1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/CachedHashString.h" 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/UniqueVector.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/ScopedPrinter.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cstdio> 44 45 using namespace clang; 46 using namespace CodeGen; 47 48 namespace { 49 50 // FIXME: We should find a nicer way to make the labels for metadata, string 51 // concatenation is lame. 52 53 class ObjCCommonTypesHelper { 54 protected: 55 llvm::LLVMContext &VMContext; 56 57 private: 58 // The types of these functions don't really matter because we 59 // should always bitcast before calling them. 60 61 /// id objc_msgSend (id, SEL, ...) 62 /// 63 /// The default messenger, used for sends whose ABI is unchanged from 64 /// the all-integer/pointer case. 65 llvm::FunctionCallee getMessageSendFn() const { 66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 67 // be called a lot. 68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 69 return CGM.CreateRuntimeFunction( 70 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 71 llvm::AttributeList::get(CGM.getLLVMContext(), 72 llvm::AttributeList::FunctionIndex, 73 llvm::Attribute::NonLazyBind)); 74 } 75 76 /// void objc_msgSend_stret (id, SEL, ...) 77 /// 78 /// The messenger used when the return value is an aggregate returned 79 /// by indirect reference in the first argument, and therefore the 80 /// self and selector parameters are shifted over by one. 81 llvm::FunctionCallee getMessageSendStretFn() const { 82 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 83 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 84 params, true), 85 "objc_msgSend_stret"); 86 } 87 88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 89 /// 90 /// The messenger used when the return value is returned on the x87 91 /// floating-point stack; without a special entrypoint, the nil case 92 /// would be unbalanced. 93 llvm::FunctionCallee getMessageSendFpretFn() const { 94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 95 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 96 params, true), 97 "objc_msgSend_fpret"); 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::FunctionCallee getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::FunctionCallee getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::FunctionCallee getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::FunctionCallee getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::PointerType *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::PointerType *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::PointerType *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::PointerType *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::PointerType *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::PointerType *CachePtrTy; 234 235 llvm::FunctionCallee getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 240 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 241 CanQualType Params[] = { 242 IdType, SelType, 243 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 244 llvm::FunctionType *FTy = 245 Types.GetFunctionType( 246 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 247 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 248 } 249 250 llvm::FunctionCallee getSetPropertyFn() { 251 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 252 ASTContext &Ctx = CGM.getContext(); 253 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 254 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 255 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 256 CanQualType Params[] = { 257 IdType, 258 SelType, 259 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 260 IdType, 261 Ctx.BoolTy, 262 Ctx.BoolTy}; 263 llvm::FunctionType *FTy = 264 Types.GetFunctionType( 265 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 266 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 267 } 268 269 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 270 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 271 ASTContext &Ctx = CGM.getContext(); 272 // void objc_setProperty_atomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_nonatomic(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 281 SmallVector<CanQualType,4> Params; 282 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 283 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 284 Params.push_back(IdType); 285 Params.push_back(SelType); 286 Params.push_back(IdType); 287 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 288 llvm::FunctionType *FTy = 289 Types.GetFunctionType( 290 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 291 const char *name; 292 if (atomic && copy) 293 name = "objc_setProperty_atomic_copy"; 294 else if (atomic && !copy) 295 name = "objc_setProperty_atomic"; 296 else if (!atomic && copy) 297 name = "objc_setProperty_nonatomic_copy"; 298 else 299 name = "objc_setProperty_nonatomic"; 300 301 return CGM.CreateRuntimeFunction(FTy, name); 302 } 303 304 llvm::FunctionCallee getCopyStructFn() { 305 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 306 ASTContext &Ctx = CGM.getContext(); 307 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 308 SmallVector<CanQualType,5> Params; 309 Params.push_back(Ctx.VoidPtrTy); 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.getSizeType()); 312 Params.push_back(Ctx.BoolTy); 313 Params.push_back(Ctx.BoolTy); 314 llvm::FunctionType *FTy = 315 Types.GetFunctionType( 316 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 317 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 318 } 319 320 /// This routine declares and returns address of: 321 /// void objc_copyCppObjectAtomic( 322 /// void *dest, const void *src, 323 /// void (*copyHelper) (void *dest, const void *source)); 324 llvm::FunctionCallee getCppAtomicObjectFunction() { 325 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 326 ASTContext &Ctx = CGM.getContext(); 327 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 328 SmallVector<CanQualType,3> Params; 329 Params.push_back(Ctx.VoidPtrTy); 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 llvm::FunctionType *FTy = 333 Types.GetFunctionType( 334 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 335 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 336 } 337 338 llvm::FunctionCallee getEnumerationMutationFn() { 339 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 340 ASTContext &Ctx = CGM.getContext(); 341 // void objc_enumerationMutation (id) 342 SmallVector<CanQualType,1> Params; 343 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 344 llvm::FunctionType *FTy = 345 Types.GetFunctionType( 346 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 347 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 348 } 349 350 llvm::FunctionCallee getLookUpClassFn() { 351 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 352 ASTContext &Ctx = CGM.getContext(); 353 // Class objc_lookUpClass (const char *) 354 SmallVector<CanQualType,1> Params; 355 Params.push_back( 356 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 357 llvm::FunctionType *FTy = 358 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 359 Ctx.getCanonicalType(Ctx.getObjCClassType()), 360 Params)); 361 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 362 } 363 364 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 365 llvm::FunctionCallee getGcReadWeakFn() { 366 // id objc_read_weak (id *) 367 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 368 llvm::FunctionType *FTy = 369 llvm::FunctionType::get(ObjectPtrTy, args, false); 370 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 371 } 372 373 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 374 llvm::FunctionCallee getGcAssignWeakFn() { 375 // id objc_assign_weak (id, id *) 376 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 377 llvm::FunctionType *FTy = 378 llvm::FunctionType::get(ObjectPtrTy, args, false); 379 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 380 } 381 382 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 383 llvm::FunctionCallee getGcAssignGlobalFn() { 384 // id objc_assign_global(id, id *) 385 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 386 llvm::FunctionType *FTy = 387 llvm::FunctionType::get(ObjectPtrTy, args, false); 388 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 389 } 390 391 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 392 llvm::FunctionCallee getGcAssignThreadLocalFn() { 393 // id objc_assign_threadlocal(id src, id * dest) 394 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 395 llvm::FunctionType *FTy = 396 llvm::FunctionType::get(ObjectPtrTy, args, false); 397 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 398 } 399 400 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 401 llvm::FunctionCallee getGcAssignIvarFn() { 402 // id objc_assign_ivar(id, id *, ptrdiff_t) 403 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 404 CGM.PtrDiffTy }; 405 llvm::FunctionType *FTy = 406 llvm::FunctionType::get(ObjectPtrTy, args, false); 407 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 408 } 409 410 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 411 llvm::FunctionCallee GcMemmoveCollectableFn() { 412 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 413 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 414 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 415 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 416 } 417 418 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 419 llvm::FunctionCallee getGcAssignStrongCastFn() { 420 // id objc_assign_strongCast(id, id *) 421 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 422 llvm::FunctionType *FTy = 423 llvm::FunctionType::get(ObjectPtrTy, args, false); 424 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 425 } 426 427 /// ExceptionThrowFn - LLVM objc_exception_throw function. 428 llvm::FunctionCallee getExceptionThrowFn() { 429 // void objc_exception_throw(id) 430 llvm::Type *args[] = { ObjectPtrTy }; 431 llvm::FunctionType *FTy = 432 llvm::FunctionType::get(CGM.VoidTy, args, false); 433 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 434 } 435 436 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 437 llvm::FunctionCallee getExceptionRethrowFn() { 438 // void objc_exception_rethrow(void) 439 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 440 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 441 } 442 443 /// SyncEnterFn - LLVM object_sync_enter function. 444 llvm::FunctionCallee getSyncEnterFn() { 445 // int objc_sync_enter (id) 446 llvm::Type *args[] = { ObjectPtrTy }; 447 llvm::FunctionType *FTy = 448 llvm::FunctionType::get(CGM.IntTy, args, false); 449 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 450 } 451 452 /// SyncExitFn - LLVM object_sync_exit function. 453 llvm::FunctionCallee getSyncExitFn() { 454 // int objc_sync_exit (id) 455 llvm::Type *args[] = { ObjectPtrTy }; 456 llvm::FunctionType *FTy = 457 llvm::FunctionType::get(CGM.IntTy, args, false); 458 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 459 } 460 461 llvm::FunctionCallee getSendFn(bool IsSuper) const { 462 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 463 } 464 465 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 466 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 467 } 468 469 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 470 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 471 } 472 473 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 474 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 475 } 476 477 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 478 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 479 } 480 481 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 482 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 483 } 484 485 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 486 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 487 } 488 489 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 490 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 491 } 492 493 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 494 }; 495 496 /// ObjCTypesHelper - Helper class that encapsulates lazy 497 /// construction of varies types used during ObjC generation. 498 class ObjCTypesHelper : public ObjCCommonTypesHelper { 499 public: 500 /// SymtabTy - LLVM type for struct objc_symtab. 501 llvm::StructType *SymtabTy; 502 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 503 llvm::PointerType *SymtabPtrTy; 504 /// ModuleTy - LLVM type for struct objc_module. 505 llvm::StructType *ModuleTy; 506 507 /// ProtocolTy - LLVM type for struct objc_protocol. 508 llvm::StructType *ProtocolTy; 509 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 510 llvm::PointerType *ProtocolPtrTy; 511 /// ProtocolExtensionTy - LLVM type for struct 512 /// objc_protocol_extension. 513 llvm::StructType *ProtocolExtensionTy; 514 /// ProtocolExtensionTy - LLVM type for struct 515 /// objc_protocol_extension *. 516 llvm::PointerType *ProtocolExtensionPtrTy; 517 /// MethodDescriptionTy - LLVM type for struct 518 /// objc_method_description. 519 llvm::StructType *MethodDescriptionTy; 520 /// MethodDescriptionListTy - LLVM type for struct 521 /// objc_method_description_list. 522 llvm::StructType *MethodDescriptionListTy; 523 /// MethodDescriptionListPtrTy - LLVM type for struct 524 /// objc_method_description_list *. 525 llvm::PointerType *MethodDescriptionListPtrTy; 526 /// ProtocolListTy - LLVM type for struct objc_property_list. 527 llvm::StructType *ProtocolListTy; 528 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 529 llvm::PointerType *ProtocolListPtrTy; 530 /// CategoryTy - LLVM type for struct objc_category. 531 llvm::StructType *CategoryTy; 532 /// ClassTy - LLVM type for struct objc_class. 533 llvm::StructType *ClassTy; 534 /// ClassPtrTy - LLVM type for struct objc_class *. 535 llvm::PointerType *ClassPtrTy; 536 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 537 llvm::StructType *ClassExtensionTy; 538 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 539 llvm::PointerType *ClassExtensionPtrTy; 540 // IvarTy - LLVM type for struct objc_ivar. 541 llvm::StructType *IvarTy; 542 /// IvarListTy - LLVM type for struct objc_ivar_list. 543 llvm::StructType *IvarListTy; 544 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 545 llvm::PointerType *IvarListPtrTy; 546 /// MethodListTy - LLVM type for struct objc_method_list. 547 llvm::StructType *MethodListTy; 548 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 549 llvm::PointerType *MethodListPtrTy; 550 551 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 552 llvm::StructType *ExceptionDataTy; 553 554 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 555 llvm::FunctionCallee getExceptionTryEnterFn() { 556 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 557 return CGM.CreateRuntimeFunction( 558 llvm::FunctionType::get(CGM.VoidTy, params, false), 559 "objc_exception_try_enter"); 560 } 561 562 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 563 llvm::FunctionCallee getExceptionTryExitFn() { 564 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 565 return CGM.CreateRuntimeFunction( 566 llvm::FunctionType::get(CGM.VoidTy, params, false), 567 "objc_exception_try_exit"); 568 } 569 570 /// ExceptionExtractFn - LLVM objc_exception_extract function. 571 llvm::FunctionCallee getExceptionExtractFn() { 572 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 573 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 574 params, false), 575 "objc_exception_extract"); 576 } 577 578 /// ExceptionMatchFn - LLVM objc_exception_match function. 579 llvm::FunctionCallee getExceptionMatchFn() { 580 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 581 return CGM.CreateRuntimeFunction( 582 llvm::FunctionType::get(CGM.Int32Ty, params, false), 583 "objc_exception_match"); 584 } 585 586 /// SetJmpFn - LLVM _setjmp function. 587 llvm::FunctionCallee getSetJmpFn() { 588 // This is specifically the prototype for x86. 589 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 590 return CGM.CreateRuntimeFunction( 591 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 592 llvm::AttributeList::get(CGM.getLLVMContext(), 593 llvm::AttributeList::FunctionIndex, 594 llvm::Attribute::NonLazyBind)); 595 } 596 597 public: 598 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 599 }; 600 601 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 602 /// modern abi 603 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 604 public: 605 // MethodListnfABITy - LLVM for struct _method_list_t 606 llvm::StructType *MethodListnfABITy; 607 608 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 609 llvm::PointerType *MethodListnfABIPtrTy; 610 611 // ProtocolnfABITy = LLVM for struct _protocol_t 612 llvm::StructType *ProtocolnfABITy; 613 614 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 615 llvm::PointerType *ProtocolnfABIPtrTy; 616 617 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 618 llvm::StructType *ProtocolListnfABITy; 619 620 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 621 llvm::PointerType *ProtocolListnfABIPtrTy; 622 623 // ClassnfABITy - LLVM for struct _class_t 624 llvm::StructType *ClassnfABITy; 625 626 // ClassnfABIPtrTy - LLVM for struct _class_t* 627 llvm::PointerType *ClassnfABIPtrTy; 628 629 // IvarnfABITy - LLVM for struct _ivar_t 630 llvm::StructType *IvarnfABITy; 631 632 // IvarListnfABITy - LLVM for struct _ivar_list_t 633 llvm::StructType *IvarListnfABITy; 634 635 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 636 llvm::PointerType *IvarListnfABIPtrTy; 637 638 // ClassRonfABITy - LLVM for struct _class_ro_t 639 llvm::StructType *ClassRonfABITy; 640 641 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 642 llvm::PointerType *ImpnfABITy; 643 644 // CategorynfABITy - LLVM for struct _category_t 645 llvm::StructType *CategorynfABITy; 646 647 // New types for nonfragile abi messaging. 648 649 // MessageRefTy - LLVM for: 650 // struct _message_ref_t { 651 // IMP messenger; 652 // SEL name; 653 // }; 654 llvm::StructType *MessageRefTy; 655 // MessageRefCTy - clang type for struct _message_ref_t 656 QualType MessageRefCTy; 657 658 // MessageRefPtrTy - LLVM for struct _message_ref_t* 659 llvm::Type *MessageRefPtrTy; 660 // MessageRefCPtrTy - clang type for struct _message_ref_t* 661 QualType MessageRefCPtrTy; 662 663 // SuperMessageRefTy - LLVM for: 664 // struct _super_message_ref_t { 665 // SUPER_IMP messenger; 666 // SEL name; 667 // }; 668 llvm::StructType *SuperMessageRefTy; 669 670 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 671 llvm::PointerType *SuperMessageRefPtrTy; 672 673 llvm::FunctionCallee getMessageSendFixupFn() { 674 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 675 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 676 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 677 params, true), 678 "objc_msgSend_fixup"); 679 } 680 681 llvm::FunctionCallee getMessageSendFpretFixupFn() { 682 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 683 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 684 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 685 params, true), 686 "objc_msgSend_fpret_fixup"); 687 } 688 689 llvm::FunctionCallee getMessageSendStretFixupFn() { 690 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 691 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 692 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 693 params, true), 694 "objc_msgSend_stret_fixup"); 695 } 696 697 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 698 // id objc_msgSendSuper2_fixup (struct objc_super *, 699 // struct _super_message_ref_t*, ...) 700 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 701 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 702 params, true), 703 "objc_msgSendSuper2_fixup"); 704 } 705 706 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 707 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 708 // struct _super_message_ref_t*, ...) 709 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 710 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 711 params, true), 712 "objc_msgSendSuper2_stret_fixup"); 713 } 714 715 llvm::FunctionCallee getObjCEndCatchFn() { 716 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 717 "objc_end_catch"); 718 } 719 720 llvm::FunctionCallee getObjCBeginCatchFn() { 721 llvm::Type *params[] = { Int8PtrTy }; 722 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 723 params, false), 724 "objc_begin_catch"); 725 } 726 727 /// Class objc_loadClassref (void *) 728 /// 729 /// Loads from a classref. For Objective-C stub classes, this invokes the 730 /// initialization callback stored inside the stub. For all other classes 731 /// this simply dereferences the pointer. 732 llvm::FunctionCallee getLoadClassrefFn() const { 733 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 734 // be called a lot. 735 // 736 // Also it is safe to make it readnone, since we never load or store the 737 // classref except by calling this function. 738 llvm::Type *params[] = { Int8PtrPtrTy }; 739 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 740 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 741 "objc_loadClassref", 742 llvm::AttributeList::get(CGM.getLLVMContext(), 743 llvm::AttributeList::FunctionIndex, 744 {llvm::Attribute::NonLazyBind, 745 llvm::Attribute::ReadNone, 746 llvm::Attribute::NoUnwind})); 747 if (!CGM.getTriple().isOSBinFormatCOFF()) 748 cast<llvm::Function>(F.getCallee())->setLinkage( 749 llvm::Function::ExternalWeakLinkage); 750 751 return F; 752 } 753 754 llvm::StructType *EHTypeTy; 755 llvm::Type *EHTypePtrTy; 756 757 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 758 }; 759 760 enum class ObjCLabelType { 761 ClassName, 762 MethodVarName, 763 MethodVarType, 764 PropertyName, 765 }; 766 767 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 768 public: 769 class SKIP_SCAN { 770 public: 771 unsigned skip; 772 unsigned scan; 773 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 774 : skip(_skip), scan(_scan) {} 775 }; 776 777 /// opcode for captured block variables layout 'instructions'. 778 /// In the following descriptions, 'I' is the value of the immediate field. 779 /// (field following the opcode). 780 /// 781 enum BLOCK_LAYOUT_OPCODE { 782 /// An operator which affects how the following layout should be 783 /// interpreted. 784 /// I == 0: Halt interpretation and treat everything else as 785 /// a non-pointer. Note that this instruction is equal 786 /// to '\0'. 787 /// I != 0: Currently unused. 788 BLOCK_LAYOUT_OPERATOR = 0, 789 790 /// The next I+1 bytes do not contain a value of object pointer type. 791 /// Note that this can leave the stream unaligned, meaning that 792 /// subsequent word-size instructions do not begin at a multiple of 793 /// the pointer size. 794 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 795 796 /// The next I+1 words do not contain a value of object pointer type. 797 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 798 /// when the required skip quantity is a multiple of the pointer size. 799 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 800 801 /// The next I+1 words are __strong pointers to Objective-C 802 /// objects or blocks. 803 BLOCK_LAYOUT_STRONG = 3, 804 805 /// The next I+1 words are pointers to __block variables. 806 BLOCK_LAYOUT_BYREF = 4, 807 808 /// The next I+1 words are __weak pointers to Objective-C 809 /// objects or blocks. 810 BLOCK_LAYOUT_WEAK = 5, 811 812 /// The next I+1 words are __unsafe_unretained pointers to 813 /// Objective-C objects or blocks. 814 BLOCK_LAYOUT_UNRETAINED = 6 815 816 /// The next I+1 words are block or object pointers with some 817 /// as-yet-unspecified ownership semantics. If we add more 818 /// flavors of ownership semantics, values will be taken from 819 /// this range. 820 /// 821 /// This is included so that older tools can at least continue 822 /// processing the layout past such things. 823 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 824 825 /// All other opcodes are reserved. Halt interpretation and 826 /// treat everything else as opaque. 827 }; 828 829 class RUN_SKIP { 830 public: 831 enum BLOCK_LAYOUT_OPCODE opcode; 832 CharUnits block_var_bytepos; 833 CharUnits block_var_size; 834 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 835 CharUnits BytePos = CharUnits::Zero(), 836 CharUnits Size = CharUnits::Zero()) 837 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 838 839 // Allow sorting based on byte pos. 840 bool operator<(const RUN_SKIP &b) const { 841 return block_var_bytepos < b.block_var_bytepos; 842 } 843 }; 844 845 protected: 846 llvm::LLVMContext &VMContext; 847 // FIXME! May not be needing this after all. 848 unsigned ObjCABI; 849 850 // arc/mrr layout of captured block literal variables. 851 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 852 853 /// LazySymbols - Symbols to generate a lazy reference for. See 854 /// DefinedSymbols and FinishModule(). 855 llvm::SetVector<IdentifierInfo*> LazySymbols; 856 857 /// DefinedSymbols - External symbols which are defined by this 858 /// module. The symbols in this list and LazySymbols are used to add 859 /// special linker symbols which ensure that Objective-C modules are 860 /// linked properly. 861 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 862 863 /// ClassNames - uniqued class names. 864 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 865 866 /// MethodVarNames - uniqued method variable names. 867 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 868 869 /// DefinedCategoryNames - list of category names in form Class_Category. 870 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 871 872 /// MethodVarTypes - uniqued method type signatures. We have to use 873 /// a StringMap here because have no other unique reference. 874 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 875 876 /// MethodDefinitions - map of methods which have been defined in 877 /// this translation unit. 878 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 879 880 /// DirectMethodDefinitions - map of direct methods which have been defined in 881 /// this translation unit. 882 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 883 884 /// PropertyNames - uniqued method variable names. 885 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 886 887 /// ClassReferences - uniqued class references. 888 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 889 890 /// SelectorReferences - uniqued selector references. 891 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 892 893 /// Protocols - Protocols for which an objc_protocol structure has 894 /// been emitted. Forward declarations are handled by creating an 895 /// empty structure whose initializer is filled in when/if defined. 896 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 897 898 /// DefinedProtocols - Protocols which have actually been 899 /// defined. We should not need this, see FIXME in GenerateProtocol. 900 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 901 902 /// DefinedClasses - List of defined classes. 903 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 904 905 /// ImplementedClasses - List of @implemented classes. 906 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 907 908 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 909 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 910 911 /// DefinedCategories - List of defined categories. 912 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 913 914 /// DefinedStubCategories - List of defined categories on class stubs. 915 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 916 917 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 918 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 919 920 /// Cached reference to the class for constant strings. This value has type 921 /// int * but is actually an Obj-C class pointer. 922 llvm::WeakTrackingVH ConstantStringClassRef; 923 924 /// The LLVM type corresponding to NSConstantString. 925 llvm::StructType *NSConstantStringType = nullptr; 926 927 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 928 929 /// GetMethodVarName - Return a unique constant for the given 930 /// selector's name. The return value has type char *. 931 llvm::Constant *GetMethodVarName(Selector Sel); 932 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 933 934 /// GetMethodVarType - Return a unique constant for the given 935 /// method's type encoding string. The return value has type char *. 936 937 // FIXME: This is a horrible name. 938 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 939 bool Extended = false); 940 llvm::Constant *GetMethodVarType(const FieldDecl *D); 941 942 /// GetPropertyName - Return a unique constant for the given 943 /// name. The return value has type char *. 944 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 945 946 // FIXME: This can be dropped once string functions are unified. 947 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 948 const Decl *Container); 949 950 /// GetClassName - Return a unique constant for the given selector's 951 /// runtime name (which may change via use of objc_runtime_name attribute on 952 /// class or protocol definition. The return value has type char *. 953 llvm::Constant *GetClassName(StringRef RuntimeName); 954 955 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 956 957 /// BuildIvarLayout - Builds ivar layout bitmap for the class 958 /// implementation for the __strong or __weak case. 959 /// 960 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 961 /// are any weak ivars defined directly in the class. Meaningless unless 962 /// building a weak layout. Does not guarantee that the layout will 963 /// actually have any entries, because the ivar might be under-aligned. 964 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 965 CharUnits beginOffset, 966 CharUnits endOffset, 967 bool forStrongLayout, 968 bool hasMRCWeakIvars); 969 970 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 971 CharUnits beginOffset, 972 CharUnits endOffset) { 973 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 974 } 975 976 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 977 CharUnits beginOffset, 978 CharUnits endOffset, 979 bool hasMRCWeakIvars) { 980 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 981 } 982 983 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 984 985 void UpdateRunSkipBlockVars(bool IsByref, 986 Qualifiers::ObjCLifetime LifeTime, 987 CharUnits FieldOffset, 988 CharUnits FieldSize); 989 990 void BuildRCBlockVarRecordLayout(const RecordType *RT, 991 CharUnits BytePos, bool &HasUnion, 992 bool ByrefLayout=false); 993 994 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 995 const RecordDecl *RD, 996 ArrayRef<const FieldDecl*> RecFields, 997 CharUnits BytePos, bool &HasUnion, 998 bool ByrefLayout); 999 1000 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1001 1002 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1003 1004 /// GetIvarLayoutName - Returns a unique constant for the given 1005 /// ivar layout bitmap. 1006 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1007 const ObjCCommonTypesHelper &ObjCTypes); 1008 1009 /// EmitPropertyList - Emit the given property list. The return 1010 /// value has type PropertyListPtrTy. 1011 llvm::Constant *EmitPropertyList(Twine Name, 1012 const Decl *Container, 1013 const ObjCContainerDecl *OCD, 1014 const ObjCCommonTypesHelper &ObjCTypes, 1015 bool IsClassProperty); 1016 1017 /// EmitProtocolMethodTypes - Generate the array of extended method type 1018 /// strings. The return value has type Int8PtrPtrTy. 1019 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1020 ArrayRef<llvm::Constant*> MethodTypes, 1021 const ObjCCommonTypesHelper &ObjCTypes); 1022 1023 /// GetProtocolRef - Return a reference to the internal protocol 1024 /// description, creating an empty one if it has not been 1025 /// defined. The return value has type ProtocolPtrTy. 1026 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1027 1028 /// Return a reference to the given Class using runtime calls rather than 1029 /// by a symbol reference. 1030 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1031 const ObjCInterfaceDecl *ID, 1032 ObjCCommonTypesHelper &ObjCTypes); 1033 1034 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1035 1036 public: 1037 /// CreateMetadataVar - Create a global variable with internal 1038 /// linkage for use by the Objective-C runtime. 1039 /// 1040 /// This is a convenience wrapper which not only creates the 1041 /// variable, but also sets the section and alignment and adds the 1042 /// global to the "llvm.used" list. 1043 /// 1044 /// \param Name - The variable name. 1045 /// \param Init - The variable initializer; this is also used to 1046 /// define the type of the variable. 1047 /// \param Section - The section the variable should go into, or empty. 1048 /// \param Align - The alignment for the variable, or 0. 1049 /// \param AddToUsed - Whether the variable should be added to 1050 /// "llvm.used". 1051 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1052 ConstantStructBuilder &Init, 1053 StringRef Section, CharUnits Align, 1054 bool AddToUsed); 1055 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1056 llvm::Constant *Init, 1057 StringRef Section, CharUnits Align, 1058 bool AddToUsed); 1059 1060 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1061 ObjCLabelType LabelType, 1062 bool ForceNonFragileABI = false, 1063 bool NullTerminate = true); 1064 1065 protected: 1066 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1067 ReturnValueSlot Return, 1068 QualType ResultType, 1069 Selector Sel, 1070 llvm::Value *Arg0, 1071 QualType Arg0Ty, 1072 bool IsSuper, 1073 const CallArgList &CallArgs, 1074 const ObjCMethodDecl *OMD, 1075 const ObjCInterfaceDecl *ClassReceiver, 1076 const ObjCCommonTypesHelper &ObjCTypes); 1077 1078 /// EmitImageInfo - Emit the image info marker used to encode some module 1079 /// level information. 1080 void EmitImageInfo(); 1081 1082 public: 1083 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) 1084 : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {} 1085 1086 bool isNonFragileABI() const { 1087 return ObjCABI == 2; 1088 } 1089 1090 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1091 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1092 1093 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1094 const ObjCContainerDecl *CD=nullptr) override; 1095 1096 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1097 const ObjCContainerDecl *CD); 1098 1099 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1100 const ObjCMethodDecl *OMD, 1101 const ObjCContainerDecl *CD) override; 1102 1103 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1104 1105 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1106 /// object for the given declaration, emitting it if needed. These 1107 /// forward references will be filled in with empty bodies if no 1108 /// definition is seen. The return value has type ProtocolPtrTy. 1109 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1110 1111 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1112 1113 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1114 const CGBlockInfo &blockInfo) override; 1115 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1116 const CGBlockInfo &blockInfo) override; 1117 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1118 const CGBlockInfo &blockInfo) override; 1119 1120 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1121 QualType T) override; 1122 1123 private: 1124 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1125 }; 1126 1127 namespace { 1128 1129 enum class MethodListType { 1130 CategoryInstanceMethods, 1131 CategoryClassMethods, 1132 InstanceMethods, 1133 ClassMethods, 1134 ProtocolInstanceMethods, 1135 ProtocolClassMethods, 1136 OptionalProtocolInstanceMethods, 1137 OptionalProtocolClassMethods, 1138 }; 1139 1140 /// A convenience class for splitting the methods of a protocol into 1141 /// the four interesting groups. 1142 class ProtocolMethodLists { 1143 public: 1144 enum Kind { 1145 RequiredInstanceMethods, 1146 RequiredClassMethods, 1147 OptionalInstanceMethods, 1148 OptionalClassMethods 1149 }; 1150 enum { 1151 NumProtocolMethodLists = 4 1152 }; 1153 1154 static MethodListType getMethodListKind(Kind kind) { 1155 switch (kind) { 1156 case RequiredInstanceMethods: 1157 return MethodListType::ProtocolInstanceMethods; 1158 case RequiredClassMethods: 1159 return MethodListType::ProtocolClassMethods; 1160 case OptionalInstanceMethods: 1161 return MethodListType::OptionalProtocolInstanceMethods; 1162 case OptionalClassMethods: 1163 return MethodListType::OptionalProtocolClassMethods; 1164 } 1165 llvm_unreachable("bad kind"); 1166 } 1167 1168 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1169 1170 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1171 ProtocolMethodLists result; 1172 1173 for (auto MD : PD->methods()) { 1174 size_t index = (2 * size_t(MD->isOptional())) 1175 + (size_t(MD->isClassMethod())); 1176 result.Methods[index].push_back(MD); 1177 } 1178 1179 return result; 1180 } 1181 1182 template <class Self> 1183 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1184 // In both ABIs, the method types list is parallel with the 1185 // concatenation of the methods arrays in the following order: 1186 // instance methods 1187 // class methods 1188 // optional instance methods 1189 // optional class methods 1190 SmallVector<llvm::Constant*, 8> result; 1191 1192 // Methods is already in the correct order for both ABIs. 1193 for (auto &list : Methods) { 1194 for (auto MD : list) { 1195 result.push_back(self->GetMethodVarType(MD, true)); 1196 } 1197 } 1198 1199 return result; 1200 } 1201 1202 template <class Self> 1203 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1204 Kind kind) const { 1205 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1206 getMethodListKind(kind), Methods[kind]); 1207 } 1208 }; 1209 1210 } // end anonymous namespace 1211 1212 class CGObjCMac : public CGObjCCommonMac { 1213 private: 1214 friend ProtocolMethodLists; 1215 1216 ObjCTypesHelper ObjCTypes; 1217 1218 /// EmitModuleInfo - Another marker encoding module level 1219 /// information. 1220 void EmitModuleInfo(); 1221 1222 /// EmitModuleSymols - Emit module symbols, the list of defined 1223 /// classes and categories. The result has type SymtabPtrTy. 1224 llvm::Constant *EmitModuleSymbols(); 1225 1226 /// FinishModule - Write out global data structures at the end of 1227 /// processing a translation unit. 1228 void FinishModule(); 1229 1230 /// EmitClassExtension - Generate the class extension structure used 1231 /// to store the weak ivar layout and properties. The return value 1232 /// has type ClassExtensionPtrTy. 1233 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1234 CharUnits instanceSize, 1235 bool hasMRCWeakIvars, 1236 bool isMetaclass); 1237 1238 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1239 /// for the given class. 1240 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1241 const ObjCInterfaceDecl *ID); 1242 1243 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1244 IdentifierInfo *II); 1245 1246 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1247 1248 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1249 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1250 1251 /// EmitIvarList - Emit the ivar list for the given 1252 /// implementation. If ForClass is true the list of class ivars 1253 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1254 /// interface ivars will be emitted. The return value has type 1255 /// IvarListPtrTy. 1256 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1257 bool ForClass); 1258 1259 /// EmitMetaClass - Emit a forward reference to the class structure 1260 /// for the metaclass of the given interface. The return value has 1261 /// type ClassPtrTy. 1262 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1263 1264 /// EmitMetaClass - Emit a class structure for the metaclass of the 1265 /// given implementation. The return value has type ClassPtrTy. 1266 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1267 llvm::Constant *Protocols, 1268 ArrayRef<const ObjCMethodDecl *> Methods); 1269 1270 void emitMethodConstant(ConstantArrayBuilder &builder, 1271 const ObjCMethodDecl *MD); 1272 1273 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1274 const ObjCMethodDecl *MD); 1275 1276 /// EmitMethodList - Emit the method list for the given 1277 /// implementation. The return value has type MethodListPtrTy. 1278 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1279 ArrayRef<const ObjCMethodDecl *> Methods); 1280 1281 /// GetOrEmitProtocol - Get the protocol object for the given 1282 /// declaration, emitting it if necessary. The return value has type 1283 /// ProtocolPtrTy. 1284 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1285 1286 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1287 /// object for the given declaration, emitting it if needed. These 1288 /// forward references will be filled in with empty bodies if no 1289 /// definition is seen. The return value has type ProtocolPtrTy. 1290 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1291 1292 /// EmitProtocolExtension - Generate the protocol extension 1293 /// structure used to store optional instance and class methods, and 1294 /// protocol properties. The return value has type 1295 /// ProtocolExtensionPtrTy. 1296 llvm::Constant * 1297 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1298 const ProtocolMethodLists &methodLists); 1299 1300 /// EmitProtocolList - Generate the list of referenced 1301 /// protocols. The return value has type ProtocolListPtrTy. 1302 llvm::Constant *EmitProtocolList(Twine Name, 1303 ObjCProtocolDecl::protocol_iterator begin, 1304 ObjCProtocolDecl::protocol_iterator end); 1305 1306 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1307 /// for the given selector. 1308 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1309 Address EmitSelectorAddr(Selector Sel); 1310 1311 public: 1312 CGObjCMac(CodeGen::CodeGenModule &cgm); 1313 1314 llvm::Constant *getNSConstantStringClassRef() override; 1315 1316 llvm::Function *ModuleInitFunction() override; 1317 1318 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1319 ReturnValueSlot Return, 1320 QualType ResultType, 1321 Selector Sel, llvm::Value *Receiver, 1322 const CallArgList &CallArgs, 1323 const ObjCInterfaceDecl *Class, 1324 const ObjCMethodDecl *Method) override; 1325 1326 CodeGen::RValue 1327 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1328 ReturnValueSlot Return, QualType ResultType, 1329 Selector Sel, const ObjCInterfaceDecl *Class, 1330 bool isCategoryImpl, llvm::Value *Receiver, 1331 bool IsClassMessage, const CallArgList &CallArgs, 1332 const ObjCMethodDecl *Method) override; 1333 1334 llvm::Value *GetClass(CodeGenFunction &CGF, 1335 const ObjCInterfaceDecl *ID) override; 1336 1337 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1338 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1339 1340 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1341 /// untyped one. 1342 llvm::Value *GetSelector(CodeGenFunction &CGF, 1343 const ObjCMethodDecl *Method) override; 1344 1345 llvm::Constant *GetEHType(QualType T) override; 1346 1347 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1348 1349 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1350 1351 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1352 1353 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1354 const ObjCProtocolDecl *PD) override; 1355 1356 llvm::FunctionCallee GetPropertyGetFunction() override; 1357 llvm::FunctionCallee GetPropertySetFunction() override; 1358 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1359 bool copy) override; 1360 llvm::FunctionCallee GetGetStructFunction() override; 1361 llvm::FunctionCallee GetSetStructFunction() override; 1362 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1363 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1364 llvm::FunctionCallee EnumerationMutationFunction() override; 1365 1366 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1367 const ObjCAtTryStmt &S) override; 1368 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1369 const ObjCAtSynchronizedStmt &S) override; 1370 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1371 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1372 bool ClearInsertionPoint=true) override; 1373 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1374 Address AddrWeakObj) override; 1375 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1376 llvm::Value *src, Address dst) override; 1377 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1378 llvm::Value *src, Address dest, 1379 bool threadlocal = false) override; 1380 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1381 llvm::Value *src, Address dest, 1382 llvm::Value *ivarOffset) override; 1383 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1384 llvm::Value *src, Address dest) override; 1385 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1386 Address dest, Address src, 1387 llvm::Value *size) override; 1388 1389 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1390 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1391 unsigned CVRQualifiers) override; 1392 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1393 const ObjCInterfaceDecl *Interface, 1394 const ObjCIvarDecl *Ivar) override; 1395 }; 1396 1397 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1398 private: 1399 friend ProtocolMethodLists; 1400 ObjCNonFragileABITypesHelper ObjCTypes; 1401 llvm::GlobalVariable* ObjCEmptyCacheVar; 1402 llvm::Constant* ObjCEmptyVtableVar; 1403 1404 /// SuperClassReferences - uniqued super class references. 1405 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1406 1407 /// MetaClassReferences - uniqued meta class references. 1408 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1409 1410 /// EHTypeReferences - uniqued class ehtype references. 1411 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1412 1413 /// VTableDispatchMethods - List of methods for which we generate 1414 /// vtable-based message dispatch. 1415 llvm::DenseSet<Selector> VTableDispatchMethods; 1416 1417 /// DefinedMetaClasses - List of defined meta-classes. 1418 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1419 1420 /// isVTableDispatchedSelector - Returns true if SEL is a 1421 /// vtable-based selector. 1422 bool isVTableDispatchedSelector(Selector Sel); 1423 1424 /// FinishNonFragileABIModule - Write out global data structures at the end of 1425 /// processing a translation unit. 1426 void FinishNonFragileABIModule(); 1427 1428 /// AddModuleClassList - Add the given list of class pointers to the 1429 /// module with the provided symbol and section names. 1430 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1431 StringRef SymbolName, StringRef SectionName); 1432 1433 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1434 unsigned InstanceStart, 1435 unsigned InstanceSize, 1436 const ObjCImplementationDecl *ID); 1437 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1438 bool isMetaclass, 1439 llvm::Constant *IsAGV, 1440 llvm::Constant *SuperClassGV, 1441 llvm::Constant *ClassRoGV, 1442 bool HiddenVisibility); 1443 1444 void emitMethodConstant(ConstantArrayBuilder &builder, 1445 const ObjCMethodDecl *MD, 1446 bool forProtocol); 1447 1448 /// Emit the method list for the given implementation. The return value 1449 /// has type MethodListnfABITy. 1450 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1451 ArrayRef<const ObjCMethodDecl *> Methods); 1452 1453 /// EmitIvarList - Emit the ivar list for the given 1454 /// implementation. If ForClass is true the list of class ivars 1455 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1456 /// interface ivars will be emitted. The return value has type 1457 /// IvarListnfABIPtrTy. 1458 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1459 1460 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1461 const ObjCIvarDecl *Ivar, 1462 unsigned long int offset); 1463 1464 /// GetOrEmitProtocol - Get the protocol object for the given 1465 /// declaration, emitting it if necessary. The return value has type 1466 /// ProtocolPtrTy. 1467 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1468 1469 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1470 /// object for the given declaration, emitting it if needed. These 1471 /// forward references will be filled in with empty bodies if no 1472 /// definition is seen. The return value has type ProtocolPtrTy. 1473 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1474 1475 /// EmitProtocolList - Generate the list of referenced 1476 /// protocols. The return value has type ProtocolListPtrTy. 1477 llvm::Constant *EmitProtocolList(Twine Name, 1478 ObjCProtocolDecl::protocol_iterator begin, 1479 ObjCProtocolDecl::protocol_iterator end); 1480 1481 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1482 ReturnValueSlot Return, 1483 QualType ResultType, 1484 Selector Sel, 1485 llvm::Value *Receiver, 1486 QualType Arg0Ty, 1487 bool IsSuper, 1488 const CallArgList &CallArgs, 1489 const ObjCMethodDecl *Method); 1490 1491 /// GetClassGlobal - Return the global variable for the Objective-C 1492 /// class of the given name. 1493 llvm::Constant *GetClassGlobal(StringRef Name, 1494 ForDefinition_t IsForDefinition, 1495 bool Weak = false, bool DLLImport = false); 1496 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1497 bool isMetaclass, 1498 ForDefinition_t isForDefinition); 1499 1500 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1501 1502 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1503 const ObjCInterfaceDecl *ID, 1504 llvm::GlobalVariable *Entry); 1505 1506 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1507 /// for the given class reference. 1508 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1509 const ObjCInterfaceDecl *ID); 1510 1511 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1512 IdentifierInfo *II, 1513 const ObjCInterfaceDecl *ID); 1514 1515 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1516 1517 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1518 /// for the given super class reference. 1519 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1520 const ObjCInterfaceDecl *ID); 1521 1522 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1523 /// meta-data 1524 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1525 const ObjCInterfaceDecl *ID, bool Weak); 1526 1527 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1528 /// the given ivar. 1529 /// 1530 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1531 const ObjCInterfaceDecl *ID, 1532 const ObjCIvarDecl *Ivar); 1533 1534 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1535 /// for the given selector. 1536 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1537 Address EmitSelectorAddr(Selector Sel); 1538 1539 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1540 /// interface. The return value has type EHTypePtrTy. 1541 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1542 ForDefinition_t IsForDefinition); 1543 1544 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1545 1546 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1547 1548 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1549 uint32_t &InstanceStart, 1550 uint32_t &InstanceSize); 1551 1552 // Shamelessly stolen from Analysis/CFRefCount.cpp 1553 Selector GetNullarySelector(const char* name) const { 1554 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1555 return CGM.getContext().Selectors.getSelector(0, &II); 1556 } 1557 1558 Selector GetUnarySelector(const char* name) const { 1559 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1560 return CGM.getContext().Selectors.getSelector(1, &II); 1561 } 1562 1563 /// ImplementationIsNonLazy - Check whether the given category or 1564 /// class implementation is "non-lazy". 1565 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1566 1567 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1568 const ObjCIvarDecl *IV) { 1569 // Annotate the load as an invariant load iff inside an instance method 1570 // and ivar belongs to instance method's class and one of its super class. 1571 // This check is needed because the ivar offset is a lazily 1572 // initialised value that may depend on objc_msgSend to perform a fixup on 1573 // the first message dispatch. 1574 // 1575 // An additional opportunity to mark the load as invariant arises when the 1576 // base of the ivar access is a parameter to an Objective C method. 1577 // However, because the parameters are not available in the current 1578 // interface, we cannot perform this check. 1579 // 1580 // Note that for direct methods, because objc_msgSend is skipped, 1581 // and that the method may be inlined, this optimization actually 1582 // can't be performed. 1583 if (const ObjCMethodDecl *MD = 1584 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1585 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1586 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1587 return IV->getContainingInterface()->isSuperClassOf(ID); 1588 return false; 1589 } 1590 1591 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1592 // NSObject is a fixed size. If we can see the @implementation of a class 1593 // which inherits from NSObject then we know that all it's offsets also must 1594 // be fixed. FIXME: Can we do this if see a chain of super classes with 1595 // implementations leading to NSObject? 1596 return ID->getImplementation() && ID->getSuperClass() && 1597 ID->getSuperClass()->getName() == "NSObject"; 1598 } 1599 1600 public: 1601 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1602 1603 llvm::Constant *getNSConstantStringClassRef() override; 1604 1605 llvm::Function *ModuleInitFunction() override; 1606 1607 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1608 ReturnValueSlot Return, 1609 QualType ResultType, Selector Sel, 1610 llvm::Value *Receiver, 1611 const CallArgList &CallArgs, 1612 const ObjCInterfaceDecl *Class, 1613 const ObjCMethodDecl *Method) override; 1614 1615 CodeGen::RValue 1616 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1617 ReturnValueSlot Return, QualType ResultType, 1618 Selector Sel, const ObjCInterfaceDecl *Class, 1619 bool isCategoryImpl, llvm::Value *Receiver, 1620 bool IsClassMessage, const CallArgList &CallArgs, 1621 const ObjCMethodDecl *Method) override; 1622 1623 llvm::Value *GetClass(CodeGenFunction &CGF, 1624 const ObjCInterfaceDecl *ID) override; 1625 1626 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1627 { return EmitSelector(CGF, Sel); } 1628 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1629 { return EmitSelectorAddr(Sel); } 1630 1631 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1632 /// untyped one. 1633 llvm::Value *GetSelector(CodeGenFunction &CGF, 1634 const ObjCMethodDecl *Method) override 1635 { return EmitSelector(CGF, Method->getSelector()); } 1636 1637 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1638 1639 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1640 1641 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1642 1643 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1644 const ObjCProtocolDecl *PD) override; 1645 1646 llvm::Constant *GetEHType(QualType T) override; 1647 1648 llvm::FunctionCallee GetPropertyGetFunction() override { 1649 return ObjCTypes.getGetPropertyFn(); 1650 } 1651 llvm::FunctionCallee GetPropertySetFunction() override { 1652 return ObjCTypes.getSetPropertyFn(); 1653 } 1654 1655 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1656 bool copy) override { 1657 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1658 } 1659 1660 llvm::FunctionCallee GetSetStructFunction() override { 1661 return ObjCTypes.getCopyStructFn(); 1662 } 1663 1664 llvm::FunctionCallee GetGetStructFunction() override { 1665 return ObjCTypes.getCopyStructFn(); 1666 } 1667 1668 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1669 return ObjCTypes.getCppAtomicObjectFunction(); 1670 } 1671 1672 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1673 return ObjCTypes.getCppAtomicObjectFunction(); 1674 } 1675 1676 llvm::FunctionCallee EnumerationMutationFunction() override { 1677 return ObjCTypes.getEnumerationMutationFn(); 1678 } 1679 1680 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1681 const ObjCAtTryStmt &S) override; 1682 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1683 const ObjCAtSynchronizedStmt &S) override; 1684 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1685 bool ClearInsertionPoint=true) override; 1686 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1687 Address AddrWeakObj) override; 1688 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1689 llvm::Value *src, Address edst) override; 1690 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1691 llvm::Value *src, Address dest, 1692 bool threadlocal = false) override; 1693 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1694 llvm::Value *src, Address dest, 1695 llvm::Value *ivarOffset) override; 1696 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1697 llvm::Value *src, Address dest) override; 1698 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1699 Address dest, Address src, 1700 llvm::Value *size) override; 1701 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1702 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1703 unsigned CVRQualifiers) override; 1704 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1705 const ObjCInterfaceDecl *Interface, 1706 const ObjCIvarDecl *Ivar) override; 1707 }; 1708 1709 /// A helper class for performing the null-initialization of a return 1710 /// value. 1711 struct NullReturnState { 1712 llvm::BasicBlock *NullBB; 1713 NullReturnState() : NullBB(nullptr) {} 1714 1715 /// Perform a null-check of the given receiver. 1716 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1717 // Make blocks for the null-receiver and call edges. 1718 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1719 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1720 1721 // Check for a null receiver and, if there is one, jump to the 1722 // null-receiver block. There's no point in trying to avoid it: 1723 // we're always going to put *something* there, because otherwise 1724 // we shouldn't have done this null-check in the first place. 1725 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1726 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1727 1728 // Otherwise, start performing the call. 1729 CGF.EmitBlock(callBB); 1730 } 1731 1732 /// Complete the null-return operation. It is valid to call this 1733 /// regardless of whether 'init' has been called. 1734 RValue complete(CodeGenFunction &CGF, 1735 ReturnValueSlot returnSlot, 1736 RValue result, 1737 QualType resultType, 1738 const CallArgList &CallArgs, 1739 const ObjCMethodDecl *Method) { 1740 // If we never had to do a null-check, just use the raw result. 1741 if (!NullBB) return result; 1742 1743 // The continuation block. This will be left null if we don't have an 1744 // IP, which can happen if the method we're calling is marked noreturn. 1745 llvm::BasicBlock *contBB = nullptr; 1746 1747 // Finish the call path. 1748 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1749 if (callBB) { 1750 contBB = CGF.createBasicBlock("msgSend.cont"); 1751 CGF.Builder.CreateBr(contBB); 1752 } 1753 1754 // Okay, start emitting the null-receiver block. 1755 CGF.EmitBlock(NullBB); 1756 1757 // Destroy any consumed arguments we've got. 1758 if (Method) { 1759 CGObjCRuntime::destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 1760 } 1761 1762 // The phi code below assumes that we haven't needed any control flow yet. 1763 assert(CGF.Builder.GetInsertBlock() == NullBB); 1764 1765 // If we've got a void return, just jump to the continuation block. 1766 if (result.isScalar() && resultType->isVoidType()) { 1767 // No jumps required if the message-send was noreturn. 1768 if (contBB) CGF.EmitBlock(contBB); 1769 return result; 1770 } 1771 1772 // If we've got a scalar return, build a phi. 1773 if (result.isScalar()) { 1774 // Derive the null-initialization value. 1775 llvm::Value *null = 1776 CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(resultType), resultType); 1777 1778 // If no join is necessary, just flow out. 1779 if (!contBB) return RValue::get(null); 1780 1781 // Otherwise, build a phi. 1782 CGF.EmitBlock(contBB); 1783 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1784 phi->addIncoming(result.getScalarVal(), callBB); 1785 phi->addIncoming(null, NullBB); 1786 return RValue::get(phi); 1787 } 1788 1789 // If we've got an aggregate return, null the buffer out. 1790 // FIXME: maybe we should be doing things differently for all the 1791 // cases where the ABI has us returning (1) non-agg values in 1792 // memory or (2) agg values in registers. 1793 if (result.isAggregate()) { 1794 assert(result.isAggregate() && "null init of non-aggregate result?"); 1795 if (!returnSlot.isUnused()) 1796 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1797 if (contBB) CGF.EmitBlock(contBB); 1798 return result; 1799 } 1800 1801 // Complex types. 1802 CGF.EmitBlock(contBB); 1803 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1804 1805 // Find the scalar type and its zero value. 1806 llvm::Type *scalarTy = callResult.first->getType(); 1807 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1808 1809 // Build phis for both coordinates. 1810 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1811 real->addIncoming(callResult.first, callBB); 1812 real->addIncoming(scalarZero, NullBB); 1813 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1814 imag->addIncoming(callResult.second, callBB); 1815 imag->addIncoming(scalarZero, NullBB); 1816 return RValue::getComplex(real, imag); 1817 } 1818 }; 1819 1820 } // end anonymous namespace 1821 1822 /* *** Helper Functions *** */ 1823 1824 /// getConstantGEP() - Help routine to construct simple GEPs. 1825 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1826 llvm::GlobalVariable *C, unsigned idx0, 1827 unsigned idx1) { 1828 llvm::Value *Idxs[] = { 1829 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1830 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1831 }; 1832 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1833 } 1834 1835 /// hasObjCExceptionAttribute - Return true if this class or any super 1836 /// class has the __objc_exception__ attribute. 1837 static bool hasObjCExceptionAttribute(ASTContext &Context, 1838 const ObjCInterfaceDecl *OID) { 1839 if (OID->hasAttr<ObjCExceptionAttr>()) 1840 return true; 1841 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1842 return hasObjCExceptionAttribute(Context, Super); 1843 return false; 1844 } 1845 1846 static llvm::GlobalValue::LinkageTypes 1847 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1848 if (CGM.getTriple().isOSBinFormatMachO() && 1849 (Section.empty() || Section.startswith("__DATA"))) 1850 return llvm::GlobalValue::InternalLinkage; 1851 return llvm::GlobalValue::PrivateLinkage; 1852 } 1853 1854 /// A helper function to create an internal or private global variable. 1855 static llvm::GlobalVariable * 1856 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1857 const llvm::Twine &Name, CodeGenModule &CGM) { 1858 std::string SectionName; 1859 if (CGM.getTriple().isOSBinFormatMachO()) 1860 SectionName = "__DATA, __objc_const"; 1861 auto *GV = Builder.finishAndCreateGlobal( 1862 Name, CGM.getPointerAlign(), /*constant*/ false, 1863 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1864 GV->setSection(SectionName); 1865 return GV; 1866 } 1867 1868 /* *** CGObjCMac Public Interface *** */ 1869 1870 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1871 ObjCTypes(cgm) { 1872 ObjCABI = 1; 1873 EmitImageInfo(); 1874 } 1875 1876 /// GetClass - Return a reference to the class for the given interface 1877 /// decl. 1878 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1879 const ObjCInterfaceDecl *ID) { 1880 return EmitClassRef(CGF, ID); 1881 } 1882 1883 /// GetSelector - Return the pointer to the unique'd string for this selector. 1884 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1885 return EmitSelector(CGF, Sel); 1886 } 1887 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1888 return EmitSelectorAddr(Sel); 1889 } 1890 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1891 *Method) { 1892 return EmitSelector(CGF, Method->getSelector()); 1893 } 1894 1895 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1896 if (T->isObjCIdType() || 1897 T->isObjCQualifiedIdType()) { 1898 return CGM.GetAddrOfRTTIDescriptor( 1899 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1900 } 1901 if (T->isObjCClassType() || 1902 T->isObjCQualifiedClassType()) { 1903 return CGM.GetAddrOfRTTIDescriptor( 1904 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1905 } 1906 if (T->isObjCObjectPointerType()) 1907 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1908 1909 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1910 } 1911 1912 /// Generate a constant CFString object. 1913 /* 1914 struct __builtin_CFString { 1915 const int *isa; // point to __CFConstantStringClassReference 1916 int flags; 1917 const char *str; 1918 long length; 1919 }; 1920 */ 1921 1922 /// or Generate a constant NSString object. 1923 /* 1924 struct __builtin_NSString { 1925 const int *isa; // point to __NSConstantStringClassReference 1926 const char *str; 1927 unsigned int length; 1928 }; 1929 */ 1930 1931 ConstantAddress 1932 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1933 return (!CGM.getLangOpts().NoConstantCFStrings 1934 ? CGM.GetAddrOfConstantCFString(SL) 1935 : GenerateConstantNSString(SL)); 1936 } 1937 1938 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1939 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1940 const StringLiteral *Literal, unsigned &StringLength) { 1941 StringRef String = Literal->getString(); 1942 StringLength = String.size(); 1943 return *Map.insert(std::make_pair(String, nullptr)).first; 1944 } 1945 1946 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1947 if (llvm::Value *V = ConstantStringClassRef) 1948 return cast<llvm::Constant>(V); 1949 1950 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1951 std::string str = 1952 StringClass.empty() ? "_NSConstantStringClassReference" 1953 : "_" + StringClass + "ClassReference"; 1954 1955 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1956 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1957 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1958 ConstantStringClassRef = V; 1959 return V; 1960 } 1961 1962 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1963 if (llvm::Value *V = ConstantStringClassRef) 1964 return cast<llvm::Constant>(V); 1965 1966 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1967 std::string str = 1968 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1969 : "OBJC_CLASS_$_" + StringClass; 1970 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1971 1972 // Make sure the result is of the correct type. 1973 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1974 1975 ConstantStringClassRef = V; 1976 return V; 1977 } 1978 1979 ConstantAddress 1980 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1981 unsigned StringLength = 0; 1982 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1983 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1984 1985 if (auto *C = Entry.second) 1986 return ConstantAddress( 1987 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 1988 1989 // If we don't already have it, get _NSConstantStringClassReference. 1990 llvm::Constant *Class = getNSConstantStringClassRef(); 1991 1992 // If we don't already have it, construct the type for a constant NSString. 1993 if (!NSConstantStringType) { 1994 NSConstantStringType = 1995 llvm::StructType::create({ 1996 CGM.Int32Ty->getPointerTo(), 1997 CGM.Int8PtrTy, 1998 CGM.IntTy 1999 }, "struct.__builtin_NSString"); 2000 } 2001 2002 ConstantInitBuilder Builder(CGM); 2003 auto Fields = Builder.beginStruct(NSConstantStringType); 2004 2005 // Class pointer. 2006 Fields.add(Class); 2007 2008 // String pointer. 2009 llvm::Constant *C = 2010 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2011 2012 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2013 bool isConstant = !CGM.getLangOpts().WritableStrings; 2014 2015 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2016 Linkage, C, ".str"); 2017 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2018 // Don't enforce the target's minimum global alignment, since the only use 2019 // of the string is via this class initializer. 2020 GV->setAlignment(llvm::Align(1)); 2021 Fields.addBitCast(GV, CGM.Int8PtrTy); 2022 2023 // String length. 2024 Fields.addInt(CGM.IntTy, StringLength); 2025 2026 // The struct. 2027 CharUnits Alignment = CGM.getPointerAlign(); 2028 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2029 /*constant*/ true, 2030 llvm::GlobalVariable::PrivateLinkage); 2031 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2032 const char *NSStringNonFragileABISection = 2033 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2034 // FIXME. Fix section. 2035 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2036 ? NSStringNonFragileABISection 2037 : NSStringSection); 2038 Entry.second = GV; 2039 2040 return ConstantAddress(GV, GV->getValueType(), Alignment); 2041 } 2042 2043 enum { 2044 kCFTaggedObjectID_Integer = (1 << 1) + 1 2045 }; 2046 2047 /// Generates a message send where the super is the receiver. This is 2048 /// a message send to self with special delivery semantics indicating 2049 /// which class's method should be called. 2050 CodeGen::RValue 2051 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2052 ReturnValueSlot Return, 2053 QualType ResultType, 2054 Selector Sel, 2055 const ObjCInterfaceDecl *Class, 2056 bool isCategoryImpl, 2057 llvm::Value *Receiver, 2058 bool IsClassMessage, 2059 const CodeGen::CallArgList &CallArgs, 2060 const ObjCMethodDecl *Method) { 2061 // Create and init a super structure; this is a (receiver, class) 2062 // pair we will pass to objc_msgSendSuper. 2063 Address ObjCSuper = 2064 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2065 "objc_super"); 2066 llvm::Value *ReceiverAsObject = 2067 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2068 CGF.Builder.CreateStore(ReceiverAsObject, 2069 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2070 2071 // If this is a class message the metaclass is passed as the target. 2072 llvm::Type *ClassTyPtr = llvm::PointerType::getUnqual(ObjCTypes.ClassTy); 2073 llvm::Value *Target; 2074 if (IsClassMessage) { 2075 if (isCategoryImpl) { 2076 // Message sent to 'super' in a class method defined in a category 2077 // implementation requires an odd treatment. 2078 // If we are in a class method, we must retrieve the 2079 // _metaclass_ for the current class, pointed at by 2080 // the class's "isa" pointer. The following assumes that 2081 // isa" is the first ivar in a class (which it must be). 2082 Target = EmitClassRef(CGF, Class->getSuperClass()); 2083 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2084 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, Target, 2085 CGF.getPointerAlign()); 2086 } else { 2087 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2088 llvm::Value *SuperPtr = 2089 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2090 llvm::Value *Super = CGF.Builder.CreateAlignedLoad(ClassTyPtr, SuperPtr, 2091 CGF.getPointerAlign()); 2092 Target = Super; 2093 } 2094 } else if (isCategoryImpl) 2095 Target = EmitClassRef(CGF, Class->getSuperClass()); 2096 else { 2097 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2098 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2099 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, ClassPtr, 2100 CGF.getPointerAlign()); 2101 } 2102 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2103 // ObjCTypes types. 2104 llvm::Type *ClassTy = 2105 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2106 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2107 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2108 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2109 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2110 ObjCTypes); 2111 } 2112 2113 /// Generate code for a message send expression. 2114 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2115 ReturnValueSlot Return, 2116 QualType ResultType, 2117 Selector Sel, 2118 llvm::Value *Receiver, 2119 const CallArgList &CallArgs, 2120 const ObjCInterfaceDecl *Class, 2121 const ObjCMethodDecl *Method) { 2122 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2123 CGF.getContext().getObjCIdType(), false, CallArgs, 2124 Method, Class, ObjCTypes); 2125 } 2126 2127 CodeGen::RValue 2128 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2129 ReturnValueSlot Return, 2130 QualType ResultType, 2131 Selector Sel, 2132 llvm::Value *Arg0, 2133 QualType Arg0Ty, 2134 bool IsSuper, 2135 const CallArgList &CallArgs, 2136 const ObjCMethodDecl *Method, 2137 const ObjCInterfaceDecl *ClassReceiver, 2138 const ObjCCommonTypesHelper &ObjCTypes) { 2139 CodeGenTypes &Types = CGM.getTypes(); 2140 auto selTy = CGF.getContext().getObjCSelType(); 2141 llvm::Value *SelValue; 2142 2143 if (Method && Method->isDirectMethod()) { 2144 // Direct methods will synthesize the proper `_cmd` internally, 2145 // so just don't bother with setting the `_cmd` argument. 2146 assert(!IsSuper); 2147 SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2148 } else { 2149 SelValue = GetSelector(CGF, Sel); 2150 } 2151 2152 CallArgList ActualArgs; 2153 if (!IsSuper) 2154 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2155 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2156 ActualArgs.add(RValue::get(SelValue), selTy); 2157 ActualArgs.addFrom(CallArgs); 2158 2159 // If we're calling a method, use the formal signature. 2160 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2161 2162 if (Method) 2163 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2164 CGM.getContext().getCanonicalType(ResultType) && 2165 "Result type mismatch!"); 2166 2167 bool ReceiverCanBeNull = 2168 canMessageReceiverBeNull(CGF, Method, IsSuper, ClassReceiver, Arg0); 2169 2170 bool RequiresNullCheck = false; 2171 2172 llvm::FunctionCallee Fn = nullptr; 2173 if (Method && Method->isDirectMethod()) { 2174 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2175 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2176 if (ReceiverCanBeNull) RequiresNullCheck = true; 2177 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2178 : ObjCTypes.getSendStretFn(IsSuper); 2179 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2180 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2181 : ObjCTypes.getSendFpretFn(IsSuper); 2182 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2183 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2184 : ObjCTypes.getSendFp2retFn(IsSuper); 2185 } else { 2186 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2187 // must be made for it. 2188 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2189 RequiresNullCheck = true; 2190 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2191 : ObjCTypes.getSendFn(IsSuper); 2192 } 2193 2194 // Cast function to proper signature 2195 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2196 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2197 2198 // We don't need to emit a null check to zero out an indirect result if the 2199 // result is ignored. 2200 if (Return.isUnused()) 2201 RequiresNullCheck = false; 2202 2203 // Emit a null-check if there's a consumed argument other than the receiver. 2204 if (!RequiresNullCheck && Method && Method->hasParamDestroyedInCallee()) 2205 RequiresNullCheck = true; 2206 2207 NullReturnState nullReturn; 2208 if (RequiresNullCheck) { 2209 nullReturn.init(CGF, Arg0); 2210 } 2211 2212 llvm::CallBase *CallSite; 2213 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2214 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2215 &CallSite); 2216 2217 // Mark the call as noreturn if the method is marked noreturn and the 2218 // receiver cannot be null. 2219 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2220 CallSite->setDoesNotReturn(); 2221 } 2222 2223 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2224 RequiresNullCheck ? Method : nullptr); 2225 } 2226 2227 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2228 bool pointee = false) { 2229 // Note that GC qualification applies recursively to C pointer types 2230 // that aren't otherwise decorated. This is weird, but it's probably 2231 // an intentional workaround to the unreliable placement of GC qualifiers. 2232 if (FQT.isObjCGCStrong()) 2233 return Qualifiers::Strong; 2234 2235 if (FQT.isObjCGCWeak()) 2236 return Qualifiers::Weak; 2237 2238 if (auto ownership = FQT.getObjCLifetime()) { 2239 // Ownership does not apply recursively to C pointer types. 2240 if (pointee) return Qualifiers::GCNone; 2241 switch (ownership) { 2242 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2243 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2244 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2245 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2246 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2247 } 2248 llvm_unreachable("bad objc ownership"); 2249 } 2250 2251 // Treat unqualified retainable pointers as strong. 2252 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2253 return Qualifiers::Strong; 2254 2255 // Walk into C pointer types, but only in GC. 2256 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2257 if (const PointerType *PT = FQT->getAs<PointerType>()) 2258 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2259 } 2260 2261 return Qualifiers::GCNone; 2262 } 2263 2264 namespace { 2265 struct IvarInfo { 2266 CharUnits Offset; 2267 uint64_t SizeInWords; 2268 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2269 : Offset(offset), SizeInWords(sizeInWords) {} 2270 2271 // Allow sorting based on byte pos. 2272 bool operator<(const IvarInfo &other) const { 2273 return Offset < other.Offset; 2274 } 2275 }; 2276 2277 /// A helper class for building GC layout strings. 2278 class IvarLayoutBuilder { 2279 CodeGenModule &CGM; 2280 2281 /// The start of the layout. Offsets will be relative to this value, 2282 /// and entries less than this value will be silently discarded. 2283 CharUnits InstanceBegin; 2284 2285 /// The end of the layout. Offsets will never exceed this value. 2286 CharUnits InstanceEnd; 2287 2288 /// Whether we're generating the strong layout or the weak layout. 2289 bool ForStrongLayout; 2290 2291 /// Whether the offsets in IvarsInfo might be out-of-order. 2292 bool IsDisordered = false; 2293 2294 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2295 2296 public: 2297 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2298 CharUnits instanceEnd, bool forStrongLayout) 2299 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2300 ForStrongLayout(forStrongLayout) { 2301 } 2302 2303 void visitRecord(const RecordType *RT, CharUnits offset); 2304 2305 template <class Iterator, class GetOffsetFn> 2306 void visitAggregate(Iterator begin, Iterator end, 2307 CharUnits aggrOffset, 2308 const GetOffsetFn &getOffset); 2309 2310 void visitField(const FieldDecl *field, CharUnits offset); 2311 2312 /// Add the layout of a block implementation. 2313 void visitBlock(const CGBlockInfo &blockInfo); 2314 2315 /// Is there any information for an interesting bitmap? 2316 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2317 2318 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2319 llvm::SmallVectorImpl<unsigned char> &buffer); 2320 2321 static void dump(ArrayRef<unsigned char> buffer) { 2322 const unsigned char *s = buffer.data(); 2323 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2324 if (!(s[i] & 0xf0)) 2325 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2326 else 2327 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2328 printf("\n"); 2329 } 2330 }; 2331 } // end anonymous namespace 2332 2333 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2334 const CGBlockInfo &blockInfo) { 2335 2336 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2337 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2338 return nullPtr; 2339 2340 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2341 /*for strong layout*/ true); 2342 2343 builder.visitBlock(blockInfo); 2344 2345 if (!builder.hasBitmapData()) 2346 return nullPtr; 2347 2348 llvm::SmallVector<unsigned char, 32> buffer; 2349 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2350 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2351 printf("\n block variable layout for block: "); 2352 builder.dump(buffer); 2353 } 2354 2355 return C; 2356 } 2357 2358 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2359 // __isa is the first field in block descriptor and must assume by runtime's 2360 // convention that it is GC'able. 2361 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2362 2363 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2364 2365 // Ignore the optional 'this' capture: C++ objects are not assumed 2366 // to be GC'ed. 2367 2368 CharUnits lastFieldOffset; 2369 2370 // Walk the captured variables. 2371 for (const auto &CI : blockDecl->captures()) { 2372 const VarDecl *variable = CI.getVariable(); 2373 QualType type = variable->getType(); 2374 2375 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2376 2377 // Ignore constant captures. 2378 if (capture.isConstant()) continue; 2379 2380 CharUnits fieldOffset = capture.getOffset(); 2381 2382 // Block fields are not necessarily ordered; if we detect that we're 2383 // adding them out-of-order, make sure we sort later. 2384 if (fieldOffset < lastFieldOffset) 2385 IsDisordered = true; 2386 lastFieldOffset = fieldOffset; 2387 2388 // __block variables are passed by their descriptor address. 2389 if (CI.isByRef()) { 2390 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2391 continue; 2392 } 2393 2394 assert(!type->isArrayType() && "array variable should not be caught"); 2395 if (const RecordType *record = type->getAs<RecordType>()) { 2396 visitRecord(record, fieldOffset); 2397 continue; 2398 } 2399 2400 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2401 2402 if (GCAttr == Qualifiers::Strong) { 2403 assert(CGM.getContext().getTypeSize(type) 2404 == CGM.getTarget().getPointerWidth(0)); 2405 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2406 } 2407 } 2408 } 2409 2410 /// getBlockCaptureLifetime - This routine returns life time of the captured 2411 /// block variable for the purpose of block layout meta-data generation. FQT is 2412 /// the type of the variable captured in the block. 2413 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2414 bool ByrefLayout) { 2415 // If it has an ownership qualifier, we're done. 2416 if (auto lifetime = FQT.getObjCLifetime()) 2417 return lifetime; 2418 2419 // If it doesn't, and this is ARC, it has no ownership. 2420 if (CGM.getLangOpts().ObjCAutoRefCount) 2421 return Qualifiers::OCL_None; 2422 2423 // In MRC, retainable pointers are owned by non-__block variables. 2424 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2425 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2426 2427 return Qualifiers::OCL_None; 2428 } 2429 2430 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2431 Qualifiers::ObjCLifetime LifeTime, 2432 CharUnits FieldOffset, 2433 CharUnits FieldSize) { 2434 // __block variables are passed by their descriptor address. 2435 if (IsByref) 2436 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2437 FieldSize)); 2438 else if (LifeTime == Qualifiers::OCL_Strong) 2439 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2440 FieldSize)); 2441 else if (LifeTime == Qualifiers::OCL_Weak) 2442 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2443 FieldSize)); 2444 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2445 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2446 FieldSize)); 2447 else 2448 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2449 FieldOffset, 2450 FieldSize)); 2451 } 2452 2453 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2454 const RecordDecl *RD, 2455 ArrayRef<const FieldDecl*> RecFields, 2456 CharUnits BytePos, bool &HasUnion, 2457 bool ByrefLayout) { 2458 bool IsUnion = (RD && RD->isUnion()); 2459 CharUnits MaxUnionSize = CharUnits::Zero(); 2460 const FieldDecl *MaxField = nullptr; 2461 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2462 CharUnits MaxFieldOffset = CharUnits::Zero(); 2463 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2464 2465 if (RecFields.empty()) 2466 return; 2467 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2468 2469 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2470 const FieldDecl *Field = RecFields[i]; 2471 // Note that 'i' here is actually the field index inside RD of Field, 2472 // although this dependency is hidden. 2473 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2474 CharUnits FieldOffset = 2475 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2476 2477 // Skip over unnamed or bitfields 2478 if (!Field->getIdentifier() || Field->isBitField()) { 2479 LastFieldBitfieldOrUnnamed = Field; 2480 LastBitfieldOrUnnamedOffset = FieldOffset; 2481 continue; 2482 } 2483 2484 LastFieldBitfieldOrUnnamed = nullptr; 2485 QualType FQT = Field->getType(); 2486 if (FQT->isRecordType() || FQT->isUnionType()) { 2487 if (FQT->isUnionType()) 2488 HasUnion = true; 2489 2490 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2491 BytePos + FieldOffset, HasUnion); 2492 continue; 2493 } 2494 2495 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2496 auto *CArray = cast<ConstantArrayType>(Array); 2497 uint64_t ElCount = CArray->getSize().getZExtValue(); 2498 assert(CArray && "only array with known element size is supported"); 2499 FQT = CArray->getElementType(); 2500 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2501 auto *CArray = cast<ConstantArrayType>(Array); 2502 ElCount *= CArray->getSize().getZExtValue(); 2503 FQT = CArray->getElementType(); 2504 } 2505 if (FQT->isRecordType() && ElCount) { 2506 int OldIndex = RunSkipBlockVars.size() - 1; 2507 auto *RT = FQT->castAs<RecordType>(); 2508 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion); 2509 2510 // Replicate layout information for each array element. Note that 2511 // one element is already done. 2512 uint64_t ElIx = 1; 2513 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2514 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2515 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2516 RunSkipBlockVars.push_back( 2517 RUN_SKIP(RunSkipBlockVars[i].opcode, 2518 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2519 RunSkipBlockVars[i].block_var_size)); 2520 } 2521 continue; 2522 } 2523 } 2524 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2525 if (IsUnion) { 2526 CharUnits UnionIvarSize = FieldSize; 2527 if (UnionIvarSize > MaxUnionSize) { 2528 MaxUnionSize = UnionIvarSize; 2529 MaxField = Field; 2530 MaxFieldOffset = FieldOffset; 2531 } 2532 } else { 2533 UpdateRunSkipBlockVars(false, 2534 getBlockCaptureLifetime(FQT, ByrefLayout), 2535 BytePos + FieldOffset, 2536 FieldSize); 2537 } 2538 } 2539 2540 if (LastFieldBitfieldOrUnnamed) { 2541 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2542 // Last field was a bitfield. Must update the info. 2543 uint64_t BitFieldSize 2544 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2545 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2546 ((BitFieldSize % ByteSizeInBits) != 0); 2547 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2548 Size += LastBitfieldOrUnnamedOffset; 2549 UpdateRunSkipBlockVars(false, 2550 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2551 ByrefLayout), 2552 BytePos + LastBitfieldOrUnnamedOffset, 2553 Size); 2554 } else { 2555 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2556 // Last field was unnamed. Must update skip info. 2557 CharUnits FieldSize 2558 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2559 UpdateRunSkipBlockVars(false, 2560 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2561 ByrefLayout), 2562 BytePos + LastBitfieldOrUnnamedOffset, 2563 FieldSize); 2564 } 2565 } 2566 2567 if (MaxField) 2568 UpdateRunSkipBlockVars(false, 2569 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2570 BytePos + MaxFieldOffset, 2571 MaxUnionSize); 2572 } 2573 2574 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2575 CharUnits BytePos, 2576 bool &HasUnion, 2577 bool ByrefLayout) { 2578 const RecordDecl *RD = RT->getDecl(); 2579 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2580 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2581 const llvm::StructLayout *RecLayout = 2582 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2583 2584 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2585 } 2586 2587 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2588 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2589 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2590 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2591 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2592 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2593 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2594 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2595 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2596 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2597 SmallVectorImpl<unsigned char> &Layout) { 2598 uint64_t Result = 0; 2599 if (Layout.size() <= 3) { 2600 unsigned size = Layout.size(); 2601 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2602 unsigned char inst; 2603 enum BLOCK_LAYOUT_OPCODE opcode ; 2604 switch (size) { 2605 case 3: 2606 inst = Layout[0]; 2607 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2608 if (opcode == BLOCK_LAYOUT_STRONG) 2609 strong_word_count = (inst & 0xF)+1; 2610 else 2611 return 0; 2612 inst = Layout[1]; 2613 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2614 if (opcode == BLOCK_LAYOUT_BYREF) 2615 byref_word_count = (inst & 0xF)+1; 2616 else 2617 return 0; 2618 inst = Layout[2]; 2619 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2620 if (opcode == BLOCK_LAYOUT_WEAK) 2621 weak_word_count = (inst & 0xF)+1; 2622 else 2623 return 0; 2624 break; 2625 2626 case 2: 2627 inst = Layout[0]; 2628 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2629 if (opcode == BLOCK_LAYOUT_STRONG) { 2630 strong_word_count = (inst & 0xF)+1; 2631 inst = Layout[1]; 2632 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2633 if (opcode == BLOCK_LAYOUT_BYREF) 2634 byref_word_count = (inst & 0xF)+1; 2635 else if (opcode == BLOCK_LAYOUT_WEAK) 2636 weak_word_count = (inst & 0xF)+1; 2637 else 2638 return 0; 2639 } 2640 else if (opcode == BLOCK_LAYOUT_BYREF) { 2641 byref_word_count = (inst & 0xF)+1; 2642 inst = Layout[1]; 2643 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2644 if (opcode == BLOCK_LAYOUT_WEAK) 2645 weak_word_count = (inst & 0xF)+1; 2646 else 2647 return 0; 2648 } 2649 else 2650 return 0; 2651 break; 2652 2653 case 1: 2654 inst = Layout[0]; 2655 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2656 if (opcode == BLOCK_LAYOUT_STRONG) 2657 strong_word_count = (inst & 0xF)+1; 2658 else if (opcode == BLOCK_LAYOUT_BYREF) 2659 byref_word_count = (inst & 0xF)+1; 2660 else if (opcode == BLOCK_LAYOUT_WEAK) 2661 weak_word_count = (inst & 0xF)+1; 2662 else 2663 return 0; 2664 break; 2665 2666 default: 2667 return 0; 2668 } 2669 2670 // Cannot inline when any of the word counts is 15. Because this is one less 2671 // than the actual work count (so 15 means 16 actual word counts), 2672 // and we can only display 0 thru 15 word counts. 2673 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2674 return 0; 2675 2676 unsigned count = 2677 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2678 2679 if (size == count) { 2680 if (strong_word_count) 2681 Result = strong_word_count; 2682 Result <<= 4; 2683 if (byref_word_count) 2684 Result += byref_word_count; 2685 Result <<= 4; 2686 if (weak_word_count) 2687 Result += weak_word_count; 2688 } 2689 } 2690 return Result; 2691 } 2692 2693 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2694 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2695 if (RunSkipBlockVars.empty()) 2696 return nullPtr; 2697 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2698 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2699 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2700 2701 // Sort on byte position; captures might not be allocated in order, 2702 // and unions can do funny things. 2703 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2704 SmallVector<unsigned char, 16> Layout; 2705 2706 unsigned size = RunSkipBlockVars.size(); 2707 for (unsigned i = 0; i < size; i++) { 2708 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2709 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2710 CharUnits end_byte_pos = start_byte_pos; 2711 unsigned j = i+1; 2712 while (j < size) { 2713 if (opcode == RunSkipBlockVars[j].opcode) { 2714 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2715 i++; 2716 } 2717 else 2718 break; 2719 } 2720 CharUnits size_in_bytes = 2721 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2722 if (j < size) { 2723 CharUnits gap = 2724 RunSkipBlockVars[j].block_var_bytepos - 2725 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2726 size_in_bytes += gap; 2727 } 2728 CharUnits residue_in_bytes = CharUnits::Zero(); 2729 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2730 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2731 size_in_bytes -= residue_in_bytes; 2732 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2733 } 2734 2735 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2736 while (size_in_words >= 16) { 2737 // Note that value in imm. is one less that the actual 2738 // value. So, 0xf means 16 words follow! 2739 unsigned char inst = (opcode << 4) | 0xf; 2740 Layout.push_back(inst); 2741 size_in_words -= 16; 2742 } 2743 if (size_in_words > 0) { 2744 // Note that value in imm. is one less that the actual 2745 // value. So, we subtract 1 away! 2746 unsigned char inst = (opcode << 4) | (size_in_words-1); 2747 Layout.push_back(inst); 2748 } 2749 if (residue_in_bytes > CharUnits::Zero()) { 2750 unsigned char inst = 2751 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2752 Layout.push_back(inst); 2753 } 2754 } 2755 2756 while (!Layout.empty()) { 2757 unsigned char inst = Layout.back(); 2758 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2759 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2760 Layout.pop_back(); 2761 else 2762 break; 2763 } 2764 2765 uint64_t Result = InlineLayoutInstruction(Layout); 2766 if (Result != 0) { 2767 // Block variable layout instruction has been inlined. 2768 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2769 if (ComputeByrefLayout) 2770 printf("\n Inline BYREF variable layout: "); 2771 else 2772 printf("\n Inline block variable layout: "); 2773 printf("0x0%" PRIx64 "", Result); 2774 if (auto numStrong = (Result & 0xF00) >> 8) 2775 printf(", BL_STRONG:%d", (int) numStrong); 2776 if (auto numByref = (Result & 0x0F0) >> 4) 2777 printf(", BL_BYREF:%d", (int) numByref); 2778 if (auto numWeak = (Result & 0x00F) >> 0) 2779 printf(", BL_WEAK:%d", (int) numWeak); 2780 printf(", BL_OPERATOR:0\n"); 2781 } 2782 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2783 } 2784 2785 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2786 Layout.push_back(inst); 2787 std::string BitMap; 2788 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2789 BitMap += Layout[i]; 2790 2791 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2792 if (ComputeByrefLayout) 2793 printf("\n Byref variable layout: "); 2794 else 2795 printf("\n Block variable layout: "); 2796 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2797 unsigned char inst = BitMap[i]; 2798 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2799 unsigned delta = 1; 2800 switch (opcode) { 2801 case BLOCK_LAYOUT_OPERATOR: 2802 printf("BL_OPERATOR:"); 2803 delta = 0; 2804 break; 2805 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2806 printf("BL_NON_OBJECT_BYTES:"); 2807 break; 2808 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2809 printf("BL_NON_OBJECT_WORD:"); 2810 break; 2811 case BLOCK_LAYOUT_STRONG: 2812 printf("BL_STRONG:"); 2813 break; 2814 case BLOCK_LAYOUT_BYREF: 2815 printf("BL_BYREF:"); 2816 break; 2817 case BLOCK_LAYOUT_WEAK: 2818 printf("BL_WEAK:"); 2819 break; 2820 case BLOCK_LAYOUT_UNRETAINED: 2821 printf("BL_UNRETAINED:"); 2822 break; 2823 } 2824 // Actual value of word count is one more that what is in the imm. 2825 // field of the instruction 2826 printf("%d", (inst & 0xf) + delta); 2827 if (i < e-1) 2828 printf(", "); 2829 else 2830 printf("\n"); 2831 } 2832 } 2833 2834 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2835 /*ForceNonFragileABI=*/true, 2836 /*NullTerminate=*/false); 2837 return getConstantGEP(VMContext, Entry, 0, 0); 2838 } 2839 2840 static std::string getBlockLayoutInfoString( 2841 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2842 bool HasCopyDisposeHelpers) { 2843 std::string Str; 2844 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2845 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2846 // Copy/dispose helpers don't have any information about 2847 // __unsafe_unretained captures, so unconditionally concatenate a string. 2848 Str += "u"; 2849 } else if (HasCopyDisposeHelpers) { 2850 // Information about __strong, __weak, or byref captures has already been 2851 // encoded into the names of the copy/dispose helpers. We have to add a 2852 // string here only when the copy/dispose helpers aren't generated (which 2853 // happens when the block is non-escaping). 2854 continue; 2855 } else { 2856 switch (R.opcode) { 2857 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2858 Str += "s"; 2859 break; 2860 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2861 Str += "r"; 2862 break; 2863 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2864 Str += "w"; 2865 break; 2866 default: 2867 continue; 2868 } 2869 } 2870 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2871 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2872 } 2873 return Str; 2874 } 2875 2876 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2877 const CGBlockInfo &blockInfo) { 2878 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2879 2880 RunSkipBlockVars.clear(); 2881 bool hasUnion = false; 2882 2883 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2884 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2885 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2886 2887 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2888 2889 // Calculate the basic layout of the block structure. 2890 const llvm::StructLayout *layout = 2891 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2892 2893 // Ignore the optional 'this' capture: C++ objects are not assumed 2894 // to be GC'ed. 2895 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2896 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2897 blockInfo.BlockHeaderForcedGapOffset, 2898 blockInfo.BlockHeaderForcedGapSize); 2899 // Walk the captured variables. 2900 for (const auto &CI : blockDecl->captures()) { 2901 const VarDecl *variable = CI.getVariable(); 2902 QualType type = variable->getType(); 2903 2904 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2905 2906 // Ignore constant captures. 2907 if (capture.isConstant()) continue; 2908 2909 CharUnits fieldOffset = 2910 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2911 2912 assert(!type->isArrayType() && "array variable should not be caught"); 2913 if (!CI.isByRef()) 2914 if (const RecordType *record = type->getAs<RecordType>()) { 2915 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2916 continue; 2917 } 2918 CharUnits fieldSize; 2919 if (CI.isByRef()) 2920 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2921 else 2922 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2923 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2924 fieldOffset, fieldSize); 2925 } 2926 } 2927 2928 llvm::Constant * 2929 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2930 const CGBlockInfo &blockInfo) { 2931 fillRunSkipBlockVars(CGM, blockInfo); 2932 return getBitmapBlockLayout(false); 2933 } 2934 2935 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2936 const CGBlockInfo &blockInfo) { 2937 fillRunSkipBlockVars(CGM, blockInfo); 2938 return getBlockLayoutInfoString(RunSkipBlockVars, 2939 blockInfo.needsCopyDisposeHelpers()); 2940 } 2941 2942 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2943 QualType T) { 2944 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2945 assert(!T->isArrayType() && "__block array variable should not be caught"); 2946 CharUnits fieldOffset; 2947 RunSkipBlockVars.clear(); 2948 bool hasUnion = false; 2949 if (const RecordType *record = T->getAs<RecordType>()) { 2950 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2951 llvm::Constant *Result = getBitmapBlockLayout(true); 2952 if (isa<llvm::ConstantInt>(Result)) 2953 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2954 return Result; 2955 } 2956 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2957 return nullPtr; 2958 } 2959 2960 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2961 const ObjCProtocolDecl *PD) { 2962 // FIXME: I don't understand why gcc generates this, or where it is 2963 // resolved. Investigate. Its also wasteful to look this up over and over. 2964 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2965 2966 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2967 ObjCTypes.getExternalProtocolPtrTy()); 2968 } 2969 2970 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2971 // FIXME: We shouldn't need this, the protocol decl should contain enough 2972 // information to tell us whether this was a declaration or a definition. 2973 DefinedProtocols.insert(PD->getIdentifier()); 2974 2975 // If we have generated a forward reference to this protocol, emit 2976 // it now. Otherwise do nothing, the protocol objects are lazily 2977 // emitted. 2978 if (Protocols.count(PD->getIdentifier())) 2979 GetOrEmitProtocol(PD); 2980 } 2981 2982 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2983 if (DefinedProtocols.count(PD->getIdentifier())) 2984 return GetOrEmitProtocol(PD); 2985 2986 return GetOrEmitProtocolRef(PD); 2987 } 2988 2989 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2990 CodeGenFunction &CGF, 2991 const ObjCInterfaceDecl *ID, 2992 ObjCCommonTypesHelper &ObjCTypes) { 2993 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 2994 2995 llvm::Value *className = CGF.CGM 2996 .GetAddrOfConstantCString(std::string( 2997 ID->getObjCRuntimeNameAsString())) 2998 .getPointer(); 2999 ASTContext &ctx = CGF.CGM.getContext(); 3000 className = 3001 CGF.Builder.CreateBitCast(className, 3002 CGF.ConvertType( 3003 ctx.getPointerType(ctx.CharTy.withConst()))); 3004 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3005 call->setDoesNotThrow(); 3006 return call; 3007 } 3008 3009 /* 3010 // Objective-C 1.0 extensions 3011 struct _objc_protocol { 3012 struct _objc_protocol_extension *isa; 3013 char *protocol_name; 3014 struct _objc_protocol_list *protocol_list; 3015 struct _objc__method_prototype_list *instance_methods; 3016 struct _objc__method_prototype_list *class_methods 3017 }; 3018 3019 See EmitProtocolExtension(). 3020 */ 3021 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3022 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3023 3024 // Early exit if a defining object has already been generated. 3025 if (Entry && Entry->hasInitializer()) 3026 return Entry; 3027 3028 // Use the protocol definition, if there is one. 3029 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3030 PD = Def; 3031 3032 // FIXME: I don't understand why gcc generates this, or where it is 3033 // resolved. Investigate. Its also wasteful to look this up over and over. 3034 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3035 3036 // Construct method lists. 3037 auto methodLists = ProtocolMethodLists::get(PD); 3038 3039 ConstantInitBuilder builder(CGM); 3040 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3041 values.add(EmitProtocolExtension(PD, methodLists)); 3042 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3043 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3044 PD->protocol_begin(), PD->protocol_end())); 3045 values.add(methodLists.emitMethodList(this, PD, 3046 ProtocolMethodLists::RequiredInstanceMethods)); 3047 values.add(methodLists.emitMethodList(this, PD, 3048 ProtocolMethodLists::RequiredClassMethods)); 3049 3050 if (Entry) { 3051 // Already created, update the initializer. 3052 assert(Entry->hasPrivateLinkage()); 3053 values.finishAndSetAsInitializer(Entry); 3054 } else { 3055 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3056 CGM.getPointerAlign(), 3057 /*constant*/ false, 3058 llvm::GlobalValue::PrivateLinkage); 3059 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3060 3061 Protocols[PD->getIdentifier()] = Entry; 3062 } 3063 CGM.addCompilerUsedGlobal(Entry); 3064 3065 return Entry; 3066 } 3067 3068 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3069 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3070 3071 if (!Entry) { 3072 // We use the initializer as a marker of whether this is a forward 3073 // reference or not. At module finalization we add the empty 3074 // contents for protocols which were referenced but never defined. 3075 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3076 false, llvm::GlobalValue::PrivateLinkage, 3077 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3078 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3079 // FIXME: Is this necessary? Why only for protocol? 3080 Entry->setAlignment(llvm::Align(4)); 3081 } 3082 3083 return Entry; 3084 } 3085 3086 /* 3087 struct _objc_protocol_extension { 3088 uint32_t size; 3089 struct objc_method_description_list *optional_instance_methods; 3090 struct objc_method_description_list *optional_class_methods; 3091 struct objc_property_list *instance_properties; 3092 const char ** extendedMethodTypes; 3093 struct objc_property_list *class_properties; 3094 }; 3095 */ 3096 llvm::Constant * 3097 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3098 const ProtocolMethodLists &methodLists) { 3099 auto optInstanceMethods = 3100 methodLists.emitMethodList(this, PD, 3101 ProtocolMethodLists::OptionalInstanceMethods); 3102 auto optClassMethods = 3103 methodLists.emitMethodList(this, PD, 3104 ProtocolMethodLists::OptionalClassMethods); 3105 3106 auto extendedMethodTypes = 3107 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3108 methodLists.emitExtendedTypesArray(this), 3109 ObjCTypes); 3110 3111 auto instanceProperties = 3112 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3113 ObjCTypes, false); 3114 auto classProperties = 3115 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3116 PD, ObjCTypes, true); 3117 3118 // Return null if no extension bits are used. 3119 if (optInstanceMethods->isNullValue() && 3120 optClassMethods->isNullValue() && 3121 extendedMethodTypes->isNullValue() && 3122 instanceProperties->isNullValue() && 3123 classProperties->isNullValue()) { 3124 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3125 } 3126 3127 uint64_t size = 3128 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3129 3130 ConstantInitBuilder builder(CGM); 3131 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3132 values.addInt(ObjCTypes.IntTy, size); 3133 values.add(optInstanceMethods); 3134 values.add(optClassMethods); 3135 values.add(instanceProperties); 3136 values.add(extendedMethodTypes); 3137 values.add(classProperties); 3138 3139 // No special section, but goes in llvm.used 3140 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3141 StringRef(), CGM.getPointerAlign(), true); 3142 } 3143 3144 /* 3145 struct objc_protocol_list { 3146 struct objc_protocol_list *next; 3147 long count; 3148 Protocol *list[]; 3149 }; 3150 */ 3151 llvm::Constant * 3152 CGObjCMac::EmitProtocolList(Twine name, 3153 ObjCProtocolDecl::protocol_iterator begin, 3154 ObjCProtocolDecl::protocol_iterator end) { 3155 // Just return null for empty protocol lists 3156 auto PDs = GetRuntimeProtocolList(begin, end); 3157 if (PDs.empty()) 3158 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3159 3160 ConstantInitBuilder builder(CGM); 3161 auto values = builder.beginStruct(); 3162 3163 // This field is only used by the runtime. 3164 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3165 3166 // Reserve a slot for the count. 3167 auto countSlot = values.addPlaceholder(); 3168 3169 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3170 for (const auto *Proto : PDs) 3171 refsArray.add(GetProtocolRef(Proto)); 3172 3173 auto count = refsArray.size(); 3174 3175 // This list is null terminated. 3176 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3177 3178 refsArray.finishAndAddTo(values); 3179 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3180 3181 StringRef section; 3182 if (CGM.getTriple().isOSBinFormatMachO()) 3183 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3184 3185 llvm::GlobalVariable *GV = 3186 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3187 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3188 } 3189 3190 static void 3191 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3192 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3193 const ObjCProtocolDecl *Proto, 3194 bool IsClassProperty) { 3195 for (const auto *PD : Proto->properties()) { 3196 if (IsClassProperty != PD->isClassProperty()) 3197 continue; 3198 if (!PropertySet.insert(PD->getIdentifier()).second) 3199 continue; 3200 Properties.push_back(PD); 3201 } 3202 3203 for (const auto *P : Proto->protocols()) 3204 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3205 } 3206 3207 /* 3208 struct _objc_property { 3209 const char * const name; 3210 const char * const attributes; 3211 }; 3212 3213 struct _objc_property_list { 3214 uint32_t entsize; // sizeof (struct _objc_property) 3215 uint32_t prop_count; 3216 struct _objc_property[prop_count]; 3217 }; 3218 */ 3219 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3220 const Decl *Container, 3221 const ObjCContainerDecl *OCD, 3222 const ObjCCommonTypesHelper &ObjCTypes, 3223 bool IsClassProperty) { 3224 if (IsClassProperty) { 3225 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3226 // with deployment target < 9.0. 3227 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3228 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3229 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3230 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3231 } 3232 3233 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3234 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3235 3236 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3237 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3238 for (auto *PD : ClassExt->properties()) { 3239 if (IsClassProperty != PD->isClassProperty()) 3240 continue; 3241 if (PD->isDirectProperty()) 3242 continue; 3243 PropertySet.insert(PD->getIdentifier()); 3244 Properties.push_back(PD); 3245 } 3246 3247 for (const auto *PD : OCD->properties()) { 3248 if (IsClassProperty != PD->isClassProperty()) 3249 continue; 3250 // Don't emit duplicate metadata for properties that were already in a 3251 // class extension. 3252 if (!PropertySet.insert(PD->getIdentifier()).second) 3253 continue; 3254 if (PD->isDirectProperty()) 3255 continue; 3256 Properties.push_back(PD); 3257 } 3258 3259 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3260 for (const auto *P : OID->all_referenced_protocols()) 3261 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3262 } 3263 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3264 for (const auto *P : CD->protocols()) 3265 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3266 } 3267 3268 // Return null for empty list. 3269 if (Properties.empty()) 3270 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3271 3272 unsigned propertySize = 3273 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3274 3275 ConstantInitBuilder builder(CGM); 3276 auto values = builder.beginStruct(); 3277 values.addInt(ObjCTypes.IntTy, propertySize); 3278 values.addInt(ObjCTypes.IntTy, Properties.size()); 3279 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3280 for (auto PD : Properties) { 3281 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3282 property.add(GetPropertyName(PD->getIdentifier())); 3283 property.add(GetPropertyTypeString(PD, Container)); 3284 property.finishAndAddTo(propertiesArray); 3285 } 3286 propertiesArray.finishAndAddTo(values); 3287 3288 StringRef Section; 3289 if (CGM.getTriple().isOSBinFormatMachO()) 3290 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3291 : "__OBJC,__property,regular,no_dead_strip"; 3292 3293 llvm::GlobalVariable *GV = 3294 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3295 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3296 } 3297 3298 llvm::Constant * 3299 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3300 ArrayRef<llvm::Constant*> MethodTypes, 3301 const ObjCCommonTypesHelper &ObjCTypes) { 3302 // Return null for empty list. 3303 if (MethodTypes.empty()) 3304 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3305 3306 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3307 MethodTypes.size()); 3308 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3309 3310 StringRef Section; 3311 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3312 Section = "__DATA, __objc_const"; 3313 3314 llvm::GlobalVariable *GV = 3315 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3316 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3317 } 3318 3319 /* 3320 struct _objc_category { 3321 char *category_name; 3322 char *class_name; 3323 struct _objc_method_list *instance_methods; 3324 struct _objc_method_list *class_methods; 3325 struct _objc_protocol_list *protocols; 3326 uint32_t size; // <rdar://4585769> 3327 struct _objc_property_list *instance_properties; 3328 struct _objc_property_list *class_properties; 3329 }; 3330 */ 3331 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3332 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3333 3334 // FIXME: This is poor design, the OCD should have a pointer to the category 3335 // decl. Additionally, note that Category can be null for the @implementation 3336 // w/o an @interface case. Sema should just create one for us as it does for 3337 // @implementation so everyone else can live life under a clear blue sky. 3338 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3339 const ObjCCategoryDecl *Category = 3340 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3341 3342 SmallString<256> ExtName; 3343 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3344 << OCD->getName(); 3345 3346 ConstantInitBuilder Builder(CGM); 3347 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3348 3349 enum { 3350 InstanceMethods, 3351 ClassMethods, 3352 NumMethodLists 3353 }; 3354 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3355 for (const auto *MD : OCD->methods()) { 3356 if (!MD->isDirectMethod()) 3357 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3358 } 3359 3360 Values.add(GetClassName(OCD->getName())); 3361 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3362 LazySymbols.insert(Interface->getIdentifier()); 3363 3364 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3365 Methods[InstanceMethods])); 3366 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3367 Methods[ClassMethods])); 3368 if (Category) { 3369 Values.add( 3370 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3371 Category->protocol_begin(), Category->protocol_end())); 3372 } else { 3373 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3374 } 3375 Values.addInt(ObjCTypes.IntTy, Size); 3376 3377 // If there is no category @interface then there can be no properties. 3378 if (Category) { 3379 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3380 OCD, Category, ObjCTypes, false)); 3381 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3382 OCD, Category, ObjCTypes, true)); 3383 } else { 3384 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3385 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3386 } 3387 3388 llvm::GlobalVariable *GV = 3389 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3390 "__OBJC,__category,regular,no_dead_strip", 3391 CGM.getPointerAlign(), true); 3392 DefinedCategories.push_back(GV); 3393 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3394 // method definition entries must be clear for next implementation. 3395 MethodDefinitions.clear(); 3396 } 3397 3398 enum FragileClassFlags { 3399 /// Apparently: is not a meta-class. 3400 FragileABI_Class_Factory = 0x00001, 3401 3402 /// Is a meta-class. 3403 FragileABI_Class_Meta = 0x00002, 3404 3405 /// Has a non-trivial constructor or destructor. 3406 FragileABI_Class_HasCXXStructors = 0x02000, 3407 3408 /// Has hidden visibility. 3409 FragileABI_Class_Hidden = 0x20000, 3410 3411 /// Class implementation was compiled under ARC. 3412 FragileABI_Class_CompiledByARC = 0x04000000, 3413 3414 /// Class implementation was compiled under MRC and has MRC weak ivars. 3415 /// Exclusive with CompiledByARC. 3416 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3417 }; 3418 3419 enum NonFragileClassFlags { 3420 /// Is a meta-class. 3421 NonFragileABI_Class_Meta = 0x00001, 3422 3423 /// Is a root class. 3424 NonFragileABI_Class_Root = 0x00002, 3425 3426 /// Has a non-trivial constructor or destructor. 3427 NonFragileABI_Class_HasCXXStructors = 0x00004, 3428 3429 /// Has hidden visibility. 3430 NonFragileABI_Class_Hidden = 0x00010, 3431 3432 /// Has the exception attribute. 3433 NonFragileABI_Class_Exception = 0x00020, 3434 3435 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3436 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3437 3438 /// Class implementation was compiled under ARC. 3439 NonFragileABI_Class_CompiledByARC = 0x00080, 3440 3441 /// Class has non-trivial destructors, but zero-initialization is okay. 3442 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3443 3444 /// Class implementation was compiled under MRC and has MRC weak ivars. 3445 /// Exclusive with CompiledByARC. 3446 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3447 }; 3448 3449 static bool hasWeakMember(QualType type) { 3450 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3451 return true; 3452 } 3453 3454 if (auto recType = type->getAs<RecordType>()) { 3455 for (auto field : recType->getDecl()->fields()) { 3456 if (hasWeakMember(field->getType())) 3457 return true; 3458 } 3459 } 3460 3461 return false; 3462 } 3463 3464 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3465 /// (and actually fill in a layout string) if we really do have any 3466 /// __weak ivars. 3467 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3468 const ObjCImplementationDecl *ID) { 3469 if (!CGM.getLangOpts().ObjCWeak) return false; 3470 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3471 3472 for (const ObjCIvarDecl *ivar = 3473 ID->getClassInterface()->all_declared_ivar_begin(); 3474 ivar; ivar = ivar->getNextIvar()) { 3475 if (hasWeakMember(ivar->getType())) 3476 return true; 3477 } 3478 3479 return false; 3480 } 3481 3482 /* 3483 struct _objc_class { 3484 Class isa; 3485 Class super_class; 3486 const char *name; 3487 long version; 3488 long info; 3489 long instance_size; 3490 struct _objc_ivar_list *ivars; 3491 struct _objc_method_list *methods; 3492 struct _objc_cache *cache; 3493 struct _objc_protocol_list *protocols; 3494 // Objective-C 1.0 extensions (<rdr://4585769>) 3495 const char *ivar_layout; 3496 struct _objc_class_ext *ext; 3497 }; 3498 3499 See EmitClassExtension(); 3500 */ 3501 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3502 IdentifierInfo *RuntimeName = 3503 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3504 DefinedSymbols.insert(RuntimeName); 3505 3506 std::string ClassName = ID->getNameAsString(); 3507 // FIXME: Gross 3508 ObjCInterfaceDecl *Interface = 3509 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3510 llvm::Constant *Protocols = 3511 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3512 Interface->all_referenced_protocol_begin(), 3513 Interface->all_referenced_protocol_end()); 3514 unsigned Flags = FragileABI_Class_Factory; 3515 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3516 Flags |= FragileABI_Class_HasCXXStructors; 3517 3518 bool hasMRCWeak = false; 3519 3520 if (CGM.getLangOpts().ObjCAutoRefCount) 3521 Flags |= FragileABI_Class_CompiledByARC; 3522 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3523 Flags |= FragileABI_Class_HasMRCWeakIvars; 3524 3525 CharUnits Size = 3526 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3527 3528 // FIXME: Set CXX-structors flag. 3529 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3530 Flags |= FragileABI_Class_Hidden; 3531 3532 enum { 3533 InstanceMethods, 3534 ClassMethods, 3535 NumMethodLists 3536 }; 3537 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3538 for (const auto *MD : ID->methods()) { 3539 if (!MD->isDirectMethod()) 3540 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3541 } 3542 3543 for (const auto *PID : ID->property_impls()) { 3544 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3545 if (PID->getPropertyDecl()->isDirectProperty()) 3546 continue; 3547 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3548 if (GetMethodDefinition(MD)) 3549 Methods[InstanceMethods].push_back(MD); 3550 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3551 if (GetMethodDefinition(MD)) 3552 Methods[InstanceMethods].push_back(MD); 3553 } 3554 } 3555 3556 ConstantInitBuilder builder(CGM); 3557 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3558 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3559 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3560 // Record a reference to the super class. 3561 LazySymbols.insert(Super->getIdentifier()); 3562 3563 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3564 ObjCTypes.ClassPtrTy); 3565 } else { 3566 values.addNullPointer(ObjCTypes.ClassPtrTy); 3567 } 3568 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3569 // Version is always 0. 3570 values.addInt(ObjCTypes.LongTy, 0); 3571 values.addInt(ObjCTypes.LongTy, Flags); 3572 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3573 values.add(EmitIvarList(ID, false)); 3574 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3575 Methods[InstanceMethods])); 3576 // cache is always NULL. 3577 values.addNullPointer(ObjCTypes.CachePtrTy); 3578 values.add(Protocols); 3579 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3580 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3581 /*isMetaclass*/ false)); 3582 3583 std::string Name("OBJC_CLASS_"); 3584 Name += ClassName; 3585 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3586 // Check for a forward reference. 3587 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3588 if (GV) { 3589 assert(GV->getValueType() == ObjCTypes.ClassTy && 3590 "Forward metaclass reference has incorrect type."); 3591 values.finishAndSetAsInitializer(GV); 3592 GV->setSection(Section); 3593 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3594 CGM.addCompilerUsedGlobal(GV); 3595 } else 3596 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3597 DefinedClasses.push_back(GV); 3598 ImplementedClasses.push_back(Interface); 3599 // method definition entries must be clear for next implementation. 3600 MethodDefinitions.clear(); 3601 } 3602 3603 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3604 llvm::Constant *Protocols, 3605 ArrayRef<const ObjCMethodDecl*> Methods) { 3606 unsigned Flags = FragileABI_Class_Meta; 3607 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3608 3609 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3610 Flags |= FragileABI_Class_Hidden; 3611 3612 ConstantInitBuilder builder(CGM); 3613 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3614 // The isa for the metaclass is the root of the hierarchy. 3615 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3616 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3617 Root = Super; 3618 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3619 ObjCTypes.ClassPtrTy); 3620 // The super class for the metaclass is emitted as the name of the 3621 // super class. The runtime fixes this up to point to the 3622 // *metaclass* for the super class. 3623 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3624 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3625 ObjCTypes.ClassPtrTy); 3626 } else { 3627 values.addNullPointer(ObjCTypes.ClassPtrTy); 3628 } 3629 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3630 // Version is always 0. 3631 values.addInt(ObjCTypes.LongTy, 0); 3632 values.addInt(ObjCTypes.LongTy, Flags); 3633 values.addInt(ObjCTypes.LongTy, Size); 3634 values.add(EmitIvarList(ID, true)); 3635 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3636 Methods)); 3637 // cache is always NULL. 3638 values.addNullPointer(ObjCTypes.CachePtrTy); 3639 values.add(Protocols); 3640 // ivar_layout for metaclass is always NULL. 3641 values.addNullPointer(ObjCTypes.Int8PtrTy); 3642 // The class extension is used to store class properties for metaclasses. 3643 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3644 /*isMetaclass*/true)); 3645 3646 std::string Name("OBJC_METACLASS_"); 3647 Name += ID->getName(); 3648 3649 // Check for a forward reference. 3650 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3651 if (GV) { 3652 assert(GV->getValueType() == ObjCTypes.ClassTy && 3653 "Forward metaclass reference has incorrect type."); 3654 values.finishAndSetAsInitializer(GV); 3655 } else { 3656 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3657 /*constant*/ false, 3658 llvm::GlobalValue::PrivateLinkage); 3659 } 3660 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3661 CGM.addCompilerUsedGlobal(GV); 3662 3663 return GV; 3664 } 3665 3666 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3667 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3668 3669 // FIXME: Should we look these up somewhere other than the module. Its a bit 3670 // silly since we only generate these while processing an implementation, so 3671 // exactly one pointer would work if know when we entered/exitted an 3672 // implementation block. 3673 3674 // Check for an existing forward reference. 3675 // Previously, metaclass with internal linkage may have been defined. 3676 // pass 'true' as 2nd argument so it is returned. 3677 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3678 if (!GV) 3679 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3680 llvm::GlobalValue::PrivateLinkage, nullptr, 3681 Name); 3682 3683 assert(GV->getValueType() == ObjCTypes.ClassTy && 3684 "Forward metaclass reference has incorrect type."); 3685 return GV; 3686 } 3687 3688 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3689 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3690 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3691 3692 if (!GV) 3693 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3694 llvm::GlobalValue::PrivateLinkage, nullptr, 3695 Name); 3696 3697 assert(GV->getValueType() == ObjCTypes.ClassTy && 3698 "Forward class metadata reference has incorrect type."); 3699 return GV; 3700 } 3701 3702 /* 3703 Emit a "class extension", which in this specific context means extra 3704 data that doesn't fit in the normal fragile-ABI class structure, and 3705 has nothing to do with the language concept of a class extension. 3706 3707 struct objc_class_ext { 3708 uint32_t size; 3709 const char *weak_ivar_layout; 3710 struct _objc_property_list *properties; 3711 }; 3712 */ 3713 llvm::Constant * 3714 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3715 CharUnits InstanceSize, bool hasMRCWeakIvars, 3716 bool isMetaclass) { 3717 // Weak ivar layout. 3718 llvm::Constant *layout; 3719 if (isMetaclass) { 3720 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3721 } else { 3722 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3723 hasMRCWeakIvars); 3724 } 3725 3726 // Properties. 3727 llvm::Constant *propertyList = 3728 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3729 : Twine("_OBJC_$_PROP_LIST_")) 3730 + ID->getName(), 3731 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3732 3733 // Return null if no extension bits are used. 3734 if (layout->isNullValue() && propertyList->isNullValue()) { 3735 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3736 } 3737 3738 uint64_t size = 3739 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3740 3741 ConstantInitBuilder builder(CGM); 3742 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3743 values.addInt(ObjCTypes.IntTy, size); 3744 values.add(layout); 3745 values.add(propertyList); 3746 3747 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3748 "__OBJC,__class_ext,regular,no_dead_strip", 3749 CGM.getPointerAlign(), true); 3750 } 3751 3752 /* 3753 struct objc_ivar { 3754 char *ivar_name; 3755 char *ivar_type; 3756 int ivar_offset; 3757 }; 3758 3759 struct objc_ivar_list { 3760 int ivar_count; 3761 struct objc_ivar list[count]; 3762 }; 3763 */ 3764 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3765 bool ForClass) { 3766 // When emitting the root class GCC emits ivar entries for the 3767 // actual class structure. It is not clear if we need to follow this 3768 // behavior; for now lets try and get away with not doing it. If so, 3769 // the cleanest solution would be to make up an ObjCInterfaceDecl 3770 // for the class. 3771 if (ForClass) 3772 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3773 3774 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3775 3776 ConstantInitBuilder builder(CGM); 3777 auto ivarList = builder.beginStruct(); 3778 auto countSlot = ivarList.addPlaceholder(); 3779 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3780 3781 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3782 IVD; IVD = IVD->getNextIvar()) { 3783 // Ignore unnamed bit-fields. 3784 if (!IVD->getDeclName()) 3785 continue; 3786 3787 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3788 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3789 ivar.add(GetMethodVarType(IVD)); 3790 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3791 ivar.finishAndAddTo(ivars); 3792 } 3793 3794 // Return null for empty list. 3795 auto count = ivars.size(); 3796 if (count == 0) { 3797 ivars.abandon(); 3798 ivarList.abandon(); 3799 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3800 } 3801 3802 ivars.finishAndAddTo(ivarList); 3803 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3804 3805 llvm::GlobalVariable *GV; 3806 if (ForClass) 3807 GV = 3808 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3809 "__OBJC,__class_vars,regular,no_dead_strip", 3810 CGM.getPointerAlign(), true); 3811 else 3812 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3813 "__OBJC,__instance_vars,regular,no_dead_strip", 3814 CGM.getPointerAlign(), true); 3815 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3816 } 3817 3818 /// Build a struct objc_method_description constant for the given method. 3819 /// 3820 /// struct objc_method_description { 3821 /// SEL method_name; 3822 /// char *method_types; 3823 /// }; 3824 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3825 const ObjCMethodDecl *MD) { 3826 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3827 description.addBitCast(GetMethodVarName(MD->getSelector()), 3828 ObjCTypes.SelectorPtrTy); 3829 description.add(GetMethodVarType(MD)); 3830 description.finishAndAddTo(builder); 3831 } 3832 3833 /// Build a struct objc_method constant for the given method. 3834 /// 3835 /// struct objc_method { 3836 /// SEL method_name; 3837 /// char *method_types; 3838 /// void *method; 3839 /// }; 3840 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3841 const ObjCMethodDecl *MD) { 3842 llvm::Function *fn = GetMethodDefinition(MD); 3843 assert(fn && "no definition registered for method"); 3844 3845 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3846 method.addBitCast(GetMethodVarName(MD->getSelector()), 3847 ObjCTypes.SelectorPtrTy); 3848 method.add(GetMethodVarType(MD)); 3849 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3850 method.finishAndAddTo(builder); 3851 } 3852 3853 /// Build a struct objc_method_list or struct objc_method_description_list, 3854 /// as appropriate. 3855 /// 3856 /// struct objc_method_list { 3857 /// struct objc_method_list *obsolete; 3858 /// int count; 3859 /// struct objc_method methods_list[count]; 3860 /// }; 3861 /// 3862 /// struct objc_method_description_list { 3863 /// int count; 3864 /// struct objc_method_description list[count]; 3865 /// }; 3866 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3867 ArrayRef<const ObjCMethodDecl *> methods) { 3868 StringRef prefix; 3869 StringRef section; 3870 bool forProtocol = false; 3871 switch (MLT) { 3872 case MethodListType::CategoryInstanceMethods: 3873 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3874 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3875 forProtocol = false; 3876 break; 3877 case MethodListType::CategoryClassMethods: 3878 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3879 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3880 forProtocol = false; 3881 break; 3882 case MethodListType::InstanceMethods: 3883 prefix = "OBJC_INSTANCE_METHODS_"; 3884 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3885 forProtocol = false; 3886 break; 3887 case MethodListType::ClassMethods: 3888 prefix = "OBJC_CLASS_METHODS_"; 3889 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3890 forProtocol = false; 3891 break; 3892 case MethodListType::ProtocolInstanceMethods: 3893 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3894 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3895 forProtocol = true; 3896 break; 3897 case MethodListType::ProtocolClassMethods: 3898 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3899 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3900 forProtocol = true; 3901 break; 3902 case MethodListType::OptionalProtocolInstanceMethods: 3903 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3904 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3905 forProtocol = true; 3906 break; 3907 case MethodListType::OptionalProtocolClassMethods: 3908 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3909 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3910 forProtocol = true; 3911 break; 3912 } 3913 3914 // Return null for empty list. 3915 if (methods.empty()) 3916 return llvm::Constant::getNullValue(forProtocol 3917 ? ObjCTypes.MethodDescriptionListPtrTy 3918 : ObjCTypes.MethodListPtrTy); 3919 3920 // For protocols, this is an objc_method_description_list, which has 3921 // a slightly different structure. 3922 if (forProtocol) { 3923 ConstantInitBuilder builder(CGM); 3924 auto values = builder.beginStruct(); 3925 values.addInt(ObjCTypes.IntTy, methods.size()); 3926 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3927 for (auto MD : methods) { 3928 emitMethodDescriptionConstant(methodArray, MD); 3929 } 3930 methodArray.finishAndAddTo(values); 3931 3932 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3933 CGM.getPointerAlign(), true); 3934 return llvm::ConstantExpr::getBitCast(GV, 3935 ObjCTypes.MethodDescriptionListPtrTy); 3936 } 3937 3938 // Otherwise, it's an objc_method_list. 3939 ConstantInitBuilder builder(CGM); 3940 auto values = builder.beginStruct(); 3941 values.addNullPointer(ObjCTypes.Int8PtrTy); 3942 values.addInt(ObjCTypes.IntTy, methods.size()); 3943 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3944 for (auto MD : methods) { 3945 if (!MD->isDirectMethod()) 3946 emitMethodConstant(methodArray, MD); 3947 } 3948 methodArray.finishAndAddTo(values); 3949 3950 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3951 CGM.getPointerAlign(), true); 3952 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3953 } 3954 3955 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3956 const ObjCContainerDecl *CD) { 3957 llvm::Function *Method; 3958 3959 if (OMD->isDirectMethod()) { 3960 Method = GenerateDirectMethod(OMD, CD); 3961 } else { 3962 auto Name = getSymbolNameForMethod(OMD); 3963 3964 CodeGenTypes &Types = CGM.getTypes(); 3965 llvm::FunctionType *MethodTy = 3966 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3967 Method = 3968 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 3969 Name, &CGM.getModule()); 3970 } 3971 3972 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3973 3974 return Method; 3975 } 3976 3977 llvm::Function * 3978 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 3979 const ObjCContainerDecl *CD) { 3980 auto *COMD = OMD->getCanonicalDecl(); 3981 auto I = DirectMethodDefinitions.find(COMD); 3982 llvm::Function *OldFn = nullptr, *Fn = nullptr; 3983 3984 if (I != DirectMethodDefinitions.end()) { 3985 // Objective-C allows for the declaration and implementation types 3986 // to differ slightly. 3987 // 3988 // If we're being asked for the Function associated for a method 3989 // implementation, a previous value might have been cached 3990 // based on the type of the canonical declaration. 3991 // 3992 // If these do not match, then we'll replace this function with 3993 // a new one that has the proper type below. 3994 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 3995 return I->second; 3996 OldFn = I->second; 3997 } 3998 3999 CodeGenTypes &Types = CGM.getTypes(); 4000 llvm::FunctionType *MethodTy = 4001 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4002 4003 if (OldFn) { 4004 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4005 "", &CGM.getModule()); 4006 Fn->takeName(OldFn); 4007 OldFn->replaceAllUsesWith( 4008 llvm::ConstantExpr::getBitCast(Fn, OldFn->getType())); 4009 OldFn->eraseFromParent(); 4010 4011 // Replace the cached function in the map. 4012 I->second = Fn; 4013 } else { 4014 auto Name = getSymbolNameForMethod(OMD, /*include category*/ false); 4015 4016 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4017 Name, &CGM.getModule()); 4018 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn)); 4019 } 4020 4021 return Fn; 4022 } 4023 4024 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4025 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4026 const ObjCContainerDecl *CD) { 4027 auto &Builder = CGF.Builder; 4028 bool ReceiverCanBeNull = true; 4029 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4030 auto selfValue = Builder.CreateLoad(selfAddr); 4031 4032 // Generate: 4033 // 4034 // /* for class methods only to force class lazy initialization */ 4035 // self = [self self]; 4036 // 4037 // /* unless the receiver is never NULL */ 4038 // if (self == nil) { 4039 // return (ReturnType){ }; 4040 // } 4041 // 4042 // _cmd = @selector(...) 4043 // ... 4044 4045 if (OMD->isClassMethod()) { 4046 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4047 assert(OID && 4048 "GenerateDirectMethod() should be called with the Class Interface"); 4049 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4050 auto ResultType = CGF.getContext().getObjCIdType(); 4051 RValue result; 4052 CallArgList Args; 4053 4054 // TODO: If this method is inlined, the caller might know that `self` is 4055 // already initialized; for example, it might be an ordinary Objective-C 4056 // method which always receives an initialized `self`, or it might have just 4057 // forced initialization on its own. 4058 // 4059 // We should find a way to eliminate this unnecessary initialization in such 4060 // cases in LLVM. 4061 result = GeneratePossiblySpecializedMessageSend( 4062 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4063 nullptr, true); 4064 Builder.CreateStore(result.getScalarVal(), selfAddr); 4065 4066 // Nullable `Class` expressions cannot be messaged with a direct method 4067 // so the only reason why the receive can be null would be because 4068 // of weak linking. 4069 ReceiverCanBeNull = isWeakLinkedClass(OID); 4070 } 4071 4072 if (ReceiverCanBeNull) { 4073 llvm::BasicBlock *SelfIsNilBlock = 4074 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4075 llvm::BasicBlock *ContBlock = 4076 CGF.createBasicBlock("objc_direct_method.cont"); 4077 4078 // if (self == nil) { 4079 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4080 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4081 4082 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4083 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4084 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4085 4086 CGF.EmitBlock(SelfIsNilBlock); 4087 4088 // return (ReturnType){ }; 4089 auto retTy = OMD->getReturnType(); 4090 Builder.SetInsertPoint(SelfIsNilBlock); 4091 if (!retTy->isVoidType()) { 4092 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4093 } 4094 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4095 // } 4096 4097 // rest of the body 4098 CGF.EmitBlock(ContBlock); 4099 Builder.SetInsertPoint(ContBlock); 4100 } 4101 4102 // only synthesize _cmd if it's referenced 4103 if (OMD->getCmdDecl()->isUsed()) { 4104 Builder.CreateStore(GetSelector(CGF, OMD), 4105 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4106 } 4107 } 4108 4109 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4110 ConstantStructBuilder &Init, 4111 StringRef Section, 4112 CharUnits Align, 4113 bool AddToUsed) { 4114 llvm::GlobalValue::LinkageTypes LT = 4115 getLinkageTypeForObjCMetadata(CGM, Section); 4116 llvm::GlobalVariable *GV = 4117 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4118 if (!Section.empty()) 4119 GV->setSection(Section); 4120 if (AddToUsed) 4121 CGM.addCompilerUsedGlobal(GV); 4122 return GV; 4123 } 4124 4125 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4126 llvm::Constant *Init, 4127 StringRef Section, 4128 CharUnits Align, 4129 bool AddToUsed) { 4130 llvm::Type *Ty = Init->getType(); 4131 llvm::GlobalValue::LinkageTypes LT = 4132 getLinkageTypeForObjCMetadata(CGM, Section); 4133 llvm::GlobalVariable *GV = 4134 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4135 if (!Section.empty()) 4136 GV->setSection(Section); 4137 GV->setAlignment(Align.getAsAlign()); 4138 if (AddToUsed) 4139 CGM.addCompilerUsedGlobal(GV); 4140 return GV; 4141 } 4142 4143 llvm::GlobalVariable * 4144 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4145 bool ForceNonFragileABI, 4146 bool NullTerminate) { 4147 StringRef Label; 4148 switch (Type) { 4149 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4150 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4151 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4152 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4153 } 4154 4155 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4156 4157 StringRef Section; 4158 switch (Type) { 4159 case ObjCLabelType::ClassName: 4160 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4161 : "__TEXT,__cstring,cstring_literals"; 4162 break; 4163 case ObjCLabelType::MethodVarName: 4164 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4165 : "__TEXT,__cstring,cstring_literals"; 4166 break; 4167 case ObjCLabelType::MethodVarType: 4168 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4169 : "__TEXT,__cstring,cstring_literals"; 4170 break; 4171 case ObjCLabelType::PropertyName: 4172 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4173 : "__TEXT,__cstring,cstring_literals"; 4174 break; 4175 } 4176 4177 llvm::Constant *Value = 4178 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4179 llvm::GlobalVariable *GV = 4180 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4181 /*isConstant=*/true, 4182 llvm::GlobalValue::PrivateLinkage, Value, Label); 4183 if (CGM.getTriple().isOSBinFormatMachO()) 4184 GV->setSection(Section); 4185 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4186 GV->setAlignment(CharUnits::One().getAsAlign()); 4187 CGM.addCompilerUsedGlobal(GV); 4188 4189 return GV; 4190 } 4191 4192 llvm::Function *CGObjCMac::ModuleInitFunction() { 4193 // Abuse this interface function as a place to finalize. 4194 FinishModule(); 4195 return nullptr; 4196 } 4197 4198 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4199 return ObjCTypes.getGetPropertyFn(); 4200 } 4201 4202 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4203 return ObjCTypes.getSetPropertyFn(); 4204 } 4205 4206 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4207 bool copy) { 4208 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4209 } 4210 4211 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4212 return ObjCTypes.getCopyStructFn(); 4213 } 4214 4215 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4216 return ObjCTypes.getCopyStructFn(); 4217 } 4218 4219 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4220 return ObjCTypes.getCppAtomicObjectFunction(); 4221 } 4222 4223 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4224 return ObjCTypes.getCppAtomicObjectFunction(); 4225 } 4226 4227 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4228 return ObjCTypes.getEnumerationMutationFn(); 4229 } 4230 4231 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4232 return EmitTryOrSynchronizedStmt(CGF, S); 4233 } 4234 4235 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4236 const ObjCAtSynchronizedStmt &S) { 4237 return EmitTryOrSynchronizedStmt(CGF, S); 4238 } 4239 4240 namespace { 4241 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4242 const Stmt &S; 4243 Address SyncArgSlot; 4244 Address CallTryExitVar; 4245 Address ExceptionData; 4246 ObjCTypesHelper &ObjCTypes; 4247 PerformFragileFinally(const Stmt *S, 4248 Address SyncArgSlot, 4249 Address CallTryExitVar, 4250 Address ExceptionData, 4251 ObjCTypesHelper *ObjCTypes) 4252 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4253 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4254 4255 void Emit(CodeGenFunction &CGF, Flags flags) override { 4256 // Check whether we need to call objc_exception_try_exit. 4257 // In optimized code, this branch will always be folded. 4258 llvm::BasicBlock *FinallyCallExit = 4259 CGF.createBasicBlock("finally.call_exit"); 4260 llvm::BasicBlock *FinallyNoCallExit = 4261 CGF.createBasicBlock("finally.no_call_exit"); 4262 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4263 FinallyCallExit, FinallyNoCallExit); 4264 4265 CGF.EmitBlock(FinallyCallExit); 4266 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4267 ExceptionData.getPointer()); 4268 4269 CGF.EmitBlock(FinallyNoCallExit); 4270 4271 if (isa<ObjCAtTryStmt>(S)) { 4272 if (const ObjCAtFinallyStmt* FinallyStmt = 4273 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4274 // Don't try to do the @finally if this is an EH cleanup. 4275 if (flags.isForEHCleanup()) return; 4276 4277 // Save the current cleanup destination in case there's 4278 // control flow inside the finally statement. 4279 llvm::Value *CurCleanupDest = 4280 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4281 4282 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4283 4284 if (CGF.HaveInsertPoint()) { 4285 CGF.Builder.CreateStore(CurCleanupDest, 4286 CGF.getNormalCleanupDestSlot()); 4287 } else { 4288 // Currently, the end of the cleanup must always exist. 4289 CGF.EnsureInsertPoint(); 4290 } 4291 } 4292 } else { 4293 // Emit objc_sync_exit(expr); as finally's sole statement for 4294 // @synchronized. 4295 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4296 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4297 } 4298 } 4299 }; 4300 4301 class FragileHazards { 4302 CodeGenFunction &CGF; 4303 SmallVector<llvm::Value*, 20> Locals; 4304 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4305 4306 llvm::InlineAsm *ReadHazard; 4307 llvm::InlineAsm *WriteHazard; 4308 4309 llvm::FunctionType *GetAsmFnType(); 4310 4311 void collectLocals(); 4312 void emitReadHazard(CGBuilderTy &Builder); 4313 4314 public: 4315 FragileHazards(CodeGenFunction &CGF); 4316 4317 void emitWriteHazard(); 4318 void emitHazardsInNewBlocks(); 4319 }; 4320 } // end anonymous namespace 4321 4322 /// Create the fragile-ABI read and write hazards based on the current 4323 /// state of the function, which is presumed to be immediately prior 4324 /// to a @try block. These hazards are used to maintain correct 4325 /// semantics in the face of optimization and the fragile ABI's 4326 /// cavalier use of setjmp/longjmp. 4327 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4328 collectLocals(); 4329 4330 if (Locals.empty()) return; 4331 4332 // Collect all the blocks in the function. 4333 for (llvm::Function::iterator 4334 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4335 BlocksBeforeTry.insert(&*I); 4336 4337 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4338 4339 // Create a read hazard for the allocas. This inhibits dead-store 4340 // optimizations and forces the values to memory. This hazard is 4341 // inserted before any 'throwing' calls in the protected scope to 4342 // reflect the possibility that the variables might be read from the 4343 // catch block if the call throws. 4344 { 4345 std::string Constraint; 4346 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4347 if (I) Constraint += ','; 4348 Constraint += "*m"; 4349 } 4350 4351 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4352 } 4353 4354 // Create a write hazard for the allocas. This inhibits folding 4355 // loads across the hazard. This hazard is inserted at the 4356 // beginning of the catch path to reflect the possibility that the 4357 // variables might have been written within the protected scope. 4358 { 4359 std::string Constraint; 4360 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4361 if (I) Constraint += ','; 4362 Constraint += "=*m"; 4363 } 4364 4365 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4366 } 4367 } 4368 4369 /// Emit a write hazard at the current location. 4370 void FragileHazards::emitWriteHazard() { 4371 if (Locals.empty()) return; 4372 4373 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4374 } 4375 4376 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4377 assert(!Locals.empty()); 4378 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4379 call->setDoesNotThrow(); 4380 call->setCallingConv(CGF.getRuntimeCC()); 4381 } 4382 4383 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4384 /// which have been inserted since the beginning of the try. 4385 void FragileHazards::emitHazardsInNewBlocks() { 4386 if (Locals.empty()) return; 4387 4388 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4389 4390 // Iterate through all blocks, skipping those prior to the try. 4391 for (llvm::Function::iterator 4392 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4393 llvm::BasicBlock &BB = *FI; 4394 if (BlocksBeforeTry.count(&BB)) continue; 4395 4396 // Walk through all the calls in the block. 4397 for (llvm::BasicBlock::iterator 4398 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4399 llvm::Instruction &I = *BI; 4400 4401 // Ignore instructions that aren't non-intrinsic calls. 4402 // These are the only calls that can possibly call longjmp. 4403 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4404 continue; 4405 if (isa<llvm::IntrinsicInst>(I)) 4406 continue; 4407 4408 // Ignore call sites marked nounwind. This may be questionable, 4409 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4410 if (cast<llvm::CallBase>(I).doesNotThrow()) 4411 continue; 4412 4413 // Insert a read hazard before the call. This will ensure that 4414 // any writes to the locals are performed before making the 4415 // call. If the call throws, then this is sufficient to 4416 // guarantee correctness as long as it doesn't also write to any 4417 // locals. 4418 Builder.SetInsertPoint(&BB, BI); 4419 emitReadHazard(Builder); 4420 } 4421 } 4422 } 4423 4424 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4425 if (V.isValid()) S.insert(V.getPointer()); 4426 } 4427 4428 void FragileHazards::collectLocals() { 4429 // Compute a set of allocas to ignore. 4430 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4431 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4432 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4433 4434 // Collect all the allocas currently in the function. This is 4435 // probably way too aggressive. 4436 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4437 for (llvm::BasicBlock::iterator 4438 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4439 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4440 Locals.push_back(&*I); 4441 } 4442 4443 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4444 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4445 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4446 tys[i] = Locals[i]->getType(); 4447 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4448 } 4449 4450 /* 4451 4452 Objective-C setjmp-longjmp (sjlj) Exception Handling 4453 -- 4454 4455 A catch buffer is a setjmp buffer plus: 4456 - a pointer to the exception that was caught 4457 - a pointer to the previous exception data buffer 4458 - two pointers of reserved storage 4459 Therefore catch buffers form a stack, with a pointer to the top 4460 of the stack kept in thread-local storage. 4461 4462 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4463 objc_exception_try_exit pops the given catch buffer, which is 4464 required to be the top of the EH stack. 4465 objc_exception_throw pops the top of the EH stack, writes the 4466 thrown exception into the appropriate field, and longjmps 4467 to the setjmp buffer. It crashes the process (with a printf 4468 and an abort()) if there are no catch buffers on the stack. 4469 objc_exception_extract just reads the exception pointer out of the 4470 catch buffer. 4471 4472 There's no reason an implementation couldn't use a light-weight 4473 setjmp here --- something like __builtin_setjmp, but API-compatible 4474 with the heavyweight setjmp. This will be more important if we ever 4475 want to implement correct ObjC/C++ exception interactions for the 4476 fragile ABI. 4477 4478 Note that for this use of setjmp/longjmp to be correct, we may need 4479 to mark some local variables volatile: if a non-volatile local 4480 variable is modified between the setjmp and the longjmp, it has 4481 indeterminate value. For the purposes of LLVM IR, it may be 4482 sufficient to make loads and stores within the @try (to variables 4483 declared outside the @try) volatile. This is necessary for 4484 optimized correctness, but is not currently being done; this is 4485 being tracked as rdar://problem/8160285 4486 4487 The basic framework for a @try-catch-finally is as follows: 4488 { 4489 objc_exception_data d; 4490 id _rethrow = null; 4491 bool _call_try_exit = true; 4492 4493 objc_exception_try_enter(&d); 4494 if (!setjmp(d.jmp_buf)) { 4495 ... try body ... 4496 } else { 4497 // exception path 4498 id _caught = objc_exception_extract(&d); 4499 4500 // enter new try scope for handlers 4501 if (!setjmp(d.jmp_buf)) { 4502 ... match exception and execute catch blocks ... 4503 4504 // fell off end, rethrow. 4505 _rethrow = _caught; 4506 ... jump-through-finally to finally_rethrow ... 4507 } else { 4508 // exception in catch block 4509 _rethrow = objc_exception_extract(&d); 4510 _call_try_exit = false; 4511 ... jump-through-finally to finally_rethrow ... 4512 } 4513 } 4514 ... jump-through-finally to finally_end ... 4515 4516 finally: 4517 if (_call_try_exit) 4518 objc_exception_try_exit(&d); 4519 4520 ... finally block .... 4521 ... dispatch to finally destination ... 4522 4523 finally_rethrow: 4524 objc_exception_throw(_rethrow); 4525 4526 finally_end: 4527 } 4528 4529 This framework differs slightly from the one gcc uses, in that gcc 4530 uses _rethrow to determine if objc_exception_try_exit should be called 4531 and if the object should be rethrown. This breaks in the face of 4532 throwing nil and introduces unnecessary branches. 4533 4534 We specialize this framework for a few particular circumstances: 4535 4536 - If there are no catch blocks, then we avoid emitting the second 4537 exception handling context. 4538 4539 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4540 e)) we avoid emitting the code to rethrow an uncaught exception. 4541 4542 - FIXME: If there is no @finally block we can do a few more 4543 simplifications. 4544 4545 Rethrows and Jumps-Through-Finally 4546 -- 4547 4548 '@throw;' is supported by pushing the currently-caught exception 4549 onto ObjCEHStack while the @catch blocks are emitted. 4550 4551 Branches through the @finally block are handled with an ordinary 4552 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4553 exceptions are not compatible with C++ exceptions, and this is 4554 hardly the only place where this will go wrong. 4555 4556 @synchronized(expr) { stmt; } is emitted as if it were: 4557 id synch_value = expr; 4558 objc_sync_enter(synch_value); 4559 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4560 */ 4561 4562 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4563 const Stmt &S) { 4564 bool isTry = isa<ObjCAtTryStmt>(S); 4565 4566 // A destination for the fall-through edges of the catch handlers to 4567 // jump to. 4568 CodeGenFunction::JumpDest FinallyEnd = 4569 CGF.getJumpDestInCurrentScope("finally.end"); 4570 4571 // A destination for the rethrow edge of the catch handlers to jump 4572 // to. 4573 CodeGenFunction::JumpDest FinallyRethrow = 4574 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4575 4576 // For @synchronized, call objc_sync_enter(sync.expr). The 4577 // evaluation of the expression must occur before we enter the 4578 // @synchronized. We can't avoid a temp here because we need the 4579 // value to be preserved. If the backend ever does liveness 4580 // correctly after setjmp, this will be unnecessary. 4581 Address SyncArgSlot = Address::invalid(); 4582 if (!isTry) { 4583 llvm::Value *SyncArg = 4584 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4585 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4586 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4587 4588 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4589 CGF.getPointerAlign(), "sync.arg"); 4590 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4591 } 4592 4593 // Allocate memory for the setjmp buffer. This needs to be kept 4594 // live throughout the try and catch blocks. 4595 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4596 CGF.getPointerAlign(), 4597 "exceptiondata.ptr"); 4598 4599 // Create the fragile hazards. Note that this will not capture any 4600 // of the allocas required for exception processing, but will 4601 // capture the current basic block (which extends all the way to the 4602 // setjmp call) as "before the @try". 4603 FragileHazards Hazards(CGF); 4604 4605 // Create a flag indicating whether the cleanup needs to call 4606 // objc_exception_try_exit. This is true except when 4607 // - no catches match and we're branching through the cleanup 4608 // just to rethrow the exception, or 4609 // - a catch matched and we're falling out of the catch handler. 4610 // The setjmp-safety rule here is that we should always store to this 4611 // variable in a place that dominates the branch through the cleanup 4612 // without passing through any setjmps. 4613 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4614 CharUnits::One(), 4615 "_call_try_exit"); 4616 4617 // A slot containing the exception to rethrow. Only needed when we 4618 // have both a @catch and a @finally. 4619 Address PropagatingExnVar = Address::invalid(); 4620 4621 // Push a normal cleanup to leave the try scope. 4622 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4623 SyncArgSlot, 4624 CallTryExitVar, 4625 ExceptionData, 4626 &ObjCTypes); 4627 4628 // Enter a try block: 4629 // - Call objc_exception_try_enter to push ExceptionData on top of 4630 // the EH stack. 4631 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4632 ExceptionData.getPointer()); 4633 4634 // - Call setjmp on the exception data buffer. 4635 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4636 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4637 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4638 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4639 "setjmp_buffer"); 4640 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4641 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4642 SetJmpResult->setCanReturnTwice(); 4643 4644 // If setjmp returned 0, enter the protected block; otherwise, 4645 // branch to the handler. 4646 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4647 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4648 llvm::Value *DidCatch = 4649 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4650 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4651 4652 // Emit the protected block. 4653 CGF.EmitBlock(TryBlock); 4654 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4655 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4656 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4657 4658 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4659 4660 // Emit the exception handler block. 4661 CGF.EmitBlock(TryHandler); 4662 4663 // Don't optimize loads of the in-scope locals across this point. 4664 Hazards.emitWriteHazard(); 4665 4666 // For a @synchronized (or a @try with no catches), just branch 4667 // through the cleanup to the rethrow block. 4668 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4669 // Tell the cleanup not to re-pop the exit. 4670 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4671 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4672 4673 // Otherwise, we have to match against the caught exceptions. 4674 } else { 4675 // Retrieve the exception object. We may emit multiple blocks but 4676 // nothing can cross this so the value is already in SSA form. 4677 llvm::CallInst *Caught = 4678 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4679 ExceptionData.getPointer(), "caught"); 4680 4681 // Push the exception to rethrow onto the EH value stack for the 4682 // benefit of any @throws in the handlers. 4683 CGF.ObjCEHValueStack.push_back(Caught); 4684 4685 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4686 4687 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4688 4689 llvm::BasicBlock *CatchBlock = nullptr; 4690 llvm::BasicBlock *CatchHandler = nullptr; 4691 if (HasFinally) { 4692 // Save the currently-propagating exception before 4693 // objc_exception_try_enter clears the exception slot. 4694 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4695 CGF.getPointerAlign(), 4696 "propagating_exception"); 4697 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4698 4699 // Enter a new exception try block (in case a @catch block 4700 // throws an exception). 4701 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4702 ExceptionData.getPointer()); 4703 4704 llvm::CallInst *SetJmpResult = 4705 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4706 SetJmpBuffer, "setjmp.result"); 4707 SetJmpResult->setCanReturnTwice(); 4708 4709 llvm::Value *Threw = 4710 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4711 4712 CatchBlock = CGF.createBasicBlock("catch"); 4713 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4714 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4715 4716 CGF.EmitBlock(CatchBlock); 4717 } 4718 4719 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4720 4721 // Handle catch list. As a special case we check if everything is 4722 // matched and avoid generating code for falling off the end if 4723 // so. 4724 bool AllMatched = false; 4725 for (const ObjCAtCatchStmt *CatchStmt : AtTryStmt->catch_stmts()) { 4726 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4727 const ObjCObjectPointerType *OPT = nullptr; 4728 4729 // catch(...) always matches. 4730 if (!CatchParam) { 4731 AllMatched = true; 4732 } else { 4733 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4734 4735 // catch(id e) always matches under this ABI, since only 4736 // ObjC exceptions end up here in the first place. 4737 // FIXME: For the time being we also match id<X>; this should 4738 // be rejected by Sema instead. 4739 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4740 AllMatched = true; 4741 } 4742 4743 // If this is a catch-all, we don't need to test anything. 4744 if (AllMatched) { 4745 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4746 4747 if (CatchParam) { 4748 CGF.EmitAutoVarDecl(*CatchParam); 4749 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4750 4751 // These types work out because ConvertType(id) == i8*. 4752 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4753 } 4754 4755 CGF.EmitStmt(CatchStmt->getCatchBody()); 4756 4757 // The scope of the catch variable ends right here. 4758 CatchVarCleanups.ForceCleanup(); 4759 4760 CGF.EmitBranchThroughCleanup(FinallyEnd); 4761 break; 4762 } 4763 4764 assert(OPT && "Unexpected non-object pointer type in @catch"); 4765 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4766 4767 // FIXME: @catch (Class c) ? 4768 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4769 assert(IDecl && "Catch parameter must have Objective-C type!"); 4770 4771 // Check if the @catch block matches the exception object. 4772 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4773 4774 llvm::Value *matchArgs[] = { Class, Caught }; 4775 llvm::CallInst *Match = 4776 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4777 matchArgs, "match"); 4778 4779 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4780 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4781 4782 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4783 MatchedBlock, NextCatchBlock); 4784 4785 // Emit the @catch block. 4786 CGF.EmitBlock(MatchedBlock); 4787 4788 // Collect any cleanups for the catch variable. The scope lasts until 4789 // the end of the catch body. 4790 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4791 4792 CGF.EmitAutoVarDecl(*CatchParam); 4793 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4794 4795 // Initialize the catch variable. 4796 llvm::Value *Tmp = 4797 CGF.Builder.CreateBitCast(Caught, 4798 CGF.ConvertType(CatchParam->getType())); 4799 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4800 4801 CGF.EmitStmt(CatchStmt->getCatchBody()); 4802 4803 // We're done with the catch variable. 4804 CatchVarCleanups.ForceCleanup(); 4805 4806 CGF.EmitBranchThroughCleanup(FinallyEnd); 4807 4808 CGF.EmitBlock(NextCatchBlock); 4809 } 4810 4811 CGF.ObjCEHValueStack.pop_back(); 4812 4813 // If nothing wanted anything to do with the caught exception, 4814 // kill the extract call. 4815 if (Caught->use_empty()) 4816 Caught->eraseFromParent(); 4817 4818 if (!AllMatched) 4819 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4820 4821 if (HasFinally) { 4822 // Emit the exception handler for the @catch blocks. 4823 CGF.EmitBlock(CatchHandler); 4824 4825 // In theory we might now need a write hazard, but actually it's 4826 // unnecessary because there's no local-accessing code between 4827 // the try's write hazard and here. 4828 //Hazards.emitWriteHazard(); 4829 4830 // Extract the new exception and save it to the 4831 // propagating-exception slot. 4832 assert(PropagatingExnVar.isValid()); 4833 llvm::CallInst *NewCaught = 4834 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4835 ExceptionData.getPointer(), "caught"); 4836 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4837 4838 // Don't pop the catch handler; the throw already did. 4839 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4840 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4841 } 4842 } 4843 4844 // Insert read hazards as required in the new blocks. 4845 Hazards.emitHazardsInNewBlocks(); 4846 4847 // Pop the cleanup. 4848 CGF.Builder.restoreIP(TryFallthroughIP); 4849 if (CGF.HaveInsertPoint()) 4850 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4851 CGF.PopCleanupBlock(); 4852 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4853 4854 // Emit the rethrow block. 4855 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4856 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4857 if (CGF.HaveInsertPoint()) { 4858 // If we have a propagating-exception variable, check it. 4859 llvm::Value *PropagatingExn; 4860 if (PropagatingExnVar.isValid()) { 4861 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4862 4863 // Otherwise, just look in the buffer for the exception to throw. 4864 } else { 4865 llvm::CallInst *Caught = 4866 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4867 ExceptionData.getPointer()); 4868 PropagatingExn = Caught; 4869 } 4870 4871 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4872 PropagatingExn); 4873 CGF.Builder.CreateUnreachable(); 4874 } 4875 4876 CGF.Builder.restoreIP(SavedIP); 4877 } 4878 4879 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4880 const ObjCAtThrowStmt &S, 4881 bool ClearInsertionPoint) { 4882 llvm::Value *ExceptionAsObject; 4883 4884 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4885 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4886 ExceptionAsObject = 4887 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4888 } else { 4889 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4890 "Unexpected rethrow outside @catch block."); 4891 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4892 } 4893 4894 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4895 ->setDoesNotReturn(); 4896 CGF.Builder.CreateUnreachable(); 4897 4898 // Clear the insertion point to indicate we are in unreachable code. 4899 if (ClearInsertionPoint) 4900 CGF.Builder.ClearInsertionPoint(); 4901 } 4902 4903 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4904 /// object: objc_read_weak (id *src) 4905 /// 4906 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4907 Address AddrWeakObj) { 4908 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4909 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4910 ObjCTypes.PtrObjectPtrTy); 4911 llvm::Value *read_weak = 4912 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4913 AddrWeakObj.getPointer(), "weakread"); 4914 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4915 return read_weak; 4916 } 4917 4918 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4919 /// objc_assign_weak (id src, id *dst) 4920 /// 4921 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4922 llvm::Value *src, Address dst) { 4923 llvm::Type * SrcTy = src->getType(); 4924 if (!isa<llvm::PointerType>(SrcTy)) { 4925 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4926 assert(Size <= 8 && "does not support size > 8"); 4927 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4928 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4929 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4930 } 4931 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4932 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4933 llvm::Value *args[] = { src, dst.getPointer() }; 4934 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4935 args, "weakassign"); 4936 } 4937 4938 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4939 /// objc_assign_global (id src, id *dst) 4940 /// 4941 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4942 llvm::Value *src, Address dst, 4943 bool threadlocal) { 4944 llvm::Type * SrcTy = src->getType(); 4945 if (!isa<llvm::PointerType>(SrcTy)) { 4946 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4947 assert(Size <= 8 && "does not support size > 8"); 4948 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4949 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4950 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4951 } 4952 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4953 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4954 llvm::Value *args[] = { src, dst.getPointer() }; 4955 if (!threadlocal) 4956 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4957 args, "globalassign"); 4958 else 4959 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4960 args, "threadlocalassign"); 4961 } 4962 4963 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4964 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4965 /// 4966 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4967 llvm::Value *src, Address dst, 4968 llvm::Value *ivarOffset) { 4969 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4970 llvm::Type * SrcTy = src->getType(); 4971 if (!isa<llvm::PointerType>(SrcTy)) { 4972 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4973 assert(Size <= 8 && "does not support size > 8"); 4974 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4975 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4976 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4977 } 4978 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4979 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4980 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4981 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4982 } 4983 4984 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4985 /// objc_assign_strongCast (id src, id *dst) 4986 /// 4987 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4988 llvm::Value *src, Address dst) { 4989 llvm::Type * SrcTy = src->getType(); 4990 if (!isa<llvm::PointerType>(SrcTy)) { 4991 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4992 assert(Size <= 8 && "does not support size > 8"); 4993 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4994 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4995 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4996 } 4997 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4998 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4999 llvm::Value *args[] = { src, dst.getPointer() }; 5000 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5001 args, "strongassign"); 5002 } 5003 5004 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5005 Address DestPtr, 5006 Address SrcPtr, 5007 llvm::Value *size) { 5008 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 5009 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 5010 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5011 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5012 } 5013 5014 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5015 /// 5016 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5017 QualType ObjectTy, 5018 llvm::Value *BaseValue, 5019 const ObjCIvarDecl *Ivar, 5020 unsigned CVRQualifiers) { 5021 const ObjCInterfaceDecl *ID = 5022 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5023 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5024 EmitIvarOffset(CGF, ID, Ivar)); 5025 } 5026 5027 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5028 const ObjCInterfaceDecl *Interface, 5029 const ObjCIvarDecl *Ivar) { 5030 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5031 return llvm::ConstantInt::get( 5032 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5033 Offset); 5034 } 5035 5036 /* *** Private Interface *** */ 5037 5038 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5039 StringRef MachOAttributes) { 5040 switch (CGM.getTriple().getObjectFormat()) { 5041 case llvm::Triple::UnknownObjectFormat: 5042 llvm_unreachable("unexpected object file format"); 5043 case llvm::Triple::MachO: { 5044 if (MachOAttributes.empty()) 5045 return ("__DATA," + Section).str(); 5046 return ("__DATA," + Section + "," + MachOAttributes).str(); 5047 } 5048 case llvm::Triple::ELF: 5049 assert(Section.substr(0, 2) == "__" && 5050 "expected the name to begin with __"); 5051 return Section.substr(2).str(); 5052 case llvm::Triple::COFF: 5053 assert(Section.substr(0, 2) == "__" && 5054 "expected the name to begin with __"); 5055 return ("." + Section.substr(2) + "$B").str(); 5056 case llvm::Triple::Wasm: 5057 case llvm::Triple::GOFF: 5058 case llvm::Triple::XCOFF: 5059 llvm::report_fatal_error( 5060 "Objective-C support is unimplemented for object file format"); 5061 } 5062 5063 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5064 } 5065 5066 /// EmitImageInfo - Emit the image info marker used to encode some module 5067 /// level information. 5068 /// 5069 /// See: <rdr://4810609&4810587&4810587> 5070 /// struct IMAGE_INFO { 5071 /// unsigned version; 5072 /// unsigned flags; 5073 /// }; 5074 enum ImageInfoFlags { 5075 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5076 eImageInfo_GarbageCollected = (1 << 1), 5077 eImageInfo_GCOnly = (1 << 2), 5078 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5079 5080 // A flag indicating that the module has no instances of a @synthesize of a 5081 // superclass variable. <rdar://problem/6803242> 5082 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5083 eImageInfo_ImageIsSimulated = (1 << 5), 5084 eImageInfo_ClassProperties = (1 << 6) 5085 }; 5086 5087 void CGObjCCommonMac::EmitImageInfo() { 5088 unsigned version = 0; // Version is unused? 5089 std::string Section = 5090 (ObjCABI == 1) 5091 ? "__OBJC,__image_info,regular" 5092 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5093 5094 // Generate module-level named metadata to convey this information to the 5095 // linker and code-gen. 5096 llvm::Module &Mod = CGM.getModule(); 5097 5098 // Add the ObjC ABI version to the module flags. 5099 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5100 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5101 version); 5102 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5103 llvm::MDString::get(VMContext, Section)); 5104 5105 auto Int8Ty = llvm::Type::getInt8Ty(VMContext); 5106 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5107 // Non-GC overrides those files which specify GC. 5108 Mod.addModuleFlag(llvm::Module::Error, 5109 "Objective-C Garbage Collection", 5110 llvm::ConstantInt::get(Int8Ty,0)); 5111 } else { 5112 // Add the ObjC garbage collection value. 5113 Mod.addModuleFlag(llvm::Module::Error, 5114 "Objective-C Garbage Collection", 5115 llvm::ConstantInt::get(Int8Ty, 5116 (uint8_t)eImageInfo_GarbageCollected)); 5117 5118 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5119 // Add the ObjC GC Only value. 5120 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5121 eImageInfo_GCOnly); 5122 5123 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5124 llvm::Metadata *Ops[2] = { 5125 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5126 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5127 Int8Ty, eImageInfo_GarbageCollected))}; 5128 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5129 llvm::MDNode::get(VMContext, Ops)); 5130 } 5131 } 5132 5133 // Indicate whether we're compiling this to run on a simulator. 5134 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5135 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5136 eImageInfo_ImageIsSimulated); 5137 5138 // Indicate whether we are generating class properties. 5139 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5140 eImageInfo_ClassProperties); 5141 } 5142 5143 // struct objc_module { 5144 // unsigned long version; 5145 // unsigned long size; 5146 // const char *name; 5147 // Symtab symtab; 5148 // }; 5149 5150 // FIXME: Get from somewhere 5151 static const int ModuleVersion = 7; 5152 5153 void CGObjCMac::EmitModuleInfo() { 5154 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5155 5156 ConstantInitBuilder builder(CGM); 5157 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5158 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5159 values.addInt(ObjCTypes.LongTy, Size); 5160 // This used to be the filename, now it is unused. <rdr://4327263> 5161 values.add(GetClassName(StringRef(""))); 5162 values.add(EmitModuleSymbols()); 5163 CreateMetadataVar("OBJC_MODULES", values, 5164 "__OBJC,__module_info,regular,no_dead_strip", 5165 CGM.getPointerAlign(), true); 5166 } 5167 5168 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5169 unsigned NumClasses = DefinedClasses.size(); 5170 unsigned NumCategories = DefinedCategories.size(); 5171 5172 // Return null if no symbols were defined. 5173 if (!NumClasses && !NumCategories) 5174 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5175 5176 ConstantInitBuilder builder(CGM); 5177 auto values = builder.beginStruct(); 5178 values.addInt(ObjCTypes.LongTy, 0); 5179 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5180 values.addInt(ObjCTypes.ShortTy, NumClasses); 5181 values.addInt(ObjCTypes.ShortTy, NumCategories); 5182 5183 // The runtime expects exactly the list of defined classes followed 5184 // by the list of defined categories, in a single array. 5185 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5186 for (unsigned i=0; i<NumClasses; i++) { 5187 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5188 assert(ID); 5189 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5190 // We are implementing a weak imported interface. Give it external linkage 5191 if (ID->isWeakImported() && !IMP->isWeakImported()) 5192 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5193 5194 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5195 } 5196 for (unsigned i=0; i<NumCategories; i++) 5197 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5198 5199 array.finishAndAddTo(values); 5200 5201 llvm::GlobalVariable *GV = CreateMetadataVar( 5202 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5203 CGM.getPointerAlign(), true); 5204 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5205 } 5206 5207 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5208 IdentifierInfo *II) { 5209 LazySymbols.insert(II); 5210 5211 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5212 5213 if (!Entry) { 5214 llvm::Constant *Casted = 5215 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5216 ObjCTypes.ClassPtrTy); 5217 Entry = CreateMetadataVar( 5218 "OBJC_CLASS_REFERENCES_", Casted, 5219 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5220 CGM.getPointerAlign(), true); 5221 } 5222 5223 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, 5224 CGF.getPointerAlign()); 5225 } 5226 5227 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5228 const ObjCInterfaceDecl *ID) { 5229 // If the class has the objc_runtime_visible attribute, we need to 5230 // use the Objective-C runtime to get the class. 5231 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5232 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5233 5234 IdentifierInfo *RuntimeName = 5235 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5236 return EmitClassRefFromId(CGF, RuntimeName); 5237 } 5238 5239 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5240 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5241 return EmitClassRefFromId(CGF, II); 5242 } 5243 5244 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5245 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5246 } 5247 5248 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5249 CharUnits Align = CGM.getPointerAlign(); 5250 5251 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5252 if (!Entry) { 5253 llvm::Constant *Casted = 5254 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5255 ObjCTypes.SelectorPtrTy); 5256 Entry = CreateMetadataVar( 5257 "OBJC_SELECTOR_REFERENCES_", Casted, 5258 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5259 Entry->setExternallyInitialized(true); 5260 } 5261 5262 return Address(Entry, Align); 5263 } 5264 5265 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5266 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5267 if (!Entry) 5268 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5269 return getConstantGEP(VMContext, Entry, 0, 0); 5270 } 5271 5272 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5273 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5274 I = MethodDefinitions.find(MD); 5275 if (I != MethodDefinitions.end()) 5276 return I->second; 5277 5278 return nullptr; 5279 } 5280 5281 /// GetIvarLayoutName - Returns a unique constant for the given 5282 /// ivar layout bitmap. 5283 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5284 const ObjCCommonTypesHelper &ObjCTypes) { 5285 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5286 } 5287 5288 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5289 CharUnits offset) { 5290 const RecordDecl *RD = RT->getDecl(); 5291 5292 // If this is a union, remember that we had one, because it might mess 5293 // up the ordering of layout entries. 5294 if (RD->isUnion()) 5295 IsDisordered = true; 5296 5297 const ASTRecordLayout *recLayout = nullptr; 5298 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5299 [&](const FieldDecl *field) -> CharUnits { 5300 if (!recLayout) 5301 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5302 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5303 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5304 }); 5305 } 5306 5307 template <class Iterator, class GetOffsetFn> 5308 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5309 CharUnits aggregateOffset, 5310 const GetOffsetFn &getOffset) { 5311 for (; begin != end; ++begin) { 5312 auto field = *begin; 5313 5314 // Skip over bitfields. 5315 if (field->isBitField()) { 5316 continue; 5317 } 5318 5319 // Compute the offset of the field within the aggregate. 5320 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5321 5322 visitField(field, fieldOffset); 5323 } 5324 } 5325 5326 /// Collect layout information for the given fields into IvarsInfo. 5327 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5328 CharUnits fieldOffset) { 5329 QualType fieldType = field->getType(); 5330 5331 // Drill down into arrays. 5332 uint64_t numElts = 1; 5333 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5334 numElts = 0; 5335 fieldType = arrayType->getElementType(); 5336 } 5337 // Unlike incomplete arrays, constant arrays can be nested. 5338 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5339 numElts *= arrayType->getSize().getZExtValue(); 5340 fieldType = arrayType->getElementType(); 5341 } 5342 5343 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5344 5345 // If we ended up with a zero-sized array, we've done what we can do within 5346 // the limits of this layout encoding. 5347 if (numElts == 0) return; 5348 5349 // Recurse if the base element type is a record type. 5350 if (auto recType = fieldType->getAs<RecordType>()) { 5351 size_t oldEnd = IvarsInfo.size(); 5352 5353 visitRecord(recType, fieldOffset); 5354 5355 // If we have an array, replicate the first entry's layout information. 5356 auto numEltEntries = IvarsInfo.size() - oldEnd; 5357 if (numElts != 1 && numEltEntries != 0) { 5358 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5359 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5360 // Copy the last numEltEntries onto the end of the array, adjusting 5361 // each for the element size. 5362 for (size_t i = 0; i != numEltEntries; ++i) { 5363 auto firstEntry = IvarsInfo[oldEnd + i]; 5364 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5365 firstEntry.SizeInWords)); 5366 } 5367 } 5368 } 5369 5370 return; 5371 } 5372 5373 // Classify the element type. 5374 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5375 5376 // If it matches what we're looking for, add an entry. 5377 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5378 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5379 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5380 == CGM.getPointerSize()); 5381 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5382 } 5383 } 5384 5385 /// buildBitmap - This routine does the horsework of taking the offsets of 5386 /// strong/weak references and creating a bitmap. The bitmap is also 5387 /// returned in the given buffer, suitable for being passed to \c dump(). 5388 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5389 llvm::SmallVectorImpl<unsigned char> &buffer) { 5390 // The bitmap is a series of skip/scan instructions, aligned to word 5391 // boundaries. The skip is performed first. 5392 const unsigned char MaxNibble = 0xF; 5393 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5394 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5395 5396 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5397 5398 // Sort the ivar info on byte position in case we encounterred a 5399 // union nested in the ivar list. 5400 if (IsDisordered) { 5401 // This isn't a stable sort, but our algorithm should handle it fine. 5402 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5403 } else { 5404 assert(llvm::is_sorted(IvarsInfo)); 5405 } 5406 assert(IvarsInfo.back().Offset < InstanceEnd); 5407 5408 assert(buffer.empty()); 5409 5410 // Skip the next N words. 5411 auto skip = [&](unsigned numWords) { 5412 assert(numWords > 0); 5413 5414 // Try to merge into the previous byte. Since scans happen second, we 5415 // can't do this if it includes a scan. 5416 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5417 unsigned lastSkip = buffer.back() >> SkipShift; 5418 if (lastSkip < MaxNibble) { 5419 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5420 numWords -= claimed; 5421 lastSkip += claimed; 5422 buffer.back() = (lastSkip << SkipShift); 5423 } 5424 } 5425 5426 while (numWords >= MaxNibble) { 5427 buffer.push_back(MaxNibble << SkipShift); 5428 numWords -= MaxNibble; 5429 } 5430 if (numWords) { 5431 buffer.push_back(numWords << SkipShift); 5432 } 5433 }; 5434 5435 // Scan the next N words. 5436 auto scan = [&](unsigned numWords) { 5437 assert(numWords > 0); 5438 5439 // Try to merge into the previous byte. Since scans happen second, we can 5440 // do this even if it includes a skip. 5441 if (!buffer.empty()) { 5442 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5443 if (lastScan < MaxNibble) { 5444 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5445 numWords -= claimed; 5446 lastScan += claimed; 5447 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5448 } 5449 } 5450 5451 while (numWords >= MaxNibble) { 5452 buffer.push_back(MaxNibble << ScanShift); 5453 numWords -= MaxNibble; 5454 } 5455 if (numWords) { 5456 buffer.push_back(numWords << ScanShift); 5457 } 5458 }; 5459 5460 // One past the end of the last scan. 5461 unsigned endOfLastScanInWords = 0; 5462 const CharUnits WordSize = CGM.getPointerSize(); 5463 5464 // Consider all the scan requests. 5465 for (auto &request : IvarsInfo) { 5466 CharUnits beginOfScan = request.Offset - InstanceBegin; 5467 5468 // Ignore scan requests that don't start at an even multiple of the 5469 // word size. We can't encode them. 5470 if ((beginOfScan % WordSize) != 0) continue; 5471 5472 // Ignore scan requests that start before the instance start. 5473 // This assumes that scans never span that boundary. The boundary 5474 // isn't the true start of the ivars, because in the fragile-ARC case 5475 // it's rounded up to word alignment, but the test above should leave 5476 // us ignoring that possibility. 5477 if (beginOfScan.isNegative()) { 5478 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5479 continue; 5480 } 5481 5482 unsigned beginOfScanInWords = beginOfScan / WordSize; 5483 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5484 5485 // If the scan starts some number of words after the last one ended, 5486 // skip forward. 5487 if (beginOfScanInWords > endOfLastScanInWords) { 5488 skip(beginOfScanInWords - endOfLastScanInWords); 5489 5490 // Otherwise, start scanning where the last left off. 5491 } else { 5492 beginOfScanInWords = endOfLastScanInWords; 5493 5494 // If that leaves us with nothing to scan, ignore this request. 5495 if (beginOfScanInWords >= endOfScanInWords) continue; 5496 } 5497 5498 // Scan to the end of the request. 5499 assert(beginOfScanInWords < endOfScanInWords); 5500 scan(endOfScanInWords - beginOfScanInWords); 5501 endOfLastScanInWords = endOfScanInWords; 5502 } 5503 5504 if (buffer.empty()) 5505 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5506 5507 // For GC layouts, emit a skip to the end of the allocation so that we 5508 // have precise information about the entire thing. This isn't useful 5509 // or necessary for the ARC-style layout strings. 5510 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5511 unsigned lastOffsetInWords = 5512 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5513 if (lastOffsetInWords > endOfLastScanInWords) { 5514 skip(lastOffsetInWords - endOfLastScanInWords); 5515 } 5516 } 5517 5518 // Null terminate the string. 5519 buffer.push_back(0); 5520 5521 auto *Entry = CGObjC.CreateCStringLiteral( 5522 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5523 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5524 } 5525 5526 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5527 /// implementation for the __strong or __weak case. 5528 /// The layout map displays which words in ivar list must be skipped 5529 /// and which must be scanned by GC (see below). String is built of bytes. 5530 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5531 /// of words to skip and right nibble is count of words to scan. So, each 5532 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5533 /// represented by a 0x00 byte which also ends the string. 5534 /// 1. when ForStrongLayout is true, following ivars are scanned: 5535 /// - id, Class 5536 /// - object * 5537 /// - __strong anything 5538 /// 5539 /// 2. When ForStrongLayout is false, following ivars are scanned: 5540 /// - __weak anything 5541 /// 5542 llvm::Constant * 5543 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5544 CharUnits beginOffset, CharUnits endOffset, 5545 bool ForStrongLayout, bool HasMRCWeakIvars) { 5546 // If this is MRC, and we're either building a strong layout or there 5547 // are no weak ivars, bail out early. 5548 llvm::Type *PtrTy = CGM.Int8PtrTy; 5549 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5550 !CGM.getLangOpts().ObjCAutoRefCount && 5551 (ForStrongLayout || !HasMRCWeakIvars)) 5552 return llvm::Constant::getNullValue(PtrTy); 5553 5554 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5555 SmallVector<const ObjCIvarDecl*, 32> ivars; 5556 5557 // GC layout strings include the complete object layout, possibly 5558 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5559 // up. 5560 // 5561 // ARC layout strings only include the class's ivars. In non-fragile 5562 // runtimes, that means starting at InstanceStart, rounded up to word 5563 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5564 // starting at the offset of the first ivar, rounded up to word alignment. 5565 // 5566 // MRC weak layout strings follow the ARC style. 5567 CharUnits baseOffset; 5568 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5569 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5570 IVD; IVD = IVD->getNextIvar()) 5571 ivars.push_back(IVD); 5572 5573 if (isNonFragileABI()) { 5574 baseOffset = beginOffset; // InstanceStart 5575 } else if (!ivars.empty()) { 5576 baseOffset = 5577 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5578 } else { 5579 baseOffset = CharUnits::Zero(); 5580 } 5581 5582 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5583 } 5584 else { 5585 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5586 5587 baseOffset = CharUnits::Zero(); 5588 } 5589 5590 if (ivars.empty()) 5591 return llvm::Constant::getNullValue(PtrTy); 5592 5593 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5594 5595 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5596 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5597 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5598 }); 5599 5600 if (!builder.hasBitmapData()) 5601 return llvm::Constant::getNullValue(PtrTy); 5602 5603 llvm::SmallVector<unsigned char, 4> buffer; 5604 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5605 5606 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5607 printf("\n%s ivar layout for class '%s': ", 5608 ForStrongLayout ? "strong" : "weak", 5609 OMD->getClassInterface()->getName().str().c_str()); 5610 builder.dump(buffer); 5611 } 5612 return C; 5613 } 5614 5615 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5616 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5617 // FIXME: Avoid std::string in "Sel.getAsString()" 5618 if (!Entry) 5619 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5620 return getConstantGEP(VMContext, Entry, 0, 0); 5621 } 5622 5623 // FIXME: Merge into a single cstring creation function. 5624 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5625 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5626 } 5627 5628 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5629 std::string TypeStr; 5630 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5631 5632 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5633 if (!Entry) 5634 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5635 return getConstantGEP(VMContext, Entry, 0, 0); 5636 } 5637 5638 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5639 bool Extended) { 5640 std::string TypeStr = 5641 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5642 5643 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5644 if (!Entry) 5645 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5646 return getConstantGEP(VMContext, Entry, 0, 0); 5647 } 5648 5649 // FIXME: Merge into a single cstring creation function. 5650 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5651 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5652 if (!Entry) 5653 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5654 return getConstantGEP(VMContext, Entry, 0, 0); 5655 } 5656 5657 // FIXME: Merge into a single cstring creation function. 5658 // FIXME: This Decl should be more precise. 5659 llvm::Constant * 5660 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5661 const Decl *Container) { 5662 std::string TypeStr = 5663 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5664 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5665 } 5666 5667 void CGObjCMac::FinishModule() { 5668 EmitModuleInfo(); 5669 5670 // Emit the dummy bodies for any protocols which were referenced but 5671 // never defined. 5672 for (auto &entry : Protocols) { 5673 llvm::GlobalVariable *global = entry.second; 5674 if (global->hasInitializer()) 5675 continue; 5676 5677 ConstantInitBuilder builder(CGM); 5678 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5679 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5680 values.add(GetClassName(entry.first->getName())); 5681 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5682 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5683 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5684 values.finishAndSetAsInitializer(global); 5685 CGM.addCompilerUsedGlobal(global); 5686 } 5687 5688 // Add assembler directives to add lazy undefined symbol references 5689 // for classes which are referenced but not defined. This is 5690 // important for correct linker interaction. 5691 // 5692 // FIXME: It would be nice if we had an LLVM construct for this. 5693 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5694 CGM.getTriple().isOSBinFormatMachO()) { 5695 SmallString<256> Asm; 5696 Asm += CGM.getModule().getModuleInlineAsm(); 5697 if (!Asm.empty() && Asm.back() != '\n') 5698 Asm += '\n'; 5699 5700 llvm::raw_svector_ostream OS(Asm); 5701 for (const auto *Sym : DefinedSymbols) 5702 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5703 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5704 for (const auto *Sym : LazySymbols) 5705 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5706 for (const auto &Category : DefinedCategoryNames) 5707 OS << "\t.objc_category_name_" << Category << "=0\n" 5708 << "\t.globl .objc_category_name_" << Category << "\n"; 5709 5710 CGM.getModule().setModuleInlineAsm(OS.str()); 5711 } 5712 } 5713 5714 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5715 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5716 ObjCEmptyVtableVar(nullptr) { 5717 ObjCABI = 2; 5718 } 5719 5720 /* *** */ 5721 5722 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5723 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5724 { 5725 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5726 ASTContext &Ctx = CGM.getContext(); 5727 5728 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5729 IntTy = CGM.IntTy; 5730 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5731 Int8PtrTy = CGM.Int8PtrTy; 5732 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5733 5734 // arm64 targets use "int" ivar offset variables. All others, 5735 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5736 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5737 IvarOffsetVarTy = IntTy; 5738 else 5739 IvarOffsetVarTy = LongTy; 5740 5741 ObjectPtrTy = 5742 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5743 PtrObjectPtrTy = 5744 llvm::PointerType::getUnqual(ObjectPtrTy); 5745 SelectorPtrTy = 5746 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5747 5748 // I'm not sure I like this. The implicit coordination is a bit 5749 // gross. We should solve this in a reasonable fashion because this 5750 // is a pretty common task (match some runtime data structure with 5751 // an LLVM data structure). 5752 5753 // FIXME: This is leaked. 5754 // FIXME: Merge with rewriter code? 5755 5756 // struct _objc_super { 5757 // id self; 5758 // Class cls; 5759 // } 5760 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5761 Ctx.getTranslationUnitDecl(), 5762 SourceLocation(), SourceLocation(), 5763 &Ctx.Idents.get("_objc_super")); 5764 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5765 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5766 false, ICIS_NoInit)); 5767 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5768 nullptr, Ctx.getObjCClassType(), nullptr, 5769 nullptr, false, ICIS_NoInit)); 5770 RD->completeDefinition(); 5771 5772 SuperCTy = Ctx.getTagDeclType(RD); 5773 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5774 5775 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5776 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5777 5778 // struct _prop_t { 5779 // char *name; 5780 // char *attributes; 5781 // } 5782 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5783 5784 // struct _prop_list_t { 5785 // uint32_t entsize; // sizeof(struct _prop_t) 5786 // uint32_t count_of_properties; 5787 // struct _prop_t prop_list[count_of_properties]; 5788 // } 5789 PropertyListTy = llvm::StructType::create( 5790 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5791 // struct _prop_list_t * 5792 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5793 5794 // struct _objc_method { 5795 // SEL _cmd; 5796 // char *method_type; 5797 // char *_imp; 5798 // } 5799 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5800 Int8PtrTy, Int8PtrTy); 5801 5802 // struct _objc_cache * 5803 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5804 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5805 } 5806 5807 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5808 : ObjCCommonTypesHelper(cgm) { 5809 // struct _objc_method_description { 5810 // SEL name; 5811 // char *types; 5812 // } 5813 MethodDescriptionTy = llvm::StructType::create( 5814 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5815 5816 // struct _objc_method_description_list { 5817 // int count; 5818 // struct _objc_method_description[1]; 5819 // } 5820 MethodDescriptionListTy = 5821 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5822 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5823 5824 // struct _objc_method_description_list * 5825 MethodDescriptionListPtrTy = 5826 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5827 5828 // Protocol description structures 5829 5830 // struct _objc_protocol_extension { 5831 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5832 // struct _objc_method_description_list *optional_instance_methods; 5833 // struct _objc_method_description_list *optional_class_methods; 5834 // struct _objc_property_list *instance_properties; 5835 // const char ** extendedMethodTypes; 5836 // struct _objc_property_list *class_properties; 5837 // } 5838 ProtocolExtensionTy = llvm::StructType::create( 5839 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5840 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5841 PropertyListPtrTy); 5842 5843 // struct _objc_protocol_extension * 5844 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5845 5846 // Handle recursive construction of Protocol and ProtocolList types 5847 5848 ProtocolTy = 5849 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5850 5851 ProtocolListTy = 5852 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5853 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5854 llvm::ArrayType::get(ProtocolTy, 0)); 5855 5856 // struct _objc_protocol { 5857 // struct _objc_protocol_extension *isa; 5858 // char *protocol_name; 5859 // struct _objc_protocol **_objc_protocol_list; 5860 // struct _objc_method_description_list *instance_methods; 5861 // struct _objc_method_description_list *class_methods; 5862 // } 5863 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5864 llvm::PointerType::getUnqual(ProtocolListTy), 5865 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5866 5867 // struct _objc_protocol_list * 5868 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5869 5870 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5871 5872 // Class description structures 5873 5874 // struct _objc_ivar { 5875 // char *ivar_name; 5876 // char *ivar_type; 5877 // int ivar_offset; 5878 // } 5879 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5880 IntTy); 5881 5882 // struct _objc_ivar_list * 5883 IvarListTy = 5884 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5885 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5886 5887 // struct _objc_method_list * 5888 MethodListTy = 5889 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5890 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5891 5892 // struct _objc_class_extension * 5893 ClassExtensionTy = llvm::StructType::create( 5894 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5895 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5896 5897 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5898 5899 // struct _objc_class { 5900 // Class isa; 5901 // Class super_class; 5902 // char *name; 5903 // long version; 5904 // long info; 5905 // long instance_size; 5906 // struct _objc_ivar_list *ivars; 5907 // struct _objc_method_list *methods; 5908 // struct _objc_cache *cache; 5909 // struct _objc_protocol_list *protocols; 5910 // char *ivar_layout; 5911 // struct _objc_class_ext *ext; 5912 // }; 5913 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5914 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5915 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5916 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5917 5918 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5919 5920 // struct _objc_category { 5921 // char *category_name; 5922 // char *class_name; 5923 // struct _objc_method_list *instance_method; 5924 // struct _objc_method_list *class_method; 5925 // struct _objc_protocol_list *protocols; 5926 // uint32_t size; // sizeof(struct _objc_category) 5927 // struct _objc_property_list *instance_properties;// category's @property 5928 // struct _objc_property_list *class_properties; 5929 // } 5930 CategoryTy = llvm::StructType::create( 5931 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5932 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5933 PropertyListPtrTy); 5934 5935 // Global metadata structures 5936 5937 // struct _objc_symtab { 5938 // long sel_ref_cnt; 5939 // SEL *refs; 5940 // short cls_def_cnt; 5941 // short cat_def_cnt; 5942 // char *defs[cls_def_cnt + cat_def_cnt]; 5943 // } 5944 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5945 SelectorPtrTy, ShortTy, ShortTy, 5946 llvm::ArrayType::get(Int8PtrTy, 0)); 5947 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5948 5949 // struct _objc_module { 5950 // long version; 5951 // long size; // sizeof(struct _objc_module) 5952 // char *name; 5953 // struct _objc_symtab* symtab; 5954 // } 5955 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5956 Int8PtrTy, SymtabPtrTy); 5957 5958 // FIXME: This is the size of the setjmp buffer and should be target 5959 // specific. 18 is what's used on 32-bit X86. 5960 uint64_t SetJmpBufferSize = 18; 5961 5962 // Exceptions 5963 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5964 5965 ExceptionDataTy = llvm::StructType::create( 5966 "struct._objc_exception_data", 5967 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5968 } 5969 5970 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5971 : ObjCCommonTypesHelper(cgm) { 5972 // struct _method_list_t { 5973 // uint32_t entsize; // sizeof(struct _objc_method) 5974 // uint32_t method_count; 5975 // struct _objc_method method_list[method_count]; 5976 // } 5977 MethodListnfABITy = 5978 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5979 llvm::ArrayType::get(MethodTy, 0)); 5980 // struct method_list_t * 5981 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5982 5983 // struct _protocol_t { 5984 // id isa; // NULL 5985 // const char * const protocol_name; 5986 // const struct _protocol_list_t * protocol_list; // super protocols 5987 // const struct method_list_t * const instance_methods; 5988 // const struct method_list_t * const class_methods; 5989 // const struct method_list_t *optionalInstanceMethods; 5990 // const struct method_list_t *optionalClassMethods; 5991 // const struct _prop_list_t * properties; 5992 // const uint32_t size; // sizeof(struct _protocol_t) 5993 // const uint32_t flags; // = 0 5994 // const char ** extendedMethodTypes; 5995 // const char *demangledName; 5996 // const struct _prop_list_t * class_properties; 5997 // } 5998 5999 // Holder for struct _protocol_list_t * 6000 ProtocolListnfABITy = 6001 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6002 6003 ProtocolnfABITy = llvm::StructType::create( 6004 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6005 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6006 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6007 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6008 PropertyListPtrTy); 6009 6010 // struct _protocol_t* 6011 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6012 6013 // struct _protocol_list_t { 6014 // long protocol_count; // Note, this is 32/64 bit 6015 // struct _protocol_t *[protocol_count]; 6016 // } 6017 ProtocolListnfABITy->setBody(LongTy, 6018 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6019 6020 // struct _objc_protocol_list* 6021 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6022 6023 // struct _ivar_t { 6024 // unsigned [long] int *offset; // pointer to ivar offset location 6025 // char *name; 6026 // char *type; 6027 // uint32_t alignment; 6028 // uint32_t size; 6029 // } 6030 IvarnfABITy = llvm::StructType::create( 6031 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6032 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6033 6034 // struct _ivar_list_t { 6035 // uint32 entsize; // sizeof(struct _ivar_t) 6036 // uint32 count; 6037 // struct _iver_t list[count]; 6038 // } 6039 IvarListnfABITy = 6040 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6041 llvm::ArrayType::get(IvarnfABITy, 0)); 6042 6043 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6044 6045 // struct _class_ro_t { 6046 // uint32_t const flags; 6047 // uint32_t const instanceStart; 6048 // uint32_t const instanceSize; 6049 // uint32_t const reserved; // only when building for 64bit targets 6050 // const uint8_t * const ivarLayout; 6051 // const char *const name; 6052 // const struct _method_list_t * const baseMethods; 6053 // const struct _objc_protocol_list *const baseProtocols; 6054 // const struct _ivar_list_t *const ivars; 6055 // const uint8_t * const weakIvarLayout; 6056 // const struct _prop_list_t * const properties; 6057 // } 6058 6059 // FIXME. Add 'reserved' field in 64bit abi mode! 6060 ClassRonfABITy = llvm::StructType::create( 6061 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6062 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6063 Int8PtrTy, PropertyListPtrTy); 6064 6065 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6066 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6067 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6068 ->getPointerTo(); 6069 6070 // struct _class_t { 6071 // struct _class_t *isa; 6072 // struct _class_t * const superclass; 6073 // void *cache; 6074 // IMP *vtable; 6075 // struct class_ro_t *ro; 6076 // } 6077 6078 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6079 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6080 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6081 llvm::PointerType::getUnqual(ImpnfABITy), 6082 llvm::PointerType::getUnqual(ClassRonfABITy)); 6083 6084 // LLVM for struct _class_t * 6085 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6086 6087 // struct _category_t { 6088 // const char * const name; 6089 // struct _class_t *const cls; 6090 // const struct _method_list_t * const instance_methods; 6091 // const struct _method_list_t * const class_methods; 6092 // const struct _protocol_list_t * const protocols; 6093 // const struct _prop_list_t * const properties; 6094 // const struct _prop_list_t * const class_properties; 6095 // const uint32_t size; 6096 // } 6097 CategorynfABITy = llvm::StructType::create( 6098 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6099 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6100 PropertyListPtrTy, IntTy); 6101 6102 // New types for nonfragile abi messaging. 6103 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6104 ASTContext &Ctx = CGM.getContext(); 6105 6106 // MessageRefTy - LLVM for: 6107 // struct _message_ref_t { 6108 // IMP messenger; 6109 // SEL name; 6110 // }; 6111 6112 // First the clang type for struct _message_ref_t 6113 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6114 Ctx.getTranslationUnitDecl(), 6115 SourceLocation(), SourceLocation(), 6116 &Ctx.Idents.get("_message_ref_t")); 6117 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6118 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6119 ICIS_NoInit)); 6120 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6121 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6122 false, ICIS_NoInit)); 6123 RD->completeDefinition(); 6124 6125 MessageRefCTy = Ctx.getTagDeclType(RD); 6126 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6127 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6128 6129 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6130 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6131 6132 // SuperMessageRefTy - LLVM for: 6133 // struct _super_message_ref_t { 6134 // SUPER_IMP messenger; 6135 // SEL name; 6136 // }; 6137 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6138 ImpnfABITy, SelectorPtrTy); 6139 6140 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6141 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6142 6143 6144 // struct objc_typeinfo { 6145 // const void** vtable; // objc_ehtype_vtable + 2 6146 // const char* name; // c++ typeinfo string 6147 // Class cls; 6148 // }; 6149 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6150 llvm::PointerType::getUnqual(Int8PtrTy), 6151 Int8PtrTy, ClassnfABIPtrTy); 6152 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6153 } 6154 6155 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6156 FinishNonFragileABIModule(); 6157 6158 return nullptr; 6159 } 6160 6161 void CGObjCNonFragileABIMac::AddModuleClassList( 6162 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6163 StringRef SectionName) { 6164 unsigned NumClasses = Container.size(); 6165 6166 if (!NumClasses) 6167 return; 6168 6169 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6170 for (unsigned i=0; i<NumClasses; i++) 6171 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6172 ObjCTypes.Int8PtrTy); 6173 llvm::Constant *Init = 6174 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6175 Symbols.size()), 6176 Symbols); 6177 6178 // Section name is obtained by calling GetSectionName, which returns 6179 // sections in the __DATA segment on MachO. 6180 assert((!CGM.getTriple().isOSBinFormatMachO() || 6181 SectionName.startswith("__DATA")) && 6182 "SectionName expected to start with __DATA on MachO"); 6183 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 6184 CGM.getModule(), Init->getType(), false, 6185 llvm::GlobalValue::PrivateLinkage, Init, SymbolName); 6186 GV->setAlignment( 6187 llvm::Align(CGM.getDataLayout().getABITypeAlignment(Init->getType()))); 6188 GV->setSection(SectionName); 6189 CGM.addCompilerUsedGlobal(GV); 6190 } 6191 6192 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6193 // nonfragile abi has no module definition. 6194 6195 // Build list of all implemented class addresses in array 6196 // L_OBJC_LABEL_CLASS_$. 6197 6198 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6199 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6200 assert(ID); 6201 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6202 // We are implementing a weak imported interface. Give it external linkage 6203 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6204 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6205 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6206 } 6207 } 6208 6209 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6210 GetSectionName("__objc_classlist", 6211 "regular,no_dead_strip")); 6212 6213 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6214 GetSectionName("__objc_nlclslist", 6215 "regular,no_dead_strip")); 6216 6217 // Build list of all implemented category addresses in array 6218 // L_OBJC_LABEL_CATEGORY_$. 6219 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6220 GetSectionName("__objc_catlist", 6221 "regular,no_dead_strip")); 6222 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6223 GetSectionName("__objc_catlist2", 6224 "regular,no_dead_strip")); 6225 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6226 GetSectionName("__objc_nlcatlist", 6227 "regular,no_dead_strip")); 6228 6229 EmitImageInfo(); 6230 } 6231 6232 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6233 /// VTableDispatchMethods; false otherwise. What this means is that 6234 /// except for the 19 selectors in the list, we generate 32bit-style 6235 /// message dispatch call for all the rest. 6236 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6237 // At various points we've experimented with using vtable-based 6238 // dispatch for all methods. 6239 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6240 case CodeGenOptions::Legacy: 6241 return false; 6242 case CodeGenOptions::NonLegacy: 6243 return true; 6244 case CodeGenOptions::Mixed: 6245 break; 6246 } 6247 6248 // If so, see whether this selector is in the white-list of things which must 6249 // use the new dispatch convention. We lazily build a dense set for this. 6250 if (VTableDispatchMethods.empty()) { 6251 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6252 VTableDispatchMethods.insert(GetNullarySelector("class")); 6253 VTableDispatchMethods.insert(GetNullarySelector("self")); 6254 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6255 VTableDispatchMethods.insert(GetNullarySelector("length")); 6256 VTableDispatchMethods.insert(GetNullarySelector("count")); 6257 6258 // These are vtable-based if GC is disabled. 6259 // Optimistically use vtable dispatch for hybrid compiles. 6260 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6261 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6262 VTableDispatchMethods.insert(GetNullarySelector("release")); 6263 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6264 } 6265 6266 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6267 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6268 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6269 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6270 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6271 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6272 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6273 6274 // These are vtable-based if GC is enabled. 6275 // Optimistically use vtable dispatch for hybrid compiles. 6276 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6277 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6278 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6279 6280 // "countByEnumeratingWithState:objects:count" 6281 IdentifierInfo *KeyIdents[] = { 6282 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6283 &CGM.getContext().Idents.get("objects"), 6284 &CGM.getContext().Idents.get("count") 6285 }; 6286 VTableDispatchMethods.insert( 6287 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6288 } 6289 } 6290 6291 return VTableDispatchMethods.count(Sel); 6292 } 6293 6294 /// BuildClassRoTInitializer - generate meta-data for: 6295 /// struct _class_ro_t { 6296 /// uint32_t const flags; 6297 /// uint32_t const instanceStart; 6298 /// uint32_t const instanceSize; 6299 /// uint32_t const reserved; // only when building for 64bit targets 6300 /// const uint8_t * const ivarLayout; 6301 /// const char *const name; 6302 /// const struct _method_list_t * const baseMethods; 6303 /// const struct _protocol_list_t *const baseProtocols; 6304 /// const struct _ivar_list_t *const ivars; 6305 /// const uint8_t * const weakIvarLayout; 6306 /// const struct _prop_list_t * const properties; 6307 /// } 6308 /// 6309 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6310 unsigned flags, 6311 unsigned InstanceStart, 6312 unsigned InstanceSize, 6313 const ObjCImplementationDecl *ID) { 6314 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString()); 6315 6316 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6317 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6318 6319 bool hasMRCWeak = false; 6320 if (CGM.getLangOpts().ObjCAutoRefCount) 6321 flags |= NonFragileABI_Class_CompiledByARC; 6322 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6323 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6324 6325 ConstantInitBuilder builder(CGM); 6326 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6327 6328 values.addInt(ObjCTypes.IntTy, flags); 6329 values.addInt(ObjCTypes.IntTy, InstanceStart); 6330 values.addInt(ObjCTypes.IntTy, InstanceSize); 6331 values.add((flags & NonFragileABI_Class_Meta) 6332 ? GetIvarLayoutName(nullptr, ObjCTypes) 6333 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6334 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6335 6336 // const struct _method_list_t * const baseMethods; 6337 SmallVector<const ObjCMethodDecl*, 16> methods; 6338 if (flags & NonFragileABI_Class_Meta) { 6339 for (const auto *MD : ID->class_methods()) 6340 if (!MD->isDirectMethod()) 6341 methods.push_back(MD); 6342 } else { 6343 for (const auto *MD : ID->instance_methods()) 6344 if (!MD->isDirectMethod()) 6345 methods.push_back(MD); 6346 } 6347 6348 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6349 (flags & NonFragileABI_Class_Meta) 6350 ? MethodListType::ClassMethods 6351 : MethodListType::InstanceMethods, 6352 methods)); 6353 6354 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6355 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6356 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6357 + OID->getObjCRuntimeNameAsString(), 6358 OID->all_referenced_protocol_begin(), 6359 OID->all_referenced_protocol_end())); 6360 6361 if (flags & NonFragileABI_Class_Meta) { 6362 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6363 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6364 values.add(EmitPropertyList( 6365 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6366 ID, ID->getClassInterface(), ObjCTypes, true)); 6367 } else { 6368 values.add(EmitIvarList(ID)); 6369 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6370 values.add(EmitPropertyList( 6371 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6372 ID, ID->getClassInterface(), ObjCTypes, false)); 6373 } 6374 6375 llvm::SmallString<64> roLabel; 6376 llvm::raw_svector_ostream(roLabel) 6377 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6378 : "_OBJC_CLASS_RO_$_") 6379 << ClassName; 6380 6381 return finishAndCreateGlobal(values, roLabel, CGM); 6382 } 6383 6384 /// Build the metaclass object for a class. 6385 /// 6386 /// struct _class_t { 6387 /// struct _class_t *isa; 6388 /// struct _class_t * const superclass; 6389 /// void *cache; 6390 /// IMP *vtable; 6391 /// struct class_ro_t *ro; 6392 /// } 6393 /// 6394 llvm::GlobalVariable * 6395 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6396 bool isMetaclass, 6397 llvm::Constant *IsAGV, 6398 llvm::Constant *SuperClassGV, 6399 llvm::Constant *ClassRoGV, 6400 bool HiddenVisibility) { 6401 ConstantInitBuilder builder(CGM); 6402 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6403 values.add(IsAGV); 6404 if (SuperClassGV) { 6405 values.add(SuperClassGV); 6406 } else { 6407 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6408 } 6409 values.add(ObjCEmptyCacheVar); 6410 values.add(ObjCEmptyVtableVar); 6411 values.add(ClassRoGV); 6412 6413 llvm::GlobalVariable *GV = 6414 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6415 values.finishAndSetAsInitializer(GV); 6416 6417 if (CGM.getTriple().isOSBinFormatMachO()) 6418 GV->setSection("__DATA, __objc_data"); 6419 GV->setAlignment(llvm::Align( 6420 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy))); 6421 if (!CGM.getTriple().isOSBinFormatCOFF()) 6422 if (HiddenVisibility) 6423 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6424 return GV; 6425 } 6426 6427 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6428 const ObjCImplDecl *OD) const { 6429 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6430 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6431 OD->hasAttr<ObjCNonLazyClassAttr>(); 6432 } 6433 6434 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6435 uint32_t &InstanceStart, 6436 uint32_t &InstanceSize) { 6437 const ASTRecordLayout &RL = 6438 CGM.getContext().getASTObjCImplementationLayout(OID); 6439 6440 // InstanceSize is really instance end. 6441 InstanceSize = RL.getDataSize().getQuantity(); 6442 6443 // If there are no fields, the start is the same as the end. 6444 if (!RL.getFieldCount()) 6445 InstanceStart = InstanceSize; 6446 else 6447 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6448 } 6449 6450 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6451 StringRef Name) { 6452 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6453 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6454 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6455 6456 const VarDecl *VD = nullptr; 6457 for (const auto *Result : DC->lookup(&II)) 6458 if ((VD = dyn_cast<VarDecl>(Result))) 6459 break; 6460 6461 if (!VD) 6462 return llvm::GlobalValue::DLLImportStorageClass; 6463 if (VD->hasAttr<DLLExportAttr>()) 6464 return llvm::GlobalValue::DLLExportStorageClass; 6465 if (VD->hasAttr<DLLImportAttr>()) 6466 return llvm::GlobalValue::DLLImportStorageClass; 6467 return llvm::GlobalValue::DefaultStorageClass; 6468 } 6469 6470 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6471 if (!ObjCEmptyCacheVar) { 6472 ObjCEmptyCacheVar = 6473 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6474 llvm::GlobalValue::ExternalLinkage, nullptr, 6475 "_objc_empty_cache"); 6476 if (CGM.getTriple().isOSBinFormatCOFF()) 6477 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6478 6479 // Only OS X with deployment version <10.9 use the empty vtable symbol 6480 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6481 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6482 ObjCEmptyVtableVar = 6483 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6484 llvm::GlobalValue::ExternalLinkage, nullptr, 6485 "_objc_empty_vtable"); 6486 else 6487 ObjCEmptyVtableVar = 6488 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6489 } 6490 6491 // FIXME: Is this correct (that meta class size is never computed)? 6492 uint32_t InstanceStart = 6493 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6494 uint32_t InstanceSize = InstanceStart; 6495 uint32_t flags = NonFragileABI_Class_Meta; 6496 6497 llvm::Constant *SuperClassGV, *IsAGV; 6498 6499 const auto *CI = ID->getClassInterface(); 6500 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6501 6502 // Build the flags for the metaclass. 6503 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6504 ? !CI->hasAttr<DLLExportAttr>() 6505 : CI->getVisibility() == HiddenVisibility; 6506 if (classIsHidden) 6507 flags |= NonFragileABI_Class_Hidden; 6508 6509 // FIXME: why is this flag set on the metaclass? 6510 // ObjC metaclasses have no fields and don't really get constructed. 6511 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6512 flags |= NonFragileABI_Class_HasCXXStructors; 6513 if (!ID->hasNonZeroConstructors()) 6514 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6515 } 6516 6517 if (!CI->getSuperClass()) { 6518 // class is root 6519 flags |= NonFragileABI_Class_Root; 6520 6521 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6522 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6523 } else { 6524 // Has a root. Current class is not a root. 6525 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6526 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6527 Root = Super; 6528 6529 const auto *Super = CI->getSuperClass(); 6530 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6531 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6532 } 6533 6534 llvm::GlobalVariable *CLASS_RO_GV = 6535 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6536 6537 llvm::GlobalVariable *MetaTClass = 6538 BuildClassObject(CI, /*metaclass*/ true, 6539 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6540 CGM.setGVProperties(MetaTClass, CI); 6541 DefinedMetaClasses.push_back(MetaTClass); 6542 6543 // Metadata for the class 6544 flags = 0; 6545 if (classIsHidden) 6546 flags |= NonFragileABI_Class_Hidden; 6547 6548 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6549 flags |= NonFragileABI_Class_HasCXXStructors; 6550 6551 // Set a flag to enable a runtime optimization when a class has 6552 // fields that require destruction but which don't require 6553 // anything except zero-initialization during construction. This 6554 // is most notably true of __strong and __weak types, but you can 6555 // also imagine there being C++ types with non-trivial default 6556 // constructors that merely set all fields to null. 6557 if (!ID->hasNonZeroConstructors()) 6558 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6559 } 6560 6561 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6562 flags |= NonFragileABI_Class_Exception; 6563 6564 if (!CI->getSuperClass()) { 6565 flags |= NonFragileABI_Class_Root; 6566 SuperClassGV = nullptr; 6567 } else { 6568 // Has a root. Current class is not a root. 6569 const auto *Super = CI->getSuperClass(); 6570 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6571 } 6572 6573 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6574 CLASS_RO_GV = 6575 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6576 6577 llvm::GlobalVariable *ClassMD = 6578 BuildClassObject(CI, /*metaclass*/ false, 6579 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6580 CGM.setGVProperties(ClassMD, CI); 6581 DefinedClasses.push_back(ClassMD); 6582 ImplementedClasses.push_back(CI); 6583 6584 // Determine if this class is also "non-lazy". 6585 if (ImplementationIsNonLazy(ID)) 6586 DefinedNonLazyClasses.push_back(ClassMD); 6587 6588 // Force the definition of the EHType if necessary. 6589 if (flags & NonFragileABI_Class_Exception) 6590 (void) GetInterfaceEHType(CI, ForDefinition); 6591 // Make sure method definition entries are all clear for next implementation. 6592 MethodDefinitions.clear(); 6593 } 6594 6595 /// GenerateProtocolRef - This routine is called to generate code for 6596 /// a protocol reference expression; as in: 6597 /// @code 6598 /// @protocol(Proto1); 6599 /// @endcode 6600 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6601 /// which will hold address of the protocol meta-data. 6602 /// 6603 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6604 const ObjCProtocolDecl *PD) { 6605 6606 // This routine is called for @protocol only. So, we must build definition 6607 // of protocol's meta-data (not a reference to it!) 6608 assert(!PD->isNonRuntimeProtocol() && 6609 "attempting to get a protocol ref to a static protocol."); 6610 llvm::Constant *Init = 6611 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6612 ObjCTypes.getExternalProtocolPtrTy()); 6613 6614 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6615 ProtocolName += PD->getObjCRuntimeNameAsString(); 6616 6617 CharUnits Align = CGF.getPointerAlign(); 6618 6619 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6620 if (PTGV) 6621 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6622 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6623 llvm::GlobalValue::WeakAnyLinkage, Init, 6624 ProtocolName); 6625 PTGV->setSection(GetSectionName("__objc_protorefs", 6626 "coalesced,no_dead_strip")); 6627 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6628 PTGV->setAlignment(Align.getAsAlign()); 6629 if (!CGM.getTriple().isOSBinFormatMachO()) 6630 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6631 CGM.addUsedGlobal(PTGV); 6632 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6633 } 6634 6635 /// GenerateCategory - Build metadata for a category implementation. 6636 /// struct _category_t { 6637 /// const char * const name; 6638 /// struct _class_t *const cls; 6639 /// const struct _method_list_t * const instance_methods; 6640 /// const struct _method_list_t * const class_methods; 6641 /// const struct _protocol_list_t * const protocols; 6642 /// const struct _prop_list_t * const properties; 6643 /// const struct _prop_list_t * const class_properties; 6644 /// const uint32_t size; 6645 /// } 6646 /// 6647 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6648 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6649 const char *Prefix = "_OBJC_$_CATEGORY_"; 6650 6651 llvm::SmallString<64> ExtCatName(Prefix); 6652 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6653 ExtCatName += "_$_"; 6654 ExtCatName += OCD->getNameAsString(); 6655 6656 ConstantInitBuilder builder(CGM); 6657 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6658 values.add(GetClassName(OCD->getIdentifier()->getName())); 6659 // meta-class entry symbol 6660 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6661 std::string listName = 6662 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6663 6664 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6665 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6666 for (const auto *MD : OCD->methods()) { 6667 if (MD->isDirectMethod()) 6668 continue; 6669 if (MD->isInstanceMethod()) { 6670 instanceMethods.push_back(MD); 6671 } else { 6672 classMethods.push_back(MD); 6673 } 6674 } 6675 6676 auto instanceMethodList = emitMethodList( 6677 listName, MethodListType::CategoryInstanceMethods, instanceMethods); 6678 auto classMethodList = emitMethodList( 6679 listName, MethodListType::CategoryClassMethods, classMethods); 6680 values.add(instanceMethodList); 6681 values.add(classMethodList); 6682 // Keep track of whether we have actual metadata to emit. 6683 bool isEmptyCategory = 6684 instanceMethodList->isNullValue() && classMethodList->isNullValue(); 6685 6686 const ObjCCategoryDecl *Category = 6687 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6688 if (Category) { 6689 SmallString<256> ExtName; 6690 llvm::raw_svector_ostream(ExtName) 6691 << Interface->getObjCRuntimeNameAsString() << "_$_" << OCD->getName(); 6692 auto protocolList = 6693 EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" + 6694 Interface->getObjCRuntimeNameAsString() + "_$_" + 6695 Category->getName(), 6696 Category->protocol_begin(), Category->protocol_end()); 6697 auto propertyList = EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6698 OCD, Category, ObjCTypes, false); 6699 auto classPropertyList = 6700 EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), OCD, 6701 Category, ObjCTypes, true); 6702 values.add(protocolList); 6703 values.add(propertyList); 6704 values.add(classPropertyList); 6705 isEmptyCategory &= protocolList->isNullValue() && 6706 propertyList->isNullValue() && 6707 classPropertyList->isNullValue(); 6708 } else { 6709 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6710 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6711 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6712 } 6713 6714 if (isEmptyCategory) { 6715 // Empty category, don't emit any metadata. 6716 values.abandon(); 6717 MethodDefinitions.clear(); 6718 return; 6719 } 6720 6721 unsigned Size = 6722 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6723 values.addInt(ObjCTypes.IntTy, Size); 6724 6725 llvm::GlobalVariable *GCATV = 6726 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6727 CGM.addCompilerUsedGlobal(GCATV); 6728 if (Interface->hasAttr<ObjCClassStubAttr>()) 6729 DefinedStubCategories.push_back(GCATV); 6730 else 6731 DefinedCategories.push_back(GCATV); 6732 6733 // Determine if this category is also "non-lazy". 6734 if (ImplementationIsNonLazy(OCD)) 6735 DefinedNonLazyCategories.push_back(GCATV); 6736 // method definition entries must be clear for next implementation. 6737 MethodDefinitions.clear(); 6738 } 6739 6740 /// emitMethodConstant - Return a struct objc_method constant. If 6741 /// forProtocol is true, the implementation will be null; otherwise, 6742 /// the method must have a definition registered with the runtime. 6743 /// 6744 /// struct _objc_method { 6745 /// SEL _cmd; 6746 /// char *method_type; 6747 /// char *_imp; 6748 /// } 6749 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6750 const ObjCMethodDecl *MD, 6751 bool forProtocol) { 6752 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6753 method.addBitCast(GetMethodVarName(MD->getSelector()), 6754 ObjCTypes.SelectorPtrTy); 6755 method.add(GetMethodVarType(MD)); 6756 6757 if (forProtocol) { 6758 // Protocol methods have no implementation. So, this entry is always NULL. 6759 method.addNullPointer(ObjCTypes.Int8PtrTy); 6760 } else { 6761 llvm::Function *fn = GetMethodDefinition(MD); 6762 assert(fn && "no definition for method?"); 6763 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6764 } 6765 6766 method.finishAndAddTo(builder); 6767 } 6768 6769 /// Build meta-data for method declarations. 6770 /// 6771 /// struct _method_list_t { 6772 /// uint32_t entsize; // sizeof(struct _objc_method) 6773 /// uint32_t method_count; 6774 /// struct _objc_method method_list[method_count]; 6775 /// } 6776 /// 6777 llvm::Constant * 6778 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6779 ArrayRef<const ObjCMethodDecl *> methods) { 6780 // Return null for empty list. 6781 if (methods.empty()) 6782 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6783 6784 StringRef prefix; 6785 bool forProtocol; 6786 switch (kind) { 6787 case MethodListType::CategoryInstanceMethods: 6788 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6789 forProtocol = false; 6790 break; 6791 case MethodListType::CategoryClassMethods: 6792 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6793 forProtocol = false; 6794 break; 6795 case MethodListType::InstanceMethods: 6796 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6797 forProtocol = false; 6798 break; 6799 case MethodListType::ClassMethods: 6800 prefix = "_OBJC_$_CLASS_METHODS_"; 6801 forProtocol = false; 6802 break; 6803 6804 case MethodListType::ProtocolInstanceMethods: 6805 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6806 forProtocol = true; 6807 break; 6808 case MethodListType::ProtocolClassMethods: 6809 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6810 forProtocol = true; 6811 break; 6812 case MethodListType::OptionalProtocolInstanceMethods: 6813 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6814 forProtocol = true; 6815 break; 6816 case MethodListType::OptionalProtocolClassMethods: 6817 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6818 forProtocol = true; 6819 break; 6820 } 6821 6822 ConstantInitBuilder builder(CGM); 6823 auto values = builder.beginStruct(); 6824 6825 // sizeof(struct _objc_method) 6826 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6827 values.addInt(ObjCTypes.IntTy, Size); 6828 // method_count 6829 values.addInt(ObjCTypes.IntTy, methods.size()); 6830 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6831 for (auto MD : methods) 6832 emitMethodConstant(methodArray, MD, forProtocol); 6833 methodArray.finishAndAddTo(values); 6834 6835 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6836 CGM.addCompilerUsedGlobal(GV); 6837 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6838 } 6839 6840 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6841 /// the given ivar. 6842 llvm::GlobalVariable * 6843 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6844 const ObjCIvarDecl *Ivar) { 6845 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6846 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6847 Name += Container->getObjCRuntimeNameAsString(); 6848 Name += "."; 6849 Name += Ivar->getName(); 6850 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6851 if (!IvarOffsetGV) { 6852 IvarOffsetGV = 6853 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6854 false, llvm::GlobalValue::ExternalLinkage, 6855 nullptr, Name.str()); 6856 if (CGM.getTriple().isOSBinFormatCOFF()) { 6857 bool IsPrivateOrPackage = 6858 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6859 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6860 6861 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6862 6863 if (ContainingID->hasAttr<DLLImportAttr>()) 6864 IvarOffsetGV 6865 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6866 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6867 IvarOffsetGV 6868 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6869 } 6870 } 6871 return IvarOffsetGV; 6872 } 6873 6874 llvm::Constant * 6875 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6876 const ObjCIvarDecl *Ivar, 6877 unsigned long int Offset) { 6878 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6879 IvarOffsetGV->setInitializer( 6880 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6881 IvarOffsetGV->setAlignment(llvm::Align( 6882 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy))); 6883 6884 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6885 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6886 // as well (i.e., in ObjCIvarOffsetVariable). 6887 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6888 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6889 ID->getVisibility() == HiddenVisibility) 6890 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6891 else 6892 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6893 } 6894 6895 // If ID's layout is known, then make the global constant. This serves as a 6896 // useful assertion: we'll never use this variable to calculate ivar offsets, 6897 // so if the runtime tries to patch it then we should crash. 6898 if (isClassLayoutKnownStatically(ID)) 6899 IvarOffsetGV->setConstant(true); 6900 6901 if (CGM.getTriple().isOSBinFormatMachO()) 6902 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6903 return IvarOffsetGV; 6904 } 6905 6906 /// EmitIvarList - Emit the ivar list for the given 6907 /// implementation. The return value has type 6908 /// IvarListnfABIPtrTy. 6909 /// struct _ivar_t { 6910 /// unsigned [long] int *offset; // pointer to ivar offset location 6911 /// char *name; 6912 /// char *type; 6913 /// uint32_t alignment; 6914 /// uint32_t size; 6915 /// } 6916 /// struct _ivar_list_t { 6917 /// uint32 entsize; // sizeof(struct _ivar_t) 6918 /// uint32 count; 6919 /// struct _iver_t list[count]; 6920 /// } 6921 /// 6922 6923 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6924 const ObjCImplementationDecl *ID) { 6925 6926 ConstantInitBuilder builder(CGM); 6927 auto ivarList = builder.beginStruct(); 6928 ivarList.addInt(ObjCTypes.IntTy, 6929 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6930 auto ivarCountSlot = ivarList.addPlaceholder(); 6931 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6932 6933 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6934 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6935 6936 // FIXME. Consolidate this with similar code in GenerateClass. 6937 6938 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6939 IVD; IVD = IVD->getNextIvar()) { 6940 // Ignore unnamed bit-fields. 6941 if (!IVD->getDeclName()) 6942 continue; 6943 6944 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6945 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6946 ComputeIvarBaseOffset(CGM, ID, IVD))); 6947 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6948 ivar.add(GetMethodVarType(IVD)); 6949 llvm::Type *FieldTy = 6950 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6951 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6952 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6953 IVD->getType().getTypePtr()) >> 3; 6954 Align = llvm::Log2_32(Align); 6955 ivar.addInt(ObjCTypes.IntTy, Align); 6956 // NOTE. Size of a bitfield does not match gcc's, because of the 6957 // way bitfields are treated special in each. But I am told that 6958 // 'size' for bitfield ivars is ignored by the runtime so it does 6959 // not matter. If it matters, there is enough info to get the 6960 // bitfield right! 6961 ivar.addInt(ObjCTypes.IntTy, Size); 6962 ivar.finishAndAddTo(ivars); 6963 } 6964 // Return null for empty list. 6965 if (ivars.empty()) { 6966 ivars.abandon(); 6967 ivarList.abandon(); 6968 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6969 } 6970 6971 auto ivarCount = ivars.size(); 6972 ivars.finishAndAddTo(ivarList); 6973 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6974 6975 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 6976 llvm::GlobalVariable *GV = finishAndCreateGlobal( 6977 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 6978 CGM.addCompilerUsedGlobal(GV); 6979 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6980 } 6981 6982 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6983 const ObjCProtocolDecl *PD) { 6984 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6985 6986 assert(!PD->isNonRuntimeProtocol() && 6987 "attempting to GetOrEmit a non-runtime protocol"); 6988 if (!Entry) { 6989 // We use the initializer as a marker of whether this is a forward 6990 // reference or not. At module finalization we add the empty 6991 // contents for protocols which were referenced but never defined. 6992 llvm::SmallString<64> Protocol; 6993 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 6994 << PD->getObjCRuntimeNameAsString(); 6995 6996 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6997 false, llvm::GlobalValue::ExternalLinkage, 6998 nullptr, Protocol); 6999 if (!CGM.getTriple().isOSBinFormatMachO()) 7000 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 7001 } 7002 7003 return Entry; 7004 } 7005 7006 /// GetOrEmitProtocol - Generate the protocol meta-data: 7007 /// @code 7008 /// struct _protocol_t { 7009 /// id isa; // NULL 7010 /// const char * const protocol_name; 7011 /// const struct _protocol_list_t * protocol_list; // super protocols 7012 /// const struct method_list_t * const instance_methods; 7013 /// const struct method_list_t * const class_methods; 7014 /// const struct method_list_t *optionalInstanceMethods; 7015 /// const struct method_list_t *optionalClassMethods; 7016 /// const struct _prop_list_t * properties; 7017 /// const uint32_t size; // sizeof(struct _protocol_t) 7018 /// const uint32_t flags; // = 0 7019 /// const char ** extendedMethodTypes; 7020 /// const char *demangledName; 7021 /// const struct _prop_list_t * class_properties; 7022 /// } 7023 /// @endcode 7024 /// 7025 7026 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7027 const ObjCProtocolDecl *PD) { 7028 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7029 7030 // Early exit if a defining object has already been generated. 7031 if (Entry && Entry->hasInitializer()) 7032 return Entry; 7033 7034 // Use the protocol definition, if there is one. 7035 assert(PD->hasDefinition() && 7036 "emitting protocol metadata without definition"); 7037 PD = PD->getDefinition(); 7038 7039 auto methodLists = ProtocolMethodLists::get(PD); 7040 7041 ConstantInitBuilder builder(CGM); 7042 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7043 7044 // isa is NULL 7045 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7046 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7047 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7048 + PD->getObjCRuntimeNameAsString(), 7049 PD->protocol_begin(), 7050 PD->protocol_end())); 7051 values.add(methodLists.emitMethodList(this, PD, 7052 ProtocolMethodLists::RequiredInstanceMethods)); 7053 values.add(methodLists.emitMethodList(this, PD, 7054 ProtocolMethodLists::RequiredClassMethods)); 7055 values.add(methodLists.emitMethodList(this, PD, 7056 ProtocolMethodLists::OptionalInstanceMethods)); 7057 values.add(methodLists.emitMethodList(this, PD, 7058 ProtocolMethodLists::OptionalClassMethods)); 7059 values.add(EmitPropertyList( 7060 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7061 nullptr, PD, ObjCTypes, false)); 7062 uint32_t Size = 7063 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7064 values.addInt(ObjCTypes.IntTy, Size); 7065 values.addInt(ObjCTypes.IntTy, 0); 7066 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7067 + PD->getObjCRuntimeNameAsString(), 7068 methodLists.emitExtendedTypesArray(this), 7069 ObjCTypes)); 7070 7071 // const char *demangledName; 7072 values.addNullPointer(ObjCTypes.Int8PtrTy); 7073 7074 values.add(EmitPropertyList( 7075 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7076 nullptr, PD, ObjCTypes, true)); 7077 7078 if (Entry) { 7079 // Already created, fix the linkage and update the initializer. 7080 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7081 values.finishAndSetAsInitializer(Entry); 7082 } else { 7083 llvm::SmallString<64> symbolName; 7084 llvm::raw_svector_ostream(symbolName) 7085 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7086 7087 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7088 /*constant*/ false, 7089 llvm::GlobalValue::WeakAnyLinkage); 7090 if (!CGM.getTriple().isOSBinFormatMachO()) 7091 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7092 7093 Protocols[PD->getIdentifier()] = Entry; 7094 } 7095 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7096 CGM.addUsedGlobal(Entry); 7097 7098 // Use this protocol meta-data to build protocol list table in section 7099 // __DATA, __objc_protolist 7100 llvm::SmallString<64> ProtocolRef; 7101 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7102 << PD->getObjCRuntimeNameAsString(); 7103 7104 llvm::GlobalVariable *PTGV = 7105 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7106 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7107 ProtocolRef); 7108 if (!CGM.getTriple().isOSBinFormatMachO()) 7109 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7110 PTGV->setAlignment(llvm::Align( 7111 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy))); 7112 PTGV->setSection(GetSectionName("__objc_protolist", 7113 "coalesced,no_dead_strip")); 7114 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7115 CGM.addUsedGlobal(PTGV); 7116 return Entry; 7117 } 7118 7119 /// EmitProtocolList - Generate protocol list meta-data: 7120 /// @code 7121 /// struct _protocol_list_t { 7122 /// long protocol_count; // Note, this is 32/64 bit 7123 /// struct _protocol_t[protocol_count]; 7124 /// } 7125 /// @endcode 7126 /// 7127 llvm::Constant * 7128 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7129 ObjCProtocolDecl::protocol_iterator begin, 7130 ObjCProtocolDecl::protocol_iterator end) { 7131 // Just return null for empty protocol lists 7132 auto Protocols = GetRuntimeProtocolList(begin, end); 7133 if (Protocols.empty()) 7134 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7135 7136 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7137 ProtocolRefs.reserve(Protocols.size()); 7138 7139 for (const auto *PD : Protocols) 7140 ProtocolRefs.push_back(GetProtocolRef(PD)); 7141 7142 // If all of the protocols in the protocol list are objc_non_runtime_protocol 7143 // just return null 7144 if (ProtocolRefs.size() == 0) 7145 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7146 7147 // FIXME: We shouldn't need to do this lookup here, should we? 7148 SmallString<256> TmpName; 7149 Name.toVector(TmpName); 7150 llvm::GlobalVariable *GV = 7151 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7152 if (GV) 7153 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7154 7155 ConstantInitBuilder builder(CGM); 7156 auto values = builder.beginStruct(); 7157 auto countSlot = values.addPlaceholder(); 7158 7159 // A null-terminated array of protocols. 7160 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7161 for (auto const &proto : ProtocolRefs) 7162 array.add(proto); 7163 auto count = array.size(); 7164 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7165 7166 array.finishAndAddTo(values); 7167 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7168 7169 GV = finishAndCreateGlobal(values, Name, CGM); 7170 CGM.addCompilerUsedGlobal(GV); 7171 return llvm::ConstantExpr::getBitCast(GV, 7172 ObjCTypes.ProtocolListnfABIPtrTy); 7173 } 7174 7175 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7176 /// This code gen. amounts to generating code for: 7177 /// @code 7178 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7179 /// @encode 7180 /// 7181 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7182 CodeGen::CodeGenFunction &CGF, 7183 QualType ObjectTy, 7184 llvm::Value *BaseValue, 7185 const ObjCIvarDecl *Ivar, 7186 unsigned CVRQualifiers) { 7187 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7188 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7189 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7190 Offset); 7191 } 7192 7193 llvm::Value * 7194 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7195 const ObjCInterfaceDecl *Interface, 7196 const ObjCIvarDecl *Ivar) { 7197 llvm::Value *IvarOffsetValue; 7198 if (isClassLayoutKnownStatically(Interface)) { 7199 IvarOffsetValue = llvm::ConstantInt::get( 7200 ObjCTypes.IvarOffsetVarTy, 7201 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7202 } else { 7203 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7204 IvarOffsetValue = 7205 CGF.Builder.CreateAlignedLoad(GV->getValueType(), GV, 7206 CGF.getSizeAlign(), "ivar"); 7207 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7208 cast<llvm::LoadInst>(IvarOffsetValue) 7209 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7210 llvm::MDNode::get(VMContext, None)); 7211 } 7212 7213 // This could be 32bit int or 64bit integer depending on the architecture. 7214 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7215 // as this is what caller always expects. 7216 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7217 IvarOffsetValue = CGF.Builder.CreateIntCast( 7218 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7219 return IvarOffsetValue; 7220 } 7221 7222 static void appendSelectorForMessageRefTable(std::string &buffer, 7223 Selector selector) { 7224 if (selector.isUnarySelector()) { 7225 buffer += selector.getNameForSlot(0); 7226 return; 7227 } 7228 7229 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7230 buffer += selector.getNameForSlot(i); 7231 buffer += '_'; 7232 } 7233 } 7234 7235 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7236 /// struct, initially containing the selector pointer and a pointer to 7237 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7238 /// load and call the function pointer, passing the address of the 7239 /// struct as the second parameter. The runtime determines whether 7240 /// the selector is currently emitted using vtable dispatch; if so, it 7241 /// substitutes a stub function which simply tail-calls through the 7242 /// appropriate vtable slot, and if not, it substitues a stub function 7243 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7244 /// argument to correctly point to the selector. 7245 RValue 7246 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7247 ReturnValueSlot returnSlot, 7248 QualType resultType, 7249 Selector selector, 7250 llvm::Value *arg0, 7251 QualType arg0Type, 7252 bool isSuper, 7253 const CallArgList &formalArgs, 7254 const ObjCMethodDecl *method) { 7255 // Compute the actual arguments. 7256 CallArgList args; 7257 7258 // First argument: the receiver / super-call structure. 7259 if (!isSuper) 7260 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7261 args.add(RValue::get(arg0), arg0Type); 7262 7263 // Second argument: a pointer to the message ref structure. Leave 7264 // the actual argument value blank for now. 7265 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7266 7267 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7268 7269 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7270 7271 NullReturnState nullReturn; 7272 7273 // Find the function to call and the mangled name for the message 7274 // ref structure. Using a different mangled name wouldn't actually 7275 // be a problem; it would just be a waste. 7276 // 7277 // The runtime currently never uses vtable dispatch for anything 7278 // except normal, non-super message-sends. 7279 // FIXME: don't use this for that. 7280 llvm::FunctionCallee fn = nullptr; 7281 std::string messageRefName("_"); 7282 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7283 if (isSuper) { 7284 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7285 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7286 } else { 7287 nullReturn.init(CGF, arg0); 7288 fn = ObjCTypes.getMessageSendStretFixupFn(); 7289 messageRefName += "objc_msgSend_stret_fixup"; 7290 } 7291 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7292 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7293 messageRefName += "objc_msgSend_fpret_fixup"; 7294 } else { 7295 if (isSuper) { 7296 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7297 messageRefName += "objc_msgSendSuper2_fixup"; 7298 } else { 7299 fn = ObjCTypes.getMessageSendFixupFn(); 7300 messageRefName += "objc_msgSend_fixup"; 7301 } 7302 } 7303 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7304 messageRefName += '_'; 7305 7306 // Append the selector name, except use underscores anywhere we 7307 // would have used colons. 7308 appendSelectorForMessageRefTable(messageRefName, selector); 7309 7310 llvm::GlobalVariable *messageRef 7311 = CGM.getModule().getGlobalVariable(messageRefName); 7312 if (!messageRef) { 7313 // Build the message ref structure. 7314 ConstantInitBuilder builder(CGM); 7315 auto values = builder.beginStruct(); 7316 values.add(cast<llvm::Constant>(fn.getCallee())); 7317 values.add(GetMethodVarName(selector)); 7318 messageRef = values.finishAndCreateGlobal(messageRefName, 7319 CharUnits::fromQuantity(16), 7320 /*constant*/ false, 7321 llvm::GlobalValue::WeakAnyLinkage); 7322 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7323 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7324 } 7325 7326 bool requiresnullCheck = false; 7327 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7328 for (const auto *ParamDecl : method->parameters()) { 7329 if (ParamDecl->isDestroyedInCallee()) { 7330 if (!nullReturn.NullBB) 7331 nullReturn.init(CGF, arg0); 7332 requiresnullCheck = true; 7333 break; 7334 } 7335 } 7336 7337 Address mref = 7338 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7339 CGF.getPointerAlign()); 7340 7341 // Update the message ref argument. 7342 args[1].setRValue(RValue::get(mref.getPointer())); 7343 7344 // Load the function to call from the message ref table. 7345 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7346 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7347 7348 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7349 CGCallee callee(CGCalleeInfo(), calleePtr); 7350 7351 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7352 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7353 requiresnullCheck ? method : nullptr); 7354 } 7355 7356 /// Generate code for a message send expression in the nonfragile abi. 7357 CodeGen::RValue 7358 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7359 ReturnValueSlot Return, 7360 QualType ResultType, 7361 Selector Sel, 7362 llvm::Value *Receiver, 7363 const CallArgList &CallArgs, 7364 const ObjCInterfaceDecl *Class, 7365 const ObjCMethodDecl *Method) { 7366 return isVTableDispatchedSelector(Sel) 7367 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7368 Receiver, CGF.getContext().getObjCIdType(), 7369 false, CallArgs, Method) 7370 : EmitMessageSend(CGF, Return, ResultType, Sel, 7371 Receiver, CGF.getContext().getObjCIdType(), 7372 false, CallArgs, Method, Class, ObjCTypes); 7373 } 7374 7375 llvm::Constant * 7376 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7377 bool metaclass, 7378 ForDefinition_t isForDefinition) { 7379 auto prefix = 7380 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7381 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7382 isForDefinition, 7383 ID->isWeakImported(), 7384 !isForDefinition 7385 && CGM.getTriple().isOSBinFormatCOFF() 7386 && ID->hasAttr<DLLImportAttr>()); 7387 } 7388 7389 llvm::Constant * 7390 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7391 ForDefinition_t IsForDefinition, 7392 bool Weak, bool DLLImport) { 7393 llvm::GlobalValue::LinkageTypes L = 7394 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7395 : llvm::GlobalValue::ExternalLinkage; 7396 7397 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7398 if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) { 7399 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7400 nullptr, Name); 7401 7402 if (DLLImport) 7403 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7404 7405 if (GV) { 7406 GV->replaceAllUsesWith( 7407 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7408 GV->eraseFromParent(); 7409 } 7410 GV = NewGV; 7411 CGM.getModule().getGlobalList().push_back(GV); 7412 } 7413 7414 assert(GV->getLinkage() == L); 7415 return GV; 7416 } 7417 7418 llvm::Constant * 7419 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7420 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7421 NotForDefinition); 7422 7423 if (!ID->hasAttr<ObjCClassStubAttr>()) 7424 return ClassGV; 7425 7426 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7427 7428 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7429 // must set the least significant bit set to 1. 7430 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7431 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7432 } 7433 7434 llvm::Value * 7435 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7436 const ObjCInterfaceDecl *ID, 7437 llvm::GlobalVariable *Entry) { 7438 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7439 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7440 // a special runtime function. 7441 return CGF.EmitRuntimeCall( 7442 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7443 } 7444 7445 CharUnits Align = CGF.getPointerAlign(); 7446 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, Align); 7447 } 7448 7449 llvm::Value * 7450 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7451 IdentifierInfo *II, 7452 const ObjCInterfaceDecl *ID) { 7453 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7454 7455 if (!Entry) { 7456 llvm::Constant *ClassGV; 7457 if (ID) { 7458 ClassGV = GetClassGlobalForClassRef(ID); 7459 } else { 7460 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7461 NotForDefinition); 7462 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7463 "classref was emitted with the wrong type?"); 7464 } 7465 7466 std::string SectionName = 7467 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7468 Entry = new llvm::GlobalVariable( 7469 CGM.getModule(), ClassGV->getType(), false, 7470 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7471 "OBJC_CLASSLIST_REFERENCES_$_"); 7472 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7473 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7474 Entry->setSection(SectionName); 7475 7476 CGM.addCompilerUsedGlobal(Entry); 7477 } 7478 7479 return EmitLoadOfClassRef(CGF, ID, Entry); 7480 } 7481 7482 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7483 const ObjCInterfaceDecl *ID) { 7484 // If the class has the objc_runtime_visible attribute, we need to 7485 // use the Objective-C runtime to get the class. 7486 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7487 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7488 7489 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7490 } 7491 7492 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7493 CodeGenFunction &CGF) { 7494 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7495 return EmitClassRefFromId(CGF, II, nullptr); 7496 } 7497 7498 llvm::Value * 7499 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7500 const ObjCInterfaceDecl *ID) { 7501 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7502 7503 if (!Entry) { 7504 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7505 std::string SectionName = 7506 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7507 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false, 7508 llvm::GlobalValue::PrivateLinkage, ClassGV, 7509 "OBJC_CLASSLIST_SUP_REFS_$_"); 7510 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7511 Entry->setSection(SectionName); 7512 CGM.addCompilerUsedGlobal(Entry); 7513 } 7514 7515 return EmitLoadOfClassRef(CGF, ID, Entry); 7516 } 7517 7518 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7519 /// meta-data 7520 /// 7521 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7522 const ObjCInterfaceDecl *ID, 7523 bool Weak) { 7524 CharUnits Align = CGF.getPointerAlign(); 7525 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7526 if (!Entry) { 7527 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7528 std::string SectionName = 7529 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7530 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7531 false, llvm::GlobalValue::PrivateLinkage, 7532 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7533 Entry->setAlignment(Align.getAsAlign()); 7534 Entry->setSection(SectionName); 7535 CGM.addCompilerUsedGlobal(Entry); 7536 } 7537 7538 return CGF.Builder.CreateAlignedLoad(ObjCTypes.ClassnfABIPtrTy, Entry, Align); 7539 } 7540 7541 /// GetClass - Return a reference to the class for the given interface 7542 /// decl. 7543 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7544 const ObjCInterfaceDecl *ID) { 7545 if (ID->isWeakImported()) { 7546 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7547 (void)ClassGV; 7548 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7549 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7550 } 7551 7552 return EmitClassRef(CGF, ID); 7553 } 7554 7555 /// Generates a message send where the super is the receiver. This is 7556 /// a message send to self with special delivery semantics indicating 7557 /// which class's method should be called. 7558 CodeGen::RValue 7559 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7560 ReturnValueSlot Return, 7561 QualType ResultType, 7562 Selector Sel, 7563 const ObjCInterfaceDecl *Class, 7564 bool isCategoryImpl, 7565 llvm::Value *Receiver, 7566 bool IsClassMessage, 7567 const CodeGen::CallArgList &CallArgs, 7568 const ObjCMethodDecl *Method) { 7569 // ... 7570 // Create and init a super structure; this is a (receiver, class) 7571 // pair we will pass to objc_msgSendSuper. 7572 Address ObjCSuper = 7573 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7574 "objc_super"); 7575 7576 llvm::Value *ReceiverAsObject = 7577 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7578 CGF.Builder.CreateStore(ReceiverAsObject, 7579 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7580 7581 // If this is a class message the metaclass is passed as the target. 7582 llvm::Value *Target; 7583 if (IsClassMessage) 7584 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7585 else 7586 Target = EmitSuperClassRef(CGF, Class); 7587 7588 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7589 // ObjCTypes types. 7590 llvm::Type *ClassTy = 7591 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7592 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7593 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7594 7595 return (isVTableDispatchedSelector(Sel)) 7596 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7597 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7598 true, CallArgs, Method) 7599 : EmitMessageSend(CGF, Return, ResultType, Sel, 7600 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7601 true, CallArgs, Method, Class, ObjCTypes); 7602 } 7603 7604 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7605 Selector Sel) { 7606 Address Addr = EmitSelectorAddr(Sel); 7607 7608 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7609 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7610 llvm::MDNode::get(VMContext, None)); 7611 return LI; 7612 } 7613 7614 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7615 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7616 CharUnits Align = CGM.getPointerAlign(); 7617 if (!Entry) { 7618 llvm::Constant *Casted = 7619 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7620 ObjCTypes.SelectorPtrTy); 7621 std::string SectionName = 7622 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7623 Entry = new llvm::GlobalVariable( 7624 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7625 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7626 "OBJC_SELECTOR_REFERENCES_"); 7627 Entry->setExternallyInitialized(true); 7628 Entry->setSection(SectionName); 7629 Entry->setAlignment(Align.getAsAlign()); 7630 CGM.addCompilerUsedGlobal(Entry); 7631 } 7632 7633 return Address(Entry, Align); 7634 } 7635 7636 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7637 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7638 /// 7639 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7640 llvm::Value *src, 7641 Address dst, 7642 llvm::Value *ivarOffset) { 7643 llvm::Type * SrcTy = src->getType(); 7644 if (!isa<llvm::PointerType>(SrcTy)) { 7645 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7646 assert(Size <= 8 && "does not support size > 8"); 7647 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7648 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7649 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7650 } 7651 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7652 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7653 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7654 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7655 } 7656 7657 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7658 /// objc_assign_strongCast (id src, id *dst) 7659 /// 7660 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7661 CodeGen::CodeGenFunction &CGF, 7662 llvm::Value *src, Address dst) { 7663 llvm::Type * SrcTy = src->getType(); 7664 if (!isa<llvm::PointerType>(SrcTy)) { 7665 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7666 assert(Size <= 8 && "does not support size > 8"); 7667 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7668 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7669 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7670 } 7671 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7672 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7673 llvm::Value *args[] = { src, dst.getPointer() }; 7674 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7675 args, "weakassign"); 7676 } 7677 7678 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7679 CodeGen::CodeGenFunction &CGF, 7680 Address DestPtr, 7681 Address SrcPtr, 7682 llvm::Value *Size) { 7683 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7684 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7685 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7686 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7687 } 7688 7689 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7690 /// object: objc_read_weak (id *src) 7691 /// 7692 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7693 CodeGen::CodeGenFunction &CGF, 7694 Address AddrWeakObj) { 7695 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7696 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7697 llvm::Value *read_weak = 7698 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7699 AddrWeakObj.getPointer(), "weakread"); 7700 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7701 return read_weak; 7702 } 7703 7704 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7705 /// objc_assign_weak (id src, id *dst) 7706 /// 7707 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7708 llvm::Value *src, Address dst) { 7709 llvm::Type * SrcTy = src->getType(); 7710 if (!isa<llvm::PointerType>(SrcTy)) { 7711 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7712 assert(Size <= 8 && "does not support size > 8"); 7713 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7714 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7715 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7716 } 7717 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7718 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7719 llvm::Value *args[] = { src, dst.getPointer() }; 7720 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7721 args, "weakassign"); 7722 } 7723 7724 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7725 /// objc_assign_global (id src, id *dst) 7726 /// 7727 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7728 llvm::Value *src, Address dst, 7729 bool threadlocal) { 7730 llvm::Type * SrcTy = src->getType(); 7731 if (!isa<llvm::PointerType>(SrcTy)) { 7732 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7733 assert(Size <= 8 && "does not support size > 8"); 7734 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7735 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7736 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7737 } 7738 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7739 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7740 llvm::Value *args[] = { src, dst.getPointer() }; 7741 if (!threadlocal) 7742 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7743 args, "globalassign"); 7744 else 7745 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7746 args, "threadlocalassign"); 7747 } 7748 7749 void 7750 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7751 const ObjCAtSynchronizedStmt &S) { 7752 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7753 ObjCTypes.getSyncExitFn()); 7754 } 7755 7756 llvm::Constant * 7757 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7758 // There's a particular fixed type info for 'id'. 7759 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7760 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7761 if (!IDEHType) { 7762 IDEHType = 7763 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7764 llvm::GlobalValue::ExternalLinkage, nullptr, 7765 "OBJC_EHTYPE_id"); 7766 if (CGM.getTriple().isOSBinFormatCOFF()) 7767 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7768 } 7769 return IDEHType; 7770 } 7771 7772 // All other types should be Objective-C interface pointer types. 7773 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7774 assert(PT && "Invalid @catch type."); 7775 7776 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7777 assert(IT && "Invalid @catch type."); 7778 7779 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7780 } 7781 7782 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7783 const ObjCAtTryStmt &S) { 7784 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7785 ObjCTypes.getObjCEndCatchFn(), 7786 ObjCTypes.getExceptionRethrowFn()); 7787 } 7788 7789 /// EmitThrowStmt - Generate code for a throw statement. 7790 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7791 const ObjCAtThrowStmt &S, 7792 bool ClearInsertionPoint) { 7793 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7794 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7795 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7796 llvm::CallBase *Call = 7797 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7798 Call->setDoesNotReturn(); 7799 } else { 7800 llvm::CallBase *Call = 7801 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7802 Call->setDoesNotReturn(); 7803 } 7804 7805 CGF.Builder.CreateUnreachable(); 7806 if (ClearInsertionPoint) 7807 CGF.Builder.ClearInsertionPoint(); 7808 } 7809 7810 llvm::Constant * 7811 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7812 ForDefinition_t IsForDefinition) { 7813 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7814 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7815 7816 // If we don't need a definition, return the entry if found or check 7817 // if we use an external reference. 7818 if (!IsForDefinition) { 7819 if (Entry) 7820 return Entry; 7821 7822 // If this type (or a super class) has the __objc_exception__ 7823 // attribute, emit an external reference. 7824 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7825 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7826 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7827 false, llvm::GlobalValue::ExternalLinkage, 7828 nullptr, EHTypeName); 7829 CGM.setGVProperties(Entry, ID); 7830 return Entry; 7831 } 7832 } 7833 7834 // Otherwise we need to either make a new entry or fill in the initializer. 7835 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7836 7837 std::string VTableName = "objc_ehtype_vtable"; 7838 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7839 if (!VTableGV) { 7840 VTableGV = 7841 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7842 llvm::GlobalValue::ExternalLinkage, nullptr, 7843 VTableName); 7844 if (CGM.getTriple().isOSBinFormatCOFF()) 7845 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7846 } 7847 7848 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7849 ConstantInitBuilder builder(CGM); 7850 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7851 values.add( 7852 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7853 VTableGV, VTableIdx)); 7854 values.add(GetClassName(ClassName)); 7855 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7856 7857 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7858 ? llvm::GlobalValue::ExternalLinkage 7859 : llvm::GlobalValue::WeakAnyLinkage; 7860 if (Entry) { 7861 values.finishAndSetAsInitializer(Entry); 7862 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7863 } else { 7864 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7865 CGM.getPointerAlign(), 7866 /*constant*/ false, 7867 L); 7868 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7869 CGM.setGVProperties(Entry, ID); 7870 } 7871 assert(Entry->getLinkage() == L); 7872 7873 if (!CGM.getTriple().isOSBinFormatCOFF()) 7874 if (ID->getVisibility() == HiddenVisibility) 7875 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7876 7877 if (IsForDefinition) 7878 if (CGM.getTriple().isOSBinFormatMachO()) 7879 Entry->setSection("__DATA,__objc_const"); 7880 7881 return Entry; 7882 } 7883 7884 /* *** */ 7885 7886 CodeGen::CGObjCRuntime * 7887 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7888 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7889 case ObjCRuntime::FragileMacOSX: 7890 return new CGObjCMac(CGM); 7891 7892 case ObjCRuntime::MacOSX: 7893 case ObjCRuntime::iOS: 7894 case ObjCRuntime::WatchOS: 7895 return new CGObjCNonFragileABIMac(CGM); 7896 7897 case ObjCRuntime::GNUstep: 7898 case ObjCRuntime::GCC: 7899 case ObjCRuntime::ObjFW: 7900 llvm_unreachable("these runtimes are not Mac runtimes"); 7901 } 7902 llvm_unreachable("bad runtime"); 7903 } 7904