1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "TargetInfo.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "clang/Basic/Builtins.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/MDBuilder.h" 26 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Statement Emission 32 //===----------------------------------------------------------------------===// 33 34 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 35 if (CGDebugInfo *DI = getDebugInfo()) { 36 SourceLocation Loc; 37 Loc = S->getBeginLoc(); 38 DI->EmitLocation(Builder, Loc); 39 40 LastStopPoint = Loc; 41 } 42 } 43 44 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 45 assert(S && "Null statement?"); 46 PGO.setCurrentStmt(S); 47 48 // These statements have their own debug info handling. 49 if (EmitSimpleStmt(S)) 50 return; 51 52 // Check if we are generating unreachable code. 53 if (!HaveInsertPoint()) { 54 // If so, and the statement doesn't contain a label, then we do not need to 55 // generate actual code. This is safe because (1) the current point is 56 // unreachable, so we don't need to execute the code, and (2) we've already 57 // handled the statements which update internal data structures (like the 58 // local variable map) which could be used by subsequent statements. 59 if (!ContainsLabel(S)) { 60 // Verify that any decl statements were handled as simple, they may be in 61 // scope of subsequent reachable statements. 62 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 63 return; 64 } 65 66 // Otherwise, make a new block to hold the code. 67 EnsureInsertPoint(); 68 } 69 70 // Generate a stoppoint if we are emitting debug info. 71 EmitStopPoint(S); 72 73 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 74 // enabled. 75 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 76 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 77 EmitSimpleOMPExecutableDirective(*D); 78 return; 79 } 80 } 81 82 switch (S->getStmtClass()) { 83 case Stmt::NoStmtClass: 84 case Stmt::CXXCatchStmtClass: 85 case Stmt::SEHExceptStmtClass: 86 case Stmt::SEHFinallyStmtClass: 87 case Stmt::MSDependentExistsStmtClass: 88 llvm_unreachable("invalid statement class to emit generically"); 89 case Stmt::NullStmtClass: 90 case Stmt::CompoundStmtClass: 91 case Stmt::DeclStmtClass: 92 case Stmt::LabelStmtClass: 93 case Stmt::AttributedStmtClass: 94 case Stmt::GotoStmtClass: 95 case Stmt::BreakStmtClass: 96 case Stmt::ContinueStmtClass: 97 case Stmt::DefaultStmtClass: 98 case Stmt::CaseStmtClass: 99 case Stmt::SEHLeaveStmtClass: 100 llvm_unreachable("should have emitted these statements as simple"); 101 102 #define STMT(Type, Base) 103 #define ABSTRACT_STMT(Op) 104 #define EXPR(Type, Base) \ 105 case Stmt::Type##Class: 106 #include "clang/AST/StmtNodes.inc" 107 { 108 // Remember the block we came in on. 109 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 110 assert(incoming && "expression emission must have an insertion point"); 111 112 EmitIgnoredExpr(cast<Expr>(S)); 113 114 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 115 assert(outgoing && "expression emission cleared block!"); 116 117 // The expression emitters assume (reasonably!) that the insertion 118 // point is always set. To maintain that, the call-emission code 119 // for noreturn functions has to enter a new block with no 120 // predecessors. We want to kill that block and mark the current 121 // insertion point unreachable in the common case of a call like 122 // "exit();". Since expression emission doesn't otherwise create 123 // blocks with no predecessors, we can just test for that. 124 // However, we must be careful not to do this to our incoming 125 // block, because *statement* emission does sometimes create 126 // reachable blocks which will have no predecessors until later in 127 // the function. This occurs with, e.g., labels that are not 128 // reachable by fallthrough. 129 if (incoming != outgoing && outgoing->use_empty()) { 130 outgoing->eraseFromParent(); 131 Builder.ClearInsertionPoint(); 132 } 133 break; 134 } 135 136 case Stmt::IndirectGotoStmtClass: 137 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 138 139 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 140 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 141 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 142 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 143 144 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 145 146 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 147 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 148 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 149 case Stmt::CoroutineBodyStmtClass: 150 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 151 break; 152 case Stmt::CoreturnStmtClass: 153 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 154 break; 155 case Stmt::CapturedStmtClass: { 156 const CapturedStmt *CS = cast<CapturedStmt>(S); 157 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 158 } 159 break; 160 case Stmt::ObjCAtTryStmtClass: 161 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 162 break; 163 case Stmt::ObjCAtCatchStmtClass: 164 llvm_unreachable( 165 "@catch statements should be handled by EmitObjCAtTryStmt"); 166 case Stmt::ObjCAtFinallyStmtClass: 167 llvm_unreachable( 168 "@finally statements should be handled by EmitObjCAtTryStmt"); 169 case Stmt::ObjCAtThrowStmtClass: 170 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 171 break; 172 case Stmt::ObjCAtSynchronizedStmtClass: 173 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 174 break; 175 case Stmt::ObjCForCollectionStmtClass: 176 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 177 break; 178 case Stmt::ObjCAutoreleasePoolStmtClass: 179 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 180 break; 181 182 case Stmt::CXXTryStmtClass: 183 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 184 break; 185 case Stmt::CXXForRangeStmtClass: 186 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 187 break; 188 case Stmt::SEHTryStmtClass: 189 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 190 break; 191 case Stmt::OMPParallelDirectiveClass: 192 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 193 break; 194 case Stmt::OMPSimdDirectiveClass: 195 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 196 break; 197 case Stmt::OMPForDirectiveClass: 198 EmitOMPForDirective(cast<OMPForDirective>(*S)); 199 break; 200 case Stmt::OMPForSimdDirectiveClass: 201 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 202 break; 203 case Stmt::OMPSectionsDirectiveClass: 204 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 205 break; 206 case Stmt::OMPSectionDirectiveClass: 207 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 208 break; 209 case Stmt::OMPSingleDirectiveClass: 210 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 211 break; 212 case Stmt::OMPMasterDirectiveClass: 213 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 214 break; 215 case Stmt::OMPCriticalDirectiveClass: 216 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 217 break; 218 case Stmt::OMPParallelForDirectiveClass: 219 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 220 break; 221 case Stmt::OMPParallelForSimdDirectiveClass: 222 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 223 break; 224 case Stmt::OMPParallelSectionsDirectiveClass: 225 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 226 break; 227 case Stmt::OMPTaskDirectiveClass: 228 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 229 break; 230 case Stmt::OMPTaskyieldDirectiveClass: 231 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 232 break; 233 case Stmt::OMPBarrierDirectiveClass: 234 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 235 break; 236 case Stmt::OMPTaskwaitDirectiveClass: 237 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 238 break; 239 case Stmt::OMPTaskgroupDirectiveClass: 240 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 241 break; 242 case Stmt::OMPFlushDirectiveClass: 243 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 244 break; 245 case Stmt::OMPOrderedDirectiveClass: 246 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 247 break; 248 case Stmt::OMPAtomicDirectiveClass: 249 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 250 break; 251 case Stmt::OMPTargetDirectiveClass: 252 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 253 break; 254 case Stmt::OMPTeamsDirectiveClass: 255 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 256 break; 257 case Stmt::OMPCancellationPointDirectiveClass: 258 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 259 break; 260 case Stmt::OMPCancelDirectiveClass: 261 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 262 break; 263 case Stmt::OMPTargetDataDirectiveClass: 264 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 265 break; 266 case Stmt::OMPTargetEnterDataDirectiveClass: 267 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 268 break; 269 case Stmt::OMPTargetExitDataDirectiveClass: 270 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 271 break; 272 case Stmt::OMPTargetParallelDirectiveClass: 273 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 274 break; 275 case Stmt::OMPTargetParallelForDirectiveClass: 276 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 277 break; 278 case Stmt::OMPTaskLoopDirectiveClass: 279 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 280 break; 281 case Stmt::OMPTaskLoopSimdDirectiveClass: 282 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 283 break; 284 case Stmt::OMPDistributeDirectiveClass: 285 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 286 break; 287 case Stmt::OMPTargetUpdateDirectiveClass: 288 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 289 break; 290 case Stmt::OMPDistributeParallelForDirectiveClass: 291 EmitOMPDistributeParallelForDirective( 292 cast<OMPDistributeParallelForDirective>(*S)); 293 break; 294 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 295 EmitOMPDistributeParallelForSimdDirective( 296 cast<OMPDistributeParallelForSimdDirective>(*S)); 297 break; 298 case Stmt::OMPDistributeSimdDirectiveClass: 299 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 300 break; 301 case Stmt::OMPTargetParallelForSimdDirectiveClass: 302 EmitOMPTargetParallelForSimdDirective( 303 cast<OMPTargetParallelForSimdDirective>(*S)); 304 break; 305 case Stmt::OMPTargetSimdDirectiveClass: 306 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 307 break; 308 case Stmt::OMPTeamsDistributeDirectiveClass: 309 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 310 break; 311 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 312 EmitOMPTeamsDistributeSimdDirective( 313 cast<OMPTeamsDistributeSimdDirective>(*S)); 314 break; 315 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 316 EmitOMPTeamsDistributeParallelForSimdDirective( 317 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 318 break; 319 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 320 EmitOMPTeamsDistributeParallelForDirective( 321 cast<OMPTeamsDistributeParallelForDirective>(*S)); 322 break; 323 case Stmt::OMPTargetTeamsDirectiveClass: 324 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 325 break; 326 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 327 EmitOMPTargetTeamsDistributeDirective( 328 cast<OMPTargetTeamsDistributeDirective>(*S)); 329 break; 330 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 331 EmitOMPTargetTeamsDistributeParallelForDirective( 332 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 333 break; 334 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 335 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 336 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 337 break; 338 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 339 EmitOMPTargetTeamsDistributeSimdDirective( 340 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 341 break; 342 } 343 } 344 345 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 346 switch (S->getStmtClass()) { 347 default: return false; 348 case Stmt::NullStmtClass: break; 349 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 350 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 351 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 352 case Stmt::AttributedStmtClass: 353 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 354 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 355 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 356 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 357 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 358 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 359 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 360 } 361 362 return true; 363 } 364 365 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 366 /// this captures the expression result of the last sub-statement and returns it 367 /// (for use by the statement expression extension). 368 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 369 AggValueSlot AggSlot) { 370 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 371 "LLVM IR generation of compound statement ('{}')"); 372 373 // Keep track of the current cleanup stack depth, including debug scopes. 374 LexicalScope Scope(*this, S.getSourceRange()); 375 376 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 377 } 378 379 Address 380 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 381 bool GetLast, 382 AggValueSlot AggSlot) { 383 384 const Stmt *ExprResult = S.getStmtExprResult(); 385 assert((!GetLast || (GetLast && ExprResult)) && 386 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 387 388 Address RetAlloca = Address::invalid(); 389 390 for (auto *CurStmt : S.body()) { 391 if (GetLast && ExprResult == CurStmt) { 392 // We have to special case labels here. They are statements, but when put 393 // at the end of a statement expression, they yield the value of their 394 // subexpression. Handle this by walking through all labels we encounter, 395 // emitting them before we evaluate the subexpr. 396 // Similar issues arise for attributed statements. 397 while (!isa<Expr>(ExprResult)) { 398 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 399 EmitLabel(LS->getDecl()); 400 ExprResult = LS->getSubStmt(); 401 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 402 // FIXME: Update this if we ever have attributes that affect the 403 // semantics of an expression. 404 ExprResult = AS->getSubStmt(); 405 } else { 406 llvm_unreachable("unknown value statement"); 407 } 408 } 409 410 EnsureInsertPoint(); 411 412 const Expr *E = cast<Expr>(ExprResult); 413 QualType ExprTy = E->getType(); 414 if (hasAggregateEvaluationKind(ExprTy)) { 415 EmitAggExpr(E, AggSlot); 416 } else { 417 // We can't return an RValue here because there might be cleanups at 418 // the end of the StmtExpr. Because of that, we have to emit the result 419 // here into a temporary alloca. 420 RetAlloca = CreateMemTemp(ExprTy); 421 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 422 /*IsInit*/ false); 423 } 424 } else { 425 EmitStmt(CurStmt); 426 } 427 } 428 429 return RetAlloca; 430 } 431 432 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 433 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 434 435 // If there is a cleanup stack, then we it isn't worth trying to 436 // simplify this block (we would need to remove it from the scope map 437 // and cleanup entry). 438 if (!EHStack.empty()) 439 return; 440 441 // Can only simplify direct branches. 442 if (!BI || !BI->isUnconditional()) 443 return; 444 445 // Can only simplify empty blocks. 446 if (BI->getIterator() != BB->begin()) 447 return; 448 449 BB->replaceAllUsesWith(BI->getSuccessor(0)); 450 BI->eraseFromParent(); 451 BB->eraseFromParent(); 452 } 453 454 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 455 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 456 457 // Fall out of the current block (if necessary). 458 EmitBranch(BB); 459 460 if (IsFinished && BB->use_empty()) { 461 delete BB; 462 return; 463 } 464 465 // Place the block after the current block, if possible, or else at 466 // the end of the function. 467 if (CurBB && CurBB->getParent()) 468 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 469 else 470 CurFn->getBasicBlockList().push_back(BB); 471 Builder.SetInsertPoint(BB); 472 } 473 474 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 475 // Emit a branch from the current block to the target one if this 476 // was a real block. If this was just a fall-through block after a 477 // terminator, don't emit it. 478 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 479 480 if (!CurBB || CurBB->getTerminator()) { 481 // If there is no insert point or the previous block is already 482 // terminated, don't touch it. 483 } else { 484 // Otherwise, create a fall-through branch. 485 Builder.CreateBr(Target); 486 } 487 488 Builder.ClearInsertionPoint(); 489 } 490 491 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 492 bool inserted = false; 493 for (llvm::User *u : block->users()) { 494 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 495 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 496 block); 497 inserted = true; 498 break; 499 } 500 } 501 502 if (!inserted) 503 CurFn->getBasicBlockList().push_back(block); 504 505 Builder.SetInsertPoint(block); 506 } 507 508 CodeGenFunction::JumpDest 509 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 510 JumpDest &Dest = LabelMap[D]; 511 if (Dest.isValid()) return Dest; 512 513 // Create, but don't insert, the new block. 514 Dest = JumpDest(createBasicBlock(D->getName()), 515 EHScopeStack::stable_iterator::invalid(), 516 NextCleanupDestIndex++); 517 return Dest; 518 } 519 520 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 521 // Add this label to the current lexical scope if we're within any 522 // normal cleanups. Jumps "in" to this label --- when permitted by 523 // the language --- may need to be routed around such cleanups. 524 if (EHStack.hasNormalCleanups() && CurLexicalScope) 525 CurLexicalScope->addLabel(D); 526 527 JumpDest &Dest = LabelMap[D]; 528 529 // If we didn't need a forward reference to this label, just go 530 // ahead and create a destination at the current scope. 531 if (!Dest.isValid()) { 532 Dest = getJumpDestInCurrentScope(D->getName()); 533 534 // Otherwise, we need to give this label a target depth and remove 535 // it from the branch-fixups list. 536 } else { 537 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 538 Dest.setScopeDepth(EHStack.stable_begin()); 539 ResolveBranchFixups(Dest.getBlock()); 540 } 541 542 EmitBlock(Dest.getBlock()); 543 544 // Emit debug info for labels. 545 if (CGDebugInfo *DI = getDebugInfo()) { 546 if (CGM.getCodeGenOpts().getDebugInfo() >= 547 codegenoptions::LimitedDebugInfo) { 548 DI->setLocation(D->getLocation()); 549 DI->EmitLabel(D, Builder); 550 } 551 } 552 553 incrementProfileCounter(D->getStmt()); 554 } 555 556 /// Change the cleanup scope of the labels in this lexical scope to 557 /// match the scope of the enclosing context. 558 void CodeGenFunction::LexicalScope::rescopeLabels() { 559 assert(!Labels.empty()); 560 EHScopeStack::stable_iterator innermostScope 561 = CGF.EHStack.getInnermostNormalCleanup(); 562 563 // Change the scope depth of all the labels. 564 for (SmallVectorImpl<const LabelDecl*>::const_iterator 565 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 566 assert(CGF.LabelMap.count(*i)); 567 JumpDest &dest = CGF.LabelMap.find(*i)->second; 568 assert(dest.getScopeDepth().isValid()); 569 assert(innermostScope.encloses(dest.getScopeDepth())); 570 dest.setScopeDepth(innermostScope); 571 } 572 573 // Reparent the labels if the new scope also has cleanups. 574 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 575 ParentScope->Labels.append(Labels.begin(), Labels.end()); 576 } 577 } 578 579 580 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 581 EmitLabel(S.getDecl()); 582 EmitStmt(S.getSubStmt()); 583 } 584 585 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 586 EmitStmt(S.getSubStmt(), S.getAttrs()); 587 } 588 589 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 590 // If this code is reachable then emit a stop point (if generating 591 // debug info). We have to do this ourselves because we are on the 592 // "simple" statement path. 593 if (HaveInsertPoint()) 594 EmitStopPoint(&S); 595 596 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 597 } 598 599 600 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 601 if (const LabelDecl *Target = S.getConstantTarget()) { 602 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 603 return; 604 } 605 606 // Ensure that we have an i8* for our PHI node. 607 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 608 Int8PtrTy, "addr"); 609 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 610 611 // Get the basic block for the indirect goto. 612 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 613 614 // The first instruction in the block has to be the PHI for the switch dest, 615 // add an entry for this branch. 616 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 617 618 EmitBranch(IndGotoBB); 619 } 620 621 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 622 // C99 6.8.4.1: The first substatement is executed if the expression compares 623 // unequal to 0. The condition must be a scalar type. 624 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 625 626 if (S.getInit()) 627 EmitStmt(S.getInit()); 628 629 if (S.getConditionVariable()) 630 EmitDecl(*S.getConditionVariable()); 631 632 // If the condition constant folds and can be elided, try to avoid emitting 633 // the condition and the dead arm of the if/else. 634 bool CondConstant; 635 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 636 S.isConstexpr())) { 637 // Figure out which block (then or else) is executed. 638 const Stmt *Executed = S.getThen(); 639 const Stmt *Skipped = S.getElse(); 640 if (!CondConstant) // Condition false? 641 std::swap(Executed, Skipped); 642 643 // If the skipped block has no labels in it, just emit the executed block. 644 // This avoids emitting dead code and simplifies the CFG substantially. 645 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 646 if (CondConstant) 647 incrementProfileCounter(&S); 648 if (Executed) { 649 RunCleanupsScope ExecutedScope(*this); 650 EmitStmt(Executed); 651 } 652 return; 653 } 654 } 655 656 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 657 // the conditional branch. 658 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 659 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 660 llvm::BasicBlock *ElseBlock = ContBlock; 661 if (S.getElse()) 662 ElseBlock = createBasicBlock("if.else"); 663 664 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 665 getProfileCount(S.getThen())); 666 667 // Emit the 'then' code. 668 EmitBlock(ThenBlock); 669 incrementProfileCounter(&S); 670 { 671 RunCleanupsScope ThenScope(*this); 672 EmitStmt(S.getThen()); 673 } 674 EmitBranch(ContBlock); 675 676 // Emit the 'else' code if present. 677 if (const Stmt *Else = S.getElse()) { 678 { 679 // There is no need to emit line number for an unconditional branch. 680 auto NL = ApplyDebugLocation::CreateEmpty(*this); 681 EmitBlock(ElseBlock); 682 } 683 { 684 RunCleanupsScope ElseScope(*this); 685 EmitStmt(Else); 686 } 687 { 688 // There is no need to emit line number for an unconditional branch. 689 auto NL = ApplyDebugLocation::CreateEmpty(*this); 690 EmitBranch(ContBlock); 691 } 692 } 693 694 // Emit the continuation block for code after the if. 695 EmitBlock(ContBlock, true); 696 } 697 698 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 699 ArrayRef<const Attr *> WhileAttrs) { 700 // Emit the header for the loop, which will also become 701 // the continue target. 702 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 703 EmitBlock(LoopHeader.getBlock()); 704 705 const SourceRange &R = S.getSourceRange(); 706 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 707 SourceLocToDebugLoc(R.getBegin()), 708 SourceLocToDebugLoc(R.getEnd())); 709 710 // Create an exit block for when the condition fails, which will 711 // also become the break target. 712 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 713 714 // Store the blocks to use for break and continue. 715 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 716 717 // C++ [stmt.while]p2: 718 // When the condition of a while statement is a declaration, the 719 // scope of the variable that is declared extends from its point 720 // of declaration (3.3.2) to the end of the while statement. 721 // [...] 722 // The object created in a condition is destroyed and created 723 // with each iteration of the loop. 724 RunCleanupsScope ConditionScope(*this); 725 726 if (S.getConditionVariable()) 727 EmitDecl(*S.getConditionVariable()); 728 729 // Evaluate the conditional in the while header. C99 6.8.5.1: The 730 // evaluation of the controlling expression takes place before each 731 // execution of the loop body. 732 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 733 734 // while(1) is common, avoid extra exit blocks. Be sure 735 // to correctly handle break/continue though. 736 bool EmitBoolCondBranch = true; 737 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 738 if (C->isOne()) 739 EmitBoolCondBranch = false; 740 741 // As long as the condition is true, go to the loop body. 742 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 743 if (EmitBoolCondBranch) { 744 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 745 if (ConditionScope.requiresCleanups()) 746 ExitBlock = createBasicBlock("while.exit"); 747 Builder.CreateCondBr( 748 BoolCondVal, LoopBody, ExitBlock, 749 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 750 751 if (ExitBlock != LoopExit.getBlock()) { 752 EmitBlock(ExitBlock); 753 EmitBranchThroughCleanup(LoopExit); 754 } 755 } 756 757 // Emit the loop body. We have to emit this in a cleanup scope 758 // because it might be a singleton DeclStmt. 759 { 760 RunCleanupsScope BodyScope(*this); 761 EmitBlock(LoopBody); 762 incrementProfileCounter(&S); 763 EmitStmt(S.getBody()); 764 } 765 766 BreakContinueStack.pop_back(); 767 768 // Immediately force cleanup. 769 ConditionScope.ForceCleanup(); 770 771 EmitStopPoint(&S); 772 // Branch to the loop header again. 773 EmitBranch(LoopHeader.getBlock()); 774 775 LoopStack.pop(); 776 777 // Emit the exit block. 778 EmitBlock(LoopExit.getBlock(), true); 779 780 // The LoopHeader typically is just a branch if we skipped emitting 781 // a branch, try to erase it. 782 if (!EmitBoolCondBranch) 783 SimplifyForwardingBlocks(LoopHeader.getBlock()); 784 } 785 786 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 787 ArrayRef<const Attr *> DoAttrs) { 788 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 789 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 790 791 uint64_t ParentCount = getCurrentProfileCount(); 792 793 // Store the blocks to use for break and continue. 794 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 795 796 // Emit the body of the loop. 797 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 798 799 EmitBlockWithFallThrough(LoopBody, &S); 800 { 801 RunCleanupsScope BodyScope(*this); 802 EmitStmt(S.getBody()); 803 } 804 805 EmitBlock(LoopCond.getBlock()); 806 807 const SourceRange &R = S.getSourceRange(); 808 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 809 SourceLocToDebugLoc(R.getBegin()), 810 SourceLocToDebugLoc(R.getEnd())); 811 812 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 813 // after each execution of the loop body." 814 815 // Evaluate the conditional in the while header. 816 // C99 6.8.5p2/p4: The first substatement is executed if the expression 817 // compares unequal to 0. The condition must be a scalar type. 818 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 819 820 BreakContinueStack.pop_back(); 821 822 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 823 // to correctly handle break/continue though. 824 bool EmitBoolCondBranch = true; 825 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 826 if (C->isZero()) 827 EmitBoolCondBranch = false; 828 829 // As long as the condition is true, iterate the loop. 830 if (EmitBoolCondBranch) { 831 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 832 Builder.CreateCondBr( 833 BoolCondVal, LoopBody, LoopExit.getBlock(), 834 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 835 } 836 837 LoopStack.pop(); 838 839 // Emit the exit block. 840 EmitBlock(LoopExit.getBlock()); 841 842 // The DoCond block typically is just a branch if we skipped 843 // emitting a branch, try to erase it. 844 if (!EmitBoolCondBranch) 845 SimplifyForwardingBlocks(LoopCond.getBlock()); 846 } 847 848 void CodeGenFunction::EmitForStmt(const ForStmt &S, 849 ArrayRef<const Attr *> ForAttrs) { 850 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 851 852 LexicalScope ForScope(*this, S.getSourceRange()); 853 854 // Evaluate the first part before the loop. 855 if (S.getInit()) 856 EmitStmt(S.getInit()); 857 858 // Start the loop with a block that tests the condition. 859 // If there's an increment, the continue scope will be overwritten 860 // later. 861 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 862 llvm::BasicBlock *CondBlock = Continue.getBlock(); 863 EmitBlock(CondBlock); 864 865 const SourceRange &R = S.getSourceRange(); 866 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 867 SourceLocToDebugLoc(R.getBegin()), 868 SourceLocToDebugLoc(R.getEnd())); 869 870 // If the for loop doesn't have an increment we can just use the 871 // condition as the continue block. Otherwise we'll need to create 872 // a block for it (in the current scope, i.e. in the scope of the 873 // condition), and that we will become our continue block. 874 if (S.getInc()) 875 Continue = getJumpDestInCurrentScope("for.inc"); 876 877 // Store the blocks to use for break and continue. 878 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 879 880 // Create a cleanup scope for the condition variable cleanups. 881 LexicalScope ConditionScope(*this, S.getSourceRange()); 882 883 if (S.getCond()) { 884 // If the for statement has a condition scope, emit the local variable 885 // declaration. 886 if (S.getConditionVariable()) { 887 EmitDecl(*S.getConditionVariable()); 888 } 889 890 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 891 // If there are any cleanups between here and the loop-exit scope, 892 // create a block to stage a loop exit along. 893 if (ForScope.requiresCleanups()) 894 ExitBlock = createBasicBlock("for.cond.cleanup"); 895 896 // As long as the condition is true, iterate the loop. 897 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 898 899 // C99 6.8.5p2/p4: The first substatement is executed if the expression 900 // compares unequal to 0. The condition must be a scalar type. 901 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 902 Builder.CreateCondBr( 903 BoolCondVal, ForBody, ExitBlock, 904 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 905 906 if (ExitBlock != LoopExit.getBlock()) { 907 EmitBlock(ExitBlock); 908 EmitBranchThroughCleanup(LoopExit); 909 } 910 911 EmitBlock(ForBody); 912 } else { 913 // Treat it as a non-zero constant. Don't even create a new block for the 914 // body, just fall into it. 915 } 916 incrementProfileCounter(&S); 917 918 { 919 // Create a separate cleanup scope for the body, in case it is not 920 // a compound statement. 921 RunCleanupsScope BodyScope(*this); 922 EmitStmt(S.getBody()); 923 } 924 925 // If there is an increment, emit it next. 926 if (S.getInc()) { 927 EmitBlock(Continue.getBlock()); 928 EmitStmt(S.getInc()); 929 } 930 931 BreakContinueStack.pop_back(); 932 933 ConditionScope.ForceCleanup(); 934 935 EmitStopPoint(&S); 936 EmitBranch(CondBlock); 937 938 ForScope.ForceCleanup(); 939 940 LoopStack.pop(); 941 942 // Emit the fall-through block. 943 EmitBlock(LoopExit.getBlock(), true); 944 } 945 946 void 947 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 948 ArrayRef<const Attr *> ForAttrs) { 949 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 950 951 LexicalScope ForScope(*this, S.getSourceRange()); 952 953 // Evaluate the first pieces before the loop. 954 if (S.getInit()) 955 EmitStmt(S.getInit()); 956 EmitStmt(S.getRangeStmt()); 957 EmitStmt(S.getBeginStmt()); 958 EmitStmt(S.getEndStmt()); 959 960 // Start the loop with a block that tests the condition. 961 // If there's an increment, the continue scope will be overwritten 962 // later. 963 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 964 EmitBlock(CondBlock); 965 966 const SourceRange &R = S.getSourceRange(); 967 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 968 SourceLocToDebugLoc(R.getBegin()), 969 SourceLocToDebugLoc(R.getEnd())); 970 971 // If there are any cleanups between here and the loop-exit scope, 972 // create a block to stage a loop exit along. 973 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 974 if (ForScope.requiresCleanups()) 975 ExitBlock = createBasicBlock("for.cond.cleanup"); 976 977 // The loop body, consisting of the specified body and the loop variable. 978 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 979 980 // The body is executed if the expression, contextually converted 981 // to bool, is true. 982 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 983 Builder.CreateCondBr( 984 BoolCondVal, ForBody, ExitBlock, 985 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 986 987 if (ExitBlock != LoopExit.getBlock()) { 988 EmitBlock(ExitBlock); 989 EmitBranchThroughCleanup(LoopExit); 990 } 991 992 EmitBlock(ForBody); 993 incrementProfileCounter(&S); 994 995 // Create a block for the increment. In case of a 'continue', we jump there. 996 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 997 998 // Store the blocks to use for break and continue. 999 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1000 1001 { 1002 // Create a separate cleanup scope for the loop variable and body. 1003 LexicalScope BodyScope(*this, S.getSourceRange()); 1004 EmitStmt(S.getLoopVarStmt()); 1005 EmitStmt(S.getBody()); 1006 } 1007 1008 EmitStopPoint(&S); 1009 // If there is an increment, emit it next. 1010 EmitBlock(Continue.getBlock()); 1011 EmitStmt(S.getInc()); 1012 1013 BreakContinueStack.pop_back(); 1014 1015 EmitBranch(CondBlock); 1016 1017 ForScope.ForceCleanup(); 1018 1019 LoopStack.pop(); 1020 1021 // Emit the fall-through block. 1022 EmitBlock(LoopExit.getBlock(), true); 1023 } 1024 1025 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1026 if (RV.isScalar()) { 1027 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1028 } else if (RV.isAggregate()) { 1029 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1030 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1031 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1032 } else { 1033 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1034 /*init*/ true); 1035 } 1036 EmitBranchThroughCleanup(ReturnBlock); 1037 } 1038 1039 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1040 /// if the function returns void, or may be missing one if the function returns 1041 /// non-void. Fun stuff :). 1042 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1043 if (requiresReturnValueCheck()) { 1044 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1045 auto *SLocPtr = 1046 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1047 llvm::GlobalVariable::PrivateLinkage, SLoc); 1048 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1049 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1050 assert(ReturnLocation.isValid() && "No valid return location"); 1051 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1052 ReturnLocation); 1053 } 1054 1055 // Returning from an outlined SEH helper is UB, and we already warn on it. 1056 if (IsOutlinedSEHHelper) { 1057 Builder.CreateUnreachable(); 1058 Builder.ClearInsertionPoint(); 1059 } 1060 1061 // Emit the result value, even if unused, to evaluate the side effects. 1062 const Expr *RV = S.getRetValue(); 1063 1064 // Treat block literals in a return expression as if they appeared 1065 // in their own scope. This permits a small, easily-implemented 1066 // exception to our over-conservative rules about not jumping to 1067 // statements following block literals with non-trivial cleanups. 1068 RunCleanupsScope cleanupScope(*this); 1069 if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) { 1070 enterFullExpression(fe); 1071 RV = fe->getSubExpr(); 1072 } 1073 1074 // FIXME: Clean this up by using an LValue for ReturnTemp, 1075 // EmitStoreThroughLValue, and EmitAnyExpr. 1076 if (getLangOpts().ElideConstructors && 1077 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1078 // Apply the named return value optimization for this return statement, 1079 // which means doing nothing: the appropriate result has already been 1080 // constructed into the NRVO variable. 1081 1082 // If there is an NRVO flag for this variable, set it to 1 into indicate 1083 // that the cleanup code should not destroy the variable. 1084 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1085 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1086 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1087 // Make sure not to return anything, but evaluate the expression 1088 // for side effects. 1089 if (RV) 1090 EmitAnyExpr(RV); 1091 } else if (!RV) { 1092 // Do nothing (return value is left uninitialized) 1093 } else if (FnRetTy->isReferenceType()) { 1094 // If this function returns a reference, take the address of the expression 1095 // rather than the value. 1096 RValue Result = EmitReferenceBindingToExpr(RV); 1097 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1098 } else { 1099 switch (getEvaluationKind(RV->getType())) { 1100 case TEK_Scalar: 1101 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1102 break; 1103 case TEK_Complex: 1104 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1105 /*isInit*/ true); 1106 break; 1107 case TEK_Aggregate: 1108 EmitAggExpr(RV, AggValueSlot::forAddr( 1109 ReturnValue, Qualifiers(), 1110 AggValueSlot::IsDestructed, 1111 AggValueSlot::DoesNotNeedGCBarriers, 1112 AggValueSlot::IsNotAliased, 1113 getOverlapForReturnValue())); 1114 break; 1115 } 1116 } 1117 1118 ++NumReturnExprs; 1119 if (!RV || RV->isEvaluatable(getContext())) 1120 ++NumSimpleReturnExprs; 1121 1122 cleanupScope.ForceCleanup(); 1123 EmitBranchThroughCleanup(ReturnBlock); 1124 } 1125 1126 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1127 // As long as debug info is modeled with instructions, we have to ensure we 1128 // have a place to insert here and write the stop point here. 1129 if (HaveInsertPoint()) 1130 EmitStopPoint(&S); 1131 1132 for (const auto *I : S.decls()) 1133 EmitDecl(*I); 1134 } 1135 1136 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1137 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1138 1139 // If this code is reachable then emit a stop point (if generating 1140 // debug info). We have to do this ourselves because we are on the 1141 // "simple" statement path. 1142 if (HaveInsertPoint()) 1143 EmitStopPoint(&S); 1144 1145 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1146 } 1147 1148 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1149 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1150 1151 // If this code is reachable then emit a stop point (if generating 1152 // debug info). We have to do this ourselves because we are on the 1153 // "simple" statement path. 1154 if (HaveInsertPoint()) 1155 EmitStopPoint(&S); 1156 1157 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1158 } 1159 1160 /// EmitCaseStmtRange - If case statement range is not too big then 1161 /// add multiple cases to switch instruction, one for each value within 1162 /// the range. If range is too big then emit "if" condition check. 1163 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1164 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1165 1166 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1167 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1168 1169 // Emit the code for this case. We do this first to make sure it is 1170 // properly chained from our predecessor before generating the 1171 // switch machinery to enter this block. 1172 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1173 EmitBlockWithFallThrough(CaseDest, &S); 1174 EmitStmt(S.getSubStmt()); 1175 1176 // If range is empty, do nothing. 1177 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1178 return; 1179 1180 llvm::APInt Range = RHS - LHS; 1181 // FIXME: parameters such as this should not be hardcoded. 1182 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1183 // Range is small enough to add multiple switch instruction cases. 1184 uint64_t Total = getProfileCount(&S); 1185 unsigned NCases = Range.getZExtValue() + 1; 1186 // We only have one region counter for the entire set of cases here, so we 1187 // need to divide the weights evenly between the generated cases, ensuring 1188 // that the total weight is preserved. E.g., a weight of 5 over three cases 1189 // will be distributed as weights of 2, 2, and 1. 1190 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1191 for (unsigned I = 0; I != NCases; ++I) { 1192 if (SwitchWeights) 1193 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1194 if (Rem) 1195 Rem--; 1196 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1197 ++LHS; 1198 } 1199 return; 1200 } 1201 1202 // The range is too big. Emit "if" condition into a new block, 1203 // making sure to save and restore the current insertion point. 1204 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1205 1206 // Push this test onto the chain of range checks (which terminates 1207 // in the default basic block). The switch's default will be changed 1208 // to the top of this chain after switch emission is complete. 1209 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1210 CaseRangeBlock = createBasicBlock("sw.caserange"); 1211 1212 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1213 Builder.SetInsertPoint(CaseRangeBlock); 1214 1215 // Emit range check. 1216 llvm::Value *Diff = 1217 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1218 llvm::Value *Cond = 1219 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1220 1221 llvm::MDNode *Weights = nullptr; 1222 if (SwitchWeights) { 1223 uint64_t ThisCount = getProfileCount(&S); 1224 uint64_t DefaultCount = (*SwitchWeights)[0]; 1225 Weights = createProfileWeights(ThisCount, DefaultCount); 1226 1227 // Since we're chaining the switch default through each large case range, we 1228 // need to update the weight for the default, ie, the first case, to include 1229 // this case. 1230 (*SwitchWeights)[0] += ThisCount; 1231 } 1232 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1233 1234 // Restore the appropriate insertion point. 1235 if (RestoreBB) 1236 Builder.SetInsertPoint(RestoreBB); 1237 else 1238 Builder.ClearInsertionPoint(); 1239 } 1240 1241 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1242 // If there is no enclosing switch instance that we're aware of, then this 1243 // case statement and its block can be elided. This situation only happens 1244 // when we've constant-folded the switch, are emitting the constant case, 1245 // and part of the constant case includes another case statement. For 1246 // instance: switch (4) { case 4: do { case 5: } while (1); } 1247 if (!SwitchInsn) { 1248 EmitStmt(S.getSubStmt()); 1249 return; 1250 } 1251 1252 // Handle case ranges. 1253 if (S.getRHS()) { 1254 EmitCaseStmtRange(S); 1255 return; 1256 } 1257 1258 llvm::ConstantInt *CaseVal = 1259 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1260 1261 // If the body of the case is just a 'break', try to not emit an empty block. 1262 // If we're profiling or we're not optimizing, leave the block in for better 1263 // debug and coverage analysis. 1264 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1265 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1266 isa<BreakStmt>(S.getSubStmt())) { 1267 JumpDest Block = BreakContinueStack.back().BreakBlock; 1268 1269 // Only do this optimization if there are no cleanups that need emitting. 1270 if (isObviouslyBranchWithoutCleanups(Block)) { 1271 if (SwitchWeights) 1272 SwitchWeights->push_back(getProfileCount(&S)); 1273 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1274 1275 // If there was a fallthrough into this case, make sure to redirect it to 1276 // the end of the switch as well. 1277 if (Builder.GetInsertBlock()) { 1278 Builder.CreateBr(Block.getBlock()); 1279 Builder.ClearInsertionPoint(); 1280 } 1281 return; 1282 } 1283 } 1284 1285 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1286 EmitBlockWithFallThrough(CaseDest, &S); 1287 if (SwitchWeights) 1288 SwitchWeights->push_back(getProfileCount(&S)); 1289 SwitchInsn->addCase(CaseVal, CaseDest); 1290 1291 // Recursively emitting the statement is acceptable, but is not wonderful for 1292 // code where we have many case statements nested together, i.e.: 1293 // case 1: 1294 // case 2: 1295 // case 3: etc. 1296 // Handling this recursively will create a new block for each case statement 1297 // that falls through to the next case which is IR intensive. It also causes 1298 // deep recursion which can run into stack depth limitations. Handle 1299 // sequential non-range case statements specially. 1300 const CaseStmt *CurCase = &S; 1301 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1302 1303 // Otherwise, iteratively add consecutive cases to this switch stmt. 1304 while (NextCase && NextCase->getRHS() == nullptr) { 1305 CurCase = NextCase; 1306 llvm::ConstantInt *CaseVal = 1307 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1308 1309 if (SwitchWeights) 1310 SwitchWeights->push_back(getProfileCount(NextCase)); 1311 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1312 CaseDest = createBasicBlock("sw.bb"); 1313 EmitBlockWithFallThrough(CaseDest, &S); 1314 } 1315 1316 SwitchInsn->addCase(CaseVal, CaseDest); 1317 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1318 } 1319 1320 // Normal default recursion for non-cases. 1321 EmitStmt(CurCase->getSubStmt()); 1322 } 1323 1324 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1325 // If there is no enclosing switch instance that we're aware of, then this 1326 // default statement can be elided. This situation only happens when we've 1327 // constant-folded the switch. 1328 if (!SwitchInsn) { 1329 EmitStmt(S.getSubStmt()); 1330 return; 1331 } 1332 1333 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1334 assert(DefaultBlock->empty() && 1335 "EmitDefaultStmt: Default block already defined?"); 1336 1337 EmitBlockWithFallThrough(DefaultBlock, &S); 1338 1339 EmitStmt(S.getSubStmt()); 1340 } 1341 1342 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1343 /// constant value that is being switched on, see if we can dead code eliminate 1344 /// the body of the switch to a simple series of statements to emit. Basically, 1345 /// on a switch (5) we want to find these statements: 1346 /// case 5: 1347 /// printf(...); <-- 1348 /// ++i; <-- 1349 /// break; 1350 /// 1351 /// and add them to the ResultStmts vector. If it is unsafe to do this 1352 /// transformation (for example, one of the elided statements contains a label 1353 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1354 /// should include statements after it (e.g. the printf() line is a substmt of 1355 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1356 /// statement, then return CSFC_Success. 1357 /// 1358 /// If Case is non-null, then we are looking for the specified case, checking 1359 /// that nothing we jump over contains labels. If Case is null, then we found 1360 /// the case and are looking for the break. 1361 /// 1362 /// If the recursive walk actually finds our Case, then we set FoundCase to 1363 /// true. 1364 /// 1365 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1366 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1367 const SwitchCase *Case, 1368 bool &FoundCase, 1369 SmallVectorImpl<const Stmt*> &ResultStmts) { 1370 // If this is a null statement, just succeed. 1371 if (!S) 1372 return Case ? CSFC_Success : CSFC_FallThrough; 1373 1374 // If this is the switchcase (case 4: or default) that we're looking for, then 1375 // we're in business. Just add the substatement. 1376 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1377 if (S == Case) { 1378 FoundCase = true; 1379 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1380 ResultStmts); 1381 } 1382 1383 // Otherwise, this is some other case or default statement, just ignore it. 1384 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1385 ResultStmts); 1386 } 1387 1388 // If we are in the live part of the code and we found our break statement, 1389 // return a success! 1390 if (!Case && isa<BreakStmt>(S)) 1391 return CSFC_Success; 1392 1393 // If this is a switch statement, then it might contain the SwitchCase, the 1394 // break, or neither. 1395 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1396 // Handle this as two cases: we might be looking for the SwitchCase (if so 1397 // the skipped statements must be skippable) or we might already have it. 1398 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1399 bool StartedInLiveCode = FoundCase; 1400 unsigned StartSize = ResultStmts.size(); 1401 1402 // If we've not found the case yet, scan through looking for it. 1403 if (Case) { 1404 // Keep track of whether we see a skipped declaration. The code could be 1405 // using the declaration even if it is skipped, so we can't optimize out 1406 // the decl if the kept statements might refer to it. 1407 bool HadSkippedDecl = false; 1408 1409 // If we're looking for the case, just see if we can skip each of the 1410 // substatements. 1411 for (; Case && I != E; ++I) { 1412 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1413 1414 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1415 case CSFC_Failure: return CSFC_Failure; 1416 case CSFC_Success: 1417 // A successful result means that either 1) that the statement doesn't 1418 // have the case and is skippable, or 2) does contain the case value 1419 // and also contains the break to exit the switch. In the later case, 1420 // we just verify the rest of the statements are elidable. 1421 if (FoundCase) { 1422 // If we found the case and skipped declarations, we can't do the 1423 // optimization. 1424 if (HadSkippedDecl) 1425 return CSFC_Failure; 1426 1427 for (++I; I != E; ++I) 1428 if (CodeGenFunction::ContainsLabel(*I, true)) 1429 return CSFC_Failure; 1430 return CSFC_Success; 1431 } 1432 break; 1433 case CSFC_FallThrough: 1434 // If we have a fallthrough condition, then we must have found the 1435 // case started to include statements. Consider the rest of the 1436 // statements in the compound statement as candidates for inclusion. 1437 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1438 // We recursively found Case, so we're not looking for it anymore. 1439 Case = nullptr; 1440 1441 // If we found the case and skipped declarations, we can't do the 1442 // optimization. 1443 if (HadSkippedDecl) 1444 return CSFC_Failure; 1445 break; 1446 } 1447 } 1448 1449 if (!FoundCase) 1450 return CSFC_Success; 1451 1452 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1453 } 1454 1455 // If we have statements in our range, then we know that the statements are 1456 // live and need to be added to the set of statements we're tracking. 1457 bool AnyDecls = false; 1458 for (; I != E; ++I) { 1459 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1460 1461 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1462 case CSFC_Failure: return CSFC_Failure; 1463 case CSFC_FallThrough: 1464 // A fallthrough result means that the statement was simple and just 1465 // included in ResultStmt, keep adding them afterwards. 1466 break; 1467 case CSFC_Success: 1468 // A successful result means that we found the break statement and 1469 // stopped statement inclusion. We just ensure that any leftover stmts 1470 // are skippable and return success ourselves. 1471 for (++I; I != E; ++I) 1472 if (CodeGenFunction::ContainsLabel(*I, true)) 1473 return CSFC_Failure; 1474 return CSFC_Success; 1475 } 1476 } 1477 1478 // If we're about to fall out of a scope without hitting a 'break;', we 1479 // can't perform the optimization if there were any decls in that scope 1480 // (we'd lose their end-of-lifetime). 1481 if (AnyDecls) { 1482 // If the entire compound statement was live, there's one more thing we 1483 // can try before giving up: emit the whole thing as a single statement. 1484 // We can do that unless the statement contains a 'break;'. 1485 // FIXME: Such a break must be at the end of a construct within this one. 1486 // We could emit this by just ignoring the BreakStmts entirely. 1487 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1488 ResultStmts.resize(StartSize); 1489 ResultStmts.push_back(S); 1490 } else { 1491 return CSFC_Failure; 1492 } 1493 } 1494 1495 return CSFC_FallThrough; 1496 } 1497 1498 // Okay, this is some other statement that we don't handle explicitly, like a 1499 // for statement or increment etc. If we are skipping over this statement, 1500 // just verify it doesn't have labels, which would make it invalid to elide. 1501 if (Case) { 1502 if (CodeGenFunction::ContainsLabel(S, true)) 1503 return CSFC_Failure; 1504 return CSFC_Success; 1505 } 1506 1507 // Otherwise, we want to include this statement. Everything is cool with that 1508 // so long as it doesn't contain a break out of the switch we're in. 1509 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1510 1511 // Otherwise, everything is great. Include the statement and tell the caller 1512 // that we fall through and include the next statement as well. 1513 ResultStmts.push_back(S); 1514 return CSFC_FallThrough; 1515 } 1516 1517 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1518 /// then invoke CollectStatementsForCase to find the list of statements to emit 1519 /// for a switch on constant. See the comment above CollectStatementsForCase 1520 /// for more details. 1521 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1522 const llvm::APSInt &ConstantCondValue, 1523 SmallVectorImpl<const Stmt*> &ResultStmts, 1524 ASTContext &C, 1525 const SwitchCase *&ResultCase) { 1526 // First step, find the switch case that is being branched to. We can do this 1527 // efficiently by scanning the SwitchCase list. 1528 const SwitchCase *Case = S.getSwitchCaseList(); 1529 const DefaultStmt *DefaultCase = nullptr; 1530 1531 for (; Case; Case = Case->getNextSwitchCase()) { 1532 // It's either a default or case. Just remember the default statement in 1533 // case we're not jumping to any numbered cases. 1534 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1535 DefaultCase = DS; 1536 continue; 1537 } 1538 1539 // Check to see if this case is the one we're looking for. 1540 const CaseStmt *CS = cast<CaseStmt>(Case); 1541 // Don't handle case ranges yet. 1542 if (CS->getRHS()) return false; 1543 1544 // If we found our case, remember it as 'case'. 1545 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1546 break; 1547 } 1548 1549 // If we didn't find a matching case, we use a default if it exists, or we 1550 // elide the whole switch body! 1551 if (!Case) { 1552 // It is safe to elide the body of the switch if it doesn't contain labels 1553 // etc. If it is safe, return successfully with an empty ResultStmts list. 1554 if (!DefaultCase) 1555 return !CodeGenFunction::ContainsLabel(&S); 1556 Case = DefaultCase; 1557 } 1558 1559 // Ok, we know which case is being jumped to, try to collect all the 1560 // statements that follow it. This can fail for a variety of reasons. Also, 1561 // check to see that the recursive walk actually found our case statement. 1562 // Insane cases like this can fail to find it in the recursive walk since we 1563 // don't handle every stmt kind: 1564 // switch (4) { 1565 // while (1) { 1566 // case 4: ... 1567 bool FoundCase = false; 1568 ResultCase = Case; 1569 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1570 ResultStmts) != CSFC_Failure && 1571 FoundCase; 1572 } 1573 1574 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1575 // Handle nested switch statements. 1576 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1577 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1578 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1579 1580 // See if we can constant fold the condition of the switch and therefore only 1581 // emit the live case statement (if any) of the switch. 1582 llvm::APSInt ConstantCondValue; 1583 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1584 SmallVector<const Stmt*, 4> CaseStmts; 1585 const SwitchCase *Case = nullptr; 1586 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1587 getContext(), Case)) { 1588 if (Case) 1589 incrementProfileCounter(Case); 1590 RunCleanupsScope ExecutedScope(*this); 1591 1592 if (S.getInit()) 1593 EmitStmt(S.getInit()); 1594 1595 // Emit the condition variable if needed inside the entire cleanup scope 1596 // used by this special case for constant folded switches. 1597 if (S.getConditionVariable()) 1598 EmitDecl(*S.getConditionVariable()); 1599 1600 // At this point, we are no longer "within" a switch instance, so 1601 // we can temporarily enforce this to ensure that any embedded case 1602 // statements are not emitted. 1603 SwitchInsn = nullptr; 1604 1605 // Okay, we can dead code eliminate everything except this case. Emit the 1606 // specified series of statements and we're good. 1607 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1608 EmitStmt(CaseStmts[i]); 1609 incrementProfileCounter(&S); 1610 1611 // Now we want to restore the saved switch instance so that nested 1612 // switches continue to function properly 1613 SwitchInsn = SavedSwitchInsn; 1614 1615 return; 1616 } 1617 } 1618 1619 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1620 1621 RunCleanupsScope ConditionScope(*this); 1622 1623 if (S.getInit()) 1624 EmitStmt(S.getInit()); 1625 1626 if (S.getConditionVariable()) 1627 EmitDecl(*S.getConditionVariable()); 1628 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1629 1630 // Create basic block to hold stuff that comes after switch 1631 // statement. We also need to create a default block now so that 1632 // explicit case ranges tests can have a place to jump to on 1633 // failure. 1634 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1635 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1636 if (PGO.haveRegionCounts()) { 1637 // Walk the SwitchCase list to find how many there are. 1638 uint64_t DefaultCount = 0; 1639 unsigned NumCases = 0; 1640 for (const SwitchCase *Case = S.getSwitchCaseList(); 1641 Case; 1642 Case = Case->getNextSwitchCase()) { 1643 if (isa<DefaultStmt>(Case)) 1644 DefaultCount = getProfileCount(Case); 1645 NumCases += 1; 1646 } 1647 SwitchWeights = new SmallVector<uint64_t, 16>(); 1648 SwitchWeights->reserve(NumCases); 1649 // The default needs to be first. We store the edge count, so we already 1650 // know the right weight. 1651 SwitchWeights->push_back(DefaultCount); 1652 } 1653 CaseRangeBlock = DefaultBlock; 1654 1655 // Clear the insertion point to indicate we are in unreachable code. 1656 Builder.ClearInsertionPoint(); 1657 1658 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1659 // then reuse last ContinueBlock. 1660 JumpDest OuterContinue; 1661 if (!BreakContinueStack.empty()) 1662 OuterContinue = BreakContinueStack.back().ContinueBlock; 1663 1664 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1665 1666 // Emit switch body. 1667 EmitStmt(S.getBody()); 1668 1669 BreakContinueStack.pop_back(); 1670 1671 // Update the default block in case explicit case range tests have 1672 // been chained on top. 1673 SwitchInsn->setDefaultDest(CaseRangeBlock); 1674 1675 // If a default was never emitted: 1676 if (!DefaultBlock->getParent()) { 1677 // If we have cleanups, emit the default block so that there's a 1678 // place to jump through the cleanups from. 1679 if (ConditionScope.requiresCleanups()) { 1680 EmitBlock(DefaultBlock); 1681 1682 // Otherwise, just forward the default block to the switch end. 1683 } else { 1684 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1685 delete DefaultBlock; 1686 } 1687 } 1688 1689 ConditionScope.ForceCleanup(); 1690 1691 // Emit continuation. 1692 EmitBlock(SwitchExit.getBlock(), true); 1693 incrementProfileCounter(&S); 1694 1695 // If the switch has a condition wrapped by __builtin_unpredictable, 1696 // create metadata that specifies that the switch is unpredictable. 1697 // Don't bother if not optimizing because that metadata would not be used. 1698 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1699 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1700 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1701 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1702 llvm::MDBuilder MDHelper(getLLVMContext()); 1703 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1704 MDHelper.createUnpredictable()); 1705 } 1706 } 1707 1708 if (SwitchWeights) { 1709 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1710 "switch weights do not match switch cases"); 1711 // If there's only one jump destination there's no sense weighting it. 1712 if (SwitchWeights->size() > 1) 1713 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1714 createProfileWeights(*SwitchWeights)); 1715 delete SwitchWeights; 1716 } 1717 SwitchInsn = SavedSwitchInsn; 1718 SwitchWeights = SavedSwitchWeights; 1719 CaseRangeBlock = SavedCRBlock; 1720 } 1721 1722 static std::string 1723 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1724 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1725 std::string Result; 1726 1727 while (*Constraint) { 1728 switch (*Constraint) { 1729 default: 1730 Result += Target.convertConstraint(Constraint); 1731 break; 1732 // Ignore these 1733 case '*': 1734 case '?': 1735 case '!': 1736 case '=': // Will see this and the following in mult-alt constraints. 1737 case '+': 1738 break; 1739 case '#': // Ignore the rest of the constraint alternative. 1740 while (Constraint[1] && Constraint[1] != ',') 1741 Constraint++; 1742 break; 1743 case '&': 1744 case '%': 1745 Result += *Constraint; 1746 while (Constraint[1] && Constraint[1] == *Constraint) 1747 Constraint++; 1748 break; 1749 case ',': 1750 Result += "|"; 1751 break; 1752 case 'g': 1753 Result += "imr"; 1754 break; 1755 case '[': { 1756 assert(OutCons && 1757 "Must pass output names to constraints with a symbolic name"); 1758 unsigned Index; 1759 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1760 assert(result && "Could not resolve symbolic name"); (void)result; 1761 Result += llvm::utostr(Index); 1762 break; 1763 } 1764 } 1765 1766 Constraint++; 1767 } 1768 1769 return Result; 1770 } 1771 1772 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1773 /// as using a particular register add that as a constraint that will be used 1774 /// in this asm stmt. 1775 static std::string 1776 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1777 const TargetInfo &Target, CodeGenModule &CGM, 1778 const AsmStmt &Stmt, const bool EarlyClobber) { 1779 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1780 if (!AsmDeclRef) 1781 return Constraint; 1782 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1783 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1784 if (!Variable) 1785 return Constraint; 1786 if (Variable->getStorageClass() != SC_Register) 1787 return Constraint; 1788 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1789 if (!Attr) 1790 return Constraint; 1791 StringRef Register = Attr->getLabel(); 1792 assert(Target.isValidGCCRegisterName(Register)); 1793 // We're using validateOutputConstraint here because we only care if 1794 // this is a register constraint. 1795 TargetInfo::ConstraintInfo Info(Constraint, ""); 1796 if (Target.validateOutputConstraint(Info) && 1797 !Info.allowsRegister()) { 1798 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1799 return Constraint; 1800 } 1801 // Canonicalize the register here before returning it. 1802 Register = Target.getNormalizedGCCRegisterName(Register); 1803 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1804 } 1805 1806 llvm::Value* 1807 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1808 LValue InputValue, QualType InputType, 1809 std::string &ConstraintStr, 1810 SourceLocation Loc) { 1811 llvm::Value *Arg; 1812 if (Info.allowsRegister() || !Info.allowsMemory()) { 1813 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1814 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1815 } else { 1816 llvm::Type *Ty = ConvertType(InputType); 1817 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1818 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1819 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1820 Ty = llvm::PointerType::getUnqual(Ty); 1821 1822 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1823 Ty)); 1824 } else { 1825 Arg = InputValue.getPointer(); 1826 ConstraintStr += '*'; 1827 } 1828 } 1829 } else { 1830 Arg = InputValue.getPointer(); 1831 ConstraintStr += '*'; 1832 } 1833 1834 return Arg; 1835 } 1836 1837 llvm::Value* CodeGenFunction::EmitAsmInput( 1838 const TargetInfo::ConstraintInfo &Info, 1839 const Expr *InputExpr, 1840 std::string &ConstraintStr) { 1841 // If this can't be a register or memory, i.e., has to be a constant 1842 // (immediate or symbolic), try to emit it as such. 1843 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1844 if (Info.requiresImmediateConstant()) { 1845 Expr::EvalResult EVResult; 1846 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 1847 1848 llvm::APSInt IntResult; 1849 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 1850 getContext())) 1851 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 1852 } 1853 1854 Expr::EvalResult Result; 1855 if (InputExpr->EvaluateAsInt(Result, getContext())) 1856 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 1857 } 1858 1859 if (Info.allowsRegister() || !Info.allowsMemory()) 1860 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1861 return EmitScalarExpr(InputExpr); 1862 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1863 return EmitScalarExpr(InputExpr); 1864 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1865 LValue Dest = EmitLValue(InputExpr); 1866 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1867 InputExpr->getExprLoc()); 1868 } 1869 1870 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1871 /// asm call instruction. The !srcloc MDNode contains a list of constant 1872 /// integers which are the source locations of the start of each line in the 1873 /// asm. 1874 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1875 CodeGenFunction &CGF) { 1876 SmallVector<llvm::Metadata *, 8> Locs; 1877 // Add the location of the first line to the MDNode. 1878 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1879 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 1880 StringRef StrVal = Str->getString(); 1881 if (!StrVal.empty()) { 1882 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1883 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1884 unsigned StartToken = 0; 1885 unsigned ByteOffset = 0; 1886 1887 // Add the location of the start of each subsequent line of the asm to the 1888 // MDNode. 1889 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1890 if (StrVal[i] != '\n') continue; 1891 SourceLocation LineLoc = Str->getLocationOfByte( 1892 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1893 Locs.push_back(llvm::ConstantAsMetadata::get( 1894 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1895 } 1896 } 1897 1898 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1899 } 1900 1901 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 1902 bool ReadOnly, bool ReadNone, const AsmStmt &S, 1903 const std::vector<llvm::Type *> &ResultRegTypes, 1904 CodeGenFunction &CGF, 1905 std::vector<llvm::Value *> &RegResults) { 1906 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1907 llvm::Attribute::NoUnwind); 1908 // Attach readnone and readonly attributes. 1909 if (!HasSideEffect) { 1910 if (ReadNone) 1911 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1912 llvm::Attribute::ReadNone); 1913 else if (ReadOnly) 1914 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1915 llvm::Attribute::ReadOnly); 1916 } 1917 1918 // Slap the source location of the inline asm into a !srcloc metadata on the 1919 // call. 1920 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1921 Result.setMetadata("srcloc", 1922 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 1923 else { 1924 // At least put the line number on MS inline asm blobs. 1925 llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, 1926 S.getAsmLoc().getRawEncoding()); 1927 Result.setMetadata("srcloc", 1928 llvm::MDNode::get(CGF.getLLVMContext(), 1929 llvm::ConstantAsMetadata::get(Loc))); 1930 } 1931 1932 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 1933 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 1934 // convergent (meaning, they may call an intrinsically convergent op, such 1935 // as bar.sync, and so can't have certain optimizations applied around 1936 // them). 1937 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1938 llvm::Attribute::Convergent); 1939 // Extract all of the register value results from the asm. 1940 if (ResultRegTypes.size() == 1) { 1941 RegResults.push_back(&Result); 1942 } else { 1943 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1944 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 1945 RegResults.push_back(Tmp); 1946 } 1947 } 1948 } 1949 1950 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1951 // Assemble the final asm string. 1952 std::string AsmString = S.generateAsmString(getContext()); 1953 1954 // Get all the output and input constraints together. 1955 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1956 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1957 1958 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1959 StringRef Name; 1960 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1961 Name = GAS->getOutputName(i); 1962 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1963 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1964 assert(IsValid && "Failed to parse output constraint"); 1965 OutputConstraintInfos.push_back(Info); 1966 } 1967 1968 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1969 StringRef Name; 1970 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1971 Name = GAS->getInputName(i); 1972 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1973 bool IsValid = 1974 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1975 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1976 InputConstraintInfos.push_back(Info); 1977 } 1978 1979 std::string Constraints; 1980 1981 std::vector<LValue> ResultRegDests; 1982 std::vector<QualType> ResultRegQualTys; 1983 std::vector<llvm::Type *> ResultRegTypes; 1984 std::vector<llvm::Type *> ResultTruncRegTypes; 1985 std::vector<llvm::Type *> ArgTypes; 1986 std::vector<llvm::Value*> Args; 1987 1988 // Keep track of inout constraints. 1989 std::string InOutConstraints; 1990 std::vector<llvm::Value*> InOutArgs; 1991 std::vector<llvm::Type*> InOutArgTypes; 1992 1993 // Keep track of out constraints for tied input operand. 1994 std::vector<std::string> OutputConstraints; 1995 1996 // An inline asm can be marked readonly if it meets the following conditions: 1997 // - it doesn't have any sideeffects 1998 // - it doesn't clobber memory 1999 // - it doesn't return a value by-reference 2000 // It can be marked readnone if it doesn't have any input memory constraints 2001 // in addition to meeting the conditions listed above. 2002 bool ReadOnly = true, ReadNone = true; 2003 2004 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2005 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2006 2007 // Simplify the output constraint. 2008 std::string OutputConstraint(S.getOutputConstraint(i)); 2009 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2010 getTarget(), &OutputConstraintInfos); 2011 2012 const Expr *OutExpr = S.getOutputExpr(i); 2013 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2014 2015 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2016 getTarget(), CGM, S, 2017 Info.earlyClobber()); 2018 OutputConstraints.push_back(OutputConstraint); 2019 LValue Dest = EmitLValue(OutExpr); 2020 if (!Constraints.empty()) 2021 Constraints += ','; 2022 2023 // If this is a register output, then make the inline asm return it 2024 // by-value. If this is a memory result, return the value by-reference. 2025 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 2026 Constraints += "=" + OutputConstraint; 2027 ResultRegQualTys.push_back(OutExpr->getType()); 2028 ResultRegDests.push_back(Dest); 2029 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 2030 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 2031 2032 // If this output is tied to an input, and if the input is larger, then 2033 // we need to set the actual result type of the inline asm node to be the 2034 // same as the input type. 2035 if (Info.hasMatchingInput()) { 2036 unsigned InputNo; 2037 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2038 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2039 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2040 break; 2041 } 2042 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2043 2044 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2045 QualType OutputType = OutExpr->getType(); 2046 2047 uint64_t InputSize = getContext().getTypeSize(InputTy); 2048 if (getContext().getTypeSize(OutputType) < InputSize) { 2049 // Form the asm to return the value as a larger integer or fp type. 2050 ResultRegTypes.back() = ConvertType(InputTy); 2051 } 2052 } 2053 if (llvm::Type* AdjTy = 2054 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2055 ResultRegTypes.back())) 2056 ResultRegTypes.back() = AdjTy; 2057 else { 2058 CGM.getDiags().Report(S.getAsmLoc(), 2059 diag::err_asm_invalid_type_in_input) 2060 << OutExpr->getType() << OutputConstraint; 2061 } 2062 2063 // Update largest vector width for any vector types. 2064 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2065 LargestVectorWidth = std::max(LargestVectorWidth, 2066 VT->getPrimitiveSizeInBits()); 2067 } else { 2068 ArgTypes.push_back(Dest.getAddress().getType()); 2069 Args.push_back(Dest.getPointer()); 2070 Constraints += "=*"; 2071 Constraints += OutputConstraint; 2072 ReadOnly = ReadNone = false; 2073 } 2074 2075 if (Info.isReadWrite()) { 2076 InOutConstraints += ','; 2077 2078 const Expr *InputExpr = S.getOutputExpr(i); 2079 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2080 InOutConstraints, 2081 InputExpr->getExprLoc()); 2082 2083 if (llvm::Type* AdjTy = 2084 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2085 Arg->getType())) 2086 Arg = Builder.CreateBitCast(Arg, AdjTy); 2087 2088 // Update largest vector width for any vector types. 2089 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2090 LargestVectorWidth = std::max(LargestVectorWidth, 2091 VT->getPrimitiveSizeInBits()); 2092 if (Info.allowsRegister()) 2093 InOutConstraints += llvm::utostr(i); 2094 else 2095 InOutConstraints += OutputConstraint; 2096 2097 InOutArgTypes.push_back(Arg->getType()); 2098 InOutArgs.push_back(Arg); 2099 } 2100 } 2101 2102 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2103 // to the return value slot. Only do this when returning in registers. 2104 if (isa<MSAsmStmt>(&S)) { 2105 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2106 if (RetAI.isDirect() || RetAI.isExtend()) { 2107 // Make a fake lvalue for the return value slot. 2108 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2109 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2110 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2111 ResultRegDests, AsmString, S.getNumOutputs()); 2112 SawAsmBlock = true; 2113 } 2114 } 2115 2116 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2117 const Expr *InputExpr = S.getInputExpr(i); 2118 2119 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2120 2121 if (Info.allowsMemory()) 2122 ReadNone = false; 2123 2124 if (!Constraints.empty()) 2125 Constraints += ','; 2126 2127 // Simplify the input constraint. 2128 std::string InputConstraint(S.getInputConstraint(i)); 2129 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2130 &OutputConstraintInfos); 2131 2132 InputConstraint = AddVariableConstraints( 2133 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2134 getTarget(), CGM, S, false /* No EarlyClobber */); 2135 2136 std::string ReplaceConstraint (InputConstraint); 2137 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2138 2139 // If this input argument is tied to a larger output result, extend the 2140 // input to be the same size as the output. The LLVM backend wants to see 2141 // the input and output of a matching constraint be the same size. Note 2142 // that GCC does not define what the top bits are here. We use zext because 2143 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2144 if (Info.hasTiedOperand()) { 2145 unsigned Output = Info.getTiedOperand(); 2146 QualType OutputType = S.getOutputExpr(Output)->getType(); 2147 QualType InputTy = InputExpr->getType(); 2148 2149 if (getContext().getTypeSize(OutputType) > 2150 getContext().getTypeSize(InputTy)) { 2151 // Use ptrtoint as appropriate so that we can do our extension. 2152 if (isa<llvm::PointerType>(Arg->getType())) 2153 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2154 llvm::Type *OutputTy = ConvertType(OutputType); 2155 if (isa<llvm::IntegerType>(OutputTy)) 2156 Arg = Builder.CreateZExt(Arg, OutputTy); 2157 else if (isa<llvm::PointerType>(OutputTy)) 2158 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2159 else { 2160 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2161 Arg = Builder.CreateFPExt(Arg, OutputTy); 2162 } 2163 } 2164 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2165 ReplaceConstraint = OutputConstraints[Output]; 2166 } 2167 if (llvm::Type* AdjTy = 2168 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2169 Arg->getType())) 2170 Arg = Builder.CreateBitCast(Arg, AdjTy); 2171 else 2172 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2173 << InputExpr->getType() << InputConstraint; 2174 2175 // Update largest vector width for any vector types. 2176 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2177 LargestVectorWidth = std::max(LargestVectorWidth, 2178 VT->getPrimitiveSizeInBits()); 2179 2180 ArgTypes.push_back(Arg->getType()); 2181 Args.push_back(Arg); 2182 Constraints += InputConstraint; 2183 } 2184 2185 // Append the "input" part of inout constraints last. 2186 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2187 ArgTypes.push_back(InOutArgTypes[i]); 2188 Args.push_back(InOutArgs[i]); 2189 } 2190 Constraints += InOutConstraints; 2191 2192 // Labels 2193 SmallVector<llvm::BasicBlock *, 16> Transfer; 2194 llvm::BasicBlock *Fallthrough = nullptr; 2195 bool IsGCCAsmGoto = false; 2196 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2197 IsGCCAsmGoto = GS->isAsmGoto(); 2198 if (IsGCCAsmGoto) { 2199 for (auto *E : GS->labels()) { 2200 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2201 Transfer.push_back(Dest.getBlock()); 2202 llvm::BlockAddress *BA = 2203 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2204 Args.push_back(BA); 2205 ArgTypes.push_back(BA->getType()); 2206 if (!Constraints.empty()) 2207 Constraints += ','; 2208 Constraints += 'X'; 2209 } 2210 StringRef Name = "asm.fallthrough"; 2211 Fallthrough = createBasicBlock(Name); 2212 } 2213 } 2214 2215 // Clobbers 2216 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2217 StringRef Clobber = S.getClobber(i); 2218 2219 if (Clobber == "memory") 2220 ReadOnly = ReadNone = false; 2221 else if (Clobber != "cc") 2222 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2223 2224 if (!Constraints.empty()) 2225 Constraints += ','; 2226 2227 Constraints += "~{"; 2228 Constraints += Clobber; 2229 Constraints += '}'; 2230 } 2231 2232 // Add machine specific clobbers 2233 std::string MachineClobbers = getTarget().getClobbers(); 2234 if (!MachineClobbers.empty()) { 2235 if (!Constraints.empty()) 2236 Constraints += ','; 2237 Constraints += MachineClobbers; 2238 } 2239 2240 llvm::Type *ResultType; 2241 if (ResultRegTypes.empty()) 2242 ResultType = VoidTy; 2243 else if (ResultRegTypes.size() == 1) 2244 ResultType = ResultRegTypes[0]; 2245 else 2246 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2247 2248 llvm::FunctionType *FTy = 2249 llvm::FunctionType::get(ResultType, ArgTypes, false); 2250 2251 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2252 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2253 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2254 llvm::InlineAsm *IA = 2255 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2256 /* IsAlignStack */ false, AsmDialect); 2257 std::vector<llvm::Value*> RegResults; 2258 if (IsGCCAsmGoto) { 2259 llvm::CallBrInst *Result = 2260 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2261 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2262 ReadNone, S, ResultRegTypes, *this, RegResults); 2263 EmitBlock(Fallthrough); 2264 } else { 2265 llvm::CallInst *Result = 2266 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2267 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2268 ReadNone, S, ResultRegTypes, *this, RegResults); 2269 } 2270 2271 assert(RegResults.size() == ResultRegTypes.size()); 2272 assert(RegResults.size() == ResultTruncRegTypes.size()); 2273 assert(RegResults.size() == ResultRegDests.size()); 2274 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2275 llvm::Value *Tmp = RegResults[i]; 2276 2277 // If the result type of the LLVM IR asm doesn't match the result type of 2278 // the expression, do the conversion. 2279 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2280 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2281 2282 // Truncate the integer result to the right size, note that TruncTy can be 2283 // a pointer. 2284 if (TruncTy->isFloatingPointTy()) 2285 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2286 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2287 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2288 Tmp = Builder.CreateTrunc(Tmp, 2289 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2290 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2291 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2292 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2293 Tmp = Builder.CreatePtrToInt(Tmp, 2294 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2295 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2296 } else if (TruncTy->isIntegerTy()) { 2297 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2298 } else if (TruncTy->isVectorTy()) { 2299 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2300 } 2301 } 2302 2303 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2304 } 2305 } 2306 2307 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2308 const RecordDecl *RD = S.getCapturedRecordDecl(); 2309 QualType RecordTy = getContext().getRecordType(RD); 2310 2311 // Initialize the captured struct. 2312 LValue SlotLV = 2313 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2314 2315 RecordDecl::field_iterator CurField = RD->field_begin(); 2316 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2317 E = S.capture_init_end(); 2318 I != E; ++I, ++CurField) { 2319 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2320 if (CurField->hasCapturedVLAType()) { 2321 auto VAT = CurField->getCapturedVLAType(); 2322 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2323 } else { 2324 EmitInitializerForField(*CurField, LV, *I); 2325 } 2326 } 2327 2328 return SlotLV; 2329 } 2330 2331 /// Generate an outlined function for the body of a CapturedStmt, store any 2332 /// captured variables into the captured struct, and call the outlined function. 2333 llvm::Function * 2334 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2335 LValue CapStruct = InitCapturedStruct(S); 2336 2337 // Emit the CapturedDecl 2338 CodeGenFunction CGF(CGM, true); 2339 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2340 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2341 delete CGF.CapturedStmtInfo; 2342 2343 // Emit call to the helper function. 2344 EmitCallOrInvoke(F, CapStruct.getPointer()); 2345 2346 return F; 2347 } 2348 2349 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2350 LValue CapStruct = InitCapturedStruct(S); 2351 return CapStruct.getAddress(); 2352 } 2353 2354 /// Creates the outlined function for a CapturedStmt. 2355 llvm::Function * 2356 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2357 assert(CapturedStmtInfo && 2358 "CapturedStmtInfo should be set when generating the captured function"); 2359 const CapturedDecl *CD = S.getCapturedDecl(); 2360 const RecordDecl *RD = S.getCapturedRecordDecl(); 2361 SourceLocation Loc = S.getBeginLoc(); 2362 assert(CD->hasBody() && "missing CapturedDecl body"); 2363 2364 // Build the argument list. 2365 ASTContext &Ctx = CGM.getContext(); 2366 FunctionArgList Args; 2367 Args.append(CD->param_begin(), CD->param_end()); 2368 2369 // Create the function declaration. 2370 const CGFunctionInfo &FuncInfo = 2371 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2372 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2373 2374 llvm::Function *F = 2375 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2376 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2377 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2378 if (CD->isNothrow()) 2379 F->addFnAttr(llvm::Attribute::NoUnwind); 2380 2381 // Generate the function. 2382 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2383 CD->getBody()->getBeginLoc()); 2384 // Set the context parameter in CapturedStmtInfo. 2385 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2386 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2387 2388 // Initialize variable-length arrays. 2389 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2390 Ctx.getTagDeclType(RD)); 2391 for (auto *FD : RD->fields()) { 2392 if (FD->hasCapturedVLAType()) { 2393 auto *ExprArg = 2394 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2395 .getScalarVal(); 2396 auto VAT = FD->getCapturedVLAType(); 2397 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2398 } 2399 } 2400 2401 // If 'this' is captured, load it into CXXThisValue. 2402 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2403 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2404 LValue ThisLValue = EmitLValueForField(Base, FD); 2405 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2406 } 2407 2408 PGO.assignRegionCounters(GlobalDecl(CD), F); 2409 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2410 FinishFunction(CD->getBodyRBrace()); 2411 2412 return F; 2413 } 2414