1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/BinaryFormat/Dwarf.h" 28 #include "llvm/Frontend/OpenMP/OMPConstants.h" 29 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/Support/AtomicOrdering.h" 35 using namespace clang; 36 using namespace CodeGen; 37 using namespace llvm::omp; 38 39 static const VarDecl *getBaseDecl(const Expr *Ref); 40 41 namespace { 42 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 43 /// for captured expressions. 44 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 45 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 46 for (const auto *C : S.clauses()) { 47 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 48 if (const auto *PreInit = 49 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 50 for (const auto *I : PreInit->decls()) { 51 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 52 CGF.EmitVarDecl(cast<VarDecl>(*I)); 53 } else { 54 CodeGenFunction::AutoVarEmission Emission = 55 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 56 CGF.EmitAutoVarCleanups(Emission); 57 } 58 } 59 } 60 } 61 } 62 } 63 CodeGenFunction::OMPPrivateScope InlinedShareds; 64 65 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 66 return CGF.LambdaCaptureFields.lookup(VD) || 67 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 68 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 69 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 70 } 71 72 public: 73 OMPLexicalScope( 74 CodeGenFunction &CGF, const OMPExecutableDirective &S, 75 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 76 const bool EmitPreInitStmt = true) 77 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 78 InlinedShareds(CGF) { 79 if (EmitPreInitStmt) 80 emitPreInitStmt(CGF, S); 81 if (!CapturedRegion.hasValue()) 82 return; 83 assert(S.hasAssociatedStmt() && 84 "Expected associated statement for inlined directive."); 85 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 86 for (const auto &C : CS->captures()) { 87 if (C.capturesVariable() || C.capturesVariableByCopy()) { 88 auto *VD = C.getCapturedVar(); 89 assert(VD == VD->getCanonicalDecl() && 90 "Canonical decl must be captured."); 91 DeclRefExpr DRE( 92 CGF.getContext(), const_cast<VarDecl *>(VD), 93 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 94 InlinedShareds.isGlobalVarCaptured(VD)), 95 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 96 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 97 return CGF.EmitLValue(&DRE).getAddress(CGF); 98 }); 99 } 100 } 101 (void)InlinedShareds.Privatize(); 102 } 103 }; 104 105 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 106 /// for captured expressions. 107 class OMPParallelScope final : public OMPLexicalScope { 108 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 109 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 110 return !(isOpenMPTargetExecutionDirective(Kind) || 111 isOpenMPLoopBoundSharingDirective(Kind)) && 112 isOpenMPParallelDirective(Kind); 113 } 114 115 public: 116 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 117 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 118 EmitPreInitStmt(S)) {} 119 }; 120 121 /// Lexical scope for OpenMP teams construct, that handles correct codegen 122 /// for captured expressions. 123 class OMPTeamsScope final : public OMPLexicalScope { 124 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 125 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 126 return !isOpenMPTargetExecutionDirective(Kind) && 127 isOpenMPTeamsDirective(Kind); 128 } 129 130 public: 131 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 132 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 133 EmitPreInitStmt(S)) {} 134 }; 135 136 /// Private scope for OpenMP loop-based directives, that supports capturing 137 /// of used expression from loop statement. 138 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 139 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 140 const DeclStmt *PreInits; 141 CodeGenFunction::OMPMapVars PreCondVars; 142 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 143 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 144 for (const auto *E : LD->counters()) { 145 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 146 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 147 (void)PreCondVars.setVarAddr( 148 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 149 } 150 // Mark private vars as undefs. 151 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 152 for (const Expr *IRef : C->varlists()) { 153 const auto *OrigVD = 154 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 155 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 156 (void)PreCondVars.setVarAddr( 157 CGF, OrigVD, 158 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 159 CGF.getContext().getPointerType( 160 OrigVD->getType().getNonReferenceType()))), 161 CGF.getContext().getDeclAlign(OrigVD))); 162 } 163 } 164 } 165 (void)PreCondVars.apply(CGF); 166 // Emit init, __range and __end variables for C++ range loops. 167 (void)OMPLoopBasedDirective::doForAllLoops( 168 LD->getInnermostCapturedStmt()->getCapturedStmt(), 169 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 170 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 171 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 172 if (const Stmt *Init = CXXFor->getInit()) 173 CGF.EmitStmt(Init); 174 CGF.EmitStmt(CXXFor->getRangeStmt()); 175 CGF.EmitStmt(CXXFor->getEndStmt()); 176 } 177 return false; 178 }); 179 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 180 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 181 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 182 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 183 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 184 } else { 185 llvm_unreachable("Unknown loop-based directive kind."); 186 } 187 if (PreInits) { 188 for (const auto *I : PreInits->decls()) 189 CGF.EmitVarDecl(cast<VarDecl>(*I)); 190 } 191 PreCondVars.restore(CGF); 192 } 193 194 public: 195 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 196 : CodeGenFunction::RunCleanupsScope(CGF) { 197 emitPreInitStmt(CGF, S); 198 } 199 }; 200 201 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 202 CodeGenFunction::OMPPrivateScope InlinedShareds; 203 204 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 205 return CGF.LambdaCaptureFields.lookup(VD) || 206 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 207 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 208 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 209 } 210 211 public: 212 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 213 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 214 InlinedShareds(CGF) { 215 for (const auto *C : S.clauses()) { 216 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 217 if (const auto *PreInit = 218 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 219 for (const auto *I : PreInit->decls()) { 220 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 221 CGF.EmitVarDecl(cast<VarDecl>(*I)); 222 } else { 223 CodeGenFunction::AutoVarEmission Emission = 224 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 225 CGF.EmitAutoVarCleanups(Emission); 226 } 227 } 228 } 229 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 230 for (const Expr *E : UDP->varlists()) { 231 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 232 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 233 CGF.EmitVarDecl(*OED); 234 } 235 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 236 for (const Expr *E : UDP->varlists()) { 237 const Decl *D = getBaseDecl(E); 238 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 239 CGF.EmitVarDecl(*OED); 240 } 241 } 242 } 243 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 244 CGF.EmitOMPPrivateClause(S, InlinedShareds); 245 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 246 if (const Expr *E = TG->getReductionRef()) 247 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 248 } 249 // Temp copy arrays for inscan reductions should not be emitted as they are 250 // not used in simd only mode. 251 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 252 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 253 if (C->getModifier() != OMPC_REDUCTION_inscan) 254 continue; 255 for (const Expr *E : C->copy_array_temps()) 256 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 257 } 258 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 259 while (CS) { 260 for (auto &C : CS->captures()) { 261 if (C.capturesVariable() || C.capturesVariableByCopy()) { 262 auto *VD = C.getCapturedVar(); 263 if (CopyArrayTemps.contains(VD)) 264 continue; 265 assert(VD == VD->getCanonicalDecl() && 266 "Canonical decl must be captured."); 267 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 268 isCapturedVar(CGF, VD) || 269 (CGF.CapturedStmtInfo && 270 InlinedShareds.isGlobalVarCaptured(VD)), 271 VD->getType().getNonReferenceType(), VK_LValue, 272 C.getLocation()); 273 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 274 return CGF.EmitLValue(&DRE).getAddress(CGF); 275 }); 276 } 277 } 278 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 279 } 280 (void)InlinedShareds.Privatize(); 281 } 282 }; 283 284 } // namespace 285 286 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 287 const OMPExecutableDirective &S, 288 const RegionCodeGenTy &CodeGen); 289 290 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 291 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 292 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 293 OrigVD = OrigVD->getCanonicalDecl(); 294 bool IsCaptured = 295 LambdaCaptureFields.lookup(OrigVD) || 296 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 297 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 298 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 299 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 300 return EmitLValue(&DRE); 301 } 302 } 303 return EmitLValue(E); 304 } 305 306 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 307 ASTContext &C = getContext(); 308 llvm::Value *Size = nullptr; 309 auto SizeInChars = C.getTypeSizeInChars(Ty); 310 if (SizeInChars.isZero()) { 311 // getTypeSizeInChars() returns 0 for a VLA. 312 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 313 VlaSizePair VlaSize = getVLASize(VAT); 314 Ty = VlaSize.Type; 315 Size = 316 Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) : VlaSize.NumElts; 317 } 318 SizeInChars = C.getTypeSizeInChars(Ty); 319 if (SizeInChars.isZero()) 320 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 321 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 322 } 323 return CGM.getSize(SizeInChars); 324 } 325 326 void CodeGenFunction::GenerateOpenMPCapturedVars( 327 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 328 const RecordDecl *RD = S.getCapturedRecordDecl(); 329 auto CurField = RD->field_begin(); 330 auto CurCap = S.captures().begin(); 331 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 332 E = S.capture_init_end(); 333 I != E; ++I, ++CurField, ++CurCap) { 334 if (CurField->hasCapturedVLAType()) { 335 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 336 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 337 CapturedVars.push_back(Val); 338 } else if (CurCap->capturesThis()) { 339 CapturedVars.push_back(CXXThisValue); 340 } else if (CurCap->capturesVariableByCopy()) { 341 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 342 343 // If the field is not a pointer, we need to save the actual value 344 // and load it as a void pointer. 345 if (!CurField->getType()->isAnyPointerType()) { 346 ASTContext &Ctx = getContext(); 347 Address DstAddr = CreateMemTemp( 348 Ctx.getUIntPtrType(), 349 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 350 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 351 352 llvm::Value *SrcAddrVal = EmitScalarConversion( 353 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 354 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 355 LValue SrcLV = 356 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 357 358 // Store the value using the source type pointer. 359 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 360 361 // Load the value using the destination type pointer. 362 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 363 } 364 CapturedVars.push_back(CV); 365 } else { 366 assert(CurCap->capturesVariable() && "Expected capture by reference."); 367 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 368 } 369 } 370 } 371 372 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 373 QualType DstType, StringRef Name, 374 LValue AddrLV) { 375 ASTContext &Ctx = CGF.getContext(); 376 377 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 378 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 379 Ctx.getPointerType(DstType), Loc); 380 Address TmpAddr = 381 CGF.MakeNaturalAlignAddrLValue(CastedPtr, DstType).getAddress(CGF); 382 return TmpAddr; 383 } 384 385 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 386 if (T->isLValueReferenceType()) 387 return C.getLValueReferenceType( 388 getCanonicalParamType(C, T.getNonReferenceType()), 389 /*SpelledAsLValue=*/false); 390 if (T->isPointerType()) 391 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 392 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 393 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 394 return getCanonicalParamType(C, VLA->getElementType()); 395 if (!A->isVariablyModifiedType()) 396 return C.getCanonicalType(T); 397 } 398 return C.getCanonicalParamType(T); 399 } 400 401 namespace { 402 /// Contains required data for proper outlined function codegen. 403 struct FunctionOptions { 404 /// Captured statement for which the function is generated. 405 const CapturedStmt *S = nullptr; 406 /// true if cast to/from UIntPtr is required for variables captured by 407 /// value. 408 const bool UIntPtrCastRequired = true; 409 /// true if only casted arguments must be registered as local args or VLA 410 /// sizes. 411 const bool RegisterCastedArgsOnly = false; 412 /// Name of the generated function. 413 const StringRef FunctionName; 414 /// Location of the non-debug version of the outlined function. 415 SourceLocation Loc; 416 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 417 bool RegisterCastedArgsOnly, StringRef FunctionName, 418 SourceLocation Loc) 419 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 420 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 421 FunctionName(FunctionName), Loc(Loc) {} 422 }; 423 } // namespace 424 425 static llvm::Function *emitOutlinedFunctionPrologue( 426 CodeGenFunction &CGF, FunctionArgList &Args, 427 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 428 &LocalAddrs, 429 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 430 &VLASizes, 431 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 432 const CapturedDecl *CD = FO.S->getCapturedDecl(); 433 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 434 assert(CD->hasBody() && "missing CapturedDecl body"); 435 436 CXXThisValue = nullptr; 437 // Build the argument list. 438 CodeGenModule &CGM = CGF.CGM; 439 ASTContext &Ctx = CGM.getContext(); 440 FunctionArgList TargetArgs; 441 Args.append(CD->param_begin(), 442 std::next(CD->param_begin(), CD->getContextParamPosition())); 443 TargetArgs.append( 444 CD->param_begin(), 445 std::next(CD->param_begin(), CD->getContextParamPosition())); 446 auto I = FO.S->captures().begin(); 447 FunctionDecl *DebugFunctionDecl = nullptr; 448 if (!FO.UIntPtrCastRequired) { 449 FunctionProtoType::ExtProtoInfo EPI; 450 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 451 DebugFunctionDecl = FunctionDecl::Create( 452 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 453 SourceLocation(), DeclarationName(), FunctionTy, 454 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 455 /*UsesFPIntrin=*/false, /*isInlineSpecified=*/false, 456 /*hasWrittenPrototype=*/false); 457 } 458 for (const FieldDecl *FD : RD->fields()) { 459 QualType ArgType = FD->getType(); 460 IdentifierInfo *II = nullptr; 461 VarDecl *CapVar = nullptr; 462 463 // If this is a capture by copy and the type is not a pointer, the outlined 464 // function argument type should be uintptr and the value properly casted to 465 // uintptr. This is necessary given that the runtime library is only able to 466 // deal with pointers. We can pass in the same way the VLA type sizes to the 467 // outlined function. 468 if (FO.UIntPtrCastRequired && 469 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 470 I->capturesVariableArrayType())) 471 ArgType = Ctx.getUIntPtrType(); 472 473 if (I->capturesVariable() || I->capturesVariableByCopy()) { 474 CapVar = I->getCapturedVar(); 475 II = CapVar->getIdentifier(); 476 } else if (I->capturesThis()) { 477 II = &Ctx.Idents.get("this"); 478 } else { 479 assert(I->capturesVariableArrayType()); 480 II = &Ctx.Idents.get("vla"); 481 } 482 if (ArgType->isVariablyModifiedType()) 483 ArgType = getCanonicalParamType(Ctx, ArgType); 484 VarDecl *Arg; 485 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 486 Arg = ParmVarDecl::Create( 487 Ctx, DebugFunctionDecl, 488 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 489 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 490 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 491 } else { 492 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 493 II, ArgType, ImplicitParamDecl::Other); 494 } 495 Args.emplace_back(Arg); 496 // Do not cast arguments if we emit function with non-original types. 497 TargetArgs.emplace_back( 498 FO.UIntPtrCastRequired 499 ? Arg 500 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 501 ++I; 502 } 503 Args.append(std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 504 CD->param_end()); 505 TargetArgs.append( 506 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 507 CD->param_end()); 508 509 // Create the function declaration. 510 const CGFunctionInfo &FuncInfo = 511 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 512 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 513 514 auto *F = 515 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 516 FO.FunctionName, &CGM.getModule()); 517 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 518 if (CD->isNothrow()) 519 F->setDoesNotThrow(); 520 F->setDoesNotRecurse(); 521 522 // Always inline the outlined function if optimizations are enabled. 523 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 524 F->removeFnAttr(llvm::Attribute::NoInline); 525 F->addFnAttr(llvm::Attribute::AlwaysInline); 526 } 527 528 // Generate the function. 529 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 530 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 531 FO.UIntPtrCastRequired ? FO.Loc 532 : CD->getBody()->getBeginLoc()); 533 unsigned Cnt = CD->getContextParamPosition(); 534 I = FO.S->captures().begin(); 535 for (const FieldDecl *FD : RD->fields()) { 536 // Do not map arguments if we emit function with non-original types. 537 Address LocalAddr(Address::invalid()); 538 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 539 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 540 TargetArgs[Cnt]); 541 } else { 542 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 543 } 544 // If we are capturing a pointer by copy we don't need to do anything, just 545 // use the value that we get from the arguments. 546 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 547 const VarDecl *CurVD = I->getCapturedVar(); 548 if (!FO.RegisterCastedArgsOnly) 549 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 550 ++Cnt; 551 ++I; 552 continue; 553 } 554 555 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 556 AlignmentSource::Decl); 557 if (FD->hasCapturedVLAType()) { 558 if (FO.UIntPtrCastRequired) { 559 ArgLVal = CGF.MakeAddrLValue( 560 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 561 Args[Cnt]->getName(), ArgLVal), 562 FD->getType(), AlignmentSource::Decl); 563 } 564 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 565 const VariableArrayType *VAT = FD->getCapturedVLAType(); 566 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 567 } else if (I->capturesVariable()) { 568 const VarDecl *Var = I->getCapturedVar(); 569 QualType VarTy = Var->getType(); 570 Address ArgAddr = ArgLVal.getAddress(CGF); 571 if (ArgLVal.getType()->isLValueReferenceType()) { 572 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 573 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 574 assert(ArgLVal.getType()->isPointerType()); 575 ArgAddr = CGF.EmitLoadOfPointer( 576 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 577 } 578 if (!FO.RegisterCastedArgsOnly) { 579 LocalAddrs.insert( 580 {Args[Cnt], 581 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 582 } 583 } else if (I->capturesVariableByCopy()) { 584 assert(!FD->getType()->isAnyPointerType() && 585 "Not expecting a captured pointer."); 586 const VarDecl *Var = I->getCapturedVar(); 587 LocalAddrs.insert({Args[Cnt], 588 {Var, FO.UIntPtrCastRequired 589 ? castValueFromUintptr( 590 CGF, I->getLocation(), FD->getType(), 591 Args[Cnt]->getName(), ArgLVal) 592 : ArgLVal.getAddress(CGF)}}); 593 } else { 594 // If 'this' is captured, load it into CXXThisValue. 595 assert(I->capturesThis()); 596 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 597 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 598 } 599 ++Cnt; 600 ++I; 601 } 602 603 return F; 604 } 605 606 llvm::Function * 607 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 608 SourceLocation Loc) { 609 assert( 610 CapturedStmtInfo && 611 "CapturedStmtInfo should be set when generating the captured function"); 612 const CapturedDecl *CD = S.getCapturedDecl(); 613 // Build the argument list. 614 bool NeedWrapperFunction = 615 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 616 FunctionArgList Args; 617 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 618 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 619 SmallString<256> Buffer; 620 llvm::raw_svector_ostream Out(Buffer); 621 Out << CapturedStmtInfo->getHelperName(); 622 if (NeedWrapperFunction) 623 Out << "_debug__"; 624 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 625 Out.str(), Loc); 626 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 627 VLASizes, CXXThisValue, FO); 628 CodeGenFunction::OMPPrivateScope LocalScope(*this); 629 for (const auto &LocalAddrPair : LocalAddrs) { 630 if (LocalAddrPair.second.first) { 631 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 632 return LocalAddrPair.second.second; 633 }); 634 } 635 } 636 (void)LocalScope.Privatize(); 637 for (const auto &VLASizePair : VLASizes) 638 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 639 PGO.assignRegionCounters(GlobalDecl(CD), F); 640 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 641 (void)LocalScope.ForceCleanup(); 642 FinishFunction(CD->getBodyRBrace()); 643 if (!NeedWrapperFunction) 644 return F; 645 646 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 647 /*RegisterCastedArgsOnly=*/true, 648 CapturedStmtInfo->getHelperName(), Loc); 649 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 650 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 651 Args.clear(); 652 LocalAddrs.clear(); 653 VLASizes.clear(); 654 llvm::Function *WrapperF = 655 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 656 WrapperCGF.CXXThisValue, WrapperFO); 657 llvm::SmallVector<llvm::Value *, 4> CallArgs; 658 auto *PI = F->arg_begin(); 659 for (const auto *Arg : Args) { 660 llvm::Value *CallArg; 661 auto I = LocalAddrs.find(Arg); 662 if (I != LocalAddrs.end()) { 663 LValue LV = WrapperCGF.MakeAddrLValue( 664 I->second.second, 665 I->second.first ? I->second.first->getType() : Arg->getType(), 666 AlignmentSource::Decl); 667 if (LV.getType()->isAnyComplexType()) 668 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 669 LV.getAddress(WrapperCGF), 670 PI->getType()->getPointerTo( 671 LV.getAddress(WrapperCGF).getAddressSpace()))); 672 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 673 } else { 674 auto EI = VLASizes.find(Arg); 675 if (EI != VLASizes.end()) { 676 CallArg = EI->second.second; 677 } else { 678 LValue LV = 679 WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 680 Arg->getType(), AlignmentSource::Decl); 681 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 682 } 683 } 684 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 685 ++PI; 686 } 687 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 688 WrapperCGF.FinishFunction(); 689 return WrapperF; 690 } 691 692 //===----------------------------------------------------------------------===// 693 // OpenMP Directive Emission 694 //===----------------------------------------------------------------------===// 695 void CodeGenFunction::EmitOMPAggregateAssign( 696 Address DestAddr, Address SrcAddr, QualType OriginalType, 697 const llvm::function_ref<void(Address, Address)> CopyGen) { 698 // Perform element-by-element initialization. 699 QualType ElementTy; 700 701 // Drill down to the base element type on both arrays. 702 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 703 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 704 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 705 706 llvm::Value *SrcBegin = SrcAddr.getPointer(); 707 llvm::Value *DestBegin = DestAddr.getPointer(); 708 // Cast from pointer to array type to pointer to single element. 709 llvm::Value *DestEnd = 710 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 711 // The basic structure here is a while-do loop. 712 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 713 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 714 llvm::Value *IsEmpty = 715 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 716 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 717 718 // Enter the loop body, making that address the current address. 719 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 720 EmitBlock(BodyBB); 721 722 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 723 724 llvm::PHINode *SrcElementPHI = 725 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 726 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 727 Address SrcElementCurrent = 728 Address(SrcElementPHI, 729 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 730 731 llvm::PHINode *DestElementPHI = Builder.CreatePHI( 732 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 733 DestElementPHI->addIncoming(DestBegin, EntryBB); 734 Address DestElementCurrent = 735 Address(DestElementPHI, 736 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 737 738 // Emit copy. 739 CopyGen(DestElementCurrent, SrcElementCurrent); 740 741 // Shift the address forward by one element. 742 llvm::Value *DestElementNext = 743 Builder.CreateConstGEP1_32(DestAddr.getElementType(), DestElementPHI, 744 /*Idx0=*/1, "omp.arraycpy.dest.element"); 745 llvm::Value *SrcElementNext = 746 Builder.CreateConstGEP1_32(SrcAddr.getElementType(), SrcElementPHI, 747 /*Idx0=*/1, "omp.arraycpy.src.element"); 748 // Check whether we've reached the end. 749 llvm::Value *Done = 750 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 751 Builder.CreateCondBr(Done, DoneBB, BodyBB); 752 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 753 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 754 755 // Done. 756 EmitBlock(DoneBB, /*IsFinished=*/true); 757 } 758 759 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 760 Address SrcAddr, const VarDecl *DestVD, 761 const VarDecl *SrcVD, const Expr *Copy) { 762 if (OriginalType->isArrayType()) { 763 const auto *BO = dyn_cast<BinaryOperator>(Copy); 764 if (BO && BO->getOpcode() == BO_Assign) { 765 // Perform simple memcpy for simple copying. 766 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 767 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 768 EmitAggregateAssign(Dest, Src, OriginalType); 769 } else { 770 // For arrays with complex element types perform element by element 771 // copying. 772 EmitOMPAggregateAssign( 773 DestAddr, SrcAddr, OriginalType, 774 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 775 // Working with the single array element, so have to remap 776 // destination and source variables to corresponding array 777 // elements. 778 CodeGenFunction::OMPPrivateScope Remap(*this); 779 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 780 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 781 (void)Remap.Privatize(); 782 EmitIgnoredExpr(Copy); 783 }); 784 } 785 } else { 786 // Remap pseudo source variable to private copy. 787 CodeGenFunction::OMPPrivateScope Remap(*this); 788 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 789 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 790 (void)Remap.Privatize(); 791 // Emit copying of the whole variable. 792 EmitIgnoredExpr(Copy); 793 } 794 } 795 796 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 797 OMPPrivateScope &PrivateScope) { 798 if (!HaveInsertPoint()) 799 return false; 800 bool DeviceConstTarget = 801 getLangOpts().OpenMPIsDevice && 802 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 803 bool FirstprivateIsLastprivate = false; 804 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 805 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 806 for (const auto *D : C->varlists()) 807 Lastprivates.try_emplace( 808 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 809 C->getKind()); 810 } 811 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 812 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 813 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 814 // Force emission of the firstprivate copy if the directive does not emit 815 // outlined function, like omp for, omp simd, omp distribute etc. 816 bool MustEmitFirstprivateCopy = 817 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 818 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 819 const auto *IRef = C->varlist_begin(); 820 const auto *InitsRef = C->inits().begin(); 821 for (const Expr *IInit : C->private_copies()) { 822 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 823 bool ThisFirstprivateIsLastprivate = 824 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 825 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 826 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 827 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 828 !FD->getType()->isReferenceType() && 829 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 830 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 831 ++IRef; 832 ++InitsRef; 833 continue; 834 } 835 // Do not emit copy for firstprivate constant variables in target regions, 836 // captured by reference. 837 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 838 FD && FD->getType()->isReferenceType() && 839 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 840 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 841 ++IRef; 842 ++InitsRef; 843 continue; 844 } 845 FirstprivateIsLastprivate = 846 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 847 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 848 const auto *VDInit = 849 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 850 bool IsRegistered; 851 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 852 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 853 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 854 LValue OriginalLVal; 855 if (!FD) { 856 // Check if the firstprivate variable is just a constant value. 857 ConstantEmission CE = tryEmitAsConstant(&DRE); 858 if (CE && !CE.isReference()) { 859 // Constant value, no need to create a copy. 860 ++IRef; 861 ++InitsRef; 862 continue; 863 } 864 if (CE && CE.isReference()) { 865 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 866 } else { 867 assert(!CE && "Expected non-constant firstprivate."); 868 OriginalLVal = EmitLValue(&DRE); 869 } 870 } else { 871 OriginalLVal = EmitLValue(&DRE); 872 } 873 QualType Type = VD->getType(); 874 if (Type->isArrayType()) { 875 // Emit VarDecl with copy init for arrays. 876 // Get the address of the original variable captured in current 877 // captured region. 878 IsRegistered = PrivateScope.addPrivate( 879 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 880 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 881 const Expr *Init = VD->getInit(); 882 if (!isa<CXXConstructExpr>(Init) || 883 isTrivialInitializer(Init)) { 884 // Perform simple memcpy. 885 LValue Dest = 886 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 887 EmitAggregateAssign(Dest, OriginalLVal, Type); 888 } else { 889 EmitOMPAggregateAssign( 890 Emission.getAllocatedAddress(), 891 OriginalLVal.getAddress(*this), Type, 892 [this, VDInit, Init](Address DestElement, 893 Address SrcElement) { 894 // Clean up any temporaries needed by the 895 // initialization. 896 RunCleanupsScope InitScope(*this); 897 // Emit initialization for single element. 898 setAddrOfLocalVar(VDInit, SrcElement); 899 EmitAnyExprToMem(Init, DestElement, 900 Init->getType().getQualifiers(), 901 /*IsInitializer*/ false); 902 LocalDeclMap.erase(VDInit); 903 }); 904 } 905 EmitAutoVarCleanups(Emission); 906 return Emission.getAllocatedAddress(); 907 }); 908 } else { 909 Address OriginalAddr = OriginalLVal.getAddress(*this); 910 IsRegistered = 911 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 912 ThisFirstprivateIsLastprivate, 913 OrigVD, &Lastprivates, IRef]() { 914 // Emit private VarDecl with copy init. 915 // Remap temp VDInit variable to the address of the original 916 // variable (for proper handling of captured global variables). 917 setAddrOfLocalVar(VDInit, OriginalAddr); 918 EmitDecl(*VD); 919 LocalDeclMap.erase(VDInit); 920 if (ThisFirstprivateIsLastprivate && 921 Lastprivates[OrigVD->getCanonicalDecl()] == 922 OMPC_LASTPRIVATE_conditional) { 923 // Create/init special variable for lastprivate conditionals. 924 Address VDAddr = 925 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 926 *this, OrigVD); 927 llvm::Value *V = EmitLoadOfScalar( 928 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 929 AlignmentSource::Decl), 930 (*IRef)->getExprLoc()); 931 EmitStoreOfScalar(V, 932 MakeAddrLValue(VDAddr, (*IRef)->getType(), 933 AlignmentSource::Decl)); 934 LocalDeclMap.erase(VD); 935 setAddrOfLocalVar(VD, VDAddr); 936 return VDAddr; 937 } 938 return GetAddrOfLocalVar(VD); 939 }); 940 } 941 assert(IsRegistered && 942 "firstprivate var already registered as private"); 943 // Silence the warning about unused variable. 944 (void)IsRegistered; 945 } 946 ++IRef; 947 ++InitsRef; 948 } 949 } 950 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 951 } 952 953 void CodeGenFunction::EmitOMPPrivateClause( 954 const OMPExecutableDirective &D, 955 CodeGenFunction::OMPPrivateScope &PrivateScope) { 956 if (!HaveInsertPoint()) 957 return; 958 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 959 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 960 auto IRef = C->varlist_begin(); 961 for (const Expr *IInit : C->private_copies()) { 962 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 963 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 964 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 965 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 966 // Emit private VarDecl with copy init. 967 EmitDecl(*VD); 968 return GetAddrOfLocalVar(VD); 969 }); 970 assert(IsRegistered && "private var already registered as private"); 971 // Silence the warning about unused variable. 972 (void)IsRegistered; 973 } 974 ++IRef; 975 } 976 } 977 } 978 979 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 980 if (!HaveInsertPoint()) 981 return false; 982 // threadprivate_var1 = master_threadprivate_var1; 983 // operator=(threadprivate_var2, master_threadprivate_var2); 984 // ... 985 // __kmpc_barrier(&loc, global_tid); 986 llvm::DenseSet<const VarDecl *> CopiedVars; 987 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 988 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 989 auto IRef = C->varlist_begin(); 990 auto ISrcRef = C->source_exprs().begin(); 991 auto IDestRef = C->destination_exprs().begin(); 992 for (const Expr *AssignOp : C->assignment_ops()) { 993 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 994 QualType Type = VD->getType(); 995 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 996 // Get the address of the master variable. If we are emitting code with 997 // TLS support, the address is passed from the master as field in the 998 // captured declaration. 999 Address MasterAddr = Address::invalid(); 1000 if (getLangOpts().OpenMPUseTLS && 1001 getContext().getTargetInfo().isTLSSupported()) { 1002 assert(CapturedStmtInfo->lookup(VD) && 1003 "Copyin threadprivates should have been captured!"); 1004 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 1005 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1006 MasterAddr = EmitLValue(&DRE).getAddress(*this); 1007 LocalDeclMap.erase(VD); 1008 } else { 1009 MasterAddr = 1010 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1011 : CGM.GetAddrOfGlobal(VD), 1012 getContext().getDeclAlign(VD)); 1013 } 1014 // Get the address of the threadprivate variable. 1015 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1016 if (CopiedVars.size() == 1) { 1017 // At first check if current thread is a master thread. If it is, no 1018 // need to copy data. 1019 CopyBegin = createBasicBlock("copyin.not.master"); 1020 CopyEnd = createBasicBlock("copyin.not.master.end"); 1021 // TODO: Avoid ptrtoint conversion. 1022 auto *MasterAddrInt = 1023 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1024 auto *PrivateAddrInt = 1025 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1026 Builder.CreateCondBr( 1027 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1028 CopyEnd); 1029 EmitBlock(CopyBegin); 1030 } 1031 const auto *SrcVD = 1032 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1033 const auto *DestVD = 1034 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1035 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1036 } 1037 ++IRef; 1038 ++ISrcRef; 1039 ++IDestRef; 1040 } 1041 } 1042 if (CopyEnd) { 1043 // Exit out of copying procedure for non-master thread. 1044 EmitBlock(CopyEnd, /*IsFinished=*/true); 1045 return true; 1046 } 1047 return false; 1048 } 1049 1050 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1051 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1052 if (!HaveInsertPoint()) 1053 return false; 1054 bool HasAtLeastOneLastprivate = false; 1055 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1056 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1057 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1058 for (const Expr *C : LoopDirective->counters()) { 1059 SIMDLCVs.insert( 1060 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1061 } 1062 } 1063 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1064 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1065 HasAtLeastOneLastprivate = true; 1066 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1067 !getLangOpts().OpenMPSimd) 1068 break; 1069 const auto *IRef = C->varlist_begin(); 1070 const auto *IDestRef = C->destination_exprs().begin(); 1071 for (const Expr *IInit : C->private_copies()) { 1072 // Keep the address of the original variable for future update at the end 1073 // of the loop. 1074 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1075 // Taskloops do not require additional initialization, it is done in 1076 // runtime support library. 1077 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1078 const auto *DestVD = 1079 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1080 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1081 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1082 /*RefersToEnclosingVariableOrCapture=*/ 1083 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1084 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1085 return EmitLValue(&DRE).getAddress(*this); 1086 }); 1087 // Check if the variable is also a firstprivate: in this case IInit is 1088 // not generated. Initialization of this variable will happen in codegen 1089 // for 'firstprivate' clause. 1090 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1091 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1092 bool IsRegistered = 1093 PrivateScope.addPrivate(OrigVD, [this, VD, C, OrigVD]() { 1094 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1095 Address VDAddr = 1096 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 1097 *this, OrigVD); 1098 setAddrOfLocalVar(VD, VDAddr); 1099 return VDAddr; 1100 } 1101 // Emit private VarDecl with copy init. 1102 EmitDecl(*VD); 1103 return GetAddrOfLocalVar(VD); 1104 }); 1105 assert(IsRegistered && 1106 "lastprivate var already registered as private"); 1107 (void)IsRegistered; 1108 } 1109 } 1110 ++IRef; 1111 ++IDestRef; 1112 } 1113 } 1114 return HasAtLeastOneLastprivate; 1115 } 1116 1117 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1118 const OMPExecutableDirective &D, bool NoFinals, 1119 llvm::Value *IsLastIterCond) { 1120 if (!HaveInsertPoint()) 1121 return; 1122 // Emit following code: 1123 // if (<IsLastIterCond>) { 1124 // orig_var1 = private_orig_var1; 1125 // ... 1126 // orig_varn = private_orig_varn; 1127 // } 1128 llvm::BasicBlock *ThenBB = nullptr; 1129 llvm::BasicBlock *DoneBB = nullptr; 1130 if (IsLastIterCond) { 1131 // Emit implicit barrier if at least one lastprivate conditional is found 1132 // and this is not a simd mode. 1133 if (!getLangOpts().OpenMPSimd && 1134 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1135 [](const OMPLastprivateClause *C) { 1136 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1137 })) { 1138 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1139 OMPD_unknown, 1140 /*EmitChecks=*/false, 1141 /*ForceSimpleCall=*/true); 1142 } 1143 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1144 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1145 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1146 EmitBlock(ThenBB); 1147 } 1148 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1149 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1150 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1151 auto IC = LoopDirective->counters().begin(); 1152 for (const Expr *F : LoopDirective->finals()) { 1153 const auto *D = 1154 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1155 if (NoFinals) 1156 AlreadyEmittedVars.insert(D); 1157 else 1158 LoopCountersAndUpdates[D] = F; 1159 ++IC; 1160 } 1161 } 1162 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1163 auto IRef = C->varlist_begin(); 1164 auto ISrcRef = C->source_exprs().begin(); 1165 auto IDestRef = C->destination_exprs().begin(); 1166 for (const Expr *AssignOp : C->assignment_ops()) { 1167 const auto *PrivateVD = 1168 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1169 QualType Type = PrivateVD->getType(); 1170 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1171 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1172 // If lastprivate variable is a loop control variable for loop-based 1173 // directive, update its value before copyin back to original 1174 // variable. 1175 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1176 EmitIgnoredExpr(FinalExpr); 1177 const auto *SrcVD = 1178 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1179 const auto *DestVD = 1180 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1181 // Get the address of the private variable. 1182 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1183 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1184 PrivateAddr = 1185 Address(Builder.CreateLoad(PrivateAddr), 1186 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1187 // Store the last value to the private copy in the last iteration. 1188 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1189 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1190 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1191 (*IRef)->getExprLoc()); 1192 // Get the address of the original variable. 1193 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1194 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1195 } 1196 ++IRef; 1197 ++ISrcRef; 1198 ++IDestRef; 1199 } 1200 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1201 EmitIgnoredExpr(PostUpdate); 1202 } 1203 if (IsLastIterCond) 1204 EmitBlock(DoneBB, /*IsFinished=*/true); 1205 } 1206 1207 void CodeGenFunction::EmitOMPReductionClauseInit( 1208 const OMPExecutableDirective &D, 1209 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1210 if (!HaveInsertPoint()) 1211 return; 1212 SmallVector<const Expr *, 4> Shareds; 1213 SmallVector<const Expr *, 4> Privates; 1214 SmallVector<const Expr *, 4> ReductionOps; 1215 SmallVector<const Expr *, 4> LHSs; 1216 SmallVector<const Expr *, 4> RHSs; 1217 OMPTaskDataTy Data; 1218 SmallVector<const Expr *, 4> TaskLHSs; 1219 SmallVector<const Expr *, 4> TaskRHSs; 1220 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1221 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1222 continue; 1223 Shareds.append(C->varlist_begin(), C->varlist_end()); 1224 Privates.append(C->privates().begin(), C->privates().end()); 1225 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1226 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1227 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1228 if (C->getModifier() == OMPC_REDUCTION_task) { 1229 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1230 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1231 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1232 Data.ReductionOps.append(C->reduction_ops().begin(), 1233 C->reduction_ops().end()); 1234 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1235 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1236 } 1237 } 1238 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1239 unsigned Count = 0; 1240 auto *ILHS = LHSs.begin(); 1241 auto *IRHS = RHSs.begin(); 1242 auto *IPriv = Privates.begin(); 1243 for (const Expr *IRef : Shareds) { 1244 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1245 // Emit private VarDecl with reduction init. 1246 RedCG.emitSharedOrigLValue(*this, Count); 1247 RedCG.emitAggregateType(*this, Count); 1248 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1249 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1250 RedCG.getSharedLValue(Count).getAddress(*this), 1251 [&Emission](CodeGenFunction &CGF) { 1252 CGF.EmitAutoVarInit(Emission); 1253 return true; 1254 }); 1255 EmitAutoVarCleanups(Emission); 1256 Address BaseAddr = RedCG.adjustPrivateAddress( 1257 *this, Count, Emission.getAllocatedAddress()); 1258 bool IsRegistered = PrivateScope.addPrivate( 1259 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1260 assert(IsRegistered && "private var already registered as private"); 1261 // Silence the warning about unused variable. 1262 (void)IsRegistered; 1263 1264 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1265 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1266 QualType Type = PrivateVD->getType(); 1267 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1268 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1269 // Store the address of the original variable associated with the LHS 1270 // implicit variable. 1271 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1272 return RedCG.getSharedLValue(Count).getAddress(*this); 1273 }); 1274 PrivateScope.addPrivate( 1275 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1276 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1277 isa<ArraySubscriptExpr>(IRef)) { 1278 // Store the address of the original variable associated with the LHS 1279 // implicit variable. 1280 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1281 return RedCG.getSharedLValue(Count).getAddress(*this); 1282 }); 1283 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1284 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1285 ConvertTypeForMem(RHSVD->getType()), 1286 "rhs.begin"); 1287 }); 1288 } else { 1289 QualType Type = PrivateVD->getType(); 1290 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1291 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1292 // Store the address of the original variable associated with the LHS 1293 // implicit variable. 1294 if (IsArray) { 1295 OriginalAddr = Builder.CreateElementBitCast( 1296 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1297 } 1298 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1299 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1300 return IsArray ? Builder.CreateElementBitCast( 1301 GetAddrOfLocalVar(PrivateVD), 1302 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1303 : GetAddrOfLocalVar(PrivateVD); 1304 }); 1305 } 1306 ++ILHS; 1307 ++IRHS; 1308 ++IPriv; 1309 ++Count; 1310 } 1311 if (!Data.ReductionVars.empty()) { 1312 Data.IsReductionWithTaskMod = true; 1313 Data.IsWorksharingReduction = 1314 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1315 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1316 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1317 const Expr *TaskRedRef = nullptr; 1318 switch (D.getDirectiveKind()) { 1319 case OMPD_parallel: 1320 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1321 break; 1322 case OMPD_for: 1323 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1324 break; 1325 case OMPD_sections: 1326 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1327 break; 1328 case OMPD_parallel_for: 1329 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1330 break; 1331 case OMPD_parallel_master: 1332 TaskRedRef = 1333 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1334 break; 1335 case OMPD_parallel_sections: 1336 TaskRedRef = 1337 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1338 break; 1339 case OMPD_target_parallel: 1340 TaskRedRef = 1341 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1342 break; 1343 case OMPD_target_parallel_for: 1344 TaskRedRef = 1345 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1346 break; 1347 case OMPD_distribute_parallel_for: 1348 TaskRedRef = 1349 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1350 break; 1351 case OMPD_teams_distribute_parallel_for: 1352 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1353 .getTaskReductionRefExpr(); 1354 break; 1355 case OMPD_target_teams_distribute_parallel_for: 1356 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1357 .getTaskReductionRefExpr(); 1358 break; 1359 case OMPD_simd: 1360 case OMPD_for_simd: 1361 case OMPD_section: 1362 case OMPD_single: 1363 case OMPD_master: 1364 case OMPD_critical: 1365 case OMPD_parallel_for_simd: 1366 case OMPD_task: 1367 case OMPD_taskyield: 1368 case OMPD_barrier: 1369 case OMPD_taskwait: 1370 case OMPD_taskgroup: 1371 case OMPD_flush: 1372 case OMPD_depobj: 1373 case OMPD_scan: 1374 case OMPD_ordered: 1375 case OMPD_atomic: 1376 case OMPD_teams: 1377 case OMPD_target: 1378 case OMPD_cancellation_point: 1379 case OMPD_cancel: 1380 case OMPD_target_data: 1381 case OMPD_target_enter_data: 1382 case OMPD_target_exit_data: 1383 case OMPD_taskloop: 1384 case OMPD_taskloop_simd: 1385 case OMPD_master_taskloop: 1386 case OMPD_master_taskloop_simd: 1387 case OMPD_parallel_master_taskloop: 1388 case OMPD_parallel_master_taskloop_simd: 1389 case OMPD_distribute: 1390 case OMPD_target_update: 1391 case OMPD_distribute_parallel_for_simd: 1392 case OMPD_distribute_simd: 1393 case OMPD_target_parallel_for_simd: 1394 case OMPD_target_simd: 1395 case OMPD_teams_distribute: 1396 case OMPD_teams_distribute_simd: 1397 case OMPD_teams_distribute_parallel_for_simd: 1398 case OMPD_target_teams: 1399 case OMPD_target_teams_distribute: 1400 case OMPD_target_teams_distribute_parallel_for_simd: 1401 case OMPD_target_teams_distribute_simd: 1402 case OMPD_declare_target: 1403 case OMPD_end_declare_target: 1404 case OMPD_threadprivate: 1405 case OMPD_allocate: 1406 case OMPD_declare_reduction: 1407 case OMPD_declare_mapper: 1408 case OMPD_declare_simd: 1409 case OMPD_requires: 1410 case OMPD_declare_variant: 1411 case OMPD_begin_declare_variant: 1412 case OMPD_end_declare_variant: 1413 case OMPD_unknown: 1414 default: 1415 llvm_unreachable("Enexpected directive with task reductions."); 1416 } 1417 1418 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1419 EmitVarDecl(*VD); 1420 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1421 /*Volatile=*/false, TaskRedRef->getType()); 1422 } 1423 } 1424 1425 void CodeGenFunction::EmitOMPReductionClauseFinal( 1426 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1427 if (!HaveInsertPoint()) 1428 return; 1429 llvm::SmallVector<const Expr *, 8> Privates; 1430 llvm::SmallVector<const Expr *, 8> LHSExprs; 1431 llvm::SmallVector<const Expr *, 8> RHSExprs; 1432 llvm::SmallVector<const Expr *, 8> ReductionOps; 1433 bool HasAtLeastOneReduction = false; 1434 bool IsReductionWithTaskMod = false; 1435 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1436 // Do not emit for inscan reductions. 1437 if (C->getModifier() == OMPC_REDUCTION_inscan) 1438 continue; 1439 HasAtLeastOneReduction = true; 1440 Privates.append(C->privates().begin(), C->privates().end()); 1441 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1442 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1443 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1444 IsReductionWithTaskMod = 1445 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1446 } 1447 if (HasAtLeastOneReduction) { 1448 if (IsReductionWithTaskMod) { 1449 CGM.getOpenMPRuntime().emitTaskReductionFini( 1450 *this, D.getBeginLoc(), 1451 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1452 } 1453 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1454 isOpenMPParallelDirective(D.getDirectiveKind()) || 1455 ReductionKind == OMPD_simd; 1456 bool SimpleReduction = ReductionKind == OMPD_simd; 1457 // Emit nowait reduction if nowait clause is present or directive is a 1458 // parallel directive (it always has implicit barrier). 1459 CGM.getOpenMPRuntime().emitReduction( 1460 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1461 {WithNowait, SimpleReduction, ReductionKind}); 1462 } 1463 } 1464 1465 static void emitPostUpdateForReductionClause( 1466 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1467 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1468 if (!CGF.HaveInsertPoint()) 1469 return; 1470 llvm::BasicBlock *DoneBB = nullptr; 1471 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1472 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1473 if (!DoneBB) { 1474 if (llvm::Value *Cond = CondGen(CGF)) { 1475 // If the first post-update expression is found, emit conditional 1476 // block if it was requested. 1477 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1478 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1479 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1480 CGF.EmitBlock(ThenBB); 1481 } 1482 } 1483 CGF.EmitIgnoredExpr(PostUpdate); 1484 } 1485 } 1486 if (DoneBB) 1487 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1488 } 1489 1490 namespace { 1491 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1492 /// parallel function. This is necessary for combined constructs such as 1493 /// 'distribute parallel for' 1494 typedef llvm::function_ref<void(CodeGenFunction &, 1495 const OMPExecutableDirective &, 1496 llvm::SmallVectorImpl<llvm::Value *> &)> 1497 CodeGenBoundParametersTy; 1498 } // anonymous namespace 1499 1500 static void 1501 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1502 const OMPExecutableDirective &S) { 1503 if (CGF.getLangOpts().OpenMP < 50) 1504 return; 1505 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1506 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1507 for (const Expr *Ref : C->varlists()) { 1508 if (!Ref->getType()->isScalarType()) 1509 continue; 1510 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1511 if (!DRE) 1512 continue; 1513 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1514 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1515 } 1516 } 1517 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1518 for (const Expr *Ref : C->varlists()) { 1519 if (!Ref->getType()->isScalarType()) 1520 continue; 1521 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1522 if (!DRE) 1523 continue; 1524 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1525 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1526 } 1527 } 1528 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1529 for (const Expr *Ref : C->varlists()) { 1530 if (!Ref->getType()->isScalarType()) 1531 continue; 1532 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1533 if (!DRE) 1534 continue; 1535 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1536 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1537 } 1538 } 1539 // Privates should ne analyzed since they are not captured at all. 1540 // Task reductions may be skipped - tasks are ignored. 1541 // Firstprivates do not return value but may be passed by reference - no need 1542 // to check for updated lastprivate conditional. 1543 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1544 for (const Expr *Ref : C->varlists()) { 1545 if (!Ref->getType()->isScalarType()) 1546 continue; 1547 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1548 if (!DRE) 1549 continue; 1550 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1551 } 1552 } 1553 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1554 CGF, S, PrivateDecls); 1555 } 1556 1557 static void emitCommonOMPParallelDirective( 1558 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1559 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1560 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1561 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1562 llvm::Value *NumThreads = nullptr; 1563 llvm::Function *OutlinedFn = 1564 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1565 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1566 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1567 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1568 NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1569 /*IgnoreResultAssign=*/true); 1570 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1571 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1572 } 1573 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1574 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1575 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1576 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1577 } 1578 const Expr *IfCond = nullptr; 1579 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1580 if (C->getNameModifier() == OMPD_unknown || 1581 C->getNameModifier() == OMPD_parallel) { 1582 IfCond = C->getCondition(); 1583 break; 1584 } 1585 } 1586 1587 OMPParallelScope Scope(CGF, S); 1588 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1589 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1590 // lower and upper bounds with the pragma 'for' chunking mechanism. 1591 // The following lambda takes care of appending the lower and upper bound 1592 // parameters when necessary 1593 CodeGenBoundParameters(CGF, S, CapturedVars); 1594 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1595 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1596 CapturedVars, IfCond, NumThreads); 1597 } 1598 1599 static bool isAllocatableDecl(const VarDecl *VD) { 1600 const VarDecl *CVD = VD->getCanonicalDecl(); 1601 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1602 return false; 1603 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1604 // Use the default allocation. 1605 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1606 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1607 !AA->getAllocator()); 1608 } 1609 1610 static void emitEmptyBoundParameters(CodeGenFunction &, 1611 const OMPExecutableDirective &, 1612 llvm::SmallVectorImpl<llvm::Value *> &) {} 1613 1614 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1615 CodeGenFunction &CGF, const VarDecl *VD) { 1616 CodeGenModule &CGM = CGF.CGM; 1617 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1618 1619 if (!VD) 1620 return Address::invalid(); 1621 const VarDecl *CVD = VD->getCanonicalDecl(); 1622 if (!isAllocatableDecl(CVD)) 1623 return Address::invalid(); 1624 llvm::Value *Size; 1625 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1626 if (CVD->getType()->isVariablyModifiedType()) { 1627 Size = CGF.getTypeSize(CVD->getType()); 1628 // Align the size: ((size + align - 1) / align) * align 1629 Size = CGF.Builder.CreateNUWAdd( 1630 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1631 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1632 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1633 } else { 1634 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1635 Size = CGM.getSize(Sz.alignTo(Align)); 1636 } 1637 1638 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1639 assert(AA->getAllocator() && 1640 "Expected allocator expression for non-default allocator."); 1641 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1642 // According to the standard, the original allocator type is a enum (integer). 1643 // Convert to pointer type, if required. 1644 if (Allocator->getType()->isIntegerTy()) 1645 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1646 else if (Allocator->getType()->isPointerTy()) 1647 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1648 CGM.VoidPtrTy); 1649 1650 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1651 CGF.Builder, Size, Allocator, 1652 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1653 llvm::CallInst *FreeCI = 1654 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1655 1656 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1657 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1658 Addr, 1659 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1660 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1661 return Address(Addr, Align); 1662 } 1663 1664 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1665 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1666 SourceLocation Loc) { 1667 CodeGenModule &CGM = CGF.CGM; 1668 if (CGM.getLangOpts().OpenMPUseTLS && 1669 CGM.getContext().getTargetInfo().isTLSSupported()) 1670 return VDAddr; 1671 1672 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1673 1674 llvm::Type *VarTy = VDAddr.getElementType(); 1675 llvm::Value *Data = 1676 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1677 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1678 std::string Suffix = getNameWithSeparators({"cache", ""}); 1679 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1680 1681 llvm::CallInst *ThreadPrivateCacheCall = 1682 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1683 1684 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1685 } 1686 1687 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1688 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1689 SmallString<128> Buffer; 1690 llvm::raw_svector_ostream OS(Buffer); 1691 StringRef Sep = FirstSeparator; 1692 for (StringRef Part : Parts) { 1693 OS << Sep << Part; 1694 Sep = Separator; 1695 } 1696 return OS.str().str(); 1697 } 1698 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1699 if (CGM.getLangOpts().OpenMPIRBuilder) { 1700 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1701 // Check if we have any if clause associated with the directive. 1702 llvm::Value *IfCond = nullptr; 1703 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1704 IfCond = EmitScalarExpr(C->getCondition(), 1705 /*IgnoreResultAssign=*/true); 1706 1707 llvm::Value *NumThreads = nullptr; 1708 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1709 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1710 /*IgnoreResultAssign=*/true); 1711 1712 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1713 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1714 ProcBind = ProcBindClause->getProcBindKind(); 1715 1716 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1717 1718 // The cleanup callback that finalizes all variabels at the given location, 1719 // thus calls destructors etc. 1720 auto FiniCB = [this](InsertPointTy IP) { 1721 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1722 }; 1723 1724 // Privatization callback that performs appropriate action for 1725 // shared/private/firstprivate/lastprivate/copyin/... variables. 1726 // 1727 // TODO: This defaults to shared right now. 1728 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1729 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1730 // The next line is appropriate only for variables (Val) with the 1731 // data-sharing attribute "shared". 1732 ReplVal = &Val; 1733 1734 return CodeGenIP; 1735 }; 1736 1737 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1738 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1739 1740 auto BodyGenCB = [ParallelRegionBodyStmt, 1741 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1742 llvm::BasicBlock &ContinuationBB) { 1743 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1744 ContinuationBB); 1745 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1746 CodeGenIP, ContinuationBB); 1747 }; 1748 1749 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1750 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1751 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1752 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1753 Builder.restoreIP( 1754 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1755 IfCond, NumThreads, ProcBind, S.hasCancel())); 1756 return; 1757 } 1758 1759 // Emit parallel region as a standalone region. 1760 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1761 Action.Enter(CGF); 1762 OMPPrivateScope PrivateScope(CGF); 1763 bool Copyins = CGF.EmitOMPCopyinClause(S); 1764 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1765 if (Copyins) { 1766 // Emit implicit barrier to synchronize threads and avoid data races on 1767 // propagation master's thread values of threadprivate variables to local 1768 // instances of that variables of all other implicit threads. 1769 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1770 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1771 /*ForceSimpleCall=*/true); 1772 } 1773 CGF.EmitOMPPrivateClause(S, PrivateScope); 1774 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1775 (void)PrivateScope.Privatize(); 1776 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1777 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1778 }; 1779 { 1780 auto LPCRegion = 1781 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1782 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1783 emitEmptyBoundParameters); 1784 emitPostUpdateForReductionClause(*this, S, 1785 [](CodeGenFunction &) { return nullptr; }); 1786 } 1787 // Check for outer lastprivate conditional update. 1788 checkForLastprivateConditionalUpdate(*this, S); 1789 } 1790 1791 void CodeGenFunction::EmitOMPMetaDirective(const OMPMetaDirective &S) { 1792 EmitStmt(S.getIfStmt()); 1793 } 1794 1795 namespace { 1796 /// RAII to handle scopes for loop transformation directives. 1797 class OMPTransformDirectiveScopeRAII { 1798 OMPLoopScope *Scope = nullptr; 1799 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1800 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1801 1802 public: 1803 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1804 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1805 Scope = new OMPLoopScope(CGF, *Dir); 1806 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1807 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1808 } 1809 } 1810 ~OMPTransformDirectiveScopeRAII() { 1811 if (!Scope) 1812 return; 1813 delete CapInfoRAII; 1814 delete CGSI; 1815 delete Scope; 1816 } 1817 }; 1818 } // namespace 1819 1820 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1821 int MaxLevel, int Level = 0) { 1822 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1823 const Stmt *SimplifiedS = S->IgnoreContainers(); 1824 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1825 PrettyStackTraceLoc CrashInfo( 1826 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1827 "LLVM IR generation of compound statement ('{}')"); 1828 1829 // Keep track of the current cleanup stack depth, including debug scopes. 1830 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1831 for (const Stmt *CurStmt : CS->body()) 1832 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1833 return; 1834 } 1835 if (SimplifiedS == NextLoop) { 1836 if (auto *Dir = dyn_cast<OMPLoopTransformationDirective>(SimplifiedS)) 1837 SimplifiedS = Dir->getTransformedStmt(); 1838 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1839 SimplifiedS = CanonLoop->getLoopStmt(); 1840 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1841 S = For->getBody(); 1842 } else { 1843 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1844 "Expected canonical for loop or range-based for loop."); 1845 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1846 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1847 S = CXXFor->getBody(); 1848 } 1849 if (Level + 1 < MaxLevel) { 1850 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1851 S, /*TryImperfectlyNestedLoops=*/true); 1852 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1853 return; 1854 } 1855 } 1856 CGF.EmitStmt(S); 1857 } 1858 1859 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1860 JumpDest LoopExit) { 1861 RunCleanupsScope BodyScope(*this); 1862 // Update counters values on current iteration. 1863 for (const Expr *UE : D.updates()) 1864 EmitIgnoredExpr(UE); 1865 // Update the linear variables. 1866 // In distribute directives only loop counters may be marked as linear, no 1867 // need to generate the code for them. 1868 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1869 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1870 for (const Expr *UE : C->updates()) 1871 EmitIgnoredExpr(UE); 1872 } 1873 } 1874 1875 // On a continue in the body, jump to the end. 1876 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1877 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1878 for (const Expr *E : D.finals_conditions()) { 1879 if (!E) 1880 continue; 1881 // Check that loop counter in non-rectangular nest fits into the iteration 1882 // space. 1883 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1884 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1885 getProfileCount(D.getBody())); 1886 EmitBlock(NextBB); 1887 } 1888 1889 OMPPrivateScope InscanScope(*this); 1890 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1891 bool IsInscanRegion = InscanScope.Privatize(); 1892 if (IsInscanRegion) { 1893 // Need to remember the block before and after scan directive 1894 // to dispatch them correctly depending on the clause used in 1895 // this directive, inclusive or exclusive. For inclusive scan the natural 1896 // order of the blocks is used, for exclusive clause the blocks must be 1897 // executed in reverse order. 1898 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1899 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1900 // No need to allocate inscan exit block, in simd mode it is selected in the 1901 // codegen for the scan directive. 1902 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1903 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1904 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1905 EmitBranch(OMPScanDispatch); 1906 EmitBlock(OMPBeforeScanBlock); 1907 } 1908 1909 // Emit loop variables for C++ range loops. 1910 const Stmt *Body = 1911 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1912 // Emit loop body. 1913 emitBody(*this, Body, 1914 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1915 Body, /*TryImperfectlyNestedLoops=*/true), 1916 D.getLoopsNumber()); 1917 1918 // Jump to the dispatcher at the end of the loop body. 1919 if (IsInscanRegion) 1920 EmitBranch(OMPScanExitBlock); 1921 1922 // The end (updates/cleanups). 1923 EmitBlock(Continue.getBlock()); 1924 BreakContinueStack.pop_back(); 1925 } 1926 1927 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1928 1929 /// Emit a captured statement and return the function as well as its captured 1930 /// closure context. 1931 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1932 const CapturedStmt *S) { 1933 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1934 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1935 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1936 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1937 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1938 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1939 1940 return {F, CapStruct.getPointer(ParentCGF)}; 1941 } 1942 1943 /// Emit a call to a previously captured closure. 1944 static llvm::CallInst * 1945 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1946 llvm::ArrayRef<llvm::Value *> Args) { 1947 // Append the closure context to the argument. 1948 SmallVector<llvm::Value *> EffectiveArgs; 1949 EffectiveArgs.reserve(Args.size() + 1); 1950 llvm::append_range(EffectiveArgs, Args); 1951 EffectiveArgs.push_back(Cap.second); 1952 1953 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1954 } 1955 1956 llvm::CanonicalLoopInfo * 1957 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1958 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1959 1960 // The caller is processing the loop-associated directive processing the \p 1961 // Depth loops nested in \p S. Put the previous pending loop-associated 1962 // directive to the stack. If the current loop-associated directive is a loop 1963 // transformation directive, it will push its generated loops onto the stack 1964 // such that together with the loops left here they form the combined loop 1965 // nest for the parent loop-associated directive. 1966 int ParentExpectedOMPLoopDepth = ExpectedOMPLoopDepth; 1967 ExpectedOMPLoopDepth = Depth; 1968 1969 EmitStmt(S); 1970 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1971 1972 // The last added loop is the outermost one. 1973 llvm::CanonicalLoopInfo *Result = OMPLoopNestStack.back(); 1974 1975 // Pop the \p Depth loops requested by the call from that stack and restore 1976 // the previous context. 1977 OMPLoopNestStack.pop_back_n(Depth); 1978 ExpectedOMPLoopDepth = ParentExpectedOMPLoopDepth; 1979 1980 return Result; 1981 } 1982 1983 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1984 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1985 if (!getLangOpts().OpenMPIRBuilder) { 1986 // Ignore if OpenMPIRBuilder is not enabled. 1987 EmitStmt(SyntacticalLoop); 1988 return; 1989 } 1990 1991 LexicalScope ForScope(*this, S->getSourceRange()); 1992 1993 // Emit init statements. The Distance/LoopVar funcs may reference variable 1994 // declarations they contain. 1995 const Stmt *BodyStmt; 1996 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 1997 if (const Stmt *InitStmt = For->getInit()) 1998 EmitStmt(InitStmt); 1999 BodyStmt = For->getBody(); 2000 } else if (const auto *RangeFor = 2001 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 2002 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 2003 EmitStmt(RangeStmt); 2004 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 2005 EmitStmt(BeginStmt); 2006 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 2007 EmitStmt(EndStmt); 2008 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 2009 EmitStmt(LoopVarStmt); 2010 BodyStmt = RangeFor->getBody(); 2011 } else 2012 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 2013 2014 // Emit closure for later use. By-value captures will be captured here. 2015 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 2016 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 2017 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 2018 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 2019 2020 // Call the distance function to get the number of iterations of the loop to 2021 // come. 2022 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2023 ->getParam(0) 2024 ->getType() 2025 .getNonReferenceType(); 2026 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2027 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2028 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2029 2030 // Emit the loop structure. 2031 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2032 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2033 llvm::Value *IndVar) { 2034 Builder.restoreIP(CodeGenIP); 2035 2036 // Emit the loop body: Convert the logical iteration number to the loop 2037 // variable and emit the body. 2038 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2039 LValue LCVal = EmitLValue(LoopVarRef); 2040 Address LoopVarAddress = LCVal.getAddress(*this); 2041 emitCapturedStmtCall(*this, LoopVarClosure, 2042 {LoopVarAddress.getPointer(), IndVar}); 2043 2044 RunCleanupsScope BodyScope(*this); 2045 EmitStmt(BodyStmt); 2046 }; 2047 llvm::CanonicalLoopInfo *CL = 2048 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2049 2050 // Finish up the loop. 2051 Builder.restoreIP(CL->getAfterIP()); 2052 ForScope.ForceCleanup(); 2053 2054 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2055 OMPLoopNestStack.push_back(CL); 2056 } 2057 2058 void CodeGenFunction::EmitOMPInnerLoop( 2059 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2060 const Expr *IncExpr, 2061 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2062 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2063 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2064 2065 // Start the loop with a block that tests the condition. 2066 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2067 EmitBlock(CondBlock); 2068 const SourceRange R = S.getSourceRange(); 2069 2070 // If attributes are attached, push to the basic block with them. 2071 const auto &OMPED = cast<OMPExecutableDirective>(S); 2072 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2073 const Stmt *SS = ICS->getCapturedStmt(); 2074 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2075 OMPLoopNestStack.clear(); 2076 if (AS) 2077 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2078 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2079 SourceLocToDebugLoc(R.getEnd())); 2080 else 2081 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2082 SourceLocToDebugLoc(R.getEnd())); 2083 2084 // If there are any cleanups between here and the loop-exit scope, 2085 // create a block to stage a loop exit along. 2086 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2087 if (RequiresCleanup) 2088 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2089 2090 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2091 2092 // Emit condition. 2093 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2094 if (ExitBlock != LoopExit.getBlock()) { 2095 EmitBlock(ExitBlock); 2096 EmitBranchThroughCleanup(LoopExit); 2097 } 2098 2099 EmitBlock(LoopBody); 2100 incrementProfileCounter(&S); 2101 2102 // Create a block for the increment. 2103 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2104 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2105 2106 BodyGen(*this); 2107 2108 // Emit "IV = IV + 1" and a back-edge to the condition block. 2109 EmitBlock(Continue.getBlock()); 2110 EmitIgnoredExpr(IncExpr); 2111 PostIncGen(*this); 2112 BreakContinueStack.pop_back(); 2113 EmitBranch(CondBlock); 2114 LoopStack.pop(); 2115 // Emit the fall-through block. 2116 EmitBlock(LoopExit.getBlock()); 2117 } 2118 2119 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2120 if (!HaveInsertPoint()) 2121 return false; 2122 // Emit inits for the linear variables. 2123 bool HasLinears = false; 2124 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2125 for (const Expr *Init : C->inits()) { 2126 HasLinears = true; 2127 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2128 if (const auto *Ref = 2129 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2130 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2131 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2132 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2133 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2134 VD->getInit()->getType(), VK_LValue, 2135 VD->getInit()->getExprLoc()); 2136 EmitExprAsInit( 2137 &DRE, VD, 2138 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 2139 /*capturedByInit=*/false); 2140 EmitAutoVarCleanups(Emission); 2141 } else { 2142 EmitVarDecl(*VD); 2143 } 2144 } 2145 // Emit the linear steps for the linear clauses. 2146 // If a step is not constant, it is pre-calculated before the loop. 2147 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2148 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2149 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2150 // Emit calculation of the linear step. 2151 EmitIgnoredExpr(CS); 2152 } 2153 } 2154 return HasLinears; 2155 } 2156 2157 void CodeGenFunction::EmitOMPLinearClauseFinal( 2158 const OMPLoopDirective &D, 2159 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2160 if (!HaveInsertPoint()) 2161 return; 2162 llvm::BasicBlock *DoneBB = nullptr; 2163 // Emit the final values of the linear variables. 2164 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2165 auto IC = C->varlist_begin(); 2166 for (const Expr *F : C->finals()) { 2167 if (!DoneBB) { 2168 if (llvm::Value *Cond = CondGen(*this)) { 2169 // If the first post-update expression is found, emit conditional 2170 // block if it was requested. 2171 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2172 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2173 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2174 EmitBlock(ThenBB); 2175 } 2176 } 2177 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2178 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2179 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2180 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2181 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2182 CodeGenFunction::OMPPrivateScope VarScope(*this); 2183 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2184 (void)VarScope.Privatize(); 2185 EmitIgnoredExpr(F); 2186 ++IC; 2187 } 2188 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2189 EmitIgnoredExpr(PostUpdate); 2190 } 2191 if (DoneBB) 2192 EmitBlock(DoneBB, /*IsFinished=*/true); 2193 } 2194 2195 static void emitAlignedClause(CodeGenFunction &CGF, 2196 const OMPExecutableDirective &D) { 2197 if (!CGF.HaveInsertPoint()) 2198 return; 2199 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2200 llvm::APInt ClauseAlignment(64, 0); 2201 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2202 auto *AlignmentCI = 2203 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2204 ClauseAlignment = AlignmentCI->getValue(); 2205 } 2206 for (const Expr *E : Clause->varlists()) { 2207 llvm::APInt Alignment(ClauseAlignment); 2208 if (Alignment == 0) { 2209 // OpenMP [2.8.1, Description] 2210 // If no optional parameter is specified, implementation-defined default 2211 // alignments for SIMD instructions on the target platforms are assumed. 2212 Alignment = 2213 CGF.getContext() 2214 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2215 E->getType()->getPointeeType())) 2216 .getQuantity(); 2217 } 2218 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2219 "alignment is not power of 2"); 2220 if (Alignment != 0) { 2221 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2222 CGF.emitAlignmentAssumption( 2223 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2224 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2225 } 2226 } 2227 } 2228 } 2229 2230 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2231 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2232 if (!HaveInsertPoint()) 2233 return; 2234 auto I = S.private_counters().begin(); 2235 for (const Expr *E : S.counters()) { 2236 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2237 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2238 // Emit var without initialization. 2239 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2240 EmitAutoVarCleanups(VarEmission); 2241 LocalDeclMap.erase(PrivateVD); 2242 (void)LoopScope.addPrivate( 2243 VD, [&VarEmission]() { return VarEmission.getAllocatedAddress(); }); 2244 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2245 VD->hasGlobalStorage()) { 2246 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2247 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2248 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2249 E->getType(), VK_LValue, E->getExprLoc()); 2250 return EmitLValue(&DRE).getAddress(*this); 2251 }); 2252 } else { 2253 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2254 return VarEmission.getAllocatedAddress(); 2255 }); 2256 } 2257 ++I; 2258 } 2259 // Privatize extra loop counters used in loops for ordered(n) clauses. 2260 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2261 if (!C->getNumForLoops()) 2262 continue; 2263 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2264 I < E; ++I) { 2265 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2266 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2267 // Override only those variables that can be captured to avoid re-emission 2268 // of the variables declared within the loops. 2269 if (DRE->refersToEnclosingVariableOrCapture()) { 2270 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2271 return CreateMemTemp(DRE->getType(), VD->getName()); 2272 }); 2273 } 2274 } 2275 } 2276 } 2277 2278 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2279 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2280 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2281 if (!CGF.HaveInsertPoint()) 2282 return; 2283 { 2284 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2285 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2286 (void)PreCondScope.Privatize(); 2287 // Get initial values of real counters. 2288 for (const Expr *I : S.inits()) { 2289 CGF.EmitIgnoredExpr(I); 2290 } 2291 } 2292 // Create temp loop control variables with their init values to support 2293 // non-rectangular loops. 2294 CodeGenFunction::OMPMapVars PreCondVars; 2295 for (const Expr *E : S.dependent_counters()) { 2296 if (!E) 2297 continue; 2298 assert(!E->getType().getNonReferenceType()->isRecordType() && 2299 "dependent counter must not be an iterator."); 2300 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2301 Address CounterAddr = 2302 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2303 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2304 } 2305 (void)PreCondVars.apply(CGF); 2306 for (const Expr *E : S.dependent_inits()) { 2307 if (!E) 2308 continue; 2309 CGF.EmitIgnoredExpr(E); 2310 } 2311 // Check that loop is executed at least one time. 2312 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2313 PreCondVars.restore(CGF); 2314 } 2315 2316 void CodeGenFunction::EmitOMPLinearClause( 2317 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2318 if (!HaveInsertPoint()) 2319 return; 2320 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2321 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2322 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2323 for (const Expr *C : LoopDirective->counters()) { 2324 SIMDLCVs.insert( 2325 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2326 } 2327 } 2328 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2329 auto CurPrivate = C->privates().begin(); 2330 for (const Expr *E : C->varlists()) { 2331 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2332 const auto *PrivateVD = 2333 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2334 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2335 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2336 // Emit private VarDecl with copy init. 2337 EmitVarDecl(*PrivateVD); 2338 return GetAddrOfLocalVar(PrivateVD); 2339 }); 2340 assert(IsRegistered && "linear var already registered as private"); 2341 // Silence the warning about unused variable. 2342 (void)IsRegistered; 2343 } else { 2344 EmitVarDecl(*PrivateVD); 2345 } 2346 ++CurPrivate; 2347 } 2348 } 2349 } 2350 2351 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2352 const OMPExecutableDirective &D) { 2353 if (!CGF.HaveInsertPoint()) 2354 return; 2355 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2356 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2357 /*ignoreResult=*/true); 2358 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2359 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2360 // In presence of finite 'safelen', it may be unsafe to mark all 2361 // the memory instructions parallel, because loop-carried 2362 // dependences of 'safelen' iterations are possible. 2363 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2364 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2365 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2366 /*ignoreResult=*/true); 2367 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2368 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2369 // In presence of finite 'safelen', it may be unsafe to mark all 2370 // the memory instructions parallel, because loop-carried 2371 // dependences of 'safelen' iterations are possible. 2372 CGF.LoopStack.setParallel(/*Enable=*/false); 2373 } 2374 } 2375 2376 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2377 // Walk clauses and process safelen/lastprivate. 2378 LoopStack.setParallel(/*Enable=*/true); 2379 LoopStack.setVectorizeEnable(); 2380 emitSimdlenSafelenClause(*this, D); 2381 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2382 if (C->getKind() == OMPC_ORDER_concurrent) 2383 LoopStack.setParallel(/*Enable=*/true); 2384 if ((D.getDirectiveKind() == OMPD_simd || 2385 (getLangOpts().OpenMPSimd && 2386 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2387 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2388 [](const OMPReductionClause *C) { 2389 return C->getModifier() == OMPC_REDUCTION_inscan; 2390 })) 2391 // Disable parallel access in case of prefix sum. 2392 LoopStack.setParallel(/*Enable=*/false); 2393 } 2394 2395 void CodeGenFunction::EmitOMPSimdFinal( 2396 const OMPLoopDirective &D, 2397 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2398 if (!HaveInsertPoint()) 2399 return; 2400 llvm::BasicBlock *DoneBB = nullptr; 2401 auto IC = D.counters().begin(); 2402 auto IPC = D.private_counters().begin(); 2403 for (const Expr *F : D.finals()) { 2404 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2405 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2406 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2407 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2408 OrigVD->hasGlobalStorage() || CED) { 2409 if (!DoneBB) { 2410 if (llvm::Value *Cond = CondGen(*this)) { 2411 // If the first post-update expression is found, emit conditional 2412 // block if it was requested. 2413 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2414 DoneBB = createBasicBlock(".omp.final.done"); 2415 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2416 EmitBlock(ThenBB); 2417 } 2418 } 2419 Address OrigAddr = Address::invalid(); 2420 if (CED) { 2421 OrigAddr = 2422 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2423 } else { 2424 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2425 /*RefersToEnclosingVariableOrCapture=*/false, 2426 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2427 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2428 } 2429 OMPPrivateScope VarScope(*this); 2430 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2431 (void)VarScope.Privatize(); 2432 EmitIgnoredExpr(F); 2433 } 2434 ++IC; 2435 ++IPC; 2436 } 2437 if (DoneBB) 2438 EmitBlock(DoneBB, /*IsFinished=*/true); 2439 } 2440 2441 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2442 const OMPLoopDirective &S, 2443 CodeGenFunction::JumpDest LoopExit) { 2444 CGF.EmitOMPLoopBody(S, LoopExit); 2445 CGF.EmitStopPoint(&S); 2446 } 2447 2448 /// Emit a helper variable and return corresponding lvalue. 2449 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2450 const DeclRefExpr *Helper) { 2451 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2452 CGF.EmitVarDecl(*VDecl); 2453 return CGF.EmitLValue(Helper); 2454 } 2455 2456 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2457 const RegionCodeGenTy &SimdInitGen, 2458 const RegionCodeGenTy &BodyCodeGen) { 2459 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2460 PrePostActionTy &) { 2461 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2462 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2463 SimdInitGen(CGF); 2464 2465 BodyCodeGen(CGF); 2466 }; 2467 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2468 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2469 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2470 2471 BodyCodeGen(CGF); 2472 }; 2473 const Expr *IfCond = nullptr; 2474 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2475 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2476 if (CGF.getLangOpts().OpenMP >= 50 && 2477 (C->getNameModifier() == OMPD_unknown || 2478 C->getNameModifier() == OMPD_simd)) { 2479 IfCond = C->getCondition(); 2480 break; 2481 } 2482 } 2483 } 2484 if (IfCond) { 2485 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2486 } else { 2487 RegionCodeGenTy ThenRCG(ThenGen); 2488 ThenRCG(CGF); 2489 } 2490 } 2491 2492 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2493 PrePostActionTy &Action) { 2494 Action.Enter(CGF); 2495 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2496 "Expected simd directive"); 2497 OMPLoopScope PreInitScope(CGF, S); 2498 // if (PreCond) { 2499 // for (IV in 0..LastIteration) BODY; 2500 // <Final counter/linear vars updates>; 2501 // } 2502 // 2503 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2504 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2505 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2506 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2507 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2508 } 2509 2510 // Emit: if (PreCond) - begin. 2511 // If the condition constant folds and can be elided, avoid emitting the 2512 // whole loop. 2513 bool CondConstant; 2514 llvm::BasicBlock *ContBlock = nullptr; 2515 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2516 if (!CondConstant) 2517 return; 2518 } else { 2519 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2520 ContBlock = CGF.createBasicBlock("simd.if.end"); 2521 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2522 CGF.getProfileCount(&S)); 2523 CGF.EmitBlock(ThenBlock); 2524 CGF.incrementProfileCounter(&S); 2525 } 2526 2527 // Emit the loop iteration variable. 2528 const Expr *IVExpr = S.getIterationVariable(); 2529 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2530 CGF.EmitVarDecl(*IVDecl); 2531 CGF.EmitIgnoredExpr(S.getInit()); 2532 2533 // Emit the iterations count variable. 2534 // If it is not a variable, Sema decided to calculate iterations count on 2535 // each iteration (e.g., it is foldable into a constant). 2536 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2537 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2538 // Emit calculation of the iterations count. 2539 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2540 } 2541 2542 emitAlignedClause(CGF, S); 2543 (void)CGF.EmitOMPLinearClauseInit(S); 2544 { 2545 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2546 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2547 CGF.EmitOMPLinearClause(S, LoopScope); 2548 CGF.EmitOMPPrivateClause(S, LoopScope); 2549 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2550 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2551 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2552 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2553 (void)LoopScope.Privatize(); 2554 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2555 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2556 2557 emitCommonSimdLoop( 2558 CGF, S, 2559 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2560 CGF.EmitOMPSimdInit(S); 2561 }, 2562 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2563 CGF.EmitOMPInnerLoop( 2564 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2565 [&S](CodeGenFunction &CGF) { 2566 emitOMPLoopBodyWithStopPoint(CGF, S, 2567 CodeGenFunction::JumpDest()); 2568 }, 2569 [](CodeGenFunction &) {}); 2570 }); 2571 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2572 // Emit final copy of the lastprivate variables at the end of loops. 2573 if (HasLastprivateClause) 2574 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2575 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2576 emitPostUpdateForReductionClause(CGF, S, 2577 [](CodeGenFunction &) { return nullptr; }); 2578 } 2579 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2580 // Emit: if (PreCond) - end. 2581 if (ContBlock) { 2582 CGF.EmitBranch(ContBlock); 2583 CGF.EmitBlock(ContBlock, true); 2584 } 2585 } 2586 2587 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2588 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2589 OMPFirstScanLoop = true; 2590 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2591 emitOMPSimdRegion(CGF, S, Action); 2592 }; 2593 { 2594 auto LPCRegion = 2595 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2596 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2597 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2598 } 2599 // Check for outer lastprivate conditional update. 2600 checkForLastprivateConditionalUpdate(*this, S); 2601 } 2602 2603 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2604 // Emit the de-sugared statement. 2605 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2606 EmitStmt(S.getTransformedStmt()); 2607 } 2608 2609 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2610 bool UseOMPIRBuilder = CGM.getLangOpts().OpenMPIRBuilder; 2611 2612 if (UseOMPIRBuilder) { 2613 auto DL = SourceLocToDebugLoc(S.getBeginLoc()); 2614 const Stmt *Inner = S.getRawStmt(); 2615 2616 // Consume nested loop. Clear the entire remaining loop stack because a 2617 // fully unrolled loop is non-transformable. For partial unrolling the 2618 // generated outer loop is pushed back to the stack. 2619 llvm::CanonicalLoopInfo *CLI = EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 2620 OMPLoopNestStack.clear(); 2621 2622 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2623 2624 bool NeedsUnrolledCLI = ExpectedOMPLoopDepth >= 1; 2625 llvm::CanonicalLoopInfo *UnrolledCLI = nullptr; 2626 2627 if (S.hasClausesOfKind<OMPFullClause>()) { 2628 assert(ExpectedOMPLoopDepth == 0); 2629 OMPBuilder.unrollLoopFull(DL, CLI); 2630 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2631 uint64_t Factor = 0; 2632 if (Expr *FactorExpr = PartialClause->getFactor()) { 2633 Factor = FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2634 assert(Factor >= 1 && "Only positive factors are valid"); 2635 } 2636 OMPBuilder.unrollLoopPartial(DL, CLI, Factor, 2637 NeedsUnrolledCLI ? &UnrolledCLI : nullptr); 2638 } else { 2639 OMPBuilder.unrollLoopHeuristic(DL, CLI); 2640 } 2641 2642 assert((!NeedsUnrolledCLI || UnrolledCLI) && 2643 "NeedsUnrolledCLI implies UnrolledCLI to be set"); 2644 if (UnrolledCLI) 2645 OMPLoopNestStack.push_back(UnrolledCLI); 2646 2647 return; 2648 } 2649 2650 // This function is only called if the unrolled loop is not consumed by any 2651 // other loop-associated construct. Such a loop-associated construct will have 2652 // used the transformed AST. 2653 2654 // Set the unroll metadata for the next emitted loop. 2655 LoopStack.setUnrollState(LoopAttributes::Enable); 2656 2657 if (S.hasClausesOfKind<OMPFullClause>()) { 2658 LoopStack.setUnrollState(LoopAttributes::Full); 2659 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2660 if (Expr *FactorExpr = PartialClause->getFactor()) { 2661 uint64_t Factor = 2662 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2663 assert(Factor >= 1 && "Only positive factors are valid"); 2664 LoopStack.setUnrollCount(Factor); 2665 } 2666 } 2667 2668 EmitStmt(S.getAssociatedStmt()); 2669 } 2670 2671 void CodeGenFunction::EmitOMPOuterLoop( 2672 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2673 CodeGenFunction::OMPPrivateScope &LoopScope, 2674 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2675 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2676 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2677 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2678 2679 const Expr *IVExpr = S.getIterationVariable(); 2680 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2681 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2682 2683 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2684 2685 // Start the loop with a block that tests the condition. 2686 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2687 EmitBlock(CondBlock); 2688 const SourceRange R = S.getSourceRange(); 2689 OMPLoopNestStack.clear(); 2690 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2691 SourceLocToDebugLoc(R.getEnd())); 2692 2693 llvm::Value *BoolCondVal = nullptr; 2694 if (!DynamicOrOrdered) { 2695 // UB = min(UB, GlobalUB) or 2696 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2697 // 'distribute parallel for') 2698 EmitIgnoredExpr(LoopArgs.EUB); 2699 // IV = LB 2700 EmitIgnoredExpr(LoopArgs.Init); 2701 // IV < UB 2702 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2703 } else { 2704 BoolCondVal = 2705 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2706 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2707 } 2708 2709 // If there are any cleanups between here and the loop-exit scope, 2710 // create a block to stage a loop exit along. 2711 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2712 if (LoopScope.requiresCleanups()) 2713 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2714 2715 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2716 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2717 if (ExitBlock != LoopExit.getBlock()) { 2718 EmitBlock(ExitBlock); 2719 EmitBranchThroughCleanup(LoopExit); 2720 } 2721 EmitBlock(LoopBody); 2722 2723 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2724 // LB for loop condition and emitted it above). 2725 if (DynamicOrOrdered) 2726 EmitIgnoredExpr(LoopArgs.Init); 2727 2728 // Create a block for the increment. 2729 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2730 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2731 2732 emitCommonSimdLoop( 2733 *this, S, 2734 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2735 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2736 // with dynamic/guided scheduling and without ordered clause. 2737 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2738 CGF.LoopStack.setParallel(!IsMonotonic); 2739 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2740 if (C->getKind() == OMPC_ORDER_concurrent) 2741 CGF.LoopStack.setParallel(/*Enable=*/true); 2742 } else { 2743 CGF.EmitOMPSimdInit(S); 2744 } 2745 }, 2746 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2747 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2748 SourceLocation Loc = S.getBeginLoc(); 2749 // when 'distribute' is not combined with a 'for': 2750 // while (idx <= UB) { BODY; ++idx; } 2751 // when 'distribute' is combined with a 'for' 2752 // (e.g. 'distribute parallel for') 2753 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2754 CGF.EmitOMPInnerLoop( 2755 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2756 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2757 CodeGenLoop(CGF, S, LoopExit); 2758 }, 2759 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2760 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2761 }); 2762 }); 2763 2764 EmitBlock(Continue.getBlock()); 2765 BreakContinueStack.pop_back(); 2766 if (!DynamicOrOrdered) { 2767 // Emit "LB = LB + Stride", "UB = UB + Stride". 2768 EmitIgnoredExpr(LoopArgs.NextLB); 2769 EmitIgnoredExpr(LoopArgs.NextUB); 2770 } 2771 2772 EmitBranch(CondBlock); 2773 OMPLoopNestStack.clear(); 2774 LoopStack.pop(); 2775 // Emit the fall-through block. 2776 EmitBlock(LoopExit.getBlock()); 2777 2778 // Tell the runtime we are done. 2779 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2780 if (!DynamicOrOrdered) 2781 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2782 S.getDirectiveKind()); 2783 }; 2784 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2785 } 2786 2787 void CodeGenFunction::EmitOMPForOuterLoop( 2788 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2789 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2790 const OMPLoopArguments &LoopArgs, 2791 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2792 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2793 2794 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2795 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind.Schedule); 2796 2797 assert((Ordered || !RT.isStaticNonchunked(ScheduleKind.Schedule, 2798 LoopArgs.Chunk != nullptr)) && 2799 "static non-chunked schedule does not need outer loop"); 2800 2801 // Emit outer loop. 2802 // 2803 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2804 // When schedule(dynamic,chunk_size) is specified, the iterations are 2805 // distributed to threads in the team in chunks as the threads request them. 2806 // Each thread executes a chunk of iterations, then requests another chunk, 2807 // until no chunks remain to be distributed. Each chunk contains chunk_size 2808 // iterations, except for the last chunk to be distributed, which may have 2809 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2810 // 2811 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2812 // to threads in the team in chunks as the executing threads request them. 2813 // Each thread executes a chunk of iterations, then requests another chunk, 2814 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2815 // each chunk is proportional to the number of unassigned iterations divided 2816 // by the number of threads in the team, decreasing to 1. For a chunk_size 2817 // with value k (greater than 1), the size of each chunk is determined in the 2818 // same way, with the restriction that the chunks do not contain fewer than k 2819 // iterations (except for the last chunk to be assigned, which may have fewer 2820 // than k iterations). 2821 // 2822 // When schedule(auto) is specified, the decision regarding scheduling is 2823 // delegated to the compiler and/or runtime system. The programmer gives the 2824 // implementation the freedom to choose any possible mapping of iterations to 2825 // threads in the team. 2826 // 2827 // When schedule(runtime) is specified, the decision regarding scheduling is 2828 // deferred until run time, and the schedule and chunk size are taken from the 2829 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2830 // implementation defined 2831 // 2832 // while(__kmpc_dispatch_next(&LB, &UB)) { 2833 // idx = LB; 2834 // while (idx <= UB) { BODY; ++idx; 2835 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2836 // } // inner loop 2837 // } 2838 // 2839 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2840 // When schedule(static, chunk_size) is specified, iterations are divided into 2841 // chunks of size chunk_size, and the chunks are assigned to the threads in 2842 // the team in a round-robin fashion in the order of the thread number. 2843 // 2844 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2845 // while (idx <= UB) { BODY; ++idx; } // inner loop 2846 // LB = LB + ST; 2847 // UB = UB + ST; 2848 // } 2849 // 2850 2851 const Expr *IVExpr = S.getIterationVariable(); 2852 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2853 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2854 2855 if (DynamicOrOrdered) { 2856 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2857 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2858 llvm::Value *LBVal = DispatchBounds.first; 2859 llvm::Value *UBVal = DispatchBounds.second; 2860 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2861 LoopArgs.Chunk}; 2862 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2863 IVSigned, Ordered, DipatchRTInputValues); 2864 } else { 2865 CGOpenMPRuntime::StaticRTInput StaticInit( 2866 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2867 LoopArgs.ST, LoopArgs.Chunk); 2868 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2869 ScheduleKind, StaticInit); 2870 } 2871 2872 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2873 const unsigned IVSize, 2874 const bool IVSigned) { 2875 if (Ordered) { 2876 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2877 IVSigned); 2878 } 2879 }; 2880 2881 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2882 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2883 OuterLoopArgs.IncExpr = S.getInc(); 2884 OuterLoopArgs.Init = S.getInit(); 2885 OuterLoopArgs.Cond = S.getCond(); 2886 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2887 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2888 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2889 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2890 } 2891 2892 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2893 const unsigned IVSize, const bool IVSigned) {} 2894 2895 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2896 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2897 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2898 const CodeGenLoopTy &CodeGenLoopContent) { 2899 2900 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2901 2902 // Emit outer loop. 2903 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2904 // dynamic 2905 // 2906 2907 const Expr *IVExpr = S.getIterationVariable(); 2908 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2909 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2910 2911 CGOpenMPRuntime::StaticRTInput StaticInit( 2912 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2913 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2914 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2915 2916 // for combined 'distribute' and 'for' the increment expression of distribute 2917 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2918 Expr *IncExpr; 2919 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2920 IncExpr = S.getDistInc(); 2921 else 2922 IncExpr = S.getInc(); 2923 2924 // this routine is shared by 'omp distribute parallel for' and 2925 // 'omp distribute': select the right EUB expression depending on the 2926 // directive 2927 OMPLoopArguments OuterLoopArgs; 2928 OuterLoopArgs.LB = LoopArgs.LB; 2929 OuterLoopArgs.UB = LoopArgs.UB; 2930 OuterLoopArgs.ST = LoopArgs.ST; 2931 OuterLoopArgs.IL = LoopArgs.IL; 2932 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2933 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2934 ? S.getCombinedEnsureUpperBound() 2935 : S.getEnsureUpperBound(); 2936 OuterLoopArgs.IncExpr = IncExpr; 2937 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2938 ? S.getCombinedInit() 2939 : S.getInit(); 2940 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2941 ? S.getCombinedCond() 2942 : S.getCond(); 2943 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2944 ? S.getCombinedNextLowerBound() 2945 : S.getNextLowerBound(); 2946 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2947 ? S.getCombinedNextUpperBound() 2948 : S.getNextUpperBound(); 2949 2950 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2951 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2952 emitEmptyOrdered); 2953 } 2954 2955 static std::pair<LValue, LValue> 2956 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2957 const OMPExecutableDirective &S) { 2958 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2959 LValue LB = 2960 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2961 LValue UB = 2962 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2963 2964 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2965 // parallel for') we need to use the 'distribute' 2966 // chunk lower and upper bounds rather than the whole loop iteration 2967 // space. These are parameters to the outlined function for 'parallel' 2968 // and we copy the bounds of the previous schedule into the 2969 // the current ones. 2970 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2971 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2972 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2973 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2974 PrevLBVal = CGF.EmitScalarConversion( 2975 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2976 LS.getIterationVariable()->getType(), 2977 LS.getPrevLowerBoundVariable()->getExprLoc()); 2978 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2979 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2980 PrevUBVal = CGF.EmitScalarConversion( 2981 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2982 LS.getIterationVariable()->getType(), 2983 LS.getPrevUpperBoundVariable()->getExprLoc()); 2984 2985 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2986 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2987 2988 return {LB, UB}; 2989 } 2990 2991 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2992 /// we need to use the LB and UB expressions generated by the worksharing 2993 /// code generation support, whereas in non combined situations we would 2994 /// just emit 0 and the LastIteration expression 2995 /// This function is necessary due to the difference of the LB and UB 2996 /// types for the RT emission routines for 'for_static_init' and 2997 /// 'for_dispatch_init' 2998 static std::pair<llvm::Value *, llvm::Value *> 2999 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 3000 const OMPExecutableDirective &S, 3001 Address LB, Address UB) { 3002 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 3003 const Expr *IVExpr = LS.getIterationVariable(); 3004 // when implementing a dynamic schedule for a 'for' combined with a 3005 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 3006 // is not normalized as each team only executes its own assigned 3007 // distribute chunk 3008 QualType IteratorTy = IVExpr->getType(); 3009 llvm::Value *LBVal = 3010 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3011 llvm::Value *UBVal = 3012 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 3013 return {LBVal, UBVal}; 3014 } 3015 3016 static void emitDistributeParallelForDistributeInnerBoundParams( 3017 CodeGenFunction &CGF, const OMPExecutableDirective &S, 3018 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 3019 const auto &Dir = cast<OMPLoopDirective>(S); 3020 LValue LB = 3021 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 3022 llvm::Value *LBCast = 3023 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 3024 CGF.SizeTy, /*isSigned=*/false); 3025 CapturedVars.push_back(LBCast); 3026 LValue UB = 3027 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 3028 3029 llvm::Value *UBCast = 3030 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 3031 CGF.SizeTy, /*isSigned=*/false); 3032 CapturedVars.push_back(UBCast); 3033 } 3034 3035 static void 3036 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 3037 const OMPLoopDirective &S, 3038 CodeGenFunction::JumpDest LoopExit) { 3039 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 3040 PrePostActionTy &Action) { 3041 Action.Enter(CGF); 3042 bool HasCancel = false; 3043 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 3044 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 3045 HasCancel = D->hasCancel(); 3046 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 3047 HasCancel = D->hasCancel(); 3048 else if (const auto *D = 3049 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 3050 HasCancel = D->hasCancel(); 3051 } 3052 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3053 HasCancel); 3054 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 3055 emitDistributeParallelForInnerBounds, 3056 emitDistributeParallelForDispatchBounds); 3057 }; 3058 3059 emitCommonOMPParallelDirective( 3060 CGF, S, 3061 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3062 CGInlinedWorksharingLoop, 3063 emitDistributeParallelForDistributeInnerBoundParams); 3064 } 3065 3066 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3067 const OMPDistributeParallelForDirective &S) { 3068 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3069 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3070 S.getDistInc()); 3071 }; 3072 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3073 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3074 } 3075 3076 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3077 const OMPDistributeParallelForSimdDirective &S) { 3078 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3079 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3080 S.getDistInc()); 3081 }; 3082 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3083 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3084 } 3085 3086 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3087 const OMPDistributeSimdDirective &S) { 3088 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3089 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3090 }; 3091 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3092 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3093 } 3094 3095 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3096 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3097 // Emit SPMD target parallel for region as a standalone region. 3098 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3099 emitOMPSimdRegion(CGF, S, Action); 3100 }; 3101 llvm::Function *Fn; 3102 llvm::Constant *Addr; 3103 // Emit target region as a standalone region. 3104 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3105 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3106 assert(Fn && Addr && "Target device function emission failed."); 3107 } 3108 3109 void CodeGenFunction::EmitOMPTargetSimdDirective( 3110 const OMPTargetSimdDirective &S) { 3111 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3112 emitOMPSimdRegion(CGF, S, Action); 3113 }; 3114 emitCommonOMPTargetDirective(*this, S, CodeGen); 3115 } 3116 3117 namespace { 3118 struct ScheduleKindModifiersTy { 3119 OpenMPScheduleClauseKind Kind; 3120 OpenMPScheduleClauseModifier M1; 3121 OpenMPScheduleClauseModifier M2; 3122 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3123 OpenMPScheduleClauseModifier M1, 3124 OpenMPScheduleClauseModifier M2) 3125 : Kind(Kind), M1(M1), M2(M2) {} 3126 }; 3127 } // namespace 3128 3129 bool CodeGenFunction::EmitOMPWorksharingLoop( 3130 const OMPLoopDirective &S, Expr *EUB, 3131 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3132 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3133 // Emit the loop iteration variable. 3134 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3135 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3136 EmitVarDecl(*IVDecl); 3137 3138 // Emit the iterations count variable. 3139 // If it is not a variable, Sema decided to calculate iterations count on each 3140 // iteration (e.g., it is foldable into a constant). 3141 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3142 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3143 // Emit calculation of the iterations count. 3144 EmitIgnoredExpr(S.getCalcLastIteration()); 3145 } 3146 3147 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3148 3149 bool HasLastprivateClause; 3150 // Check pre-condition. 3151 { 3152 OMPLoopScope PreInitScope(*this, S); 3153 // Skip the entire loop if we don't meet the precondition. 3154 // If the condition constant folds and can be elided, avoid emitting the 3155 // whole loop. 3156 bool CondConstant; 3157 llvm::BasicBlock *ContBlock = nullptr; 3158 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3159 if (!CondConstant) 3160 return false; 3161 } else { 3162 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3163 ContBlock = createBasicBlock("omp.precond.end"); 3164 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3165 getProfileCount(&S)); 3166 EmitBlock(ThenBlock); 3167 incrementProfileCounter(&S); 3168 } 3169 3170 RunCleanupsScope DoacrossCleanupScope(*this); 3171 bool Ordered = false; 3172 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3173 if (OrderedClause->getNumForLoops()) 3174 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3175 else 3176 Ordered = true; 3177 } 3178 3179 llvm::DenseSet<const Expr *> EmittedFinals; 3180 emitAlignedClause(*this, S); 3181 bool HasLinears = EmitOMPLinearClauseInit(S); 3182 // Emit helper vars inits. 3183 3184 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3185 LValue LB = Bounds.first; 3186 LValue UB = Bounds.second; 3187 LValue ST = 3188 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3189 LValue IL = 3190 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3191 3192 // Emit 'then' code. 3193 { 3194 OMPPrivateScope LoopScope(*this); 3195 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3196 // Emit implicit barrier to synchronize threads and avoid data races on 3197 // initialization of firstprivate variables and post-update of 3198 // lastprivate variables. 3199 CGM.getOpenMPRuntime().emitBarrierCall( 3200 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3201 /*ForceSimpleCall=*/true); 3202 } 3203 EmitOMPPrivateClause(S, LoopScope); 3204 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3205 *this, S, EmitLValue(S.getIterationVariable())); 3206 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3207 EmitOMPReductionClauseInit(S, LoopScope); 3208 EmitOMPPrivateLoopCounters(S, LoopScope); 3209 EmitOMPLinearClause(S, LoopScope); 3210 (void)LoopScope.Privatize(); 3211 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3212 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3213 3214 // Detect the loop schedule kind and chunk. 3215 const Expr *ChunkExpr = nullptr; 3216 OpenMPScheduleTy ScheduleKind; 3217 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3218 ScheduleKind.Schedule = C->getScheduleKind(); 3219 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3220 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3221 ChunkExpr = C->getChunkSize(); 3222 } else { 3223 // Default behaviour for schedule clause. 3224 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3225 *this, S, ScheduleKind.Schedule, ChunkExpr); 3226 } 3227 bool HasChunkSizeOne = false; 3228 llvm::Value *Chunk = nullptr; 3229 if (ChunkExpr) { 3230 Chunk = EmitScalarExpr(ChunkExpr); 3231 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3232 S.getIterationVariable()->getType(), 3233 S.getBeginLoc()); 3234 Expr::EvalResult Result; 3235 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3236 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3237 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3238 } 3239 } 3240 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3241 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3242 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3243 // If the static schedule kind is specified or if the ordered clause is 3244 // specified, and if no monotonic modifier is specified, the effect will 3245 // be as if the monotonic modifier was specified. 3246 bool StaticChunkedOne = 3247 RT.isStaticChunked(ScheduleKind.Schedule, 3248 /* Chunked */ Chunk != nullptr) && 3249 HasChunkSizeOne && 3250 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3251 bool IsMonotonic = 3252 Ordered || 3253 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3254 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3255 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3256 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3257 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3258 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3259 /* Chunked */ Chunk != nullptr) || 3260 StaticChunkedOne) && 3261 !Ordered) { 3262 JumpDest LoopExit = 3263 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3264 emitCommonSimdLoop( 3265 *this, S, 3266 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3267 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3268 CGF.EmitOMPSimdInit(S); 3269 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3270 if (C->getKind() == OMPC_ORDER_concurrent) 3271 CGF.LoopStack.setParallel(/*Enable=*/true); 3272 } 3273 }, 3274 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3275 &S, ScheduleKind, LoopExit, 3276 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3277 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3278 // When no chunk_size is specified, the iteration space is divided 3279 // into chunks that are approximately equal in size, and at most 3280 // one chunk is distributed to each thread. Note that the size of 3281 // the chunks is unspecified in this case. 3282 CGOpenMPRuntime::StaticRTInput StaticInit( 3283 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3284 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3285 StaticChunkedOne ? Chunk : nullptr); 3286 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3287 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3288 StaticInit); 3289 // UB = min(UB, GlobalUB); 3290 if (!StaticChunkedOne) 3291 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3292 // IV = LB; 3293 CGF.EmitIgnoredExpr(S.getInit()); 3294 // For unchunked static schedule generate: 3295 // 3296 // while (idx <= UB) { 3297 // BODY; 3298 // ++idx; 3299 // } 3300 // 3301 // For static schedule with chunk one: 3302 // 3303 // while (IV <= PrevUB) { 3304 // BODY; 3305 // IV += ST; 3306 // } 3307 CGF.EmitOMPInnerLoop( 3308 S, LoopScope.requiresCleanups(), 3309 StaticChunkedOne ? S.getCombinedParForInDistCond() 3310 : S.getCond(), 3311 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3312 [&S, LoopExit](CodeGenFunction &CGF) { 3313 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3314 }, 3315 [](CodeGenFunction &) {}); 3316 }); 3317 EmitBlock(LoopExit.getBlock()); 3318 // Tell the runtime we are done. 3319 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3320 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3321 S.getDirectiveKind()); 3322 }; 3323 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3324 } else { 3325 // Emit the outer loop, which requests its work chunk [LB..UB] from 3326 // runtime and runs the inner loop to process it. 3327 const OMPLoopArguments LoopArguments( 3328 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3329 IL.getAddress(*this), Chunk, EUB); 3330 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3331 LoopArguments, CGDispatchBounds); 3332 } 3333 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3334 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3335 return CGF.Builder.CreateIsNotNull( 3336 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3337 }); 3338 } 3339 EmitOMPReductionClauseFinal( 3340 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3341 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3342 : /*Parallel only*/ OMPD_parallel); 3343 // Emit post-update of the reduction variables if IsLastIter != 0. 3344 emitPostUpdateForReductionClause( 3345 *this, S, [IL, &S](CodeGenFunction &CGF) { 3346 return CGF.Builder.CreateIsNotNull( 3347 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3348 }); 3349 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3350 if (HasLastprivateClause) 3351 EmitOMPLastprivateClauseFinal( 3352 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3353 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3354 } 3355 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3356 return CGF.Builder.CreateIsNotNull( 3357 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3358 }); 3359 DoacrossCleanupScope.ForceCleanup(); 3360 // We're now done with the loop, so jump to the continuation block. 3361 if (ContBlock) { 3362 EmitBranch(ContBlock); 3363 EmitBlock(ContBlock, /*IsFinished=*/true); 3364 } 3365 } 3366 return HasLastprivateClause; 3367 } 3368 3369 /// The following two functions generate expressions for the loop lower 3370 /// and upper bounds in case of static and dynamic (dispatch) schedule 3371 /// of the associated 'for' or 'distribute' loop. 3372 static std::pair<LValue, LValue> 3373 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3374 const auto &LS = cast<OMPLoopDirective>(S); 3375 LValue LB = 3376 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3377 LValue UB = 3378 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3379 return {LB, UB}; 3380 } 3381 3382 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3383 /// consider the lower and upper bound expressions generated by the 3384 /// worksharing loop support, but we use 0 and the iteration space size as 3385 /// constants 3386 static std::pair<llvm::Value *, llvm::Value *> 3387 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3388 Address LB, Address UB) { 3389 const auto &LS = cast<OMPLoopDirective>(S); 3390 const Expr *IVExpr = LS.getIterationVariable(); 3391 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3392 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3393 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3394 return {LBVal, UBVal}; 3395 } 3396 3397 /// Emits internal temp array declarations for the directive with inscan 3398 /// reductions. 3399 /// The code is the following: 3400 /// \code 3401 /// size num_iters = <num_iters>; 3402 /// <type> buffer[num_iters]; 3403 /// \endcode 3404 static void emitScanBasedDirectiveDecls( 3405 CodeGenFunction &CGF, const OMPLoopDirective &S, 3406 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3407 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3408 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3409 SmallVector<const Expr *, 4> Shareds; 3410 SmallVector<const Expr *, 4> Privates; 3411 SmallVector<const Expr *, 4> ReductionOps; 3412 SmallVector<const Expr *, 4> CopyArrayTemps; 3413 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3414 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3415 "Only inscan reductions are expected."); 3416 Shareds.append(C->varlist_begin(), C->varlist_end()); 3417 Privates.append(C->privates().begin(), C->privates().end()); 3418 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3419 CopyArrayTemps.append(C->copy_array_temps().begin(), 3420 C->copy_array_temps().end()); 3421 } 3422 { 3423 // Emit buffers for each reduction variables. 3424 // ReductionCodeGen is required to emit correctly the code for array 3425 // reductions. 3426 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3427 unsigned Count = 0; 3428 auto *ITA = CopyArrayTemps.begin(); 3429 for (const Expr *IRef : Privates) { 3430 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3431 // Emit variably modified arrays, used for arrays/array sections 3432 // reductions. 3433 if (PrivateVD->getType()->isVariablyModifiedType()) { 3434 RedCG.emitSharedOrigLValue(CGF, Count); 3435 RedCG.emitAggregateType(CGF, Count); 3436 } 3437 CodeGenFunction::OpaqueValueMapping DimMapping( 3438 CGF, 3439 cast<OpaqueValueExpr>( 3440 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3441 ->getSizeExpr()), 3442 RValue::get(OMPScanNumIterations)); 3443 // Emit temp buffer. 3444 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3445 ++ITA; 3446 ++Count; 3447 } 3448 } 3449 } 3450 3451 /// Emits the code for the directive with inscan reductions. 3452 /// The code is the following: 3453 /// \code 3454 /// #pragma omp ... 3455 /// for (i: 0..<num_iters>) { 3456 /// <input phase>; 3457 /// buffer[i] = red; 3458 /// } 3459 /// #pragma omp master // in parallel region 3460 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3461 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3462 /// buffer[i] op= buffer[i-pow(2,k)]; 3463 /// #pragma omp barrier // in parallel region 3464 /// #pragma omp ... 3465 /// for (0..<num_iters>) { 3466 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3467 /// <scan phase>; 3468 /// } 3469 /// \endcode 3470 static void emitScanBasedDirective( 3471 CodeGenFunction &CGF, const OMPLoopDirective &S, 3472 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3473 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3474 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3475 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3476 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3477 SmallVector<const Expr *, 4> Privates; 3478 SmallVector<const Expr *, 4> ReductionOps; 3479 SmallVector<const Expr *, 4> LHSs; 3480 SmallVector<const Expr *, 4> RHSs; 3481 SmallVector<const Expr *, 4> CopyArrayElems; 3482 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3483 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3484 "Only inscan reductions are expected."); 3485 Privates.append(C->privates().begin(), C->privates().end()); 3486 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3487 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3488 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3489 CopyArrayElems.append(C->copy_array_elems().begin(), 3490 C->copy_array_elems().end()); 3491 } 3492 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3493 { 3494 // Emit loop with input phase: 3495 // #pragma omp ... 3496 // for (i: 0..<num_iters>) { 3497 // <input phase>; 3498 // buffer[i] = red; 3499 // } 3500 CGF.OMPFirstScanLoop = true; 3501 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3502 FirstGen(CGF); 3503 } 3504 // #pragma omp barrier // in parallel region 3505 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3506 &ReductionOps, 3507 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3508 Action.Enter(CGF); 3509 // Emit prefix reduction: 3510 // #pragma omp master // in parallel region 3511 // for (int k = 0; k <= ceil(log2(n)); ++k) 3512 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3513 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3514 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3515 llvm::Function *F = 3516 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3517 llvm::Value *Arg = 3518 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3519 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3520 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3521 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3522 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3523 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3524 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3525 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3526 CGF.EmitBlock(LoopBB); 3527 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3528 // size pow2k = 1; 3529 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3530 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3531 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3532 // for (size i = n - 1; i >= 2 ^ k; --i) 3533 // tmp[i] op= tmp[i-pow2k]; 3534 llvm::BasicBlock *InnerLoopBB = 3535 CGF.createBasicBlock("omp.inner.log.scan.body"); 3536 llvm::BasicBlock *InnerExitBB = 3537 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3538 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3539 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3540 CGF.EmitBlock(InnerLoopBB); 3541 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3542 IVal->addIncoming(NMin1, LoopBB); 3543 { 3544 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3545 auto *ILHS = LHSs.begin(); 3546 auto *IRHS = RHSs.begin(); 3547 for (const Expr *CopyArrayElem : CopyArrayElems) { 3548 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3549 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3550 Address LHSAddr = Address::invalid(); 3551 { 3552 CodeGenFunction::OpaqueValueMapping IdxMapping( 3553 CGF, 3554 cast<OpaqueValueExpr>( 3555 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3556 RValue::get(IVal)); 3557 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3558 } 3559 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3560 Address RHSAddr = Address::invalid(); 3561 { 3562 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3563 CodeGenFunction::OpaqueValueMapping IdxMapping( 3564 CGF, 3565 cast<OpaqueValueExpr>( 3566 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3567 RValue::get(OffsetIVal)); 3568 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3569 } 3570 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3571 ++ILHS; 3572 ++IRHS; 3573 } 3574 PrivScope.Privatize(); 3575 CGF.CGM.getOpenMPRuntime().emitReduction( 3576 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3577 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3578 } 3579 llvm::Value *NextIVal = 3580 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3581 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3582 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3583 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3584 CGF.EmitBlock(InnerExitBB); 3585 llvm::Value *Next = 3586 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3587 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3588 // pow2k <<= 1; 3589 llvm::Value *NextPow2K = 3590 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3591 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3592 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3593 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3594 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3595 CGF.EmitBlock(ExitBB); 3596 }; 3597 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3598 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3599 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3600 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3601 /*ForceSimpleCall=*/true); 3602 } else { 3603 RegionCodeGenTy RCG(CodeGen); 3604 RCG(CGF); 3605 } 3606 3607 CGF.OMPFirstScanLoop = false; 3608 SecondGen(CGF); 3609 } 3610 3611 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3612 const OMPLoopDirective &S, 3613 bool HasCancel) { 3614 bool HasLastprivates; 3615 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3616 [](const OMPReductionClause *C) { 3617 return C->getModifier() == OMPC_REDUCTION_inscan; 3618 })) { 3619 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3620 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3621 OMPLoopScope LoopScope(CGF, S); 3622 return CGF.EmitScalarExpr(S.getNumIterations()); 3623 }; 3624 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3625 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3626 CGF, S.getDirectiveKind(), HasCancel); 3627 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3628 emitForLoopBounds, 3629 emitDispatchForLoopBounds); 3630 // Emit an implicit barrier at the end. 3631 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3632 OMPD_for); 3633 }; 3634 const auto &&SecondGen = [&S, HasCancel, 3635 &HasLastprivates](CodeGenFunction &CGF) { 3636 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3637 CGF, S.getDirectiveKind(), HasCancel); 3638 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3639 emitForLoopBounds, 3640 emitDispatchForLoopBounds); 3641 }; 3642 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3643 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3644 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3645 } else { 3646 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3647 HasCancel); 3648 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3649 emitForLoopBounds, 3650 emitDispatchForLoopBounds); 3651 } 3652 return HasLastprivates; 3653 } 3654 3655 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3656 if (S.hasCancel()) 3657 return false; 3658 for (OMPClause *C : S.clauses()) 3659 if (!isa<OMPNowaitClause>(C)) 3660 return false; 3661 3662 return true; 3663 } 3664 3665 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3666 bool HasLastprivates = false; 3667 bool UseOMPIRBuilder = 3668 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3669 auto &&CodeGen = [this, &S, &HasLastprivates, 3670 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3671 // Use the OpenMPIRBuilder if enabled. 3672 if (UseOMPIRBuilder) { 3673 // Emit the associated statement and get its loop representation. 3674 const Stmt *Inner = S.getRawStmt(); 3675 llvm::CanonicalLoopInfo *CLI = 3676 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3677 3678 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3679 llvm::OpenMPIRBuilder &OMPBuilder = 3680 CGM.getOpenMPRuntime().getOMPBuilder(); 3681 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3682 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3683 OMPBuilder.applyWorkshareLoop(Builder.getCurrentDebugLocation(), CLI, 3684 AllocaIP, NeedsBarrier); 3685 return; 3686 } 3687 3688 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3689 }; 3690 { 3691 auto LPCRegion = 3692 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3693 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3694 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3695 S.hasCancel()); 3696 } 3697 3698 if (!UseOMPIRBuilder) { 3699 // Emit an implicit barrier at the end. 3700 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3701 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3702 } 3703 // Check for outer lastprivate conditional update. 3704 checkForLastprivateConditionalUpdate(*this, S); 3705 } 3706 3707 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3708 bool HasLastprivates = false; 3709 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3710 PrePostActionTy &) { 3711 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3712 }; 3713 { 3714 auto LPCRegion = 3715 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3716 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3717 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3718 } 3719 3720 // Emit an implicit barrier at the end. 3721 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3722 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3723 // Check for outer lastprivate conditional update. 3724 checkForLastprivateConditionalUpdate(*this, S); 3725 } 3726 3727 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3728 const Twine &Name, 3729 llvm::Value *Init = nullptr) { 3730 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3731 if (Init) 3732 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3733 return LVal; 3734 } 3735 3736 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3737 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3738 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3739 bool HasLastprivates = false; 3740 auto &&CodeGen = [&S, CapturedStmt, CS, 3741 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3742 const ASTContext &C = CGF.getContext(); 3743 QualType KmpInt32Ty = 3744 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3745 // Emit helper vars inits. 3746 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3747 CGF.Builder.getInt32(0)); 3748 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3749 ? CGF.Builder.getInt32(CS->size() - 1) 3750 : CGF.Builder.getInt32(0); 3751 LValue UB = 3752 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3753 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3754 CGF.Builder.getInt32(1)); 3755 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3756 CGF.Builder.getInt32(0)); 3757 // Loop counter. 3758 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3759 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3760 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3761 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3762 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3763 // Generate condition for loop. 3764 BinaryOperator *Cond = BinaryOperator::Create( 3765 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3766 S.getBeginLoc(), FPOptionsOverride()); 3767 // Increment for loop counter. 3768 UnaryOperator *Inc = UnaryOperator::Create( 3769 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3770 S.getBeginLoc(), true, FPOptionsOverride()); 3771 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3772 // Iterate through all sections and emit a switch construct: 3773 // switch (IV) { 3774 // case 0: 3775 // <SectionStmt[0]>; 3776 // break; 3777 // ... 3778 // case <NumSection> - 1: 3779 // <SectionStmt[<NumSection> - 1]>; 3780 // break; 3781 // } 3782 // .omp.sections.exit: 3783 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3784 llvm::SwitchInst *SwitchStmt = 3785 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3786 ExitBB, CS == nullptr ? 1 : CS->size()); 3787 if (CS) { 3788 unsigned CaseNumber = 0; 3789 for (const Stmt *SubStmt : CS->children()) { 3790 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3791 CGF.EmitBlock(CaseBB); 3792 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3793 CGF.EmitStmt(SubStmt); 3794 CGF.EmitBranch(ExitBB); 3795 ++CaseNumber; 3796 } 3797 } else { 3798 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3799 CGF.EmitBlock(CaseBB); 3800 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3801 CGF.EmitStmt(CapturedStmt); 3802 CGF.EmitBranch(ExitBB); 3803 } 3804 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3805 }; 3806 3807 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3808 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3809 // Emit implicit barrier to synchronize threads and avoid data races on 3810 // initialization of firstprivate variables and post-update of lastprivate 3811 // variables. 3812 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3813 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3814 /*ForceSimpleCall=*/true); 3815 } 3816 CGF.EmitOMPPrivateClause(S, LoopScope); 3817 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3818 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3819 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3820 (void)LoopScope.Privatize(); 3821 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3822 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3823 3824 // Emit static non-chunked loop. 3825 OpenMPScheduleTy ScheduleKind; 3826 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3827 CGOpenMPRuntime::StaticRTInput StaticInit( 3828 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3829 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3830 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3831 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3832 // UB = min(UB, GlobalUB); 3833 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3834 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3835 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3836 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3837 // IV = LB; 3838 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3839 // while (idx <= UB) { BODY; ++idx; } 3840 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3841 [](CodeGenFunction &) {}); 3842 // Tell the runtime we are done. 3843 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3844 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3845 S.getDirectiveKind()); 3846 }; 3847 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3848 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3849 // Emit post-update of the reduction variables if IsLastIter != 0. 3850 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3851 return CGF.Builder.CreateIsNotNull( 3852 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3853 }); 3854 3855 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3856 if (HasLastprivates) 3857 CGF.EmitOMPLastprivateClauseFinal( 3858 S, /*NoFinals=*/false, 3859 CGF.Builder.CreateIsNotNull( 3860 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3861 }; 3862 3863 bool HasCancel = false; 3864 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3865 HasCancel = OSD->hasCancel(); 3866 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3867 HasCancel = OPSD->hasCancel(); 3868 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3869 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3870 HasCancel); 3871 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3872 // clause. Otherwise the barrier will be generated by the codegen for the 3873 // directive. 3874 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3875 // Emit implicit barrier to synchronize threads and avoid data races on 3876 // initialization of firstprivate variables. 3877 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3878 OMPD_unknown); 3879 } 3880 } 3881 3882 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3883 if (CGM.getLangOpts().OpenMPIRBuilder) { 3884 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3885 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3886 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 3887 3888 auto FiniCB = [this](InsertPointTy IP) { 3889 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3890 }; 3891 3892 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 3893 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3894 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3895 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 3896 if (CS) { 3897 for (const Stmt *SubStmt : CS->children()) { 3898 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 3899 InsertPointTy CodeGenIP, 3900 llvm::BasicBlock &FiniBB) { 3901 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 3902 FiniBB); 3903 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP, 3904 FiniBB); 3905 }; 3906 SectionCBVector.push_back(SectionCB); 3907 } 3908 } else { 3909 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 3910 InsertPointTy CodeGenIP, 3911 llvm::BasicBlock &FiniBB) { 3912 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3913 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP, 3914 FiniBB); 3915 }; 3916 SectionCBVector.push_back(SectionCB); 3917 } 3918 3919 // Privatization callback that performs appropriate action for 3920 // shared/private/firstprivate/lastprivate/copyin/... variables. 3921 // 3922 // TODO: This defaults to shared right now. 3923 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 3924 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 3925 // The next line is appropriate only for variables (Val) with the 3926 // data-sharing attribute "shared". 3927 ReplVal = &Val; 3928 3929 return CodeGenIP; 3930 }; 3931 3932 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 3933 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3934 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3935 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3936 Builder.restoreIP(OMPBuilder.createSections( 3937 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 3938 S.getSingleClause<OMPNowaitClause>())); 3939 return; 3940 } 3941 { 3942 auto LPCRegion = 3943 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3944 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3945 EmitSections(S); 3946 } 3947 // Emit an implicit barrier at the end. 3948 if (!S.getSingleClause<OMPNowaitClause>()) { 3949 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3950 OMPD_sections); 3951 } 3952 // Check for outer lastprivate conditional update. 3953 checkForLastprivateConditionalUpdate(*this, S); 3954 } 3955 3956 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3957 if (CGM.getLangOpts().OpenMPIRBuilder) { 3958 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3959 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3960 3961 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 3962 auto FiniCB = [this](InsertPointTy IP) { 3963 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3964 }; 3965 3966 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 3967 InsertPointTy CodeGenIP, 3968 llvm::BasicBlock &FiniBB) { 3969 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3970 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt, 3971 CodeGenIP, FiniBB); 3972 }; 3973 3974 LexicalScope Scope(*this, S.getSourceRange()); 3975 EmitStopPoint(&S); 3976 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 3977 3978 return; 3979 } 3980 LexicalScope Scope(*this, S.getSourceRange()); 3981 EmitStopPoint(&S); 3982 EmitStmt(S.getAssociatedStmt()); 3983 } 3984 3985 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3986 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3987 llvm::SmallVector<const Expr *, 8> DestExprs; 3988 llvm::SmallVector<const Expr *, 8> SrcExprs; 3989 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3990 // Check if there are any 'copyprivate' clauses associated with this 3991 // 'single' construct. 3992 // Build a list of copyprivate variables along with helper expressions 3993 // (<source>, <destination>, <destination>=<source> expressions) 3994 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3995 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3996 DestExprs.append(C->destination_exprs().begin(), 3997 C->destination_exprs().end()); 3998 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3999 AssignmentOps.append(C->assignment_ops().begin(), 4000 C->assignment_ops().end()); 4001 } 4002 // Emit code for 'single' region along with 'copyprivate' clauses 4003 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4004 Action.Enter(CGF); 4005 OMPPrivateScope SingleScope(CGF); 4006 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 4007 CGF.EmitOMPPrivateClause(S, SingleScope); 4008 (void)SingleScope.Privatize(); 4009 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4010 }; 4011 { 4012 auto LPCRegion = 4013 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4014 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4015 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 4016 CopyprivateVars, DestExprs, 4017 SrcExprs, AssignmentOps); 4018 } 4019 // Emit an implicit barrier at the end (to avoid data race on firstprivate 4020 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 4021 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 4022 CGM.getOpenMPRuntime().emitBarrierCall( 4023 *this, S.getBeginLoc(), 4024 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 4025 } 4026 // Check for outer lastprivate conditional update. 4027 checkForLastprivateConditionalUpdate(*this, S); 4028 } 4029 4030 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4031 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4032 Action.Enter(CGF); 4033 CGF.EmitStmt(S.getRawStmt()); 4034 }; 4035 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 4036 } 4037 4038 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 4039 if (CGM.getLangOpts().OpenMPIRBuilder) { 4040 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4041 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4042 4043 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 4044 4045 auto FiniCB = [this](InsertPointTy IP) { 4046 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4047 }; 4048 4049 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 4050 InsertPointTy CodeGenIP, 4051 llvm::BasicBlock &FiniBB) { 4052 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4053 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 4054 CodeGenIP, FiniBB); 4055 }; 4056 4057 LexicalScope Scope(*this, S.getSourceRange()); 4058 EmitStopPoint(&S); 4059 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 4060 4061 return; 4062 } 4063 LexicalScope Scope(*this, S.getSourceRange()); 4064 EmitStopPoint(&S); 4065 emitMaster(*this, S); 4066 } 4067 4068 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4069 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4070 Action.Enter(CGF); 4071 CGF.EmitStmt(S.getRawStmt()); 4072 }; 4073 Expr *Filter = nullptr; 4074 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4075 Filter = FilterClause->getThreadID(); 4076 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4077 Filter); 4078 } 4079 4080 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4081 if (CGM.getLangOpts().OpenMPIRBuilder) { 4082 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4083 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4084 4085 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4086 const Expr *Filter = nullptr; 4087 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4088 Filter = FilterClause->getThreadID(); 4089 llvm::Value *FilterVal = Filter 4090 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4091 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4092 4093 auto FiniCB = [this](InsertPointTy IP) { 4094 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4095 }; 4096 4097 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4098 InsertPointTy CodeGenIP, 4099 llvm::BasicBlock &FiniBB) { 4100 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4101 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt, 4102 CodeGenIP, FiniBB); 4103 }; 4104 4105 LexicalScope Scope(*this, S.getSourceRange()); 4106 EmitStopPoint(&S); 4107 Builder.restoreIP( 4108 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4109 4110 return; 4111 } 4112 LexicalScope Scope(*this, S.getSourceRange()); 4113 EmitStopPoint(&S); 4114 emitMasked(*this, S); 4115 } 4116 4117 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4118 if (CGM.getLangOpts().OpenMPIRBuilder) { 4119 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4120 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4121 4122 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4123 const Expr *Hint = nullptr; 4124 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4125 Hint = HintClause->getHint(); 4126 4127 // TODO: This is slightly different from what's currently being done in 4128 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4129 // about typing is final. 4130 llvm::Value *HintInst = nullptr; 4131 if (Hint) 4132 HintInst = 4133 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4134 4135 auto FiniCB = [this](InsertPointTy IP) { 4136 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4137 }; 4138 4139 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4140 InsertPointTy CodeGenIP, 4141 llvm::BasicBlock &FiniBB) { 4142 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4143 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 4144 CodeGenIP, FiniBB); 4145 }; 4146 4147 LexicalScope Scope(*this, S.getSourceRange()); 4148 EmitStopPoint(&S); 4149 Builder.restoreIP(OMPBuilder.createCritical( 4150 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4151 HintInst)); 4152 4153 return; 4154 } 4155 4156 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4157 Action.Enter(CGF); 4158 CGF.EmitStmt(S.getAssociatedStmt()); 4159 }; 4160 const Expr *Hint = nullptr; 4161 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4162 Hint = HintClause->getHint(); 4163 LexicalScope Scope(*this, S.getSourceRange()); 4164 EmitStopPoint(&S); 4165 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4166 S.getDirectiveName().getAsString(), 4167 CodeGen, S.getBeginLoc(), Hint); 4168 } 4169 4170 void CodeGenFunction::EmitOMPParallelForDirective( 4171 const OMPParallelForDirective &S) { 4172 // Emit directive as a combined directive that consists of two implicit 4173 // directives: 'parallel' with 'for' directive. 4174 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4175 Action.Enter(CGF); 4176 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4177 }; 4178 { 4179 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4180 [](const OMPReductionClause *C) { 4181 return C->getModifier() == OMPC_REDUCTION_inscan; 4182 })) { 4183 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4184 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4185 CGCapturedStmtInfo CGSI(CR_OpenMP); 4186 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4187 OMPLoopScope LoopScope(CGF, S); 4188 return CGF.EmitScalarExpr(S.getNumIterations()); 4189 }; 4190 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4191 } 4192 auto LPCRegion = 4193 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4194 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4195 emitEmptyBoundParameters); 4196 } 4197 // Check for outer lastprivate conditional update. 4198 checkForLastprivateConditionalUpdate(*this, S); 4199 } 4200 4201 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4202 const OMPParallelForSimdDirective &S) { 4203 // Emit directive as a combined directive that consists of two implicit 4204 // directives: 'parallel' with 'for' directive. 4205 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4206 Action.Enter(CGF); 4207 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4208 }; 4209 { 4210 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4211 [](const OMPReductionClause *C) { 4212 return C->getModifier() == OMPC_REDUCTION_inscan; 4213 })) { 4214 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4215 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4216 CGCapturedStmtInfo CGSI(CR_OpenMP); 4217 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4218 OMPLoopScope LoopScope(CGF, S); 4219 return CGF.EmitScalarExpr(S.getNumIterations()); 4220 }; 4221 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4222 } 4223 auto LPCRegion = 4224 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4225 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4226 emitEmptyBoundParameters); 4227 } 4228 // Check for outer lastprivate conditional update. 4229 checkForLastprivateConditionalUpdate(*this, S); 4230 } 4231 4232 void CodeGenFunction::EmitOMPParallelMasterDirective( 4233 const OMPParallelMasterDirective &S) { 4234 // Emit directive as a combined directive that consists of two implicit 4235 // directives: 'parallel' with 'master' directive. 4236 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4237 Action.Enter(CGF); 4238 OMPPrivateScope PrivateScope(CGF); 4239 bool Copyins = CGF.EmitOMPCopyinClause(S); 4240 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4241 if (Copyins) { 4242 // Emit implicit barrier to synchronize threads and avoid data races on 4243 // propagation master's thread values of threadprivate variables to local 4244 // instances of that variables of all other implicit threads. 4245 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4246 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4247 /*ForceSimpleCall=*/true); 4248 } 4249 CGF.EmitOMPPrivateClause(S, PrivateScope); 4250 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4251 (void)PrivateScope.Privatize(); 4252 emitMaster(CGF, S); 4253 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4254 }; 4255 { 4256 auto LPCRegion = 4257 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4258 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4259 emitEmptyBoundParameters); 4260 emitPostUpdateForReductionClause(*this, S, 4261 [](CodeGenFunction &) { return nullptr; }); 4262 } 4263 // Check for outer lastprivate conditional update. 4264 checkForLastprivateConditionalUpdate(*this, S); 4265 } 4266 4267 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4268 const OMPParallelSectionsDirective &S) { 4269 // Emit directive as a combined directive that consists of two implicit 4270 // directives: 'parallel' with 'sections' directive. 4271 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4272 Action.Enter(CGF); 4273 CGF.EmitSections(S); 4274 }; 4275 { 4276 auto LPCRegion = 4277 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4278 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4279 emitEmptyBoundParameters); 4280 } 4281 // Check for outer lastprivate conditional update. 4282 checkForLastprivateConditionalUpdate(*this, S); 4283 } 4284 4285 namespace { 4286 /// Get the list of variables declared in the context of the untied tasks. 4287 class CheckVarsEscapingUntiedTaskDeclContext final 4288 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4289 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4290 4291 public: 4292 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4293 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4294 void VisitDeclStmt(const DeclStmt *S) { 4295 if (!S) 4296 return; 4297 // Need to privatize only local vars, static locals can be processed as is. 4298 for (const Decl *D : S->decls()) { 4299 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4300 if (VD->hasLocalStorage()) 4301 PrivateDecls.push_back(VD); 4302 } 4303 } 4304 void VisitOMPExecutableDirective(const OMPExecutableDirective *) {} 4305 void VisitCapturedStmt(const CapturedStmt *) {} 4306 void VisitLambdaExpr(const LambdaExpr *) {} 4307 void VisitBlockExpr(const BlockExpr *) {} 4308 void VisitStmt(const Stmt *S) { 4309 if (!S) 4310 return; 4311 for (const Stmt *Child : S->children()) 4312 if (Child) 4313 Visit(Child); 4314 } 4315 4316 /// Swaps list of vars with the provided one. 4317 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4318 }; 4319 } // anonymous namespace 4320 4321 void CodeGenFunction::EmitOMPTaskBasedDirective( 4322 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4323 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4324 OMPTaskDataTy &Data) { 4325 // Emit outlined function for task construct. 4326 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4327 auto I = CS->getCapturedDecl()->param_begin(); 4328 auto PartId = std::next(I); 4329 auto TaskT = std::next(I, 4); 4330 // Check if the task is final 4331 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4332 // If the condition constant folds and can be elided, try to avoid emitting 4333 // the condition and the dead arm of the if/else. 4334 const Expr *Cond = Clause->getCondition(); 4335 bool CondConstant; 4336 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4337 Data.Final.setInt(CondConstant); 4338 else 4339 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4340 } else { 4341 // By default the task is not final. 4342 Data.Final.setInt(/*IntVal=*/false); 4343 } 4344 // Check if the task has 'priority' clause. 4345 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4346 const Expr *Prio = Clause->getPriority(); 4347 Data.Priority.setInt(/*IntVal=*/true); 4348 Data.Priority.setPointer(EmitScalarConversion( 4349 EmitScalarExpr(Prio), Prio->getType(), 4350 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4351 Prio->getExprLoc())); 4352 } 4353 // The first function argument for tasks is a thread id, the second one is a 4354 // part id (0 for tied tasks, >=0 for untied task). 4355 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4356 // Get list of private variables. 4357 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4358 auto IRef = C->varlist_begin(); 4359 for (const Expr *IInit : C->private_copies()) { 4360 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4361 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4362 Data.PrivateVars.push_back(*IRef); 4363 Data.PrivateCopies.push_back(IInit); 4364 } 4365 ++IRef; 4366 } 4367 } 4368 EmittedAsPrivate.clear(); 4369 // Get list of firstprivate variables. 4370 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4371 auto IRef = C->varlist_begin(); 4372 auto IElemInitRef = C->inits().begin(); 4373 for (const Expr *IInit : C->private_copies()) { 4374 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4375 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4376 Data.FirstprivateVars.push_back(*IRef); 4377 Data.FirstprivateCopies.push_back(IInit); 4378 Data.FirstprivateInits.push_back(*IElemInitRef); 4379 } 4380 ++IRef; 4381 ++IElemInitRef; 4382 } 4383 } 4384 // Get list of lastprivate variables (for taskloops). 4385 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4386 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4387 auto IRef = C->varlist_begin(); 4388 auto ID = C->destination_exprs().begin(); 4389 for (const Expr *IInit : C->private_copies()) { 4390 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4391 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4392 Data.LastprivateVars.push_back(*IRef); 4393 Data.LastprivateCopies.push_back(IInit); 4394 } 4395 LastprivateDstsOrigs.insert( 4396 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4397 cast<DeclRefExpr>(*IRef))); 4398 ++IRef; 4399 ++ID; 4400 } 4401 } 4402 SmallVector<const Expr *, 4> LHSs; 4403 SmallVector<const Expr *, 4> RHSs; 4404 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4405 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4406 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4407 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4408 Data.ReductionOps.append(C->reduction_ops().begin(), 4409 C->reduction_ops().end()); 4410 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4411 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4412 } 4413 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4414 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4415 // Build list of dependences. 4416 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4417 OMPTaskDataTy::DependData &DD = 4418 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4419 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4420 } 4421 // Get list of local vars for untied tasks. 4422 if (!Data.Tied) { 4423 CheckVarsEscapingUntiedTaskDeclContext Checker; 4424 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4425 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4426 Checker.getPrivateDecls().end()); 4427 } 4428 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4429 CapturedRegion](CodeGenFunction &CGF, 4430 PrePostActionTy &Action) { 4431 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4432 std::pair<Address, Address>> 4433 UntiedLocalVars; 4434 // Set proper addresses for generated private copies. 4435 OMPPrivateScope Scope(CGF); 4436 // Generate debug info for variables present in shared clause. 4437 if (auto *DI = CGF.getDebugInfo()) { 4438 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields = 4439 CGF.CapturedStmtInfo->getCaptureFields(); 4440 llvm::Value *ContextValue = CGF.CapturedStmtInfo->getContextValue(); 4441 if (CaptureFields.size() && ContextValue) { 4442 unsigned CharWidth = CGF.getContext().getCharWidth(); 4443 // The shared variables are packed together as members of structure. 4444 // So the address of each shared variable can be computed by adding 4445 // offset of it (within record) to the base address of record. For each 4446 // shared variable, debug intrinsic llvm.dbg.declare is generated with 4447 // appropriate expressions (DIExpression). 4448 // Ex: 4449 // %12 = load %struct.anon*, %struct.anon** %__context.addr.i 4450 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4451 // metadata !svar1, 4452 // metadata !DIExpression(DW_OP_deref)) 4453 // call void @llvm.dbg.declare(metadata %struct.anon* %12, 4454 // metadata !svar2, 4455 // metadata !DIExpression(DW_OP_plus_uconst, 8, DW_OP_deref)) 4456 for (auto It = CaptureFields.begin(); It != CaptureFields.end(); ++It) { 4457 const VarDecl *SharedVar = It->first; 4458 RecordDecl *CaptureRecord = It->second->getParent(); 4459 const ASTRecordLayout &Layout = 4460 CGF.getContext().getASTRecordLayout(CaptureRecord); 4461 unsigned Offset = 4462 Layout.getFieldOffset(It->second->getFieldIndex()) / CharWidth; 4463 (void)DI->EmitDeclareOfAutoVariable(SharedVar, ContextValue, 4464 CGF.Builder, false); 4465 llvm::Instruction &Last = CGF.Builder.GetInsertBlock()->back(); 4466 // Get the call dbg.declare instruction we just created and update 4467 // its DIExpression to add offset to base address. 4468 if (auto DDI = dyn_cast<llvm::DbgVariableIntrinsic>(&Last)) { 4469 SmallVector<uint64_t, 8> Ops; 4470 // Add offset to the base address if non zero. 4471 if (Offset) { 4472 Ops.push_back(llvm::dwarf::DW_OP_plus_uconst); 4473 Ops.push_back(Offset); 4474 } 4475 Ops.push_back(llvm::dwarf::DW_OP_deref); 4476 auto &Ctx = DDI->getContext(); 4477 llvm::DIExpression *DIExpr = llvm::DIExpression::get(Ctx, Ops); 4478 Last.setOperand(2, llvm::MetadataAsValue::get(Ctx, DIExpr)); 4479 } 4480 } 4481 } 4482 } 4483 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4484 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4485 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4486 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4487 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4488 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4489 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4490 CS->getCapturedDecl()->getParam(PrivatesParam))); 4491 // Map privates. 4492 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4493 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4494 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4495 CallArgs.push_back(PrivatesPtr); 4496 ParamTypes.push_back(PrivatesPtr->getType()); 4497 for (const Expr *E : Data.PrivateVars) { 4498 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4499 Address PrivatePtr = CGF.CreateMemTemp( 4500 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4501 PrivatePtrs.emplace_back(VD, PrivatePtr); 4502 CallArgs.push_back(PrivatePtr.getPointer()); 4503 ParamTypes.push_back(PrivatePtr.getType()); 4504 } 4505 for (const Expr *E : Data.FirstprivateVars) { 4506 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4507 Address PrivatePtr = 4508 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4509 ".firstpriv.ptr.addr"); 4510 PrivatePtrs.emplace_back(VD, PrivatePtr); 4511 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4512 CallArgs.push_back(PrivatePtr.getPointer()); 4513 ParamTypes.push_back(PrivatePtr.getType()); 4514 } 4515 for (const Expr *E : Data.LastprivateVars) { 4516 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4517 Address PrivatePtr = 4518 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4519 ".lastpriv.ptr.addr"); 4520 PrivatePtrs.emplace_back(VD, PrivatePtr); 4521 CallArgs.push_back(PrivatePtr.getPointer()); 4522 ParamTypes.push_back(PrivatePtr.getType()); 4523 } 4524 for (const VarDecl *VD : Data.PrivateLocals) { 4525 QualType Ty = VD->getType().getNonReferenceType(); 4526 if (VD->getType()->isLValueReferenceType()) 4527 Ty = CGF.getContext().getPointerType(Ty); 4528 if (isAllocatableDecl(VD)) 4529 Ty = CGF.getContext().getPointerType(Ty); 4530 Address PrivatePtr = CGF.CreateMemTemp( 4531 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4532 auto Result = UntiedLocalVars.insert( 4533 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4534 // If key exists update in place. 4535 if (Result.second == false) 4536 *Result.first = std::make_pair( 4537 VD, std::make_pair(PrivatePtr, Address::invalid())); 4538 CallArgs.push_back(PrivatePtr.getPointer()); 4539 ParamTypes.push_back(PrivatePtr.getType()); 4540 } 4541 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4542 ParamTypes, /*isVarArg=*/false); 4543 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4544 CopyFn, CopyFnTy->getPointerTo()); 4545 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4546 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4547 for (const auto &Pair : LastprivateDstsOrigs) { 4548 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4549 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4550 /*RefersToEnclosingVariableOrCapture=*/ 4551 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4552 Pair.second->getType(), VK_LValue, 4553 Pair.second->getExprLoc()); 4554 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4555 return CGF.EmitLValue(&DRE).getAddress(CGF); 4556 }); 4557 } 4558 for (const auto &Pair : PrivatePtrs) { 4559 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4560 CGF.getContext().getDeclAlign(Pair.first)); 4561 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4562 if (auto *DI = CGF.getDebugInfo()) 4563 DI->EmitDeclareOfAutoVariable(Pair.first, Pair.second.getPointer(), 4564 CGF.Builder, /*UsePointerValue*/ true); 4565 } 4566 // Adjust mapping for internal locals by mapping actual memory instead of 4567 // a pointer to this memory. 4568 for (auto &Pair : UntiedLocalVars) { 4569 if (isAllocatableDecl(Pair.first)) { 4570 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4571 Address Replacement(Ptr, CGF.getPointerAlign()); 4572 Pair.second.first = Replacement; 4573 Ptr = CGF.Builder.CreateLoad(Replacement); 4574 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4575 Pair.second.second = Replacement; 4576 } else { 4577 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4578 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4579 Pair.second.first = Replacement; 4580 } 4581 } 4582 } 4583 if (Data.Reductions) { 4584 OMPPrivateScope FirstprivateScope(CGF); 4585 for (const auto &Pair : FirstprivatePtrs) { 4586 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4587 CGF.getContext().getDeclAlign(Pair.first)); 4588 FirstprivateScope.addPrivate(Pair.first, 4589 [Replacement]() { return Replacement; }); 4590 } 4591 (void)FirstprivateScope.Privatize(); 4592 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4593 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4594 Data.ReductionCopies, Data.ReductionOps); 4595 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4596 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4597 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4598 RedCG.emitSharedOrigLValue(CGF, Cnt); 4599 RedCG.emitAggregateType(CGF, Cnt); 4600 // FIXME: This must removed once the runtime library is fixed. 4601 // Emit required threadprivate variables for 4602 // initializer/combiner/finalizer. 4603 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4604 RedCG, Cnt); 4605 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4606 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4607 Replacement = 4608 Address(CGF.EmitScalarConversion( 4609 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4610 CGF.getContext().getPointerType( 4611 Data.ReductionCopies[Cnt]->getType()), 4612 Data.ReductionCopies[Cnt]->getExprLoc()), 4613 Replacement.getAlignment()); 4614 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4615 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4616 [Replacement]() { return Replacement; }); 4617 } 4618 } 4619 // Privatize all private variables except for in_reduction items. 4620 (void)Scope.Privatize(); 4621 SmallVector<const Expr *, 4> InRedVars; 4622 SmallVector<const Expr *, 4> InRedPrivs; 4623 SmallVector<const Expr *, 4> InRedOps; 4624 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4625 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4626 auto IPriv = C->privates().begin(); 4627 auto IRed = C->reduction_ops().begin(); 4628 auto ITD = C->taskgroup_descriptors().begin(); 4629 for (const Expr *Ref : C->varlists()) { 4630 InRedVars.emplace_back(Ref); 4631 InRedPrivs.emplace_back(*IPriv); 4632 InRedOps.emplace_back(*IRed); 4633 TaskgroupDescriptors.emplace_back(*ITD); 4634 std::advance(IPriv, 1); 4635 std::advance(IRed, 1); 4636 std::advance(ITD, 1); 4637 } 4638 } 4639 // Privatize in_reduction items here, because taskgroup descriptors must be 4640 // privatized earlier. 4641 OMPPrivateScope InRedScope(CGF); 4642 if (!InRedVars.empty()) { 4643 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4644 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4645 RedCG.emitSharedOrigLValue(CGF, Cnt); 4646 RedCG.emitAggregateType(CGF, Cnt); 4647 // The taskgroup descriptor variable is always implicit firstprivate and 4648 // privatized already during processing of the firstprivates. 4649 // FIXME: This must removed once the runtime library is fixed. 4650 // Emit required threadprivate variables for 4651 // initializer/combiner/finalizer. 4652 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4653 RedCG, Cnt); 4654 llvm::Value *ReductionsPtr; 4655 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4656 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4657 TRExpr->getExprLoc()); 4658 } else { 4659 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4660 } 4661 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4662 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4663 Replacement = Address( 4664 CGF.EmitScalarConversion( 4665 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4666 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4667 InRedPrivs[Cnt]->getExprLoc()), 4668 Replacement.getAlignment()); 4669 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4670 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4671 [Replacement]() { return Replacement; }); 4672 } 4673 } 4674 (void)InRedScope.Privatize(); 4675 4676 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4677 UntiedLocalVars); 4678 Action.Enter(CGF); 4679 BodyGen(CGF); 4680 }; 4681 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4682 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4683 Data.NumberOfParts); 4684 OMPLexicalScope Scope(*this, S, llvm::None, 4685 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4686 !isOpenMPSimdDirective(S.getDirectiveKind())); 4687 TaskGen(*this, OutlinedFn, Data); 4688 } 4689 4690 static ImplicitParamDecl * 4691 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4692 QualType Ty, CapturedDecl *CD, 4693 SourceLocation Loc) { 4694 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4695 ImplicitParamDecl::Other); 4696 auto *OrigRef = DeclRefExpr::Create( 4697 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4698 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4699 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4700 ImplicitParamDecl::Other); 4701 auto *PrivateRef = DeclRefExpr::Create( 4702 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4703 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4704 QualType ElemType = C.getBaseElementType(Ty); 4705 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4706 ImplicitParamDecl::Other); 4707 auto *InitRef = DeclRefExpr::Create( 4708 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4709 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4710 PrivateVD->setInitStyle(VarDecl::CInit); 4711 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4712 InitRef, /*BasePath=*/nullptr, 4713 VK_PRValue, FPOptionsOverride())); 4714 Data.FirstprivateVars.emplace_back(OrigRef); 4715 Data.FirstprivateCopies.emplace_back(PrivateRef); 4716 Data.FirstprivateInits.emplace_back(InitRef); 4717 return OrigVD; 4718 } 4719 4720 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4721 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4722 OMPTargetDataInfo &InputInfo) { 4723 // Emit outlined function for task construct. 4724 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4725 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4726 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4727 auto I = CS->getCapturedDecl()->param_begin(); 4728 auto PartId = std::next(I); 4729 auto TaskT = std::next(I, 4); 4730 OMPTaskDataTy Data; 4731 // The task is not final. 4732 Data.Final.setInt(/*IntVal=*/false); 4733 // Get list of firstprivate variables. 4734 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4735 auto IRef = C->varlist_begin(); 4736 auto IElemInitRef = C->inits().begin(); 4737 for (auto *IInit : C->private_copies()) { 4738 Data.FirstprivateVars.push_back(*IRef); 4739 Data.FirstprivateCopies.push_back(IInit); 4740 Data.FirstprivateInits.push_back(*IElemInitRef); 4741 ++IRef; 4742 ++IElemInitRef; 4743 } 4744 } 4745 OMPPrivateScope TargetScope(*this); 4746 VarDecl *BPVD = nullptr; 4747 VarDecl *PVD = nullptr; 4748 VarDecl *SVD = nullptr; 4749 VarDecl *MVD = nullptr; 4750 if (InputInfo.NumberOfTargetItems > 0) { 4751 auto *CD = CapturedDecl::Create( 4752 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4753 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4754 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4755 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4756 /*IndexTypeQuals=*/0); 4757 BPVD = createImplicitFirstprivateForType( 4758 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4759 PVD = createImplicitFirstprivateForType( 4760 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4761 QualType SizesType = getContext().getConstantArrayType( 4762 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4763 ArrSize, nullptr, ArrayType::Normal, 4764 /*IndexTypeQuals=*/0); 4765 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4766 S.getBeginLoc()); 4767 TargetScope.addPrivate( 4768 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4769 TargetScope.addPrivate(PVD, 4770 [&InputInfo]() { return InputInfo.PointersArray; }); 4771 TargetScope.addPrivate(SVD, 4772 [&InputInfo]() { return InputInfo.SizesArray; }); 4773 // If there is no user-defined mapper, the mapper array will be nullptr. In 4774 // this case, we don't need to privatize it. 4775 if (!isa_and_nonnull<llvm::ConstantPointerNull>( 4776 InputInfo.MappersArray.getPointer())) { 4777 MVD = createImplicitFirstprivateForType( 4778 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4779 TargetScope.addPrivate(MVD, 4780 [&InputInfo]() { return InputInfo.MappersArray; }); 4781 } 4782 } 4783 (void)TargetScope.Privatize(); 4784 // Build list of dependences. 4785 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4786 OMPTaskDataTy::DependData &DD = 4787 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4788 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4789 } 4790 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4791 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4792 // Set proper addresses for generated private copies. 4793 OMPPrivateScope Scope(CGF); 4794 if (!Data.FirstprivateVars.empty()) { 4795 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4796 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4797 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4798 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4799 CS->getCapturedDecl()->getParam(PrivatesParam))); 4800 // Map privates. 4801 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4802 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4803 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4804 CallArgs.push_back(PrivatesPtr); 4805 ParamTypes.push_back(PrivatesPtr->getType()); 4806 for (const Expr *E : Data.FirstprivateVars) { 4807 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4808 Address PrivatePtr = 4809 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4810 ".firstpriv.ptr.addr"); 4811 PrivatePtrs.emplace_back(VD, PrivatePtr); 4812 CallArgs.push_back(PrivatePtr.getPointer()); 4813 ParamTypes.push_back(PrivatePtr.getType()); 4814 } 4815 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4816 ParamTypes, /*isVarArg=*/false); 4817 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4818 CopyFn, CopyFnTy->getPointerTo()); 4819 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4820 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4821 for (const auto &Pair : PrivatePtrs) { 4822 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4823 CGF.getContext().getDeclAlign(Pair.first)); 4824 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4825 } 4826 } 4827 // Privatize all private variables except for in_reduction items. 4828 (void)Scope.Privatize(); 4829 if (InputInfo.NumberOfTargetItems > 0) { 4830 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4831 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4832 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4833 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4834 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4835 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4836 // If MVD is nullptr, the mapper array is not privatized 4837 if (MVD) 4838 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4839 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4840 } 4841 4842 Action.Enter(CGF); 4843 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4844 BodyGen(CGF); 4845 }; 4846 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4847 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4848 Data.NumberOfParts); 4849 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4850 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4851 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4852 SourceLocation()); 4853 4854 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4855 SharedsTy, CapturedStruct, &IfCond, Data); 4856 } 4857 4858 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4859 // Emit outlined function for task construct. 4860 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4861 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4862 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4863 const Expr *IfCond = nullptr; 4864 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4865 if (C->getNameModifier() == OMPD_unknown || 4866 C->getNameModifier() == OMPD_task) { 4867 IfCond = C->getCondition(); 4868 break; 4869 } 4870 } 4871 4872 OMPTaskDataTy Data; 4873 // Check if we should emit tied or untied task. 4874 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4875 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4876 CGF.EmitStmt(CS->getCapturedStmt()); 4877 }; 4878 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4879 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4880 const OMPTaskDataTy &Data) { 4881 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4882 SharedsTy, CapturedStruct, IfCond, 4883 Data); 4884 }; 4885 auto LPCRegion = 4886 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4887 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4888 } 4889 4890 void CodeGenFunction::EmitOMPTaskyieldDirective( 4891 const OMPTaskyieldDirective &S) { 4892 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4893 } 4894 4895 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4896 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4897 } 4898 4899 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4900 OMPTaskDataTy Data; 4901 // Build list of dependences 4902 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4903 OMPTaskDataTy::DependData &DD = 4904 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4905 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4906 } 4907 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc(), Data); 4908 } 4909 4910 void CodeGenFunction::EmitOMPTaskgroupDirective( 4911 const OMPTaskgroupDirective &S) { 4912 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4913 Action.Enter(CGF); 4914 if (const Expr *E = S.getReductionRef()) { 4915 SmallVector<const Expr *, 4> LHSs; 4916 SmallVector<const Expr *, 4> RHSs; 4917 OMPTaskDataTy Data; 4918 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4919 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4920 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4921 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4922 Data.ReductionOps.append(C->reduction_ops().begin(), 4923 C->reduction_ops().end()); 4924 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4925 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4926 } 4927 llvm::Value *ReductionDesc = 4928 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4929 LHSs, RHSs, Data); 4930 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4931 CGF.EmitVarDecl(*VD); 4932 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4933 /*Volatile=*/false, E->getType()); 4934 } 4935 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4936 }; 4937 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4938 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4939 } 4940 4941 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4942 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4943 ? llvm::AtomicOrdering::NotAtomic 4944 : llvm::AtomicOrdering::AcquireRelease; 4945 CGM.getOpenMPRuntime().emitFlush( 4946 *this, 4947 [&S]() -> ArrayRef<const Expr *> { 4948 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4949 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4950 FlushClause->varlist_end()); 4951 return llvm::None; 4952 }(), 4953 S.getBeginLoc(), AO); 4954 } 4955 4956 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4957 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4958 LValue DOLVal = EmitLValue(DO->getDepobj()); 4959 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4960 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4961 DC->getModifier()); 4962 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4963 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4964 *this, Dependencies, DC->getBeginLoc()); 4965 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4966 return; 4967 } 4968 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4969 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4970 return; 4971 } 4972 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4973 CGM.getOpenMPRuntime().emitUpdateClause( 4974 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4975 return; 4976 } 4977 } 4978 4979 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4980 if (!OMPParentLoopDirectiveForScan) 4981 return; 4982 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4983 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4984 SmallVector<const Expr *, 4> Shareds; 4985 SmallVector<const Expr *, 4> Privates; 4986 SmallVector<const Expr *, 4> LHSs; 4987 SmallVector<const Expr *, 4> RHSs; 4988 SmallVector<const Expr *, 4> ReductionOps; 4989 SmallVector<const Expr *, 4> CopyOps; 4990 SmallVector<const Expr *, 4> CopyArrayTemps; 4991 SmallVector<const Expr *, 4> CopyArrayElems; 4992 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4993 if (C->getModifier() != OMPC_REDUCTION_inscan) 4994 continue; 4995 Shareds.append(C->varlist_begin(), C->varlist_end()); 4996 Privates.append(C->privates().begin(), C->privates().end()); 4997 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4998 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4999 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 5000 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 5001 CopyArrayTemps.append(C->copy_array_temps().begin(), 5002 C->copy_array_temps().end()); 5003 CopyArrayElems.append(C->copy_array_elems().begin(), 5004 C->copy_array_elems().end()); 5005 } 5006 if (ParentDir.getDirectiveKind() == OMPD_simd || 5007 (getLangOpts().OpenMPSimd && 5008 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 5009 // For simd directive and simd-based directives in simd only mode, use the 5010 // following codegen: 5011 // int x = 0; 5012 // #pragma omp simd reduction(inscan, +: x) 5013 // for (..) { 5014 // <first part> 5015 // #pragma omp scan inclusive(x) 5016 // <second part> 5017 // } 5018 // is transformed to: 5019 // int x = 0; 5020 // for (..) { 5021 // int x_priv = 0; 5022 // <first part> 5023 // x = x_priv + x; 5024 // x_priv = x; 5025 // <second part> 5026 // } 5027 // and 5028 // int x = 0; 5029 // #pragma omp simd reduction(inscan, +: x) 5030 // for (..) { 5031 // <first part> 5032 // #pragma omp scan exclusive(x) 5033 // <second part> 5034 // } 5035 // to 5036 // int x = 0; 5037 // for (..) { 5038 // int x_priv = 0; 5039 // <second part> 5040 // int temp = x; 5041 // x = x_priv + x; 5042 // x_priv = temp; 5043 // <first part> 5044 // } 5045 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 5046 EmitBranch(IsInclusive 5047 ? OMPScanReduce 5048 : BreakContinueStack.back().ContinueBlock.getBlock()); 5049 EmitBlock(OMPScanDispatch); 5050 { 5051 // New scope for correct construction/destruction of temp variables for 5052 // exclusive scan. 5053 LexicalScope Scope(*this, S.getSourceRange()); 5054 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 5055 EmitBlock(OMPScanReduce); 5056 if (!IsInclusive) { 5057 // Create temp var and copy LHS value to this temp value. 5058 // TMP = LHS; 5059 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5060 const Expr *PrivateExpr = Privates[I]; 5061 const Expr *TempExpr = CopyArrayTemps[I]; 5062 EmitAutoVarDecl( 5063 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 5064 LValue DestLVal = EmitLValue(TempExpr); 5065 LValue SrcLVal = EmitLValue(LHSs[I]); 5066 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5067 SrcLVal.getAddress(*this), 5068 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5069 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5070 CopyOps[I]); 5071 } 5072 } 5073 CGM.getOpenMPRuntime().emitReduction( 5074 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 5075 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 5076 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5077 const Expr *PrivateExpr = Privates[I]; 5078 LValue DestLVal; 5079 LValue SrcLVal; 5080 if (IsInclusive) { 5081 DestLVal = EmitLValue(RHSs[I]); 5082 SrcLVal = EmitLValue(LHSs[I]); 5083 } else { 5084 const Expr *TempExpr = CopyArrayTemps[I]; 5085 DestLVal = EmitLValue(RHSs[I]); 5086 SrcLVal = EmitLValue(TempExpr); 5087 } 5088 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5089 SrcLVal.getAddress(*this), 5090 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5091 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5092 CopyOps[I]); 5093 } 5094 } 5095 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 5096 OMPScanExitBlock = IsInclusive 5097 ? BreakContinueStack.back().ContinueBlock.getBlock() 5098 : OMPScanReduce; 5099 EmitBlock(OMPAfterScanBlock); 5100 return; 5101 } 5102 if (!IsInclusive) { 5103 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5104 EmitBlock(OMPScanExitBlock); 5105 } 5106 if (OMPFirstScanLoop) { 5107 // Emit buffer[i] = red; at the end of the input phase. 5108 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5109 .getIterationVariable() 5110 ->IgnoreParenImpCasts(); 5111 LValue IdxLVal = EmitLValue(IVExpr); 5112 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5113 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5114 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5115 const Expr *PrivateExpr = Privates[I]; 5116 const Expr *OrigExpr = Shareds[I]; 5117 const Expr *CopyArrayElem = CopyArrayElems[I]; 5118 OpaqueValueMapping IdxMapping( 5119 *this, 5120 cast<OpaqueValueExpr>( 5121 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5122 RValue::get(IdxVal)); 5123 LValue DestLVal = EmitLValue(CopyArrayElem); 5124 LValue SrcLVal = EmitLValue(OrigExpr); 5125 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5126 SrcLVal.getAddress(*this), 5127 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5128 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5129 CopyOps[I]); 5130 } 5131 } 5132 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5133 if (IsInclusive) { 5134 EmitBlock(OMPScanExitBlock); 5135 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5136 } 5137 EmitBlock(OMPScanDispatch); 5138 if (!OMPFirstScanLoop) { 5139 // Emit red = buffer[i]; at the entrance to the scan phase. 5140 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5141 .getIterationVariable() 5142 ->IgnoreParenImpCasts(); 5143 LValue IdxLVal = EmitLValue(IVExpr); 5144 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5145 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5146 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5147 if (!IsInclusive) { 5148 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5149 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5150 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5151 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5152 EmitBlock(ContBB); 5153 // Use idx - 1 iteration for exclusive scan. 5154 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5155 } 5156 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5157 const Expr *PrivateExpr = Privates[I]; 5158 const Expr *OrigExpr = Shareds[I]; 5159 const Expr *CopyArrayElem = CopyArrayElems[I]; 5160 OpaqueValueMapping IdxMapping( 5161 *this, 5162 cast<OpaqueValueExpr>( 5163 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5164 RValue::get(IdxVal)); 5165 LValue SrcLVal = EmitLValue(CopyArrayElem); 5166 LValue DestLVal = EmitLValue(OrigExpr); 5167 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5168 SrcLVal.getAddress(*this), 5169 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5170 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5171 CopyOps[I]); 5172 } 5173 if (!IsInclusive) { 5174 EmitBlock(ExclusiveExitBB); 5175 } 5176 } 5177 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5178 : OMPAfterScanBlock); 5179 EmitBlock(OMPAfterScanBlock); 5180 } 5181 5182 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5183 const CodeGenLoopTy &CodeGenLoop, 5184 Expr *IncExpr) { 5185 // Emit the loop iteration variable. 5186 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5187 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5188 EmitVarDecl(*IVDecl); 5189 5190 // Emit the iterations count variable. 5191 // If it is not a variable, Sema decided to calculate iterations count on each 5192 // iteration (e.g., it is foldable into a constant). 5193 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5194 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5195 // Emit calculation of the iterations count. 5196 EmitIgnoredExpr(S.getCalcLastIteration()); 5197 } 5198 5199 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5200 5201 bool HasLastprivateClause = false; 5202 // Check pre-condition. 5203 { 5204 OMPLoopScope PreInitScope(*this, S); 5205 // Skip the entire loop if we don't meet the precondition. 5206 // If the condition constant folds and can be elided, avoid emitting the 5207 // whole loop. 5208 bool CondConstant; 5209 llvm::BasicBlock *ContBlock = nullptr; 5210 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5211 if (!CondConstant) 5212 return; 5213 } else { 5214 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5215 ContBlock = createBasicBlock("omp.precond.end"); 5216 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5217 getProfileCount(&S)); 5218 EmitBlock(ThenBlock); 5219 incrementProfileCounter(&S); 5220 } 5221 5222 emitAlignedClause(*this, S); 5223 // Emit 'then' code. 5224 { 5225 // Emit helper vars inits. 5226 5227 LValue LB = EmitOMPHelperVar( 5228 *this, cast<DeclRefExpr>( 5229 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5230 ? S.getCombinedLowerBoundVariable() 5231 : S.getLowerBoundVariable()))); 5232 LValue UB = EmitOMPHelperVar( 5233 *this, cast<DeclRefExpr>( 5234 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5235 ? S.getCombinedUpperBoundVariable() 5236 : S.getUpperBoundVariable()))); 5237 LValue ST = 5238 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5239 LValue IL = 5240 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5241 5242 OMPPrivateScope LoopScope(*this); 5243 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5244 // Emit implicit barrier to synchronize threads and avoid data races 5245 // on initialization of firstprivate variables and post-update of 5246 // lastprivate variables. 5247 CGM.getOpenMPRuntime().emitBarrierCall( 5248 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5249 /*ForceSimpleCall=*/true); 5250 } 5251 EmitOMPPrivateClause(S, LoopScope); 5252 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5253 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5254 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5255 EmitOMPReductionClauseInit(S, LoopScope); 5256 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5257 EmitOMPPrivateLoopCounters(S, LoopScope); 5258 (void)LoopScope.Privatize(); 5259 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5260 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5261 5262 // Detect the distribute schedule kind and chunk. 5263 llvm::Value *Chunk = nullptr; 5264 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5265 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5266 ScheduleKind = C->getDistScheduleKind(); 5267 if (const Expr *Ch = C->getChunkSize()) { 5268 Chunk = EmitScalarExpr(Ch); 5269 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5270 S.getIterationVariable()->getType(), 5271 S.getBeginLoc()); 5272 } 5273 } else { 5274 // Default behaviour for dist_schedule clause. 5275 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5276 *this, S, ScheduleKind, Chunk); 5277 } 5278 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5279 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5280 5281 // OpenMP [2.10.8, distribute Construct, Description] 5282 // If dist_schedule is specified, kind must be static. If specified, 5283 // iterations are divided into chunks of size chunk_size, chunks are 5284 // assigned to the teams of the league in a round-robin fashion in the 5285 // order of the team number. When no chunk_size is specified, the 5286 // iteration space is divided into chunks that are approximately equal 5287 // in size, and at most one chunk is distributed to each team of the 5288 // league. The size of the chunks is unspecified in this case. 5289 bool StaticChunked = 5290 RT.isStaticChunked(ScheduleKind, /* Chunked */ Chunk != nullptr) && 5291 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5292 if (RT.isStaticNonchunked(ScheduleKind, 5293 /* Chunked */ Chunk != nullptr) || 5294 StaticChunked) { 5295 CGOpenMPRuntime::StaticRTInput StaticInit( 5296 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5297 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5298 StaticChunked ? Chunk : nullptr); 5299 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5300 StaticInit); 5301 JumpDest LoopExit = 5302 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5303 // UB = min(UB, GlobalUB); 5304 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5305 ? S.getCombinedEnsureUpperBound() 5306 : S.getEnsureUpperBound()); 5307 // IV = LB; 5308 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5309 ? S.getCombinedInit() 5310 : S.getInit()); 5311 5312 const Expr *Cond = 5313 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5314 ? S.getCombinedCond() 5315 : S.getCond(); 5316 5317 if (StaticChunked) 5318 Cond = S.getCombinedDistCond(); 5319 5320 // For static unchunked schedules generate: 5321 // 5322 // 1. For distribute alone, codegen 5323 // while (idx <= UB) { 5324 // BODY; 5325 // ++idx; 5326 // } 5327 // 5328 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5329 // while (idx <= UB) { 5330 // <CodeGen rest of pragma>(LB, UB); 5331 // idx += ST; 5332 // } 5333 // 5334 // For static chunk one schedule generate: 5335 // 5336 // while (IV <= GlobalUB) { 5337 // <CodeGen rest of pragma>(LB, UB); 5338 // LB += ST; 5339 // UB += ST; 5340 // UB = min(UB, GlobalUB); 5341 // IV = LB; 5342 // } 5343 // 5344 emitCommonSimdLoop( 5345 *this, S, 5346 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5347 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5348 CGF.EmitOMPSimdInit(S); 5349 }, 5350 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5351 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5352 CGF.EmitOMPInnerLoop( 5353 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5354 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5355 CodeGenLoop(CGF, S, LoopExit); 5356 }, 5357 [&S, StaticChunked](CodeGenFunction &CGF) { 5358 if (StaticChunked) { 5359 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5360 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5361 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5362 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5363 } 5364 }); 5365 }); 5366 EmitBlock(LoopExit.getBlock()); 5367 // Tell the runtime we are done. 5368 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5369 } else { 5370 // Emit the outer loop, which requests its work chunk [LB..UB] from 5371 // runtime and runs the inner loop to process it. 5372 const OMPLoopArguments LoopArguments = { 5373 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5374 IL.getAddress(*this), Chunk}; 5375 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5376 CodeGenLoop); 5377 } 5378 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5379 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5380 return CGF.Builder.CreateIsNotNull( 5381 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5382 }); 5383 } 5384 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5385 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5386 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5387 EmitOMPReductionClauseFinal(S, OMPD_simd); 5388 // Emit post-update of the reduction variables if IsLastIter != 0. 5389 emitPostUpdateForReductionClause( 5390 *this, S, [IL, &S](CodeGenFunction &CGF) { 5391 return CGF.Builder.CreateIsNotNull( 5392 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5393 }); 5394 } 5395 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5396 if (HasLastprivateClause) { 5397 EmitOMPLastprivateClauseFinal( 5398 S, /*NoFinals=*/false, 5399 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5400 } 5401 } 5402 5403 // We're now done with the loop, so jump to the continuation block. 5404 if (ContBlock) { 5405 EmitBranch(ContBlock); 5406 EmitBlock(ContBlock, true); 5407 } 5408 } 5409 } 5410 5411 void CodeGenFunction::EmitOMPDistributeDirective( 5412 const OMPDistributeDirective &S) { 5413 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5414 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5415 }; 5416 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5417 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5418 } 5419 5420 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5421 const CapturedStmt *S, 5422 SourceLocation Loc) { 5423 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5424 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5425 CGF.CapturedStmtInfo = &CapStmtInfo; 5426 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5427 Fn->setDoesNotRecurse(); 5428 return Fn; 5429 } 5430 5431 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5432 if (CGM.getLangOpts().OpenMPIRBuilder) { 5433 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 5434 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 5435 5436 if (S.hasClausesOfKind<OMPDependClause>()) { 5437 // The ordered directive with depend clause. 5438 assert(!S.hasAssociatedStmt() && 5439 "No associated statement must be in ordered depend construct."); 5440 InsertPointTy AllocaIP(AllocaInsertPt->getParent(), 5441 AllocaInsertPt->getIterator()); 5442 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) { 5443 unsigned NumLoops = DC->getNumLoops(); 5444 QualType Int64Ty = CGM.getContext().getIntTypeForBitwidth( 5445 /*DestWidth=*/64, /*Signed=*/1); 5446 llvm::SmallVector<llvm::Value *> StoreValues; 5447 for (unsigned I = 0; I < NumLoops; I++) { 5448 const Expr *CounterVal = DC->getLoopData(I); 5449 assert(CounterVal); 5450 llvm::Value *StoreValue = EmitScalarConversion( 5451 EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, 5452 CounterVal->getExprLoc()); 5453 StoreValues.emplace_back(StoreValue); 5454 } 5455 bool IsDependSource = false; 5456 if (DC->getDependencyKind() == OMPC_DEPEND_source) 5457 IsDependSource = true; 5458 Builder.restoreIP(OMPBuilder.createOrderedDepend( 5459 Builder, AllocaIP, NumLoops, StoreValues, ".cnt.addr", 5460 IsDependSource)); 5461 } 5462 } else { 5463 // The ordered directive with threads or simd clause, or without clause. 5464 // Without clause, it behaves as if the threads clause is specified. 5465 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5466 5467 auto FiniCB = [this](InsertPointTy IP) { 5468 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 5469 }; 5470 5471 auto BodyGenCB = [&S, C, this](InsertPointTy AllocaIP, 5472 InsertPointTy CodeGenIP, 5473 llvm::BasicBlock &FiniBB) { 5474 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5475 if (C) { 5476 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5477 GenerateOpenMPCapturedVars(*CS, CapturedVars); 5478 llvm::Function *OutlinedFn = 5479 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5480 assert(S.getBeginLoc().isValid() && 5481 "Outlined function call location must be valid."); 5482 ApplyDebugLocation::CreateDefaultArtificial(*this, S.getBeginLoc()); 5483 OMPBuilderCBHelpers::EmitCaptureStmt(*this, CodeGenIP, FiniBB, 5484 OutlinedFn, CapturedVars); 5485 } else { 5486 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 5487 FiniBB); 5488 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CS->getCapturedStmt(), 5489 CodeGenIP, FiniBB); 5490 } 5491 }; 5492 5493 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5494 Builder.restoreIP( 5495 OMPBuilder.createOrderedThreadsSimd(Builder, BodyGenCB, FiniCB, !C)); 5496 } 5497 return; 5498 } 5499 5500 if (S.hasClausesOfKind<OMPDependClause>()) { 5501 assert(!S.hasAssociatedStmt() && 5502 "No associated statement must be in ordered depend construct."); 5503 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5504 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5505 return; 5506 } 5507 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5508 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5509 PrePostActionTy &Action) { 5510 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5511 if (C) { 5512 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5513 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5514 llvm::Function *OutlinedFn = 5515 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5516 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5517 OutlinedFn, CapturedVars); 5518 } else { 5519 Action.Enter(CGF); 5520 CGF.EmitStmt(CS->getCapturedStmt()); 5521 } 5522 }; 5523 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5524 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5525 } 5526 5527 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5528 QualType SrcType, QualType DestType, 5529 SourceLocation Loc) { 5530 assert(CGF.hasScalarEvaluationKind(DestType) && 5531 "DestType must have scalar evaluation kind."); 5532 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5533 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5534 DestType, Loc) 5535 : CGF.EmitComplexToScalarConversion( 5536 Val.getComplexVal(), SrcType, DestType, Loc); 5537 } 5538 5539 static CodeGenFunction::ComplexPairTy 5540 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5541 QualType DestType, SourceLocation Loc) { 5542 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5543 "DestType must have complex evaluation kind."); 5544 CodeGenFunction::ComplexPairTy ComplexVal; 5545 if (Val.isScalar()) { 5546 // Convert the input element to the element type of the complex. 5547 QualType DestElementType = 5548 DestType->castAs<ComplexType>()->getElementType(); 5549 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5550 Val.getScalarVal(), SrcType, DestElementType, Loc); 5551 ComplexVal = CodeGenFunction::ComplexPairTy( 5552 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5553 } else { 5554 assert(Val.isComplex() && "Must be a scalar or complex."); 5555 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5556 QualType DestElementType = 5557 DestType->castAs<ComplexType>()->getElementType(); 5558 ComplexVal.first = CGF.EmitScalarConversion( 5559 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5560 ComplexVal.second = CGF.EmitScalarConversion( 5561 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5562 } 5563 return ComplexVal; 5564 } 5565 5566 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5567 LValue LVal, RValue RVal) { 5568 if (LVal.isGlobalReg()) 5569 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5570 else 5571 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5572 } 5573 5574 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5575 llvm::AtomicOrdering AO, LValue LVal, 5576 SourceLocation Loc) { 5577 if (LVal.isGlobalReg()) 5578 return CGF.EmitLoadOfLValue(LVal, Loc); 5579 return CGF.EmitAtomicLoad( 5580 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5581 LVal.isVolatile()); 5582 } 5583 5584 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5585 QualType RValTy, SourceLocation Loc) { 5586 switch (getEvaluationKind(LVal.getType())) { 5587 case TEK_Scalar: 5588 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5589 *this, RVal, RValTy, LVal.getType(), Loc)), 5590 LVal); 5591 break; 5592 case TEK_Complex: 5593 EmitStoreOfComplex( 5594 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5595 /*isInit=*/false); 5596 break; 5597 case TEK_Aggregate: 5598 llvm_unreachable("Must be a scalar or complex."); 5599 } 5600 } 5601 5602 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5603 const Expr *X, const Expr *V, 5604 SourceLocation Loc) { 5605 // v = x; 5606 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5607 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5608 LValue XLValue = CGF.EmitLValue(X); 5609 LValue VLValue = CGF.EmitLValue(V); 5610 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5611 // OpenMP, 2.17.7, atomic Construct 5612 // If the read or capture clause is specified and the acquire, acq_rel, or 5613 // seq_cst clause is specified then the strong flush on exit from the atomic 5614 // operation is also an acquire flush. 5615 switch (AO) { 5616 case llvm::AtomicOrdering::Acquire: 5617 case llvm::AtomicOrdering::AcquireRelease: 5618 case llvm::AtomicOrdering::SequentiallyConsistent: 5619 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5620 llvm::AtomicOrdering::Acquire); 5621 break; 5622 case llvm::AtomicOrdering::Monotonic: 5623 case llvm::AtomicOrdering::Release: 5624 break; 5625 case llvm::AtomicOrdering::NotAtomic: 5626 case llvm::AtomicOrdering::Unordered: 5627 llvm_unreachable("Unexpected ordering."); 5628 } 5629 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5630 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5631 } 5632 5633 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5634 llvm::AtomicOrdering AO, const Expr *X, 5635 const Expr *E, SourceLocation Loc) { 5636 // x = expr; 5637 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5638 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5639 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5640 // OpenMP, 2.17.7, atomic Construct 5641 // If the write, update, or capture clause is specified and the release, 5642 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5643 // the atomic operation is also a release flush. 5644 switch (AO) { 5645 case llvm::AtomicOrdering::Release: 5646 case llvm::AtomicOrdering::AcquireRelease: 5647 case llvm::AtomicOrdering::SequentiallyConsistent: 5648 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5649 llvm::AtomicOrdering::Release); 5650 break; 5651 case llvm::AtomicOrdering::Acquire: 5652 case llvm::AtomicOrdering::Monotonic: 5653 break; 5654 case llvm::AtomicOrdering::NotAtomic: 5655 case llvm::AtomicOrdering::Unordered: 5656 llvm_unreachable("Unexpected ordering."); 5657 } 5658 } 5659 5660 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5661 RValue Update, 5662 BinaryOperatorKind BO, 5663 llvm::AtomicOrdering AO, 5664 bool IsXLHSInRHSPart) { 5665 ASTContext &Context = CGF.getContext(); 5666 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5667 // expression is simple and atomic is allowed for the given type for the 5668 // target platform. 5669 if (BO == BO_Comma || !Update.isScalar() || 5670 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5671 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5672 (Update.getScalarVal()->getType() != 5673 X.getAddress(CGF).getElementType())) || 5674 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5675 !Context.getTargetInfo().hasBuiltinAtomic( 5676 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5677 return std::make_pair(false, RValue::get(nullptr)); 5678 5679 llvm::AtomicRMWInst::BinOp RMWOp; 5680 switch (BO) { 5681 case BO_Add: 5682 RMWOp = llvm::AtomicRMWInst::Add; 5683 break; 5684 case BO_Sub: 5685 if (!IsXLHSInRHSPart) 5686 return std::make_pair(false, RValue::get(nullptr)); 5687 RMWOp = llvm::AtomicRMWInst::Sub; 5688 break; 5689 case BO_And: 5690 RMWOp = llvm::AtomicRMWInst::And; 5691 break; 5692 case BO_Or: 5693 RMWOp = llvm::AtomicRMWInst::Or; 5694 break; 5695 case BO_Xor: 5696 RMWOp = llvm::AtomicRMWInst::Xor; 5697 break; 5698 case BO_LT: 5699 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5700 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5701 : llvm::AtomicRMWInst::Max) 5702 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5703 : llvm::AtomicRMWInst::UMax); 5704 break; 5705 case BO_GT: 5706 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5707 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5708 : llvm::AtomicRMWInst::Min) 5709 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5710 : llvm::AtomicRMWInst::UMin); 5711 break; 5712 case BO_Assign: 5713 RMWOp = llvm::AtomicRMWInst::Xchg; 5714 break; 5715 case BO_Mul: 5716 case BO_Div: 5717 case BO_Rem: 5718 case BO_Shl: 5719 case BO_Shr: 5720 case BO_LAnd: 5721 case BO_LOr: 5722 return std::make_pair(false, RValue::get(nullptr)); 5723 case BO_PtrMemD: 5724 case BO_PtrMemI: 5725 case BO_LE: 5726 case BO_GE: 5727 case BO_EQ: 5728 case BO_NE: 5729 case BO_Cmp: 5730 case BO_AddAssign: 5731 case BO_SubAssign: 5732 case BO_AndAssign: 5733 case BO_OrAssign: 5734 case BO_XorAssign: 5735 case BO_MulAssign: 5736 case BO_DivAssign: 5737 case BO_RemAssign: 5738 case BO_ShlAssign: 5739 case BO_ShrAssign: 5740 case BO_Comma: 5741 llvm_unreachable("Unsupported atomic update operation"); 5742 } 5743 llvm::Value *UpdateVal = Update.getScalarVal(); 5744 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5745 UpdateVal = CGF.Builder.CreateIntCast( 5746 IC, X.getAddress(CGF).getElementType(), 5747 X.getType()->hasSignedIntegerRepresentation()); 5748 } 5749 llvm::Value *Res = 5750 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5751 return std::make_pair(true, RValue::get(Res)); 5752 } 5753 5754 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5755 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5756 llvm::AtomicOrdering AO, SourceLocation Loc, 5757 const llvm::function_ref<RValue(RValue)> CommonGen) { 5758 // Update expressions are allowed to have the following forms: 5759 // x binop= expr; -> xrval + expr; 5760 // x++, ++x -> xrval + 1; 5761 // x--, --x -> xrval - 1; 5762 // x = x binop expr; -> xrval binop expr 5763 // x = expr Op x; - > expr binop xrval; 5764 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5765 if (!Res.first) { 5766 if (X.isGlobalReg()) { 5767 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5768 // 'xrval'. 5769 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5770 } else { 5771 // Perform compare-and-swap procedure. 5772 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5773 } 5774 } 5775 return Res; 5776 } 5777 5778 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5779 llvm::AtomicOrdering AO, const Expr *X, 5780 const Expr *E, const Expr *UE, 5781 bool IsXLHSInRHSPart, SourceLocation Loc) { 5782 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5783 "Update expr in 'atomic update' must be a binary operator."); 5784 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5785 // Update expressions are allowed to have the following forms: 5786 // x binop= expr; -> xrval + expr; 5787 // x++, ++x -> xrval + 1; 5788 // x--, --x -> xrval - 1; 5789 // x = x binop expr; -> xrval binop expr 5790 // x = expr Op x; - > expr binop xrval; 5791 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5792 LValue XLValue = CGF.EmitLValue(X); 5793 RValue ExprRValue = CGF.EmitAnyExpr(E); 5794 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5795 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5796 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5797 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5798 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5799 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5800 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5801 return CGF.EmitAnyExpr(UE); 5802 }; 5803 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5804 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5805 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5806 // OpenMP, 2.17.7, atomic Construct 5807 // If the write, update, or capture clause is specified and the release, 5808 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5809 // the atomic operation is also a release flush. 5810 switch (AO) { 5811 case llvm::AtomicOrdering::Release: 5812 case llvm::AtomicOrdering::AcquireRelease: 5813 case llvm::AtomicOrdering::SequentiallyConsistent: 5814 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5815 llvm::AtomicOrdering::Release); 5816 break; 5817 case llvm::AtomicOrdering::Acquire: 5818 case llvm::AtomicOrdering::Monotonic: 5819 break; 5820 case llvm::AtomicOrdering::NotAtomic: 5821 case llvm::AtomicOrdering::Unordered: 5822 llvm_unreachable("Unexpected ordering."); 5823 } 5824 } 5825 5826 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5827 QualType SourceType, QualType ResType, 5828 SourceLocation Loc) { 5829 switch (CGF.getEvaluationKind(ResType)) { 5830 case TEK_Scalar: 5831 return RValue::get( 5832 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5833 case TEK_Complex: { 5834 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5835 return RValue::getComplex(Res.first, Res.second); 5836 } 5837 case TEK_Aggregate: 5838 break; 5839 } 5840 llvm_unreachable("Must be a scalar or complex."); 5841 } 5842 5843 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5844 llvm::AtomicOrdering AO, 5845 bool IsPostfixUpdate, const Expr *V, 5846 const Expr *X, const Expr *E, 5847 const Expr *UE, bool IsXLHSInRHSPart, 5848 SourceLocation Loc) { 5849 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5850 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5851 RValue NewVVal; 5852 LValue VLValue = CGF.EmitLValue(V); 5853 LValue XLValue = CGF.EmitLValue(X); 5854 RValue ExprRValue = CGF.EmitAnyExpr(E); 5855 QualType NewVValType; 5856 if (UE) { 5857 // 'x' is updated with some additional value. 5858 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5859 "Update expr in 'atomic capture' must be a binary operator."); 5860 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5861 // Update expressions are allowed to have the following forms: 5862 // x binop= expr; -> xrval + expr; 5863 // x++, ++x -> xrval + 1; 5864 // x--, --x -> xrval - 1; 5865 // x = x binop expr; -> xrval binop expr 5866 // x = expr Op x; - > expr binop xrval; 5867 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5868 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5869 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5870 NewVValType = XRValExpr->getType(); 5871 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5872 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5873 IsPostfixUpdate](RValue XRValue) { 5874 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5875 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5876 RValue Res = CGF.EmitAnyExpr(UE); 5877 NewVVal = IsPostfixUpdate ? XRValue : Res; 5878 return Res; 5879 }; 5880 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5881 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5882 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5883 if (Res.first) { 5884 // 'atomicrmw' instruction was generated. 5885 if (IsPostfixUpdate) { 5886 // Use old value from 'atomicrmw'. 5887 NewVVal = Res.second; 5888 } else { 5889 // 'atomicrmw' does not provide new value, so evaluate it using old 5890 // value of 'x'. 5891 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5892 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5893 NewVVal = CGF.EmitAnyExpr(UE); 5894 } 5895 } 5896 } else { 5897 // 'x' is simply rewritten with some 'expr'. 5898 NewVValType = X->getType().getNonReferenceType(); 5899 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5900 X->getType().getNonReferenceType(), Loc); 5901 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5902 NewVVal = XRValue; 5903 return ExprRValue; 5904 }; 5905 // Try to perform atomicrmw xchg, otherwise simple exchange. 5906 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5907 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5908 Loc, Gen); 5909 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5910 if (Res.first) { 5911 // 'atomicrmw' instruction was generated. 5912 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5913 } 5914 } 5915 // Emit post-update store to 'v' of old/new 'x' value. 5916 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5917 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5918 // OpenMP 5.1 removes the required flush for capture clause. 5919 if (CGF.CGM.getLangOpts().OpenMP < 51) { 5920 // OpenMP, 2.17.7, atomic Construct 5921 // If the write, update, or capture clause is specified and the release, 5922 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5923 // the atomic operation is also a release flush. 5924 // If the read or capture clause is specified and the acquire, acq_rel, or 5925 // seq_cst clause is specified then the strong flush on exit from the atomic 5926 // operation is also an acquire flush. 5927 switch (AO) { 5928 case llvm::AtomicOrdering::Release: 5929 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5930 llvm::AtomicOrdering::Release); 5931 break; 5932 case llvm::AtomicOrdering::Acquire: 5933 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5934 llvm::AtomicOrdering::Acquire); 5935 break; 5936 case llvm::AtomicOrdering::AcquireRelease: 5937 case llvm::AtomicOrdering::SequentiallyConsistent: 5938 CGF.CGM.getOpenMPRuntime().emitFlush( 5939 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 5940 break; 5941 case llvm::AtomicOrdering::Monotonic: 5942 break; 5943 case llvm::AtomicOrdering::NotAtomic: 5944 case llvm::AtomicOrdering::Unordered: 5945 llvm_unreachable("Unexpected ordering."); 5946 } 5947 } 5948 } 5949 5950 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5951 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5952 const Expr *X, const Expr *V, const Expr *E, 5953 const Expr *UE, bool IsXLHSInRHSPart, 5954 SourceLocation Loc) { 5955 switch (Kind) { 5956 case OMPC_read: 5957 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5958 break; 5959 case OMPC_write: 5960 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5961 break; 5962 case OMPC_unknown: 5963 case OMPC_update: 5964 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5965 break; 5966 case OMPC_capture: 5967 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5968 IsXLHSInRHSPart, Loc); 5969 break; 5970 case OMPC_compare: 5971 // Do nothing here as we already emit an error. 5972 break; 5973 case OMPC_if: 5974 case OMPC_final: 5975 case OMPC_num_threads: 5976 case OMPC_private: 5977 case OMPC_firstprivate: 5978 case OMPC_lastprivate: 5979 case OMPC_reduction: 5980 case OMPC_task_reduction: 5981 case OMPC_in_reduction: 5982 case OMPC_safelen: 5983 case OMPC_simdlen: 5984 case OMPC_sizes: 5985 case OMPC_full: 5986 case OMPC_partial: 5987 case OMPC_allocator: 5988 case OMPC_allocate: 5989 case OMPC_collapse: 5990 case OMPC_default: 5991 case OMPC_seq_cst: 5992 case OMPC_acq_rel: 5993 case OMPC_acquire: 5994 case OMPC_release: 5995 case OMPC_relaxed: 5996 case OMPC_shared: 5997 case OMPC_linear: 5998 case OMPC_aligned: 5999 case OMPC_copyin: 6000 case OMPC_copyprivate: 6001 case OMPC_flush: 6002 case OMPC_depobj: 6003 case OMPC_proc_bind: 6004 case OMPC_schedule: 6005 case OMPC_ordered: 6006 case OMPC_nowait: 6007 case OMPC_untied: 6008 case OMPC_threadprivate: 6009 case OMPC_depend: 6010 case OMPC_mergeable: 6011 case OMPC_device: 6012 case OMPC_threads: 6013 case OMPC_simd: 6014 case OMPC_map: 6015 case OMPC_num_teams: 6016 case OMPC_thread_limit: 6017 case OMPC_priority: 6018 case OMPC_grainsize: 6019 case OMPC_nogroup: 6020 case OMPC_num_tasks: 6021 case OMPC_hint: 6022 case OMPC_dist_schedule: 6023 case OMPC_defaultmap: 6024 case OMPC_uniform: 6025 case OMPC_to: 6026 case OMPC_from: 6027 case OMPC_use_device_ptr: 6028 case OMPC_use_device_addr: 6029 case OMPC_is_device_ptr: 6030 case OMPC_unified_address: 6031 case OMPC_unified_shared_memory: 6032 case OMPC_reverse_offload: 6033 case OMPC_dynamic_allocators: 6034 case OMPC_atomic_default_mem_order: 6035 case OMPC_device_type: 6036 case OMPC_match: 6037 case OMPC_nontemporal: 6038 case OMPC_order: 6039 case OMPC_destroy: 6040 case OMPC_detach: 6041 case OMPC_inclusive: 6042 case OMPC_exclusive: 6043 case OMPC_uses_allocators: 6044 case OMPC_affinity: 6045 case OMPC_init: 6046 case OMPC_inbranch: 6047 case OMPC_notinbranch: 6048 case OMPC_link: 6049 case OMPC_use: 6050 case OMPC_novariants: 6051 case OMPC_nocontext: 6052 case OMPC_filter: 6053 case OMPC_when: 6054 case OMPC_adjust_args: 6055 case OMPC_append_args: 6056 case OMPC_memory_order: 6057 case OMPC_bind: 6058 case OMPC_align: 6059 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 6060 } 6061 } 6062 6063 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 6064 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 6065 bool MemOrderingSpecified = false; 6066 if (S.getSingleClause<OMPSeqCstClause>()) { 6067 AO = llvm::AtomicOrdering::SequentiallyConsistent; 6068 MemOrderingSpecified = true; 6069 } else if (S.getSingleClause<OMPAcqRelClause>()) { 6070 AO = llvm::AtomicOrdering::AcquireRelease; 6071 MemOrderingSpecified = true; 6072 } else if (S.getSingleClause<OMPAcquireClause>()) { 6073 AO = llvm::AtomicOrdering::Acquire; 6074 MemOrderingSpecified = true; 6075 } else if (S.getSingleClause<OMPReleaseClause>()) { 6076 AO = llvm::AtomicOrdering::Release; 6077 MemOrderingSpecified = true; 6078 } else if (S.getSingleClause<OMPRelaxedClause>()) { 6079 AO = llvm::AtomicOrdering::Monotonic; 6080 MemOrderingSpecified = true; 6081 } 6082 OpenMPClauseKind Kind = OMPC_unknown; 6083 for (const OMPClause *C : S.clauses()) { 6084 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 6085 // if it is first). 6086 if (C->getClauseKind() != OMPC_seq_cst && 6087 C->getClauseKind() != OMPC_acq_rel && 6088 C->getClauseKind() != OMPC_acquire && 6089 C->getClauseKind() != OMPC_release && 6090 C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) { 6091 Kind = C->getClauseKind(); 6092 break; 6093 } 6094 } 6095 if (!MemOrderingSpecified) { 6096 llvm::AtomicOrdering DefaultOrder = 6097 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 6098 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 6099 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 6100 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 6101 Kind == OMPC_capture)) { 6102 AO = DefaultOrder; 6103 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 6104 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 6105 AO = llvm::AtomicOrdering::Release; 6106 } else if (Kind == OMPC_read) { 6107 assert(Kind == OMPC_read && "Unexpected atomic kind."); 6108 AO = llvm::AtomicOrdering::Acquire; 6109 } 6110 } 6111 } 6112 6113 LexicalScope Scope(*this, S.getSourceRange()); 6114 EmitStopPoint(S.getAssociatedStmt()); 6115 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 6116 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 6117 S.getBeginLoc()); 6118 } 6119 6120 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 6121 const OMPExecutableDirective &S, 6122 const RegionCodeGenTy &CodeGen) { 6123 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 6124 CodeGenModule &CGM = CGF.CGM; 6125 6126 // On device emit this construct as inlined code. 6127 if (CGM.getLangOpts().OpenMPIsDevice) { 6128 OMPLexicalScope Scope(CGF, S, OMPD_target); 6129 CGM.getOpenMPRuntime().emitInlinedDirective( 6130 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6131 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6132 }); 6133 return; 6134 } 6135 6136 auto LPCRegion = CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 6137 llvm::Function *Fn = nullptr; 6138 llvm::Constant *FnID = nullptr; 6139 6140 const Expr *IfCond = nullptr; 6141 // Check for the at most one if clause associated with the target region. 6142 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6143 if (C->getNameModifier() == OMPD_unknown || 6144 C->getNameModifier() == OMPD_target) { 6145 IfCond = C->getCondition(); 6146 break; 6147 } 6148 } 6149 6150 // Check if we have any device clause associated with the directive. 6151 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 6152 nullptr, OMPC_DEVICE_unknown); 6153 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 6154 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 6155 6156 // Check if we have an if clause whose conditional always evaluates to false 6157 // or if we do not have any targets specified. If so the target region is not 6158 // an offload entry point. 6159 bool IsOffloadEntry = true; 6160 if (IfCond) { 6161 bool Val; 6162 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 6163 IsOffloadEntry = false; 6164 } 6165 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6166 IsOffloadEntry = false; 6167 6168 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 6169 StringRef ParentName; 6170 // In case we have Ctors/Dtors we use the complete type variant to produce 6171 // the mangling of the device outlined kernel. 6172 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 6173 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 6174 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 6175 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 6176 else 6177 ParentName = 6178 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 6179 6180 // Emit target region as a standalone region. 6181 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 6182 IsOffloadEntry, CodeGen); 6183 OMPLexicalScope Scope(CGF, S, OMPD_task); 6184 auto &&SizeEmitter = 6185 [IsOffloadEntry](CodeGenFunction &CGF, 6186 const OMPLoopDirective &D) -> llvm::Value * { 6187 if (IsOffloadEntry) { 6188 OMPLoopScope(CGF, D); 6189 // Emit calculation of the iterations count. 6190 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 6191 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6192 /*isSigned=*/false); 6193 return NumIterations; 6194 } 6195 return nullptr; 6196 }; 6197 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6198 SizeEmitter); 6199 } 6200 6201 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6202 PrePostActionTy &Action) { 6203 Action.Enter(CGF); 6204 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6205 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6206 CGF.EmitOMPPrivateClause(S, PrivateScope); 6207 (void)PrivateScope.Privatize(); 6208 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6209 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6210 6211 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6212 CGF.EnsureInsertPoint(); 6213 } 6214 6215 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6216 StringRef ParentName, 6217 const OMPTargetDirective &S) { 6218 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6219 emitTargetRegion(CGF, S, Action); 6220 }; 6221 llvm::Function *Fn; 6222 llvm::Constant *Addr; 6223 // Emit target region as a standalone region. 6224 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6225 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6226 assert(Fn && Addr && "Target device function emission failed."); 6227 } 6228 6229 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6230 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6231 emitTargetRegion(CGF, S, Action); 6232 }; 6233 emitCommonOMPTargetDirective(*this, S, CodeGen); 6234 } 6235 6236 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6237 const OMPExecutableDirective &S, 6238 OpenMPDirectiveKind InnermostKind, 6239 const RegionCodeGenTy &CodeGen) { 6240 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6241 llvm::Function *OutlinedFn = 6242 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6243 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6244 6245 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6246 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6247 if (NT || TL) { 6248 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6249 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6250 6251 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6252 S.getBeginLoc()); 6253 } 6254 6255 OMPTeamsScope Scope(CGF, S); 6256 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6257 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6258 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6259 CapturedVars); 6260 } 6261 6262 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6263 // Emit teams region as a standalone region. 6264 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6265 Action.Enter(CGF); 6266 OMPPrivateScope PrivateScope(CGF); 6267 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6268 CGF.EmitOMPPrivateClause(S, PrivateScope); 6269 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6270 (void)PrivateScope.Privatize(); 6271 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6272 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6273 }; 6274 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6275 emitPostUpdateForReductionClause(*this, S, 6276 [](CodeGenFunction &) { return nullptr; }); 6277 } 6278 6279 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6280 const OMPTargetTeamsDirective &S) { 6281 auto *CS = S.getCapturedStmt(OMPD_teams); 6282 Action.Enter(CGF); 6283 // Emit teams region as a standalone region. 6284 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6285 Action.Enter(CGF); 6286 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6287 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6288 CGF.EmitOMPPrivateClause(S, PrivateScope); 6289 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6290 (void)PrivateScope.Privatize(); 6291 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6292 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6293 CGF.EmitStmt(CS->getCapturedStmt()); 6294 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6295 }; 6296 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6297 emitPostUpdateForReductionClause(CGF, S, 6298 [](CodeGenFunction &) { return nullptr; }); 6299 } 6300 6301 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6302 CodeGenModule &CGM, StringRef ParentName, 6303 const OMPTargetTeamsDirective &S) { 6304 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6305 emitTargetTeamsRegion(CGF, Action, S); 6306 }; 6307 llvm::Function *Fn; 6308 llvm::Constant *Addr; 6309 // Emit target region as a standalone region. 6310 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6311 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6312 assert(Fn && Addr && "Target device function emission failed."); 6313 } 6314 6315 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6316 const OMPTargetTeamsDirective &S) { 6317 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6318 emitTargetTeamsRegion(CGF, Action, S); 6319 }; 6320 emitCommonOMPTargetDirective(*this, S, CodeGen); 6321 } 6322 6323 static void 6324 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6325 const OMPTargetTeamsDistributeDirective &S) { 6326 Action.Enter(CGF); 6327 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6328 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6329 }; 6330 6331 // Emit teams region as a standalone region. 6332 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6333 PrePostActionTy &Action) { 6334 Action.Enter(CGF); 6335 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6336 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6337 (void)PrivateScope.Privatize(); 6338 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6339 CodeGenDistribute); 6340 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6341 }; 6342 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6343 emitPostUpdateForReductionClause(CGF, S, 6344 [](CodeGenFunction &) { return nullptr; }); 6345 } 6346 6347 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6348 CodeGenModule &CGM, StringRef ParentName, 6349 const OMPTargetTeamsDistributeDirective &S) { 6350 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6351 emitTargetTeamsDistributeRegion(CGF, Action, S); 6352 }; 6353 llvm::Function *Fn; 6354 llvm::Constant *Addr; 6355 // Emit target region as a standalone region. 6356 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6357 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6358 assert(Fn && Addr && "Target device function emission failed."); 6359 } 6360 6361 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6362 const OMPTargetTeamsDistributeDirective &S) { 6363 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6364 emitTargetTeamsDistributeRegion(CGF, Action, S); 6365 }; 6366 emitCommonOMPTargetDirective(*this, S, CodeGen); 6367 } 6368 6369 static void emitTargetTeamsDistributeSimdRegion( 6370 CodeGenFunction &CGF, PrePostActionTy &Action, 6371 const OMPTargetTeamsDistributeSimdDirective &S) { 6372 Action.Enter(CGF); 6373 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6374 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6375 }; 6376 6377 // Emit teams region as a standalone region. 6378 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6379 PrePostActionTy &Action) { 6380 Action.Enter(CGF); 6381 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6382 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6383 (void)PrivateScope.Privatize(); 6384 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6385 CodeGenDistribute); 6386 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6387 }; 6388 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6389 emitPostUpdateForReductionClause(CGF, S, 6390 [](CodeGenFunction &) { return nullptr; }); 6391 } 6392 6393 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6394 CodeGenModule &CGM, StringRef ParentName, 6395 const OMPTargetTeamsDistributeSimdDirective &S) { 6396 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6397 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6398 }; 6399 llvm::Function *Fn; 6400 llvm::Constant *Addr; 6401 // Emit target region as a standalone region. 6402 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6403 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6404 assert(Fn && Addr && "Target device function emission failed."); 6405 } 6406 6407 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6408 const OMPTargetTeamsDistributeSimdDirective &S) { 6409 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6410 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6411 }; 6412 emitCommonOMPTargetDirective(*this, S, CodeGen); 6413 } 6414 6415 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6416 const OMPTeamsDistributeDirective &S) { 6417 6418 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6419 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6420 }; 6421 6422 // Emit teams region as a standalone region. 6423 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6424 PrePostActionTy &Action) { 6425 Action.Enter(CGF); 6426 OMPPrivateScope PrivateScope(CGF); 6427 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6428 (void)PrivateScope.Privatize(); 6429 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6430 CodeGenDistribute); 6431 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6432 }; 6433 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6434 emitPostUpdateForReductionClause(*this, S, 6435 [](CodeGenFunction &) { return nullptr; }); 6436 } 6437 6438 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6439 const OMPTeamsDistributeSimdDirective &S) { 6440 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6441 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6442 }; 6443 6444 // Emit teams region as a standalone region. 6445 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6446 PrePostActionTy &Action) { 6447 Action.Enter(CGF); 6448 OMPPrivateScope PrivateScope(CGF); 6449 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6450 (void)PrivateScope.Privatize(); 6451 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6452 CodeGenDistribute); 6453 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6454 }; 6455 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6456 emitPostUpdateForReductionClause(*this, S, 6457 [](CodeGenFunction &) { return nullptr; }); 6458 } 6459 6460 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6461 const OMPTeamsDistributeParallelForDirective &S) { 6462 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6463 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6464 S.getDistInc()); 6465 }; 6466 6467 // Emit teams region as a standalone region. 6468 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6469 PrePostActionTy &Action) { 6470 Action.Enter(CGF); 6471 OMPPrivateScope PrivateScope(CGF); 6472 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6473 (void)PrivateScope.Privatize(); 6474 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6475 CodeGenDistribute); 6476 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6477 }; 6478 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6479 emitPostUpdateForReductionClause(*this, S, 6480 [](CodeGenFunction &) { return nullptr; }); 6481 } 6482 6483 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6484 const OMPTeamsDistributeParallelForSimdDirective &S) { 6485 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6486 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6487 S.getDistInc()); 6488 }; 6489 6490 // Emit teams region as a standalone region. 6491 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6492 PrePostActionTy &Action) { 6493 Action.Enter(CGF); 6494 OMPPrivateScope PrivateScope(CGF); 6495 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6496 (void)PrivateScope.Privatize(); 6497 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6498 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6499 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6500 }; 6501 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6502 CodeGen); 6503 emitPostUpdateForReductionClause(*this, S, 6504 [](CodeGenFunction &) { return nullptr; }); 6505 } 6506 6507 static void emitTargetTeamsDistributeParallelForRegion( 6508 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6509 PrePostActionTy &Action) { 6510 Action.Enter(CGF); 6511 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6512 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6513 S.getDistInc()); 6514 }; 6515 6516 // Emit teams region as a standalone region. 6517 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6518 PrePostActionTy &Action) { 6519 Action.Enter(CGF); 6520 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6521 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6522 (void)PrivateScope.Privatize(); 6523 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6524 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6525 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6526 }; 6527 6528 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6529 CodeGenTeams); 6530 emitPostUpdateForReductionClause(CGF, S, 6531 [](CodeGenFunction &) { return nullptr; }); 6532 } 6533 6534 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 6535 CodeGenModule &CGM, StringRef ParentName, 6536 const OMPTargetTeamsDistributeParallelForDirective &S) { 6537 // Emit SPMD target teams distribute parallel for region as a standalone 6538 // region. 6539 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6540 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6541 }; 6542 llvm::Function *Fn; 6543 llvm::Constant *Addr; 6544 // Emit target region as a standalone region. 6545 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6546 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6547 assert(Fn && Addr && "Target device function emission failed."); 6548 } 6549 6550 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 6551 const OMPTargetTeamsDistributeParallelForDirective &S) { 6552 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6553 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6554 }; 6555 emitCommonOMPTargetDirective(*this, S, CodeGen); 6556 } 6557 6558 static void emitTargetTeamsDistributeParallelForSimdRegion( 6559 CodeGenFunction &CGF, 6560 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 6561 PrePostActionTy &Action) { 6562 Action.Enter(CGF); 6563 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6564 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6565 S.getDistInc()); 6566 }; 6567 6568 // Emit teams region as a standalone region. 6569 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6570 PrePostActionTy &Action) { 6571 Action.Enter(CGF); 6572 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6573 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6574 (void)PrivateScope.Privatize(); 6575 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6576 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6577 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6578 }; 6579 6580 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 6581 CodeGenTeams); 6582 emitPostUpdateForReductionClause(CGF, S, 6583 [](CodeGenFunction &) { return nullptr; }); 6584 } 6585 6586 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 6587 CodeGenModule &CGM, StringRef ParentName, 6588 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6589 // Emit SPMD target teams distribute parallel for simd region as a standalone 6590 // region. 6591 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6592 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6593 }; 6594 llvm::Function *Fn; 6595 llvm::Constant *Addr; 6596 // Emit target region as a standalone region. 6597 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6598 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6599 assert(Fn && Addr && "Target device function emission failed."); 6600 } 6601 6602 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 6603 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6604 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6605 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6606 }; 6607 emitCommonOMPTargetDirective(*this, S, CodeGen); 6608 } 6609 6610 void CodeGenFunction::EmitOMPCancellationPointDirective( 6611 const OMPCancellationPointDirective &S) { 6612 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 6613 S.getCancelRegion()); 6614 } 6615 6616 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 6617 const Expr *IfCond = nullptr; 6618 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6619 if (C->getNameModifier() == OMPD_unknown || 6620 C->getNameModifier() == OMPD_cancel) { 6621 IfCond = C->getCondition(); 6622 break; 6623 } 6624 } 6625 if (CGM.getLangOpts().OpenMPIRBuilder) { 6626 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6627 // TODO: This check is necessary as we only generate `omp parallel` through 6628 // the OpenMPIRBuilder for now. 6629 if (S.getCancelRegion() == OMPD_parallel || 6630 S.getCancelRegion() == OMPD_sections || 6631 S.getCancelRegion() == OMPD_section) { 6632 llvm::Value *IfCondition = nullptr; 6633 if (IfCond) 6634 IfCondition = EmitScalarExpr(IfCond, 6635 /*IgnoreResultAssign=*/true); 6636 return Builder.restoreIP( 6637 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6638 } 6639 } 6640 6641 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6642 S.getCancelRegion()); 6643 } 6644 6645 CodeGenFunction::JumpDest 6646 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6647 if (Kind == OMPD_parallel || Kind == OMPD_task || 6648 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6649 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6650 return ReturnBlock; 6651 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6652 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6653 Kind == OMPD_distribute_parallel_for || 6654 Kind == OMPD_target_parallel_for || 6655 Kind == OMPD_teams_distribute_parallel_for || 6656 Kind == OMPD_target_teams_distribute_parallel_for); 6657 return OMPCancelStack.getExitBlock(); 6658 } 6659 6660 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6661 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6662 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6663 auto OrigVarIt = C.varlist_begin(); 6664 auto InitIt = C.inits().begin(); 6665 for (const Expr *PvtVarIt : C.private_copies()) { 6666 const auto *OrigVD = 6667 cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6668 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6669 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6670 6671 // In order to identify the right initializer we need to match the 6672 // declaration used by the mapping logic. In some cases we may get 6673 // OMPCapturedExprDecl that refers to the original declaration. 6674 const ValueDecl *MatchingVD = OrigVD; 6675 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6676 // OMPCapturedExprDecl are used to privative fields of the current 6677 // structure. 6678 const auto *ME = cast<MemberExpr>(OED->getInit()); 6679 assert(isa<CXXThisExpr>(ME->getBase()) && 6680 "Base should be the current struct!"); 6681 MatchingVD = ME->getMemberDecl(); 6682 } 6683 6684 // If we don't have information about the current list item, move on to 6685 // the next one. 6686 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6687 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6688 continue; 6689 6690 bool IsRegistered = PrivateScope.addPrivate( 6691 OrigVD, [this, OrigVD, InitAddrIt, InitVD, PvtVD]() { 6692 // Initialize the temporary initialization variable with the address 6693 // we get from the runtime library. We have to cast the source address 6694 // because it is always a void *. References are materialized in the 6695 // privatization scope, so the initialization here disregards the fact 6696 // the original variable is a reference. 6697 QualType AddrQTy = getContext().getPointerType( 6698 OrigVD->getType().getNonReferenceType()); 6699 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6700 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6701 setAddrOfLocalVar(InitVD, InitAddr); 6702 6703 // Emit private declaration, it will be initialized by the value we 6704 // declaration we just added to the local declarations map. 6705 EmitDecl(*PvtVD); 6706 6707 // The initialization variables reached its purpose in the emission 6708 // of the previous declaration, so we don't need it anymore. 6709 LocalDeclMap.erase(InitVD); 6710 6711 // Return the address of the private variable. 6712 return GetAddrOfLocalVar(PvtVD); 6713 }); 6714 assert(IsRegistered && "firstprivate var already registered as private"); 6715 // Silence the warning about unused variable. 6716 (void)IsRegistered; 6717 6718 ++OrigVarIt; 6719 ++InitIt; 6720 } 6721 } 6722 6723 static const VarDecl *getBaseDecl(const Expr *Ref) { 6724 const Expr *Base = Ref->IgnoreParenImpCasts(); 6725 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6726 Base = OASE->getBase()->IgnoreParenImpCasts(); 6727 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6728 Base = ASE->getBase()->IgnoreParenImpCasts(); 6729 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6730 } 6731 6732 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6733 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6734 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6735 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6736 for (const Expr *Ref : C.varlists()) { 6737 const VarDecl *OrigVD = getBaseDecl(Ref); 6738 if (!Processed.insert(OrigVD).second) 6739 continue; 6740 // In order to identify the right initializer we need to match the 6741 // declaration used by the mapping logic. In some cases we may get 6742 // OMPCapturedExprDecl that refers to the original declaration. 6743 const ValueDecl *MatchingVD = OrigVD; 6744 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6745 // OMPCapturedExprDecl are used to privative fields of the current 6746 // structure. 6747 const auto *ME = cast<MemberExpr>(OED->getInit()); 6748 assert(isa<CXXThisExpr>(ME->getBase()) && 6749 "Base should be the current struct!"); 6750 MatchingVD = ME->getMemberDecl(); 6751 } 6752 6753 // If we don't have information about the current list item, move on to 6754 // the next one. 6755 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6756 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6757 continue; 6758 6759 Address PrivAddr = InitAddrIt->getSecond(); 6760 // For declrefs and variable length array need to load the pointer for 6761 // correct mapping, since the pointer to the data was passed to the runtime. 6762 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6763 MatchingVD->getType()->isArrayType()) 6764 PrivAddr = 6765 EmitLoadOfPointer(PrivAddr, getContext() 6766 .getPointerType(OrigVD->getType()) 6767 ->castAs<PointerType>()); 6768 llvm::Type *RealTy = 6769 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6770 ->getPointerTo(); 6771 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6772 6773 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6774 } 6775 } 6776 6777 // Generate the instructions for '#pragma omp target data' directive. 6778 void CodeGenFunction::EmitOMPTargetDataDirective( 6779 const OMPTargetDataDirective &S) { 6780 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6781 /*SeparateBeginEndCalls=*/true); 6782 6783 // Create a pre/post action to signal the privatization of the device pointer. 6784 // This action can be replaced by the OpenMP runtime code generation to 6785 // deactivate privatization. 6786 bool PrivatizeDevicePointers = false; 6787 class DevicePointerPrivActionTy : public PrePostActionTy { 6788 bool &PrivatizeDevicePointers; 6789 6790 public: 6791 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6792 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6793 void Enter(CodeGenFunction &CGF) override { 6794 PrivatizeDevicePointers = true; 6795 } 6796 }; 6797 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6798 6799 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6800 CodeGenFunction &CGF, PrePostActionTy &Action) { 6801 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6802 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6803 }; 6804 6805 // Codegen that selects whether to generate the privatization code or not. 6806 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6807 &InnermostCodeGen](CodeGenFunction &CGF, 6808 PrePostActionTy &Action) { 6809 RegionCodeGenTy RCG(InnermostCodeGen); 6810 PrivatizeDevicePointers = false; 6811 6812 // Call the pre-action to change the status of PrivatizeDevicePointers if 6813 // needed. 6814 Action.Enter(CGF); 6815 6816 if (PrivatizeDevicePointers) { 6817 OMPPrivateScope PrivateScope(CGF); 6818 // Emit all instances of the use_device_ptr clause. 6819 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6820 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6821 Info.CaptureDeviceAddrMap); 6822 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6823 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6824 Info.CaptureDeviceAddrMap); 6825 (void)PrivateScope.Privatize(); 6826 RCG(CGF); 6827 } else { 6828 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6829 RCG(CGF); 6830 } 6831 }; 6832 6833 // Forward the provided action to the privatization codegen. 6834 RegionCodeGenTy PrivRCG(PrivCodeGen); 6835 PrivRCG.setAction(Action); 6836 6837 // Notwithstanding the body of the region is emitted as inlined directive, 6838 // we don't use an inline scope as changes in the references inside the 6839 // region are expected to be visible outside, so we do not privative them. 6840 OMPLexicalScope Scope(CGF, S); 6841 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6842 PrivRCG); 6843 }; 6844 6845 RegionCodeGenTy RCG(CodeGen); 6846 6847 // If we don't have target devices, don't bother emitting the data mapping 6848 // code. 6849 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6850 RCG(*this); 6851 return; 6852 } 6853 6854 // Check if we have any if clause associated with the directive. 6855 const Expr *IfCond = nullptr; 6856 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6857 IfCond = C->getCondition(); 6858 6859 // Check if we have any device clause associated with the directive. 6860 const Expr *Device = nullptr; 6861 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6862 Device = C->getDevice(); 6863 6864 // Set the action to signal privatization of device pointers. 6865 RCG.setAction(PrivAction); 6866 6867 // Emit region code. 6868 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6869 Info); 6870 } 6871 6872 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6873 const OMPTargetEnterDataDirective &S) { 6874 // If we don't have target devices, don't bother emitting the data mapping 6875 // code. 6876 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6877 return; 6878 6879 // Check if we have any if clause associated with the directive. 6880 const Expr *IfCond = nullptr; 6881 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6882 IfCond = C->getCondition(); 6883 6884 // Check if we have any device clause associated with the directive. 6885 const Expr *Device = nullptr; 6886 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6887 Device = C->getDevice(); 6888 6889 OMPLexicalScope Scope(*this, S, OMPD_task); 6890 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6891 } 6892 6893 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6894 const OMPTargetExitDataDirective &S) { 6895 // If we don't have target devices, don't bother emitting the data mapping 6896 // code. 6897 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6898 return; 6899 6900 // Check if we have any if clause associated with the directive. 6901 const Expr *IfCond = nullptr; 6902 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6903 IfCond = C->getCondition(); 6904 6905 // Check if we have any device clause associated with the directive. 6906 const Expr *Device = nullptr; 6907 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6908 Device = C->getDevice(); 6909 6910 OMPLexicalScope Scope(*this, S, OMPD_task); 6911 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6912 } 6913 6914 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6915 const OMPTargetParallelDirective &S, 6916 PrePostActionTy &Action) { 6917 // Get the captured statement associated with the 'parallel' region. 6918 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6919 Action.Enter(CGF); 6920 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6921 Action.Enter(CGF); 6922 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6923 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6924 CGF.EmitOMPPrivateClause(S, PrivateScope); 6925 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6926 (void)PrivateScope.Privatize(); 6927 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6928 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6929 // TODO: Add support for clauses. 6930 CGF.EmitStmt(CS->getCapturedStmt()); 6931 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6932 }; 6933 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6934 emitEmptyBoundParameters); 6935 emitPostUpdateForReductionClause(CGF, S, 6936 [](CodeGenFunction &) { return nullptr; }); 6937 } 6938 6939 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6940 CodeGenModule &CGM, StringRef ParentName, 6941 const OMPTargetParallelDirective &S) { 6942 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6943 emitTargetParallelRegion(CGF, S, Action); 6944 }; 6945 llvm::Function *Fn; 6946 llvm::Constant *Addr; 6947 // Emit target region as a standalone region. 6948 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6949 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6950 assert(Fn && Addr && "Target device function emission failed."); 6951 } 6952 6953 void CodeGenFunction::EmitOMPTargetParallelDirective( 6954 const OMPTargetParallelDirective &S) { 6955 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6956 emitTargetParallelRegion(CGF, S, Action); 6957 }; 6958 emitCommonOMPTargetDirective(*this, S, CodeGen); 6959 } 6960 6961 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6962 const OMPTargetParallelForDirective &S, 6963 PrePostActionTy &Action) { 6964 Action.Enter(CGF); 6965 // Emit directive as a combined directive that consists of two implicit 6966 // directives: 'parallel' with 'for' directive. 6967 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6968 Action.Enter(CGF); 6969 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6970 CGF, OMPD_target_parallel_for, S.hasCancel()); 6971 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6972 emitDispatchForLoopBounds); 6973 }; 6974 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6975 emitEmptyBoundParameters); 6976 } 6977 6978 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6979 CodeGenModule &CGM, StringRef ParentName, 6980 const OMPTargetParallelForDirective &S) { 6981 // Emit SPMD target parallel for region as a standalone region. 6982 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6983 emitTargetParallelForRegion(CGF, S, Action); 6984 }; 6985 llvm::Function *Fn; 6986 llvm::Constant *Addr; 6987 // Emit target region as a standalone region. 6988 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6989 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6990 assert(Fn && Addr && "Target device function emission failed."); 6991 } 6992 6993 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6994 const OMPTargetParallelForDirective &S) { 6995 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6996 emitTargetParallelForRegion(CGF, S, Action); 6997 }; 6998 emitCommonOMPTargetDirective(*this, S, CodeGen); 6999 } 7000 7001 static void 7002 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 7003 const OMPTargetParallelForSimdDirective &S, 7004 PrePostActionTy &Action) { 7005 Action.Enter(CGF); 7006 // Emit directive as a combined directive that consists of two implicit 7007 // directives: 'parallel' with 'for' directive. 7008 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7009 Action.Enter(CGF); 7010 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 7011 emitDispatchForLoopBounds); 7012 }; 7013 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 7014 emitEmptyBoundParameters); 7015 } 7016 7017 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 7018 CodeGenModule &CGM, StringRef ParentName, 7019 const OMPTargetParallelForSimdDirective &S) { 7020 // Emit SPMD target parallel for region as a standalone region. 7021 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7022 emitTargetParallelForSimdRegion(CGF, S, Action); 7023 }; 7024 llvm::Function *Fn; 7025 llvm::Constant *Addr; 7026 // Emit target region as a standalone region. 7027 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 7028 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 7029 assert(Fn && Addr && "Target device function emission failed."); 7030 } 7031 7032 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 7033 const OMPTargetParallelForSimdDirective &S) { 7034 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7035 emitTargetParallelForSimdRegion(CGF, S, Action); 7036 }; 7037 emitCommonOMPTargetDirective(*this, S, CodeGen); 7038 } 7039 7040 /// Emit a helper variable and return corresponding lvalue. 7041 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 7042 const ImplicitParamDecl *PVD, 7043 CodeGenFunction::OMPPrivateScope &Privates) { 7044 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 7045 Privates.addPrivate(VDecl, 7046 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 7047 } 7048 7049 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 7050 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 7051 // Emit outlined function for task construct. 7052 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 7053 Address CapturedStruct = Address::invalid(); 7054 { 7055 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7056 CapturedStruct = GenerateCapturedStmtArgument(*CS); 7057 } 7058 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 7059 const Expr *IfCond = nullptr; 7060 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 7061 if (C->getNameModifier() == OMPD_unknown || 7062 C->getNameModifier() == OMPD_taskloop) { 7063 IfCond = C->getCondition(); 7064 break; 7065 } 7066 } 7067 7068 OMPTaskDataTy Data; 7069 // Check if taskloop must be emitted without taskgroup. 7070 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 7071 // TODO: Check if we should emit tied or untied task. 7072 Data.Tied = true; 7073 // Set scheduling for taskloop 7074 if (const auto *Clause = S.getSingleClause<OMPGrainsizeClause>()) { 7075 // grainsize clause 7076 Data.Schedule.setInt(/*IntVal=*/false); 7077 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 7078 } else if (const auto *Clause = S.getSingleClause<OMPNumTasksClause>()) { 7079 // num_tasks clause 7080 Data.Schedule.setInt(/*IntVal=*/true); 7081 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 7082 } 7083 7084 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 7085 // if (PreCond) { 7086 // for (IV in 0..LastIteration) BODY; 7087 // <Final counter/linear vars updates>; 7088 // } 7089 // 7090 7091 // Emit: if (PreCond) - begin. 7092 // If the condition constant folds and can be elided, avoid emitting the 7093 // whole loop. 7094 bool CondConstant; 7095 llvm::BasicBlock *ContBlock = nullptr; 7096 OMPLoopScope PreInitScope(CGF, S); 7097 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 7098 if (!CondConstant) 7099 return; 7100 } else { 7101 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 7102 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 7103 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 7104 CGF.getProfileCount(&S)); 7105 CGF.EmitBlock(ThenBlock); 7106 CGF.incrementProfileCounter(&S); 7107 } 7108 7109 (void)CGF.EmitOMPLinearClauseInit(S); 7110 7111 OMPPrivateScope LoopScope(CGF); 7112 // Emit helper vars inits. 7113 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 7114 auto *I = CS->getCapturedDecl()->param_begin(); 7115 auto *LBP = std::next(I, LowerBound); 7116 auto *UBP = std::next(I, UpperBound); 7117 auto *STP = std::next(I, Stride); 7118 auto *LIP = std::next(I, LastIter); 7119 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 7120 LoopScope); 7121 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 7122 LoopScope); 7123 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 7124 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 7125 LoopScope); 7126 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 7127 CGF.EmitOMPLinearClause(S, LoopScope); 7128 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 7129 (void)LoopScope.Privatize(); 7130 // Emit the loop iteration variable. 7131 const Expr *IVExpr = S.getIterationVariable(); 7132 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 7133 CGF.EmitVarDecl(*IVDecl); 7134 CGF.EmitIgnoredExpr(S.getInit()); 7135 7136 // Emit the iterations count variable. 7137 // If it is not a variable, Sema decided to calculate iterations count on 7138 // each iteration (e.g., it is foldable into a constant). 7139 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 7140 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 7141 // Emit calculation of the iterations count. 7142 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 7143 } 7144 7145 { 7146 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 7147 emitCommonSimdLoop( 7148 CGF, S, 7149 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 7150 if (isOpenMPSimdDirective(S.getDirectiveKind())) 7151 CGF.EmitOMPSimdInit(S); 7152 }, 7153 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 7154 CGF.EmitOMPInnerLoop( 7155 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 7156 [&S](CodeGenFunction &CGF) { 7157 emitOMPLoopBodyWithStopPoint(CGF, S, 7158 CodeGenFunction::JumpDest()); 7159 }, 7160 [](CodeGenFunction &) {}); 7161 }); 7162 } 7163 // Emit: if (PreCond) - end. 7164 if (ContBlock) { 7165 CGF.EmitBranch(ContBlock); 7166 CGF.EmitBlock(ContBlock, true); 7167 } 7168 // Emit final copy of the lastprivate variables if IsLastIter != 0. 7169 if (HasLastprivateClause) { 7170 CGF.EmitOMPLastprivateClauseFinal( 7171 S, isOpenMPSimdDirective(S.getDirectiveKind()), 7172 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 7173 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7174 (*LIP)->getType(), S.getBeginLoc()))); 7175 } 7176 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 7177 return CGF.Builder.CreateIsNotNull( 7178 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 7179 (*LIP)->getType(), S.getBeginLoc())); 7180 }); 7181 }; 7182 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 7183 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 7184 const OMPTaskDataTy &Data) { 7185 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 7186 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 7187 OMPLoopScope PreInitScope(CGF, S); 7188 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 7189 OutlinedFn, SharedsTy, 7190 CapturedStruct, IfCond, Data); 7191 }; 7192 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7193 CodeGen); 7194 }; 7195 if (Data.Nogroup) { 7196 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7197 } else { 7198 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7199 *this, 7200 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7201 PrePostActionTy &Action) { 7202 Action.Enter(CGF); 7203 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7204 Data); 7205 }, 7206 S.getBeginLoc()); 7207 } 7208 } 7209 7210 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7211 auto LPCRegion = 7212 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7213 EmitOMPTaskLoopBasedDirective(S); 7214 } 7215 7216 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7217 const OMPTaskLoopSimdDirective &S) { 7218 auto LPCRegion = 7219 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7220 OMPLexicalScope Scope(*this, S); 7221 EmitOMPTaskLoopBasedDirective(S); 7222 } 7223 7224 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7225 const OMPMasterTaskLoopDirective &S) { 7226 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7227 Action.Enter(CGF); 7228 EmitOMPTaskLoopBasedDirective(S); 7229 }; 7230 auto LPCRegion = 7231 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7232 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7233 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7234 } 7235 7236 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7237 const OMPMasterTaskLoopSimdDirective &S) { 7238 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7239 Action.Enter(CGF); 7240 EmitOMPTaskLoopBasedDirective(S); 7241 }; 7242 auto LPCRegion = 7243 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7244 OMPLexicalScope Scope(*this, S); 7245 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7246 } 7247 7248 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7249 const OMPParallelMasterTaskLoopDirective &S) { 7250 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7251 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7252 PrePostActionTy &Action) { 7253 Action.Enter(CGF); 7254 CGF.EmitOMPTaskLoopBasedDirective(S); 7255 }; 7256 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7257 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7258 S.getBeginLoc()); 7259 }; 7260 auto LPCRegion = 7261 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7262 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7263 emitEmptyBoundParameters); 7264 } 7265 7266 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7267 const OMPParallelMasterTaskLoopSimdDirective &S) { 7268 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7269 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7270 PrePostActionTy &Action) { 7271 Action.Enter(CGF); 7272 CGF.EmitOMPTaskLoopBasedDirective(S); 7273 }; 7274 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7275 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7276 S.getBeginLoc()); 7277 }; 7278 auto LPCRegion = 7279 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7280 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7281 emitEmptyBoundParameters); 7282 } 7283 7284 // Generate the instructions for '#pragma omp target update' directive. 7285 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7286 const OMPTargetUpdateDirective &S) { 7287 // If we don't have target devices, don't bother emitting the data mapping 7288 // code. 7289 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7290 return; 7291 7292 // Check if we have any if clause associated with the directive. 7293 const Expr *IfCond = nullptr; 7294 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7295 IfCond = C->getCondition(); 7296 7297 // Check if we have any device clause associated with the directive. 7298 const Expr *Device = nullptr; 7299 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7300 Device = C->getDevice(); 7301 7302 OMPLexicalScope Scope(*this, S, OMPD_task); 7303 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7304 } 7305 7306 void CodeGenFunction::EmitOMPGenericLoopDirective( 7307 const OMPGenericLoopDirective &S) { 7308 // Unimplemented, just inline the underlying statement for now. 7309 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7310 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 7311 }; 7312 OMPLexicalScope Scope(*this, S, OMPD_unknown); 7313 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_loop, CodeGen); 7314 } 7315 7316 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7317 const OMPExecutableDirective &D) { 7318 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7319 EmitOMPScanDirective(*SD); 7320 return; 7321 } 7322 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7323 return; 7324 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7325 OMPPrivateScope GlobalsScope(CGF); 7326 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7327 // Capture global firstprivates to avoid crash. 7328 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7329 for (const Expr *Ref : C->varlists()) { 7330 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7331 if (!DRE) 7332 continue; 7333 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7334 if (!VD || VD->hasLocalStorage()) 7335 continue; 7336 if (!CGF.LocalDeclMap.count(VD)) { 7337 LValue GlobLVal = CGF.EmitLValue(Ref); 7338 GlobalsScope.addPrivate( 7339 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7340 } 7341 } 7342 } 7343 } 7344 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7345 (void)GlobalsScope.Privatize(); 7346 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7347 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7348 } else { 7349 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7350 for (const Expr *E : LD->counters()) { 7351 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7352 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7353 LValue GlobLVal = CGF.EmitLValue(E); 7354 GlobalsScope.addPrivate( 7355 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7356 } 7357 if (isa<OMPCapturedExprDecl>(VD)) { 7358 // Emit only those that were not explicitly referenced in clauses. 7359 if (!CGF.LocalDeclMap.count(VD)) 7360 CGF.EmitVarDecl(*VD); 7361 } 7362 } 7363 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7364 if (!C->getNumForLoops()) 7365 continue; 7366 for (unsigned I = LD->getLoopsNumber(), 7367 E = C->getLoopNumIterations().size(); 7368 I < E; ++I) { 7369 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7370 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7371 // Emit only those that were not explicitly referenced in clauses. 7372 if (!CGF.LocalDeclMap.count(VD)) 7373 CGF.EmitVarDecl(*VD); 7374 } 7375 } 7376 } 7377 } 7378 (void)GlobalsScope.Privatize(); 7379 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7380 } 7381 }; 7382 if (D.getDirectiveKind() == OMPD_atomic || 7383 D.getDirectiveKind() == OMPD_critical || 7384 D.getDirectiveKind() == OMPD_section || 7385 D.getDirectiveKind() == OMPD_master || 7386 D.getDirectiveKind() == OMPD_masked) { 7387 EmitStmt(D.getAssociatedStmt()); 7388 } else { 7389 auto LPCRegion = 7390 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7391 OMPSimdLexicalScope Scope(*this, D); 7392 CGM.getOpenMPRuntime().emitInlinedDirective( 7393 *this, 7394 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7395 : D.getDirectiveKind(), 7396 CodeGen); 7397 } 7398 // Check for outer lastprivate conditional update. 7399 checkForLastprivateConditionalUpdate(*this, D); 7400 } 7401