xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CGObjCGNU.cpp (revision 46c59ea9b61755455ff6bf9f3e7b834e1af634ea)
1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides Objective-C code generation targeting the GNU runtime.  The
10 // class in this file generates structures used by the GNU Objective-C runtime
11 // library.  These structures are defined in objc/objc.h and objc/objc-api.h in
12 // the GNU runtime distribution.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/Basic/FileManager.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/CodeGen/ConstantInitBuilder.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringMap.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include <cctype>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 
43 namespace {
44 
45 /// Class that lazily initialises the runtime function.  Avoids inserting the
46 /// types and the function declaration into a module if they're not used, and
47 /// avoids constructing the type more than once if it's used more than once.
48 class LazyRuntimeFunction {
49   CodeGenModule *CGM = nullptr;
50   llvm::FunctionType *FTy = nullptr;
51   const char *FunctionName = nullptr;
52   llvm::FunctionCallee Function = nullptr;
53 
54 public:
55   LazyRuntimeFunction() = default;
56 
57   /// Initialises the lazy function with the name, return type, and the types
58   /// of the arguments.
59   template <typename... Tys>
60   void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
61             Tys *... Types) {
62     CGM = Mod;
63     FunctionName = name;
64     Function = nullptr;
65     if(sizeof...(Tys)) {
66       SmallVector<llvm::Type *, 8> ArgTys({Types...});
67       FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
68     }
69     else {
70       FTy = llvm::FunctionType::get(RetTy, std::nullopt, false);
71     }
72   }
73 
74   llvm::FunctionType *getType() { return FTy; }
75 
76   /// Overloaded cast operator, allows the class to be implicitly cast to an
77   /// LLVM constant.
78   operator llvm::FunctionCallee() {
79     if (!Function) {
80       if (!FunctionName)
81         return nullptr;
82       Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
83     }
84     return Function;
85   }
86 };
87 
88 
89 /// GNU Objective-C runtime code generation.  This class implements the parts of
90 /// Objective-C support that are specific to the GNU family of runtimes (GCC,
91 /// GNUstep and ObjFW).
92 class CGObjCGNU : public CGObjCRuntime {
93 protected:
94   /// The LLVM module into which output is inserted
95   llvm::Module &TheModule;
96   /// strut objc_super.  Used for sending messages to super.  This structure
97   /// contains the receiver (object) and the expected class.
98   llvm::StructType *ObjCSuperTy;
99   /// struct objc_super*.  The type of the argument to the superclass message
100   /// lookup functions.
101   llvm::PointerType *PtrToObjCSuperTy;
102   /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
103   /// SEL is included in a header somewhere, in which case it will be whatever
104   /// type is declared in that header, most likely {i8*, i8*}.
105   llvm::PointerType *SelectorTy;
106   /// Element type of SelectorTy.
107   llvm::Type *SelectorElemTy;
108   /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
109   /// places where it's used
110   llvm::IntegerType *Int8Ty;
111   /// Pointer to i8 - LLVM type of char*, for all of the places where the
112   /// runtime needs to deal with C strings.
113   llvm::PointerType *PtrToInt8Ty;
114   /// struct objc_protocol type
115   llvm::StructType *ProtocolTy;
116   /// Protocol * type.
117   llvm::PointerType *ProtocolPtrTy;
118   /// Instance Method Pointer type.  This is a pointer to a function that takes,
119   /// at a minimum, an object and a selector, and is the generic type for
120   /// Objective-C methods.  Due to differences between variadic / non-variadic
121   /// calling conventions, it must always be cast to the correct type before
122   /// actually being used.
123   llvm::PointerType *IMPTy;
124   /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
125   /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
126   /// but if the runtime header declaring it is included then it may be a
127   /// pointer to a structure.
128   llvm::PointerType *IdTy;
129   /// Element type of IdTy.
130   llvm::Type *IdElemTy;
131   /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
132   /// message lookup function and some GC-related functions.
133   llvm::PointerType *PtrToIdTy;
134   /// The clang type of id.  Used when using the clang CGCall infrastructure to
135   /// call Objective-C methods.
136   CanQualType ASTIdTy;
137   /// LLVM type for C int type.
138   llvm::IntegerType *IntTy;
139   /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
140   /// used in the code to document the difference between i8* meaning a pointer
141   /// to a C string and i8* meaning a pointer to some opaque type.
142   llvm::PointerType *PtrTy;
143   /// LLVM type for C long type.  The runtime uses this in a lot of places where
144   /// it should be using intptr_t, but we can't fix this without breaking
145   /// compatibility with GCC...
146   llvm::IntegerType *LongTy;
147   /// LLVM type for C size_t.  Used in various runtime data structures.
148   llvm::IntegerType *SizeTy;
149   /// LLVM type for C intptr_t.
150   llvm::IntegerType *IntPtrTy;
151   /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
152   llvm::IntegerType *PtrDiffTy;
153   /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
154   /// variables.
155   llvm::PointerType *PtrToIntTy;
156   /// LLVM type for Objective-C BOOL type.
157   llvm::Type *BoolTy;
158   /// 32-bit integer type, to save us needing to look it up every time it's used.
159   llvm::IntegerType *Int32Ty;
160   /// 64-bit integer type, to save us needing to look it up every time it's used.
161   llvm::IntegerType *Int64Ty;
162   /// The type of struct objc_property.
163   llvm::StructType *PropertyMetadataTy;
164   /// Metadata kind used to tie method lookups to message sends.  The GNUstep
165   /// runtime provides some LLVM passes that can use this to do things like
166   /// automatic IMP caching and speculative inlining.
167   unsigned msgSendMDKind;
168   /// Does the current target use SEH-based exceptions? False implies
169   /// Itanium-style DWARF unwinding.
170   bool usesSEHExceptions;
171   /// Does the current target uses C++-based exceptions?
172   bool usesCxxExceptions;
173 
174   /// Helper to check if we are targeting a specific runtime version or later.
175   bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
176     const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
177     return (R.getKind() == kind) &&
178       (R.getVersion() >= VersionTuple(major, minor));
179   }
180 
181   std::string ManglePublicSymbol(StringRef Name) {
182     return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
183   }
184 
185   std::string SymbolForProtocol(Twine Name) {
186     return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
187   }
188 
189   std::string SymbolForProtocolRef(StringRef Name) {
190     return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
191   }
192 
193 
194   /// Helper function that generates a constant string and returns a pointer to
195   /// the start of the string.  The result of this function can be used anywhere
196   /// where the C code specifies const char*.
197   llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
198     ConstantAddress Array =
199         CGM.GetAddrOfConstantCString(std::string(Str), Name);
200     return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
201                                                 Array.getPointer(), Zeros);
202   }
203 
204   /// Emits a linkonce_odr string, whose name is the prefix followed by the
205   /// string value.  This allows the linker to combine the strings between
206   /// different modules.  Used for EH typeinfo names, selector strings, and a
207   /// few other things.
208   llvm::Constant *ExportUniqueString(const std::string &Str,
209                                      const std::string &prefix,
210                                      bool Private=false) {
211     std::string name = prefix + Str;
212     auto *ConstStr = TheModule.getGlobalVariable(name);
213     if (!ConstStr) {
214       llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
215       auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
216               llvm::GlobalValue::LinkOnceODRLinkage, value, name);
217       GV->setComdat(TheModule.getOrInsertComdat(name));
218       if (Private)
219         GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
220       ConstStr = GV;
221     }
222     return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
223                                                 ConstStr, Zeros);
224   }
225 
226   /// Returns a property name and encoding string.
227   llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
228                                              const Decl *Container) {
229     assert(!isRuntime(ObjCRuntime::GNUstep, 2));
230     if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
231       std::string NameAndAttributes;
232       std::string TypeStr =
233         CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
234       NameAndAttributes += '\0';
235       NameAndAttributes += TypeStr.length() + 3;
236       NameAndAttributes += TypeStr;
237       NameAndAttributes += '\0';
238       NameAndAttributes += PD->getNameAsString();
239       return MakeConstantString(NameAndAttributes);
240     }
241     return MakeConstantString(PD->getNameAsString());
242   }
243 
244   /// Push the property attributes into two structure fields.
245   void PushPropertyAttributes(ConstantStructBuilder &Fields,
246       const ObjCPropertyDecl *property, bool isSynthesized=true, bool
247       isDynamic=true) {
248     int attrs = property->getPropertyAttributes();
249     // For read-only properties, clear the copy and retain flags
250     if (attrs & ObjCPropertyAttribute::kind_readonly) {
251       attrs &= ~ObjCPropertyAttribute::kind_copy;
252       attrs &= ~ObjCPropertyAttribute::kind_retain;
253       attrs &= ~ObjCPropertyAttribute::kind_weak;
254       attrs &= ~ObjCPropertyAttribute::kind_strong;
255     }
256     // The first flags field has the same attribute values as clang uses internally
257     Fields.addInt(Int8Ty, attrs & 0xff);
258     attrs >>= 8;
259     attrs <<= 2;
260     // For protocol properties, synthesized and dynamic have no meaning, so we
261     // reuse these flags to indicate that this is a protocol property (both set
262     // has no meaning, as a property can't be both synthesized and dynamic)
263     attrs |= isSynthesized ? (1<<0) : 0;
264     attrs |= isDynamic ? (1<<1) : 0;
265     // The second field is the next four fields left shifted by two, with the
266     // low bit set to indicate whether the field is synthesized or dynamic.
267     Fields.addInt(Int8Ty, attrs & 0xff);
268     // Two padding fields
269     Fields.addInt(Int8Ty, 0);
270     Fields.addInt(Int8Ty, 0);
271   }
272 
273   virtual llvm::Constant *GenerateCategoryProtocolList(const
274       ObjCCategoryDecl *OCD);
275   virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
276       int count) {
277       // int count;
278       Fields.addInt(IntTy, count);
279       // int size; (only in GNUstep v2 ABI.
280       if (isRuntime(ObjCRuntime::GNUstep, 2)) {
281         llvm::DataLayout td(&TheModule);
282         Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
283             CGM.getContext().getCharWidth());
284       }
285       // struct objc_property_list *next;
286       Fields.add(NULLPtr);
287       // struct objc_property properties[]
288       return Fields.beginArray(PropertyMetadataTy);
289   }
290   virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
291             const ObjCPropertyDecl *property,
292             const Decl *OCD,
293             bool isSynthesized=true, bool
294             isDynamic=true) {
295     auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
296     ASTContext &Context = CGM.getContext();
297     Fields.add(MakePropertyEncodingString(property, OCD));
298     PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
299     auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
300       if (accessor) {
301         std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
302         llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
303         Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
304         Fields.add(TypeEncoding);
305       } else {
306         Fields.add(NULLPtr);
307         Fields.add(NULLPtr);
308       }
309     };
310     addPropertyMethod(property->getGetterMethodDecl());
311     addPropertyMethod(property->getSetterMethodDecl());
312     Fields.finishAndAddTo(PropertiesArray);
313   }
314 
315   /// Ensures that the value has the required type, by inserting a bitcast if
316   /// required.  This function lets us avoid inserting bitcasts that are
317   /// redundant.
318   llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
319     if (V->getType() == Ty)
320       return V;
321     return B.CreateBitCast(V, Ty);
322   }
323 
324   // Some zeros used for GEPs in lots of places.
325   llvm::Constant *Zeros[2];
326   /// Null pointer value.  Mainly used as a terminator in various arrays.
327   llvm::Constant *NULLPtr;
328   /// LLVM context.
329   llvm::LLVMContext &VMContext;
330 
331 protected:
332 
333   /// Placeholder for the class.  Lots of things refer to the class before we've
334   /// actually emitted it.  We use this alias as a placeholder, and then replace
335   /// it with a pointer to the class structure before finally emitting the
336   /// module.
337   llvm::GlobalAlias *ClassPtrAlias;
338   /// Placeholder for the metaclass.  Lots of things refer to the class before
339   /// we've / actually emitted it.  We use this alias as a placeholder, and then
340   /// replace / it with a pointer to the metaclass structure before finally
341   /// emitting the / module.
342   llvm::GlobalAlias *MetaClassPtrAlias;
343   /// All of the classes that have been generated for this compilation units.
344   std::vector<llvm::Constant*> Classes;
345   /// All of the categories that have been generated for this compilation units.
346   std::vector<llvm::Constant*> Categories;
347   /// All of the Objective-C constant strings that have been generated for this
348   /// compilation units.
349   std::vector<llvm::Constant*> ConstantStrings;
350   /// Map from string values to Objective-C constant strings in the output.
351   /// Used to prevent emitting Objective-C strings more than once.  This should
352   /// not be required at all - CodeGenModule should manage this list.
353   llvm::StringMap<llvm::Constant*> ObjCStrings;
354   /// All of the protocols that have been declared.
355   llvm::StringMap<llvm::Constant*> ExistingProtocols;
356   /// For each variant of a selector, we store the type encoding and a
357   /// placeholder value.  For an untyped selector, the type will be the empty
358   /// string.  Selector references are all done via the module's selector table,
359   /// so we create an alias as a placeholder and then replace it with the real
360   /// value later.
361   typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
362   /// Type of the selector map.  This is roughly equivalent to the structure
363   /// used in the GNUstep runtime, which maintains a list of all of the valid
364   /// types for a selector in a table.
365   typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
366     SelectorMap;
367   /// A map from selectors to selector types.  This allows us to emit all
368   /// selectors of the same name and type together.
369   SelectorMap SelectorTable;
370 
371   /// Selectors related to memory management.  When compiling in GC mode, we
372   /// omit these.
373   Selector RetainSel, ReleaseSel, AutoreleaseSel;
374   /// Runtime functions used for memory management in GC mode.  Note that clang
375   /// supports code generation for calling these functions, but neither GNU
376   /// runtime actually supports this API properly yet.
377   LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
378     WeakAssignFn, GlobalAssignFn;
379 
380   typedef std::pair<std::string, std::string> ClassAliasPair;
381   /// All classes that have aliases set for them.
382   std::vector<ClassAliasPair> ClassAliases;
383 
384 protected:
385   /// Function used for throwing Objective-C exceptions.
386   LazyRuntimeFunction ExceptionThrowFn;
387   /// Function used for rethrowing exceptions, used at the end of \@finally or
388   /// \@synchronize blocks.
389   LazyRuntimeFunction ExceptionReThrowFn;
390   /// Function called when entering a catch function.  This is required for
391   /// differentiating Objective-C exceptions and foreign exceptions.
392   LazyRuntimeFunction EnterCatchFn;
393   /// Function called when exiting from a catch block.  Used to do exception
394   /// cleanup.
395   LazyRuntimeFunction ExitCatchFn;
396   /// Function called when entering an \@synchronize block.  Acquires the lock.
397   LazyRuntimeFunction SyncEnterFn;
398   /// Function called when exiting an \@synchronize block.  Releases the lock.
399   LazyRuntimeFunction SyncExitFn;
400 
401 private:
402   /// Function called if fast enumeration detects that the collection is
403   /// modified during the update.
404   LazyRuntimeFunction EnumerationMutationFn;
405   /// Function for implementing synthesized property getters that return an
406   /// object.
407   LazyRuntimeFunction GetPropertyFn;
408   /// Function for implementing synthesized property setters that return an
409   /// object.
410   LazyRuntimeFunction SetPropertyFn;
411   /// Function used for non-object declared property getters.
412   LazyRuntimeFunction GetStructPropertyFn;
413   /// Function used for non-object declared property setters.
414   LazyRuntimeFunction SetStructPropertyFn;
415 
416 protected:
417   /// The version of the runtime that this class targets.  Must match the
418   /// version in the runtime.
419   int RuntimeVersion;
420   /// The version of the protocol class.  Used to differentiate between ObjC1
421   /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
422   /// components and can not contain declared properties.  We always emit
423   /// Objective-C 2 property structures, but we have to pretend that they're
424   /// Objective-C 1 property structures when targeting the GCC runtime or it
425   /// will abort.
426   const int ProtocolVersion;
427   /// The version of the class ABI.  This value is used in the class structure
428   /// and indicates how various fields should be interpreted.
429   const int ClassABIVersion;
430   /// Generates an instance variable list structure.  This is a structure
431   /// containing a size and an array of structures containing instance variable
432   /// metadata.  This is used purely for introspection in the fragile ABI.  In
433   /// the non-fragile ABI, it's used for instance variable fixup.
434   virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
435                              ArrayRef<llvm::Constant *> IvarTypes,
436                              ArrayRef<llvm::Constant *> IvarOffsets,
437                              ArrayRef<llvm::Constant *> IvarAlign,
438                              ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
439 
440   /// Generates a method list structure.  This is a structure containing a size
441   /// and an array of structures containing method metadata.
442   ///
443   /// This structure is used by both classes and categories, and contains a next
444   /// pointer allowing them to be chained together in a linked list.
445   llvm::Constant *GenerateMethodList(StringRef ClassName,
446       StringRef CategoryName,
447       ArrayRef<const ObjCMethodDecl*> Methods,
448       bool isClassMethodList);
449 
450   /// Emits an empty protocol.  This is used for \@protocol() where no protocol
451   /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
452   /// real protocol.
453   virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
454 
455   /// Generates a list of property metadata structures.  This follows the same
456   /// pattern as method and instance variable metadata lists.
457   llvm::Constant *GeneratePropertyList(const Decl *Container,
458       const ObjCContainerDecl *OCD,
459       bool isClassProperty=false,
460       bool protocolOptionalProperties=false);
461 
462   /// Generates a list of referenced protocols.  Classes, categories, and
463   /// protocols all use this structure.
464   llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
465 
466   /// To ensure that all protocols are seen by the runtime, we add a category on
467   /// a class defined in the runtime, declaring no methods, but adopting the
468   /// protocols.  This is a horribly ugly hack, but it allows us to collect all
469   /// of the protocols without changing the ABI.
470   void GenerateProtocolHolderCategory();
471 
472   /// Generates a class structure.
473   llvm::Constant *GenerateClassStructure(
474       llvm::Constant *MetaClass,
475       llvm::Constant *SuperClass,
476       unsigned info,
477       const char *Name,
478       llvm::Constant *Version,
479       llvm::Constant *InstanceSize,
480       llvm::Constant *IVars,
481       llvm::Constant *Methods,
482       llvm::Constant *Protocols,
483       llvm::Constant *IvarOffsets,
484       llvm::Constant *Properties,
485       llvm::Constant *StrongIvarBitmap,
486       llvm::Constant *WeakIvarBitmap,
487       bool isMeta=false);
488 
489   /// Generates a method list.  This is used by protocols to define the required
490   /// and optional methods.
491   virtual llvm::Constant *GenerateProtocolMethodList(
492       ArrayRef<const ObjCMethodDecl*> Methods);
493   /// Emits optional and required method lists.
494   template<class T>
495   void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
496       llvm::Constant *&Optional) {
497     SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
498     SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
499     for (const auto *I : Methods)
500       if (I->isOptional())
501         OptionalMethods.push_back(I);
502       else
503         RequiredMethods.push_back(I);
504     Required = GenerateProtocolMethodList(RequiredMethods);
505     Optional = GenerateProtocolMethodList(OptionalMethods);
506   }
507 
508   /// Returns a selector with the specified type encoding.  An empty string is
509   /// used to return an untyped selector (with the types field set to NULL).
510   virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
511                                         const std::string &TypeEncoding);
512 
513   /// Returns the name of ivar offset variables.  In the GNUstep v1 ABI, this
514   /// contains the class and ivar names, in the v2 ABI this contains the type
515   /// encoding as well.
516   virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
517                                                 const ObjCIvarDecl *Ivar) {
518     const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
519       + '.' + Ivar->getNameAsString();
520     return Name;
521   }
522   /// Returns the variable used to store the offset of an instance variable.
523   llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
524       const ObjCIvarDecl *Ivar);
525   /// Emits a reference to a class.  This allows the linker to object if there
526   /// is no class of the matching name.
527   void EmitClassRef(const std::string &className);
528 
529   /// Emits a pointer to the named class
530   virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
531                                      const std::string &Name, bool isWeak);
532 
533   /// Looks up the method for sending a message to the specified object.  This
534   /// mechanism differs between the GCC and GNU runtimes, so this method must be
535   /// overridden in subclasses.
536   virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
537                                  llvm::Value *&Receiver,
538                                  llvm::Value *cmd,
539                                  llvm::MDNode *node,
540                                  MessageSendInfo &MSI) = 0;
541 
542   /// Looks up the method for sending a message to a superclass.  This
543   /// mechanism differs between the GCC and GNU runtimes, so this method must
544   /// be overridden in subclasses.
545   virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
546                                       Address ObjCSuper,
547                                       llvm::Value *cmd,
548                                       MessageSendInfo &MSI) = 0;
549 
550   /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
551   /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
552   /// bits set to their values, LSB first, while larger ones are stored in a
553   /// structure of this / form:
554   ///
555   /// struct { int32_t length; int32_t values[length]; };
556   ///
557   /// The values in the array are stored in host-endian format, with the least
558   /// significant bit being assumed to come first in the bitfield.  Therefore,
559   /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
560   /// while a bitfield / with the 63rd bit set will be 1<<64.
561   llvm::Constant *MakeBitField(ArrayRef<bool> bits);
562 
563 public:
564   CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
565       unsigned protocolClassVersion, unsigned classABI=1);
566 
567   ConstantAddress GenerateConstantString(const StringLiteral *) override;
568 
569   RValue
570   GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
571                       QualType ResultType, Selector Sel,
572                       llvm::Value *Receiver, const CallArgList &CallArgs,
573                       const ObjCInterfaceDecl *Class,
574                       const ObjCMethodDecl *Method) override;
575   RValue
576   GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
577                            QualType ResultType, Selector Sel,
578                            const ObjCInterfaceDecl *Class,
579                            bool isCategoryImpl, llvm::Value *Receiver,
580                            bool IsClassMessage, const CallArgList &CallArgs,
581                            const ObjCMethodDecl *Method) override;
582   llvm::Value *GetClass(CodeGenFunction &CGF,
583                         const ObjCInterfaceDecl *OID) override;
584   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
585   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
586   llvm::Value *GetSelector(CodeGenFunction &CGF,
587                            const ObjCMethodDecl *Method) override;
588   virtual llvm::Constant *GetConstantSelector(Selector Sel,
589                                               const std::string &TypeEncoding) {
590     llvm_unreachable("Runtime unable to generate constant selector");
591   }
592   llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
593     return GetConstantSelector(M->getSelector(),
594         CGM.getContext().getObjCEncodingForMethodDecl(M));
595   }
596   llvm::Constant *GetEHType(QualType T) override;
597 
598   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
599                                  const ObjCContainerDecl *CD) override;
600   void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
601                                     const ObjCMethodDecl *OMD,
602                                     const ObjCContainerDecl *CD) override;
603   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
604   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
605   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
606   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
607                                    const ObjCProtocolDecl *PD) override;
608   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
609 
610   virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
611 
612   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
613     return GenerateProtocolRef(PD);
614   }
615 
616   llvm::Function *ModuleInitFunction() override;
617   llvm::FunctionCallee GetPropertyGetFunction() override;
618   llvm::FunctionCallee GetPropertySetFunction() override;
619   llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
620                                                        bool copy) override;
621   llvm::FunctionCallee GetSetStructFunction() override;
622   llvm::FunctionCallee GetGetStructFunction() override;
623   llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
624   llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
625   llvm::FunctionCallee EnumerationMutationFunction() override;
626 
627   void EmitTryStmt(CodeGenFunction &CGF,
628                    const ObjCAtTryStmt &S) override;
629   void EmitSynchronizedStmt(CodeGenFunction &CGF,
630                             const ObjCAtSynchronizedStmt &S) override;
631   void EmitThrowStmt(CodeGenFunction &CGF,
632                      const ObjCAtThrowStmt &S,
633                      bool ClearInsertionPoint=true) override;
634   llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
635                                  Address AddrWeakObj) override;
636   void EmitObjCWeakAssign(CodeGenFunction &CGF,
637                           llvm::Value *src, Address dst) override;
638   void EmitObjCGlobalAssign(CodeGenFunction &CGF,
639                             llvm::Value *src, Address dest,
640                             bool threadlocal=false) override;
641   void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
642                           Address dest, llvm::Value *ivarOffset) override;
643   void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
644                                 llvm::Value *src, Address dest) override;
645   void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
646                                 Address SrcPtr,
647                                 llvm::Value *Size) override;
648   LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
649                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
650                               unsigned CVRQualifiers) override;
651   llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
652                               const ObjCInterfaceDecl *Interface,
653                               const ObjCIvarDecl *Ivar) override;
654   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
655   llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
656                                      const CGBlockInfo &blockInfo) override {
657     return NULLPtr;
658   }
659   llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
660                                      const CGBlockInfo &blockInfo) override {
661     return NULLPtr;
662   }
663 
664   llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
665     return NULLPtr;
666   }
667 };
668 
669 /// Class representing the legacy GCC Objective-C ABI.  This is the default when
670 /// -fobjc-nonfragile-abi is not specified.
671 ///
672 /// The GCC ABI target actually generates code that is approximately compatible
673 /// with the new GNUstep runtime ABI, but refrains from using any features that
674 /// would not work with the GCC runtime.  For example, clang always generates
675 /// the extended form of the class structure, and the extra fields are simply
676 /// ignored by GCC libobjc.
677 class CGObjCGCC : public CGObjCGNU {
678   /// The GCC ABI message lookup function.  Returns an IMP pointing to the
679   /// method implementation for this message.
680   LazyRuntimeFunction MsgLookupFn;
681   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
682   /// structure describing the receiver and the class, and a selector as
683   /// arguments.  Returns the IMP for the corresponding method.
684   LazyRuntimeFunction MsgLookupSuperFn;
685 
686 protected:
687   llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
688                          llvm::Value *cmd, llvm::MDNode *node,
689                          MessageSendInfo &MSI) override {
690     CGBuilderTy &Builder = CGF.Builder;
691     llvm::Value *args[] = {
692             EnforceType(Builder, Receiver, IdTy),
693             EnforceType(Builder, cmd, SelectorTy) };
694     llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
695     imp->setMetadata(msgSendMDKind, node);
696     return imp;
697   }
698 
699   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
700                               llvm::Value *cmd, MessageSendInfo &MSI) override {
701     CGBuilderTy &Builder = CGF.Builder;
702     llvm::Value *lookupArgs[] = {
703         EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd};
704     return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
705   }
706 
707 public:
708   CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
709     // IMP objc_msg_lookup(id, SEL);
710     MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
711     // IMP objc_msg_lookup_super(struct objc_super*, SEL);
712     MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
713                           PtrToObjCSuperTy, SelectorTy);
714   }
715 };
716 
717 /// Class used when targeting the new GNUstep runtime ABI.
718 class CGObjCGNUstep : public CGObjCGNU {
719     /// The slot lookup function.  Returns a pointer to a cacheable structure
720     /// that contains (among other things) the IMP.
721     LazyRuntimeFunction SlotLookupFn;
722     /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
723     /// a structure describing the receiver and the class, and a selector as
724     /// arguments.  Returns the slot for the corresponding method.  Superclass
725     /// message lookup rarely changes, so this is a good caching opportunity.
726     LazyRuntimeFunction SlotLookupSuperFn;
727     /// Specialised function for setting atomic retain properties
728     LazyRuntimeFunction SetPropertyAtomic;
729     /// Specialised function for setting atomic copy properties
730     LazyRuntimeFunction SetPropertyAtomicCopy;
731     /// Specialised function for setting nonatomic retain properties
732     LazyRuntimeFunction SetPropertyNonAtomic;
733     /// Specialised function for setting nonatomic copy properties
734     LazyRuntimeFunction SetPropertyNonAtomicCopy;
735     /// Function to perform atomic copies of C++ objects with nontrivial copy
736     /// constructors from Objective-C ivars.
737     LazyRuntimeFunction CxxAtomicObjectGetFn;
738     /// Function to perform atomic copies of C++ objects with nontrivial copy
739     /// constructors to Objective-C ivars.
740     LazyRuntimeFunction CxxAtomicObjectSetFn;
741     /// Type of a slot structure pointer.  This is returned by the various
742     /// lookup functions.
743     llvm::Type *SlotTy;
744     /// Type of a slot structure.
745     llvm::Type *SlotStructTy;
746 
747   public:
748     llvm::Constant *GetEHType(QualType T) override;
749 
750   protected:
751     llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
752                            llvm::Value *cmd, llvm::MDNode *node,
753                            MessageSendInfo &MSI) override {
754       CGBuilderTy &Builder = CGF.Builder;
755       llvm::FunctionCallee LookupFn = SlotLookupFn;
756 
757       // Store the receiver on the stack so that we can reload it later
758       Address ReceiverPtr =
759         CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
760       Builder.CreateStore(Receiver, ReceiverPtr);
761 
762       llvm::Value *self;
763 
764       if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
765         self = CGF.LoadObjCSelf();
766       } else {
767         self = llvm::ConstantPointerNull::get(IdTy);
768       }
769 
770       // The lookup function is guaranteed not to capture the receiver pointer.
771       if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
772         LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture);
773 
774       llvm::Value *args[] = {
775               EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
776               EnforceType(Builder, cmd, SelectorTy),
777               EnforceType(Builder, self, IdTy) };
778       llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
779       slot->setOnlyReadsMemory();
780       slot->setMetadata(msgSendMDKind, node);
781 
782       // Load the imp from the slot
783       llvm::Value *imp = Builder.CreateAlignedLoad(
784           IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
785           CGF.getPointerAlign());
786 
787       // The lookup function may have changed the receiver, so make sure we use
788       // the new one.
789       Receiver = Builder.CreateLoad(ReceiverPtr, true);
790       return imp;
791     }
792 
793     llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
794                                 llvm::Value *cmd,
795                                 MessageSendInfo &MSI) override {
796       CGBuilderTy &Builder = CGF.Builder;
797       llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
798 
799       llvm::CallInst *slot =
800         CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
801       slot->setOnlyReadsMemory();
802 
803       return Builder.CreateAlignedLoad(
804           IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
805           CGF.getPointerAlign());
806     }
807 
808   public:
809     CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
810     CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
811         unsigned ClassABI) :
812       CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
813       const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
814 
815       SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
816       SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
817       // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
818       SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
819                         SelectorTy, IdTy);
820       // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
821       SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
822                              PtrToObjCSuperTy, SelectorTy);
823       // If we're in ObjC++ mode, then we want to make
824       llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
825       if (usesCxxExceptions) {
826         // void *__cxa_begin_catch(void *e)
827         EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
828         // void __cxa_end_catch(void)
829         ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
830         // void objc_exception_rethrow(void*)
831         ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy);
832       } else if (usesSEHExceptions) {
833         // void objc_exception_rethrow(void)
834         ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
835       } else if (CGM.getLangOpts().CPlusPlus) {
836         // void *__cxa_begin_catch(void *e)
837         EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
838         // void __cxa_end_catch(void)
839         ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
840         // void _Unwind_Resume_or_Rethrow(void*)
841         ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
842                                 PtrTy);
843       } else if (R.getVersion() >= VersionTuple(1, 7)) {
844         // id objc_begin_catch(void *e)
845         EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
846         // void objc_end_catch(void)
847         ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
848         // void _Unwind_Resume_or_Rethrow(void*)
849         ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
850       }
851       SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
852                              SelectorTy, IdTy, PtrDiffTy);
853       SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
854                                  IdTy, SelectorTy, IdTy, PtrDiffTy);
855       SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
856                                 IdTy, SelectorTy, IdTy, PtrDiffTy);
857       SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
858                                     VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
859       // void objc_setCppObjectAtomic(void *dest, const void *src, void
860       // *helper);
861       CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
862                                 PtrTy, PtrTy);
863       // void objc_getCppObjectAtomic(void *dest, const void *src, void
864       // *helper);
865       CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
866                                 PtrTy, PtrTy);
867     }
868 
869     llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
870       // The optimised functions were added in version 1.7 of the GNUstep
871       // runtime.
872       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
873           VersionTuple(1, 7));
874       return CxxAtomicObjectGetFn;
875     }
876 
877     llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
878       // The optimised functions were added in version 1.7 of the GNUstep
879       // runtime.
880       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
881           VersionTuple(1, 7));
882       return CxxAtomicObjectSetFn;
883     }
884 
885     llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
886                                                          bool copy) override {
887       // The optimised property functions omit the GC check, and so are not
888       // safe to use in GC mode.  The standard functions are fast in GC mode,
889       // so there is less advantage in using them.
890       assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
891       // The optimised functions were added in version 1.7 of the GNUstep
892       // runtime.
893       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
894           VersionTuple(1, 7));
895 
896       if (atomic) {
897         if (copy) return SetPropertyAtomicCopy;
898         return SetPropertyAtomic;
899       }
900 
901       return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
902     }
903 };
904 
905 /// GNUstep Objective-C ABI version 2 implementation.
906 /// This is the ABI that provides a clean break with the legacy GCC ABI and
907 /// cleans up a number of things that were added to work around 1980s linkers.
908 class CGObjCGNUstep2 : public CGObjCGNUstep {
909   enum SectionKind
910   {
911     SelectorSection = 0,
912     ClassSection,
913     ClassReferenceSection,
914     CategorySection,
915     ProtocolSection,
916     ProtocolReferenceSection,
917     ClassAliasSection,
918     ConstantStringSection
919   };
920   static const char *const SectionsBaseNames[8];
921   static const char *const PECOFFSectionsBaseNames[8];
922   template<SectionKind K>
923   std::string sectionName() {
924     if (CGM.getTriple().isOSBinFormatCOFF()) {
925       std::string name(PECOFFSectionsBaseNames[K]);
926       name += "$m";
927       return name;
928     }
929     return SectionsBaseNames[K];
930   }
931   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
932   /// structure describing the receiver and the class, and a selector as
933   /// arguments.  Returns the IMP for the corresponding method.
934   LazyRuntimeFunction MsgLookupSuperFn;
935   /// A flag indicating if we've emitted at least one protocol.
936   /// If we haven't, then we need to emit an empty protocol, to ensure that the
937   /// __start__objc_protocols and __stop__objc_protocols sections exist.
938   bool EmittedProtocol = false;
939   /// A flag indicating if we've emitted at least one protocol reference.
940   /// If we haven't, then we need to emit an empty protocol, to ensure that the
941   /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
942   /// exist.
943   bool EmittedProtocolRef = false;
944   /// A flag indicating if we've emitted at least one class.
945   /// If we haven't, then we need to emit an empty protocol, to ensure that the
946   /// __start__objc_classes and __stop__objc_classes sections / exist.
947   bool EmittedClass = false;
948   /// Generate the name of a symbol for a reference to a class.  Accesses to
949   /// classes should be indirected via this.
950 
951   typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>>
952       EarlyInitPair;
953   std::vector<EarlyInitPair> EarlyInitList;
954 
955   std::string SymbolForClassRef(StringRef Name, bool isWeak) {
956     if (isWeak)
957       return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
958     else
959       return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
960   }
961   /// Generate the name of a class symbol.
962   std::string SymbolForClass(StringRef Name) {
963     return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
964   }
965   void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
966       ArrayRef<llvm::Value*> Args) {
967     SmallVector<llvm::Type *,8> Types;
968     for (auto *Arg : Args)
969       Types.push_back(Arg->getType());
970     llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
971         false);
972     llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
973     B.CreateCall(Fn, Args);
974   }
975 
976   ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
977 
978     auto Str = SL->getString();
979     CharUnits Align = CGM.getPointerAlign();
980 
981     // Look for an existing one
982     llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
983     if (old != ObjCStrings.end())
984       return ConstantAddress(old->getValue(), IdElemTy, Align);
985 
986     bool isNonASCII = SL->containsNonAscii();
987 
988     auto LiteralLength = SL->getLength();
989 
990     if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) &&
991         (LiteralLength < 9) && !isNonASCII) {
992       // Tiny strings are only used on 64-bit platforms.  They store 8 7-bit
993       // ASCII characters in the high 56 bits, followed by a 4-bit length and a
994       // 3-bit tag (which is always 4).
995       uint64_t str = 0;
996       // Fill in the characters
997       for (unsigned i=0 ; i<LiteralLength ; i++)
998         str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
999       // Fill in the length
1000       str |= LiteralLength << 3;
1001       // Set the tag
1002       str |= 4;
1003       auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
1004           llvm::ConstantInt::get(Int64Ty, str), IdTy);
1005       ObjCStrings[Str] = ObjCStr;
1006       return ConstantAddress(ObjCStr, IdElemTy, Align);
1007     }
1008 
1009     StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1010 
1011     if (StringClass.empty()) StringClass = "NSConstantString";
1012 
1013     std::string Sym = SymbolForClass(StringClass);
1014 
1015     llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1016 
1017     if (!isa) {
1018       isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1019               llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1020       if (CGM.getTriple().isOSBinFormatCOFF()) {
1021         cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1022       }
1023     }
1024 
1025     //  struct
1026     //  {
1027     //    Class isa;
1028     //    uint32_t flags;
1029     //    uint32_t length; // Number of codepoints
1030     //    uint32_t size; // Number of bytes
1031     //    uint32_t hash;
1032     //    const char *data;
1033     //  };
1034 
1035     ConstantInitBuilder Builder(CGM);
1036     auto Fields = Builder.beginStruct();
1037     if (!CGM.getTriple().isOSBinFormatCOFF()) {
1038       Fields.add(isa);
1039     } else {
1040       Fields.addNullPointer(PtrTy);
1041     }
1042     // For now, all non-ASCII strings are represented as UTF-16.  As such, the
1043     // number of bytes is simply double the number of UTF-16 codepoints.  In
1044     // ASCII strings, the number of bytes is equal to the number of non-ASCII
1045     // codepoints.
1046     if (isNonASCII) {
1047       unsigned NumU8CodeUnits = Str.size();
1048       // A UTF-16 representation of a unicode string contains at most the same
1049       // number of code units as a UTF-8 representation.  Allocate that much
1050       // space, plus one for the final null character.
1051       SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1052       const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1053       llvm::UTF16 *ToPtr = &ToBuf[0];
1054       (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1055           &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1056       uint32_t StringLength = ToPtr - &ToBuf[0];
1057       // Add null terminator
1058       *ToPtr = 0;
1059       // Flags: 2 indicates UTF-16 encoding
1060       Fields.addInt(Int32Ty, 2);
1061       // Number of UTF-16 codepoints
1062       Fields.addInt(Int32Ty, StringLength);
1063       // Number of bytes
1064       Fields.addInt(Int32Ty, StringLength * 2);
1065       // Hash.  Not currently initialised by the compiler.
1066       Fields.addInt(Int32Ty, 0);
1067       // pointer to the data string.
1068       auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1);
1069       auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1070       auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1071           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1072       Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1073       Fields.add(Buffer);
1074     } else {
1075       // Flags: 0 indicates ASCII encoding
1076       Fields.addInt(Int32Ty, 0);
1077       // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1078       Fields.addInt(Int32Ty, Str.size());
1079       // Number of bytes
1080       Fields.addInt(Int32Ty, Str.size());
1081       // Hash.  Not currently initialised by the compiler.
1082       Fields.addInt(Int32Ty, 0);
1083       // Data pointer
1084       Fields.add(MakeConstantString(Str));
1085     }
1086     std::string StringName;
1087     bool isNamed = !isNonASCII;
1088     if (isNamed) {
1089       StringName = ".objc_str_";
1090       for (int i=0,e=Str.size() ; i<e ; ++i) {
1091         unsigned char c = Str[i];
1092         if (isalnum(c))
1093           StringName += c;
1094         else if (c == ' ')
1095           StringName += '_';
1096         else {
1097           isNamed = false;
1098           break;
1099         }
1100       }
1101     }
1102     llvm::GlobalVariable *ObjCStrGV =
1103       Fields.finishAndCreateGlobal(
1104           isNamed ? StringRef(StringName) : ".objc_string",
1105           Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1106                                 : llvm::GlobalValue::PrivateLinkage);
1107     ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1108     if (isNamed) {
1109       ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1110       ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1111     }
1112     if (CGM.getTriple().isOSBinFormatCOFF()) {
1113       std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0};
1114       EarlyInitList.emplace_back(Sym, v);
1115     }
1116     ObjCStrings[Str] = ObjCStrGV;
1117     ConstantStrings.push_back(ObjCStrGV);
1118     return ConstantAddress(ObjCStrGV, IdElemTy, Align);
1119   }
1120 
1121   void PushProperty(ConstantArrayBuilder &PropertiesArray,
1122             const ObjCPropertyDecl *property,
1123             const Decl *OCD,
1124             bool isSynthesized=true, bool
1125             isDynamic=true) override {
1126     // struct objc_property
1127     // {
1128     //   const char *name;
1129     //   const char *attributes;
1130     //   const char *type;
1131     //   SEL getter;
1132     //   SEL setter;
1133     // };
1134     auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1135     ASTContext &Context = CGM.getContext();
1136     Fields.add(MakeConstantString(property->getNameAsString()));
1137     std::string TypeStr =
1138       CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1139     Fields.add(MakeConstantString(TypeStr));
1140     std::string typeStr;
1141     Context.getObjCEncodingForType(property->getType(), typeStr);
1142     Fields.add(MakeConstantString(typeStr));
1143     auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1144       if (accessor) {
1145         std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1146         Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1147       } else {
1148         Fields.add(NULLPtr);
1149       }
1150     };
1151     addPropertyMethod(property->getGetterMethodDecl());
1152     addPropertyMethod(property->getSetterMethodDecl());
1153     Fields.finishAndAddTo(PropertiesArray);
1154   }
1155 
1156   llvm::Constant *
1157   GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1158     // struct objc_protocol_method_description
1159     // {
1160     //   SEL selector;
1161     //   const char *types;
1162     // };
1163     llvm::StructType *ObjCMethodDescTy =
1164       llvm::StructType::get(CGM.getLLVMContext(),
1165           { PtrToInt8Ty, PtrToInt8Ty });
1166     ASTContext &Context = CGM.getContext();
1167     ConstantInitBuilder Builder(CGM);
1168     // struct objc_protocol_method_description_list
1169     // {
1170     //   int count;
1171     //   int size;
1172     //   struct objc_protocol_method_description methods[];
1173     // };
1174     auto MethodList = Builder.beginStruct();
1175     // int count;
1176     MethodList.addInt(IntTy, Methods.size());
1177     // int size; // sizeof(struct objc_method_description)
1178     llvm::DataLayout td(&TheModule);
1179     MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1180         CGM.getContext().getCharWidth());
1181     // struct objc_method_description[]
1182     auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1183     for (auto *M : Methods) {
1184       auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1185       Method.add(CGObjCGNU::GetConstantSelector(M));
1186       Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1187       Method.finishAndAddTo(MethodArray);
1188     }
1189     MethodArray.finishAndAddTo(MethodList);
1190     return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1191                                             CGM.getPointerAlign());
1192   }
1193   llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1194     override {
1195     const auto &ReferencedProtocols = OCD->getReferencedProtocols();
1196     auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(),
1197                                                    ReferencedProtocols.end());
1198     SmallVector<llvm::Constant *, 16> Protocols;
1199     for (const auto *PI : RuntimeProtocols)
1200       Protocols.push_back(GenerateProtocolRef(PI));
1201     return GenerateProtocolList(Protocols);
1202   }
1203 
1204   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1205                               llvm::Value *cmd, MessageSendInfo &MSI) override {
1206     // Don't access the slot unless we're trying to cache the result.
1207     CGBuilderTy &Builder = CGF.Builder;
1208     llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder,
1209                                                         ObjCSuper.getPointer(),
1210                                                         PtrToObjCSuperTy),
1211                                  cmd};
1212     return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1213   }
1214 
1215   llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1216     std::string SymbolName = SymbolForClassRef(Name, isWeak);
1217     auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1218     if (ClassSymbol)
1219       return ClassSymbol;
1220     ClassSymbol = new llvm::GlobalVariable(TheModule,
1221         IdTy, false, llvm::GlobalValue::ExternalLinkage,
1222         nullptr, SymbolName);
1223     // If this is a weak symbol, then we are creating a valid definition for
1224     // the symbol, pointing to a weak definition of the real class pointer.  If
1225     // this is not a weak reference, then we are expecting another compilation
1226     // unit to provide the real indirection symbol.
1227     if (isWeak)
1228       ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1229           Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1230           nullptr, SymbolForClass(Name)));
1231     else {
1232       if (CGM.getTriple().isOSBinFormatCOFF()) {
1233         IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1234         TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
1235         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
1236 
1237         const ObjCInterfaceDecl *OID = nullptr;
1238         for (const auto *Result : DC->lookup(&II))
1239           if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1240             break;
1241 
1242         // The first Interface we find may be a @class,
1243         // which should only be treated as the source of
1244         // truth in the absence of a true declaration.
1245         assert(OID && "Failed to find ObjCInterfaceDecl");
1246         const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1247         if (OIDDef != nullptr)
1248           OID = OIDDef;
1249 
1250         auto Storage = llvm::GlobalValue::DefaultStorageClass;
1251         if (OID->hasAttr<DLLImportAttr>())
1252           Storage = llvm::GlobalValue::DLLImportStorageClass;
1253         else if (OID->hasAttr<DLLExportAttr>())
1254           Storage = llvm::GlobalValue::DLLExportStorageClass;
1255 
1256         cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1257       }
1258     }
1259     assert(ClassSymbol->getName() == SymbolName);
1260     return ClassSymbol;
1261   }
1262   llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1263                              const std::string &Name,
1264                              bool isWeak) override {
1265     return CGF.Builder.CreateLoad(
1266         Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign()));
1267   }
1268   int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1269     // typedef enum {
1270     //   ownership_invalid = 0,
1271     //   ownership_strong  = 1,
1272     //   ownership_weak    = 2,
1273     //   ownership_unsafe  = 3
1274     // } ivar_ownership;
1275     int Flag;
1276     switch (Ownership) {
1277       case Qualifiers::OCL_Strong:
1278           Flag = 1;
1279           break;
1280       case Qualifiers::OCL_Weak:
1281           Flag = 2;
1282           break;
1283       case Qualifiers::OCL_ExplicitNone:
1284           Flag = 3;
1285           break;
1286       case Qualifiers::OCL_None:
1287       case Qualifiers::OCL_Autoreleasing:
1288         assert(Ownership != Qualifiers::OCL_Autoreleasing);
1289         Flag = 0;
1290     }
1291     return Flag;
1292   }
1293   llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1294                    ArrayRef<llvm::Constant *> IvarTypes,
1295                    ArrayRef<llvm::Constant *> IvarOffsets,
1296                    ArrayRef<llvm::Constant *> IvarAlign,
1297                    ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1298     llvm_unreachable("Method should not be called!");
1299   }
1300 
1301   llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1302     std::string Name = SymbolForProtocol(ProtocolName);
1303     auto *GV = TheModule.getGlobalVariable(Name);
1304     if (!GV) {
1305       // Emit a placeholder symbol.
1306       GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1307           llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1308       GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1309     }
1310     return GV;
1311   }
1312 
1313   /// Existing protocol references.
1314   llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1315 
1316   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1317                                    const ObjCProtocolDecl *PD) override {
1318     auto Name = PD->getNameAsString();
1319     auto *&Ref = ExistingProtocolRefs[Name];
1320     if (!Ref) {
1321       auto *&Protocol = ExistingProtocols[Name];
1322       if (!Protocol)
1323         Protocol = GenerateProtocolRef(PD);
1324       std::string RefName = SymbolForProtocolRef(Name);
1325       assert(!TheModule.getGlobalVariable(RefName));
1326       // Emit a reference symbol.
1327       auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false,
1328                                          llvm::GlobalValue::LinkOnceODRLinkage,
1329                                          Protocol, RefName);
1330       GV->setComdat(TheModule.getOrInsertComdat(RefName));
1331       GV->setSection(sectionName<ProtocolReferenceSection>());
1332       GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1333       Ref = GV;
1334     }
1335     EmittedProtocolRef = true;
1336     return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref,
1337                                          CGM.getPointerAlign());
1338   }
1339 
1340   llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1341     llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1342         Protocols.size());
1343     llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1344         Protocols);
1345     ConstantInitBuilder builder(CGM);
1346     auto ProtocolBuilder = builder.beginStruct();
1347     ProtocolBuilder.addNullPointer(PtrTy);
1348     ProtocolBuilder.addInt(SizeTy, Protocols.size());
1349     ProtocolBuilder.add(ProtocolArray);
1350     return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1351         CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1352   }
1353 
1354   void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1355     // Do nothing - we only emit referenced protocols.
1356   }
1357   llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1358     std::string ProtocolName = PD->getNameAsString();
1359     auto *&Protocol = ExistingProtocols[ProtocolName];
1360     if (Protocol)
1361       return Protocol;
1362 
1363     EmittedProtocol = true;
1364 
1365     auto SymName = SymbolForProtocol(ProtocolName);
1366     auto *OldGV = TheModule.getGlobalVariable(SymName);
1367 
1368     // Use the protocol definition, if there is one.
1369     if (const ObjCProtocolDecl *Def = PD->getDefinition())
1370       PD = Def;
1371     else {
1372       // If there is no definition, then create an external linkage symbol and
1373       // hope that someone else fills it in for us (and fail to link if they
1374       // don't).
1375       assert(!OldGV);
1376       Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1377         /*isConstant*/false,
1378         llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1379       return Protocol;
1380     }
1381 
1382     SmallVector<llvm::Constant*, 16> Protocols;
1383     auto RuntimeProtocols =
1384         GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end());
1385     for (const auto *PI : RuntimeProtocols)
1386       Protocols.push_back(GenerateProtocolRef(PI));
1387     llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1388 
1389     // Collect information about methods
1390     llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1391     llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1392     EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1393         OptionalInstanceMethodList);
1394     EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1395         OptionalClassMethodList);
1396 
1397     // The isa pointer must be set to a magic number so the runtime knows it's
1398     // the correct layout.
1399     ConstantInitBuilder builder(CGM);
1400     auto ProtocolBuilder = builder.beginStruct();
1401     ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1402           llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1403     ProtocolBuilder.add(MakeConstantString(ProtocolName));
1404     ProtocolBuilder.add(ProtocolList);
1405     ProtocolBuilder.add(InstanceMethodList);
1406     ProtocolBuilder.add(ClassMethodList);
1407     ProtocolBuilder.add(OptionalInstanceMethodList);
1408     ProtocolBuilder.add(OptionalClassMethodList);
1409     // Required instance properties
1410     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1411     // Optional instance properties
1412     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1413     // Required class properties
1414     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1415     // Optional class properties
1416     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1417 
1418     auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1419         CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1420     GV->setSection(sectionName<ProtocolSection>());
1421     GV->setComdat(TheModule.getOrInsertComdat(SymName));
1422     if (OldGV) {
1423       OldGV->replaceAllUsesWith(GV);
1424       OldGV->removeFromParent();
1425       GV->setName(SymName);
1426     }
1427     Protocol = GV;
1428     return GV;
1429   }
1430   llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1431                                 const std::string &TypeEncoding) override {
1432     return GetConstantSelector(Sel, TypeEncoding);
1433   }
1434   llvm::Constant  *GetTypeString(llvm::StringRef TypeEncoding) {
1435     if (TypeEncoding.empty())
1436       return NULLPtr;
1437     std::string MangledTypes = std::string(TypeEncoding);
1438     std::replace(MangledTypes.begin(), MangledTypes.end(),
1439       '@', '\1');
1440     std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1441     auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1442     if (!TypesGlobal) {
1443       llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1444           TypeEncoding);
1445       auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1446           true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1447       GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1448       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1449       TypesGlobal = GV;
1450     }
1451     return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(),
1452         TypesGlobal, Zeros);
1453   }
1454   llvm::Constant *GetConstantSelector(Selector Sel,
1455                                       const std::string &TypeEncoding) override {
1456     // @ is used as a special character in symbol names (used for symbol
1457     // versioning), so mangle the name to not include it.  Replace it with a
1458     // character that is not a valid type encoding character (and, being
1459     // non-printable, never will be!)
1460     std::string MangledTypes = TypeEncoding;
1461     std::replace(MangledTypes.begin(), MangledTypes.end(),
1462       '@', '\1');
1463     auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1464       MangledTypes).str();
1465     if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1466       return GV;
1467     ConstantInitBuilder builder(CGM);
1468     auto SelBuilder = builder.beginStruct();
1469     SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1470           true));
1471     SelBuilder.add(GetTypeString(TypeEncoding));
1472     auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1473         CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1474     GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1475     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1476     GV->setSection(sectionName<SelectorSection>());
1477     return GV;
1478   }
1479   llvm::StructType *emptyStruct = nullptr;
1480 
1481   /// Return pointers to the start and end of a section.  On ELF platforms, we
1482   /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1483   /// to the start and end of section names, as long as those section names are
1484   /// valid identifiers and the symbols are referenced but not defined.  On
1485   /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1486   /// by subsections and place everything that we want to reference in a middle
1487   /// subsection and then insert zero-sized symbols in subsections a and z.
1488   std::pair<llvm::Constant*,llvm::Constant*>
1489   GetSectionBounds(StringRef Section) {
1490     if (CGM.getTriple().isOSBinFormatCOFF()) {
1491       if (emptyStruct == nullptr) {
1492         emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1493         emptyStruct->setBody({}, /*isPacked*/true);
1494       }
1495       auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1496       auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1497         auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1498             /*isConstant*/false,
1499             llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1500             Section);
1501         Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1502         Sym->setSection((Section + SecSuffix).str());
1503         Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1504             Section).str()));
1505         Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1506         return Sym;
1507       };
1508       return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1509     }
1510     auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1511         /*isConstant*/false,
1512         llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1513         Section);
1514     Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1515     auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1516         /*isConstant*/false,
1517         llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1518         Section);
1519     Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1520     return { Start, Stop };
1521   }
1522   CatchTypeInfo getCatchAllTypeInfo() override {
1523     return CGM.getCXXABI().getCatchAllTypeInfo();
1524   }
1525   llvm::Function *ModuleInitFunction() override {
1526     llvm::Function *LoadFunction = llvm::Function::Create(
1527       llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1528       llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1529       &TheModule);
1530     LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1531     LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1532 
1533     llvm::BasicBlock *EntryBB =
1534         llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1535     CGBuilderTy B(CGM, VMContext);
1536     B.SetInsertPoint(EntryBB);
1537     ConstantInitBuilder builder(CGM);
1538     auto InitStructBuilder = builder.beginStruct();
1539     InitStructBuilder.addInt(Int64Ty, 0);
1540     auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1541     for (auto *s : sectionVec) {
1542       auto bounds = GetSectionBounds(s);
1543       InitStructBuilder.add(bounds.first);
1544       InitStructBuilder.add(bounds.second);
1545     }
1546     auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1547         CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1548     InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1549     InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1550 
1551     CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1552     B.CreateRetVoid();
1553     // Make sure that the optimisers don't delete this function.
1554     CGM.addCompilerUsedGlobal(LoadFunction);
1555     // FIXME: Currently ELF only!
1556     // We have to do this by hand, rather than with @llvm.ctors, so that the
1557     // linker can remove the duplicate invocations.
1558     auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1559         /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1560         LoadFunction, ".objc_ctor");
1561     // Check that this hasn't been renamed.  This shouldn't happen, because
1562     // this function should be called precisely once.
1563     assert(InitVar->getName() == ".objc_ctor");
1564     // In Windows, initialisers are sorted by the suffix.  XCL is for library
1565     // initialisers, which run before user initialisers.  We are running
1566     // Objective-C loads at the end of library load.  This means +load methods
1567     // will run before any other static constructors, but that static
1568     // constructors can see a fully initialised Objective-C state.
1569     if (CGM.getTriple().isOSBinFormatCOFF())
1570         InitVar->setSection(".CRT$XCLz");
1571     else
1572     {
1573       if (CGM.getCodeGenOpts().UseInitArray)
1574         InitVar->setSection(".init_array");
1575       else
1576         InitVar->setSection(".ctors");
1577     }
1578     InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1579     InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1580     CGM.addUsedGlobal(InitVar);
1581     for (auto *C : Categories) {
1582       auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1583       Cat->setSection(sectionName<CategorySection>());
1584       CGM.addUsedGlobal(Cat);
1585     }
1586     auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1587         StringRef Section) {
1588       auto nullBuilder = builder.beginStruct();
1589       for (auto *F : Init)
1590         nullBuilder.add(F);
1591       auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1592           false, llvm::GlobalValue::LinkOnceODRLinkage);
1593       GV->setSection(Section);
1594       GV->setComdat(TheModule.getOrInsertComdat(Name));
1595       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1596       CGM.addUsedGlobal(GV);
1597       return GV;
1598     };
1599     for (auto clsAlias : ClassAliases)
1600       createNullGlobal(std::string(".objc_class_alias") +
1601           clsAlias.second, { MakeConstantString(clsAlias.second),
1602           GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1603     // On ELF platforms, add a null value for each special section so that we
1604     // can always guarantee that the _start and _stop symbols will exist and be
1605     // meaningful.  This is not required on COFF platforms, where our start and
1606     // stop symbols will create the section.
1607     if (!CGM.getTriple().isOSBinFormatCOFF()) {
1608       createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1609           sectionName<SelectorSection>());
1610       if (Categories.empty())
1611         createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1612                       NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1613             sectionName<CategorySection>());
1614       if (!EmittedClass) {
1615         createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1616             sectionName<ClassSection>());
1617         createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1618             sectionName<ClassReferenceSection>());
1619       }
1620       if (!EmittedProtocol)
1621         createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1622             NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1623             NULLPtr}, sectionName<ProtocolSection>());
1624       if (!EmittedProtocolRef)
1625         createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1626             sectionName<ProtocolReferenceSection>());
1627       if (ClassAliases.empty())
1628         createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1629             sectionName<ClassAliasSection>());
1630       if (ConstantStrings.empty()) {
1631         auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1632         createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1633             i32Zero, i32Zero, i32Zero, NULLPtr },
1634             sectionName<ConstantStringSection>());
1635       }
1636     }
1637     ConstantStrings.clear();
1638     Categories.clear();
1639     Classes.clear();
1640 
1641     if (EarlyInitList.size() > 0) {
1642       auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1643             {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1644           &CGM.getModule());
1645       llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1646             Init));
1647       for (const auto &lateInit : EarlyInitList) {
1648         auto *global = TheModule.getGlobalVariable(lateInit.first);
1649         if (global) {
1650           llvm::GlobalVariable *GV = lateInit.second.first;
1651           b.CreateAlignedStore(
1652               global,
1653               b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second),
1654               CGM.getPointerAlign().getAsAlign());
1655         }
1656       }
1657       b.CreateRetVoid();
1658       // We can't use the normal LLVM global initialisation array, because we
1659       // need to specify that this runs early in library initialisation.
1660       auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1661           /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1662           Init, ".objc_early_init_ptr");
1663       InitVar->setSection(".CRT$XCLb");
1664       CGM.addUsedGlobal(InitVar);
1665     }
1666     return nullptr;
1667   }
1668   /// In the v2 ABI, ivar offset variables use the type encoding in their name
1669   /// to trigger linker failures if the types don't match.
1670   std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1671                                         const ObjCIvarDecl *Ivar) override {
1672     std::string TypeEncoding;
1673     CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1674     // Prevent the @ from being interpreted as a symbol version.
1675     std::replace(TypeEncoding.begin(), TypeEncoding.end(),
1676       '@', '\1');
1677     const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1678       + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1679     return Name;
1680   }
1681   llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1682                               const ObjCInterfaceDecl *Interface,
1683                               const ObjCIvarDecl *Ivar) override {
1684     const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1685     llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1686     if (!IvarOffsetPointer)
1687       IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1688               llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1689     CharUnits Align = CGM.getIntAlign();
1690     llvm::Value *Offset =
1691         CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align);
1692     if (Offset->getType() != PtrDiffTy)
1693       Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1694     return Offset;
1695   }
1696   void GenerateClass(const ObjCImplementationDecl *OID) override {
1697     ASTContext &Context = CGM.getContext();
1698     bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1699 
1700     // Get the class name
1701     ObjCInterfaceDecl *classDecl =
1702         const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1703     std::string className = classDecl->getNameAsString();
1704     auto *classNameConstant = MakeConstantString(className);
1705 
1706     ConstantInitBuilder builder(CGM);
1707     auto metaclassFields = builder.beginStruct();
1708     // struct objc_class *isa;
1709     metaclassFields.addNullPointer(PtrTy);
1710     // struct objc_class *super_class;
1711     metaclassFields.addNullPointer(PtrTy);
1712     // const char *name;
1713     metaclassFields.add(classNameConstant);
1714     // long version;
1715     metaclassFields.addInt(LongTy, 0);
1716     // unsigned long info;
1717     // objc_class_flag_meta
1718     metaclassFields.addInt(LongTy, 1);
1719     // long instance_size;
1720     // Setting this to zero is consistent with the older ABI, but it might be
1721     // more sensible to set this to sizeof(struct objc_class)
1722     metaclassFields.addInt(LongTy, 0);
1723     // struct objc_ivar_list *ivars;
1724     metaclassFields.addNullPointer(PtrTy);
1725     // struct objc_method_list *methods
1726     // FIXME: Almost identical code is copied and pasted below for the
1727     // class, but refactoring it cleanly requires C++14 generic lambdas.
1728     if (OID->classmeth_begin() == OID->classmeth_end())
1729       metaclassFields.addNullPointer(PtrTy);
1730     else {
1731       SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1732       ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1733           OID->classmeth_end());
1734       metaclassFields.add(
1735           GenerateMethodList(className, "", ClassMethods, true));
1736     }
1737     // void *dtable;
1738     metaclassFields.addNullPointer(PtrTy);
1739     // IMP cxx_construct;
1740     metaclassFields.addNullPointer(PtrTy);
1741     // IMP cxx_destruct;
1742     metaclassFields.addNullPointer(PtrTy);
1743     // struct objc_class *subclass_list
1744     metaclassFields.addNullPointer(PtrTy);
1745     // struct objc_class *sibling_class
1746     metaclassFields.addNullPointer(PtrTy);
1747     // struct objc_protocol_list *protocols;
1748     metaclassFields.addNullPointer(PtrTy);
1749     // struct reference_list *extra_data;
1750     metaclassFields.addNullPointer(PtrTy);
1751     // long abi_version;
1752     metaclassFields.addInt(LongTy, 0);
1753     // struct objc_property_list *properties
1754     metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1755 
1756     auto *metaclass = metaclassFields.finishAndCreateGlobal(
1757         ManglePublicSymbol("OBJC_METACLASS_") + className,
1758         CGM.getPointerAlign());
1759 
1760     auto classFields = builder.beginStruct();
1761     // struct objc_class *isa;
1762     classFields.add(metaclass);
1763     // struct objc_class *super_class;
1764     // Get the superclass name.
1765     const ObjCInterfaceDecl * SuperClassDecl =
1766       OID->getClassInterface()->getSuperClass();
1767     llvm::Constant *SuperClass = nullptr;
1768     if (SuperClassDecl) {
1769       auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1770       SuperClass = TheModule.getNamedGlobal(SuperClassName);
1771       if (!SuperClass)
1772       {
1773         SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1774             llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1775         if (IsCOFF) {
1776           auto Storage = llvm::GlobalValue::DefaultStorageClass;
1777           if (SuperClassDecl->hasAttr<DLLImportAttr>())
1778             Storage = llvm::GlobalValue::DLLImportStorageClass;
1779           else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1780             Storage = llvm::GlobalValue::DLLExportStorageClass;
1781 
1782           cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1783         }
1784       }
1785       if (!IsCOFF)
1786         classFields.add(SuperClass);
1787       else
1788         classFields.addNullPointer(PtrTy);
1789     } else
1790       classFields.addNullPointer(PtrTy);
1791     // const char *name;
1792     classFields.add(classNameConstant);
1793     // long version;
1794     classFields.addInt(LongTy, 0);
1795     // unsigned long info;
1796     // !objc_class_flag_meta
1797     classFields.addInt(LongTy, 0);
1798     // long instance_size;
1799     int superInstanceSize = !SuperClassDecl ? 0 :
1800       Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1801     // Instance size is negative for classes that have not yet had their ivar
1802     // layout calculated.
1803     classFields.addInt(LongTy,
1804       0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1805       superInstanceSize));
1806 
1807     if (classDecl->all_declared_ivar_begin() == nullptr)
1808       classFields.addNullPointer(PtrTy);
1809     else {
1810       int ivar_count = 0;
1811       for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1812            IVD = IVD->getNextIvar()) ivar_count++;
1813       llvm::DataLayout td(&TheModule);
1814       // struct objc_ivar_list *ivars;
1815       ConstantInitBuilder b(CGM);
1816       auto ivarListBuilder = b.beginStruct();
1817       // int count;
1818       ivarListBuilder.addInt(IntTy, ivar_count);
1819       // size_t size;
1820       llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1821         PtrToInt8Ty,
1822         PtrToInt8Ty,
1823         PtrToInt8Ty,
1824         Int32Ty,
1825         Int32Ty);
1826       ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1827           CGM.getContext().getCharWidth());
1828       // struct objc_ivar ivars[]
1829       auto ivarArrayBuilder = ivarListBuilder.beginArray();
1830       for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1831            IVD = IVD->getNextIvar()) {
1832         auto ivarTy = IVD->getType();
1833         auto ivarBuilder = ivarArrayBuilder.beginStruct();
1834         // const char *name;
1835         ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1836         // const char *type;
1837         std::string TypeStr;
1838         //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1839         Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1840         ivarBuilder.add(MakeConstantString(TypeStr));
1841         // int *offset;
1842         uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1843         uint64_t Offset = BaseOffset - superInstanceSize;
1844         llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1845         std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1846         llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1847         if (OffsetVar)
1848           OffsetVar->setInitializer(OffsetValue);
1849         else
1850           OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1851             false, llvm::GlobalValue::ExternalLinkage,
1852             OffsetValue, OffsetName);
1853         auto ivarVisibility =
1854             (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1855              IVD->getAccessControl() == ObjCIvarDecl::Package ||
1856              classDecl->getVisibility() == HiddenVisibility) ?
1857                     llvm::GlobalValue::HiddenVisibility :
1858                     llvm::GlobalValue::DefaultVisibility;
1859         OffsetVar->setVisibility(ivarVisibility);
1860         if (ivarVisibility != llvm::GlobalValue::HiddenVisibility)
1861           CGM.setGVProperties(OffsetVar, OID->getClassInterface());
1862         ivarBuilder.add(OffsetVar);
1863         // Ivar size
1864         ivarBuilder.addInt(Int32Ty,
1865             CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1866         // Alignment will be stored as a base-2 log of the alignment.
1867         unsigned align =
1868             llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1869         // Objects that require more than 2^64-byte alignment should be impossible!
1870         assert(align < 64);
1871         // uint32_t flags;
1872         // Bits 0-1 are ownership.
1873         // Bit 2 indicates an extended type encoding
1874         // Bits 3-8 contain log2(aligment)
1875         ivarBuilder.addInt(Int32Ty,
1876             (align << 3) | (1<<2) |
1877             FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1878         ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1879       }
1880       ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1881       auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1882           CGM.getPointerAlign(), /*constant*/ false,
1883           llvm::GlobalValue::PrivateLinkage);
1884       classFields.add(ivarList);
1885     }
1886     // struct objc_method_list *methods
1887     SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1888     InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1889         OID->instmeth_end());
1890     for (auto *propImpl : OID->property_impls())
1891       if (propImpl->getPropertyImplementation() ==
1892           ObjCPropertyImplDecl::Synthesize) {
1893         auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1894           if (OMD && OMD->hasBody())
1895             InstanceMethods.push_back(OMD);
1896         };
1897         addIfExists(propImpl->getGetterMethodDecl());
1898         addIfExists(propImpl->getSetterMethodDecl());
1899       }
1900 
1901     if (InstanceMethods.size() == 0)
1902       classFields.addNullPointer(PtrTy);
1903     else
1904       classFields.add(
1905           GenerateMethodList(className, "", InstanceMethods, false));
1906 
1907     // void *dtable;
1908     classFields.addNullPointer(PtrTy);
1909     // IMP cxx_construct;
1910     classFields.addNullPointer(PtrTy);
1911     // IMP cxx_destruct;
1912     classFields.addNullPointer(PtrTy);
1913     // struct objc_class *subclass_list
1914     classFields.addNullPointer(PtrTy);
1915     // struct objc_class *sibling_class
1916     classFields.addNullPointer(PtrTy);
1917     // struct objc_protocol_list *protocols;
1918     auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(),
1919                                                    classDecl->protocol_end());
1920     SmallVector<llvm::Constant *, 16> Protocols;
1921     for (const auto *I : RuntimeProtocols)
1922       Protocols.push_back(GenerateProtocolRef(I));
1923 
1924     if (Protocols.empty())
1925       classFields.addNullPointer(PtrTy);
1926     else
1927       classFields.add(GenerateProtocolList(Protocols));
1928     // struct reference_list *extra_data;
1929     classFields.addNullPointer(PtrTy);
1930     // long abi_version;
1931     classFields.addInt(LongTy, 0);
1932     // struct objc_property_list *properties
1933     classFields.add(GeneratePropertyList(OID, classDecl));
1934 
1935     llvm::GlobalVariable *classStruct =
1936       classFields.finishAndCreateGlobal(SymbolForClass(className),
1937         CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1938 
1939     auto *classRefSymbol = GetClassVar(className);
1940     classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1941     classRefSymbol->setInitializer(classStruct);
1942 
1943     if (IsCOFF) {
1944       // we can't import a class struct.
1945       if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1946         classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1947         cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1948       }
1949 
1950       if (SuperClass) {
1951         std::pair<llvm::GlobalVariable*, int> v{classStruct, 1};
1952         EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1953                                    std::move(v));
1954       }
1955 
1956     }
1957 
1958 
1959     // Resolve the class aliases, if they exist.
1960     // FIXME: Class pointer aliases shouldn't exist!
1961     if (ClassPtrAlias) {
1962       ClassPtrAlias->replaceAllUsesWith(classStruct);
1963       ClassPtrAlias->eraseFromParent();
1964       ClassPtrAlias = nullptr;
1965     }
1966     if (auto Placeholder =
1967         TheModule.getNamedGlobal(SymbolForClass(className)))
1968       if (Placeholder != classStruct) {
1969         Placeholder->replaceAllUsesWith(classStruct);
1970         Placeholder->eraseFromParent();
1971         classStruct->setName(SymbolForClass(className));
1972       }
1973     if (MetaClassPtrAlias) {
1974       MetaClassPtrAlias->replaceAllUsesWith(metaclass);
1975       MetaClassPtrAlias->eraseFromParent();
1976       MetaClassPtrAlias = nullptr;
1977     }
1978     assert(classStruct->getName() == SymbolForClass(className));
1979 
1980     auto classInitRef = new llvm::GlobalVariable(TheModule,
1981         classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
1982         classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
1983     classInitRef->setSection(sectionName<ClassSection>());
1984     CGM.addUsedGlobal(classInitRef);
1985 
1986     EmittedClass = true;
1987   }
1988   public:
1989     CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
1990       MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
1991                             PtrToObjCSuperTy, SelectorTy);
1992       // struct objc_property
1993       // {
1994       //   const char *name;
1995       //   const char *attributes;
1996       //   const char *type;
1997       //   SEL getter;
1998       //   SEL setter;
1999       // }
2000       PropertyMetadataTy =
2001         llvm::StructType::get(CGM.getLLVMContext(),
2002             { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2003     }
2004 
2005 };
2006 
2007 const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2008 {
2009 "__objc_selectors",
2010 "__objc_classes",
2011 "__objc_class_refs",
2012 "__objc_cats",
2013 "__objc_protocols",
2014 "__objc_protocol_refs",
2015 "__objc_class_aliases",
2016 "__objc_constant_string"
2017 };
2018 
2019 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2020 {
2021 ".objcrt$SEL",
2022 ".objcrt$CLS",
2023 ".objcrt$CLR",
2024 ".objcrt$CAT",
2025 ".objcrt$PCL",
2026 ".objcrt$PCR",
2027 ".objcrt$CAL",
2028 ".objcrt$STR"
2029 };
2030 
2031 /// Support for the ObjFW runtime.
2032 class CGObjCObjFW: public CGObjCGNU {
2033 protected:
2034   /// The GCC ABI message lookup function.  Returns an IMP pointing to the
2035   /// method implementation for this message.
2036   LazyRuntimeFunction MsgLookupFn;
2037   /// stret lookup function.  While this does not seem to make sense at the
2038   /// first look, this is required to call the correct forwarding function.
2039   LazyRuntimeFunction MsgLookupFnSRet;
2040   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
2041   /// structure describing the receiver and the class, and a selector as
2042   /// arguments.  Returns the IMP for the corresponding method.
2043   LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2044 
2045   llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2046                          llvm::Value *cmd, llvm::MDNode *node,
2047                          MessageSendInfo &MSI) override {
2048     CGBuilderTy &Builder = CGF.Builder;
2049     llvm::Value *args[] = {
2050             EnforceType(Builder, Receiver, IdTy),
2051             EnforceType(Builder, cmd, SelectorTy) };
2052 
2053     llvm::CallBase *imp;
2054     if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2055       imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2056     else
2057       imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2058 
2059     imp->setMetadata(msgSendMDKind, node);
2060     return imp;
2061   }
2062 
2063   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2064                               llvm::Value *cmd, MessageSendInfo &MSI) override {
2065     CGBuilderTy &Builder = CGF.Builder;
2066     llvm::Value *lookupArgs[] = {
2067         EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd,
2068     };
2069 
2070     if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2071       return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2072     else
2073       return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2074   }
2075 
2076   llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2077                              bool isWeak) override {
2078     if (isWeak)
2079       return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2080 
2081     EmitClassRef(Name);
2082     std::string SymbolName = "_OBJC_CLASS_" + Name;
2083     llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2084     if (!ClassSymbol)
2085       ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2086                                              llvm::GlobalValue::ExternalLinkage,
2087                                              nullptr, SymbolName);
2088     return ClassSymbol;
2089   }
2090 
2091 public:
2092   CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2093     // IMP objc_msg_lookup(id, SEL);
2094     MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2095     MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2096                          SelectorTy);
2097     // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2098     MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2099                           PtrToObjCSuperTy, SelectorTy);
2100     MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2101                               PtrToObjCSuperTy, SelectorTy);
2102   }
2103 };
2104 } // end anonymous namespace
2105 
2106 /// Emits a reference to a dummy variable which is emitted with each class.
2107 /// This ensures that a linker error will be generated when trying to link
2108 /// together modules where a referenced class is not defined.
2109 void CGObjCGNU::EmitClassRef(const std::string &className) {
2110   std::string symbolRef = "__objc_class_ref_" + className;
2111   // Don't emit two copies of the same symbol
2112   if (TheModule.getGlobalVariable(symbolRef))
2113     return;
2114   std::string symbolName = "__objc_class_name_" + className;
2115   llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2116   if (!ClassSymbol) {
2117     ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2118                                            llvm::GlobalValue::ExternalLinkage,
2119                                            nullptr, symbolName);
2120   }
2121   new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2122     llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2123 }
2124 
2125 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2126                      unsigned protocolClassVersion, unsigned classABI)
2127   : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2128     VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2129     MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2130     ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2131 
2132   msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2133   usesSEHExceptions =
2134       cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2135   usesCxxExceptions =
2136       cgm.getContext().getTargetInfo().getTriple().isOSCygMing() &&
2137       isRuntime(ObjCRuntime::GNUstep, 2);
2138 
2139   CodeGenTypes &Types = CGM.getTypes();
2140   IntTy = cast<llvm::IntegerType>(
2141       Types.ConvertType(CGM.getContext().IntTy));
2142   LongTy = cast<llvm::IntegerType>(
2143       Types.ConvertType(CGM.getContext().LongTy));
2144   SizeTy = cast<llvm::IntegerType>(
2145       Types.ConvertType(CGM.getContext().getSizeType()));
2146   PtrDiffTy = cast<llvm::IntegerType>(
2147       Types.ConvertType(CGM.getContext().getPointerDiffType()));
2148   BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2149 
2150   Int8Ty = llvm::Type::getInt8Ty(VMContext);
2151   // C string type.  Used in lots of places.
2152   PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2153   ProtocolPtrTy = llvm::PointerType::getUnqual(
2154       Types.ConvertType(CGM.getContext().getObjCProtoType()));
2155 
2156   Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2157   Zeros[1] = Zeros[0];
2158   NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2159   // Get the selector Type.
2160   QualType selTy = CGM.getContext().getObjCSelType();
2161   if (QualType() == selTy) {
2162     SelectorTy = PtrToInt8Ty;
2163     SelectorElemTy = Int8Ty;
2164   } else {
2165     SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2166     SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType());
2167   }
2168 
2169   PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2170   PtrTy = PtrToInt8Ty;
2171 
2172   Int32Ty = llvm::Type::getInt32Ty(VMContext);
2173   Int64Ty = llvm::Type::getInt64Ty(VMContext);
2174 
2175   IntPtrTy =
2176       CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2177 
2178   // Object type
2179   QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2180   ASTIdTy = CanQualType();
2181   if (UnqualIdTy != QualType()) {
2182     ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2183     IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2184     IdElemTy = CGM.getTypes().ConvertTypeForMem(
2185         ASTIdTy.getTypePtr()->getPointeeType());
2186   } else {
2187     IdTy = PtrToInt8Ty;
2188     IdElemTy = Int8Ty;
2189   }
2190   PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2191   ProtocolTy = llvm::StructType::get(IdTy,
2192       PtrToInt8Ty, // name
2193       PtrToInt8Ty, // protocols
2194       PtrToInt8Ty, // instance methods
2195       PtrToInt8Ty, // class methods
2196       PtrToInt8Ty, // optional instance methods
2197       PtrToInt8Ty, // optional class methods
2198       PtrToInt8Ty, // properties
2199       PtrToInt8Ty);// optional properties
2200 
2201   // struct objc_property_gsv1
2202   // {
2203   //   const char *name;
2204   //   char attributes;
2205   //   char attributes2;
2206   //   char unused1;
2207   //   char unused2;
2208   //   const char *getter_name;
2209   //   const char *getter_types;
2210   //   const char *setter_name;
2211   //   const char *setter_types;
2212   // }
2213   PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2214       PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2215       PtrToInt8Ty, PtrToInt8Ty });
2216 
2217   ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2218   PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2219 
2220   llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2221 
2222   // void objc_exception_throw(id);
2223   ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2224   ExceptionReThrowFn.init(&CGM,
2225                           usesCxxExceptions ? "objc_exception_rethrow"
2226                                             : "objc_exception_throw",
2227                           VoidTy, IdTy);
2228   // int objc_sync_enter(id);
2229   SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2230   // int objc_sync_exit(id);
2231   SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2232 
2233   // void objc_enumerationMutation (id)
2234   EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2235 
2236   // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2237   GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2238                      PtrDiffTy, BoolTy);
2239   // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2240   SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2241                      PtrDiffTy, IdTy, BoolTy, BoolTy);
2242   // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2243   GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2244                            PtrDiffTy, BoolTy, BoolTy);
2245   // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2246   SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2247                            PtrDiffTy, BoolTy, BoolTy);
2248 
2249   // IMP type
2250   llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2251   IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2252               true));
2253 
2254   const LangOptions &Opts = CGM.getLangOpts();
2255   if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2256     RuntimeVersion = 10;
2257 
2258   // Don't bother initialising the GC stuff unless we're compiling in GC mode
2259   if (Opts.getGC() != LangOptions::NonGC) {
2260     // This is a bit of an hack.  We should sort this out by having a proper
2261     // CGObjCGNUstep subclass for GC, but we may want to really support the old
2262     // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2263     // Get selectors needed in GC mode
2264     RetainSel = GetNullarySelector("retain", CGM.getContext());
2265     ReleaseSel = GetNullarySelector("release", CGM.getContext());
2266     AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2267 
2268     // Get functions needed in GC mode
2269 
2270     // id objc_assign_ivar(id, id, ptrdiff_t);
2271     IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2272     // id objc_assign_strongCast (id, id*)
2273     StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2274                             PtrToIdTy);
2275     // id objc_assign_global(id, id*);
2276     GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2277     // id objc_assign_weak(id, id*);
2278     WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2279     // id objc_read_weak(id*);
2280     WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2281     // void *objc_memmove_collectable(void*, void *, size_t);
2282     MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2283                    SizeTy);
2284   }
2285 }
2286 
2287 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2288                                       const std::string &Name, bool isWeak) {
2289   llvm::Constant *ClassName = MakeConstantString(Name);
2290   // With the incompatible ABI, this will need to be replaced with a direct
2291   // reference to the class symbol.  For the compatible nonfragile ABI we are
2292   // still performing this lookup at run time but emitting the symbol for the
2293   // class externally so that we can make the switch later.
2294   //
2295   // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2296   // with memoized versions or with static references if it's safe to do so.
2297   if (!isWeak)
2298     EmitClassRef(Name);
2299 
2300   llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2301       llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2302   return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2303 }
2304 
2305 // This has to perform the lookup every time, since posing and related
2306 // techniques can modify the name -> class mapping.
2307 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2308                                  const ObjCInterfaceDecl *OID) {
2309   auto *Value =
2310       GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2311   if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2312     CGM.setGVProperties(ClassSymbol, OID);
2313   return Value;
2314 }
2315 
2316 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2317   auto *Value  = GetClassNamed(CGF, "NSAutoreleasePool", false);
2318   if (CGM.getTriple().isOSBinFormatCOFF()) {
2319     if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2320       IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2321       TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2322       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2323 
2324       const VarDecl *VD = nullptr;
2325       for (const auto *Result : DC->lookup(&II))
2326         if ((VD = dyn_cast<VarDecl>(Result)))
2327           break;
2328 
2329       CGM.setGVProperties(ClassSymbol, VD);
2330     }
2331   }
2332   return Value;
2333 }
2334 
2335 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2336                                          const std::string &TypeEncoding) {
2337   SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2338   llvm::GlobalAlias *SelValue = nullptr;
2339 
2340   for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2341       e = Types.end() ; i!=e ; i++) {
2342     if (i->first == TypeEncoding) {
2343       SelValue = i->second;
2344       break;
2345     }
2346   }
2347   if (!SelValue) {
2348     SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0,
2349                                          llvm::GlobalValue::PrivateLinkage,
2350                                          ".objc_selector_" + Sel.getAsString(),
2351                                          &TheModule);
2352     Types.emplace_back(TypeEncoding, SelValue);
2353   }
2354 
2355   return SelValue;
2356 }
2357 
2358 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2359   llvm::Value *SelValue = GetSelector(CGF, Sel);
2360 
2361   // Store it to a temporary.  Does this satisfy the semantics of
2362   // GetAddrOfSelector?  Hopefully.
2363   Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2364                                      CGF.getPointerAlign());
2365   CGF.Builder.CreateStore(SelValue, tmp);
2366   return tmp;
2367 }
2368 
2369 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2370   return GetTypedSelector(CGF, Sel, std::string());
2371 }
2372 
2373 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2374                                     const ObjCMethodDecl *Method) {
2375   std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2376   return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2377 }
2378 
2379 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2380   if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2381     // With the old ABI, there was only one kind of catchall, which broke
2382     // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
2383     // a pointer indicating object catchalls, and NULL to indicate real
2384     // catchalls
2385     if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2386       return MakeConstantString("@id");
2387     } else {
2388       return nullptr;
2389     }
2390   }
2391 
2392   // All other types should be Objective-C interface pointer types.
2393   const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
2394   assert(OPT && "Invalid @catch type.");
2395   const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2396   assert(IDecl && "Invalid @catch type.");
2397   return MakeConstantString(IDecl->getIdentifier()->getName());
2398 }
2399 
2400 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2401   if (usesSEHExceptions)
2402     return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2403 
2404   if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions)
2405     return CGObjCGNU::GetEHType(T);
2406 
2407   // For Objective-C++, we want to provide the ability to catch both C++ and
2408   // Objective-C objects in the same function.
2409 
2410   // There's a particular fixed type info for 'id'.
2411   if (T->isObjCIdType() ||
2412       T->isObjCQualifiedIdType()) {
2413     llvm::Constant *IDEHType =
2414       CGM.getModule().getGlobalVariable("__objc_id_type_info");
2415     if (!IDEHType)
2416       IDEHType =
2417         new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2418                                  false,
2419                                  llvm::GlobalValue::ExternalLinkage,
2420                                  nullptr, "__objc_id_type_info");
2421     return IDEHType;
2422   }
2423 
2424   const ObjCObjectPointerType *PT =
2425     T->getAs<ObjCObjectPointerType>();
2426   assert(PT && "Invalid @catch type.");
2427   const ObjCInterfaceType *IT = PT->getInterfaceType();
2428   assert(IT && "Invalid @catch type.");
2429   std::string className =
2430       std::string(IT->getDecl()->getIdentifier()->getName());
2431 
2432   std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2433 
2434   // Return the existing typeinfo if it exists
2435   if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName))
2436     return typeinfo;
2437 
2438   // Otherwise create it.
2439 
2440   // vtable for gnustep::libobjc::__objc_class_type_info
2441   // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
2442   // platform's name mangling.
2443   const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2444   auto *Vtable = TheModule.getGlobalVariable(vtableName);
2445   if (!Vtable) {
2446     Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2447                                       llvm::GlobalValue::ExternalLinkage,
2448                                       nullptr, vtableName);
2449   }
2450   llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2451   auto *BVtable =
2452       llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two);
2453 
2454   llvm::Constant *typeName =
2455     ExportUniqueString(className, "__objc_eh_typename_");
2456 
2457   ConstantInitBuilder builder(CGM);
2458   auto fields = builder.beginStruct();
2459   fields.add(BVtable);
2460   fields.add(typeName);
2461   llvm::Constant *TI =
2462     fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2463                                  CGM.getPointerAlign(),
2464                                  /*constant*/ false,
2465                                  llvm::GlobalValue::LinkOnceODRLinkage);
2466   return TI;
2467 }
2468 
2469 /// Generate an NSConstantString object.
2470 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2471 
2472   std::string Str = SL->getString().str();
2473   CharUnits Align = CGM.getPointerAlign();
2474 
2475   // Look for an existing one
2476   llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2477   if (old != ObjCStrings.end())
2478     return ConstantAddress(old->getValue(), Int8Ty, Align);
2479 
2480   StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2481 
2482   if (StringClass.empty()) StringClass = "NSConstantString";
2483 
2484   std::string Sym = "_OBJC_CLASS_";
2485   Sym += StringClass;
2486 
2487   llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2488 
2489   if (!isa)
2490     isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false,
2491                                    llvm::GlobalValue::ExternalWeakLinkage,
2492                                    nullptr, Sym);
2493 
2494   ConstantInitBuilder Builder(CGM);
2495   auto Fields = Builder.beginStruct();
2496   Fields.add(isa);
2497   Fields.add(MakeConstantString(Str));
2498   Fields.addInt(IntTy, Str.size());
2499   llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align);
2500   ObjCStrings[Str] = ObjCStr;
2501   ConstantStrings.push_back(ObjCStr);
2502   return ConstantAddress(ObjCStr, Int8Ty, Align);
2503 }
2504 
2505 ///Generates a message send where the super is the receiver.  This is a message
2506 ///send to self with special delivery semantics indicating which class's method
2507 ///should be called.
2508 RValue
2509 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2510                                     ReturnValueSlot Return,
2511                                     QualType ResultType,
2512                                     Selector Sel,
2513                                     const ObjCInterfaceDecl *Class,
2514                                     bool isCategoryImpl,
2515                                     llvm::Value *Receiver,
2516                                     bool IsClassMessage,
2517                                     const CallArgList &CallArgs,
2518                                     const ObjCMethodDecl *Method) {
2519   CGBuilderTy &Builder = CGF.Builder;
2520   if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2521     if (Sel == RetainSel || Sel == AutoreleaseSel) {
2522       return RValue::get(EnforceType(Builder, Receiver,
2523                   CGM.getTypes().ConvertType(ResultType)));
2524     }
2525     if (Sel == ReleaseSel) {
2526       return RValue::get(nullptr);
2527     }
2528   }
2529 
2530   llvm::Value *cmd = GetSelector(CGF, Sel);
2531   CallArgList ActualArgs;
2532 
2533   ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2534   ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2535   ActualArgs.addFrom(CallArgs);
2536 
2537   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2538 
2539   llvm::Value *ReceiverClass = nullptr;
2540   bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2541   if (isV2ABI) {
2542     ReceiverClass = GetClassNamed(CGF,
2543         Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2544     if (IsClassMessage)  {
2545       // Load the isa pointer of the superclass is this is a class method.
2546       ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2547                                             llvm::PointerType::getUnqual(IdTy));
2548       ReceiverClass =
2549         Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2550     }
2551     ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2552   } else {
2553     if (isCategoryImpl) {
2554       llvm::FunctionCallee classLookupFunction = nullptr;
2555       if (IsClassMessage)  {
2556         classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2557               IdTy, PtrTy, true), "objc_get_meta_class");
2558       } else {
2559         classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2560               IdTy, PtrTy, true), "objc_get_class");
2561       }
2562       ReceiverClass = Builder.CreateCall(classLookupFunction,
2563           MakeConstantString(Class->getNameAsString()));
2564     } else {
2565       // Set up global aliases for the metaclass or class pointer if they do not
2566       // already exist.  These will are forward-references which will be set to
2567       // pointers to the class and metaclass structure created for the runtime
2568       // load function.  To send a message to super, we look up the value of the
2569       // super_class pointer from either the class or metaclass structure.
2570       if (IsClassMessage)  {
2571         if (!MetaClassPtrAlias) {
2572           MetaClassPtrAlias = llvm::GlobalAlias::create(
2573               IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2574               ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2575         }
2576         ReceiverClass = MetaClassPtrAlias;
2577       } else {
2578         if (!ClassPtrAlias) {
2579           ClassPtrAlias = llvm::GlobalAlias::create(
2580               IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2581               ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2582         }
2583         ReceiverClass = ClassPtrAlias;
2584       }
2585     }
2586     // Cast the pointer to a simplified version of the class structure
2587     llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2588     ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2589                                           llvm::PointerType::getUnqual(CastTy));
2590     // Get the superclass pointer
2591     ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2592     // Load the superclass pointer
2593     ReceiverClass =
2594       Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2595   }
2596   // Construct the structure used to look up the IMP
2597   llvm::StructType *ObjCSuperTy =
2598       llvm::StructType::get(Receiver->getType(), IdTy);
2599 
2600   Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2601                               CGF.getPointerAlign());
2602 
2603   Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2604   Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2605 
2606   // Get the IMP
2607   llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2608   imp = EnforceType(Builder, imp, MSI.MessengerType);
2609 
2610   llvm::Metadata *impMD[] = {
2611       llvm::MDString::get(VMContext, Sel.getAsString()),
2612       llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2613       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2614           llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2615   llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2616 
2617   CGCallee callee(CGCalleeInfo(), imp);
2618 
2619   llvm::CallBase *call;
2620   RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2621   call->setMetadata(msgSendMDKind, node);
2622   return msgRet;
2623 }
2624 
2625 /// Generate code for a message send expression.
2626 RValue
2627 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2628                                ReturnValueSlot Return,
2629                                QualType ResultType,
2630                                Selector Sel,
2631                                llvm::Value *Receiver,
2632                                const CallArgList &CallArgs,
2633                                const ObjCInterfaceDecl *Class,
2634                                const ObjCMethodDecl *Method) {
2635   CGBuilderTy &Builder = CGF.Builder;
2636 
2637   // Strip out message sends to retain / release in GC mode
2638   if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2639     if (Sel == RetainSel || Sel == AutoreleaseSel) {
2640       return RValue::get(EnforceType(Builder, Receiver,
2641                   CGM.getTypes().ConvertType(ResultType)));
2642     }
2643     if (Sel == ReleaseSel) {
2644       return RValue::get(nullptr);
2645     }
2646   }
2647 
2648   IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2649   llvm::Value *cmd;
2650   if (Method)
2651     cmd = GetSelector(CGF, Method);
2652   else
2653     cmd = GetSelector(CGF, Sel);
2654   cmd = EnforceType(Builder, cmd, SelectorTy);
2655   Receiver = EnforceType(Builder, Receiver, IdTy);
2656 
2657   llvm::Metadata *impMD[] = {
2658       llvm::MDString::get(VMContext, Sel.getAsString()),
2659       llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2660       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2661           llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2662   llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2663 
2664   CallArgList ActualArgs;
2665   ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2666   ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2667   ActualArgs.addFrom(CallArgs);
2668 
2669   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2670 
2671   // Message sends are expected to return a zero value when the
2672   // receiver is nil.  At one point, this was only guaranteed for
2673   // simple integer and pointer types, but expectations have grown
2674   // over time.
2675   //
2676   // Given a nil receiver, the GNU runtime's message lookup will
2677   // return a stub function that simply sets various return-value
2678   // registers to zero and then returns.  That's good enough for us
2679   // if and only if (1) the calling conventions of that stub are
2680   // compatible with the signature we're using and (2) the registers
2681   // it sets are sufficient to produce a zero value of the return type.
2682   // Rather than doing a whole target-specific analysis, we assume it
2683   // only works for void, integer, and pointer types, and in all
2684   // other cases we do an explicit nil check is emitted code.  In
2685   // addition to ensuring we produe a zero value for other types, this
2686   // sidesteps the few outright CC incompatibilities we know about that
2687   // could otherwise lead to crashes, like when a method is expected to
2688   // return on the x87 floating point stack or adjust the stack pointer
2689   // because of an indirect return.
2690   bool hasParamDestroyedInCallee = false;
2691   bool requiresExplicitZeroResult = false;
2692   bool requiresNilReceiverCheck = [&] {
2693     // We never need a check if we statically know the receiver isn't nil.
2694     if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false,
2695                                   Class, Receiver))
2696       return false;
2697 
2698     // If there's a consumed argument, we need a nil check.
2699     if (Method && Method->hasParamDestroyedInCallee()) {
2700       hasParamDestroyedInCallee = true;
2701     }
2702 
2703     // If the return value isn't flagged as unused, and the result
2704     // type isn't in our narrow set where we assume compatibility,
2705     // we need a nil check to ensure a nil value.
2706     if (!Return.isUnused()) {
2707       if (ResultType->isVoidType()) {
2708         // void results are definitely okay.
2709       } else if (ResultType->hasPointerRepresentation() &&
2710                  CGM.getTypes().isZeroInitializable(ResultType)) {
2711         // Pointer types should be fine as long as they have
2712         // bitwise-zero null pointers.  But do we need to worry
2713         // about unusual address spaces?
2714       } else if (ResultType->isIntegralOrEnumerationType()) {
2715         // Bitwise zero should always be zero for integral types.
2716         // FIXME: we probably need a size limit here, but we've
2717         // never imposed one before
2718       } else {
2719         // Otherwise, use an explicit check just to be sure.
2720         requiresExplicitZeroResult = true;
2721       }
2722     }
2723 
2724     return hasParamDestroyedInCallee || requiresExplicitZeroResult;
2725   }();
2726 
2727   // We will need to explicitly zero-initialize an aggregate result slot
2728   // if we generally require explicit zeroing and we have an aggregate
2729   // result.
2730   bool requiresExplicitAggZeroing =
2731     requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType);
2732 
2733   // The block we're going to end up in after any message send or nil path.
2734   llvm::BasicBlock *continueBB = nullptr;
2735   // The block that eventually branched to continueBB along the nil path.
2736   llvm::BasicBlock *nilPathBB = nullptr;
2737   // The block to do explicit work in along the nil path, if necessary.
2738   llvm::BasicBlock *nilCleanupBB = nullptr;
2739 
2740   // Emit the nil-receiver check.
2741   if (requiresNilReceiverCheck) {
2742     llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend");
2743     continueBB = CGF.createBasicBlock("continue");
2744 
2745     // If we need to zero-initialize an aggregate result or destroy
2746     // consumed arguments, we'll need a separate cleanup block.
2747     // Otherwise we can just branch directly to the continuation block.
2748     if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) {
2749       nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup");
2750     } else {
2751       nilPathBB = Builder.GetInsertBlock();
2752     }
2753 
2754     llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2755             llvm::Constant::getNullValue(Receiver->getType()));
2756     Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB,
2757                          messageBB);
2758     CGF.EmitBlock(messageBB);
2759   }
2760 
2761   // Get the IMP to call
2762   llvm::Value *imp;
2763 
2764   // If we have non-legacy dispatch specified, we try using the objc_msgSend()
2765   // functions.  These are not supported on all platforms (or all runtimes on a
2766   // given platform), so we
2767   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2768     case CodeGenOptions::Legacy:
2769       imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2770       break;
2771     case CodeGenOptions::Mixed:
2772     case CodeGenOptions::NonLegacy:
2773       if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2774         imp =
2775             CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2776                                       "objc_msgSend_fpret")
2777                 .getCallee();
2778       } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2779         // The actual types here don't matter - we're going to bitcast the
2780         // function anyway
2781         imp =
2782             CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2783                                       "objc_msgSend_stret")
2784                 .getCallee();
2785       } else {
2786         imp = CGM.CreateRuntimeFunction(
2787                      llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend")
2788                   .getCallee();
2789       }
2790   }
2791 
2792   // Reset the receiver in case the lookup modified it
2793   ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2794 
2795   imp = EnforceType(Builder, imp, MSI.MessengerType);
2796 
2797   llvm::CallBase *call;
2798   CGCallee callee(CGCalleeInfo(), imp);
2799   RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2800   call->setMetadata(msgSendMDKind, node);
2801 
2802   if (requiresNilReceiverCheck) {
2803     llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock();
2804     CGF.Builder.CreateBr(continueBB);
2805 
2806     // Emit the nil path if we decided it was necessary above.
2807     if (nilCleanupBB) {
2808       CGF.EmitBlock(nilCleanupBB);
2809 
2810       if (hasParamDestroyedInCallee) {
2811         destroyCalleeDestroyedArguments(CGF, Method, CallArgs);
2812       }
2813 
2814       if (requiresExplicitAggZeroing) {
2815         assert(msgRet.isAggregate());
2816         Address addr = msgRet.getAggregateAddress();
2817         CGF.EmitNullInitialization(addr, ResultType);
2818       }
2819 
2820       nilPathBB = CGF.Builder.GetInsertBlock();
2821       CGF.Builder.CreateBr(continueBB);
2822     }
2823 
2824     // Enter the continuation block and emit a phi if required.
2825     CGF.EmitBlock(continueBB);
2826     if (msgRet.isScalar()) {
2827       // If the return type is void, do nothing
2828       if (llvm::Value *v = msgRet.getScalarVal()) {
2829         llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2830         phi->addIncoming(v, nonNilPathBB);
2831         phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB);
2832         msgRet = RValue::get(phi);
2833       }
2834     } else if (msgRet.isAggregate()) {
2835       // Aggregate zeroing is handled in nilCleanupBB when it's required.
2836     } else /* isComplex() */ {
2837       std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2838       llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2839       phi->addIncoming(v.first, nonNilPathBB);
2840       phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2841                        nilPathBB);
2842       llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2843       phi2->addIncoming(v.second, nonNilPathBB);
2844       phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2845                         nilPathBB);
2846       msgRet = RValue::getComplex(phi, phi2);
2847     }
2848   }
2849   return msgRet;
2850 }
2851 
2852 /// Generates a MethodList.  Used in construction of a objc_class and
2853 /// objc_category structures.
2854 llvm::Constant *CGObjCGNU::
2855 GenerateMethodList(StringRef ClassName,
2856                    StringRef CategoryName,
2857                    ArrayRef<const ObjCMethodDecl*> Methods,
2858                    bool isClassMethodList) {
2859   if (Methods.empty())
2860     return NULLPtr;
2861 
2862   ConstantInitBuilder Builder(CGM);
2863 
2864   auto MethodList = Builder.beginStruct();
2865   MethodList.addNullPointer(CGM.Int8PtrTy);
2866   MethodList.addInt(Int32Ty, Methods.size());
2867 
2868   // Get the method structure type.
2869   llvm::StructType *ObjCMethodTy =
2870     llvm::StructType::get(CGM.getLLVMContext(), {
2871       PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2872       PtrToInt8Ty, // Method types
2873       IMPTy        // Method pointer
2874     });
2875   bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2876   if (isV2ABI) {
2877     // size_t size;
2878     llvm::DataLayout td(&TheModule);
2879     MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
2880         CGM.getContext().getCharWidth());
2881     ObjCMethodTy =
2882       llvm::StructType::get(CGM.getLLVMContext(), {
2883         IMPTy,       // Method pointer
2884         PtrToInt8Ty, // Selector
2885         PtrToInt8Ty  // Extended type encoding
2886       });
2887   } else {
2888     ObjCMethodTy =
2889       llvm::StructType::get(CGM.getLLVMContext(), {
2890         PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2891         PtrToInt8Ty, // Method types
2892         IMPTy        // Method pointer
2893       });
2894   }
2895   auto MethodArray = MethodList.beginArray();
2896   ASTContext &Context = CGM.getContext();
2897   for (const auto *OMD : Methods) {
2898     llvm::Constant *FnPtr =
2899       TheModule.getFunction(getSymbolNameForMethod(OMD));
2900     assert(FnPtr && "Can't generate metadata for method that doesn't exist");
2901     auto Method = MethodArray.beginStruct(ObjCMethodTy);
2902     if (isV2ABI) {
2903       Method.add(FnPtr);
2904       Method.add(GetConstantSelector(OMD->getSelector(),
2905           Context.getObjCEncodingForMethodDecl(OMD)));
2906       Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
2907     } else {
2908       Method.add(MakeConstantString(OMD->getSelector().getAsString()));
2909       Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
2910       Method.add(FnPtr);
2911     }
2912     Method.finishAndAddTo(MethodArray);
2913   }
2914   MethodArray.finishAndAddTo(MethodList);
2915 
2916   // Create an instance of the structure
2917   return MethodList.finishAndCreateGlobal(".objc_method_list",
2918                                           CGM.getPointerAlign());
2919 }
2920 
2921 /// Generates an IvarList.  Used in construction of a objc_class.
2922 llvm::Constant *CGObjCGNU::
2923 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
2924                  ArrayRef<llvm::Constant *> IvarTypes,
2925                  ArrayRef<llvm::Constant *> IvarOffsets,
2926                  ArrayRef<llvm::Constant *> IvarAlign,
2927                  ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
2928   if (IvarNames.empty())
2929     return NULLPtr;
2930 
2931   ConstantInitBuilder Builder(CGM);
2932 
2933   // Structure containing array count followed by array.
2934   auto IvarList = Builder.beginStruct();
2935   IvarList.addInt(IntTy, (int)IvarNames.size());
2936 
2937   // Get the ivar structure type.
2938   llvm::StructType *ObjCIvarTy =
2939       llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
2940 
2941   // Array of ivar structures.
2942   auto Ivars = IvarList.beginArray(ObjCIvarTy);
2943   for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
2944     auto Ivar = Ivars.beginStruct(ObjCIvarTy);
2945     Ivar.add(IvarNames[i]);
2946     Ivar.add(IvarTypes[i]);
2947     Ivar.add(IvarOffsets[i]);
2948     Ivar.finishAndAddTo(Ivars);
2949   }
2950   Ivars.finishAndAddTo(IvarList);
2951 
2952   // Create an instance of the structure
2953   return IvarList.finishAndCreateGlobal(".objc_ivar_list",
2954                                         CGM.getPointerAlign());
2955 }
2956 
2957 /// Generate a class structure
2958 llvm::Constant *CGObjCGNU::GenerateClassStructure(
2959     llvm::Constant *MetaClass,
2960     llvm::Constant *SuperClass,
2961     unsigned info,
2962     const char *Name,
2963     llvm::Constant *Version,
2964     llvm::Constant *InstanceSize,
2965     llvm::Constant *IVars,
2966     llvm::Constant *Methods,
2967     llvm::Constant *Protocols,
2968     llvm::Constant *IvarOffsets,
2969     llvm::Constant *Properties,
2970     llvm::Constant *StrongIvarBitmap,
2971     llvm::Constant *WeakIvarBitmap,
2972     bool isMeta) {
2973   // Set up the class structure
2974   // Note:  Several of these are char*s when they should be ids.  This is
2975   // because the runtime performs this translation on load.
2976   //
2977   // Fields marked New ABI are part of the GNUstep runtime.  We emit them
2978   // anyway; the classes will still work with the GNU runtime, they will just
2979   // be ignored.
2980   llvm::StructType *ClassTy = llvm::StructType::get(
2981       PtrToInt8Ty,        // isa
2982       PtrToInt8Ty,        // super_class
2983       PtrToInt8Ty,        // name
2984       LongTy,             // version
2985       LongTy,             // info
2986       LongTy,             // instance_size
2987       IVars->getType(),   // ivars
2988       Methods->getType(), // methods
2989       // These are all filled in by the runtime, so we pretend
2990       PtrTy, // dtable
2991       PtrTy, // subclass_list
2992       PtrTy, // sibling_class
2993       PtrTy, // protocols
2994       PtrTy, // gc_object_type
2995       // New ABI:
2996       LongTy,                 // abi_version
2997       IvarOffsets->getType(), // ivar_offsets
2998       Properties->getType(),  // properties
2999       IntPtrTy,               // strong_pointers
3000       IntPtrTy                // weak_pointers
3001       );
3002 
3003   ConstantInitBuilder Builder(CGM);
3004   auto Elements = Builder.beginStruct(ClassTy);
3005 
3006   // Fill in the structure
3007 
3008   // isa
3009   Elements.add(MetaClass);
3010   // super_class
3011   Elements.add(SuperClass);
3012   // name
3013   Elements.add(MakeConstantString(Name, ".class_name"));
3014   // version
3015   Elements.addInt(LongTy, 0);
3016   // info
3017   Elements.addInt(LongTy, info);
3018   // instance_size
3019   if (isMeta) {
3020     llvm::DataLayout td(&TheModule);
3021     Elements.addInt(LongTy,
3022                     td.getTypeSizeInBits(ClassTy) /
3023                       CGM.getContext().getCharWidth());
3024   } else
3025     Elements.add(InstanceSize);
3026   // ivars
3027   Elements.add(IVars);
3028   // methods
3029   Elements.add(Methods);
3030   // These are all filled in by the runtime, so we pretend
3031   // dtable
3032   Elements.add(NULLPtr);
3033   // subclass_list
3034   Elements.add(NULLPtr);
3035   // sibling_class
3036   Elements.add(NULLPtr);
3037   // protocols
3038   Elements.add(Protocols);
3039   // gc_object_type
3040   Elements.add(NULLPtr);
3041   // abi_version
3042   Elements.addInt(LongTy, ClassABIVersion);
3043   // ivar_offsets
3044   Elements.add(IvarOffsets);
3045   // properties
3046   Elements.add(Properties);
3047   // strong_pointers
3048   Elements.add(StrongIvarBitmap);
3049   // weak_pointers
3050   Elements.add(WeakIvarBitmap);
3051   // Create an instance of the structure
3052   // This is now an externally visible symbol, so that we can speed up class
3053   // messages in the next ABI.  We may already have some weak references to
3054   // this, so check and fix them properly.
3055   std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
3056           std::string(Name));
3057   llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
3058   llvm::Constant *Class =
3059     Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
3060                                    llvm::GlobalValue::ExternalLinkage);
3061   if (ClassRef) {
3062     ClassRef->replaceAllUsesWith(Class);
3063     ClassRef->removeFromParent();
3064     Class->setName(ClassSym);
3065   }
3066   return Class;
3067 }
3068 
3069 llvm::Constant *CGObjCGNU::
3070 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3071   // Get the method structure type.
3072   llvm::StructType *ObjCMethodDescTy =
3073     llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3074   ASTContext &Context = CGM.getContext();
3075   ConstantInitBuilder Builder(CGM);
3076   auto MethodList = Builder.beginStruct();
3077   MethodList.addInt(IntTy, Methods.size());
3078   auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3079   for (auto *M : Methods) {
3080     auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3081     Method.add(MakeConstantString(M->getSelector().getAsString()));
3082     Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3083     Method.finishAndAddTo(MethodArray);
3084   }
3085   MethodArray.finishAndAddTo(MethodList);
3086   return MethodList.finishAndCreateGlobal(".objc_method_list",
3087                                           CGM.getPointerAlign());
3088 }
3089 
3090 // Create the protocol list structure used in classes, categories and so on
3091 llvm::Constant *
3092 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3093 
3094   ConstantInitBuilder Builder(CGM);
3095   auto ProtocolList = Builder.beginStruct();
3096   ProtocolList.add(NULLPtr);
3097   ProtocolList.addInt(LongTy, Protocols.size());
3098 
3099   auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3100   for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3101       iter != endIter ; iter++) {
3102     llvm::Constant *protocol = nullptr;
3103     llvm::StringMap<llvm::Constant*>::iterator value =
3104       ExistingProtocols.find(*iter);
3105     if (value == ExistingProtocols.end()) {
3106       protocol = GenerateEmptyProtocol(*iter);
3107     } else {
3108       protocol = value->getValue();
3109     }
3110     Elements.add(protocol);
3111   }
3112   Elements.finishAndAddTo(ProtocolList);
3113   return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3114                                             CGM.getPointerAlign());
3115 }
3116 
3117 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3118                                             const ObjCProtocolDecl *PD) {
3119   auto protocol = GenerateProtocolRef(PD);
3120   llvm::Type *T =
3121       CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
3122   return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3123 }
3124 
3125 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3126   llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3127   if (!protocol)
3128     GenerateProtocol(PD);
3129   assert(protocol && "Unknown protocol");
3130   return protocol;
3131 }
3132 
3133 llvm::Constant *
3134 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3135   llvm::Constant *ProtocolList = GenerateProtocolList({});
3136   llvm::Constant *MethodList = GenerateProtocolMethodList({});
3137   // Protocols are objects containing lists of the methods implemented and
3138   // protocols adopted.
3139   ConstantInitBuilder Builder(CGM);
3140   auto Elements = Builder.beginStruct();
3141 
3142   // The isa pointer must be set to a magic number so the runtime knows it's
3143   // the correct layout.
3144   Elements.add(llvm::ConstantExpr::getIntToPtr(
3145           llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3146 
3147   Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3148   Elements.add(ProtocolList); /* .protocol_list */
3149   Elements.add(MethodList);   /* .instance_methods */
3150   Elements.add(MethodList);   /* .class_methods */
3151   Elements.add(MethodList);   /* .optional_instance_methods */
3152   Elements.add(MethodList);   /* .optional_class_methods */
3153   Elements.add(NULLPtr);      /* .properties */
3154   Elements.add(NULLPtr);      /* .optional_properties */
3155   return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3156                                         CGM.getPointerAlign());
3157 }
3158 
3159 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3160   if (PD->isNonRuntimeProtocol())
3161     return;
3162 
3163   std::string ProtocolName = PD->getNameAsString();
3164 
3165   // Use the protocol definition, if there is one.
3166   if (const ObjCProtocolDecl *Def = PD->getDefinition())
3167     PD = Def;
3168 
3169   SmallVector<std::string, 16> Protocols;
3170   for (const auto *PI : PD->protocols())
3171     Protocols.push_back(PI->getNameAsString());
3172   SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3173   SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3174   for (const auto *I : PD->instance_methods())
3175     if (I->isOptional())
3176       OptionalInstanceMethods.push_back(I);
3177     else
3178       InstanceMethods.push_back(I);
3179   // Collect information about class methods:
3180   SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3181   SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3182   for (const auto *I : PD->class_methods())
3183     if (I->isOptional())
3184       OptionalClassMethods.push_back(I);
3185     else
3186       ClassMethods.push_back(I);
3187 
3188   llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3189   llvm::Constant *InstanceMethodList =
3190     GenerateProtocolMethodList(InstanceMethods);
3191   llvm::Constant *ClassMethodList =
3192     GenerateProtocolMethodList(ClassMethods);
3193   llvm::Constant *OptionalInstanceMethodList =
3194     GenerateProtocolMethodList(OptionalInstanceMethods);
3195   llvm::Constant *OptionalClassMethodList =
3196     GenerateProtocolMethodList(OptionalClassMethods);
3197 
3198   // Property metadata: name, attributes, isSynthesized, setter name, setter
3199   // types, getter name, getter types.
3200   // The isSynthesized value is always set to 0 in a protocol.  It exists to
3201   // simplify the runtime library by allowing it to use the same data
3202   // structures for protocol metadata everywhere.
3203 
3204   llvm::Constant *PropertyList =
3205     GeneratePropertyList(nullptr, PD, false, false);
3206   llvm::Constant *OptionalPropertyList =
3207     GeneratePropertyList(nullptr, PD, false, true);
3208 
3209   // Protocols are objects containing lists of the methods implemented and
3210   // protocols adopted.
3211   // The isa pointer must be set to a magic number so the runtime knows it's
3212   // the correct layout.
3213   ConstantInitBuilder Builder(CGM);
3214   auto Elements = Builder.beginStruct();
3215   Elements.add(
3216       llvm::ConstantExpr::getIntToPtr(
3217           llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3218   Elements.add(MakeConstantString(ProtocolName));
3219   Elements.add(ProtocolList);
3220   Elements.add(InstanceMethodList);
3221   Elements.add(ClassMethodList);
3222   Elements.add(OptionalInstanceMethodList);
3223   Elements.add(OptionalClassMethodList);
3224   Elements.add(PropertyList);
3225   Elements.add(OptionalPropertyList);
3226   ExistingProtocols[ProtocolName] =
3227       Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign());
3228 }
3229 void CGObjCGNU::GenerateProtocolHolderCategory() {
3230   // Collect information about instance methods
3231 
3232   ConstantInitBuilder Builder(CGM);
3233   auto Elements = Builder.beginStruct();
3234 
3235   const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3236   const std::string CategoryName = "AnotherHack";
3237   Elements.add(MakeConstantString(CategoryName));
3238   Elements.add(MakeConstantString(ClassName));
3239   // Instance method list
3240   Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false));
3241   // Class method list
3242   Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true));
3243 
3244   // Protocol list
3245   ConstantInitBuilder ProtocolListBuilder(CGM);
3246   auto ProtocolList = ProtocolListBuilder.beginStruct();
3247   ProtocolList.add(NULLPtr);
3248   ProtocolList.addInt(LongTy, ExistingProtocols.size());
3249   auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3250   for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3251        iter != endIter ; iter++) {
3252     ProtocolElements.add(iter->getValue());
3253   }
3254   ProtocolElements.finishAndAddTo(ProtocolList);
3255   Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3256                                                   CGM.getPointerAlign()));
3257   Categories.push_back(
3258       Elements.finishAndCreateGlobal("", CGM.getPointerAlign()));
3259 }
3260 
3261 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3262 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3263 /// bits set to their values, LSB first, while larger ones are stored in a
3264 /// structure of this / form:
3265 ///
3266 /// struct { int32_t length; int32_t values[length]; };
3267 ///
3268 /// The values in the array are stored in host-endian format, with the least
3269 /// significant bit being assumed to come first in the bitfield.  Therefore, a
3270 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3271 /// bitfield / with the 63rd bit set will be 1<<64.
3272 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3273   int bitCount = bits.size();
3274   int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3275   if (bitCount < ptrBits) {
3276     uint64_t val = 1;
3277     for (int i=0 ; i<bitCount ; ++i) {
3278       if (bits[i]) val |= 1ULL<<(i+1);
3279     }
3280     return llvm::ConstantInt::get(IntPtrTy, val);
3281   }
3282   SmallVector<llvm::Constant *, 8> values;
3283   int v=0;
3284   while (v < bitCount) {
3285     int32_t word = 0;
3286     for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
3287       if (bits[v]) word |= 1<<i;
3288       v++;
3289     }
3290     values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3291   }
3292 
3293   ConstantInitBuilder builder(CGM);
3294   auto fields = builder.beginStruct();
3295   fields.addInt(Int32Ty, values.size());
3296   auto array = fields.beginArray();
3297   for (auto *v : values) array.add(v);
3298   array.finishAndAddTo(fields);
3299 
3300   llvm::Constant *GS =
3301     fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3302   llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3303   return ptr;
3304 }
3305 
3306 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3307     ObjCCategoryDecl *OCD) {
3308   const auto &RefPro = OCD->getReferencedProtocols();
3309   const auto RuntimeProtos =
3310       GetRuntimeProtocolList(RefPro.begin(), RefPro.end());
3311   SmallVector<std::string, 16> Protocols;
3312   for (const auto *PD : RuntimeProtos)
3313     Protocols.push_back(PD->getNameAsString());
3314   return GenerateProtocolList(Protocols);
3315 }
3316 
3317 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3318   const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3319   std::string ClassName = Class->getNameAsString();
3320   std::string CategoryName = OCD->getNameAsString();
3321 
3322   // Collect the names of referenced protocols
3323   const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3324 
3325   ConstantInitBuilder Builder(CGM);
3326   auto Elements = Builder.beginStruct();
3327   Elements.add(MakeConstantString(CategoryName));
3328   Elements.add(MakeConstantString(ClassName));
3329   // Instance method list
3330   SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3331   InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3332       OCD->instmeth_end());
3333   Elements.add(
3334       GenerateMethodList(ClassName, CategoryName, InstanceMethods, false));
3335 
3336   // Class method list
3337 
3338   SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3339   ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3340       OCD->classmeth_end());
3341   Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true));
3342 
3343   // Protocol list
3344   Elements.add(GenerateCategoryProtocolList(CatDecl));
3345   if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3346     const ObjCCategoryDecl *Category =
3347       Class->FindCategoryDeclaration(OCD->getIdentifier());
3348     if (Category) {
3349       // Instance properties
3350       Elements.add(GeneratePropertyList(OCD, Category, false));
3351       // Class properties
3352       Elements.add(GeneratePropertyList(OCD, Category, true));
3353     } else {
3354       Elements.addNullPointer(PtrTy);
3355       Elements.addNullPointer(PtrTy);
3356     }
3357   }
3358 
3359   Categories.push_back(Elements.finishAndCreateGlobal(
3360       std::string(".objc_category_") + ClassName + CategoryName,
3361       CGM.getPointerAlign()));
3362 }
3363 
3364 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3365     const ObjCContainerDecl *OCD,
3366     bool isClassProperty,
3367     bool protocolOptionalProperties) {
3368 
3369   SmallVector<const ObjCPropertyDecl *, 16> Properties;
3370   llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3371   bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3372   ASTContext &Context = CGM.getContext();
3373 
3374   std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3375     = [&](const ObjCProtocolDecl *Proto) {
3376       for (const auto *P : Proto->protocols())
3377         collectProtocolProperties(P);
3378       for (const auto *PD : Proto->properties()) {
3379         if (isClassProperty != PD->isClassProperty())
3380           continue;
3381         // Skip any properties that are declared in protocols that this class
3382         // conforms to but are not actually implemented by this class.
3383         if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3384           continue;
3385         if (!PropertySet.insert(PD->getIdentifier()).second)
3386           continue;
3387         Properties.push_back(PD);
3388       }
3389     };
3390 
3391   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3392     for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3393       for (auto *PD : ClassExt->properties()) {
3394         if (isClassProperty != PD->isClassProperty())
3395           continue;
3396         PropertySet.insert(PD->getIdentifier());
3397         Properties.push_back(PD);
3398       }
3399 
3400   for (const auto *PD : OCD->properties()) {
3401     if (isClassProperty != PD->isClassProperty())
3402       continue;
3403     // If we're generating a list for a protocol, skip optional / required ones
3404     // when generating the other list.
3405     if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3406       continue;
3407     // Don't emit duplicate metadata for properties that were already in a
3408     // class extension.
3409     if (!PropertySet.insert(PD->getIdentifier()).second)
3410       continue;
3411 
3412     Properties.push_back(PD);
3413   }
3414 
3415   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3416     for (const auto *P : OID->all_referenced_protocols())
3417       collectProtocolProperties(P);
3418   else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3419     for (const auto *P : CD->protocols())
3420       collectProtocolProperties(P);
3421 
3422   auto numProperties = Properties.size();
3423 
3424   if (numProperties == 0)
3425     return NULLPtr;
3426 
3427   ConstantInitBuilder builder(CGM);
3428   auto propertyList = builder.beginStruct();
3429   auto properties = PushPropertyListHeader(propertyList, numProperties);
3430 
3431   // Add all of the property methods need adding to the method list and to the
3432   // property metadata list.
3433   for (auto *property : Properties) {
3434     bool isSynthesized = false;
3435     bool isDynamic = false;
3436     if (!isProtocol) {
3437       auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3438       if (propertyImpl) {
3439         isSynthesized = (propertyImpl->getPropertyImplementation() ==
3440             ObjCPropertyImplDecl::Synthesize);
3441         isDynamic = (propertyImpl->getPropertyImplementation() ==
3442             ObjCPropertyImplDecl::Dynamic);
3443       }
3444     }
3445     PushProperty(properties, property, Container, isSynthesized, isDynamic);
3446   }
3447   properties.finishAndAddTo(propertyList);
3448 
3449   return propertyList.finishAndCreateGlobal(".objc_property_list",
3450                                             CGM.getPointerAlign());
3451 }
3452 
3453 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3454   // Get the class declaration for which the alias is specified.
3455   ObjCInterfaceDecl *ClassDecl =
3456     const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3457   ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3458                             OAD->getNameAsString());
3459 }
3460 
3461 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3462   ASTContext &Context = CGM.getContext();
3463 
3464   // Get the superclass name.
3465   const ObjCInterfaceDecl * SuperClassDecl =
3466     OID->getClassInterface()->getSuperClass();
3467   std::string SuperClassName;
3468   if (SuperClassDecl) {
3469     SuperClassName = SuperClassDecl->getNameAsString();
3470     EmitClassRef(SuperClassName);
3471   }
3472 
3473   // Get the class name
3474   ObjCInterfaceDecl *ClassDecl =
3475       const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3476   std::string ClassName = ClassDecl->getNameAsString();
3477 
3478   // Emit the symbol that is used to generate linker errors if this class is
3479   // referenced in other modules but not declared.
3480   std::string classSymbolName = "__objc_class_name_" + ClassName;
3481   if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3482     symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3483   } else {
3484     new llvm::GlobalVariable(TheModule, LongTy, false,
3485                              llvm::GlobalValue::ExternalLinkage,
3486                              llvm::ConstantInt::get(LongTy, 0),
3487                              classSymbolName);
3488   }
3489 
3490   // Get the size of instances.
3491   int instanceSize =
3492     Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3493 
3494   // Collect information about instance variables.
3495   SmallVector<llvm::Constant*, 16> IvarNames;
3496   SmallVector<llvm::Constant*, 16> IvarTypes;
3497   SmallVector<llvm::Constant*, 16> IvarOffsets;
3498   SmallVector<llvm::Constant*, 16> IvarAligns;
3499   SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3500 
3501   ConstantInitBuilder IvarOffsetBuilder(CGM);
3502   auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3503   SmallVector<bool, 16> WeakIvars;
3504   SmallVector<bool, 16> StrongIvars;
3505 
3506   int superInstanceSize = !SuperClassDecl ? 0 :
3507     Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3508   // For non-fragile ivars, set the instance size to 0 - {the size of just this
3509   // class}.  The runtime will then set this to the correct value on load.
3510   if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3511     instanceSize = 0 - (instanceSize - superInstanceSize);
3512   }
3513 
3514   for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3515        IVD = IVD->getNextIvar()) {
3516       // Store the name
3517       IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3518       // Get the type encoding for this ivar
3519       std::string TypeStr;
3520       Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3521       IvarTypes.push_back(MakeConstantString(TypeStr));
3522       IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3523             Context.getTypeSize(IVD->getType())));
3524       // Get the offset
3525       uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3526       uint64_t Offset = BaseOffset;
3527       if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3528         Offset = BaseOffset - superInstanceSize;
3529       }
3530       llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3531       // Create the direct offset value
3532       std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3533           IVD->getNameAsString();
3534 
3535       llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3536       if (OffsetVar) {
3537         OffsetVar->setInitializer(OffsetValue);
3538         // If this is the real definition, change its linkage type so that
3539         // different modules will use this one, rather than their private
3540         // copy.
3541         OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3542       } else
3543         OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3544           false, llvm::GlobalValue::ExternalLinkage,
3545           OffsetValue, OffsetName);
3546       IvarOffsets.push_back(OffsetValue);
3547       IvarOffsetValues.add(OffsetVar);
3548       Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3549       IvarOwnership.push_back(lt);
3550       switch (lt) {
3551         case Qualifiers::OCL_Strong:
3552           StrongIvars.push_back(true);
3553           WeakIvars.push_back(false);
3554           break;
3555         case Qualifiers::OCL_Weak:
3556           StrongIvars.push_back(false);
3557           WeakIvars.push_back(true);
3558           break;
3559         default:
3560           StrongIvars.push_back(false);
3561           WeakIvars.push_back(false);
3562       }
3563   }
3564   llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3565   llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3566   llvm::GlobalVariable *IvarOffsetArray =
3567     IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3568                                            CGM.getPointerAlign());
3569 
3570   // Collect information about instance methods
3571   SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3572   InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3573       OID->instmeth_end());
3574 
3575   SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3576   ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3577       OID->classmeth_end());
3578 
3579   llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3580 
3581   // Collect the names of referenced protocols
3582   auto RefProtocols = ClassDecl->protocols();
3583   auto RuntimeProtocols =
3584       GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end());
3585   SmallVector<std::string, 16> Protocols;
3586   for (const auto *I : RuntimeProtocols)
3587     Protocols.push_back(I->getNameAsString());
3588 
3589   // Get the superclass pointer.
3590   llvm::Constant *SuperClass;
3591   if (!SuperClassName.empty()) {
3592     SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3593   } else {
3594     SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3595   }
3596   // Empty vector used to construct empty method lists
3597   SmallVector<llvm::Constant*, 1>  empty;
3598   // Generate the method and instance variable lists
3599   llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3600       InstanceMethods, false);
3601   llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3602       ClassMethods, true);
3603   llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3604       IvarOffsets, IvarAligns, IvarOwnership);
3605   // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3606   // we emit a symbol containing the offset for each ivar in the class.  This
3607   // allows code compiled for the non-Fragile ABI to inherit from code compiled
3608   // for the legacy ABI, without causing problems.  The converse is also
3609   // possible, but causes all ivar accesses to be fragile.
3610 
3611   // Offset pointer for getting at the correct field in the ivar list when
3612   // setting up the alias.  These are: The base address for the global, the
3613   // ivar array (second field), the ivar in this list (set for each ivar), and
3614   // the offset (third field in ivar structure)
3615   llvm::Type *IndexTy = Int32Ty;
3616   llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3617       llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3618       llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3619 
3620   unsigned ivarIndex = 0;
3621   for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3622        IVD = IVD->getNextIvar()) {
3623       const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3624       offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3625       // Get the correct ivar field
3626       llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3627           cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3628           offsetPointerIndexes);
3629       // Get the existing variable, if one exists.
3630       llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3631       if (offset) {
3632         offset->setInitializer(offsetValue);
3633         // If this is the real definition, change its linkage type so that
3634         // different modules will use this one, rather than their private
3635         // copy.
3636         offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3637       } else
3638         // Add a new alias if there isn't one already.
3639         new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3640                 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3641       ++ivarIndex;
3642   }
3643   llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3644 
3645   //Generate metaclass for class methods
3646   llvm::Constant *MetaClassStruct = GenerateClassStructure(
3647       NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3648       NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3649       GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3650   CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3651                       OID->getClassInterface());
3652 
3653   // Generate the class structure
3654   llvm::Constant *ClassStruct = GenerateClassStructure(
3655       MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3656       llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3657       GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3658       StrongIvarBitmap, WeakIvarBitmap);
3659   CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3660                       OID->getClassInterface());
3661 
3662   // Resolve the class aliases, if they exist.
3663   if (ClassPtrAlias) {
3664     ClassPtrAlias->replaceAllUsesWith(ClassStruct);
3665     ClassPtrAlias->eraseFromParent();
3666     ClassPtrAlias = nullptr;
3667   }
3668   if (MetaClassPtrAlias) {
3669     MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct);
3670     MetaClassPtrAlias->eraseFromParent();
3671     MetaClassPtrAlias = nullptr;
3672   }
3673 
3674   // Add class structure to list to be added to the symtab later
3675   Classes.push_back(ClassStruct);
3676 }
3677 
3678 llvm::Function *CGObjCGNU::ModuleInitFunction() {
3679   // Only emit an ObjC load function if no Objective-C stuff has been called
3680   if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3681       ExistingProtocols.empty() && SelectorTable.empty())
3682     return nullptr;
3683 
3684   // Add all referenced protocols to a category.
3685   GenerateProtocolHolderCategory();
3686 
3687   llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy);
3688   if (!selStructTy) {
3689     selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3690                                         { PtrToInt8Ty, PtrToInt8Ty });
3691   }
3692 
3693   // Generate statics list:
3694   llvm::Constant *statics = NULLPtr;
3695   if (!ConstantStrings.empty()) {
3696     llvm::GlobalVariable *fileStatics = [&] {
3697       ConstantInitBuilder builder(CGM);
3698       auto staticsStruct = builder.beginStruct();
3699 
3700       StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3701       if (stringClass.empty()) stringClass = "NXConstantString";
3702       staticsStruct.add(MakeConstantString(stringClass,
3703                                            ".objc_static_class_name"));
3704 
3705       auto array = staticsStruct.beginArray();
3706       array.addAll(ConstantStrings);
3707       array.add(NULLPtr);
3708       array.finishAndAddTo(staticsStruct);
3709 
3710       return staticsStruct.finishAndCreateGlobal(".objc_statics",
3711                                                  CGM.getPointerAlign());
3712     }();
3713 
3714     ConstantInitBuilder builder(CGM);
3715     auto allStaticsArray = builder.beginArray(fileStatics->getType());
3716     allStaticsArray.add(fileStatics);
3717     allStaticsArray.addNullPointer(fileStatics->getType());
3718 
3719     statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3720                                                     CGM.getPointerAlign());
3721   }
3722 
3723   // Array of classes, categories, and constant objects.
3724 
3725   SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3726   unsigned selectorCount;
3727 
3728   // Pointer to an array of selectors used in this module.
3729   llvm::GlobalVariable *selectorList = [&] {
3730     ConstantInitBuilder builder(CGM);
3731     auto selectors = builder.beginArray(selStructTy);
3732     auto &table = SelectorTable; // MSVC workaround
3733     std::vector<Selector> allSelectors;
3734     for (auto &entry : table)
3735       allSelectors.push_back(entry.first);
3736     llvm::sort(allSelectors);
3737 
3738     for (auto &untypedSel : allSelectors) {
3739       std::string selNameStr = untypedSel.getAsString();
3740       llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3741 
3742       for (TypedSelector &sel : table[untypedSel]) {
3743         llvm::Constant *selectorTypeEncoding = NULLPtr;
3744         if (!sel.first.empty())
3745           selectorTypeEncoding =
3746             MakeConstantString(sel.first, ".objc_sel_types");
3747 
3748         auto selStruct = selectors.beginStruct(selStructTy);
3749         selStruct.add(selName);
3750         selStruct.add(selectorTypeEncoding);
3751         selStruct.finishAndAddTo(selectors);
3752 
3753         // Store the selector alias for later replacement
3754         selectorAliases.push_back(sel.second);
3755       }
3756     }
3757 
3758     // Remember the number of entries in the selector table.
3759     selectorCount = selectors.size();
3760 
3761     // NULL-terminate the selector list.  This should not actually be required,
3762     // because the selector list has a length field.  Unfortunately, the GCC
3763     // runtime decides to ignore the length field and expects a NULL terminator,
3764     // and GCC cooperates with this by always setting the length to 0.
3765     auto selStruct = selectors.beginStruct(selStructTy);
3766     selStruct.add(NULLPtr);
3767     selStruct.add(NULLPtr);
3768     selStruct.finishAndAddTo(selectors);
3769 
3770     return selectors.finishAndCreateGlobal(".objc_selector_list",
3771                                            CGM.getPointerAlign());
3772   }();
3773 
3774   // Now that all of the static selectors exist, create pointers to them.
3775   for (unsigned i = 0; i < selectorCount; ++i) {
3776     llvm::Constant *idxs[] = {
3777       Zeros[0],
3778       llvm::ConstantInt::get(Int32Ty, i)
3779     };
3780     // FIXME: We're generating redundant loads and stores here!
3781     llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3782         selectorList->getValueType(), selectorList, idxs);
3783     selectorAliases[i]->replaceAllUsesWith(selPtr);
3784     selectorAliases[i]->eraseFromParent();
3785   }
3786 
3787   llvm::GlobalVariable *symtab = [&] {
3788     ConstantInitBuilder builder(CGM);
3789     auto symtab = builder.beginStruct();
3790 
3791     // Number of static selectors
3792     symtab.addInt(LongTy, selectorCount);
3793 
3794     symtab.add(selectorList);
3795 
3796     // Number of classes defined.
3797     symtab.addInt(CGM.Int16Ty, Classes.size());
3798     // Number of categories defined
3799     symtab.addInt(CGM.Int16Ty, Categories.size());
3800 
3801     // Create an array of classes, then categories, then static object instances
3802     auto classList = symtab.beginArray(PtrToInt8Ty);
3803     classList.addAll(Classes);
3804     classList.addAll(Categories);
3805     //  NULL-terminated list of static object instances (mainly constant strings)
3806     classList.add(statics);
3807     classList.add(NULLPtr);
3808     classList.finishAndAddTo(symtab);
3809 
3810     // Construct the symbol table.
3811     return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3812   }();
3813 
3814   // The symbol table is contained in a module which has some version-checking
3815   // constants
3816   llvm::Constant *module = [&] {
3817     llvm::Type *moduleEltTys[] = {
3818       LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3819     };
3820     llvm::StructType *moduleTy = llvm::StructType::get(
3821         CGM.getLLVMContext(),
3822         ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3823 
3824     ConstantInitBuilder builder(CGM);
3825     auto module = builder.beginStruct(moduleTy);
3826     // Runtime version, used for ABI compatibility checking.
3827     module.addInt(LongTy, RuntimeVersion);
3828     // sizeof(ModuleTy)
3829     module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3830 
3831     // The path to the source file where this module was declared
3832     SourceManager &SM = CGM.getContext().getSourceManager();
3833     OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID());
3834     std::string path =
3835         (mainFile->getDir().getName() + "/" + mainFile->getName()).str();
3836     module.add(MakeConstantString(path, ".objc_source_file_name"));
3837     module.add(symtab);
3838 
3839     if (RuntimeVersion >= 10) {
3840       switch (CGM.getLangOpts().getGC()) {
3841       case LangOptions::GCOnly:
3842         module.addInt(IntTy, 2);
3843         break;
3844       case LangOptions::NonGC:
3845         if (CGM.getLangOpts().ObjCAutoRefCount)
3846           module.addInt(IntTy, 1);
3847         else
3848           module.addInt(IntTy, 0);
3849         break;
3850       case LangOptions::HybridGC:
3851         module.addInt(IntTy, 1);
3852         break;
3853       }
3854     }
3855 
3856     return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3857   }();
3858 
3859   // Create the load function calling the runtime entry point with the module
3860   // structure
3861   llvm::Function * LoadFunction = llvm::Function::Create(
3862       llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
3863       llvm::GlobalValue::InternalLinkage, ".objc_load_function",
3864       &TheModule);
3865   llvm::BasicBlock *EntryBB =
3866       llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
3867   CGBuilderTy Builder(CGM, VMContext);
3868   Builder.SetInsertPoint(EntryBB);
3869 
3870   llvm::FunctionType *FT =
3871     llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
3872   llvm::FunctionCallee Register =
3873       CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
3874   Builder.CreateCall(Register, module);
3875 
3876   if (!ClassAliases.empty()) {
3877     llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
3878     llvm::FunctionType *RegisterAliasTy =
3879       llvm::FunctionType::get(Builder.getVoidTy(),
3880                               ArgTypes, false);
3881     llvm::Function *RegisterAlias = llvm::Function::Create(
3882       RegisterAliasTy,
3883       llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
3884       &TheModule);
3885     llvm::BasicBlock *AliasBB =
3886       llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
3887     llvm::BasicBlock *NoAliasBB =
3888       llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
3889 
3890     // Branch based on whether the runtime provided class_registerAlias_np()
3891     llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
3892             llvm::Constant::getNullValue(RegisterAlias->getType()));
3893     Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
3894 
3895     // The true branch (has alias registration function):
3896     Builder.SetInsertPoint(AliasBB);
3897     // Emit alias registration calls:
3898     for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
3899        iter != ClassAliases.end(); ++iter) {
3900        llvm::Constant *TheClass =
3901           TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
3902        if (TheClass) {
3903          Builder.CreateCall(RegisterAlias,
3904                             {TheClass, MakeConstantString(iter->second)});
3905        }
3906     }
3907     // Jump to end:
3908     Builder.CreateBr(NoAliasBB);
3909 
3910     // Missing alias registration function, just return from the function:
3911     Builder.SetInsertPoint(NoAliasBB);
3912   }
3913   Builder.CreateRetVoid();
3914 
3915   return LoadFunction;
3916 }
3917 
3918 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
3919                                           const ObjCContainerDecl *CD) {
3920   CodeGenTypes &Types = CGM.getTypes();
3921   llvm::FunctionType *MethodTy =
3922     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3923   std::string FunctionName = getSymbolNameForMethod(OMD);
3924 
3925   llvm::Function *Method
3926     = llvm::Function::Create(MethodTy,
3927                              llvm::GlobalValue::InternalLinkage,
3928                              FunctionName,
3929                              &TheModule);
3930   return Method;
3931 }
3932 
3933 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
3934                                              llvm::Function *Fn,
3935                                              const ObjCMethodDecl *OMD,
3936                                              const ObjCContainerDecl *CD) {
3937   // GNU runtime doesn't support direct calls at this time
3938 }
3939 
3940 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
3941   return GetPropertyFn;
3942 }
3943 
3944 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
3945   return SetPropertyFn;
3946 }
3947 
3948 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
3949                                                                 bool copy) {
3950   return nullptr;
3951 }
3952 
3953 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
3954   return GetStructPropertyFn;
3955 }
3956 
3957 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
3958   return SetStructPropertyFn;
3959 }
3960 
3961 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
3962   return nullptr;
3963 }
3964 
3965 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
3966   return nullptr;
3967 }
3968 
3969 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
3970   return EnumerationMutationFn;
3971 }
3972 
3973 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
3974                                      const ObjCAtSynchronizedStmt &S) {
3975   EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
3976 }
3977 
3978 
3979 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
3980                             const ObjCAtTryStmt &S) {
3981   // Unlike the Apple non-fragile runtimes, which also uses
3982   // unwind-based zero cost exceptions, the GNU Objective C runtime's
3983   // EH support isn't a veneer over C++ EH.  Instead, exception
3984   // objects are created by objc_exception_throw and destroyed by
3985   // the personality function; this avoids the need for bracketing
3986   // catch handlers with calls to __blah_begin_catch/__blah_end_catch
3987   // (or even _Unwind_DeleteException), but probably doesn't
3988   // interoperate very well with foreign exceptions.
3989   //
3990   // In Objective-C++ mode, we actually emit something equivalent to the C++
3991   // exception handler.
3992   EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
3993 }
3994 
3995 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
3996                               const ObjCAtThrowStmt &S,
3997                               bool ClearInsertionPoint) {
3998   llvm::Value *ExceptionAsObject;
3999   bool isRethrow = false;
4000 
4001   if (const Expr *ThrowExpr = S.getThrowExpr()) {
4002     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4003     ExceptionAsObject = Exception;
4004   } else {
4005     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4006            "Unexpected rethrow outside @catch block.");
4007     ExceptionAsObject = CGF.ObjCEHValueStack.back();
4008     isRethrow = true;
4009   }
4010   if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) {
4011     // For SEH, ExceptionAsObject may be undef, because the catch handler is
4012     // not passed it for catchalls and so it is not visible to the catch
4013     // funclet.  The real thrown object will still be live on the stack at this
4014     // point and will be rethrown.  If we are explicitly rethrowing the object
4015     // that was passed into the `@catch` block, then this code path is not
4016     // reached and we will instead call `objc_exception_throw` with an explicit
4017     // argument.
4018     llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
4019     Throw->setDoesNotReturn();
4020   } else {
4021     ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
4022     llvm::CallBase *Throw =
4023         CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
4024     Throw->setDoesNotReturn();
4025   }
4026   CGF.Builder.CreateUnreachable();
4027   if (ClearInsertionPoint)
4028     CGF.Builder.ClearInsertionPoint();
4029 }
4030 
4031 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
4032                                           Address AddrWeakObj) {
4033   CGBuilderTy &B = CGF.Builder;
4034   return B.CreateCall(WeakReadFn,
4035                       EnforceType(B, AddrWeakObj.getPointer(), PtrToIdTy));
4036 }
4037 
4038 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
4039                                    llvm::Value *src, Address dst) {
4040   CGBuilderTy &B = CGF.Builder;
4041   src = EnforceType(B, src, IdTy);
4042   llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy);
4043   B.CreateCall(WeakAssignFn, {src, dstVal});
4044 }
4045 
4046 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
4047                                      llvm::Value *src, Address dst,
4048                                      bool threadlocal) {
4049   CGBuilderTy &B = CGF.Builder;
4050   src = EnforceType(B, src, IdTy);
4051   llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy);
4052   // FIXME. Add threadloca assign API
4053   assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
4054   B.CreateCall(GlobalAssignFn, {src, dstVal});
4055 }
4056 
4057 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4058                                    llvm::Value *src, Address dst,
4059                                    llvm::Value *ivarOffset) {
4060   CGBuilderTy &B = CGF.Builder;
4061   src = EnforceType(B, src, IdTy);
4062   llvm::Value *dstVal = EnforceType(B, dst.getPointer(), IdTy);
4063   B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset});
4064 }
4065 
4066 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4067                                          llvm::Value *src, Address dst) {
4068   CGBuilderTy &B = CGF.Builder;
4069   src = EnforceType(B, src, IdTy);
4070   llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy);
4071   B.CreateCall(StrongCastAssignFn, {src, dstVal});
4072 }
4073 
4074 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4075                                          Address DestPtr,
4076                                          Address SrcPtr,
4077                                          llvm::Value *Size) {
4078   CGBuilderTy &B = CGF.Builder;
4079   llvm::Value *DestPtrVal = EnforceType(B, DestPtr.getPointer(), PtrTy);
4080   llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.getPointer(), PtrTy);
4081 
4082   B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size});
4083 }
4084 
4085 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4086                               const ObjCInterfaceDecl *ID,
4087                               const ObjCIvarDecl *Ivar) {
4088   const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4089   // Emit the variable and initialize it with what we think the correct value
4090   // is.  This allows code compiled with non-fragile ivars to work correctly
4091   // when linked against code which isn't (most of the time).
4092   llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4093   if (!IvarOffsetPointer)
4094     IvarOffsetPointer = new llvm::GlobalVariable(
4095         TheModule, llvm::PointerType::getUnqual(VMContext), false,
4096         llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4097   return IvarOffsetPointer;
4098 }
4099 
4100 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4101                                        QualType ObjectTy,
4102                                        llvm::Value *BaseValue,
4103                                        const ObjCIvarDecl *Ivar,
4104                                        unsigned CVRQualifiers) {
4105   const ObjCInterfaceDecl *ID =
4106     ObjectTy->castAs<ObjCObjectType>()->getInterface();
4107   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4108                                   EmitIvarOffset(CGF, ID, Ivar));
4109 }
4110 
4111 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
4112                                                   const ObjCInterfaceDecl *OID,
4113                                                   const ObjCIvarDecl *OIVD) {
4114   for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4115        next = next->getNextIvar()) {
4116     if (OIVD == next)
4117       return OID;
4118   }
4119 
4120   // Otherwise check in the super class.
4121   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4122     return FindIvarInterface(Context, Super, OIVD);
4123 
4124   return nullptr;
4125 }
4126 
4127 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4128                          const ObjCInterfaceDecl *Interface,
4129                          const ObjCIvarDecl *Ivar) {
4130   if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4131     Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
4132 
4133     // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4134     // and ExternalLinkage, so create a reference to the ivar global and rely on
4135     // the definition being created as part of GenerateClass.
4136     if (RuntimeVersion < 10 ||
4137         CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4138       return CGF.Builder.CreateZExtOrBitCast(
4139           CGF.Builder.CreateAlignedLoad(
4140               Int32Ty,
4141               CGF.Builder.CreateAlignedLoad(
4142                   llvm::PointerType::getUnqual(VMContext),
4143                   ObjCIvarOffsetVariable(Interface, Ivar),
4144                   CGF.getPointerAlign(), "ivar"),
4145               CharUnits::fromQuantity(4)),
4146           PtrDiffTy);
4147     std::string name = "__objc_ivar_offset_value_" +
4148       Interface->getNameAsString() +"." + Ivar->getNameAsString();
4149     CharUnits Align = CGM.getIntAlign();
4150     llvm::Value *Offset = TheModule.getGlobalVariable(name);
4151     if (!Offset) {
4152       auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4153           false, llvm::GlobalValue::LinkOnceAnyLinkage,
4154           llvm::Constant::getNullValue(IntTy), name);
4155       GV->setAlignment(Align.getAsAlign());
4156       Offset = GV;
4157     }
4158     Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align);
4159     if (Offset->getType() != PtrDiffTy)
4160       Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4161     return Offset;
4162   }
4163   uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4164   return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4165 }
4166 
4167 CGObjCRuntime *
4168 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
4169   auto Runtime = CGM.getLangOpts().ObjCRuntime;
4170   switch (Runtime.getKind()) {
4171   case ObjCRuntime::GNUstep:
4172     if (Runtime.getVersion() >= VersionTuple(2, 0))
4173       return new CGObjCGNUstep2(CGM);
4174     return new CGObjCGNUstep(CGM);
4175 
4176   case ObjCRuntime::GCC:
4177     return new CGObjCGCC(CGM);
4178 
4179   case ObjCRuntime::ObjFW:
4180     return new CGObjCObjFW(CGM);
4181 
4182   case ObjCRuntime::FragileMacOSX:
4183   case ObjCRuntime::MacOSX:
4184   case ObjCRuntime::iOS:
4185   case ObjCRuntime::WatchOS:
4186     llvm_unreachable("these runtimes are not GNU runtimes");
4187   }
4188   llvm_unreachable("bad runtime");
4189 }
4190