert allocas into the entryblock
1089   // later.  Don't create this with the builder, because we don't want it
1090   // folded.
1091   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1092   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1093 
1094   ReturnBlock = getJumpDestInCurrentScope("return");
1095 
1096   Builder.SetInsertPoint(EntryBB);
1097 
1098   // If we're checking the return value, allocate space for a pointer to a
1099   // precise source location of the checked return statement.
1100   if (requiresReturnValueCheck()) {
1101     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1102     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1103                         ReturnLocation);
1104   }
1105 
1106   // Emit subprogram debug descriptor.
1107   if (CGDebugInfo *DI = getDebugInfo()) {
1108     // Reconstruct the type from the argument list so that implicit parameters,
1109     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1110     // convention.
1111     DI->emitFunctionStart(GD, Loc, StartLoc,
1112                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1113                           CurFuncIsThunk);
1114   }
1115 
1116   if (ShouldInstrumentFunction()) {
1117     if (CGM.getCodeGenOpts().InstrumentFunctions)
1118       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1119     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1120       CurFn->addFnAttr("instrument-function-entry-inlined",
1121                        "__cyg_profile_func_enter");
1122     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1123       CurFn->addFnAttr("instrument-function-entry-inlined",
1124                        "__cyg_profile_func_enter_bare");
1125   }
1126 
1127   // Since emitting the mcount call here impacts optimizations such as function
1128   // inlining, we just add an attribute to insert a mcount call in backend.
1129   // The attribute "counting-function" is set to mcount function name which is
1130   // architecture dependent.
1131   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1132     // Calls to fentry/mcount should not be generated if function has
1133     // the no_instrument_function attribute.
1134     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1135       if (CGM.getCodeGenOpts().CallFEntry)
1136         Fn->addFnAttr("fentry-call", "true");
1137       else {
1138         Fn->addFnAttr("instrument-function-entry-inlined",
1139                       getTarget().getMCountName());
1140       }
1141       if (CGM.getCodeGenOpts().MNopMCount) {
1142         if (!CGM.getCodeGenOpts().CallFEntry)
1143           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1144             << "-mnop-mcount" << "-mfentry";
1145         Fn->addFnAttr("mnop-mcount");
1146       }
1147 
1148       if (CGM.getCodeGenOpts().RecordMCount) {
1149         if (!CGM.getCodeGenOpts().CallFEntry)
1150           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1151             << "-mrecord-mcount" << "-mfentry";
1152         Fn->addFnAttr("mrecord-mcount");
1153       }
1154     }
1155   }
1156 
1157   if (CGM.getCodeGenOpts().PackedStack) {
1158     if (getContext().getTargetInfo().getTriple().getArch() !=
1159         llvm::Triple::systemz)
1160       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1161         << "-mpacked-stack";
1162     Fn->addFnAttr("packed-stack");
1163   }
1164 
1165   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1166       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1167     Fn->addFnAttr("warn-stack-size",
1168                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1169 
1170   if (RetTy->isVoidType()) {
1171     // Void type; nothing to return.
1172     ReturnValue = Address::invalid();
1173 
1174     // Count the implicit return.
1175     if (!endsWithReturn(D))
1176       ++NumReturnExprs;
1177   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1178     // Indirect return; emit returned value directly into sret slot.
1179     // This reduces code size, and affects correctness in C++.
1180     auto AI = CurFn->arg_begin();
1181     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1182       ++AI;
1183     ReturnValue = makeNaturalAddressForPointer(
1184         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1185         nullptr, nullptr, KnownNonNull);
1186     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1187       ReturnValuePointer =
1188           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1189       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1190                           ReturnValuePointer);
1191     }
1192   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1193              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1194     // Load the sret pointer from the argument struct and return into that.
1195     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1196     llvm::Function::arg_iterator EI = CurFn->arg_end();
1197     --EI;
1198     llvm::Value *Addr = Builder.CreateStructGEP(
1199         CurFnInfo->getArgStruct(), &*EI, Idx);
1200     llvm::Type *Ty =
1201         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1202     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1203     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1204     ReturnValue = Address(Addr, ConvertType(RetTy),
1205                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1206   } else {
1207     ReturnValue = CreateIRTemp(RetTy, "retval");
1208 
1209     // Tell the epilog emitter to autorelease the result.  We do this
1210     // now so that various specialized functions can suppress it
1211     // during their IR-generation.
1212     if (getLangOpts().ObjCAutoRefCount &&
1213         !CurFnInfo->isReturnsRetained() &&
1214         RetTy->isObjCRetainableType())
1215       AutoreleaseResult = true;
1216   }
1217 
1218   EmitStartEHSpec(CurCodeDecl);
1219 
1220   PrologueCleanupDepth = EHStack.stable_begin();
1221 
1222   // Emit OpenMP specific initialization of the device functions.
1223   if (getLangOpts().OpenMP && CurCodeDecl)
1224     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1225 
1226   // Handle emitting HLSL entry functions.
1227   if (D && D->hasAttr<HLSLShaderAttr>())
1228     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1229 
1230   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1231 
1232   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1233       MD && !MD->isStatic()) {
1234     bool IsInLambda =
1235         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1236     if (MD->isImplicitObjectMemberFunction())
1237       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1238     if (IsInLambda) {
1239       // We're in a lambda; figure out the captures.
1240       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1241                                         LambdaThisCaptureField);
1242       if (LambdaThisCaptureField) {
1243         // If the lambda captures the object referred to by '*this' - either by
1244         // value or by reference, make sure CXXThisValue points to the correct
1245         // object.
1246 
1247         // Get the lvalue for the field (which is a copy of the enclosing object
1248         // or contains the address of the enclosing object).
1249         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1250         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1251           // If the enclosing object was captured by value, just use its
1252           // address. Sign this pointer.
1253           CXXThisValue = ThisFieldLValue.getPointer(*this);
1254         } else {
1255           // Load the lvalue pointed to by the field, since '*this' was captured
1256           // by reference.
1257           CXXThisValue =
1258               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1259         }
1260       }
1261       for (auto *FD : MD->getParent()->fields()) {
1262         if (FD->hasCapturedVLAType()) {
1263           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1264                                            SourceLocation()).getScalarVal();
1265           auto VAT = FD->getCapturedVLAType();
1266           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1267         }
1268       }
1269     } else if (MD->isImplicitObjectMemberFunction()) {
1270       // Not in a lambda; just use 'this' from the method.
1271       // FIXME: Should we generate a new load for each use of 'this'?  The
1272       // fast register allocator would be happier...
1273       CXXThisValue = CXXABIThisValue;
1274     }
1275 
1276     // Check the 'this' pointer once per function, if it's available.
1277     if (CXXABIThisValue) {
1278       SanitizerSet SkippedChecks;
1279       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1280       QualType ThisTy = MD->getThisType();
1281 
1282       // If this is the call operator of a lambda with no captures, it
1283       // may have a static invoker function, which may call this operator with
1284       // a null 'this' pointer.
1285       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1286         SkippedChecks.set(SanitizerKind::Null, true);
1287 
1288       EmitTypeCheck(
1289           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1290           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1291     }
1292   }
1293 
1294   // If any of the arguments have a variably modified type, make sure to
1295   // emit the type size, but only if the function is not naked. Naked functions
1296   // have no prolog to run this evaluation.
1297   if (!FD || !FD->hasAttr<NakedAttr>()) {
1298     for (const VarDecl *VD : Args) {
1299       // Dig out the type as written from ParmVarDecls; it's unclear whether
1300       // the standard (C99 6.9.1p10) requires this, but we're following the
1301       // precedent set by gcc.
1302       QualType Ty;
1303       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1304         Ty = PVD->getOriginalType();
1305       else
1306         Ty = VD->getType();
1307 
1308       if (Ty->isVariablyModifiedType())
1309         EmitVariablyModifiedType(Ty);
1310     }
1311   }
1312   // Emit a location at the end of the prologue.
1313   if (CGDebugInfo *DI = getDebugInfo())
1314     DI->EmitLocation(Builder, StartLoc);
1315   // TODO: Do we need to handle this in two places like we do with
1316   // target-features/target-cpu?
1317   if (CurFuncDecl)
1318     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1319       LargestVectorWidth = VecWidth->getVectorWidth();
1320 
1321   if (CGM.shouldEmitConvergenceTokens())
1322     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1323 }
1324 
1325 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1326   incrementProfileCounter(Body);
1327   maybeCreateMCDCCondBitmap();
1328   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1329     EmitCompoundStmtWithoutScope(*S);
1330   else
1331     EmitStmt(Body);
1332 }
1333 
1334 /// When instrumenting to collect profile data, the counts for some blocks
1335 /// such as switch cases need to not include the fall-through counts, so
1336 /// emit a branch around the instrumentation code. When not instrumenting,
1337 /// this just calls EmitBlock().
1338 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1339                                                const Stmt *S) {
1340   llvm::BasicBlock *SkipCountBB = nullptr;
1341   // Do not skip over the instrumentation when single byte coverage mode is
1342   // enabled.
1343   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1344       !llvm::EnableSingleByteCoverage) {
1345     // When instrumenting for profiling, the fallthrough to certain
1346     // statements needs to skip over the instrumentation code so that we
1347     // get an accurate count.
1348     SkipCountBB = createBasicBlock("skipcount");
1349     EmitBranch(SkipCountBB);
1350   }
1351   EmitBlock(BB);
1352   uint64_t CurrentCount = getCurrentProfileCount();
1353   incrementProfileCounter(S);
1354   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1355   if (SkipCountBB)
1356     EmitBlock(SkipCountBB);
1357 }
1358 
1359 /// Tries to mark the given function nounwind based on the
1360 /// non-existence of any throwing calls within it.  We believe this is
1361 /// lightweight enough to do at -O0.
1362 static void TryMarkNoThrow(llvm::Function *F) {
1363   // LLVM treats 'nounwind' on a function as part of the type, so we
1364   // can't do this on functions that can be overwritten.
1365   if (F->isInterposable()) return;
1366 
1367   for (llvm::BasicBlock &BB : *F)
1368     for (llvm::Instruction &I : BB)
1369       if (I.mayThrow())
1370         return;
1371 
1372   F->setDoesNotThrow();
1373 }
1374 
1375 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1376                                                FunctionArgList &Args) {
1377   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1378   QualType ResTy = FD->getReturnType();
1379 
1380   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1381   if (MD && MD->isImplicitObjectMemberFunction()) {
1382     if (CGM.getCXXABI().HasThisReturn(GD))
1383       ResTy = MD->getThisType();
1384     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1385       ResTy = CGM.getContext().VoidPtrTy;
1386     CGM.getCXXABI().buildThisParam(*this, Args);
1387   }
1388 
1389   // The base version of an inheriting constructor whose constructed base is a
1390   // virtual base is not passed any arguments (because it doesn't actually call
1391   // the inherited constructor).
1392   bool PassedParams = true;
1393   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1394     if (auto Inherited = CD->getInheritedConstructor())
1395       PassedParams =
1396           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1397 
1398   if (PassedParams) {
1399     for (auto *Param : FD->parameters()) {
1400       Args.push_back(Param);
1401       if (!Param->hasAttr<PassObjectSizeAttr>())
1402         continue;
1403 
1404       auto *Implicit = ImplicitParamDecl::Create(
1405           getContext(), Param->getDeclContext(), Param->getLocation(),
1406           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1407       SizeArguments[Param] = Implicit;
1408       Args.push_back(Implicit);
1409     }
1410   }
1411 
1412   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1413     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1414 
1415   return ResTy;
1416 }
1417 
1418 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1419                                    const CGFunctionInfo &FnInfo) {
1420   assert(Fn && "generating code for null Function");
1421   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1422   CurGD = GD;
1423 
1424   FunctionArgList Args;
1425   QualType ResTy = BuildFunctionArgList(GD, Args);
1426 
1427   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1428 
1429   if (FD->isInlineBuiltinDeclaration()) {
1430     // When generating code for a builtin with an inline declaration, use a
1431     // mangled name to hold the actual body, while keeping an external
1432     // definition in case the function pointer is referenced somewhere.
1433     std::string FDInlineName = (Fn->getName() + ".inline").str();
1434     llvm::Module *M = Fn->getParent();
1435     llvm::Function *Clone = M->getFunction(FDInlineName);
1436     if (!Clone) {
1437       Clone = llvm::Function::Create(Fn->getFunctionType(),
1438                                      llvm::GlobalValue::InternalLinkage,
1439                                      Fn->getAddressSpace(), FDInlineName, M);
1440       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1441     }
1442     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1443     Fn = Clone;
1444   } else {
1445     // Detect the unusual situation where an inline version is shadowed by a
1446     // non-inline version. In that case we should pick the external one
1447     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1448     // to detect that situation before we reach codegen, so do some late
1449     // replacement.
1450     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1451          PD = PD->getPreviousDecl()) {
1452       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1453         std::string FDInlineName = (Fn->getName() + ".inline").str();
1454         llvm::Module *M = Fn->getParent();
1455         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1456           Clone->replaceAllUsesWith(Fn);
1457           Clone->eraseFromParent();
1458         }
1459         break;
1460       }
1461     }
1462   }
1463 
1464   // Check if we should generate debug info for this function.
1465   if (FD->hasAttr<NoDebugAttr>()) {
1466     // Clear non-distinct debug info that was possibly attached to the function
1467     // due to an earlier declaration without the nodebug attribute
1468     Fn->setSubprogram(nullptr);
1469     // Disable debug info indefinitely for this function
1470     DebugInfo = nullptr;
1471   }
1472 
1473   // The function might not have a body if we're generating thunks for a
1474   // function declaration.
1475   SourceRange BodyRange;
1476   if (Stmt *Body = FD->getBody())
1477     BodyRange = Body->getSourceRange();
1478   else
1479     BodyRange = FD->getLocation();
1480   CurEHLocation = BodyRange.getEnd();
1481 
1482   // Use the location of the start of the function to determine where
1483   // the function definition is located. By default use the location
1484   // of the declaration as the location for the subprogram. A function
1485   // may lack a declaration in the source code if it is created by code
1486   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1487   SourceLocation Loc = FD->getLocation();
1488 
1489   // If this is a function specialization then use the pattern body
1490   // as the location for the function.
1491   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1492     if (SpecDecl->hasBody(SpecDecl))
1493       Loc = SpecDecl->getLocation();
1494 
1495   Stmt *Body = FD->getBody();
1496 
1497   if (Body) {
1498     // Coroutines always emit lifetime markers.
1499     if (isa<CoroutineBodyStmt>(Body))
1500       ShouldEmitLifetimeMarkers = true;
1501 
1502     // Initialize helper which will detect jumps which can cause invalid
1503     // lifetime markers.
1504     if (ShouldEmitLifetimeMarkers)
1505       Bypasses.Init(Body);
1506   }
1507 
1508   // Emit the standard function prologue.
1509   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1510 
1511   // Save parameters for coroutine function.
1512   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1513     llvm::append_range(FnArgs, FD->parameters());
1514 
1515   // Ensure that the function adheres to the forward progress guarantee, which
1516   // is required by certain optimizations.
1517   // In C++11 and up, the attribute will be removed if the body contains a
1518   // trivial empty loop.
1519   if (checkIfFunctionMustProgress())
1520     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1521 
1522   // Generate the body of the function.
1523   PGO.assignRegionCounters(GD, CurFn);
1524   if (isa<CXXDestructorDecl>(FD))
1525     EmitDestructorBody(Args);
1526   else if (isa<CXXConstructorDecl>(FD))
1527     EmitConstructorBody(Args);
1528   else if (getLangOpts().CUDA &&
1529            !getLangOpts().CUDAIsDevice &&
1530            FD->hasAttr<CUDAGlobalAttr>())
1531     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1532   else if (isa<CXXMethodDecl>(FD) &&
1533            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1534     // The lambda static invoker function is special, because it forwards or
1535     // clones the body of the function call operator (but is actually static).
1536     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1537   } else if (isa<CXXMethodDecl>(FD) &&
1538              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1539              !FnInfo.isDelegateCall() &&
1540              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1541              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1542     // If emitting a lambda with static invoker on X86 Windows, change
1543     // the call operator body.
1544     // Make sure that this is a call operator with an inalloca arg and check
1545     // for delegate call to make sure this is the original call op and not the
1546     // new forwarding function for the static invoker.
1547     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1548   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1549              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1550               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1551     // Implicit copy-assignment gets the same special treatment as implicit
1552     // copy-constructors.
1553     emitImplicitAssignmentOperatorBody(Args);
1554   } else if (Body) {
1555     EmitFunctionBody(Body);
1556   } else
1557     llvm_unreachable("no definition for emitted function");
1558 
1559   // C++11 [stmt.return]p2:
1560   //   Flowing off the end of a function [...] results in undefined behavior in
1561   //   a value-returning function.
1562   // C11 6.9.1p12:
1563   //   If the '}' that terminates a function is reached, and the value of the
1564   //   function call is used by the caller, the behavior is undefined.
1565   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1566       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1567     bool ShouldEmitUnreachable =
1568         CGM.getCodeGenOpts().StrictReturn ||
1569         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1570     if (SanOpts.has(SanitizerKind::Return)) {
1571       SanitizerScope SanScope(this);
1572       llvm::Value *IsFalse = Builder.getFalse();
1573       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1574                 SanitizerHandler::MissingReturn,
1575                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1576     } else if (ShouldEmitUnreachable) {
1577       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1578         EmitTrapCall(llvm::Intrinsic::trap);
1579     }
1580     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1581       Builder.CreateUnreachable();
1582       Builder.ClearInsertionPoint();
1583     }
1584   }
1585 
1586   // Emit the standard function epilogue.
1587   FinishFunction(BodyRange.getEnd());
1588 
1589   // If we haven't marked the function nothrow through other means, do
1590   // a quick pass now to see if we can.
1591   if (!CurFn->doesNotThrow())
1592     TryMarkNoThrow(CurFn);
1593 }
1594 
1595 /// ContainsLabel - Return true if the statement contains a label in it.  If
1596 /// this statement is not executed normally, it not containing a label means
1597 /// that we can just remove the code.
1598 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1599   // Null statement, not a label!
1600   if (!S) return false;
1601 
1602   // If this is a label, we have to emit the code, consider something like:
1603   // if (0) {  ...  foo:  bar(); }  goto foo;
1604   //
1605   // TODO: If anyone cared, we could track __label__'s, since we know that you
1606   // can't jump to one from outside their declared region.
1607   if (isa<LabelStmt>(S))
1608     return true;
1609 
1610   // If this is a case/default statement, and we haven't seen a switch, we have
1611   // to emit the code.
1612   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1613     return true;
1614 
1615   // If this is a switch statement, we want to ignore cases below it.
1616   if (isa<SwitchStmt>(S))
1617     IgnoreCaseStmts = true;
1618 
1619   // Scan subexpressions for verboten labels.
1620   for (const Stmt *SubStmt : S->children())
1621     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1622       return true;
1623 
1624   return false;
1625 }
1626 
1627 /// containsBreak - Return true if the statement contains a break out of it.
1628 /// If the statement (recursively) contains a switch or loop with a break
1629 /// inside of it, this is fine.
1630 bool CodeGenFunction::containsBreak(const Stmt *S) {
1631   // Null statement, not a label!
1632   if (!S) return false;
1633 
1634   // If this is a switch or loop that defines its own break scope, then we can
1635   // include it and anything inside of it.
1636   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1637       isa<ForStmt>(S))
1638     return false;
1639 
1640   if (isa<BreakStmt>(S))
1641     return true;
1642 
1643   // Scan subexpressions for verboten breaks.
1644   for (const Stmt *SubStmt : S->children())
1645     if (containsBreak(SubStmt))
1646       return true;
1647 
1648   return false;
1649 }
1650 
1651 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1652   if (!S) return false;
1653 
1654   // Some statement kinds add a scope and thus never add a decl to the current
1655   // scope. Note, this list is longer than the list of statements that might
1656   // have an unscoped decl nested within them, but this way is conservatively
1657   // correct even if more statement kinds are added.
1658   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1659       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1660       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1661       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1662     return false;
1663 
1664   if (isa<DeclStmt>(S))
1665     return true;
1666 
1667   for (const Stmt *SubStmt : S->children())
1668     if (mightAddDeclToScope(SubStmt))
1669       return true;
1670 
1671   return false;
1672 }
1673 
1674 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1675 /// to a constant, or if it does but contains a label, return false.  If it
1676 /// constant folds return true and set the boolean result in Result.
1677 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1678                                                    bool &ResultBool,
1679                                                    bool AllowLabels) {
1680   // If MC/DC is enabled, disable folding so that we can instrument all
1681   // conditions to yield complete test vectors. We still keep track of
1682   // folded conditions during region mapping and visualization.
1683   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1684       CGM.getCodeGenOpts().MCDCCoverage)
1685     return false;
1686 
1687   llvm::APSInt ResultInt;
1688   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1689     return false;
1690 
1691   ResultBool = ResultInt.getBoolValue();
1692   return true;
1693 }
1694 
1695 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1696 /// to a constant, or if it does but contains a label, return false.  If it
1697 /// constant folds return true and set the folded value.
1698 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1699                                                    llvm::APSInt &ResultInt,
1700                                                    bool AllowLabels) {
1701   // FIXME: Rename and handle conversion of other evaluatable things
1702   // to bool.
1703   Expr::EvalResult Result;
1704   if (!Cond->EvaluateAsInt(Result, getContext()))
1705     return false;  // Not foldable, not integer or not fully evaluatable.
1706 
1707   llvm::APSInt Int = Result.Val.getInt();
1708   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1709     return false;  // Contains a label.
1710 
1711   ResultInt = Int;
1712   return true;
1713 }
1714 
1715 /// Strip parentheses and simplistic logical-NOT operators.
1716 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1717   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1718     if (Op->getOpcode() != UO_LNot)
1719       break;
1720     C = Op->getSubExpr();
1721   }
1722   return C->IgnoreParens();
1723 }
1724 
1725 /// Determine whether the given condition is an instrumentable condition
1726 /// (i.e. no "&&" or "||").
1727 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1728   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1729   return (!BOp || !BOp->isLogicalOp());
1730 }
1731 
1732 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1733 /// increments a profile counter based on the semantics of the given logical
1734 /// operator opcode.  This is used to instrument branch condition coverage for
1735 /// logical operators.
1736 void CodeGenFunction::EmitBranchToCounterBlock(
1737     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1738     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1739     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1740   // If not instrumenting, just emit a branch.
1741   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1742   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1743     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1744 
1745   llvm::BasicBlock *ThenBlock = nullptr;
1746   llvm::BasicBlock *ElseBlock = nullptr;
1747   llvm::BasicBlock *NextBlock = nullptr;
1748 
1749   // Create the block we'll use to increment the appropriate counter.
1750   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1751 
1752   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1753   // means we need to evaluate the condition and increment the counter on TRUE:
1754   //
1755   // if (Cond)
1756   //   goto CounterIncrBlock;
1757   // else
1758   //   goto FalseBlock;
1759   //
1760   // CounterIncrBlock:
1761   //   Counter++;
1762   //   goto TrueBlock;
1763 
1764   if (LOp == BO_LAnd) {
1765     ThenBlock = CounterIncrBlock;
1766     ElseBlock = FalseBlock;
1767     NextBlock = TrueBlock;
1768   }
1769 
1770   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1771   // we need to evaluate the condition and increment the counter on FALSE:
1772   //
1773   // if (Cond)
1774   //   goto TrueBlock;
1775   // else
1776   //   goto CounterIncrBlock;
1777   //
1778   // CounterIncrBlock:
1779   //   Counter++;
1780   //   goto FalseBlock;
1781 
1782   else if (LOp == BO_LOr) {
1783     ThenBlock = TrueBlock;
1784     ElseBlock = CounterIncrBlock;
1785     NextBlock = FalseBlock;
1786   } else {
1787     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1788   }
1789 
1790   // Emit Branch based on condition.
1791   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1792 
1793   // Emit the block containing the counter increment(s).
1794   EmitBlock(CounterIncrBlock);
1795 
1796   // Increment corresponding counter; if index not provided, use Cond as index.
1797   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1798 
1799   // Go to the next block.
1800   EmitBranch(NextBlock);
1801 }
1802 
1803 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1804 /// statement) to the specified blocks.  Based on the condition, this might try
1805 /// to simplify the codegen of the conditional based on the branch.
1806 /// \param LH The value of the likelihood attribute on the True branch.
1807 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1808 /// ConditionalOperator (ternary) through a recursive call for the operator's
1809 /// LHS and RHS nodes.
1810 void CodeGenFunction::EmitBranchOnBoolExpr(
1811     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1812     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1813   Cond = Cond->IgnoreParens();
1814 
1815   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1816     // Handle X && Y in a condition.
1817     if (CondBOp->getOpcode() == BO_LAnd) {
1818       MCDCLogOpStack.push_back(CondBOp);
1819 
1820       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1821       // folded if the case was simple enough.
1822       bool ConstantBool = false;
1823       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1824           ConstantBool) {
1825         // br(1 && X) -> br(X).
1826         incrementProfileCounter(CondBOp);
1827         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1828                                  FalseBlock, TrueCount, LH);
1829         MCDCLogOpStack.pop_back();
1830         return;
1831       }
1832 
1833       // If we have "X && 1", simplify the code to use an uncond branch.
1834       // "X && 0" would have been constant folded to 0.
1835       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1836           ConstantBool) {
1837         // br(X && 1) -> br(X).
1838         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1839                                  FalseBlock, TrueCount, LH, CondBOp);
1840         MCDCLogOpStack.pop_back();
1841         return;
1842       }
1843 
1844       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1845       // want to jump to the FalseBlock.
1846       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1847       // The counter tells us how often we evaluate RHS, and all of TrueCount
1848       // can be propagated to that branch.
1849       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1850 
1851       ConditionalEvaluation eval(*this);
1852       {
1853         ApplyDebugLocation DL(*this, Cond);
1854         // Propagate the likelihood attribute like __builtin_expect
1855         // __builtin_expect(X && Y, 1) -> X and Y are likely
1856         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1857         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1858                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1859         EmitBlock(LHSTrue);
1860       }
1861 
1862       incrementProfileCounter(CondBOp);
1863       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1864 
1865       // Any temporaries created here are conditional.
1866       eval.begin(*this);
1867       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1868                                FalseBlock, TrueCount, LH);
1869       eval.end(*this);
1870       MCDCLogOpStack.pop_back();
1871       return;
1872     }
1873 
1874     if (CondBOp->getOpcode() == BO_LOr) {
1875       MCDCLogOpStack.push_back(CondBOp);
1876 
1877       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1878       // folded if the case was simple enough.
1879       bool ConstantBool = false;
1880       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1881           !ConstantBool) {
1882         // br(0 || X) -> br(X).
1883         incrementProfileCounter(CondBOp);
1884         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1885                                  FalseBlock, TrueCount, LH);
1886         MCDCLogOpStack.pop_back();
1887         return;
1888       }
1889 
1890       // If we have "X || 0", simplify the code to use an uncond branch.
1891       // "X || 1" would have been constant folded to 1.
1892       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1893           !ConstantBool) {
1894         // br(X || 0) -> br(X).
1895         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1896                                  FalseBlock, TrueCount, LH, CondBOp);
1897         MCDCLogOpStack.pop_back();
1898         return;
1899       }
1900       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1901       // want to jump to the TrueBlock.
1902       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1903       // We have the count for entry to the RHS and for the whole expression
1904       // being true, so we can divy up True count between the short circuit and
1905       // the RHS.
1906       uint64_t LHSCount =
1907           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1908       uint64_t RHSCount = TrueCount - LHSCount;
1909 
1910       ConditionalEvaluation eval(*this);
1911       {
1912         // Propagate the likelihood attribute like __builtin_expect
1913         // __builtin_expect(X || Y, 1) -> only Y is likely
1914         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1915         ApplyDebugLocation DL(*this, Cond);
1916         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1917                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1918         EmitBlock(LHSFalse);
1919       }
1920 
1921       incrementProfileCounter(CondBOp);
1922       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1923 
1924       // Any temporaries created here are conditional.
1925       eval.begin(*this);
1926       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1927                                RHSCount, LH);
1928 
1929       eval.end(*this);
1930       MCDCLogOpStack.pop_back();
1931       return;
1932     }
1933   }
1934 
1935   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1936     // br(!x, t, f) -> br(x, f, t)
1937     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1938     // LNot is taken as part of the condition for simplicity, and changing its
1939     // sense negatively impacts test vector tracking.
1940     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1941                          CGM.getCodeGenOpts().MCDCCoverage &&
1942                          isInstrumentedCondition(Cond);
1943     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1944       // Negate the count.
1945       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1946       // The values of the enum are chosen to make this negation possible.
1947       LH = static_cast<Stmt::Likelihood>(-LH);
1948       // Negate the condition and swap the destination blocks.
1949       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1950                                   FalseCount, LH);
1951     }
1952   }
1953 
1954   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1955     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1956     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1957     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1958 
1959     // The ConditionalOperator itself has no likelihood information for its
1960     // true and false branches. This matches the behavior of __builtin_expect.
1961     ConditionalEvaluation cond(*this);
1962     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1963                          getProfileCount(CondOp), Stmt::LH_None);
1964 
1965     // When computing PGO branch weights, we only know the overall count for
1966     // the true block. This code is essentially doing tail duplication of the
1967     // naive code-gen, introducing new edges for which counts are not
1968     // available. Divide the counts proportionally between the LHS and RHS of
1969     // the conditional operator.
1970     uint64_t LHSScaledTrueCount = 0;
1971     if (TrueCount) {
1972       double LHSRatio =
1973           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1974       LHSScaledTrueCount = TrueCount * LHSRatio;
1975     }
1976 
1977     cond.begin(*this);
1978     EmitBlock(LHSBlock);
1979     incrementProfileCounter(CondOp);
1980     {
1981       ApplyDebugLocation DL(*this, Cond);
1982       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1983                            LHSScaledTrueCount, LH, CondOp);
1984     }
1985     cond.end(*this);
1986 
1987     cond.begin(*this);
1988     EmitBlock(RHSBlock);
1989     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1990                          TrueCount - LHSScaledTrueCount, LH, CondOp);
1991     cond.end(*this);
1992 
1993     return;
1994   }
1995 
1996   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1997     // Conditional operator handling can give us a throw expression as a
1998     // condition for a case like:
1999     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2000     // Fold this to:
2001     //   br(c, throw x, br(y, t, f))
2002     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2003     return;
2004   }
2005 
2006   // Emit the code with the fully general case.
2007   llvm::Value *CondV;
2008   {
2009     ApplyDebugLocation DL(*this, Cond);
2010     CondV = EvaluateExprAsBool(Cond);
2011   }
2012 
2013   // If not at the top of the logical operator nest, update MCDC temp with the
2014   // boolean result of the evaluated condition.
2015   if (!MCDCLogOpStack.empty()) {
2016     const Expr *MCDCBaseExpr = Cond;
2017     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2018     // expression, MC/DC tracks the result of the ternary, and this is tied to
2019     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2020     // this is the case, the ConditionalOperator expression is passed through
2021     // the ConditionalOp parameter and then used as the MCDC base expression.
2022     if (ConditionalOp)
2023       MCDCBaseExpr = ConditionalOp;
2024 
2025     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2026   }
2027 
2028   llvm::MDNode *Weights = nullptr;
2029   llvm::MDNode *Unpredictable = nullptr;
2030 
2031   // If the branch has a condition wrapped by __builtin_unpredictable,
2032   // create metadata that specifies that the branch is unpredictable.
2033   // Don't bother if not optimizing because that metadata would not be used.
2034   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2035   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2036     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2037     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2038       llvm::MDBuilder MDHelper(getLLVMContext());
2039       Unpredictable = MDHelper.createUnpredictable();
2040     }
2041   }
2042 
2043   // If there is a Likelihood knowledge for the cond, lower it.
2044   // Note that if not optimizing this won't emit anything.
2045   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2046   if (CondV != NewCondV)
2047     CondV = NewCondV;
2048   else {
2049     // Otherwise, lower profile counts. Note that we do this even at -O0.
2050     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2051     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2052   }
2053 
2054   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2055 }
2056 
2057 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2058 /// specified stmt yet.
2059 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2060   CGM.ErrorUnsupported(S, Type);
2061 }
2062 
2063 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2064 /// variable-length array whose elements have a non-zero bit-pattern.
2065 ///
2066 /// \param baseType the inner-most element type of the array
2067 /// \param src - a char* pointing to the bit-pattern for a single
2068 /// base element of the array
2069 /// \param sizeInChars - the total size of the VLA, in chars
2070 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2071                                Address dest, Address src,
2072                                llvm::Value *sizeInChars) {
2073   CGBuilderTy &Builder = CGF.Builder;
2074 
2075   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2076   llvm::Value *baseSizeInChars
2077     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2078 
2079   Address begin = dest.withElementType(CGF.Int8Ty);
2080   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2081                                                begin.emitRawPointer(CGF),
2082                                                sizeInChars, "vla.end");
2083 
2084   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2085   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2086   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2087 
2088   // Make a loop over the VLA.  C99 guarantees that the VLA element
2089   // count must be nonzero.
2090   CGF.EmitBlock(loopBB);
2091 
2092   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2093   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2094 
2095   CharUnits curAlign =
2096     dest.getAlignment().alignmentOfArrayElement(baseSize);
2097 
2098   // memcpy the individual element bit-pattern.
2099   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2100                        /*volatile*/ false);
2101 
2102   // Go to the next element.
2103   llvm::Value *next =
2104     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2105 
2106   // Leave if that's the end of the VLA.
2107   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2108   Builder.CreateCondBr(done, contBB, loopBB);
2109   cur->addIncoming(next, loopBB);
2110 
2111   CGF.EmitBlock(contBB);
2112 }
2113 
2114 void
2115 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2116   // Ignore empty classes in C++.
2117   if (getLangOpts().CPlusPlus) {
2118     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2119       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2120         return;
2121     }
2122   }
2123 
2124   if (DestPtr.getElementType() != Int8Ty)
2125     DestPtr = DestPtr.withElementType(Int8Ty);
2126 
2127   // Get size and alignment info for this aggregate.
2128   CharUnits size = getContext().getTypeSizeInChars(Ty);
2129 
2130   llvm::Value *SizeVal;
2131   const VariableArrayType *vla;
2132 
2133   // Don't bother emitting a zero-byte memset.
2134   if (size.isZero()) {
2135     // But note that getTypeInfo returns 0 for a VLA.
2136     if (const VariableArrayType *vlaType =
2137           dyn_cast_or_null<VariableArrayType>(
2138                                           getContext().getAsArrayType(Ty))) {
2139       auto VlaSize = getVLASize(vlaType);
2140       SizeVal = VlaSize.NumElts;
2141       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2142       if (!eltSize.isOne())
2143         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2144       vla = vlaType;
2145     } else {
2146       return;
2147     }
2148   } else {
2149     SizeVal = CGM.getSize(size);
2150     vla = nullptr;
2151   }
2152 
2153   // If the type contains a pointer to data member we can't memset it to zero.
2154   // Instead, create a null constant and copy it to the destination.
2155   // TODO: there are other patterns besides zero that we can usefully memset,
2156   // like -1, which happens to be the pattern used by member-pointers.
2157   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2158     // For a VLA, emit a single element, then splat that over the VLA.
2159     if (vla) Ty = getContext().getBaseElementType(vla);
2160 
2161     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2162 
2163     llvm::GlobalVariable *NullVariable =
2164       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2165                                /*isConstant=*/true,
2166                                llvm::GlobalVariable::PrivateLinkage,
2167                                NullConstant, Twine());
2168     CharUnits NullAlign = DestPtr.getAlignment();
2169     NullVariable->setAlignment(NullAlign.getAsAlign());
2170     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2171 
2172     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2173 
2174     // Get and call the appropriate llvm.memcpy overload.
2175     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2176     return;
2177   }
2178 
2179   // Otherwise, just memset the whole thing to zero.  This is legal
2180   // because in LLVM, all default initializers (other than the ones we just
2181   // handled above) are guaranteed to have a bit pattern of all zeros.
2182   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2183 }
2184 
2185 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2186   // Make sure that there is a block for the indirect goto.
2187   if (!IndirectBranch)
2188     GetIndirectGotoBlock();
2189 
2190   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2191 
2192   // Make sure the indirect branch includes all of the address-taken blocks.
2193   IndirectBranch->addDestination(BB);
2194   return llvm::BlockAddress::get(CurFn, BB);
2195 }
2196 
2197 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2198   // If we already made the indirect branch for indirect goto, return its block.
2199   if (IndirectBranch) return IndirectBranch->getParent();
2200 
2201   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2202 
2203   // Create the PHI node that indirect gotos will add entries to.
2204   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2205                                               "indirect.goto.dest");
2206 
2207   // Create the indirect branch instruction.
2208   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2209   return IndirectBranch->getParent();
2210 }
2211 
2212 /// Computes the length of an array in elements, as well as the base
2213 /// element type and a properly-typed first element pointer.
2214 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2215                                               QualType &baseType,
2216                                               Address &addr) {
2217   const ArrayType *arrayType = origArrayType;
2218 
2219   // If it's a VLA, we have to load the stored size.  Note that
2220   // this is the size of the VLA in bytes, not its size in elements.
2221   llvm::Value *numVLAElements = nullptr;
2222   if (isa<VariableArrayType>(arrayType)) {
2223     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2224 
2225     // Walk into all VLAs.  This doesn't require changes to addr,
2226     // which has type T* where T is the first non-VLA element type.
2227     do {
2228       QualType elementType = arrayType->getElementType();
2229       arrayType = getContext().getAsArrayType(elementType);
2230 
2231       // If we only have VLA components, 'addr' requires no adjustment.
2232       if (!arrayType) {
2233         baseType = elementType;
2234         return numVLAElements;
2235       }
2236     } while (isa<VariableArrayType>(arrayType));
2237 
2238     // We get out here only if we find a constant array type
2239     // inside the VLA.
2240   }
2241 
2242   // We have some number of constant-length arrays, so addr should
2243   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2244   // down to the first element of addr.
2245   SmallVector<llvm::Value*, 8> gepIndices;
2246 
2247   // GEP down to the array type.
2248   llvm::ConstantInt *zero = Builder.getInt32(0);
2249   gepIndices.push_back(zero);
2250 
2251   uint64_t countFromCLAs = 1;
2252   QualType eltType;
2253 
2254   llvm::ArrayType *llvmArrayType =
2255     dyn_cast<llvm::ArrayType>(addr.getElementType());
2256   while (llvmArrayType) {
2257     assert(isa<ConstantArrayType>(arrayType));
2258     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2259            llvmArrayType->getNumElements());
2260 
2261     gepIndices.push_back(zero);
2262     countFromCLAs *= llvmArrayType->getNumElements();
2263     eltType = arrayType->getElementType();
2264 
2265     llvmArrayType =
2266       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2267     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2268     assert((!llvmArrayType || arrayType) &&
2269            "LLVM and Clang types are out-of-synch");
2270   }
2271 
2272   if (arrayType) {
2273     // From this point onwards, the Clang array type has been emitted
2274     // as some other type (probably a packed struct). Compute the array
2275     // size, and just emit the 'begin' expression as a bitcast.
2276     while (arrayType) {
2277       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2278       eltType = arrayType->getElementType();
2279       arrayType = getContext().getAsArrayType(eltType);
2280     }
2281 
2282     llvm::Type *baseType = ConvertType(eltType);
2283     addr = addr.withElementType(baseType);
2284   } else {
2285     // Create the actual GEP.
2286     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2287                                              addr.emitRawPointer(*this),
2288                                              gepIndices, "array.begin"),
2289                    ConvertTypeForMem(eltType), addr.getAlignment());
2290   }
2291 
2292   baseType = eltType;
2293 
2294   llvm::Value *numElements
2295     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2296 
2297   // If we had any VLA dimensions, factor them in.
2298   if (numVLAElements)
2299     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2300 
2301   return numElements;
2302 }
2303 
2304 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2305   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2306   assert(vla && "type was not a variable array type!");
2307   return getVLASize(vla);
2308 }
2309 
2310 CodeGenFunction::VlaSizePair
2311 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2312   // The number of elements so far; always size_t.
2313   llvm::Value *numElements = nullptr;
2314 
2315   QualType elementType;
2316   do {
2317     elementType = type->getElementType();
2318     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2319     assert(vlaSize && "no size for VLA!");
2320     assert(vlaSize->getType() == SizeTy);
2321 
2322     if (!numElements) {
2323       numElements = vlaSize;
2324     } else {
2325       // It's undefined behavior if this wraps around, so mark it that way.
2326       // FIXME: Teach -fsanitize=undefined to trap this.
2327       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2328     }
2329   } while ((type = getContext().getAsVariableArrayType(elementType)));
2330 
2331   return { numElements, elementType };
2332 }
2333 
2334 CodeGenFunction::VlaSizePair
2335 CodeGenFunction::getVLAElements1D(QualType type) {
2336   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2337   assert(vla && "type was not a variable array type!");
2338   return getVLAElements1D(vla);
2339 }
2340 
2341 CodeGenFunction::VlaSizePair
2342 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2343   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2344   assert(VlaSize && "no size for VLA!");
2345   assert(VlaSize->getType() == SizeTy);
2346   return { VlaSize, Vla->getElementType() };
2347 }
2348 
2349 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2350   assert(type->isVariablyModifiedType() &&
2351          "Must pass variably modified type to EmitVLASizes!");
2352 
2353   EnsureInsertPoint();
2354 
2355   // We're going to walk down into the type and look for VLA
2356   // expressions.
2357   do {
2358     assert(type->isVariablyModifiedType());
2359 
2360     const Type *ty = type.getTypePtr();
2361     switch (ty->getTypeClass()) {
2362 
2363 #define TYPE(Class, Base)
2364 #define ABSTRACT_TYPE(Class, Base)
2365 #define NON_CANONICAL_TYPE(Class, Base)
2366 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2367 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2368 #include "clang/AST/TypeNodes.inc"
2369       llvm_unreachable("unexpected dependent type!");
2370 
2371     // These types are never variably-modified.
2372     case Type::Builtin:
2373     case Type::Complex:
2374     case Type::Vector:
2375     case Type::ExtVector:
2376     case Type::ConstantMatrix:
2377     case Type::Record:
2378     case Type::Enum:
2379     case Type::Using:
2380     case Type::TemplateSpecialization:
2381     case Type::ObjCTypeParam:
2382     case Type::ObjCObject:
2383     case Type::ObjCInterface:
2384     case Type::ObjCObjectPointer:
2385     case Type::BitInt:
2386       llvm_unreachable("type class is never variably-modified!");
2387 
2388     case Type::Elaborated:
2389       type = cast<ElaboratedType>(ty)->getNamedType();
2390       break;
2391 
2392     case Type::Adjusted:
2393       type = cast<AdjustedType>(ty)->getAdjustedType();
2394       break;
2395 
2396     case Type::Decayed:
2397       type = cast<DecayedType>(ty)->getPointeeType();
2398       break;
2399 
2400     case Type::Pointer:
2401       type = cast<PointerType>(ty)->getPointeeType();
2402       break;
2403 
2404     case Type::BlockPointer:
2405       type = cast<BlockPointerType>(ty)->getPointeeType();
2406       break;
2407 
2408     case Type::LValueReference:
2409     case Type::RValueReference:
2410       type = cast<ReferenceType>(ty)->getPointeeType();
2411       break;
2412 
2413     case Type::MemberPointer:
2414       type = cast<MemberPointerType>(ty)->getPointeeType();
2415       break;
2416 
2417     case Type::ArrayParameter:
2418     case Type::ConstantArray:
2419     case Type::IncompleteArray:
2420       // Losing element qualification here is fine.
2421       type = cast<ArrayType>(ty)->getElementType();
2422       break;
2423 
2424     case Type::VariableArray: {
2425       // Losing element qualification here is fine.
2426       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2427 
2428       // Unknown size indication requires no size computation.
2429       // Otherwise, evaluate and record it.
2430       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2431         // It's possible that we might have emitted this already,
2432         // e.g. with a typedef and a pointer to it.
2433         llvm::Value *&entry = VLASizeMap[sizeExpr];
2434         if (!entry) {
2435           llvm::Value *size = EmitScalarExpr(sizeExpr);
2436 
2437           // C11 6.7.6.2p5:
2438           //   If the size is an expression that is not an integer constant
2439           //   expression [...] each time it is evaluated it shall have a value
2440           //   greater than zero.
2441           if (SanOpts.has(SanitizerKind::VLABound)) {
2442             SanitizerScope SanScope(this);
2443             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2444             clang::QualType SEType = sizeExpr->getType();
2445             llvm::Value *CheckCondition =
2446                 SEType->isSignedIntegerType()
2447                     ? Builder.CreateICmpSGT(size, Zero)
2448                     : Builder.CreateICmpUGT(size, Zero);
2449             llvm::Constant *StaticArgs[] = {
2450                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2451                 EmitCheckTypeDescriptor(SEType)};
2452             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2453                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2454           }
2455 
2456           // Always zexting here would be wrong if it weren't
2457           // undefined behavior to have a negative bound.
2458           // FIXME: What about when size's type is larger than size_t?
2459           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2460         }
2461       }
2462       type = vat->getElementType();
2463       break;
2464     }
2465 
2466     case Type::FunctionProto:
2467     case Type::FunctionNoProto:
2468       type = cast<FunctionType>(ty)->getReturnType();
2469       break;
2470 
2471     case Type::Paren:
2472     case Type::TypeOf:
2473     case Type::UnaryTransform:
2474     case Type::Attributed:
2475     case Type::BTFTagAttributed:
2476     case Type::SubstTemplateTypeParm:
2477     case Type::MacroQualified:
2478     case Type::CountAttributed:
2479       // Keep walking after single level desugaring.
2480       type = type.getSingleStepDesugaredType(getContext());
2481       break;
2482 
2483     case Type::Typedef:
2484     case Type::Decltype:
2485     case Type::Auto:
2486     case Type::DeducedTemplateSpecialization:
2487     case Type::PackIndexing:
2488       // Stop walking: nothing to do.
2489       return;
2490 
2491     case Type::TypeOfExpr:
2492       // Stop walking: emit typeof expression.
2493       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2494       return;
2495 
2496     case Type::Atomic:
2497       type = cast<AtomicType>(ty)->getValueType();
2498       break;
2499 
2500     case Type::Pipe:
2501       type = cast<PipeType>(ty)->getElementType();
2502       break;
2503     }
2504   } while (type->isVariablyModifiedType());
2505 }
2506 
2507 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2508   if (getContext().getBuiltinVaListType()->isArrayType())
2509     return EmitPointerWithAlignment(E);
2510   return EmitLValue(E).getAddress();
2511 }
2512 
2513 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2514   return EmitLValue(E).getAddress();
2515 }
2516 
2517 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2518                                               const APValue &Init) {
2519   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2520   if (CGDebugInfo *Dbg = getDebugInfo())
2521     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2522       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2523 }
2524 
2525 CodeGenFunction::PeepholeProtection
2526 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2527   // At the moment, the only aggressive peephole we do in IR gen
2528   // is trunc(zext) folding, but if we add more, we can easily
2529   // extend this protection.
2530 
2531   if (!rvalue.isScalar()) return PeepholeProtection();
2532   llvm::Value *value = rvalue.getScalarVal();
2533   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2534 
2535   // Just make an extra bitcast.
2536   assert(HaveInsertPoint());
2537   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2538                                                   Builder.GetInsertBlock());
2539 
2540   PeepholeProtection protection;
2541   protection.Inst = inst;
2542   return protection;
2543 }
2544 
2545 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2546   if (!protection.Inst) return;
2547 
2548   // In theory, we could try to duplicate the peepholes now, but whatever.
2549   protection.Inst->eraseFromParent();
2550 }
2551 
2552 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2553                                               QualType Ty, SourceLocation Loc,
2554                                               SourceLocation AssumptionLoc,
2555                                               llvm::Value *Alignment,
2556                                               llvm::Value *OffsetValue) {
2557   if (Alignment->getType() != IntPtrTy)
2558     Alignment =
2559         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2560   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2561     OffsetValue =
2562         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2563   llvm::Value *TheCheck = nullptr;
2564   if (SanOpts.has(SanitizerKind::Alignment)) {
2565     llvm::Value *PtrIntValue =
2566         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2567 
2568     if (OffsetValue) {
2569       bool IsOffsetZero = false;
2570       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2571         IsOffsetZero = CI->isZero();
2572 
2573       if (!IsOffsetZero)
2574         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2575     }
2576 
2577     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2578     llvm::Value *Mask =
2579         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2580     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2581     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2582   }
2583   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2584       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2585 
2586   if (!SanOpts.has(SanitizerKind::Alignment))
2587     return;
2588   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2589                                OffsetValue, TheCheck, Assumption);
2590 }
2591 
2592 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2593                                               const Expr *E,
2594                                               SourceLocation AssumptionLoc,
2595                                               llvm::Value *Alignment,
2596                                               llvm::Value *OffsetValue) {
2597   QualType Ty = E->getType();
2598   SourceLocation Loc = E->getExprLoc();
2599 
2600   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2601                           OffsetValue);
2602 }
2603 
2604 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2605                                                  llvm::Value *AnnotatedVal,
2606                                                  StringRef AnnotationStr,
2607                                                  SourceLocation Location,
2608                                                  const AnnotateAttr *Attr) {
2609   SmallVector<llvm::Value *, 5> Args = {
2610       AnnotatedVal,
2611       CGM.EmitAnnotationString(AnnotationStr),
2612       CGM.EmitAnnotationUnit(Location),
2613       CGM.EmitAnnotationLineNo(Location),
2614   };
2615   if (Attr)
2616     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2617   return Builder.CreateCall(AnnotationFn, Args);
2618 }
2619 
2620 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2621   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2622   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2623     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2624                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2625                        V, I->getAnnotation(), D->getLocation(), I);
2626 }
2627 
2628 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2629                                               Address Addr) {
2630   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2631   llvm::Value *V = Addr.emitRawPointer(*this);
2632   llvm::Type *VTy = V->getType();
2633   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2634   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2635   llvm::PointerType *IntrinTy =
2636       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2637   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2638                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2639 
2640   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2641     // FIXME Always emit the cast inst so we can differentiate between
2642     // annotation on the first field of a struct and annotation on the struct
2643     // itself.
2644     if (VTy != IntrinTy)
2645       V = Builder.CreateBitCast(V, IntrinTy);
2646     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2647     V = Builder.CreateBitCast(V, VTy);
2648   }
2649 
2650   return Address(V, Addr.getElementType(), Addr.getAlignment());
2651 }
2652 
2653 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2654 
2655 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2656     : CGF(CGF) {
2657   assert(!CGF->IsSanitizerScope);
2658   CGF->IsSanitizerScope = true;
2659 }
2660 
2661 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2662   CGF->IsSanitizerScope = false;
2663 }
2664 
2665 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2666                                    const llvm::Twine &Name,
2667                                    llvm::BasicBlock::iterator InsertPt) const {
2668   LoopStack.InsertHelper(I);
2669   if (IsSanitizerScope)
2670     I->setNoSanitizeMetadata();
2671 }
2672 
2673 void CGBuilderInserter::InsertHelper(
2674     llvm::Instruction *I, const llvm::Twine &Name,
2675     llvm::BasicBlock::iterator InsertPt) const {
2676   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2677   if (CGF)
2678     CGF->InsertHelper(I, Name, InsertPt);
2679 }
2680 
2681 // Emits an error if we don't have a valid set of target features for the
2682 // called function.
2683 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2684                                           const FunctionDecl *TargetDecl) {
2685   // SemaChecking cannot handle below x86 builtins because they have different
2686   // parameter ranges with different TargetAttribute of caller.
2687   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2688     unsigned BuiltinID = TargetDecl->getBuiltinID();
2689     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2690         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2691         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2692         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2693       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2694       llvm::StringMap<bool> TargetFetureMap;
2695       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2696       llvm::APSInt Result =
2697           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2698       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2699         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2700             << TargetDecl->getDeclName() << "avx";
2701     }
2702   }
2703   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2704 }
2705 
2706 // Emits an error if we don't have a valid set of target features for the
2707 // called function.
2708 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2709                                           const FunctionDecl *TargetDecl) {
2710   // Early exit if this is an indirect call.
2711   if (!TargetDecl)
2712     return;
2713 
2714   // Get the current enclosing function if it exists. If it doesn't
2715   // we can't check the target features anyhow.
2716   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2717   if (!FD)
2718     return;
2719 
2720   // Grab the required features for the call. For a builtin this is listed in
2721   // the td file with the default cpu, for an always_inline function this is any
2722   // listed cpu and any listed features.
2723   unsigned BuiltinID = TargetDecl->getBuiltinID();
2724   std::string MissingFeature;
2725   llvm::StringMap<bool> CallerFeatureMap;
2726   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2727   // When compiling in HipStdPar mode we have to be conservative in rejecting
2728   // target specific features in the FE, and defer the possible error to the
2729   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2730   // referenced by an accelerator executable function, we emit an error.
2731   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2732   if (BuiltinID) {
2733     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2734     if (!Builtin::evaluateRequiredTargetFeatures(
2735         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2736       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2737           << TargetDecl->getDeclName()
2738           << FeatureList;
2739     }
2740   } else if (!TargetDecl->isMultiVersion() &&
2741              TargetDecl->hasAttr<TargetAttr>()) {
2742     // Get the required features for the callee.
2743 
2744     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2745     ParsedTargetAttr ParsedAttr =
2746         CGM.getContext().filterFunctionTargetAttrs(TD);
2747 
2748     SmallVector<StringRef, 1> ReqFeatures;
2749     llvm::StringMap<bool> CalleeFeatureMap;
2750     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2751 
2752     for (const auto &F : ParsedAttr.Features) {
2753       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2754         ReqFeatures.push_back(StringRef(F).substr(1));
2755     }
2756 
2757     for (const auto &F : CalleeFeatureMap) {
2758       // Only positive features are "required".
2759       if (F.getValue())
2760         ReqFeatures.push_back(F.getKey());
2761     }
2762     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2763       if (!CallerFeatureMap.lookup(Feature)) {
2764         MissingFeature = Feature.str();
2765         return false;
2766       }
2767       return true;
2768     }) && !IsHipStdPar)
2769       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2770           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2771   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2772     llvm::StringMap<bool> CalleeFeatureMap;
2773     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2774 
2775     for (const auto &F : CalleeFeatureMap) {
2776       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2777                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2778           !IsHipStdPar)
2779         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2780             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2781     }
2782   }
2783 }
2784 
2785 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2786   if (!CGM.getCodeGenOpts().SanitizeStats)
2787     return;
2788 
2789   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2790   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2791   CGM.getSanStats().create(IRB, SSK);
2792 }
2793 
2794 void CodeGenFunction::EmitKCFIOperandBundle(
2795     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2796   const FunctionProtoType *FP =
2797       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2798   if (FP)
2799     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2800 }
2801 
2802 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2803     const MultiVersionResolverOption &RO) {
2804   llvm::SmallVector<StringRef, 8> CondFeatures;
2805   for (const StringRef &Feature : RO.Conditions.Features)
2806     CondFeatures.push_back(Feature);
2807   if (!CondFeatures.empty()) {
2808     return EmitAArch64CpuSupports(CondFeatures);
2809   }
2810   return nullptr;
2811 }
2812 
2813 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2814     const MultiVersionResolverOption &RO) {
2815   llvm::Value *Condition = nullptr;
2816 
2817   if (!RO.Conditions.Architecture.empty()) {
2818     StringRef Arch = RO.Conditions.Architecture;
2819     // If arch= specifies an x86-64 micro-architecture level, test the feature
2820     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2821     if (Arch.starts_with("x86-64"))
2822       Condition = EmitX86CpuSupports({Arch});
2823     else
2824       Condition = EmitX86CpuIs(Arch);
2825   }
2826 
2827   if (!RO.Conditions.Features.empty()) {
2828     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2829     Condition =
2830         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2831   }
2832   return Condition;
2833 }
2834 
2835 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2836                                              llvm::Function *Resolver,
2837                                              CGBuilderTy &Builder,
2838                                              llvm::Function *FuncToReturn,
2839                                              bool SupportsIFunc) {
2840   if (SupportsIFunc) {
2841     Builder.CreateRet(FuncToReturn);
2842     return;
2843   }
2844 
2845   llvm::SmallVector<llvm::Value *, 10> Args(
2846       llvm::make_pointer_range(Resolver->args()));
2847 
2848   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2849   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2850 
2851   if (Resolver->getReturnType()->isVoidTy())
2852     Builder.CreateRetVoid();
2853   else
2854     Builder.CreateRet(Result);
2855 }
2856 
2857 void CodeGenFunction::EmitMultiVersionResolver(
2858     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2859 
2860   llvm::Triple::ArchType ArchType =
2861       getContext().getTargetInfo().getTriple().getArch();
2862 
2863   switch (ArchType) {
2864   case llvm::Triple::x86:
2865   case llvm::Triple::x86_64:
2866     EmitX86MultiVersionResolver(Resolver, Options);
2867     return;
2868   case llvm::Triple::aarch64:
2869     EmitAArch64MultiVersionResolver(Resolver, Options);
2870     return;
2871 
2872   default:
2873     assert(false && "Only implemented for x86 and AArch64 targets");
2874   }
2875 }
2876 
2877 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2878     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2879   assert(!Options.empty() && "No multiversion resolver options found");
2880   assert(Options.back().Conditions.Features.size() == 0 &&
2881          "Default case must be last");
2882   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2883   assert(SupportsIFunc &&
2884          "Multiversion resolver requires target IFUNC support");
2885   bool AArch64CpuInitialized = false;
2886   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2887 
2888   for (const MultiVersionResolverOption &RO : Options) {
2889     Builder.SetInsertPoint(CurBlock);
2890     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2891 
2892     // The 'default' or 'all features enabled' case.
2893     if (!Condition) {
2894       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2895                                        SupportsIFunc);
2896       return;
2897     }
2898 
2899     if (!AArch64CpuInitialized) {
2900       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2901       EmitAArch64CpuInit();
2902       AArch64CpuInitialized = true;
2903       Builder.SetInsertPoint(CurBlock);
2904     }
2905 
2906     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2907     CGBuilderTy RetBuilder(*this, RetBlock);
2908     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2909                                      SupportsIFunc);
2910     CurBlock = createBasicBlock("resolver_else", Resolver);
2911     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2912   }
2913 
2914   // If no default, emit an unreachable.
2915   Builder.SetInsertPoint(CurBlock);
2916   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2917   TrapCall->setDoesNotReturn();
2918   TrapCall->setDoesNotThrow();
2919   Builder.CreateUnreachable();
2920   Builder.ClearInsertionPoint();
2921 }
2922 
2923 void CodeGenFunction::EmitX86MultiVersionResolver(
2924     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2925 
2926   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2927 
2928   // Main function's basic block.
2929   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2930   Builder.SetInsertPoint(CurBlock);
2931   EmitX86CpuInit();
2932 
2933   for (const MultiVersionResolverOption &RO : Options) {
2934     Builder.SetInsertPoint(CurBlock);
2935     llvm::Value *Condition = FormX86ResolverCondition(RO);
2936 
2937     // The 'default' or 'generic' case.
2938     if (!Condition) {
2939       assert(&RO == Options.end() - 1 &&
2940              "Default or Generic case must be last");
2941       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2942                                        SupportsIFunc);
2943       return;
2944     }
2945 
2946     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2947     CGBuilderTy RetBuilder(*this, RetBlock);
2948     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2949                                      SupportsIFunc);
2950     CurBlock = createBasicBlock("resolver_else", Resolver);
2951     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2952   }
2953 
2954   // If no generic/default, emit an unreachable.
2955   Builder.SetInsertPoint(CurBlock);
2956   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2957   TrapCall->setDoesNotReturn();
2958   TrapCall->setDoesNotThrow();
2959   Builder.CreateUnreachable();
2960   Builder.ClearInsertionPoint();
2961 }
2962 
2963 // Loc - where the diagnostic will point, where in the source code this
2964 //  alignment has failed.
2965 // SecondaryLoc - if present (will be present if sufficiently different from
2966 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2967 //  It should be the location where the __attribute__((assume_aligned))
2968 //  was written e.g.
2969 void CodeGenFunction::emitAlignmentAssumptionCheck(
2970     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2971     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2972     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2973     llvm::Instruction *Assumption) {
2974   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2975          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2976              llvm::Intrinsic::getDeclaration(
2977                  Builder.GetInsertBlock()->getParent()->getParent(),
2978                  llvm::Intrinsic::assume) &&
2979          "Assumption should be a call to llvm.assume().");
2980   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2981          "Assumption should be the last instruction of the basic block, "
2982          "since the basic block is still being generated.");
2983 
2984   if (!SanOpts.has(SanitizerKind::Alignment))
2985     return;
2986 
2987   // Don't check pointers to volatile data. The behavior here is implementation-
2988   // defined.
2989   if (Ty->getPointeeType().isVolatileQualified())
2990     return;
2991 
2992   // We need to temorairly remove the assumption so we can insert the
2993   // sanitizer check before it, else the check will be dropped by optimizations.
2994   Assumption->removeFromParent();
2995 
2996   {
2997     SanitizerScope SanScope(this);
2998 
2999     if (!OffsetValue)
3000       OffsetValue = Builder.getInt1(false); // no offset.
3001 
3002     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3003                                     EmitCheckSourceLocation(SecondaryLoc),
3004                                     EmitCheckTypeDescriptor(Ty)};
3005     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3006                                   EmitCheckValue(Alignment),
3007                                   EmitCheckValue(OffsetValue)};
3008     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3009               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3010   }
3011 
3012   // We are now in the (new, empty) "cont" basic block.
3013   // Reintroduce the assumption.
3014   Builder.Insert(Assumption);
3015   // FIXME: Assumption still has it's original basic block as it's Parent.
3016 }
3017 
3018 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3019   if (CGDebugInfo *DI = getDebugInfo())
3020     return DI->SourceLocToDebugLoc(Location);
3021 
3022   return llvm::DebugLoc();
3023 }
3024 
3025 llvm::Value *
3026 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3027                                                       Stmt::Likelihood LH) {
3028   switch (LH) {
3029   case Stmt::LH_None:
3030     return Cond;
3031   case Stmt::LH_Likely:
3032   case Stmt::LH_Unlikely:
3033     // Don't generate llvm.expect on -O0 as the backend won't use it for
3034     // anything.
3035     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3036       return Cond;
3037     llvm::Type *CondTy = Cond->getType();
3038     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3039     llvm::Function *FnExpect =
3040         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3041     llvm::Value *ExpectedValueOfCond =
3042         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3043     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3044                               Cond->getName() + ".expval");
3045   }
3046   llvm_unreachable("Unknown Likelihood");
3047 }
3048 
3049 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3050                                                     unsigned NumElementsDst,
3051                                                     const llvm::Twine &Name) {
3052   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3053   unsigned NumElementsSrc = SrcTy->getNumElements();
3054   if (NumElementsSrc == NumElementsDst)
3055     return SrcVec;
3056 
3057   std::vector<int> ShuffleMask(NumElementsDst, -1);
3058   for (unsigned MaskIdx = 0;
3059        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3060     ShuffleMask[MaskIdx] = MaskIdx;
3061 
3062   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3063 }
3064 
3065 void CodeGenFunction::EmitPointerAuthOperandBundle(
3066     const CGPointerAuthInfo &PointerAuth,
3067     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3068   if (!PointerAuth.isSigned())
3069     return;
3070 
3071   auto *Key = Builder.getInt32(PointerAuth.getKey());
3072 
3073   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3074   if (!Discriminator)
3075     Discriminator = Builder.getSize(0);
3076 
3077   llvm::Value *Args[] = {Key, Discriminator};
3078   Bundles.emplace_back("ptrauth", Args);
3079 }
3080 
3081 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3082                                           const CGPointerAuthInfo &PointerAuth,
3083                                           llvm::Value *Pointer,
3084                                           unsigned IntrinsicID) {
3085   if (!PointerAuth)
3086     return Pointer;
3087 
3088   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3089 
3090   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3091   if (!Discriminator) {
3092     Discriminator = CGF.Builder.getSize(0);
3093   }
3094 
3095   // Convert the pointer to intptr_t before signing it.
3096   auto OrigType = Pointer->getType();
3097   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3098 
3099   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3100   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3101   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3102 
3103   // Convert back to the original type.
3104   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3105   return Pointer;
3106 }
3107 
3108 llvm::Value *
3109 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3110                                      llvm::Value *Pointer) {
3111   if (!PointerAuth.shouldSign())
3112     return Pointer;
3113   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3114                                llvm::Intrinsic::ptrauth_sign);
3115 }
3116 
3117 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3118                               const CGPointerAuthInfo &PointerAuth,
3119                               llvm::Value *Pointer) {
3120   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3121 
3122   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3123   // Convert the pointer to intptr_t before signing it.
3124   auto OrigType = Pointer->getType();
3125   Pointer = CGF.EmitRuntimeCall(
3126       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3127   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3128 }
3129 
3130 llvm::Value *
3131 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3132                                      llvm::Value *Pointer) {
3133   if (PointerAuth.shouldStrip()) {
3134     return EmitStrip(*this, PointerAuth, Pointer);
3135   }
3136   if (!PointerAuth.shouldAuth()) {
3137     return Pointer;
3138   }
3139 
3140   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3141                                llvm::Intrinsic::ptrauth_auth);
3142 }
3143