1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 Address Addr(V, ConvertTypeForMem(T), Alignment); 192 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 Address Addr(V, ConvertTypeForMem(T), Align); 204 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 205 } 206 207 208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 209 return CGM.getTypes().ConvertTypeForMem(T); 210 } 211 212 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 213 return CGM.getTypes().ConvertType(T); 214 } 215 216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 217 type = type.getCanonicalType(); 218 while (true) { 219 switch (type->getTypeClass()) { 220 #define TYPE(name, parent) 221 #define ABSTRACT_TYPE(name, parent) 222 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 223 #define DEPENDENT_TYPE(name, parent) case Type::name: 224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 225 #include "clang/AST/TypeNodes.inc" 226 llvm_unreachable("non-canonical or dependent type in IR-generation"); 227 228 case Type::Auto: 229 case Type::DeducedTemplateSpecialization: 230 llvm_unreachable("undeduced type in IR-generation"); 231 232 // Various scalar types. 233 case Type::Builtin: 234 case Type::Pointer: 235 case Type::BlockPointer: 236 case Type::LValueReference: 237 case Type::RValueReference: 238 case Type::MemberPointer: 239 case Type::Vector: 240 case Type::ExtVector: 241 case Type::ConstantMatrix: 242 case Type::FunctionProto: 243 case Type::FunctionNoProto: 244 case Type::Enum: 245 case Type::ObjCObjectPointer: 246 case Type::Pipe: 247 case Type::BitInt: 248 return TEK_Scalar; 249 250 // Complexes. 251 case Type::Complex: 252 return TEK_Complex; 253 254 // Arrays, records, and Objective-C objects. 255 case Type::ConstantArray: 256 case Type::IncompleteArray: 257 case Type::VariableArray: 258 case Type::Record: 259 case Type::ObjCObject: 260 case Type::ObjCInterface: 261 return TEK_Aggregate; 262 263 // We operate on atomic values according to their underlying type. 264 case Type::Atomic: 265 type = cast<AtomicType>(type)->getValueType(); 266 continue; 267 } 268 llvm_unreachable("unknown type kind!"); 269 } 270 } 271 272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 273 // For cleanliness, we try to avoid emitting the return block for 274 // simple cases. 275 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 276 277 if (CurBB) { 278 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 279 280 // We have a valid insert point, reuse it if it is empty or there are no 281 // explicit jumps to the return block. 282 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 283 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 284 delete ReturnBlock.getBlock(); 285 ReturnBlock = JumpDest(); 286 } else 287 EmitBlock(ReturnBlock.getBlock()); 288 return llvm::DebugLoc(); 289 } 290 291 // Otherwise, if the return block is the target of a single direct 292 // branch then we can just put the code in that block instead. This 293 // cleans up functions which started with a unified return block. 294 if (ReturnBlock.getBlock()->hasOneUse()) { 295 llvm::BranchInst *BI = 296 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 297 if (BI && BI->isUnconditional() && 298 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 299 // Record/return the DebugLoc of the simple 'return' expression to be used 300 // later by the actual 'ret' instruction. 301 llvm::DebugLoc Loc = BI->getDebugLoc(); 302 Builder.SetInsertPoint(BI->getParent()); 303 BI->eraseFromParent(); 304 delete ReturnBlock.getBlock(); 305 ReturnBlock = JumpDest(); 306 return Loc; 307 } 308 } 309 310 // FIXME: We are at an unreachable point, there is no reason to emit the block 311 // unless it has uses. However, we still need a place to put the debug 312 // region.end for now. 313 314 EmitBlock(ReturnBlock.getBlock()); 315 return llvm::DebugLoc(); 316 } 317 318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 319 if (!BB) return; 320 if (!BB->use_empty()) 321 return CGF.CurFn->getBasicBlockList().push_back(BB); 322 delete BB; 323 } 324 325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 326 assert(BreakContinueStack.empty() && 327 "mismatched push/pop in break/continue stack!"); 328 329 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 330 && NumSimpleReturnExprs == NumReturnExprs 331 && ReturnBlock.getBlock()->use_empty(); 332 // Usually the return expression is evaluated before the cleanup 333 // code. If the function contains only a simple return statement, 334 // such as a constant, the location before the cleanup code becomes 335 // the last useful breakpoint in the function, because the simple 336 // return expression will be evaluated after the cleanup code. To be 337 // safe, set the debug location for cleanup code to the location of 338 // the return statement. Otherwise the cleanup code should be at the 339 // end of the function's lexical scope. 340 // 341 // If there are multiple branches to the return block, the branch 342 // instructions will get the location of the return statements and 343 // all will be fine. 344 if (CGDebugInfo *DI = getDebugInfo()) { 345 if (OnlySimpleReturnStmts) 346 DI->EmitLocation(Builder, LastStopPoint); 347 else 348 DI->EmitLocation(Builder, EndLoc); 349 } 350 351 // Pop any cleanups that might have been associated with the 352 // parameters. Do this in whatever block we're currently in; it's 353 // important to do this before we enter the return block or return 354 // edges will be *really* confused. 355 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 356 bool HasOnlyLifetimeMarkers = 357 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 358 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 359 if (HasCleanups) { 360 // Make sure the line table doesn't jump back into the body for 361 // the ret after it's been at EndLoc. 362 Optional<ApplyDebugLocation> AL; 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, EndLoc); 366 else 367 // We may not have a valid end location. Try to apply it anyway, and 368 // fall back to an artificial location if needed. 369 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 370 } 371 372 PopCleanupBlocks(PrologueCleanupDepth); 373 } 374 375 // Emit function epilog (to return). 376 llvm::DebugLoc Loc = EmitReturnBlock(); 377 378 if (ShouldInstrumentFunction()) { 379 if (CGM.getCodeGenOpts().InstrumentFunctions) 380 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 381 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 382 CurFn->addFnAttr("instrument-function-exit-inlined", 383 "__cyg_profile_func_exit"); 384 } 385 386 if (ShouldSkipSanitizerInstrumentation()) 387 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 388 389 // Emit debug descriptor for function end. 390 if (CGDebugInfo *DI = getDebugInfo()) 391 DI->EmitFunctionEnd(Builder, CurFn); 392 393 // Reset the debug location to that of the simple 'return' expression, if any 394 // rather than that of the end of the function's scope '}'. 395 ApplyDebugLocation AL(*this, Loc); 396 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 397 EmitEndEHSpec(CurCodeDecl); 398 399 assert(EHStack.empty() && 400 "did not remove all scopes from cleanup stack!"); 401 402 // If someone did an indirect goto, emit the indirect goto block at the end of 403 // the function. 404 if (IndirectBranch) { 405 EmitBlock(IndirectBranch->getParent()); 406 Builder.ClearInsertionPoint(); 407 } 408 409 // If some of our locals escaped, insert a call to llvm.localescape in the 410 // entry block. 411 if (!EscapedLocals.empty()) { 412 // Invert the map from local to index into a simple vector. There should be 413 // no holes. 414 SmallVector<llvm::Value *, 4> EscapeArgs; 415 EscapeArgs.resize(EscapedLocals.size()); 416 for (auto &Pair : EscapedLocals) 417 EscapeArgs[Pair.second] = Pair.first; 418 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 419 &CGM.getModule(), llvm::Intrinsic::localescape); 420 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 421 } 422 423 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 424 llvm::Instruction *Ptr = AllocaInsertPt; 425 AllocaInsertPt = nullptr; 426 Ptr->eraseFromParent(); 427 428 // PostAllocaInsertPt, if created, was lazily created when it was required, 429 // remove it now since it was just created for our own convenience. 430 if (PostAllocaInsertPt) { 431 llvm::Instruction *PostPtr = PostAllocaInsertPt; 432 PostAllocaInsertPt = nullptr; 433 PostPtr->eraseFromParent(); 434 } 435 436 // If someone took the address of a label but never did an indirect goto, we 437 // made a zero entry PHI node, which is illegal, zap it now. 438 if (IndirectBranch) { 439 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 440 if (PN->getNumIncomingValues() == 0) { 441 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 442 PN->eraseFromParent(); 443 } 444 } 445 446 EmitIfUsed(*this, EHResumeBlock); 447 EmitIfUsed(*this, TerminateLandingPad); 448 EmitIfUsed(*this, TerminateHandler); 449 EmitIfUsed(*this, UnreachableBlock); 450 451 for (const auto &FuncletAndParent : TerminateFunclets) 452 EmitIfUsed(*this, FuncletAndParent.second); 453 454 if (CGM.getCodeGenOpts().EmitDeclMetadata) 455 EmitDeclMetadata(); 456 457 for (const auto &R : DeferredReplacements) { 458 if (llvm::Value *Old = R.first) { 459 Old->replaceAllUsesWith(R.second); 460 cast<llvm::Instruction>(Old)->eraseFromParent(); 461 } 462 } 463 DeferredReplacements.clear(); 464 465 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 466 // PHIs if the current function is a coroutine. We don't do it for all 467 // functions as it may result in slight increase in numbers of instructions 468 // if compiled with no optimizations. We do it for coroutine as the lifetime 469 // of CleanupDestSlot alloca make correct coroutine frame building very 470 // difficult. 471 if (NormalCleanupDest.isValid() && isCoroutine()) { 472 llvm::DominatorTree DT(*CurFn); 473 llvm::PromoteMemToReg( 474 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 475 NormalCleanupDest = Address::invalid(); 476 } 477 478 // Scan function arguments for vector width. 479 for (llvm::Argument &A : CurFn->args()) 480 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 481 LargestVectorWidth = 482 std::max((uint64_t)LargestVectorWidth, 483 VT->getPrimitiveSizeInBits().getKnownMinSize()); 484 485 // Update vector width based on return type. 486 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 487 LargestVectorWidth = 488 std::max((uint64_t)LargestVectorWidth, 489 VT->getPrimitiveSizeInBits().getKnownMinSize()); 490 491 // Add the required-vector-width attribute. This contains the max width from: 492 // 1. min-vector-width attribute used in the source program. 493 // 2. Any builtins used that have a vector width specified. 494 // 3. Values passed in and out of inline assembly. 495 // 4. Width of vector arguments and return types for this function. 496 // 5. Width of vector aguments and return types for functions called by this 497 // function. 498 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 499 500 // Add vscale_range attribute if appropriate. 501 Optional<std::pair<unsigned, unsigned>> VScaleRange = 502 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 503 if (VScaleRange) { 504 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 505 getLLVMContext(), VScaleRange.getValue().first, 506 VScaleRange.getValue().second)); 507 } 508 509 // If we generated an unreachable return block, delete it now. 510 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 511 Builder.ClearInsertionPoint(); 512 ReturnBlock.getBlock()->eraseFromParent(); 513 } 514 if (ReturnValue.isValid()) { 515 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 516 if (RetAlloca && RetAlloca->use_empty()) { 517 RetAlloca->eraseFromParent(); 518 ReturnValue = Address::invalid(); 519 } 520 } 521 } 522 523 /// ShouldInstrumentFunction - Return true if the current function should be 524 /// instrumented with __cyg_profile_func_* calls 525 bool CodeGenFunction::ShouldInstrumentFunction() { 526 if (!CGM.getCodeGenOpts().InstrumentFunctions && 527 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 528 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 529 return false; 530 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 531 return false; 532 return true; 533 } 534 535 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 536 if (!CurFuncDecl) 537 return false; 538 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 539 } 540 541 /// ShouldXRayInstrument - Return true if the current function should be 542 /// instrumented with XRay nop sleds. 543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 544 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 545 } 546 547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 550 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 551 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 552 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 553 XRayInstrKind::Custom); 554 } 555 556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 557 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 558 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 559 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 560 XRayInstrKind::Typed); 561 } 562 563 llvm::Constant * 564 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 565 llvm::Constant *Addr) { 566 // Addresses stored in prologue data can't require run-time fixups and must 567 // be PC-relative. Run-time fixups are undesirable because they necessitate 568 // writable text segments, which are unsafe. And absolute addresses are 569 // undesirable because they break PIE mode. 570 571 // Add a layer of indirection through a private global. Taking its address 572 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 573 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 574 /*isConstant=*/true, 575 llvm::GlobalValue::PrivateLinkage, Addr); 576 577 // Create a PC-relative address. 578 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 579 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 580 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 581 return (IntPtrTy == Int32Ty) 582 ? PCRelAsInt 583 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 584 } 585 586 llvm::Value * 587 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 588 llvm::Value *EncodedAddr) { 589 // Reconstruct the address of the global. 590 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 591 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 592 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 593 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 594 595 // Load the original pointer through the global. 596 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 597 "decoded_addr"); 598 } 599 600 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 601 llvm::Function *Fn) 602 { 603 if (!FD->hasAttr<OpenCLKernelAttr>()) 604 return; 605 606 llvm::LLVMContext &Context = getLLVMContext(); 607 608 CGM.GenOpenCLArgMetadata(Fn, FD, this); 609 610 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 611 QualType HintQTy = A->getTypeHint(); 612 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 613 bool IsSignedInteger = 614 HintQTy->isSignedIntegerType() || 615 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 616 llvm::Metadata *AttrMDArgs[] = { 617 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 618 CGM.getTypes().ConvertType(A->getTypeHint()))), 619 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 620 llvm::IntegerType::get(Context, 32), 621 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 622 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 623 } 624 625 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 626 llvm::Metadata *AttrMDArgs[] = { 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 629 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 630 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 631 } 632 633 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 636 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 637 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 638 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 639 } 640 641 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 642 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 643 llvm::Metadata *AttrMDArgs[] = { 644 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 645 Fn->setMetadata("intel_reqd_sub_group_size", 646 llvm::MDNode::get(Context, AttrMDArgs)); 647 } 648 } 649 650 /// Determine whether the function F ends with a return stmt. 651 static bool endsWithReturn(const Decl* F) { 652 const Stmt *Body = nullptr; 653 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 654 Body = FD->getBody(); 655 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 656 Body = OMD->getBody(); 657 658 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 659 auto LastStmt = CS->body_rbegin(); 660 if (LastStmt != CS->body_rend()) 661 return isa<ReturnStmt>(*LastStmt); 662 } 663 return false; 664 } 665 666 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 667 if (SanOpts.has(SanitizerKind::Thread)) { 668 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 669 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 670 } 671 } 672 673 /// Check if the return value of this function requires sanitization. 674 bool CodeGenFunction::requiresReturnValueCheck() const { 675 return requiresReturnValueNullabilityCheck() || 676 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 677 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 678 } 679 680 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 681 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 682 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 683 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 684 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 685 return false; 686 687 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 688 return false; 689 690 if (MD->getNumParams() == 2) { 691 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 692 if (!PT || !PT->isVoidPointerType() || 693 !PT->getPointeeType().isConstQualified()) 694 return false; 695 } 696 697 return true; 698 } 699 700 /// Return the UBSan prologue signature for \p FD if one is available. 701 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 702 const FunctionDecl *FD) { 703 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 704 if (!MD->isStatic()) 705 return nullptr; 706 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 707 } 708 709 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 710 llvm::Function *Fn, 711 const CGFunctionInfo &FnInfo, 712 const FunctionArgList &Args, 713 SourceLocation Loc, 714 SourceLocation StartLoc) { 715 assert(!CurFn && 716 "Do not use a CodeGenFunction object for more than one function"); 717 718 const Decl *D = GD.getDecl(); 719 720 DidCallStackSave = false; 721 CurCodeDecl = D; 722 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 723 if (FD && FD->usesSEHTry()) 724 CurSEHParent = FD; 725 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 726 FnRetTy = RetTy; 727 CurFn = Fn; 728 CurFnInfo = &FnInfo; 729 assert(CurFn->isDeclaration() && "Function already has body?"); 730 731 // If this function is ignored for any of the enabled sanitizers, 732 // disable the sanitizer for the function. 733 do { 734 #define SANITIZER(NAME, ID) \ 735 if (SanOpts.empty()) \ 736 break; \ 737 if (SanOpts.has(SanitizerKind::ID)) \ 738 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 739 SanOpts.set(SanitizerKind::ID, false); 740 741 #include "clang/Basic/Sanitizers.def" 742 #undef SANITIZER 743 } while (0); 744 745 if (D) { 746 bool NoSanitizeCoverage = false; 747 748 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 749 // Apply the no_sanitize* attributes to SanOpts. 750 SanitizerMask mask = Attr->getMask(); 751 SanOpts.Mask &= ~mask; 752 if (mask & SanitizerKind::Address) 753 SanOpts.set(SanitizerKind::KernelAddress, false); 754 if (mask & SanitizerKind::KernelAddress) 755 SanOpts.set(SanitizerKind::Address, false); 756 if (mask & SanitizerKind::HWAddress) 757 SanOpts.set(SanitizerKind::KernelHWAddress, false); 758 if (mask & SanitizerKind::KernelHWAddress) 759 SanOpts.set(SanitizerKind::HWAddress, false); 760 761 // SanitizeCoverage is not handled by SanOpts. 762 if (Attr->hasCoverage()) 763 NoSanitizeCoverage = true; 764 } 765 766 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 767 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 768 } 769 770 // Apply sanitizer attributes to the function. 771 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 772 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 773 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 774 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 775 if (SanOpts.has(SanitizerKind::MemTag)) 776 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 777 if (SanOpts.has(SanitizerKind::Thread)) 778 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 779 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 780 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 781 if (SanOpts.has(SanitizerKind::SafeStack)) 782 Fn->addFnAttr(llvm::Attribute::SafeStack); 783 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 784 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 785 786 // Apply fuzzing attribute to the function. 787 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 788 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 789 790 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 791 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 792 if (SanOpts.has(SanitizerKind::Thread)) { 793 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 794 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 795 if (OMD->getMethodFamily() == OMF_dealloc || 796 OMD->getMethodFamily() == OMF_initialize || 797 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 798 markAsIgnoreThreadCheckingAtRuntime(Fn); 799 } 800 } 801 } 802 803 // Ignore unrelated casts in STL allocate() since the allocator must cast 804 // from void* to T* before object initialization completes. Don't match on the 805 // namespace because not all allocators are in std:: 806 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 807 if (matchesStlAllocatorFn(D, getContext())) 808 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 809 } 810 811 // Ignore null checks in coroutine functions since the coroutines passes 812 // are not aware of how to move the extra UBSan instructions across the split 813 // coroutine boundaries. 814 if (D && SanOpts.has(SanitizerKind::Null)) 815 if (FD && FD->getBody() && 816 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 817 SanOpts.Mask &= ~SanitizerKind::Null; 818 819 // Apply xray attributes to the function (as a string, for now) 820 bool AlwaysXRayAttr = false; 821 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 822 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 823 XRayInstrKind::FunctionEntry) || 824 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 825 XRayInstrKind::FunctionExit)) { 826 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 827 Fn->addFnAttr("function-instrument", "xray-always"); 828 AlwaysXRayAttr = true; 829 } 830 if (XRayAttr->neverXRayInstrument()) 831 Fn->addFnAttr("function-instrument", "xray-never"); 832 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 833 if (ShouldXRayInstrumentFunction()) 834 Fn->addFnAttr("xray-log-args", 835 llvm::utostr(LogArgs->getArgumentCount())); 836 } 837 } else { 838 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 839 Fn->addFnAttr( 840 "xray-instruction-threshold", 841 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 842 } 843 844 if (ShouldXRayInstrumentFunction()) { 845 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 846 Fn->addFnAttr("xray-ignore-loops"); 847 848 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 849 XRayInstrKind::FunctionExit)) 850 Fn->addFnAttr("xray-skip-exit"); 851 852 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 853 XRayInstrKind::FunctionEntry)) 854 Fn->addFnAttr("xray-skip-entry"); 855 856 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 857 if (FuncGroups > 1) { 858 auto FuncName = llvm::makeArrayRef<uint8_t>( 859 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 860 auto Group = crc32(FuncName) % FuncGroups; 861 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 862 !AlwaysXRayAttr) 863 Fn->addFnAttr("function-instrument", "xray-never"); 864 } 865 } 866 867 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 868 if (CGM.isProfileInstrExcluded(Fn, Loc)) 869 Fn->addFnAttr(llvm::Attribute::NoProfile); 870 871 unsigned Count, Offset; 872 if (const auto *Attr = 873 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 874 Count = Attr->getCount(); 875 Offset = Attr->getOffset(); 876 } else { 877 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 878 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 879 } 880 if (Count && Offset <= Count) { 881 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 882 if (Offset) 883 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 884 } 885 886 // Add no-jump-tables value. 887 if (CGM.getCodeGenOpts().NoUseJumpTables) 888 Fn->addFnAttr("no-jump-tables", "true"); 889 890 // Add no-inline-line-tables value. 891 if (CGM.getCodeGenOpts().NoInlineLineTables) 892 Fn->addFnAttr("no-inline-line-tables"); 893 894 // Add profile-sample-accurate value. 895 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 896 Fn->addFnAttr("profile-sample-accurate"); 897 898 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 899 Fn->addFnAttr("use-sample-profile"); 900 901 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 902 Fn->addFnAttr("cfi-canonical-jump-table"); 903 904 if (D && D->hasAttr<NoProfileFunctionAttr>()) 905 Fn->addFnAttr(llvm::Attribute::NoProfile); 906 907 if (FD && getLangOpts().OpenCL) { 908 // Add metadata for a kernel function. 909 EmitOpenCLKernelMetadata(FD, Fn); 910 } 911 912 // If we are checking function types, emit a function type signature as 913 // prologue data. 914 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 915 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 916 // Remove any (C++17) exception specifications, to allow calling e.g. a 917 // noexcept function through a non-noexcept pointer. 918 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 919 FD->getType(), EST_None); 920 llvm::Constant *FTRTTIConst = 921 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 922 llvm::Constant *FTRTTIConstEncoded = 923 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 924 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 925 llvm::Constant *PrologueStructConst = 926 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 927 Fn->setPrologueData(PrologueStructConst); 928 } 929 } 930 931 // If we're checking nullability, we need to know whether we can check the 932 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 933 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 934 auto Nullability = FnRetTy->getNullability(getContext()); 935 if (Nullability && *Nullability == NullabilityKind::NonNull) { 936 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 937 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 938 RetValNullabilityPrecondition = 939 llvm::ConstantInt::getTrue(getLLVMContext()); 940 } 941 } 942 943 // If we're in C++ mode and the function name is "main", it is guaranteed 944 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 945 // used within a program"). 946 // 947 // OpenCL C 2.0 v2.2-11 s6.9.i: 948 // Recursion is not supported. 949 // 950 // SYCL v1.2.1 s3.10: 951 // kernels cannot include RTTI information, exception classes, 952 // recursive code, virtual functions or make use of C++ libraries that 953 // are not compiled for the device. 954 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 955 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 956 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 957 Fn->addFnAttr(llvm::Attribute::NoRecurse); 958 959 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 960 llvm::fp::ExceptionBehavior FPExceptionBehavior = 961 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 962 Builder.setDefaultConstrainedRounding(RM); 963 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 964 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 965 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 966 RM != llvm::RoundingMode::NearestTiesToEven))) { 967 Builder.setIsFPConstrained(true); 968 Fn->addFnAttr(llvm::Attribute::StrictFP); 969 } 970 971 // If a custom alignment is used, force realigning to this alignment on 972 // any main function which certainly will need it. 973 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 974 CGM.getCodeGenOpts().StackAlignment)) 975 Fn->addFnAttr("stackrealign"); 976 977 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 978 979 // Create a marker to make it easy to insert allocas into the entryblock 980 // later. Don't create this with the builder, because we don't want it 981 // folded. 982 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 983 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 984 985 ReturnBlock = getJumpDestInCurrentScope("return"); 986 987 Builder.SetInsertPoint(EntryBB); 988 989 // If we're checking the return value, allocate space for a pointer to a 990 // precise source location of the checked return statement. 991 if (requiresReturnValueCheck()) { 992 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 993 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 994 ReturnLocation); 995 } 996 997 // Emit subprogram debug descriptor. 998 if (CGDebugInfo *DI = getDebugInfo()) { 999 // Reconstruct the type from the argument list so that implicit parameters, 1000 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1001 // convention. 1002 DI->emitFunctionStart(GD, Loc, StartLoc, 1003 DI->getFunctionType(FD, RetTy, Args), CurFn, 1004 CurFuncIsThunk); 1005 } 1006 1007 if (ShouldInstrumentFunction()) { 1008 if (CGM.getCodeGenOpts().InstrumentFunctions) 1009 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1010 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1011 CurFn->addFnAttr("instrument-function-entry-inlined", 1012 "__cyg_profile_func_enter"); 1013 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1014 CurFn->addFnAttr("instrument-function-entry-inlined", 1015 "__cyg_profile_func_enter_bare"); 1016 } 1017 1018 // Since emitting the mcount call here impacts optimizations such as function 1019 // inlining, we just add an attribute to insert a mcount call in backend. 1020 // The attribute "counting-function" is set to mcount function name which is 1021 // architecture dependent. 1022 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1023 // Calls to fentry/mcount should not be generated if function has 1024 // the no_instrument_function attribute. 1025 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1026 if (CGM.getCodeGenOpts().CallFEntry) 1027 Fn->addFnAttr("fentry-call", "true"); 1028 else { 1029 Fn->addFnAttr("instrument-function-entry-inlined", 1030 getTarget().getMCountName()); 1031 } 1032 if (CGM.getCodeGenOpts().MNopMCount) { 1033 if (!CGM.getCodeGenOpts().CallFEntry) 1034 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1035 << "-mnop-mcount" << "-mfentry"; 1036 Fn->addFnAttr("mnop-mcount"); 1037 } 1038 1039 if (CGM.getCodeGenOpts().RecordMCount) { 1040 if (!CGM.getCodeGenOpts().CallFEntry) 1041 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1042 << "-mrecord-mcount" << "-mfentry"; 1043 Fn->addFnAttr("mrecord-mcount"); 1044 } 1045 } 1046 } 1047 1048 if (CGM.getCodeGenOpts().PackedStack) { 1049 if (getContext().getTargetInfo().getTriple().getArch() != 1050 llvm::Triple::systemz) 1051 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1052 << "-mpacked-stack"; 1053 Fn->addFnAttr("packed-stack"); 1054 } 1055 1056 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1057 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1058 Fn->addFnAttr("warn-stack-size", 1059 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1060 1061 if (RetTy->isVoidType()) { 1062 // Void type; nothing to return. 1063 ReturnValue = Address::invalid(); 1064 1065 // Count the implicit return. 1066 if (!endsWithReturn(D)) 1067 ++NumReturnExprs; 1068 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1069 // Indirect return; emit returned value directly into sret slot. 1070 // This reduces code size, and affects correctness in C++. 1071 auto AI = CurFn->arg_begin(); 1072 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1073 ++AI; 1074 ReturnValue = Address(&*AI, ConvertType(RetTy), 1075 CurFnInfo->getReturnInfo().getIndirectAlign()); 1076 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1077 ReturnValuePointer = 1078 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1079 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1080 ReturnValue.getPointer(), Int8PtrTy), 1081 ReturnValuePointer); 1082 } 1083 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1084 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1085 // Load the sret pointer from the argument struct and return into that. 1086 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1087 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1088 --EI; 1089 llvm::Value *Addr = Builder.CreateStructGEP( 1090 EI->getType()->getPointerElementType(), &*EI, Idx); 1091 llvm::Type *Ty = 1092 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1093 ReturnValuePointer = Address(Addr, getPointerAlign()); 1094 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1095 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1096 } else { 1097 ReturnValue = CreateIRTemp(RetTy, "retval"); 1098 1099 // Tell the epilog emitter to autorelease the result. We do this 1100 // now so that various specialized functions can suppress it 1101 // during their IR-generation. 1102 if (getLangOpts().ObjCAutoRefCount && 1103 !CurFnInfo->isReturnsRetained() && 1104 RetTy->isObjCRetainableType()) 1105 AutoreleaseResult = true; 1106 } 1107 1108 EmitStartEHSpec(CurCodeDecl); 1109 1110 PrologueCleanupDepth = EHStack.stable_begin(); 1111 1112 // Emit OpenMP specific initialization of the device functions. 1113 if (getLangOpts().OpenMP && CurCodeDecl) 1114 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1115 1116 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1117 1118 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1119 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1120 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1121 if (MD->getParent()->isLambda() && 1122 MD->getOverloadedOperator() == OO_Call) { 1123 // We're in a lambda; figure out the captures. 1124 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1125 LambdaThisCaptureField); 1126 if (LambdaThisCaptureField) { 1127 // If the lambda captures the object referred to by '*this' - either by 1128 // value or by reference, make sure CXXThisValue points to the correct 1129 // object. 1130 1131 // Get the lvalue for the field (which is a copy of the enclosing object 1132 // or contains the address of the enclosing object). 1133 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1134 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1135 // If the enclosing object was captured by value, just use its address. 1136 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1137 } else { 1138 // Load the lvalue pointed to by the field, since '*this' was captured 1139 // by reference. 1140 CXXThisValue = 1141 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1142 } 1143 } 1144 for (auto *FD : MD->getParent()->fields()) { 1145 if (FD->hasCapturedVLAType()) { 1146 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1147 SourceLocation()).getScalarVal(); 1148 auto VAT = FD->getCapturedVLAType(); 1149 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1150 } 1151 } 1152 } else { 1153 // Not in a lambda; just use 'this' from the method. 1154 // FIXME: Should we generate a new load for each use of 'this'? The 1155 // fast register allocator would be happier... 1156 CXXThisValue = CXXABIThisValue; 1157 } 1158 1159 // Check the 'this' pointer once per function, if it's available. 1160 if (CXXABIThisValue) { 1161 SanitizerSet SkippedChecks; 1162 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1163 QualType ThisTy = MD->getThisType(); 1164 1165 // If this is the call operator of a lambda with no capture-default, it 1166 // may have a static invoker function, which may call this operator with 1167 // a null 'this' pointer. 1168 if (isLambdaCallOperator(MD) && 1169 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1170 SkippedChecks.set(SanitizerKind::Null, true); 1171 1172 EmitTypeCheck( 1173 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1174 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1175 } 1176 } 1177 1178 // If any of the arguments have a variably modified type, make sure to 1179 // emit the type size. 1180 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1181 i != e; ++i) { 1182 const VarDecl *VD = *i; 1183 1184 // Dig out the type as written from ParmVarDecls; it's unclear whether 1185 // the standard (C99 6.9.1p10) requires this, but we're following the 1186 // precedent set by gcc. 1187 QualType Ty; 1188 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1189 Ty = PVD->getOriginalType(); 1190 else 1191 Ty = VD->getType(); 1192 1193 if (Ty->isVariablyModifiedType()) 1194 EmitVariablyModifiedType(Ty); 1195 } 1196 // Emit a location at the end of the prologue. 1197 if (CGDebugInfo *DI = getDebugInfo()) 1198 DI->EmitLocation(Builder, StartLoc); 1199 1200 // TODO: Do we need to handle this in two places like we do with 1201 // target-features/target-cpu? 1202 if (CurFuncDecl) 1203 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1204 LargestVectorWidth = VecWidth->getVectorWidth(); 1205 } 1206 1207 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1208 incrementProfileCounter(Body); 1209 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1210 EmitCompoundStmtWithoutScope(*S); 1211 else 1212 EmitStmt(Body); 1213 1214 // This is checked after emitting the function body so we know if there 1215 // are any permitted infinite loops. 1216 if (checkIfFunctionMustProgress()) 1217 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1218 } 1219 1220 /// When instrumenting to collect profile data, the counts for some blocks 1221 /// such as switch cases need to not include the fall-through counts, so 1222 /// emit a branch around the instrumentation code. When not instrumenting, 1223 /// this just calls EmitBlock(). 1224 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1225 const Stmt *S) { 1226 llvm::BasicBlock *SkipCountBB = nullptr; 1227 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1228 // When instrumenting for profiling, the fallthrough to certain 1229 // statements needs to skip over the instrumentation code so that we 1230 // get an accurate count. 1231 SkipCountBB = createBasicBlock("skipcount"); 1232 EmitBranch(SkipCountBB); 1233 } 1234 EmitBlock(BB); 1235 uint64_t CurrentCount = getCurrentProfileCount(); 1236 incrementProfileCounter(S); 1237 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1238 if (SkipCountBB) 1239 EmitBlock(SkipCountBB); 1240 } 1241 1242 /// Tries to mark the given function nounwind based on the 1243 /// non-existence of any throwing calls within it. We believe this is 1244 /// lightweight enough to do at -O0. 1245 static void TryMarkNoThrow(llvm::Function *F) { 1246 // LLVM treats 'nounwind' on a function as part of the type, so we 1247 // can't do this on functions that can be overwritten. 1248 if (F->isInterposable()) return; 1249 1250 for (llvm::BasicBlock &BB : *F) 1251 for (llvm::Instruction &I : BB) 1252 if (I.mayThrow()) 1253 return; 1254 1255 F->setDoesNotThrow(); 1256 } 1257 1258 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1259 FunctionArgList &Args) { 1260 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1261 QualType ResTy = FD->getReturnType(); 1262 1263 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1264 if (MD && MD->isInstance()) { 1265 if (CGM.getCXXABI().HasThisReturn(GD)) 1266 ResTy = MD->getThisType(); 1267 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1268 ResTy = CGM.getContext().VoidPtrTy; 1269 CGM.getCXXABI().buildThisParam(*this, Args); 1270 } 1271 1272 // The base version of an inheriting constructor whose constructed base is a 1273 // virtual base is not passed any arguments (because it doesn't actually call 1274 // the inherited constructor). 1275 bool PassedParams = true; 1276 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1277 if (auto Inherited = CD->getInheritedConstructor()) 1278 PassedParams = 1279 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1280 1281 if (PassedParams) { 1282 for (auto *Param : FD->parameters()) { 1283 Args.push_back(Param); 1284 if (!Param->hasAttr<PassObjectSizeAttr>()) 1285 continue; 1286 1287 auto *Implicit = ImplicitParamDecl::Create( 1288 getContext(), Param->getDeclContext(), Param->getLocation(), 1289 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1290 SizeArguments[Param] = Implicit; 1291 Args.push_back(Implicit); 1292 } 1293 } 1294 1295 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1296 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1297 1298 return ResTy; 1299 } 1300 1301 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1302 const CGFunctionInfo &FnInfo) { 1303 assert(Fn && "generating code for null Function"); 1304 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1305 CurGD = GD; 1306 1307 FunctionArgList Args; 1308 QualType ResTy = BuildFunctionArgList(GD, Args); 1309 1310 if (FD->isInlineBuiltinDeclaration()) { 1311 // When generating code for a builtin with an inline declaration, use a 1312 // mangled name to hold the actual body, while keeping an external 1313 // definition in case the function pointer is referenced somewhere. 1314 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1315 llvm::Module *M = Fn->getParent(); 1316 llvm::Function *Clone = M->getFunction(FDInlineName); 1317 if (!Clone) { 1318 Clone = llvm::Function::Create(Fn->getFunctionType(), 1319 llvm::GlobalValue::InternalLinkage, 1320 Fn->getAddressSpace(), FDInlineName, M); 1321 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1322 } 1323 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1324 Fn = Clone; 1325 } else { 1326 // Detect the unusual situation where an inline version is shadowed by a 1327 // non-inline version. In that case we should pick the external one 1328 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1329 // to detect that situation before we reach codegen, so do some late 1330 // replacement. 1331 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1332 PD = PD->getPreviousDecl()) { 1333 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1334 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1335 llvm::Module *M = Fn->getParent(); 1336 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1337 Clone->replaceAllUsesWith(Fn); 1338 Clone->eraseFromParent(); 1339 } 1340 break; 1341 } 1342 } 1343 } 1344 1345 // Check if we should generate debug info for this function. 1346 if (FD->hasAttr<NoDebugAttr>()) { 1347 // Clear non-distinct debug info that was possibly attached to the function 1348 // due to an earlier declaration without the nodebug attribute 1349 Fn->setSubprogram(nullptr); 1350 // Disable debug info indefinitely for this function 1351 DebugInfo = nullptr; 1352 } 1353 1354 // The function might not have a body if we're generating thunks for a 1355 // function declaration. 1356 SourceRange BodyRange; 1357 if (Stmt *Body = FD->getBody()) 1358 BodyRange = Body->getSourceRange(); 1359 else 1360 BodyRange = FD->getLocation(); 1361 CurEHLocation = BodyRange.getEnd(); 1362 1363 // Use the location of the start of the function to determine where 1364 // the function definition is located. By default use the location 1365 // of the declaration as the location for the subprogram. A function 1366 // may lack a declaration in the source code if it is created by code 1367 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1368 SourceLocation Loc = FD->getLocation(); 1369 1370 // If this is a function specialization then use the pattern body 1371 // as the location for the function. 1372 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1373 if (SpecDecl->hasBody(SpecDecl)) 1374 Loc = SpecDecl->getLocation(); 1375 1376 Stmt *Body = FD->getBody(); 1377 1378 if (Body) { 1379 // Coroutines always emit lifetime markers. 1380 if (isa<CoroutineBodyStmt>(Body)) 1381 ShouldEmitLifetimeMarkers = true; 1382 1383 // Initialize helper which will detect jumps which can cause invalid 1384 // lifetime markers. 1385 if (ShouldEmitLifetimeMarkers) 1386 Bypasses.Init(Body); 1387 } 1388 1389 // Emit the standard function prologue. 1390 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1391 1392 // Save parameters for coroutine function. 1393 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1394 for (const auto *ParamDecl : FD->parameters()) 1395 FnArgs.push_back(ParamDecl); 1396 1397 // Generate the body of the function. 1398 PGO.assignRegionCounters(GD, CurFn); 1399 if (isa<CXXDestructorDecl>(FD)) 1400 EmitDestructorBody(Args); 1401 else if (isa<CXXConstructorDecl>(FD)) 1402 EmitConstructorBody(Args); 1403 else if (getLangOpts().CUDA && 1404 !getLangOpts().CUDAIsDevice && 1405 FD->hasAttr<CUDAGlobalAttr>()) 1406 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1407 else if (isa<CXXMethodDecl>(FD) && 1408 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1409 // The lambda static invoker function is special, because it forwards or 1410 // clones the body of the function call operator (but is actually static). 1411 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1412 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1413 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1414 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1415 // Implicit copy-assignment gets the same special treatment as implicit 1416 // copy-constructors. 1417 emitImplicitAssignmentOperatorBody(Args); 1418 } else if (Body) { 1419 EmitFunctionBody(Body); 1420 } else 1421 llvm_unreachable("no definition for emitted function"); 1422 1423 // C++11 [stmt.return]p2: 1424 // Flowing off the end of a function [...] results in undefined behavior in 1425 // a value-returning function. 1426 // C11 6.9.1p12: 1427 // If the '}' that terminates a function is reached, and the value of the 1428 // function call is used by the caller, the behavior is undefined. 1429 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1430 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1431 bool ShouldEmitUnreachable = 1432 CGM.getCodeGenOpts().StrictReturn || 1433 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1434 if (SanOpts.has(SanitizerKind::Return)) { 1435 SanitizerScope SanScope(this); 1436 llvm::Value *IsFalse = Builder.getFalse(); 1437 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1438 SanitizerHandler::MissingReturn, 1439 EmitCheckSourceLocation(FD->getLocation()), None); 1440 } else if (ShouldEmitUnreachable) { 1441 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1442 EmitTrapCall(llvm::Intrinsic::trap); 1443 } 1444 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1445 Builder.CreateUnreachable(); 1446 Builder.ClearInsertionPoint(); 1447 } 1448 } 1449 1450 // Emit the standard function epilogue. 1451 FinishFunction(BodyRange.getEnd()); 1452 1453 // If we haven't marked the function nothrow through other means, do 1454 // a quick pass now to see if we can. 1455 if (!CurFn->doesNotThrow()) 1456 TryMarkNoThrow(CurFn); 1457 } 1458 1459 /// ContainsLabel - Return true if the statement contains a label in it. If 1460 /// this statement is not executed normally, it not containing a label means 1461 /// that we can just remove the code. 1462 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1463 // Null statement, not a label! 1464 if (!S) return false; 1465 1466 // If this is a label, we have to emit the code, consider something like: 1467 // if (0) { ... foo: bar(); } goto foo; 1468 // 1469 // TODO: If anyone cared, we could track __label__'s, since we know that you 1470 // can't jump to one from outside their declared region. 1471 if (isa<LabelStmt>(S)) 1472 return true; 1473 1474 // If this is a case/default statement, and we haven't seen a switch, we have 1475 // to emit the code. 1476 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1477 return true; 1478 1479 // If this is a switch statement, we want to ignore cases below it. 1480 if (isa<SwitchStmt>(S)) 1481 IgnoreCaseStmts = true; 1482 1483 // Scan subexpressions for verboten labels. 1484 for (const Stmt *SubStmt : S->children()) 1485 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1486 return true; 1487 1488 return false; 1489 } 1490 1491 /// containsBreak - Return true if the statement contains a break out of it. 1492 /// If the statement (recursively) contains a switch or loop with a break 1493 /// inside of it, this is fine. 1494 bool CodeGenFunction::containsBreak(const Stmt *S) { 1495 // Null statement, not a label! 1496 if (!S) return false; 1497 1498 // If this is a switch or loop that defines its own break scope, then we can 1499 // include it and anything inside of it. 1500 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1501 isa<ForStmt>(S)) 1502 return false; 1503 1504 if (isa<BreakStmt>(S)) 1505 return true; 1506 1507 // Scan subexpressions for verboten breaks. 1508 for (const Stmt *SubStmt : S->children()) 1509 if (containsBreak(SubStmt)) 1510 return true; 1511 1512 return false; 1513 } 1514 1515 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1516 if (!S) return false; 1517 1518 // Some statement kinds add a scope and thus never add a decl to the current 1519 // scope. Note, this list is longer than the list of statements that might 1520 // have an unscoped decl nested within them, but this way is conservatively 1521 // correct even if more statement kinds are added. 1522 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1523 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1524 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1525 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1526 return false; 1527 1528 if (isa<DeclStmt>(S)) 1529 return true; 1530 1531 for (const Stmt *SubStmt : S->children()) 1532 if (mightAddDeclToScope(SubStmt)) 1533 return true; 1534 1535 return false; 1536 } 1537 1538 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1539 /// to a constant, or if it does but contains a label, return false. If it 1540 /// constant folds return true and set the boolean result in Result. 1541 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1542 bool &ResultBool, 1543 bool AllowLabels) { 1544 llvm::APSInt ResultInt; 1545 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1546 return false; 1547 1548 ResultBool = ResultInt.getBoolValue(); 1549 return true; 1550 } 1551 1552 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1553 /// to a constant, or if it does but contains a label, return false. If it 1554 /// constant folds return true and set the folded value. 1555 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1556 llvm::APSInt &ResultInt, 1557 bool AllowLabels) { 1558 // FIXME: Rename and handle conversion of other evaluatable things 1559 // to bool. 1560 Expr::EvalResult Result; 1561 if (!Cond->EvaluateAsInt(Result, getContext())) 1562 return false; // Not foldable, not integer or not fully evaluatable. 1563 1564 llvm::APSInt Int = Result.Val.getInt(); 1565 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1566 return false; // Contains a label. 1567 1568 ResultInt = Int; 1569 return true; 1570 } 1571 1572 /// Determine whether the given condition is an instrumentable condition 1573 /// (i.e. no "&&" or "||"). 1574 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1575 // Bypass simplistic logical-NOT operator before determining whether the 1576 // condition contains any other logical operator. 1577 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1578 if (UnOp->getOpcode() == UO_LNot) 1579 C = UnOp->getSubExpr(); 1580 1581 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1582 return (!BOp || !BOp->isLogicalOp()); 1583 } 1584 1585 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1586 /// increments a profile counter based on the semantics of the given logical 1587 /// operator opcode. This is used to instrument branch condition coverage for 1588 /// logical operators. 1589 void CodeGenFunction::EmitBranchToCounterBlock( 1590 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1591 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1592 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1593 // If not instrumenting, just emit a branch. 1594 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1595 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1596 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1597 1598 llvm::BasicBlock *ThenBlock = NULL; 1599 llvm::BasicBlock *ElseBlock = NULL; 1600 llvm::BasicBlock *NextBlock = NULL; 1601 1602 // Create the block we'll use to increment the appropriate counter. 1603 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1604 1605 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1606 // means we need to evaluate the condition and increment the counter on TRUE: 1607 // 1608 // if (Cond) 1609 // goto CounterIncrBlock; 1610 // else 1611 // goto FalseBlock; 1612 // 1613 // CounterIncrBlock: 1614 // Counter++; 1615 // goto TrueBlock; 1616 1617 if (LOp == BO_LAnd) { 1618 ThenBlock = CounterIncrBlock; 1619 ElseBlock = FalseBlock; 1620 NextBlock = TrueBlock; 1621 } 1622 1623 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1624 // we need to evaluate the condition and increment the counter on FALSE: 1625 // 1626 // if (Cond) 1627 // goto TrueBlock; 1628 // else 1629 // goto CounterIncrBlock; 1630 // 1631 // CounterIncrBlock: 1632 // Counter++; 1633 // goto FalseBlock; 1634 1635 else if (LOp == BO_LOr) { 1636 ThenBlock = TrueBlock; 1637 ElseBlock = CounterIncrBlock; 1638 NextBlock = FalseBlock; 1639 } else { 1640 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1641 } 1642 1643 // Emit Branch based on condition. 1644 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1645 1646 // Emit the block containing the counter increment(s). 1647 EmitBlock(CounterIncrBlock); 1648 1649 // Increment corresponding counter; if index not provided, use Cond as index. 1650 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1651 1652 // Go to the next block. 1653 EmitBranch(NextBlock); 1654 } 1655 1656 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1657 /// statement) to the specified blocks. Based on the condition, this might try 1658 /// to simplify the codegen of the conditional based on the branch. 1659 /// \param LH The value of the likelihood attribute on the True branch. 1660 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1661 llvm::BasicBlock *TrueBlock, 1662 llvm::BasicBlock *FalseBlock, 1663 uint64_t TrueCount, 1664 Stmt::Likelihood LH) { 1665 Cond = Cond->IgnoreParens(); 1666 1667 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1668 1669 // Handle X && Y in a condition. 1670 if (CondBOp->getOpcode() == BO_LAnd) { 1671 // If we have "1 && X", simplify the code. "0 && X" would have constant 1672 // folded if the case was simple enough. 1673 bool ConstantBool = false; 1674 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1675 ConstantBool) { 1676 // br(1 && X) -> br(X). 1677 incrementProfileCounter(CondBOp); 1678 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1679 FalseBlock, TrueCount, LH); 1680 } 1681 1682 // If we have "X && 1", simplify the code to use an uncond branch. 1683 // "X && 0" would have been constant folded to 0. 1684 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1685 ConstantBool) { 1686 // br(X && 1) -> br(X). 1687 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1688 FalseBlock, TrueCount, LH, CondBOp); 1689 } 1690 1691 // Emit the LHS as a conditional. If the LHS conditional is false, we 1692 // want to jump to the FalseBlock. 1693 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1694 // The counter tells us how often we evaluate RHS, and all of TrueCount 1695 // can be propagated to that branch. 1696 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1697 1698 ConditionalEvaluation eval(*this); 1699 { 1700 ApplyDebugLocation DL(*this, Cond); 1701 // Propagate the likelihood attribute like __builtin_expect 1702 // __builtin_expect(X && Y, 1) -> X and Y are likely 1703 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1704 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1705 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1706 EmitBlock(LHSTrue); 1707 } 1708 1709 incrementProfileCounter(CondBOp); 1710 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1711 1712 // Any temporaries created here are conditional. 1713 eval.begin(*this); 1714 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1715 FalseBlock, TrueCount, LH); 1716 eval.end(*this); 1717 1718 return; 1719 } 1720 1721 if (CondBOp->getOpcode() == BO_LOr) { 1722 // If we have "0 || X", simplify the code. "1 || X" would have constant 1723 // folded if the case was simple enough. 1724 bool ConstantBool = false; 1725 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1726 !ConstantBool) { 1727 // br(0 || X) -> br(X). 1728 incrementProfileCounter(CondBOp); 1729 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1730 FalseBlock, TrueCount, LH); 1731 } 1732 1733 // If we have "X || 0", simplify the code to use an uncond branch. 1734 // "X || 1" would have been constant folded to 1. 1735 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1736 !ConstantBool) { 1737 // br(X || 0) -> br(X). 1738 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1739 FalseBlock, TrueCount, LH, CondBOp); 1740 } 1741 1742 // Emit the LHS as a conditional. If the LHS conditional is true, we 1743 // want to jump to the TrueBlock. 1744 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1745 // We have the count for entry to the RHS and for the whole expression 1746 // being true, so we can divy up True count between the short circuit and 1747 // the RHS. 1748 uint64_t LHSCount = 1749 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1750 uint64_t RHSCount = TrueCount - LHSCount; 1751 1752 ConditionalEvaluation eval(*this); 1753 { 1754 // Propagate the likelihood attribute like __builtin_expect 1755 // __builtin_expect(X || Y, 1) -> only Y is likely 1756 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1757 ApplyDebugLocation DL(*this, Cond); 1758 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1759 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1760 EmitBlock(LHSFalse); 1761 } 1762 1763 incrementProfileCounter(CondBOp); 1764 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1765 1766 // Any temporaries created here are conditional. 1767 eval.begin(*this); 1768 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1769 RHSCount, LH); 1770 1771 eval.end(*this); 1772 1773 return; 1774 } 1775 } 1776 1777 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1778 // br(!x, t, f) -> br(x, f, t) 1779 if (CondUOp->getOpcode() == UO_LNot) { 1780 // Negate the count. 1781 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1782 // The values of the enum are chosen to make this negation possible. 1783 LH = static_cast<Stmt::Likelihood>(-LH); 1784 // Negate the condition and swap the destination blocks. 1785 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1786 FalseCount, LH); 1787 } 1788 } 1789 1790 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1791 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1792 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1793 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1794 1795 // The ConditionalOperator itself has no likelihood information for its 1796 // true and false branches. This matches the behavior of __builtin_expect. 1797 ConditionalEvaluation cond(*this); 1798 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1799 getProfileCount(CondOp), Stmt::LH_None); 1800 1801 // When computing PGO branch weights, we only know the overall count for 1802 // the true block. This code is essentially doing tail duplication of the 1803 // naive code-gen, introducing new edges for which counts are not 1804 // available. Divide the counts proportionally between the LHS and RHS of 1805 // the conditional operator. 1806 uint64_t LHSScaledTrueCount = 0; 1807 if (TrueCount) { 1808 double LHSRatio = 1809 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1810 LHSScaledTrueCount = TrueCount * LHSRatio; 1811 } 1812 1813 cond.begin(*this); 1814 EmitBlock(LHSBlock); 1815 incrementProfileCounter(CondOp); 1816 { 1817 ApplyDebugLocation DL(*this, Cond); 1818 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1819 LHSScaledTrueCount, LH); 1820 } 1821 cond.end(*this); 1822 1823 cond.begin(*this); 1824 EmitBlock(RHSBlock); 1825 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1826 TrueCount - LHSScaledTrueCount, LH); 1827 cond.end(*this); 1828 1829 return; 1830 } 1831 1832 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1833 // Conditional operator handling can give us a throw expression as a 1834 // condition for a case like: 1835 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1836 // Fold this to: 1837 // br(c, throw x, br(y, t, f)) 1838 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1839 return; 1840 } 1841 1842 // Emit the code with the fully general case. 1843 llvm::Value *CondV; 1844 { 1845 ApplyDebugLocation DL(*this, Cond); 1846 CondV = EvaluateExprAsBool(Cond); 1847 } 1848 1849 llvm::MDNode *Weights = nullptr; 1850 llvm::MDNode *Unpredictable = nullptr; 1851 1852 // If the branch has a condition wrapped by __builtin_unpredictable, 1853 // create metadata that specifies that the branch is unpredictable. 1854 // Don't bother if not optimizing because that metadata would not be used. 1855 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1856 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1857 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1858 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1859 llvm::MDBuilder MDHelper(getLLVMContext()); 1860 Unpredictable = MDHelper.createUnpredictable(); 1861 } 1862 } 1863 1864 // If there is a Likelihood knowledge for the cond, lower it. 1865 // Note that if not optimizing this won't emit anything. 1866 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1867 if (CondV != NewCondV) 1868 CondV = NewCondV; 1869 else { 1870 // Otherwise, lower profile counts. Note that we do this even at -O0. 1871 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1872 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1873 } 1874 1875 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1876 } 1877 1878 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1879 /// specified stmt yet. 1880 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1881 CGM.ErrorUnsupported(S, Type); 1882 } 1883 1884 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1885 /// variable-length array whose elements have a non-zero bit-pattern. 1886 /// 1887 /// \param baseType the inner-most element type of the array 1888 /// \param src - a char* pointing to the bit-pattern for a single 1889 /// base element of the array 1890 /// \param sizeInChars - the total size of the VLA, in chars 1891 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1892 Address dest, Address src, 1893 llvm::Value *sizeInChars) { 1894 CGBuilderTy &Builder = CGF.Builder; 1895 1896 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1897 llvm::Value *baseSizeInChars 1898 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1899 1900 Address begin = 1901 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1902 llvm::Value *end = Builder.CreateInBoundsGEP( 1903 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1904 1905 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1906 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1907 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1908 1909 // Make a loop over the VLA. C99 guarantees that the VLA element 1910 // count must be nonzero. 1911 CGF.EmitBlock(loopBB); 1912 1913 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1914 cur->addIncoming(begin.getPointer(), originBB); 1915 1916 CharUnits curAlign = 1917 dest.getAlignment().alignmentOfArrayElement(baseSize); 1918 1919 // memcpy the individual element bit-pattern. 1920 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1921 /*volatile*/ false); 1922 1923 // Go to the next element. 1924 llvm::Value *next = 1925 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1926 1927 // Leave if that's the end of the VLA. 1928 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1929 Builder.CreateCondBr(done, contBB, loopBB); 1930 cur->addIncoming(next, loopBB); 1931 1932 CGF.EmitBlock(contBB); 1933 } 1934 1935 void 1936 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1937 // Ignore empty classes in C++. 1938 if (getLangOpts().CPlusPlus) { 1939 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1940 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1941 return; 1942 } 1943 } 1944 1945 // Cast the dest ptr to the appropriate i8 pointer type. 1946 if (DestPtr.getElementType() != Int8Ty) 1947 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1948 1949 // Get size and alignment info for this aggregate. 1950 CharUnits size = getContext().getTypeSizeInChars(Ty); 1951 1952 llvm::Value *SizeVal; 1953 const VariableArrayType *vla; 1954 1955 // Don't bother emitting a zero-byte memset. 1956 if (size.isZero()) { 1957 // But note that getTypeInfo returns 0 for a VLA. 1958 if (const VariableArrayType *vlaType = 1959 dyn_cast_or_null<VariableArrayType>( 1960 getContext().getAsArrayType(Ty))) { 1961 auto VlaSize = getVLASize(vlaType); 1962 SizeVal = VlaSize.NumElts; 1963 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1964 if (!eltSize.isOne()) 1965 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1966 vla = vlaType; 1967 } else { 1968 return; 1969 } 1970 } else { 1971 SizeVal = CGM.getSize(size); 1972 vla = nullptr; 1973 } 1974 1975 // If the type contains a pointer to data member we can't memset it to zero. 1976 // Instead, create a null constant and copy it to the destination. 1977 // TODO: there are other patterns besides zero that we can usefully memset, 1978 // like -1, which happens to be the pattern used by member-pointers. 1979 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1980 // For a VLA, emit a single element, then splat that over the VLA. 1981 if (vla) Ty = getContext().getBaseElementType(vla); 1982 1983 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1984 1985 llvm::GlobalVariable *NullVariable = 1986 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1987 /*isConstant=*/true, 1988 llvm::GlobalVariable::PrivateLinkage, 1989 NullConstant, Twine()); 1990 CharUnits NullAlign = DestPtr.getAlignment(); 1991 NullVariable->setAlignment(NullAlign.getAsAlign()); 1992 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1993 NullAlign); 1994 1995 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1996 1997 // Get and call the appropriate llvm.memcpy overload. 1998 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1999 return; 2000 } 2001 2002 // Otherwise, just memset the whole thing to zero. This is legal 2003 // because in LLVM, all default initializers (other than the ones we just 2004 // handled above) are guaranteed to have a bit pattern of all zeros. 2005 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2006 } 2007 2008 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2009 // Make sure that there is a block for the indirect goto. 2010 if (!IndirectBranch) 2011 GetIndirectGotoBlock(); 2012 2013 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2014 2015 // Make sure the indirect branch includes all of the address-taken blocks. 2016 IndirectBranch->addDestination(BB); 2017 return llvm::BlockAddress::get(CurFn, BB); 2018 } 2019 2020 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2021 // If we already made the indirect branch for indirect goto, return its block. 2022 if (IndirectBranch) return IndirectBranch->getParent(); 2023 2024 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2025 2026 // Create the PHI node that indirect gotos will add entries to. 2027 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2028 "indirect.goto.dest"); 2029 2030 // Create the indirect branch instruction. 2031 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2032 return IndirectBranch->getParent(); 2033 } 2034 2035 /// Computes the length of an array in elements, as well as the base 2036 /// element type and a properly-typed first element pointer. 2037 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2038 QualType &baseType, 2039 Address &addr) { 2040 const ArrayType *arrayType = origArrayType; 2041 2042 // If it's a VLA, we have to load the stored size. Note that 2043 // this is the size of the VLA in bytes, not its size in elements. 2044 llvm::Value *numVLAElements = nullptr; 2045 if (isa<VariableArrayType>(arrayType)) { 2046 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2047 2048 // Walk into all VLAs. This doesn't require changes to addr, 2049 // which has type T* where T is the first non-VLA element type. 2050 do { 2051 QualType elementType = arrayType->getElementType(); 2052 arrayType = getContext().getAsArrayType(elementType); 2053 2054 // If we only have VLA components, 'addr' requires no adjustment. 2055 if (!arrayType) { 2056 baseType = elementType; 2057 return numVLAElements; 2058 } 2059 } while (isa<VariableArrayType>(arrayType)); 2060 2061 // We get out here only if we find a constant array type 2062 // inside the VLA. 2063 } 2064 2065 // We have some number of constant-length arrays, so addr should 2066 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2067 // down to the first element of addr. 2068 SmallVector<llvm::Value*, 8> gepIndices; 2069 2070 // GEP down to the array type. 2071 llvm::ConstantInt *zero = Builder.getInt32(0); 2072 gepIndices.push_back(zero); 2073 2074 uint64_t countFromCLAs = 1; 2075 QualType eltType; 2076 2077 llvm::ArrayType *llvmArrayType = 2078 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2079 while (llvmArrayType) { 2080 assert(isa<ConstantArrayType>(arrayType)); 2081 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2082 == llvmArrayType->getNumElements()); 2083 2084 gepIndices.push_back(zero); 2085 countFromCLAs *= llvmArrayType->getNumElements(); 2086 eltType = arrayType->getElementType(); 2087 2088 llvmArrayType = 2089 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2090 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2091 assert((!llvmArrayType || arrayType) && 2092 "LLVM and Clang types are out-of-synch"); 2093 } 2094 2095 if (arrayType) { 2096 // From this point onwards, the Clang array type has been emitted 2097 // as some other type (probably a packed struct). Compute the array 2098 // size, and just emit the 'begin' expression as a bitcast. 2099 while (arrayType) { 2100 countFromCLAs *= 2101 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2102 eltType = arrayType->getElementType(); 2103 arrayType = getContext().getAsArrayType(eltType); 2104 } 2105 2106 llvm::Type *baseType = ConvertType(eltType); 2107 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2108 } else { 2109 // Create the actual GEP. 2110 addr = Address(Builder.CreateInBoundsGEP( 2111 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2112 addr.getAlignment()); 2113 } 2114 2115 baseType = eltType; 2116 2117 llvm::Value *numElements 2118 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2119 2120 // If we had any VLA dimensions, factor them in. 2121 if (numVLAElements) 2122 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2123 2124 return numElements; 2125 } 2126 2127 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2128 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2129 assert(vla && "type was not a variable array type!"); 2130 return getVLASize(vla); 2131 } 2132 2133 CodeGenFunction::VlaSizePair 2134 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2135 // The number of elements so far; always size_t. 2136 llvm::Value *numElements = nullptr; 2137 2138 QualType elementType; 2139 do { 2140 elementType = type->getElementType(); 2141 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2142 assert(vlaSize && "no size for VLA!"); 2143 assert(vlaSize->getType() == SizeTy); 2144 2145 if (!numElements) { 2146 numElements = vlaSize; 2147 } else { 2148 // It's undefined behavior if this wraps around, so mark it that way. 2149 // FIXME: Teach -fsanitize=undefined to trap this. 2150 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2151 } 2152 } while ((type = getContext().getAsVariableArrayType(elementType))); 2153 2154 return { numElements, elementType }; 2155 } 2156 2157 CodeGenFunction::VlaSizePair 2158 CodeGenFunction::getVLAElements1D(QualType type) { 2159 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2160 assert(vla && "type was not a variable array type!"); 2161 return getVLAElements1D(vla); 2162 } 2163 2164 CodeGenFunction::VlaSizePair 2165 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2166 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2167 assert(VlaSize && "no size for VLA!"); 2168 assert(VlaSize->getType() == SizeTy); 2169 return { VlaSize, Vla->getElementType() }; 2170 } 2171 2172 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2173 assert(type->isVariablyModifiedType() && 2174 "Must pass variably modified type to EmitVLASizes!"); 2175 2176 EnsureInsertPoint(); 2177 2178 // We're going to walk down into the type and look for VLA 2179 // expressions. 2180 do { 2181 assert(type->isVariablyModifiedType()); 2182 2183 const Type *ty = type.getTypePtr(); 2184 switch (ty->getTypeClass()) { 2185 2186 #define TYPE(Class, Base) 2187 #define ABSTRACT_TYPE(Class, Base) 2188 #define NON_CANONICAL_TYPE(Class, Base) 2189 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2190 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2191 #include "clang/AST/TypeNodes.inc" 2192 llvm_unreachable("unexpected dependent type!"); 2193 2194 // These types are never variably-modified. 2195 case Type::Builtin: 2196 case Type::Complex: 2197 case Type::Vector: 2198 case Type::ExtVector: 2199 case Type::ConstantMatrix: 2200 case Type::Record: 2201 case Type::Enum: 2202 case Type::Elaborated: 2203 case Type::Using: 2204 case Type::TemplateSpecialization: 2205 case Type::ObjCTypeParam: 2206 case Type::ObjCObject: 2207 case Type::ObjCInterface: 2208 case Type::ObjCObjectPointer: 2209 case Type::BitInt: 2210 llvm_unreachable("type class is never variably-modified!"); 2211 2212 case Type::Adjusted: 2213 type = cast<AdjustedType>(ty)->getAdjustedType(); 2214 break; 2215 2216 case Type::Decayed: 2217 type = cast<DecayedType>(ty)->getPointeeType(); 2218 break; 2219 2220 case Type::Pointer: 2221 type = cast<PointerType>(ty)->getPointeeType(); 2222 break; 2223 2224 case Type::BlockPointer: 2225 type = cast<BlockPointerType>(ty)->getPointeeType(); 2226 break; 2227 2228 case Type::LValueReference: 2229 case Type::RValueReference: 2230 type = cast<ReferenceType>(ty)->getPointeeType(); 2231 break; 2232 2233 case Type::MemberPointer: 2234 type = cast<MemberPointerType>(ty)->getPointeeType(); 2235 break; 2236 2237 case Type::ConstantArray: 2238 case Type::IncompleteArray: 2239 // Losing element qualification here is fine. 2240 type = cast<ArrayType>(ty)->getElementType(); 2241 break; 2242 2243 case Type::VariableArray: { 2244 // Losing element qualification here is fine. 2245 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2246 2247 // Unknown size indication requires no size computation. 2248 // Otherwise, evaluate and record it. 2249 if (const Expr *size = vat->getSizeExpr()) { 2250 // It's possible that we might have emitted this already, 2251 // e.g. with a typedef and a pointer to it. 2252 llvm::Value *&entry = VLASizeMap[size]; 2253 if (!entry) { 2254 llvm::Value *Size = EmitScalarExpr(size); 2255 2256 // C11 6.7.6.2p5: 2257 // If the size is an expression that is not an integer constant 2258 // expression [...] each time it is evaluated it shall have a value 2259 // greater than zero. 2260 if (SanOpts.has(SanitizerKind::VLABound) && 2261 size->getType()->isSignedIntegerType()) { 2262 SanitizerScope SanScope(this); 2263 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2264 llvm::Constant *StaticArgs[] = { 2265 EmitCheckSourceLocation(size->getBeginLoc()), 2266 EmitCheckTypeDescriptor(size->getType())}; 2267 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2268 SanitizerKind::VLABound), 2269 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2270 } 2271 2272 // Always zexting here would be wrong if it weren't 2273 // undefined behavior to have a negative bound. 2274 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2275 } 2276 } 2277 type = vat->getElementType(); 2278 break; 2279 } 2280 2281 case Type::FunctionProto: 2282 case Type::FunctionNoProto: 2283 type = cast<FunctionType>(ty)->getReturnType(); 2284 break; 2285 2286 case Type::Paren: 2287 case Type::TypeOf: 2288 case Type::UnaryTransform: 2289 case Type::Attributed: 2290 case Type::SubstTemplateTypeParm: 2291 case Type::MacroQualified: 2292 // Keep walking after single level desugaring. 2293 type = type.getSingleStepDesugaredType(getContext()); 2294 break; 2295 2296 case Type::Typedef: 2297 case Type::Decltype: 2298 case Type::Auto: 2299 case Type::DeducedTemplateSpecialization: 2300 // Stop walking: nothing to do. 2301 return; 2302 2303 case Type::TypeOfExpr: 2304 // Stop walking: emit typeof expression. 2305 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2306 return; 2307 2308 case Type::Atomic: 2309 type = cast<AtomicType>(ty)->getValueType(); 2310 break; 2311 2312 case Type::Pipe: 2313 type = cast<PipeType>(ty)->getElementType(); 2314 break; 2315 } 2316 } while (type->isVariablyModifiedType()); 2317 } 2318 2319 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2320 if (getContext().getBuiltinVaListType()->isArrayType()) 2321 return EmitPointerWithAlignment(E); 2322 return EmitLValue(E).getAddress(*this); 2323 } 2324 2325 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2326 return EmitLValue(E).getAddress(*this); 2327 } 2328 2329 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2330 const APValue &Init) { 2331 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2332 if (CGDebugInfo *Dbg = getDebugInfo()) 2333 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2334 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2335 } 2336 2337 CodeGenFunction::PeepholeProtection 2338 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2339 // At the moment, the only aggressive peephole we do in IR gen 2340 // is trunc(zext) folding, but if we add more, we can easily 2341 // extend this protection. 2342 2343 if (!rvalue.isScalar()) return PeepholeProtection(); 2344 llvm::Value *value = rvalue.getScalarVal(); 2345 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2346 2347 // Just make an extra bitcast. 2348 assert(HaveInsertPoint()); 2349 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2350 Builder.GetInsertBlock()); 2351 2352 PeepholeProtection protection; 2353 protection.Inst = inst; 2354 return protection; 2355 } 2356 2357 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2358 if (!protection.Inst) return; 2359 2360 // In theory, we could try to duplicate the peepholes now, but whatever. 2361 protection.Inst->eraseFromParent(); 2362 } 2363 2364 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2365 QualType Ty, SourceLocation Loc, 2366 SourceLocation AssumptionLoc, 2367 llvm::Value *Alignment, 2368 llvm::Value *OffsetValue) { 2369 if (Alignment->getType() != IntPtrTy) 2370 Alignment = 2371 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2372 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2373 OffsetValue = 2374 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2375 llvm::Value *TheCheck = nullptr; 2376 if (SanOpts.has(SanitizerKind::Alignment)) { 2377 llvm::Value *PtrIntValue = 2378 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2379 2380 if (OffsetValue) { 2381 bool IsOffsetZero = false; 2382 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2383 IsOffsetZero = CI->isZero(); 2384 2385 if (!IsOffsetZero) 2386 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2387 } 2388 2389 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2390 llvm::Value *Mask = 2391 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2392 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2393 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2394 } 2395 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2396 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2397 2398 if (!SanOpts.has(SanitizerKind::Alignment)) 2399 return; 2400 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2401 OffsetValue, TheCheck, Assumption); 2402 } 2403 2404 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2405 const Expr *E, 2406 SourceLocation AssumptionLoc, 2407 llvm::Value *Alignment, 2408 llvm::Value *OffsetValue) { 2409 if (auto *CE = dyn_cast<CastExpr>(E)) 2410 E = CE->getSubExprAsWritten(); 2411 QualType Ty = E->getType(); 2412 SourceLocation Loc = E->getExprLoc(); 2413 2414 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2415 OffsetValue); 2416 } 2417 2418 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2419 llvm::Value *AnnotatedVal, 2420 StringRef AnnotationStr, 2421 SourceLocation Location, 2422 const AnnotateAttr *Attr) { 2423 SmallVector<llvm::Value *, 5> Args = { 2424 AnnotatedVal, 2425 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2426 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2427 CGM.EmitAnnotationLineNo(Location), 2428 }; 2429 if (Attr) 2430 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2431 return Builder.CreateCall(AnnotationFn, Args); 2432 } 2433 2434 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2435 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2436 // FIXME We create a new bitcast for every annotation because that's what 2437 // llvm-gcc was doing. 2438 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2439 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2440 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2441 I->getAnnotation(), D->getLocation(), I); 2442 } 2443 2444 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2445 Address Addr) { 2446 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2447 llvm::Value *V = Addr.getPointer(); 2448 llvm::Type *VTy = V->getType(); 2449 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2450 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2451 llvm::PointerType *IntrinTy = 2452 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2453 llvm::Function *F = 2454 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2455 2456 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2457 // FIXME Always emit the cast inst so we can differentiate between 2458 // annotation on the first field of a struct and annotation on the struct 2459 // itself. 2460 if (VTy != IntrinTy) 2461 V = Builder.CreateBitCast(V, IntrinTy); 2462 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2463 V = Builder.CreateBitCast(V, VTy); 2464 } 2465 2466 return Address(V, Addr.getAlignment()); 2467 } 2468 2469 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2470 2471 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2472 : CGF(CGF) { 2473 assert(!CGF->IsSanitizerScope); 2474 CGF->IsSanitizerScope = true; 2475 } 2476 2477 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2478 CGF->IsSanitizerScope = false; 2479 } 2480 2481 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2482 const llvm::Twine &Name, 2483 llvm::BasicBlock *BB, 2484 llvm::BasicBlock::iterator InsertPt) const { 2485 LoopStack.InsertHelper(I); 2486 if (IsSanitizerScope) 2487 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2488 } 2489 2490 void CGBuilderInserter::InsertHelper( 2491 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2492 llvm::BasicBlock::iterator InsertPt) const { 2493 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2494 if (CGF) 2495 CGF->InsertHelper(I, Name, BB, InsertPt); 2496 } 2497 2498 // Emits an error if we don't have a valid set of target features for the 2499 // called function. 2500 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2501 const FunctionDecl *TargetDecl) { 2502 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2503 } 2504 2505 // Emits an error if we don't have a valid set of target features for the 2506 // called function. 2507 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2508 const FunctionDecl *TargetDecl) { 2509 // Early exit if this is an indirect call. 2510 if (!TargetDecl) 2511 return; 2512 2513 // Get the current enclosing function if it exists. If it doesn't 2514 // we can't check the target features anyhow. 2515 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2516 if (!FD) 2517 return; 2518 2519 // Grab the required features for the call. For a builtin this is listed in 2520 // the td file with the default cpu, for an always_inline function this is any 2521 // listed cpu and any listed features. 2522 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2523 std::string MissingFeature; 2524 llvm::StringMap<bool> CallerFeatureMap; 2525 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2526 if (BuiltinID) { 2527 StringRef FeatureList( 2528 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2529 // Return if the builtin doesn't have any required features. 2530 if (FeatureList.empty()) 2531 return; 2532 assert(!FeatureList.contains(' ') && "Space in feature list"); 2533 TargetFeatures TF(CallerFeatureMap); 2534 if (!TF.hasRequiredFeatures(FeatureList)) 2535 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2536 << TargetDecl->getDeclName() << FeatureList; 2537 } else if (!TargetDecl->isMultiVersion() && 2538 TargetDecl->hasAttr<TargetAttr>()) { 2539 // Get the required features for the callee. 2540 2541 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2542 ParsedTargetAttr ParsedAttr = 2543 CGM.getContext().filterFunctionTargetAttrs(TD); 2544 2545 SmallVector<StringRef, 1> ReqFeatures; 2546 llvm::StringMap<bool> CalleeFeatureMap; 2547 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2548 2549 for (const auto &F : ParsedAttr.Features) { 2550 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2551 ReqFeatures.push_back(StringRef(F).substr(1)); 2552 } 2553 2554 for (const auto &F : CalleeFeatureMap) { 2555 // Only positive features are "required". 2556 if (F.getValue()) 2557 ReqFeatures.push_back(F.getKey()); 2558 } 2559 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2560 if (!CallerFeatureMap.lookup(Feature)) { 2561 MissingFeature = Feature.str(); 2562 return false; 2563 } 2564 return true; 2565 })) 2566 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2567 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2568 } 2569 } 2570 2571 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2572 if (!CGM.getCodeGenOpts().SanitizeStats) 2573 return; 2574 2575 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2576 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2577 CGM.getSanStats().create(IRB, SSK); 2578 } 2579 2580 llvm::Value * 2581 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2582 llvm::Value *Condition = nullptr; 2583 2584 if (!RO.Conditions.Architecture.empty()) 2585 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2586 2587 if (!RO.Conditions.Features.empty()) { 2588 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2589 Condition = 2590 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2591 } 2592 return Condition; 2593 } 2594 2595 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2596 llvm::Function *Resolver, 2597 CGBuilderTy &Builder, 2598 llvm::Function *FuncToReturn, 2599 bool SupportsIFunc) { 2600 if (SupportsIFunc) { 2601 Builder.CreateRet(FuncToReturn); 2602 return; 2603 } 2604 2605 llvm::SmallVector<llvm::Value *, 10> Args; 2606 llvm::for_each(Resolver->args(), 2607 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2608 2609 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2610 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2611 2612 if (Resolver->getReturnType()->isVoidTy()) 2613 Builder.CreateRetVoid(); 2614 else 2615 Builder.CreateRet(Result); 2616 } 2617 2618 void CodeGenFunction::EmitMultiVersionResolver( 2619 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2620 assert(getContext().getTargetInfo().getTriple().isX86() && 2621 "Only implemented for x86 targets"); 2622 2623 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2624 2625 // Main function's basic block. 2626 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2627 Builder.SetInsertPoint(CurBlock); 2628 EmitX86CpuInit(); 2629 2630 for (const MultiVersionResolverOption &RO : Options) { 2631 Builder.SetInsertPoint(CurBlock); 2632 llvm::Value *Condition = FormResolverCondition(RO); 2633 2634 // The 'default' or 'generic' case. 2635 if (!Condition) { 2636 assert(&RO == Options.end() - 1 && 2637 "Default or Generic case must be last"); 2638 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2639 SupportsIFunc); 2640 return; 2641 } 2642 2643 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2644 CGBuilderTy RetBuilder(*this, RetBlock); 2645 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2646 SupportsIFunc); 2647 CurBlock = createBasicBlock("resolver_else", Resolver); 2648 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2649 } 2650 2651 // If no generic/default, emit an unreachable. 2652 Builder.SetInsertPoint(CurBlock); 2653 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2654 TrapCall->setDoesNotReturn(); 2655 TrapCall->setDoesNotThrow(); 2656 Builder.CreateUnreachable(); 2657 Builder.ClearInsertionPoint(); 2658 } 2659 2660 // Loc - where the diagnostic will point, where in the source code this 2661 // alignment has failed. 2662 // SecondaryLoc - if present (will be present if sufficiently different from 2663 // Loc), the diagnostic will additionally point a "Note:" to this location. 2664 // It should be the location where the __attribute__((assume_aligned)) 2665 // was written e.g. 2666 void CodeGenFunction::emitAlignmentAssumptionCheck( 2667 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2668 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2669 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2670 llvm::Instruction *Assumption) { 2671 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2672 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2673 llvm::Intrinsic::getDeclaration( 2674 Builder.GetInsertBlock()->getParent()->getParent(), 2675 llvm::Intrinsic::assume) && 2676 "Assumption should be a call to llvm.assume()."); 2677 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2678 "Assumption should be the last instruction of the basic block, " 2679 "since the basic block is still being generated."); 2680 2681 if (!SanOpts.has(SanitizerKind::Alignment)) 2682 return; 2683 2684 // Don't check pointers to volatile data. The behavior here is implementation- 2685 // defined. 2686 if (Ty->getPointeeType().isVolatileQualified()) 2687 return; 2688 2689 // We need to temorairly remove the assumption so we can insert the 2690 // sanitizer check before it, else the check will be dropped by optimizations. 2691 Assumption->removeFromParent(); 2692 2693 { 2694 SanitizerScope SanScope(this); 2695 2696 if (!OffsetValue) 2697 OffsetValue = Builder.getInt1(0); // no offset. 2698 2699 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2700 EmitCheckSourceLocation(SecondaryLoc), 2701 EmitCheckTypeDescriptor(Ty)}; 2702 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2703 EmitCheckValue(Alignment), 2704 EmitCheckValue(OffsetValue)}; 2705 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2706 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2707 } 2708 2709 // We are now in the (new, empty) "cont" basic block. 2710 // Reintroduce the assumption. 2711 Builder.Insert(Assumption); 2712 // FIXME: Assumption still has it's original basic block as it's Parent. 2713 } 2714 2715 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2716 if (CGDebugInfo *DI = getDebugInfo()) 2717 return DI->SourceLocToDebugLoc(Location); 2718 2719 return llvm::DebugLoc(); 2720 } 2721 2722 llvm::Value * 2723 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2724 Stmt::Likelihood LH) { 2725 switch (LH) { 2726 case Stmt::LH_None: 2727 return Cond; 2728 case Stmt::LH_Likely: 2729 case Stmt::LH_Unlikely: 2730 // Don't generate llvm.expect on -O0 as the backend won't use it for 2731 // anything. 2732 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2733 return Cond; 2734 llvm::Type *CondTy = Cond->getType(); 2735 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2736 llvm::Function *FnExpect = 2737 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2738 llvm::Value *ExpectedValueOfCond = 2739 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2740 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2741 Cond->getName() + ".expval"); 2742 } 2743 llvm_unreachable("Unknown Likelihood"); 2744 } 2745