xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 
49 using namespace clang;
50 using namespace CodeGen;
51 
52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53 /// markers.
54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                       const LangOptions &LangOpts) {
56   if (CGOpts.DisableLifetimeMarkers)
57     return false;
58 
59   // Sanitizers may use markers.
60   if (CGOpts.SanitizeAddressUseAfterScope ||
61       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62       LangOpts.Sanitize.has(SanitizerKind::Memory))
63     return true;
64 
65   // For now, only in optimized builds.
66   return CGOpts.OptimizationLevel != 0;
67 }
68 
69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72               CGBuilderInserterTy(this)),
73       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75       ShouldEmitLifetimeMarkers(
76           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77   if (!suppressNewContext)
78     CGM.getCXXABI().getMangleContext().startNewFunction();
79   EHStack.setCGF(this);
80 
81   SetFastMathFlags(CurFPFeatures);
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
113   llvm::FastMathFlags FMF;
114   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
115   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
116   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
117   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
118   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
119   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
120   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
121   Builder.setFastMathFlags(FMF);
122 }
123 
124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
125                                                   const Expr *E)
126     : CGF(CGF) {
127   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
128 }
129 
130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
131                                                   FPOptions FPFeatures)
132     : CGF(CGF) {
133   ConstructorHelper(FPFeatures);
134 }
135 
136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
137   OldFPFeatures = CGF.CurFPFeatures;
138   CGF.CurFPFeatures = FPFeatures;
139 
140   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
141   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
142 
143   if (OldFPFeatures == FPFeatures)
144     return;
145 
146   FMFGuard.emplace(CGF.Builder);
147 
148   llvm::RoundingMode NewRoundingBehavior =
149       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
150   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151   auto NewExceptionBehavior =
152       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153           FPFeatures.getFPExceptionMode()));
154   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155 
156   CGF.SetFastMathFlags(FPFeatures);
157 
158   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161           (NewExceptionBehavior == llvm::fp::ebIgnore &&
162            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163          "FPConstrained should be enabled on entire function");
164 
165   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166     auto OldValue =
167         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168     auto NewValue = OldValue & Value;
169     if (OldValue != NewValue)
170       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171   };
172   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                          FPFeatures.getAllowReciprocal() &&
177                                          FPFeatures.getAllowApproxFunc() &&
178                                          FPFeatures.getNoSignedZero());
179 }
180 
181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182   CGF.CurFPFeatures = OldFPFeatures;
183   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185 }
186 
187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188   LValueBaseInfo BaseInfo;
189   TBAAAccessInfo TBAAInfo;
190   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191   Address Addr(V, ConvertTypeForMem(T), Alignment);
192   return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193 }
194 
195 /// Given a value of type T* that may not be to a complete object,
196 /// construct an l-value with the natural pointee alignment of T.
197 LValue
198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                 /* forPointeeType= */ true);
203   Address Addr(V, ConvertTypeForMem(T), Align);
204   return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205 }
206 
207 
208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209   return CGM.getTypes().ConvertTypeForMem(T);
210 }
211 
212 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213   return CGM.getTypes().ConvertType(T);
214 }
215 
216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217   type = type.getCanonicalType();
218   while (true) {
219     switch (type->getTypeClass()) {
220 #define TYPE(name, parent)
221 #define ABSTRACT_TYPE(name, parent)
222 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223 #define DEPENDENT_TYPE(name, parent) case Type::name:
224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225 #include "clang/AST/TypeNodes.inc"
226       llvm_unreachable("non-canonical or dependent type in IR-generation");
227 
228     case Type::Auto:
229     case Type::DeducedTemplateSpecialization:
230       llvm_unreachable("undeduced type in IR-generation");
231 
232     // Various scalar types.
233     case Type::Builtin:
234     case Type::Pointer:
235     case Type::BlockPointer:
236     case Type::LValueReference:
237     case Type::RValueReference:
238     case Type::MemberPointer:
239     case Type::Vector:
240     case Type::ExtVector:
241     case Type::ConstantMatrix:
242     case Type::FunctionProto:
243     case Type::FunctionNoProto:
244     case Type::Enum:
245     case Type::ObjCObjectPointer:
246     case Type::Pipe:
247     case Type::BitInt:
248       return TEK_Scalar;
249 
250     // Complexes.
251     case Type::Complex:
252       return TEK_Complex;
253 
254     // Arrays, records, and Objective-C objects.
255     case Type::ConstantArray:
256     case Type::IncompleteArray:
257     case Type::VariableArray:
258     case Type::Record:
259     case Type::ObjCObject:
260     case Type::ObjCInterface:
261       return TEK_Aggregate;
262 
263     // We operate on atomic values according to their underlying type.
264     case Type::Atomic:
265       type = cast<AtomicType>(type)->getValueType();
266       continue;
267     }
268     llvm_unreachable("unknown type kind!");
269   }
270 }
271 
272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273   // For cleanliness, we try to avoid emitting the return block for
274   // simple cases.
275   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276 
277   if (CurBB) {
278     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279 
280     // We have a valid insert point, reuse it if it is empty or there are no
281     // explicit jumps to the return block.
282     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284       delete ReturnBlock.getBlock();
285       ReturnBlock = JumpDest();
286     } else
287       EmitBlock(ReturnBlock.getBlock());
288     return llvm::DebugLoc();
289   }
290 
291   // Otherwise, if the return block is the target of a single direct
292   // branch then we can just put the code in that block instead. This
293   // cleans up functions which started with a unified return block.
294   if (ReturnBlock.getBlock()->hasOneUse()) {
295     llvm::BranchInst *BI =
296       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297     if (BI && BI->isUnconditional() &&
298         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299       // Record/return the DebugLoc of the simple 'return' expression to be used
300       // later by the actual 'ret' instruction.
301       llvm::DebugLoc Loc = BI->getDebugLoc();
302       Builder.SetInsertPoint(BI->getParent());
303       BI->eraseFromParent();
304       delete ReturnBlock.getBlock();
305       ReturnBlock = JumpDest();
306       return Loc;
307     }
308   }
309 
310   // FIXME: We are at an unreachable point, there is no reason to emit the block
311   // unless it has uses. However, we still need a place to put the debug
312   // region.end for now.
313 
314   EmitBlock(ReturnBlock.getBlock());
315   return llvm::DebugLoc();
316 }
317 
318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319   if (!BB) return;
320   if (!BB->use_empty())
321     return CGF.CurFn->getBasicBlockList().push_back(BB);
322   delete BB;
323 }
324 
325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326   assert(BreakContinueStack.empty() &&
327          "mismatched push/pop in break/continue stack!");
328 
329   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330     && NumSimpleReturnExprs == NumReturnExprs
331     && ReturnBlock.getBlock()->use_empty();
332   // Usually the return expression is evaluated before the cleanup
333   // code.  If the function contains only a simple return statement,
334   // such as a constant, the location before the cleanup code becomes
335   // the last useful breakpoint in the function, because the simple
336   // return expression will be evaluated after the cleanup code. To be
337   // safe, set the debug location for cleanup code to the location of
338   // the return statement.  Otherwise the cleanup code should be at the
339   // end of the function's lexical scope.
340   //
341   // If there are multiple branches to the return block, the branch
342   // instructions will get the location of the return statements and
343   // all will be fine.
344   if (CGDebugInfo *DI = getDebugInfo()) {
345     if (OnlySimpleReturnStmts)
346       DI->EmitLocation(Builder, LastStopPoint);
347     else
348       DI->EmitLocation(Builder, EndLoc);
349   }
350 
351   // Pop any cleanups that might have been associated with the
352   // parameters.  Do this in whatever block we're currently in; it's
353   // important to do this before we enter the return block or return
354   // edges will be *really* confused.
355   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356   bool HasOnlyLifetimeMarkers =
357       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359   if (HasCleanups) {
360     // Make sure the line table doesn't jump back into the body for
361     // the ret after it's been at EndLoc.
362     Optional<ApplyDebugLocation> AL;
363     if (CGDebugInfo *DI = getDebugInfo()) {
364       if (OnlySimpleReturnStmts)
365         DI->EmitLocation(Builder, EndLoc);
366       else
367         // We may not have a valid end location. Try to apply it anyway, and
368         // fall back to an artificial location if needed.
369         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370     }
371 
372     PopCleanupBlocks(PrologueCleanupDepth);
373   }
374 
375   // Emit function epilog (to return).
376   llvm::DebugLoc Loc = EmitReturnBlock();
377 
378   if (ShouldInstrumentFunction()) {
379     if (CGM.getCodeGenOpts().InstrumentFunctions)
380       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382       CurFn->addFnAttr("instrument-function-exit-inlined",
383                        "__cyg_profile_func_exit");
384   }
385 
386   if (ShouldSkipSanitizerInstrumentation())
387     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
388 
389   // Emit debug descriptor for function end.
390   if (CGDebugInfo *DI = getDebugInfo())
391     DI->EmitFunctionEnd(Builder, CurFn);
392 
393   // Reset the debug location to that of the simple 'return' expression, if any
394   // rather than that of the end of the function's scope '}'.
395   ApplyDebugLocation AL(*this, Loc);
396   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
397   EmitEndEHSpec(CurCodeDecl);
398 
399   assert(EHStack.empty() &&
400          "did not remove all scopes from cleanup stack!");
401 
402   // If someone did an indirect goto, emit the indirect goto block at the end of
403   // the function.
404   if (IndirectBranch) {
405     EmitBlock(IndirectBranch->getParent());
406     Builder.ClearInsertionPoint();
407   }
408 
409   // If some of our locals escaped, insert a call to llvm.localescape in the
410   // entry block.
411   if (!EscapedLocals.empty()) {
412     // Invert the map from local to index into a simple vector. There should be
413     // no holes.
414     SmallVector<llvm::Value *, 4> EscapeArgs;
415     EscapeArgs.resize(EscapedLocals.size());
416     for (auto &Pair : EscapedLocals)
417       EscapeArgs[Pair.second] = Pair.first;
418     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
419         &CGM.getModule(), llvm::Intrinsic::localescape);
420     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
421   }
422 
423   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
424   llvm::Instruction *Ptr = AllocaInsertPt;
425   AllocaInsertPt = nullptr;
426   Ptr->eraseFromParent();
427 
428   // PostAllocaInsertPt, if created, was lazily created when it was required,
429   // remove it now since it was just created for our own convenience.
430   if (PostAllocaInsertPt) {
431     llvm::Instruction *PostPtr = PostAllocaInsertPt;
432     PostAllocaInsertPt = nullptr;
433     PostPtr->eraseFromParent();
434   }
435 
436   // If someone took the address of a label but never did an indirect goto, we
437   // made a zero entry PHI node, which is illegal, zap it now.
438   if (IndirectBranch) {
439     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
440     if (PN->getNumIncomingValues() == 0) {
441       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
442       PN->eraseFromParent();
443     }
444   }
445 
446   EmitIfUsed(*this, EHResumeBlock);
447   EmitIfUsed(*this, TerminateLandingPad);
448   EmitIfUsed(*this, TerminateHandler);
449   EmitIfUsed(*this, UnreachableBlock);
450 
451   for (const auto &FuncletAndParent : TerminateFunclets)
452     EmitIfUsed(*this, FuncletAndParent.second);
453 
454   if (CGM.getCodeGenOpts().EmitDeclMetadata)
455     EmitDeclMetadata();
456 
457   for (const auto &R : DeferredReplacements) {
458     if (llvm::Value *Old = R.first) {
459       Old->replaceAllUsesWith(R.second);
460       cast<llvm::Instruction>(Old)->eraseFromParent();
461     }
462   }
463   DeferredReplacements.clear();
464 
465   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
466   // PHIs if the current function is a coroutine. We don't do it for all
467   // functions as it may result in slight increase in numbers of instructions
468   // if compiled with no optimizations. We do it for coroutine as the lifetime
469   // of CleanupDestSlot alloca make correct coroutine frame building very
470   // difficult.
471   if (NormalCleanupDest.isValid() && isCoroutine()) {
472     llvm::DominatorTree DT(*CurFn);
473     llvm::PromoteMemToReg(
474         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
475     NormalCleanupDest = Address::invalid();
476   }
477 
478   // Scan function arguments for vector width.
479   for (llvm::Argument &A : CurFn->args())
480     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
481       LargestVectorWidth =
482           std::max((uint64_t)LargestVectorWidth,
483                    VT->getPrimitiveSizeInBits().getKnownMinSize());
484 
485   // Update vector width based on return type.
486   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
487     LargestVectorWidth =
488         std::max((uint64_t)LargestVectorWidth,
489                  VT->getPrimitiveSizeInBits().getKnownMinSize());
490 
491   // Add the required-vector-width attribute. This contains the max width from:
492   // 1. min-vector-width attribute used in the source program.
493   // 2. Any builtins used that have a vector width specified.
494   // 3. Values passed in and out of inline assembly.
495   // 4. Width of vector arguments and return types for this function.
496   // 5. Width of vector aguments and return types for functions called by this
497   //    function.
498   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
499 
500   // Add vscale_range attribute if appropriate.
501   Optional<std::pair<unsigned, unsigned>> VScaleRange =
502       getContext().getTargetInfo().getVScaleRange(getLangOpts());
503   if (VScaleRange) {
504     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
505         getLLVMContext(), VScaleRange.getValue().first,
506         VScaleRange.getValue().second));
507   }
508 
509   // If we generated an unreachable return block, delete it now.
510   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
511     Builder.ClearInsertionPoint();
512     ReturnBlock.getBlock()->eraseFromParent();
513   }
514   if (ReturnValue.isValid()) {
515     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
516     if (RetAlloca && RetAlloca->use_empty()) {
517       RetAlloca->eraseFromParent();
518       ReturnValue = Address::invalid();
519     }
520   }
521 }
522 
523 /// ShouldInstrumentFunction - Return true if the current function should be
524 /// instrumented with __cyg_profile_func_* calls
525 bool CodeGenFunction::ShouldInstrumentFunction() {
526   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
527       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
528       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
529     return false;
530   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
531     return false;
532   return true;
533 }
534 
535 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
536   if (!CurFuncDecl)
537     return false;
538   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
539 }
540 
541 /// ShouldXRayInstrument - Return true if the current function should be
542 /// instrumented with XRay nop sleds.
543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
544   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
545 }
546 
547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
550   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
551          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
552           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
553               XRayInstrKind::Custom);
554 }
555 
556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
557   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
558          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
559           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
560               XRayInstrKind::Typed);
561 }
562 
563 llvm::Constant *
564 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
565                                             llvm::Constant *Addr) {
566   // Addresses stored in prologue data can't require run-time fixups and must
567   // be PC-relative. Run-time fixups are undesirable because they necessitate
568   // writable text segments, which are unsafe. And absolute addresses are
569   // undesirable because they break PIE mode.
570 
571   // Add a layer of indirection through a private global. Taking its address
572   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
573   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
574                                       /*isConstant=*/true,
575                                       llvm::GlobalValue::PrivateLinkage, Addr);
576 
577   // Create a PC-relative address.
578   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
579   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
580   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
581   return (IntPtrTy == Int32Ty)
582              ? PCRelAsInt
583              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
584 }
585 
586 llvm::Value *
587 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
588                                           llvm::Value *EncodedAddr) {
589   // Reconstruct the address of the global.
590   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
591   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
592   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
593   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
594 
595   // Load the original pointer through the global.
596   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
597                             "decoded_addr");
598 }
599 
600 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
601                                                llvm::Function *Fn)
602 {
603   if (!FD->hasAttr<OpenCLKernelAttr>())
604     return;
605 
606   llvm::LLVMContext &Context = getLLVMContext();
607 
608   CGM.GenOpenCLArgMetadata(Fn, FD, this);
609 
610   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
611     QualType HintQTy = A->getTypeHint();
612     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
613     bool IsSignedInteger =
614         HintQTy->isSignedIntegerType() ||
615         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
616     llvm::Metadata *AttrMDArgs[] = {
617         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
618             CGM.getTypes().ConvertType(A->getTypeHint()))),
619         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
620             llvm::IntegerType::get(Context, 32),
621             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
622     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
623   }
624 
625   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
626     llvm::Metadata *AttrMDArgs[] = {
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
629         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
630     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
631   }
632 
633   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
636         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
637         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
638     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
639   }
640 
641   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
642           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
643     llvm::Metadata *AttrMDArgs[] = {
644         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
645     Fn->setMetadata("intel_reqd_sub_group_size",
646                     llvm::MDNode::get(Context, AttrMDArgs));
647   }
648 }
649 
650 /// Determine whether the function F ends with a return stmt.
651 static bool endsWithReturn(const Decl* F) {
652   const Stmt *Body = nullptr;
653   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
654     Body = FD->getBody();
655   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
656     Body = OMD->getBody();
657 
658   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
659     auto LastStmt = CS->body_rbegin();
660     if (LastStmt != CS->body_rend())
661       return isa<ReturnStmt>(*LastStmt);
662   }
663   return false;
664 }
665 
666 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
667   if (SanOpts.has(SanitizerKind::Thread)) {
668     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
669     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
670   }
671 }
672 
673 /// Check if the return value of this function requires sanitization.
674 bool CodeGenFunction::requiresReturnValueCheck() const {
675   return requiresReturnValueNullabilityCheck() ||
676          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
677           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
678 }
679 
680 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
681   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
682   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
683       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
684       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
685     return false;
686 
687   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
688     return false;
689 
690   if (MD->getNumParams() == 2) {
691     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
692     if (!PT || !PT->isVoidPointerType() ||
693         !PT->getPointeeType().isConstQualified())
694       return false;
695   }
696 
697   return true;
698 }
699 
700 /// Return the UBSan prologue signature for \p FD if one is available.
701 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
702                                             const FunctionDecl *FD) {
703   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
704     if (!MD->isStatic())
705       return nullptr;
706   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
707 }
708 
709 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
710                                     llvm::Function *Fn,
711                                     const CGFunctionInfo &FnInfo,
712                                     const FunctionArgList &Args,
713                                     SourceLocation Loc,
714                                     SourceLocation StartLoc) {
715   assert(!CurFn &&
716          "Do not use a CodeGenFunction object for more than one function");
717 
718   const Decl *D = GD.getDecl();
719 
720   DidCallStackSave = false;
721   CurCodeDecl = D;
722   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
723   if (FD && FD->usesSEHTry())
724     CurSEHParent = FD;
725   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
726   FnRetTy = RetTy;
727   CurFn = Fn;
728   CurFnInfo = &FnInfo;
729   assert(CurFn->isDeclaration() && "Function already has body?");
730 
731   // If this function is ignored for any of the enabled sanitizers,
732   // disable the sanitizer for the function.
733   do {
734 #define SANITIZER(NAME, ID)                                                    \
735   if (SanOpts.empty())                                                         \
736     break;                                                                     \
737   if (SanOpts.has(SanitizerKind::ID))                                          \
738     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
739       SanOpts.set(SanitizerKind::ID, false);
740 
741 #include "clang/Basic/Sanitizers.def"
742 #undef SANITIZER
743   } while (0);
744 
745   if (D) {
746     bool NoSanitizeCoverage = false;
747 
748     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
749       // Apply the no_sanitize* attributes to SanOpts.
750       SanitizerMask mask = Attr->getMask();
751       SanOpts.Mask &= ~mask;
752       if (mask & SanitizerKind::Address)
753         SanOpts.set(SanitizerKind::KernelAddress, false);
754       if (mask & SanitizerKind::KernelAddress)
755         SanOpts.set(SanitizerKind::Address, false);
756       if (mask & SanitizerKind::HWAddress)
757         SanOpts.set(SanitizerKind::KernelHWAddress, false);
758       if (mask & SanitizerKind::KernelHWAddress)
759         SanOpts.set(SanitizerKind::HWAddress, false);
760 
761       // SanitizeCoverage is not handled by SanOpts.
762       if (Attr->hasCoverage())
763         NoSanitizeCoverage = true;
764     }
765 
766     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
767       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
768   }
769 
770   // Apply sanitizer attributes to the function.
771   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
772     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
773   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
774     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
775   if (SanOpts.has(SanitizerKind::MemTag))
776     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
777   if (SanOpts.has(SanitizerKind::Thread))
778     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
779   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
780     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
781   if (SanOpts.has(SanitizerKind::SafeStack))
782     Fn->addFnAttr(llvm::Attribute::SafeStack);
783   if (SanOpts.has(SanitizerKind::ShadowCallStack))
784     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
785 
786   // Apply fuzzing attribute to the function.
787   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
788     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
789 
790   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
791   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
792   if (SanOpts.has(SanitizerKind::Thread)) {
793     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
794       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
795       if (OMD->getMethodFamily() == OMF_dealloc ||
796           OMD->getMethodFamily() == OMF_initialize ||
797           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
798         markAsIgnoreThreadCheckingAtRuntime(Fn);
799       }
800     }
801   }
802 
803   // Ignore unrelated casts in STL allocate() since the allocator must cast
804   // from void* to T* before object initialization completes. Don't match on the
805   // namespace because not all allocators are in std::
806   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
807     if (matchesStlAllocatorFn(D, getContext()))
808       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
809   }
810 
811   // Ignore null checks in coroutine functions since the coroutines passes
812   // are not aware of how to move the extra UBSan instructions across the split
813   // coroutine boundaries.
814   if (D && SanOpts.has(SanitizerKind::Null))
815     if (FD && FD->getBody() &&
816         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
817       SanOpts.Mask &= ~SanitizerKind::Null;
818 
819   // Apply xray attributes to the function (as a string, for now)
820   bool AlwaysXRayAttr = false;
821   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
822     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
823             XRayInstrKind::FunctionEntry) ||
824         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
825             XRayInstrKind::FunctionExit)) {
826       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
827         Fn->addFnAttr("function-instrument", "xray-always");
828         AlwaysXRayAttr = true;
829       }
830       if (XRayAttr->neverXRayInstrument())
831         Fn->addFnAttr("function-instrument", "xray-never");
832       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
833         if (ShouldXRayInstrumentFunction())
834           Fn->addFnAttr("xray-log-args",
835                         llvm::utostr(LogArgs->getArgumentCount()));
836     }
837   } else {
838     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
839       Fn->addFnAttr(
840           "xray-instruction-threshold",
841           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
842   }
843 
844   if (ShouldXRayInstrumentFunction()) {
845     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
846       Fn->addFnAttr("xray-ignore-loops");
847 
848     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
849             XRayInstrKind::FunctionExit))
850       Fn->addFnAttr("xray-skip-exit");
851 
852     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
853             XRayInstrKind::FunctionEntry))
854       Fn->addFnAttr("xray-skip-entry");
855 
856     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
857     if (FuncGroups > 1) {
858       auto FuncName = llvm::makeArrayRef<uint8_t>(
859           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
860       auto Group = crc32(FuncName) % FuncGroups;
861       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
862           !AlwaysXRayAttr)
863         Fn->addFnAttr("function-instrument", "xray-never");
864     }
865   }
866 
867   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
868     if (CGM.isProfileInstrExcluded(Fn, Loc))
869       Fn->addFnAttr(llvm::Attribute::NoProfile);
870 
871   unsigned Count, Offset;
872   if (const auto *Attr =
873           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
874     Count = Attr->getCount();
875     Offset = Attr->getOffset();
876   } else {
877     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
878     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
879   }
880   if (Count && Offset <= Count) {
881     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
882     if (Offset)
883       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
884   }
885 
886   // Add no-jump-tables value.
887   if (CGM.getCodeGenOpts().NoUseJumpTables)
888     Fn->addFnAttr("no-jump-tables", "true");
889 
890   // Add no-inline-line-tables value.
891   if (CGM.getCodeGenOpts().NoInlineLineTables)
892     Fn->addFnAttr("no-inline-line-tables");
893 
894   // Add profile-sample-accurate value.
895   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
896     Fn->addFnAttr("profile-sample-accurate");
897 
898   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
899     Fn->addFnAttr("use-sample-profile");
900 
901   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
902     Fn->addFnAttr("cfi-canonical-jump-table");
903 
904   if (D && D->hasAttr<NoProfileFunctionAttr>())
905     Fn->addFnAttr(llvm::Attribute::NoProfile);
906 
907   if (FD && getLangOpts().OpenCL) {
908     // Add metadata for a kernel function.
909     EmitOpenCLKernelMetadata(FD, Fn);
910   }
911 
912   // If we are checking function types, emit a function type signature as
913   // prologue data.
914   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
915     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
916       // Remove any (C++17) exception specifications, to allow calling e.g. a
917       // noexcept function through a non-noexcept pointer.
918       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
919           FD->getType(), EST_None);
920       llvm::Constant *FTRTTIConst =
921           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
922       llvm::Constant *FTRTTIConstEncoded =
923           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
924       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
925       llvm::Constant *PrologueStructConst =
926           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
927       Fn->setPrologueData(PrologueStructConst);
928     }
929   }
930 
931   // If we're checking nullability, we need to know whether we can check the
932   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
933   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
934     auto Nullability = FnRetTy->getNullability(getContext());
935     if (Nullability && *Nullability == NullabilityKind::NonNull) {
936       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
937             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
938         RetValNullabilityPrecondition =
939             llvm::ConstantInt::getTrue(getLLVMContext());
940     }
941   }
942 
943   // If we're in C++ mode and the function name is "main", it is guaranteed
944   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
945   // used within a program").
946   //
947   // OpenCL C 2.0 v2.2-11 s6.9.i:
948   //     Recursion is not supported.
949   //
950   // SYCL v1.2.1 s3.10:
951   //     kernels cannot include RTTI information, exception classes,
952   //     recursive code, virtual functions or make use of C++ libraries that
953   //     are not compiled for the device.
954   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
955              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
956              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
957     Fn->addFnAttr(llvm::Attribute::NoRecurse);
958 
959   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
960   llvm::fp::ExceptionBehavior FPExceptionBehavior =
961       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
962   Builder.setDefaultConstrainedRounding(RM);
963   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
964   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
965       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
966                RM != llvm::RoundingMode::NearestTiesToEven))) {
967     Builder.setIsFPConstrained(true);
968     Fn->addFnAttr(llvm::Attribute::StrictFP);
969   }
970 
971   // If a custom alignment is used, force realigning to this alignment on
972   // any main function which certainly will need it.
973   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
974              CGM.getCodeGenOpts().StackAlignment))
975     Fn->addFnAttr("stackrealign");
976 
977   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
978 
979   // Create a marker to make it easy to insert allocas into the entryblock
980   // later.  Don't create this with the builder, because we don't want it
981   // folded.
982   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
983   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
984 
985   ReturnBlock = getJumpDestInCurrentScope("return");
986 
987   Builder.SetInsertPoint(EntryBB);
988 
989   // If we're checking the return value, allocate space for a pointer to a
990   // precise source location of the checked return statement.
991   if (requiresReturnValueCheck()) {
992     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
993     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
994                         ReturnLocation);
995   }
996 
997   // Emit subprogram debug descriptor.
998   if (CGDebugInfo *DI = getDebugInfo()) {
999     // Reconstruct the type from the argument list so that implicit parameters,
1000     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1001     // convention.
1002     DI->emitFunctionStart(GD, Loc, StartLoc,
1003                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1004                           CurFuncIsThunk);
1005   }
1006 
1007   if (ShouldInstrumentFunction()) {
1008     if (CGM.getCodeGenOpts().InstrumentFunctions)
1009       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1010     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1011       CurFn->addFnAttr("instrument-function-entry-inlined",
1012                        "__cyg_profile_func_enter");
1013     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1014       CurFn->addFnAttr("instrument-function-entry-inlined",
1015                        "__cyg_profile_func_enter_bare");
1016   }
1017 
1018   // Since emitting the mcount call here impacts optimizations such as function
1019   // inlining, we just add an attribute to insert a mcount call in backend.
1020   // The attribute "counting-function" is set to mcount function name which is
1021   // architecture dependent.
1022   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1023     // Calls to fentry/mcount should not be generated if function has
1024     // the no_instrument_function attribute.
1025     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1026       if (CGM.getCodeGenOpts().CallFEntry)
1027         Fn->addFnAttr("fentry-call", "true");
1028       else {
1029         Fn->addFnAttr("instrument-function-entry-inlined",
1030                       getTarget().getMCountName());
1031       }
1032       if (CGM.getCodeGenOpts().MNopMCount) {
1033         if (!CGM.getCodeGenOpts().CallFEntry)
1034           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1035             << "-mnop-mcount" << "-mfentry";
1036         Fn->addFnAttr("mnop-mcount");
1037       }
1038 
1039       if (CGM.getCodeGenOpts().RecordMCount) {
1040         if (!CGM.getCodeGenOpts().CallFEntry)
1041           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1042             << "-mrecord-mcount" << "-mfentry";
1043         Fn->addFnAttr("mrecord-mcount");
1044       }
1045     }
1046   }
1047 
1048   if (CGM.getCodeGenOpts().PackedStack) {
1049     if (getContext().getTargetInfo().getTriple().getArch() !=
1050         llvm::Triple::systemz)
1051       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1052         << "-mpacked-stack";
1053     Fn->addFnAttr("packed-stack");
1054   }
1055 
1056   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1057       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1058     Fn->addFnAttr("warn-stack-size",
1059                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1060 
1061   if (RetTy->isVoidType()) {
1062     // Void type; nothing to return.
1063     ReturnValue = Address::invalid();
1064 
1065     // Count the implicit return.
1066     if (!endsWithReturn(D))
1067       ++NumReturnExprs;
1068   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1069     // Indirect return; emit returned value directly into sret slot.
1070     // This reduces code size, and affects correctness in C++.
1071     auto AI = CurFn->arg_begin();
1072     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1073       ++AI;
1074     ReturnValue = Address(&*AI, ConvertType(RetTy),
1075                           CurFnInfo->getReturnInfo().getIndirectAlign());
1076     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1077       ReturnValuePointer =
1078           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1079       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1080                               ReturnValue.getPointer(), Int8PtrTy),
1081                           ReturnValuePointer);
1082     }
1083   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1084              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1085     // Load the sret pointer from the argument struct and return into that.
1086     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1087     llvm::Function::arg_iterator EI = CurFn->arg_end();
1088     --EI;
1089     llvm::Value *Addr = Builder.CreateStructGEP(
1090         EI->getType()->getPointerElementType(), &*EI, Idx);
1091     llvm::Type *Ty =
1092         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1093     ReturnValuePointer = Address(Addr, getPointerAlign());
1094     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1095     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1096   } else {
1097     ReturnValue = CreateIRTemp(RetTy, "retval");
1098 
1099     // Tell the epilog emitter to autorelease the result.  We do this
1100     // now so that various specialized functions can suppress it
1101     // during their IR-generation.
1102     if (getLangOpts().ObjCAutoRefCount &&
1103         !CurFnInfo->isReturnsRetained() &&
1104         RetTy->isObjCRetainableType())
1105       AutoreleaseResult = true;
1106   }
1107 
1108   EmitStartEHSpec(CurCodeDecl);
1109 
1110   PrologueCleanupDepth = EHStack.stable_begin();
1111 
1112   // Emit OpenMP specific initialization of the device functions.
1113   if (getLangOpts().OpenMP && CurCodeDecl)
1114     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1115 
1116   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1117 
1118   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1119     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1120     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1121     if (MD->getParent()->isLambda() &&
1122         MD->getOverloadedOperator() == OO_Call) {
1123       // We're in a lambda; figure out the captures.
1124       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1125                                         LambdaThisCaptureField);
1126       if (LambdaThisCaptureField) {
1127         // If the lambda captures the object referred to by '*this' - either by
1128         // value or by reference, make sure CXXThisValue points to the correct
1129         // object.
1130 
1131         // Get the lvalue for the field (which is a copy of the enclosing object
1132         // or contains the address of the enclosing object).
1133         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1134         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1135           // If the enclosing object was captured by value, just use its address.
1136           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1137         } else {
1138           // Load the lvalue pointed to by the field, since '*this' was captured
1139           // by reference.
1140           CXXThisValue =
1141               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1142         }
1143       }
1144       for (auto *FD : MD->getParent()->fields()) {
1145         if (FD->hasCapturedVLAType()) {
1146           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1147                                            SourceLocation()).getScalarVal();
1148           auto VAT = FD->getCapturedVLAType();
1149           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1150         }
1151       }
1152     } else {
1153       // Not in a lambda; just use 'this' from the method.
1154       // FIXME: Should we generate a new load for each use of 'this'?  The
1155       // fast register allocator would be happier...
1156       CXXThisValue = CXXABIThisValue;
1157     }
1158 
1159     // Check the 'this' pointer once per function, if it's available.
1160     if (CXXABIThisValue) {
1161       SanitizerSet SkippedChecks;
1162       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1163       QualType ThisTy = MD->getThisType();
1164 
1165       // If this is the call operator of a lambda with no capture-default, it
1166       // may have a static invoker function, which may call this operator with
1167       // a null 'this' pointer.
1168       if (isLambdaCallOperator(MD) &&
1169           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1170         SkippedChecks.set(SanitizerKind::Null, true);
1171 
1172       EmitTypeCheck(
1173           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1174           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1175     }
1176   }
1177 
1178   // If any of the arguments have a variably modified type, make sure to
1179   // emit the type size.
1180   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1181        i != e; ++i) {
1182     const VarDecl *VD = *i;
1183 
1184     // Dig out the type as written from ParmVarDecls; it's unclear whether
1185     // the standard (C99 6.9.1p10) requires this, but we're following the
1186     // precedent set by gcc.
1187     QualType Ty;
1188     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1189       Ty = PVD->getOriginalType();
1190     else
1191       Ty = VD->getType();
1192 
1193     if (Ty->isVariablyModifiedType())
1194       EmitVariablyModifiedType(Ty);
1195   }
1196   // Emit a location at the end of the prologue.
1197   if (CGDebugInfo *DI = getDebugInfo())
1198     DI->EmitLocation(Builder, StartLoc);
1199 
1200   // TODO: Do we need to handle this in two places like we do with
1201   // target-features/target-cpu?
1202   if (CurFuncDecl)
1203     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1204       LargestVectorWidth = VecWidth->getVectorWidth();
1205 }
1206 
1207 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1208   incrementProfileCounter(Body);
1209   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1210     EmitCompoundStmtWithoutScope(*S);
1211   else
1212     EmitStmt(Body);
1213 
1214   // This is checked after emitting the function body so we know if there
1215   // are any permitted infinite loops.
1216   if (checkIfFunctionMustProgress())
1217     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1218 }
1219 
1220 /// When instrumenting to collect profile data, the counts for some blocks
1221 /// such as switch cases need to not include the fall-through counts, so
1222 /// emit a branch around the instrumentation code. When not instrumenting,
1223 /// this just calls EmitBlock().
1224 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1225                                                const Stmt *S) {
1226   llvm::BasicBlock *SkipCountBB = nullptr;
1227   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1228     // When instrumenting for profiling, the fallthrough to certain
1229     // statements needs to skip over the instrumentation code so that we
1230     // get an accurate count.
1231     SkipCountBB = createBasicBlock("skipcount");
1232     EmitBranch(SkipCountBB);
1233   }
1234   EmitBlock(BB);
1235   uint64_t CurrentCount = getCurrentProfileCount();
1236   incrementProfileCounter(S);
1237   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1238   if (SkipCountBB)
1239     EmitBlock(SkipCountBB);
1240 }
1241 
1242 /// Tries to mark the given function nounwind based on the
1243 /// non-existence of any throwing calls within it.  We believe this is
1244 /// lightweight enough to do at -O0.
1245 static void TryMarkNoThrow(llvm::Function *F) {
1246   // LLVM treats 'nounwind' on a function as part of the type, so we
1247   // can't do this on functions that can be overwritten.
1248   if (F->isInterposable()) return;
1249 
1250   for (llvm::BasicBlock &BB : *F)
1251     for (llvm::Instruction &I : BB)
1252       if (I.mayThrow())
1253         return;
1254 
1255   F->setDoesNotThrow();
1256 }
1257 
1258 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1259                                                FunctionArgList &Args) {
1260   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1261   QualType ResTy = FD->getReturnType();
1262 
1263   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1264   if (MD && MD->isInstance()) {
1265     if (CGM.getCXXABI().HasThisReturn(GD))
1266       ResTy = MD->getThisType();
1267     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1268       ResTy = CGM.getContext().VoidPtrTy;
1269     CGM.getCXXABI().buildThisParam(*this, Args);
1270   }
1271 
1272   // The base version of an inheriting constructor whose constructed base is a
1273   // virtual base is not passed any arguments (because it doesn't actually call
1274   // the inherited constructor).
1275   bool PassedParams = true;
1276   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1277     if (auto Inherited = CD->getInheritedConstructor())
1278       PassedParams =
1279           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1280 
1281   if (PassedParams) {
1282     for (auto *Param : FD->parameters()) {
1283       Args.push_back(Param);
1284       if (!Param->hasAttr<PassObjectSizeAttr>())
1285         continue;
1286 
1287       auto *Implicit = ImplicitParamDecl::Create(
1288           getContext(), Param->getDeclContext(), Param->getLocation(),
1289           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1290       SizeArguments[Param] = Implicit;
1291       Args.push_back(Implicit);
1292     }
1293   }
1294 
1295   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1296     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1297 
1298   return ResTy;
1299 }
1300 
1301 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1302                                    const CGFunctionInfo &FnInfo) {
1303   assert(Fn && "generating code for null Function");
1304   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1305   CurGD = GD;
1306 
1307   FunctionArgList Args;
1308   QualType ResTy = BuildFunctionArgList(GD, Args);
1309 
1310   if (FD->isInlineBuiltinDeclaration()) {
1311     // When generating code for a builtin with an inline declaration, use a
1312     // mangled name to hold the actual body, while keeping an external
1313     // definition in case the function pointer is referenced somewhere.
1314     std::string FDInlineName = (Fn->getName() + ".inline").str();
1315     llvm::Module *M = Fn->getParent();
1316     llvm::Function *Clone = M->getFunction(FDInlineName);
1317     if (!Clone) {
1318       Clone = llvm::Function::Create(Fn->getFunctionType(),
1319                                      llvm::GlobalValue::InternalLinkage,
1320                                      Fn->getAddressSpace(), FDInlineName, M);
1321       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1322     }
1323     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1324     Fn = Clone;
1325   } else {
1326     // Detect the unusual situation where an inline version is shadowed by a
1327     // non-inline version. In that case we should pick the external one
1328     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1329     // to detect that situation before we reach codegen, so do some late
1330     // replacement.
1331     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1332          PD = PD->getPreviousDecl()) {
1333       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1334         std::string FDInlineName = (Fn->getName() + ".inline").str();
1335         llvm::Module *M = Fn->getParent();
1336         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1337           Clone->replaceAllUsesWith(Fn);
1338           Clone->eraseFromParent();
1339         }
1340         break;
1341       }
1342     }
1343   }
1344 
1345   // Check if we should generate debug info for this function.
1346   if (FD->hasAttr<NoDebugAttr>()) {
1347     // Clear non-distinct debug info that was possibly attached to the function
1348     // due to an earlier declaration without the nodebug attribute
1349     Fn->setSubprogram(nullptr);
1350     // Disable debug info indefinitely for this function
1351     DebugInfo = nullptr;
1352   }
1353 
1354   // The function might not have a body if we're generating thunks for a
1355   // function declaration.
1356   SourceRange BodyRange;
1357   if (Stmt *Body = FD->getBody())
1358     BodyRange = Body->getSourceRange();
1359   else
1360     BodyRange = FD->getLocation();
1361   CurEHLocation = BodyRange.getEnd();
1362 
1363   // Use the location of the start of the function to determine where
1364   // the function definition is located. By default use the location
1365   // of the declaration as the location for the subprogram. A function
1366   // may lack a declaration in the source code if it is created by code
1367   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1368   SourceLocation Loc = FD->getLocation();
1369 
1370   // If this is a function specialization then use the pattern body
1371   // as the location for the function.
1372   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1373     if (SpecDecl->hasBody(SpecDecl))
1374       Loc = SpecDecl->getLocation();
1375 
1376   Stmt *Body = FD->getBody();
1377 
1378   if (Body) {
1379     // Coroutines always emit lifetime markers.
1380     if (isa<CoroutineBodyStmt>(Body))
1381       ShouldEmitLifetimeMarkers = true;
1382 
1383     // Initialize helper which will detect jumps which can cause invalid
1384     // lifetime markers.
1385     if (ShouldEmitLifetimeMarkers)
1386       Bypasses.Init(Body);
1387   }
1388 
1389   // Emit the standard function prologue.
1390   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1391 
1392   // Save parameters for coroutine function.
1393   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1394     for (const auto *ParamDecl : FD->parameters())
1395       FnArgs.push_back(ParamDecl);
1396 
1397   // Generate the body of the function.
1398   PGO.assignRegionCounters(GD, CurFn);
1399   if (isa<CXXDestructorDecl>(FD))
1400     EmitDestructorBody(Args);
1401   else if (isa<CXXConstructorDecl>(FD))
1402     EmitConstructorBody(Args);
1403   else if (getLangOpts().CUDA &&
1404            !getLangOpts().CUDAIsDevice &&
1405            FD->hasAttr<CUDAGlobalAttr>())
1406     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1407   else if (isa<CXXMethodDecl>(FD) &&
1408            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1409     // The lambda static invoker function is special, because it forwards or
1410     // clones the body of the function call operator (but is actually static).
1411     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1412   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1413              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1414               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1415     // Implicit copy-assignment gets the same special treatment as implicit
1416     // copy-constructors.
1417     emitImplicitAssignmentOperatorBody(Args);
1418   } else if (Body) {
1419     EmitFunctionBody(Body);
1420   } else
1421     llvm_unreachable("no definition for emitted function");
1422 
1423   // C++11 [stmt.return]p2:
1424   //   Flowing off the end of a function [...] results in undefined behavior in
1425   //   a value-returning function.
1426   // C11 6.9.1p12:
1427   //   If the '}' that terminates a function is reached, and the value of the
1428   //   function call is used by the caller, the behavior is undefined.
1429   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1430       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1431     bool ShouldEmitUnreachable =
1432         CGM.getCodeGenOpts().StrictReturn ||
1433         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1434     if (SanOpts.has(SanitizerKind::Return)) {
1435       SanitizerScope SanScope(this);
1436       llvm::Value *IsFalse = Builder.getFalse();
1437       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1438                 SanitizerHandler::MissingReturn,
1439                 EmitCheckSourceLocation(FD->getLocation()), None);
1440     } else if (ShouldEmitUnreachable) {
1441       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1442         EmitTrapCall(llvm::Intrinsic::trap);
1443     }
1444     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1445       Builder.CreateUnreachable();
1446       Builder.ClearInsertionPoint();
1447     }
1448   }
1449 
1450   // Emit the standard function epilogue.
1451   FinishFunction(BodyRange.getEnd());
1452 
1453   // If we haven't marked the function nothrow through other means, do
1454   // a quick pass now to see if we can.
1455   if (!CurFn->doesNotThrow())
1456     TryMarkNoThrow(CurFn);
1457 }
1458 
1459 /// ContainsLabel - Return true if the statement contains a label in it.  If
1460 /// this statement is not executed normally, it not containing a label means
1461 /// that we can just remove the code.
1462 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1463   // Null statement, not a label!
1464   if (!S) return false;
1465 
1466   // If this is a label, we have to emit the code, consider something like:
1467   // if (0) {  ...  foo:  bar(); }  goto foo;
1468   //
1469   // TODO: If anyone cared, we could track __label__'s, since we know that you
1470   // can't jump to one from outside their declared region.
1471   if (isa<LabelStmt>(S))
1472     return true;
1473 
1474   // If this is a case/default statement, and we haven't seen a switch, we have
1475   // to emit the code.
1476   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1477     return true;
1478 
1479   // If this is a switch statement, we want to ignore cases below it.
1480   if (isa<SwitchStmt>(S))
1481     IgnoreCaseStmts = true;
1482 
1483   // Scan subexpressions for verboten labels.
1484   for (const Stmt *SubStmt : S->children())
1485     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1486       return true;
1487 
1488   return false;
1489 }
1490 
1491 /// containsBreak - Return true if the statement contains a break out of it.
1492 /// If the statement (recursively) contains a switch or loop with a break
1493 /// inside of it, this is fine.
1494 bool CodeGenFunction::containsBreak(const Stmt *S) {
1495   // Null statement, not a label!
1496   if (!S) return false;
1497 
1498   // If this is a switch or loop that defines its own break scope, then we can
1499   // include it and anything inside of it.
1500   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1501       isa<ForStmt>(S))
1502     return false;
1503 
1504   if (isa<BreakStmt>(S))
1505     return true;
1506 
1507   // Scan subexpressions for verboten breaks.
1508   for (const Stmt *SubStmt : S->children())
1509     if (containsBreak(SubStmt))
1510       return true;
1511 
1512   return false;
1513 }
1514 
1515 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1516   if (!S) return false;
1517 
1518   // Some statement kinds add a scope and thus never add a decl to the current
1519   // scope. Note, this list is longer than the list of statements that might
1520   // have an unscoped decl nested within them, but this way is conservatively
1521   // correct even if more statement kinds are added.
1522   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1523       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1524       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1525       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1526     return false;
1527 
1528   if (isa<DeclStmt>(S))
1529     return true;
1530 
1531   for (const Stmt *SubStmt : S->children())
1532     if (mightAddDeclToScope(SubStmt))
1533       return true;
1534 
1535   return false;
1536 }
1537 
1538 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1539 /// to a constant, or if it does but contains a label, return false.  If it
1540 /// constant folds return true and set the boolean result in Result.
1541 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1542                                                    bool &ResultBool,
1543                                                    bool AllowLabels) {
1544   llvm::APSInt ResultInt;
1545   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1546     return false;
1547 
1548   ResultBool = ResultInt.getBoolValue();
1549   return true;
1550 }
1551 
1552 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1553 /// to a constant, or if it does but contains a label, return false.  If it
1554 /// constant folds return true and set the folded value.
1555 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1556                                                    llvm::APSInt &ResultInt,
1557                                                    bool AllowLabels) {
1558   // FIXME: Rename and handle conversion of other evaluatable things
1559   // to bool.
1560   Expr::EvalResult Result;
1561   if (!Cond->EvaluateAsInt(Result, getContext()))
1562     return false;  // Not foldable, not integer or not fully evaluatable.
1563 
1564   llvm::APSInt Int = Result.Val.getInt();
1565   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1566     return false;  // Contains a label.
1567 
1568   ResultInt = Int;
1569   return true;
1570 }
1571 
1572 /// Determine whether the given condition is an instrumentable condition
1573 /// (i.e. no "&&" or "||").
1574 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1575   // Bypass simplistic logical-NOT operator before determining whether the
1576   // condition contains any other logical operator.
1577   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1578     if (UnOp->getOpcode() == UO_LNot)
1579       C = UnOp->getSubExpr();
1580 
1581   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1582   return (!BOp || !BOp->isLogicalOp());
1583 }
1584 
1585 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1586 /// increments a profile counter based on the semantics of the given logical
1587 /// operator opcode.  This is used to instrument branch condition coverage for
1588 /// logical operators.
1589 void CodeGenFunction::EmitBranchToCounterBlock(
1590     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1591     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1592     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1593   // If not instrumenting, just emit a branch.
1594   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1595   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1596     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1597 
1598   llvm::BasicBlock *ThenBlock = NULL;
1599   llvm::BasicBlock *ElseBlock = NULL;
1600   llvm::BasicBlock *NextBlock = NULL;
1601 
1602   // Create the block we'll use to increment the appropriate counter.
1603   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1604 
1605   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1606   // means we need to evaluate the condition and increment the counter on TRUE:
1607   //
1608   // if (Cond)
1609   //   goto CounterIncrBlock;
1610   // else
1611   //   goto FalseBlock;
1612   //
1613   // CounterIncrBlock:
1614   //   Counter++;
1615   //   goto TrueBlock;
1616 
1617   if (LOp == BO_LAnd) {
1618     ThenBlock = CounterIncrBlock;
1619     ElseBlock = FalseBlock;
1620     NextBlock = TrueBlock;
1621   }
1622 
1623   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1624   // we need to evaluate the condition and increment the counter on FALSE:
1625   //
1626   // if (Cond)
1627   //   goto TrueBlock;
1628   // else
1629   //   goto CounterIncrBlock;
1630   //
1631   // CounterIncrBlock:
1632   //   Counter++;
1633   //   goto FalseBlock;
1634 
1635   else if (LOp == BO_LOr) {
1636     ThenBlock = TrueBlock;
1637     ElseBlock = CounterIncrBlock;
1638     NextBlock = FalseBlock;
1639   } else {
1640     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1641   }
1642 
1643   // Emit Branch based on condition.
1644   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1645 
1646   // Emit the block containing the counter increment(s).
1647   EmitBlock(CounterIncrBlock);
1648 
1649   // Increment corresponding counter; if index not provided, use Cond as index.
1650   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1651 
1652   // Go to the next block.
1653   EmitBranch(NextBlock);
1654 }
1655 
1656 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1657 /// statement) to the specified blocks.  Based on the condition, this might try
1658 /// to simplify the codegen of the conditional based on the branch.
1659 /// \param LH The value of the likelihood attribute on the True branch.
1660 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1661                                            llvm::BasicBlock *TrueBlock,
1662                                            llvm::BasicBlock *FalseBlock,
1663                                            uint64_t TrueCount,
1664                                            Stmt::Likelihood LH) {
1665   Cond = Cond->IgnoreParens();
1666 
1667   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1668 
1669     // Handle X && Y in a condition.
1670     if (CondBOp->getOpcode() == BO_LAnd) {
1671       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1672       // folded if the case was simple enough.
1673       bool ConstantBool = false;
1674       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1675           ConstantBool) {
1676         // br(1 && X) -> br(X).
1677         incrementProfileCounter(CondBOp);
1678         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1679                                         FalseBlock, TrueCount, LH);
1680       }
1681 
1682       // If we have "X && 1", simplify the code to use an uncond branch.
1683       // "X && 0" would have been constant folded to 0.
1684       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1685           ConstantBool) {
1686         // br(X && 1) -> br(X).
1687         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1688                                         FalseBlock, TrueCount, LH, CondBOp);
1689       }
1690 
1691       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1692       // want to jump to the FalseBlock.
1693       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1694       // The counter tells us how often we evaluate RHS, and all of TrueCount
1695       // can be propagated to that branch.
1696       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1697 
1698       ConditionalEvaluation eval(*this);
1699       {
1700         ApplyDebugLocation DL(*this, Cond);
1701         // Propagate the likelihood attribute like __builtin_expect
1702         // __builtin_expect(X && Y, 1) -> X and Y are likely
1703         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1704         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1705                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1706         EmitBlock(LHSTrue);
1707       }
1708 
1709       incrementProfileCounter(CondBOp);
1710       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1711 
1712       // Any temporaries created here are conditional.
1713       eval.begin(*this);
1714       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1715                                FalseBlock, TrueCount, LH);
1716       eval.end(*this);
1717 
1718       return;
1719     }
1720 
1721     if (CondBOp->getOpcode() == BO_LOr) {
1722       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1723       // folded if the case was simple enough.
1724       bool ConstantBool = false;
1725       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1726           !ConstantBool) {
1727         // br(0 || X) -> br(X).
1728         incrementProfileCounter(CondBOp);
1729         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1730                                         FalseBlock, TrueCount, LH);
1731       }
1732 
1733       // If we have "X || 0", simplify the code to use an uncond branch.
1734       // "X || 1" would have been constant folded to 1.
1735       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1736           !ConstantBool) {
1737         // br(X || 0) -> br(X).
1738         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1739                                         FalseBlock, TrueCount, LH, CondBOp);
1740       }
1741 
1742       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1743       // want to jump to the TrueBlock.
1744       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1745       // We have the count for entry to the RHS and for the whole expression
1746       // being true, so we can divy up True count between the short circuit and
1747       // the RHS.
1748       uint64_t LHSCount =
1749           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1750       uint64_t RHSCount = TrueCount - LHSCount;
1751 
1752       ConditionalEvaluation eval(*this);
1753       {
1754         // Propagate the likelihood attribute like __builtin_expect
1755         // __builtin_expect(X || Y, 1) -> only Y is likely
1756         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1757         ApplyDebugLocation DL(*this, Cond);
1758         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1759                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1760         EmitBlock(LHSFalse);
1761       }
1762 
1763       incrementProfileCounter(CondBOp);
1764       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1765 
1766       // Any temporaries created here are conditional.
1767       eval.begin(*this);
1768       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1769                                RHSCount, LH);
1770 
1771       eval.end(*this);
1772 
1773       return;
1774     }
1775   }
1776 
1777   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1778     // br(!x, t, f) -> br(x, f, t)
1779     if (CondUOp->getOpcode() == UO_LNot) {
1780       // Negate the count.
1781       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1782       // The values of the enum are chosen to make this negation possible.
1783       LH = static_cast<Stmt::Likelihood>(-LH);
1784       // Negate the condition and swap the destination blocks.
1785       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1786                                   FalseCount, LH);
1787     }
1788   }
1789 
1790   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1791     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1792     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1793     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1794 
1795     // The ConditionalOperator itself has no likelihood information for its
1796     // true and false branches. This matches the behavior of __builtin_expect.
1797     ConditionalEvaluation cond(*this);
1798     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1799                          getProfileCount(CondOp), Stmt::LH_None);
1800 
1801     // When computing PGO branch weights, we only know the overall count for
1802     // the true block. This code is essentially doing tail duplication of the
1803     // naive code-gen, introducing new edges for which counts are not
1804     // available. Divide the counts proportionally between the LHS and RHS of
1805     // the conditional operator.
1806     uint64_t LHSScaledTrueCount = 0;
1807     if (TrueCount) {
1808       double LHSRatio =
1809           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1810       LHSScaledTrueCount = TrueCount * LHSRatio;
1811     }
1812 
1813     cond.begin(*this);
1814     EmitBlock(LHSBlock);
1815     incrementProfileCounter(CondOp);
1816     {
1817       ApplyDebugLocation DL(*this, Cond);
1818       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1819                            LHSScaledTrueCount, LH);
1820     }
1821     cond.end(*this);
1822 
1823     cond.begin(*this);
1824     EmitBlock(RHSBlock);
1825     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1826                          TrueCount - LHSScaledTrueCount, LH);
1827     cond.end(*this);
1828 
1829     return;
1830   }
1831 
1832   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1833     // Conditional operator handling can give us a throw expression as a
1834     // condition for a case like:
1835     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1836     // Fold this to:
1837     //   br(c, throw x, br(y, t, f))
1838     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1839     return;
1840   }
1841 
1842   // Emit the code with the fully general case.
1843   llvm::Value *CondV;
1844   {
1845     ApplyDebugLocation DL(*this, Cond);
1846     CondV = EvaluateExprAsBool(Cond);
1847   }
1848 
1849   llvm::MDNode *Weights = nullptr;
1850   llvm::MDNode *Unpredictable = nullptr;
1851 
1852   // If the branch has a condition wrapped by __builtin_unpredictable,
1853   // create metadata that specifies that the branch is unpredictable.
1854   // Don't bother if not optimizing because that metadata would not be used.
1855   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1856   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1857     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1858     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1859       llvm::MDBuilder MDHelper(getLLVMContext());
1860       Unpredictable = MDHelper.createUnpredictable();
1861     }
1862   }
1863 
1864   // If there is a Likelihood knowledge for the cond, lower it.
1865   // Note that if not optimizing this won't emit anything.
1866   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1867   if (CondV != NewCondV)
1868     CondV = NewCondV;
1869   else {
1870     // Otherwise, lower profile counts. Note that we do this even at -O0.
1871     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1872     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1873   }
1874 
1875   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1876 }
1877 
1878 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1879 /// specified stmt yet.
1880 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1881   CGM.ErrorUnsupported(S, Type);
1882 }
1883 
1884 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1885 /// variable-length array whose elements have a non-zero bit-pattern.
1886 ///
1887 /// \param baseType the inner-most element type of the array
1888 /// \param src - a char* pointing to the bit-pattern for a single
1889 /// base element of the array
1890 /// \param sizeInChars - the total size of the VLA, in chars
1891 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1892                                Address dest, Address src,
1893                                llvm::Value *sizeInChars) {
1894   CGBuilderTy &Builder = CGF.Builder;
1895 
1896   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1897   llvm::Value *baseSizeInChars
1898     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1899 
1900   Address begin =
1901     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1902   llvm::Value *end = Builder.CreateInBoundsGEP(
1903       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1904 
1905   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1906   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1907   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1908 
1909   // Make a loop over the VLA.  C99 guarantees that the VLA element
1910   // count must be nonzero.
1911   CGF.EmitBlock(loopBB);
1912 
1913   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1914   cur->addIncoming(begin.getPointer(), originBB);
1915 
1916   CharUnits curAlign =
1917     dest.getAlignment().alignmentOfArrayElement(baseSize);
1918 
1919   // memcpy the individual element bit-pattern.
1920   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1921                        /*volatile*/ false);
1922 
1923   // Go to the next element.
1924   llvm::Value *next =
1925     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1926 
1927   // Leave if that's the end of the VLA.
1928   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1929   Builder.CreateCondBr(done, contBB, loopBB);
1930   cur->addIncoming(next, loopBB);
1931 
1932   CGF.EmitBlock(contBB);
1933 }
1934 
1935 void
1936 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1937   // Ignore empty classes in C++.
1938   if (getLangOpts().CPlusPlus) {
1939     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1940       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1941         return;
1942     }
1943   }
1944 
1945   // Cast the dest ptr to the appropriate i8 pointer type.
1946   if (DestPtr.getElementType() != Int8Ty)
1947     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1948 
1949   // Get size and alignment info for this aggregate.
1950   CharUnits size = getContext().getTypeSizeInChars(Ty);
1951 
1952   llvm::Value *SizeVal;
1953   const VariableArrayType *vla;
1954 
1955   // Don't bother emitting a zero-byte memset.
1956   if (size.isZero()) {
1957     // But note that getTypeInfo returns 0 for a VLA.
1958     if (const VariableArrayType *vlaType =
1959           dyn_cast_or_null<VariableArrayType>(
1960                                           getContext().getAsArrayType(Ty))) {
1961       auto VlaSize = getVLASize(vlaType);
1962       SizeVal = VlaSize.NumElts;
1963       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1964       if (!eltSize.isOne())
1965         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1966       vla = vlaType;
1967     } else {
1968       return;
1969     }
1970   } else {
1971     SizeVal = CGM.getSize(size);
1972     vla = nullptr;
1973   }
1974 
1975   // If the type contains a pointer to data member we can't memset it to zero.
1976   // Instead, create a null constant and copy it to the destination.
1977   // TODO: there are other patterns besides zero that we can usefully memset,
1978   // like -1, which happens to be the pattern used by member-pointers.
1979   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1980     // For a VLA, emit a single element, then splat that over the VLA.
1981     if (vla) Ty = getContext().getBaseElementType(vla);
1982 
1983     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1984 
1985     llvm::GlobalVariable *NullVariable =
1986       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1987                                /*isConstant=*/true,
1988                                llvm::GlobalVariable::PrivateLinkage,
1989                                NullConstant, Twine());
1990     CharUnits NullAlign = DestPtr.getAlignment();
1991     NullVariable->setAlignment(NullAlign.getAsAlign());
1992     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1993                    NullAlign);
1994 
1995     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1996 
1997     // Get and call the appropriate llvm.memcpy overload.
1998     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1999     return;
2000   }
2001 
2002   // Otherwise, just memset the whole thing to zero.  This is legal
2003   // because in LLVM, all default initializers (other than the ones we just
2004   // handled above) are guaranteed to have a bit pattern of all zeros.
2005   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2006 }
2007 
2008 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2009   // Make sure that there is a block for the indirect goto.
2010   if (!IndirectBranch)
2011     GetIndirectGotoBlock();
2012 
2013   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2014 
2015   // Make sure the indirect branch includes all of the address-taken blocks.
2016   IndirectBranch->addDestination(BB);
2017   return llvm::BlockAddress::get(CurFn, BB);
2018 }
2019 
2020 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2021   // If we already made the indirect branch for indirect goto, return its block.
2022   if (IndirectBranch) return IndirectBranch->getParent();
2023 
2024   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2025 
2026   // Create the PHI node that indirect gotos will add entries to.
2027   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2028                                               "indirect.goto.dest");
2029 
2030   // Create the indirect branch instruction.
2031   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2032   return IndirectBranch->getParent();
2033 }
2034 
2035 /// Computes the length of an array in elements, as well as the base
2036 /// element type and a properly-typed first element pointer.
2037 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2038                                               QualType &baseType,
2039                                               Address &addr) {
2040   const ArrayType *arrayType = origArrayType;
2041 
2042   // If it's a VLA, we have to load the stored size.  Note that
2043   // this is the size of the VLA in bytes, not its size in elements.
2044   llvm::Value *numVLAElements = nullptr;
2045   if (isa<VariableArrayType>(arrayType)) {
2046     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2047 
2048     // Walk into all VLAs.  This doesn't require changes to addr,
2049     // which has type T* where T is the first non-VLA element type.
2050     do {
2051       QualType elementType = arrayType->getElementType();
2052       arrayType = getContext().getAsArrayType(elementType);
2053 
2054       // If we only have VLA components, 'addr' requires no adjustment.
2055       if (!arrayType) {
2056         baseType = elementType;
2057         return numVLAElements;
2058       }
2059     } while (isa<VariableArrayType>(arrayType));
2060 
2061     // We get out here only if we find a constant array type
2062     // inside the VLA.
2063   }
2064 
2065   // We have some number of constant-length arrays, so addr should
2066   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2067   // down to the first element of addr.
2068   SmallVector<llvm::Value*, 8> gepIndices;
2069 
2070   // GEP down to the array type.
2071   llvm::ConstantInt *zero = Builder.getInt32(0);
2072   gepIndices.push_back(zero);
2073 
2074   uint64_t countFromCLAs = 1;
2075   QualType eltType;
2076 
2077   llvm::ArrayType *llvmArrayType =
2078     dyn_cast<llvm::ArrayType>(addr.getElementType());
2079   while (llvmArrayType) {
2080     assert(isa<ConstantArrayType>(arrayType));
2081     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2082              == llvmArrayType->getNumElements());
2083 
2084     gepIndices.push_back(zero);
2085     countFromCLAs *= llvmArrayType->getNumElements();
2086     eltType = arrayType->getElementType();
2087 
2088     llvmArrayType =
2089       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2090     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2091     assert((!llvmArrayType || arrayType) &&
2092            "LLVM and Clang types are out-of-synch");
2093   }
2094 
2095   if (arrayType) {
2096     // From this point onwards, the Clang array type has been emitted
2097     // as some other type (probably a packed struct). Compute the array
2098     // size, and just emit the 'begin' expression as a bitcast.
2099     while (arrayType) {
2100       countFromCLAs *=
2101           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2102       eltType = arrayType->getElementType();
2103       arrayType = getContext().getAsArrayType(eltType);
2104     }
2105 
2106     llvm::Type *baseType = ConvertType(eltType);
2107     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2108   } else {
2109     // Create the actual GEP.
2110     addr = Address(Builder.CreateInBoundsGEP(
2111         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2112         addr.getAlignment());
2113   }
2114 
2115   baseType = eltType;
2116 
2117   llvm::Value *numElements
2118     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2119 
2120   // If we had any VLA dimensions, factor them in.
2121   if (numVLAElements)
2122     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2123 
2124   return numElements;
2125 }
2126 
2127 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2128   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2129   assert(vla && "type was not a variable array type!");
2130   return getVLASize(vla);
2131 }
2132 
2133 CodeGenFunction::VlaSizePair
2134 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2135   // The number of elements so far; always size_t.
2136   llvm::Value *numElements = nullptr;
2137 
2138   QualType elementType;
2139   do {
2140     elementType = type->getElementType();
2141     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2142     assert(vlaSize && "no size for VLA!");
2143     assert(vlaSize->getType() == SizeTy);
2144 
2145     if (!numElements) {
2146       numElements = vlaSize;
2147     } else {
2148       // It's undefined behavior if this wraps around, so mark it that way.
2149       // FIXME: Teach -fsanitize=undefined to trap this.
2150       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2151     }
2152   } while ((type = getContext().getAsVariableArrayType(elementType)));
2153 
2154   return { numElements, elementType };
2155 }
2156 
2157 CodeGenFunction::VlaSizePair
2158 CodeGenFunction::getVLAElements1D(QualType type) {
2159   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2160   assert(vla && "type was not a variable array type!");
2161   return getVLAElements1D(vla);
2162 }
2163 
2164 CodeGenFunction::VlaSizePair
2165 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2166   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2167   assert(VlaSize && "no size for VLA!");
2168   assert(VlaSize->getType() == SizeTy);
2169   return { VlaSize, Vla->getElementType() };
2170 }
2171 
2172 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2173   assert(type->isVariablyModifiedType() &&
2174          "Must pass variably modified type to EmitVLASizes!");
2175 
2176   EnsureInsertPoint();
2177 
2178   // We're going to walk down into the type and look for VLA
2179   // expressions.
2180   do {
2181     assert(type->isVariablyModifiedType());
2182 
2183     const Type *ty = type.getTypePtr();
2184     switch (ty->getTypeClass()) {
2185 
2186 #define TYPE(Class, Base)
2187 #define ABSTRACT_TYPE(Class, Base)
2188 #define NON_CANONICAL_TYPE(Class, Base)
2189 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2190 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2191 #include "clang/AST/TypeNodes.inc"
2192       llvm_unreachable("unexpected dependent type!");
2193 
2194     // These types are never variably-modified.
2195     case Type::Builtin:
2196     case Type::Complex:
2197     case Type::Vector:
2198     case Type::ExtVector:
2199     case Type::ConstantMatrix:
2200     case Type::Record:
2201     case Type::Enum:
2202     case Type::Elaborated:
2203     case Type::Using:
2204     case Type::TemplateSpecialization:
2205     case Type::ObjCTypeParam:
2206     case Type::ObjCObject:
2207     case Type::ObjCInterface:
2208     case Type::ObjCObjectPointer:
2209     case Type::BitInt:
2210       llvm_unreachable("type class is never variably-modified!");
2211 
2212     case Type::Adjusted:
2213       type = cast<AdjustedType>(ty)->getAdjustedType();
2214       break;
2215 
2216     case Type::Decayed:
2217       type = cast<DecayedType>(ty)->getPointeeType();
2218       break;
2219 
2220     case Type::Pointer:
2221       type = cast<PointerType>(ty)->getPointeeType();
2222       break;
2223 
2224     case Type::BlockPointer:
2225       type = cast<BlockPointerType>(ty)->getPointeeType();
2226       break;
2227 
2228     case Type::LValueReference:
2229     case Type::RValueReference:
2230       type = cast<ReferenceType>(ty)->getPointeeType();
2231       break;
2232 
2233     case Type::MemberPointer:
2234       type = cast<MemberPointerType>(ty)->getPointeeType();
2235       break;
2236 
2237     case Type::ConstantArray:
2238     case Type::IncompleteArray:
2239       // Losing element qualification here is fine.
2240       type = cast<ArrayType>(ty)->getElementType();
2241       break;
2242 
2243     case Type::VariableArray: {
2244       // Losing element qualification here is fine.
2245       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2246 
2247       // Unknown size indication requires no size computation.
2248       // Otherwise, evaluate and record it.
2249       if (const Expr *size = vat->getSizeExpr()) {
2250         // It's possible that we might have emitted this already,
2251         // e.g. with a typedef and a pointer to it.
2252         llvm::Value *&entry = VLASizeMap[size];
2253         if (!entry) {
2254           llvm::Value *Size = EmitScalarExpr(size);
2255 
2256           // C11 6.7.6.2p5:
2257           //   If the size is an expression that is not an integer constant
2258           //   expression [...] each time it is evaluated it shall have a value
2259           //   greater than zero.
2260           if (SanOpts.has(SanitizerKind::VLABound) &&
2261               size->getType()->isSignedIntegerType()) {
2262             SanitizerScope SanScope(this);
2263             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2264             llvm::Constant *StaticArgs[] = {
2265                 EmitCheckSourceLocation(size->getBeginLoc()),
2266                 EmitCheckTypeDescriptor(size->getType())};
2267             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2268                                      SanitizerKind::VLABound),
2269                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2270           }
2271 
2272           // Always zexting here would be wrong if it weren't
2273           // undefined behavior to have a negative bound.
2274           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2275         }
2276       }
2277       type = vat->getElementType();
2278       break;
2279     }
2280 
2281     case Type::FunctionProto:
2282     case Type::FunctionNoProto:
2283       type = cast<FunctionType>(ty)->getReturnType();
2284       break;
2285 
2286     case Type::Paren:
2287     case Type::TypeOf:
2288     case Type::UnaryTransform:
2289     case Type::Attributed:
2290     case Type::SubstTemplateTypeParm:
2291     case Type::MacroQualified:
2292       // Keep walking after single level desugaring.
2293       type = type.getSingleStepDesugaredType(getContext());
2294       break;
2295 
2296     case Type::Typedef:
2297     case Type::Decltype:
2298     case Type::Auto:
2299     case Type::DeducedTemplateSpecialization:
2300       // Stop walking: nothing to do.
2301       return;
2302 
2303     case Type::TypeOfExpr:
2304       // Stop walking: emit typeof expression.
2305       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2306       return;
2307 
2308     case Type::Atomic:
2309       type = cast<AtomicType>(ty)->getValueType();
2310       break;
2311 
2312     case Type::Pipe:
2313       type = cast<PipeType>(ty)->getElementType();
2314       break;
2315     }
2316   } while (type->isVariablyModifiedType());
2317 }
2318 
2319 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2320   if (getContext().getBuiltinVaListType()->isArrayType())
2321     return EmitPointerWithAlignment(E);
2322   return EmitLValue(E).getAddress(*this);
2323 }
2324 
2325 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2326   return EmitLValue(E).getAddress(*this);
2327 }
2328 
2329 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2330                                               const APValue &Init) {
2331   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2332   if (CGDebugInfo *Dbg = getDebugInfo())
2333     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2334       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2335 }
2336 
2337 CodeGenFunction::PeepholeProtection
2338 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2339   // At the moment, the only aggressive peephole we do in IR gen
2340   // is trunc(zext) folding, but if we add more, we can easily
2341   // extend this protection.
2342 
2343   if (!rvalue.isScalar()) return PeepholeProtection();
2344   llvm::Value *value = rvalue.getScalarVal();
2345   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2346 
2347   // Just make an extra bitcast.
2348   assert(HaveInsertPoint());
2349   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2350                                                   Builder.GetInsertBlock());
2351 
2352   PeepholeProtection protection;
2353   protection.Inst = inst;
2354   return protection;
2355 }
2356 
2357 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2358   if (!protection.Inst) return;
2359 
2360   // In theory, we could try to duplicate the peepholes now, but whatever.
2361   protection.Inst->eraseFromParent();
2362 }
2363 
2364 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2365                                               QualType Ty, SourceLocation Loc,
2366                                               SourceLocation AssumptionLoc,
2367                                               llvm::Value *Alignment,
2368                                               llvm::Value *OffsetValue) {
2369   if (Alignment->getType() != IntPtrTy)
2370     Alignment =
2371         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2372   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2373     OffsetValue =
2374         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2375   llvm::Value *TheCheck = nullptr;
2376   if (SanOpts.has(SanitizerKind::Alignment)) {
2377     llvm::Value *PtrIntValue =
2378         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2379 
2380     if (OffsetValue) {
2381       bool IsOffsetZero = false;
2382       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2383         IsOffsetZero = CI->isZero();
2384 
2385       if (!IsOffsetZero)
2386         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2387     }
2388 
2389     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2390     llvm::Value *Mask =
2391         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2392     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2393     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2394   }
2395   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2396       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2397 
2398   if (!SanOpts.has(SanitizerKind::Alignment))
2399     return;
2400   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2401                                OffsetValue, TheCheck, Assumption);
2402 }
2403 
2404 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2405                                               const Expr *E,
2406                                               SourceLocation AssumptionLoc,
2407                                               llvm::Value *Alignment,
2408                                               llvm::Value *OffsetValue) {
2409   if (auto *CE = dyn_cast<CastExpr>(E))
2410     E = CE->getSubExprAsWritten();
2411   QualType Ty = E->getType();
2412   SourceLocation Loc = E->getExprLoc();
2413 
2414   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2415                           OffsetValue);
2416 }
2417 
2418 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2419                                                  llvm::Value *AnnotatedVal,
2420                                                  StringRef AnnotationStr,
2421                                                  SourceLocation Location,
2422                                                  const AnnotateAttr *Attr) {
2423   SmallVector<llvm::Value *, 5> Args = {
2424       AnnotatedVal,
2425       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2426       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2427       CGM.EmitAnnotationLineNo(Location),
2428   };
2429   if (Attr)
2430     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2431   return Builder.CreateCall(AnnotationFn, Args);
2432 }
2433 
2434 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2435   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2436   // FIXME We create a new bitcast for every annotation because that's what
2437   // llvm-gcc was doing.
2438   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2439     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2440                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2441                        I->getAnnotation(), D->getLocation(), I);
2442 }
2443 
2444 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2445                                               Address Addr) {
2446   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2447   llvm::Value *V = Addr.getPointer();
2448   llvm::Type *VTy = V->getType();
2449   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2450   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2451   llvm::PointerType *IntrinTy =
2452       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2453   llvm::Function *F =
2454       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2455 
2456   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2457     // FIXME Always emit the cast inst so we can differentiate between
2458     // annotation on the first field of a struct and annotation on the struct
2459     // itself.
2460     if (VTy != IntrinTy)
2461       V = Builder.CreateBitCast(V, IntrinTy);
2462     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2463     V = Builder.CreateBitCast(V, VTy);
2464   }
2465 
2466   return Address(V, Addr.getAlignment());
2467 }
2468 
2469 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2470 
2471 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2472     : CGF(CGF) {
2473   assert(!CGF->IsSanitizerScope);
2474   CGF->IsSanitizerScope = true;
2475 }
2476 
2477 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2478   CGF->IsSanitizerScope = false;
2479 }
2480 
2481 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2482                                    const llvm::Twine &Name,
2483                                    llvm::BasicBlock *BB,
2484                                    llvm::BasicBlock::iterator InsertPt) const {
2485   LoopStack.InsertHelper(I);
2486   if (IsSanitizerScope)
2487     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2488 }
2489 
2490 void CGBuilderInserter::InsertHelper(
2491     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2492     llvm::BasicBlock::iterator InsertPt) const {
2493   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2494   if (CGF)
2495     CGF->InsertHelper(I, Name, BB, InsertPt);
2496 }
2497 
2498 // Emits an error if we don't have a valid set of target features for the
2499 // called function.
2500 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2501                                           const FunctionDecl *TargetDecl) {
2502   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2503 }
2504 
2505 // Emits an error if we don't have a valid set of target features for the
2506 // called function.
2507 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2508                                           const FunctionDecl *TargetDecl) {
2509   // Early exit if this is an indirect call.
2510   if (!TargetDecl)
2511     return;
2512 
2513   // Get the current enclosing function if it exists. If it doesn't
2514   // we can't check the target features anyhow.
2515   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2516   if (!FD)
2517     return;
2518 
2519   // Grab the required features for the call. For a builtin this is listed in
2520   // the td file with the default cpu, for an always_inline function this is any
2521   // listed cpu and any listed features.
2522   unsigned BuiltinID = TargetDecl->getBuiltinID();
2523   std::string MissingFeature;
2524   llvm::StringMap<bool> CallerFeatureMap;
2525   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2526   if (BuiltinID) {
2527     StringRef FeatureList(
2528         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2529     // Return if the builtin doesn't have any required features.
2530     if (FeatureList.empty())
2531       return;
2532     assert(!FeatureList.contains(' ') && "Space in feature list");
2533     TargetFeatures TF(CallerFeatureMap);
2534     if (!TF.hasRequiredFeatures(FeatureList))
2535       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2536           << TargetDecl->getDeclName() << FeatureList;
2537   } else if (!TargetDecl->isMultiVersion() &&
2538              TargetDecl->hasAttr<TargetAttr>()) {
2539     // Get the required features for the callee.
2540 
2541     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2542     ParsedTargetAttr ParsedAttr =
2543         CGM.getContext().filterFunctionTargetAttrs(TD);
2544 
2545     SmallVector<StringRef, 1> ReqFeatures;
2546     llvm::StringMap<bool> CalleeFeatureMap;
2547     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2548 
2549     for (const auto &F : ParsedAttr.Features) {
2550       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2551         ReqFeatures.push_back(StringRef(F).substr(1));
2552     }
2553 
2554     for (const auto &F : CalleeFeatureMap) {
2555       // Only positive features are "required".
2556       if (F.getValue())
2557         ReqFeatures.push_back(F.getKey());
2558     }
2559     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2560       if (!CallerFeatureMap.lookup(Feature)) {
2561         MissingFeature = Feature.str();
2562         return false;
2563       }
2564       return true;
2565     }))
2566       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2567           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2568   }
2569 }
2570 
2571 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2572   if (!CGM.getCodeGenOpts().SanitizeStats)
2573     return;
2574 
2575   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2576   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2577   CGM.getSanStats().create(IRB, SSK);
2578 }
2579 
2580 llvm::Value *
2581 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2582   llvm::Value *Condition = nullptr;
2583 
2584   if (!RO.Conditions.Architecture.empty())
2585     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2586 
2587   if (!RO.Conditions.Features.empty()) {
2588     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2589     Condition =
2590         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2591   }
2592   return Condition;
2593 }
2594 
2595 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2596                                              llvm::Function *Resolver,
2597                                              CGBuilderTy &Builder,
2598                                              llvm::Function *FuncToReturn,
2599                                              bool SupportsIFunc) {
2600   if (SupportsIFunc) {
2601     Builder.CreateRet(FuncToReturn);
2602     return;
2603   }
2604 
2605   llvm::SmallVector<llvm::Value *, 10> Args;
2606   llvm::for_each(Resolver->args(),
2607                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2608 
2609   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2610   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2611 
2612   if (Resolver->getReturnType()->isVoidTy())
2613     Builder.CreateRetVoid();
2614   else
2615     Builder.CreateRet(Result);
2616 }
2617 
2618 void CodeGenFunction::EmitMultiVersionResolver(
2619     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2620   assert(getContext().getTargetInfo().getTriple().isX86() &&
2621          "Only implemented for x86 targets");
2622 
2623   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2624 
2625   // Main function's basic block.
2626   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2627   Builder.SetInsertPoint(CurBlock);
2628   EmitX86CpuInit();
2629 
2630   for (const MultiVersionResolverOption &RO : Options) {
2631     Builder.SetInsertPoint(CurBlock);
2632     llvm::Value *Condition = FormResolverCondition(RO);
2633 
2634     // The 'default' or 'generic' case.
2635     if (!Condition) {
2636       assert(&RO == Options.end() - 1 &&
2637              "Default or Generic case must be last");
2638       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2639                                        SupportsIFunc);
2640       return;
2641     }
2642 
2643     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2644     CGBuilderTy RetBuilder(*this, RetBlock);
2645     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2646                                      SupportsIFunc);
2647     CurBlock = createBasicBlock("resolver_else", Resolver);
2648     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2649   }
2650 
2651   // If no generic/default, emit an unreachable.
2652   Builder.SetInsertPoint(CurBlock);
2653   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2654   TrapCall->setDoesNotReturn();
2655   TrapCall->setDoesNotThrow();
2656   Builder.CreateUnreachable();
2657   Builder.ClearInsertionPoint();
2658 }
2659 
2660 // Loc - where the diagnostic will point, where in the source code this
2661 //  alignment has failed.
2662 // SecondaryLoc - if present (will be present if sufficiently different from
2663 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2664 //  It should be the location where the __attribute__((assume_aligned))
2665 //  was written e.g.
2666 void CodeGenFunction::emitAlignmentAssumptionCheck(
2667     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2668     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2669     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2670     llvm::Instruction *Assumption) {
2671   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2672          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2673              llvm::Intrinsic::getDeclaration(
2674                  Builder.GetInsertBlock()->getParent()->getParent(),
2675                  llvm::Intrinsic::assume) &&
2676          "Assumption should be a call to llvm.assume().");
2677   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2678          "Assumption should be the last instruction of the basic block, "
2679          "since the basic block is still being generated.");
2680 
2681   if (!SanOpts.has(SanitizerKind::Alignment))
2682     return;
2683 
2684   // Don't check pointers to volatile data. The behavior here is implementation-
2685   // defined.
2686   if (Ty->getPointeeType().isVolatileQualified())
2687     return;
2688 
2689   // We need to temorairly remove the assumption so we can insert the
2690   // sanitizer check before it, else the check will be dropped by optimizations.
2691   Assumption->removeFromParent();
2692 
2693   {
2694     SanitizerScope SanScope(this);
2695 
2696     if (!OffsetValue)
2697       OffsetValue = Builder.getInt1(0); // no offset.
2698 
2699     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2700                                     EmitCheckSourceLocation(SecondaryLoc),
2701                                     EmitCheckTypeDescriptor(Ty)};
2702     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2703                                   EmitCheckValue(Alignment),
2704                                   EmitCheckValue(OffsetValue)};
2705     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2706               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2707   }
2708 
2709   // We are now in the (new, empty) "cont" basic block.
2710   // Reintroduce the assumption.
2711   Builder.Insert(Assumption);
2712   // FIXME: Assumption still has it's original basic block as it's Parent.
2713 }
2714 
2715 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2716   if (CGDebugInfo *DI = getDebugInfo())
2717     return DI->SourceLocToDebugLoc(Location);
2718 
2719   return llvm::DebugLoc();
2720 }
2721 
2722 llvm::Value *
2723 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2724                                                       Stmt::Likelihood LH) {
2725   switch (LH) {
2726   case Stmt::LH_None:
2727     return Cond;
2728   case Stmt::LH_Likely:
2729   case Stmt::LH_Unlikely:
2730     // Don't generate llvm.expect on -O0 as the backend won't use it for
2731     // anything.
2732     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2733       return Cond;
2734     llvm::Type *CondTy = Cond->getType();
2735     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2736     llvm::Function *FnExpect =
2737         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2738     llvm::Value *ExpectedValueOfCond =
2739         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2740     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2741                               Cond->getName() + ".expval");
2742   }
2743   llvm_unreachable("Unknown Likelihood");
2744 }
2745