1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 if (Signed) 69 Result = LHSAP.sadd_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 if (Signed) 74 Result = LHSAP.ssub_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.usub_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Mul) { 78 if (Signed) 79 Result = LHSAP.smul_ov(RHSAP, Overflow); 80 else 81 Result = LHSAP.umul_ov(RHSAP, Overflow); 82 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 83 if (Signed && !RHS->isZero()) 84 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 85 else 86 return false; 87 } 88 return Overflow; 89 } 90 91 struct BinOpInfo { 92 Value *LHS; 93 Value *RHS; 94 QualType Ty; // Computation Type. 95 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 96 FPOptions FPFeatures; 97 const Expr *E; // Entire expr, for error unsupported. May not be binop. 98 99 /// Check if the binop can result in integer overflow. 100 bool mayHaveIntegerOverflow() const { 101 // Without constant input, we can't rule out overflow. 102 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 103 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 104 if (!LHSCI || !RHSCI) 105 return true; 106 107 llvm::APInt Result; 108 return ::mayHaveIntegerOverflow( 109 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 110 } 111 112 /// Check if the binop computes a division or a remainder. 113 bool isDivremOp() const { 114 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 115 Opcode == BO_RemAssign; 116 } 117 118 /// Check if the binop can result in an integer division by zero. 119 bool mayHaveIntegerDivisionByZero() const { 120 if (isDivremOp()) 121 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 122 return CI->isZero(); 123 return true; 124 } 125 126 /// Check if the binop can result in a float division by zero. 127 bool mayHaveFloatDivisionByZero() const { 128 if (isDivremOp()) 129 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 130 return CFP->isZero(); 131 return true; 132 } 133 134 /// Check if at least one operand is a fixed point type. In such cases, this 135 /// operation did not follow usual arithmetic conversion and both operands 136 /// might not be of the same type. 137 bool isFixedPointOp() const { 138 // We cannot simply check the result type since comparison operations return 139 // an int. 140 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 141 QualType LHSType = BinOp->getLHS()->getType(); 142 QualType RHSType = BinOp->getRHS()->getType(); 143 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 144 } 145 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 146 return UnOp->getSubExpr()->getType()->isFixedPointType(); 147 return false; 148 } 149 }; 150 151 static bool MustVisitNullValue(const Expr *E) { 152 // If a null pointer expression's type is the C++0x nullptr_t, then 153 // it's not necessarily a simple constant and it must be evaluated 154 // for its potential side effects. 155 return E->getType()->isNullPtrType(); 156 } 157 158 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 160 const Expr *E) { 161 const Expr *Base = E->IgnoreImpCasts(); 162 if (E == Base) 163 return llvm::None; 164 165 QualType BaseTy = Base->getType(); 166 if (!BaseTy->isPromotableIntegerType() || 167 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 168 return llvm::None; 169 170 return BaseTy; 171 } 172 173 /// Check if \p E is a widened promoted integer. 174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 175 return getUnwidenedIntegerType(Ctx, E).hasValue(); 176 } 177 178 /// Check if we can skip the overflow check for \p Op. 179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 180 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 181 "Expected a unary or binary operator"); 182 183 // If the binop has constant inputs and we can prove there is no overflow, 184 // we can elide the overflow check. 185 if (!Op.mayHaveIntegerOverflow()) 186 return true; 187 188 // If a unary op has a widened operand, the op cannot overflow. 189 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 190 return !UO->canOverflow(); 191 192 // We usually don't need overflow checks for binops with widened operands. 193 // Multiplication with promoted unsigned operands is a special case. 194 const auto *BO = cast<BinaryOperator>(Op.E); 195 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 196 if (!OptionalLHSTy) 197 return false; 198 199 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 200 if (!OptionalRHSTy) 201 return false; 202 203 QualType LHSTy = *OptionalLHSTy; 204 QualType RHSTy = *OptionalRHSTy; 205 206 // This is the simple case: binops without unsigned multiplication, and with 207 // widened operands. No overflow check is needed here. 208 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 209 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 210 return true; 211 212 // For unsigned multiplication the overflow check can be elided if either one 213 // of the unpromoted types are less than half the size of the promoted type. 214 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 215 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 216 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 217 } 218 219 class ScalarExprEmitter 220 : public StmtVisitor<ScalarExprEmitter, Value*> { 221 CodeGenFunction &CGF; 222 CGBuilderTy &Builder; 223 bool IgnoreResultAssign; 224 llvm::LLVMContext &VMContext; 225 public: 226 227 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 228 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 229 VMContext(cgf.getLLVMContext()) { 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Utilities 234 //===--------------------------------------------------------------------===// 235 236 bool TestAndClearIgnoreResultAssign() { 237 bool I = IgnoreResultAssign; 238 IgnoreResultAssign = false; 239 return I; 240 } 241 242 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 243 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 244 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 245 return CGF.EmitCheckedLValue(E, TCK); 246 } 247 248 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 249 const BinOpInfo &Info); 250 251 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 252 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 253 } 254 255 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 256 const AlignValueAttr *AVAttr = nullptr; 257 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 258 const ValueDecl *VD = DRE->getDecl(); 259 260 if (VD->getType()->isReferenceType()) { 261 if (const auto *TTy = 262 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 263 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 264 } else { 265 // Assumptions for function parameters are emitted at the start of the 266 // function, so there is no need to repeat that here, 267 // unless the alignment-assumption sanitizer is enabled, 268 // then we prefer the assumption over alignment attribute 269 // on IR function param. 270 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 271 return; 272 273 AVAttr = VD->getAttr<AlignValueAttr>(); 274 } 275 } 276 277 if (!AVAttr) 278 if (const auto *TTy = 279 dyn_cast<TypedefType>(E->getType())) 280 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 281 282 if (!AVAttr) 283 return; 284 285 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 286 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 287 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 288 } 289 290 /// EmitLoadOfLValue - Given an expression with complex type that represents a 291 /// value l-value, this method emits the address of the l-value, then loads 292 /// and returns the result. 293 Value *EmitLoadOfLValue(const Expr *E) { 294 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 295 E->getExprLoc()); 296 297 EmitLValueAlignmentAssumption(E, V); 298 return V; 299 } 300 301 /// EmitConversionToBool - Convert the specified expression value to a 302 /// boolean (i1) truth value. This is equivalent to "Val != 0". 303 Value *EmitConversionToBool(Value *Src, QualType DstTy); 304 305 /// Emit a check that a conversion from a floating-point type does not 306 /// overflow. 307 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 308 Value *Src, QualType SrcType, QualType DstType, 309 llvm::Type *DstTy, SourceLocation Loc); 310 311 /// Known implicit conversion check kinds. 312 /// Keep in sync with the enum of the same name in ubsan_handlers.h 313 enum ImplicitConversionCheckKind : unsigned char { 314 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 315 ICCK_UnsignedIntegerTruncation = 1, 316 ICCK_SignedIntegerTruncation = 2, 317 ICCK_IntegerSignChange = 3, 318 ICCK_SignedIntegerTruncationOrSignChange = 4, 319 }; 320 321 /// Emit a check that an [implicit] truncation of an integer does not 322 /// discard any bits. It is not UB, so we use the value after truncation. 323 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a check that an [implicit] conversion of an integer does not change 327 /// the sign of the value. It is not UB, so we use the value after conversion. 328 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 329 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 330 QualType DstType, SourceLocation Loc); 331 332 /// Emit a conversion from the specified type to the specified destination 333 /// type, both of which are LLVM scalar types. 334 struct ScalarConversionOpts { 335 bool TreatBooleanAsSigned; 336 bool EmitImplicitIntegerTruncationChecks; 337 bool EmitImplicitIntegerSignChangeChecks; 338 339 ScalarConversionOpts() 340 : TreatBooleanAsSigned(false), 341 EmitImplicitIntegerTruncationChecks(false), 342 EmitImplicitIntegerSignChangeChecks(false) {} 343 344 ScalarConversionOpts(clang::SanitizerSet SanOpts) 345 : TreatBooleanAsSigned(false), 346 EmitImplicitIntegerTruncationChecks( 347 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 348 EmitImplicitIntegerSignChangeChecks( 349 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 350 }; 351 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, 352 llvm::Type *SrcTy, llvm::Type *DstTy, 353 ScalarConversionOpts Opts); 354 Value * 355 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 356 SourceLocation Loc, 357 ScalarConversionOpts Opts = ScalarConversionOpts()); 358 359 /// Convert between either a fixed point and other fixed point or fixed point 360 /// and an integer. 361 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 362 SourceLocation Loc); 363 364 /// Emit a conversion from the specified complex type to the specified 365 /// destination type, where the destination type is an LLVM scalar type. 366 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 367 QualType SrcTy, QualType DstTy, 368 SourceLocation Loc); 369 370 /// EmitNullValue - Emit a value that corresponds to null for the given type. 371 Value *EmitNullValue(QualType Ty); 372 373 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 374 Value *EmitFloatToBoolConversion(Value *V) { 375 // Compare against 0.0 for fp scalars. 376 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 377 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 378 } 379 380 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 381 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 382 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 383 384 return Builder.CreateICmpNE(V, Zero, "tobool"); 385 } 386 387 Value *EmitIntToBoolConversion(Value *V) { 388 // Because of the type rules of C, we often end up computing a 389 // logical value, then zero extending it to int, then wanting it 390 // as a logical value again. Optimize this common case. 391 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 392 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 393 Value *Result = ZI->getOperand(0); 394 // If there aren't any more uses, zap the instruction to save space. 395 // Note that there can be more uses, for example if this 396 // is the result of an assignment. 397 if (ZI->use_empty()) 398 ZI->eraseFromParent(); 399 return Result; 400 } 401 } 402 403 return Builder.CreateIsNotNull(V, "tobool"); 404 } 405 406 //===--------------------------------------------------------------------===// 407 // Visitor Methods 408 //===--------------------------------------------------------------------===// 409 410 Value *Visit(Expr *E) { 411 ApplyDebugLocation DL(CGF, E); 412 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 413 } 414 415 Value *VisitStmt(Stmt *S) { 416 S->dump(llvm::errs(), CGF.getContext()); 417 llvm_unreachable("Stmt can't have complex result type!"); 418 } 419 Value *VisitExpr(Expr *S); 420 421 Value *VisitConstantExpr(ConstantExpr *E) { 422 // A constant expression of type 'void' generates no code and produces no 423 // value. 424 if (E->getType()->isVoidType()) 425 return nullptr; 426 427 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 428 if (E->isGLValue()) 429 return CGF.Builder.CreateLoad(Address( 430 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 431 return Result; 432 } 433 return Visit(E->getSubExpr()); 434 } 435 Value *VisitParenExpr(ParenExpr *PE) { 436 return Visit(PE->getSubExpr()); 437 } 438 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 439 return Visit(E->getReplacement()); 440 } 441 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 442 return Visit(GE->getResultExpr()); 443 } 444 Value *VisitCoawaitExpr(CoawaitExpr *S) { 445 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 446 } 447 Value *VisitCoyieldExpr(CoyieldExpr *S) { 448 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 449 } 450 Value *VisitUnaryCoawait(const UnaryOperator *E) { 451 return Visit(E->getSubExpr()); 452 } 453 454 // Leaves. 455 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 456 return Builder.getInt(E->getValue()); 457 } 458 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 462 return llvm::ConstantFP::get(VMContext, E->getValue()); 463 } 464 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 474 return EmitNullValue(E->getType()); 475 } 476 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 480 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 481 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 482 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 483 return Builder.CreateBitCast(V, ConvertType(E->getType())); 484 } 485 486 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 487 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 488 } 489 490 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 491 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 492 } 493 494 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); 495 496 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 497 if (E->isGLValue()) 498 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 499 E->getExprLoc()); 500 501 // Otherwise, assume the mapping is the scalar directly. 502 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 503 } 504 505 // l-values. 506 Value *VisitDeclRefExpr(DeclRefExpr *E) { 507 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 508 return CGF.emitScalarConstant(Constant, E); 509 return EmitLoadOfLValue(E); 510 } 511 512 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 513 return CGF.EmitObjCSelectorExpr(E); 514 } 515 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 516 return CGF.EmitObjCProtocolExpr(E); 517 } 518 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 519 return EmitLoadOfLValue(E); 520 } 521 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 522 if (E->getMethodDecl() && 523 E->getMethodDecl()->getReturnType()->isReferenceType()) 524 return EmitLoadOfLValue(E); 525 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 526 } 527 528 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 529 LValue LV = CGF.EmitObjCIsaExpr(E); 530 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 531 return V; 532 } 533 534 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 535 VersionTuple Version = E->getVersion(); 536 537 // If we're checking for a platform older than our minimum deployment 538 // target, we can fold the check away. 539 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 540 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 541 542 return CGF.EmitBuiltinAvailable(Version); 543 } 544 545 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 546 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 547 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 548 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 549 Value *VisitMemberExpr(MemberExpr *E); 550 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 551 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 552 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 553 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 554 // literals aren't l-values in C++. We do so simply because that's the 555 // cleanest way to handle compound literals in C++. 556 // See the discussion here: https://reviews.llvm.org/D64464 557 return EmitLoadOfLValue(E); 558 } 559 560 Value *VisitInitListExpr(InitListExpr *E); 561 562 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 563 assert(CGF.getArrayInitIndex() && 564 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 565 return CGF.getArrayInitIndex(); 566 } 567 568 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 569 return EmitNullValue(E->getType()); 570 } 571 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 572 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 573 return VisitCastExpr(E); 574 } 575 Value *VisitCastExpr(CastExpr *E); 576 577 Value *VisitCallExpr(const CallExpr *E) { 578 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 579 return EmitLoadOfLValue(E); 580 581 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 582 583 EmitLValueAlignmentAssumption(E, V); 584 return V; 585 } 586 587 Value *VisitStmtExpr(const StmtExpr *E); 588 589 // Unary Operators. 590 Value *VisitUnaryPostDec(const UnaryOperator *E) { 591 LValue LV = EmitLValue(E->getSubExpr()); 592 return EmitScalarPrePostIncDec(E, LV, false, false); 593 } 594 Value *VisitUnaryPostInc(const UnaryOperator *E) { 595 LValue LV = EmitLValue(E->getSubExpr()); 596 return EmitScalarPrePostIncDec(E, LV, true, false); 597 } 598 Value *VisitUnaryPreDec(const UnaryOperator *E) { 599 LValue LV = EmitLValue(E->getSubExpr()); 600 return EmitScalarPrePostIncDec(E, LV, false, true); 601 } 602 Value *VisitUnaryPreInc(const UnaryOperator *E) { 603 LValue LV = EmitLValue(E->getSubExpr()); 604 return EmitScalarPrePostIncDec(E, LV, true, true); 605 } 606 607 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 608 llvm::Value *InVal, 609 bool IsInc); 610 611 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 612 bool isInc, bool isPre); 613 614 615 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 616 if (isa<MemberPointerType>(E->getType())) // never sugared 617 return CGF.CGM.getMemberPointerConstant(E); 618 619 return EmitLValue(E->getSubExpr()).getPointer(CGF); 620 } 621 Value *VisitUnaryDeref(const UnaryOperator *E) { 622 if (E->getType()->isVoidType()) 623 return Visit(E->getSubExpr()); // the actual value should be unused 624 return EmitLoadOfLValue(E); 625 } 626 Value *VisitUnaryPlus(const UnaryOperator *E) { 627 // This differs from gcc, though, most likely due to a bug in gcc. 628 TestAndClearIgnoreResultAssign(); 629 return Visit(E->getSubExpr()); 630 } 631 Value *VisitUnaryMinus (const UnaryOperator *E); 632 Value *VisitUnaryNot (const UnaryOperator *E); 633 Value *VisitUnaryLNot (const UnaryOperator *E); 634 Value *VisitUnaryReal (const UnaryOperator *E); 635 Value *VisitUnaryImag (const UnaryOperator *E); 636 Value *VisitUnaryExtension(const UnaryOperator *E) { 637 return Visit(E->getSubExpr()); 638 } 639 640 // C++ 641 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 642 return EmitLoadOfLValue(E); 643 } 644 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 645 auto &Ctx = CGF.getContext(); 646 APValue Evaluated = 647 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 648 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 649 SLE->getType()); 650 } 651 652 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 653 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 654 return Visit(DAE->getExpr()); 655 } 656 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 657 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 658 return Visit(DIE->getExpr()); 659 } 660 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 661 return CGF.LoadCXXThis(); 662 } 663 664 Value *VisitExprWithCleanups(ExprWithCleanups *E); 665 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 666 return CGF.EmitCXXNewExpr(E); 667 } 668 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 669 CGF.EmitCXXDeleteExpr(E); 670 return nullptr; 671 } 672 673 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 674 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 675 } 676 677 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 678 return Builder.getInt1(E->isSatisfied()); 679 } 680 681 Value *VisitRequiresExpr(const RequiresExpr *E) { 682 return Builder.getInt1(E->isSatisfied()); 683 } 684 685 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 686 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 687 } 688 689 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 690 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 691 } 692 693 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 694 // C++ [expr.pseudo]p1: 695 // The result shall only be used as the operand for the function call 696 // operator (), and the result of such a call has type void. The only 697 // effect is the evaluation of the postfix-expression before the dot or 698 // arrow. 699 CGF.EmitScalarExpr(E->getBase()); 700 return nullptr; 701 } 702 703 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 704 return EmitNullValue(E->getType()); 705 } 706 707 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 708 CGF.EmitCXXThrowExpr(E); 709 return nullptr; 710 } 711 712 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 713 return Builder.getInt1(E->getValue()); 714 } 715 716 // Binary Operators. 717 Value *EmitMul(const BinOpInfo &Ops) { 718 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 719 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 720 case LangOptions::SOB_Defined: 721 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 722 case LangOptions::SOB_Undefined: 723 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 724 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 725 LLVM_FALLTHROUGH; 726 case LangOptions::SOB_Trapping: 727 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 728 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 729 return EmitOverflowCheckedBinOp(Ops); 730 } 731 } 732 733 if (Ops.Ty->isConstantMatrixType()) { 734 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 735 // We need to check the types of the operands of the operator to get the 736 // correct matrix dimensions. 737 auto *BO = cast<BinaryOperator>(Ops.E); 738 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 739 BO->getLHS()->getType().getCanonicalType()); 740 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 741 BO->getRHS()->getType().getCanonicalType()); 742 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 743 if (LHSMatTy && RHSMatTy) 744 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 745 LHSMatTy->getNumColumns(), 746 RHSMatTy->getNumColumns()); 747 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 748 } 749 750 if (Ops.Ty->isUnsignedIntegerType() && 751 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 752 !CanElideOverflowCheck(CGF.getContext(), Ops)) 753 return EmitOverflowCheckedBinOp(Ops); 754 755 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 756 // Preserve the old values 757 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 758 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 759 } 760 if (Ops.isFixedPointOp()) 761 return EmitFixedPointBinOp(Ops); 762 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 763 } 764 /// Create a binary op that checks for overflow. 765 /// Currently only supports +, - and *. 766 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 767 768 // Check for undefined division and modulus behaviors. 769 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 770 llvm::Value *Zero,bool isDiv); 771 // Common helper for getting how wide LHS of shift is. 772 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 773 774 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 775 // non powers of two. 776 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 777 778 Value *EmitDiv(const BinOpInfo &Ops); 779 Value *EmitRem(const BinOpInfo &Ops); 780 Value *EmitAdd(const BinOpInfo &Ops); 781 Value *EmitSub(const BinOpInfo &Ops); 782 Value *EmitShl(const BinOpInfo &Ops); 783 Value *EmitShr(const BinOpInfo &Ops); 784 Value *EmitAnd(const BinOpInfo &Ops) { 785 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 786 } 787 Value *EmitXor(const BinOpInfo &Ops) { 788 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 789 } 790 Value *EmitOr (const BinOpInfo &Ops) { 791 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 792 } 793 794 // Helper functions for fixed point binary operations. 795 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 796 797 BinOpInfo EmitBinOps(const BinaryOperator *E); 798 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 799 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 800 Value *&Result); 801 802 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 803 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 804 805 // Binary operators and binary compound assignment operators. 806 #define HANDLEBINOP(OP) \ 807 Value *VisitBin ## OP(const BinaryOperator *E) { \ 808 return Emit ## OP(EmitBinOps(E)); \ 809 } \ 810 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 811 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 812 } 813 HANDLEBINOP(Mul) 814 HANDLEBINOP(Div) 815 HANDLEBINOP(Rem) 816 HANDLEBINOP(Add) 817 HANDLEBINOP(Sub) 818 HANDLEBINOP(Shl) 819 HANDLEBINOP(Shr) 820 HANDLEBINOP(And) 821 HANDLEBINOP(Xor) 822 HANDLEBINOP(Or) 823 #undef HANDLEBINOP 824 825 // Comparisons. 826 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 827 llvm::CmpInst::Predicate SICmpOpc, 828 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 829 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 830 Value *VisitBin##CODE(const BinaryOperator *E) { \ 831 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 832 llvm::FCmpInst::FP, SIG); } 833 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 834 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 835 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 836 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 837 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 838 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 839 #undef VISITCOMP 840 841 Value *VisitBinAssign (const BinaryOperator *E); 842 843 Value *VisitBinLAnd (const BinaryOperator *E); 844 Value *VisitBinLOr (const BinaryOperator *E); 845 Value *VisitBinComma (const BinaryOperator *E); 846 847 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 848 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 849 850 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 851 return Visit(E->getSemanticForm()); 852 } 853 854 // Other Operators. 855 Value *VisitBlockExpr(const BlockExpr *BE); 856 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 857 Value *VisitChooseExpr(ChooseExpr *CE); 858 Value *VisitVAArgExpr(VAArgExpr *VE); 859 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 860 return CGF.EmitObjCStringLiteral(E); 861 } 862 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 863 return CGF.EmitObjCBoxedExpr(E); 864 } 865 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 866 return CGF.EmitObjCArrayLiteral(E); 867 } 868 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 869 return CGF.EmitObjCDictionaryLiteral(E); 870 } 871 Value *VisitAsTypeExpr(AsTypeExpr *CE); 872 Value *VisitAtomicExpr(AtomicExpr *AE); 873 }; 874 } // end anonymous namespace. 875 876 //===----------------------------------------------------------------------===// 877 // Utilities 878 //===----------------------------------------------------------------------===// 879 880 /// EmitConversionToBool - Convert the specified expression value to a 881 /// boolean (i1) truth value. This is equivalent to "Val != 0". 882 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 883 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 884 885 if (SrcType->isRealFloatingType()) 886 return EmitFloatToBoolConversion(Src); 887 888 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 889 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 890 891 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 892 "Unknown scalar type to convert"); 893 894 if (isa<llvm::IntegerType>(Src->getType())) 895 return EmitIntToBoolConversion(Src); 896 897 assert(isa<llvm::PointerType>(Src->getType())); 898 return EmitPointerToBoolConversion(Src, SrcType); 899 } 900 901 void ScalarExprEmitter::EmitFloatConversionCheck( 902 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 903 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 904 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 905 if (!isa<llvm::IntegerType>(DstTy)) 906 return; 907 908 CodeGenFunction::SanitizerScope SanScope(&CGF); 909 using llvm::APFloat; 910 using llvm::APSInt; 911 912 llvm::Value *Check = nullptr; 913 const llvm::fltSemantics &SrcSema = 914 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 915 916 // Floating-point to integer. This has undefined behavior if the source is 917 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 918 // to an integer). 919 unsigned Width = CGF.getContext().getIntWidth(DstType); 920 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 921 922 APSInt Min = APSInt::getMinValue(Width, Unsigned); 923 APFloat MinSrc(SrcSema, APFloat::uninitialized); 924 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 925 APFloat::opOverflow) 926 // Don't need an overflow check for lower bound. Just check for 927 // -Inf/NaN. 928 MinSrc = APFloat::getInf(SrcSema, true); 929 else 930 // Find the largest value which is too small to represent (before 931 // truncation toward zero). 932 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 933 934 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 935 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 936 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 937 APFloat::opOverflow) 938 // Don't need an overflow check for upper bound. Just check for 939 // +Inf/NaN. 940 MaxSrc = APFloat::getInf(SrcSema, false); 941 else 942 // Find the smallest value which is too large to represent (before 943 // truncation toward zero). 944 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 945 946 // If we're converting from __half, convert the range to float to match 947 // the type of src. 948 if (OrigSrcType->isHalfType()) { 949 const llvm::fltSemantics &Sema = 950 CGF.getContext().getFloatTypeSemantics(SrcType); 951 bool IsInexact; 952 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 953 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 954 } 955 956 llvm::Value *GE = 957 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 958 llvm::Value *LE = 959 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 960 Check = Builder.CreateAnd(GE, LE); 961 962 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 963 CGF.EmitCheckTypeDescriptor(OrigSrcType), 964 CGF.EmitCheckTypeDescriptor(DstType)}; 965 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 966 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 967 } 968 969 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 970 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 971 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 972 std::pair<llvm::Value *, SanitizerMask>> 973 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 974 QualType DstType, CGBuilderTy &Builder) { 975 llvm::Type *SrcTy = Src->getType(); 976 llvm::Type *DstTy = Dst->getType(); 977 (void)DstTy; // Only used in assert() 978 979 // This should be truncation of integral types. 980 assert(Src != Dst); 981 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 982 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 983 "non-integer llvm type"); 984 985 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 986 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 987 988 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 989 // Else, it is a signed truncation. 990 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 991 SanitizerMask Mask; 992 if (!SrcSigned && !DstSigned) { 993 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 994 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 995 } else { 996 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 997 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 998 } 999 1000 llvm::Value *Check = nullptr; 1001 // 1. Extend the truncated value back to the same width as the Src. 1002 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 1003 // 2. Equality-compare with the original source value 1004 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1005 // If the comparison result is 'i1 false', then the truncation was lossy. 1006 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1007 } 1008 1009 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1010 QualType SrcType, QualType DstType) { 1011 return SrcType->isIntegerType() && DstType->isIntegerType(); 1012 } 1013 1014 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1015 Value *Dst, QualType DstType, 1016 SourceLocation Loc) { 1017 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1018 return; 1019 1020 // We only care about int->int conversions here. 1021 // We ignore conversions to/from pointer and/or bool. 1022 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1023 DstType)) 1024 return; 1025 1026 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1027 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1028 // This must be truncation. Else we do not care. 1029 if (SrcBits <= DstBits) 1030 return; 1031 1032 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1033 1034 // If the integer sign change sanitizer is enabled, 1035 // and we are truncating from larger unsigned type to smaller signed type, 1036 // let that next sanitizer deal with it. 1037 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1038 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1039 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1040 (!SrcSigned && DstSigned)) 1041 return; 1042 1043 CodeGenFunction::SanitizerScope SanScope(&CGF); 1044 1045 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1046 std::pair<llvm::Value *, SanitizerMask>> 1047 Check = 1048 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1049 // If the comparison result is 'i1 false', then the truncation was lossy. 1050 1051 // Do we care about this type of truncation? 1052 if (!CGF.SanOpts.has(Check.second.second)) 1053 return; 1054 1055 llvm::Constant *StaticArgs[] = { 1056 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1057 CGF.EmitCheckTypeDescriptor(DstType), 1058 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1059 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1060 {Src, Dst}); 1061 } 1062 1063 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1064 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1065 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1066 std::pair<llvm::Value *, SanitizerMask>> 1067 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1068 QualType DstType, CGBuilderTy &Builder) { 1069 llvm::Type *SrcTy = Src->getType(); 1070 llvm::Type *DstTy = Dst->getType(); 1071 1072 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1073 "non-integer llvm type"); 1074 1075 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1076 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1077 (void)SrcSigned; // Only used in assert() 1078 (void)DstSigned; // Only used in assert() 1079 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1080 unsigned DstBits = DstTy->getScalarSizeInBits(); 1081 (void)SrcBits; // Only used in assert() 1082 (void)DstBits; // Only used in assert() 1083 1084 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1085 "either the widths should be different, or the signednesses."); 1086 1087 // NOTE: zero value is considered to be non-negative. 1088 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1089 const char *Name) -> Value * { 1090 // Is this value a signed type? 1091 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1092 llvm::Type *VTy = V->getType(); 1093 if (!VSigned) { 1094 // If the value is unsigned, then it is never negative. 1095 // FIXME: can we encounter non-scalar VTy here? 1096 return llvm::ConstantInt::getFalse(VTy->getContext()); 1097 } 1098 // Get the zero of the same type with which we will be comparing. 1099 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1100 // %V.isnegative = icmp slt %V, 0 1101 // I.e is %V *strictly* less than zero, does it have negative value? 1102 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1103 llvm::Twine(Name) + "." + V->getName() + 1104 ".negativitycheck"); 1105 }; 1106 1107 // 1. Was the old Value negative? 1108 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1109 // 2. Is the new Value negative? 1110 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1111 // 3. Now, was the 'negativity status' preserved during the conversion? 1112 // NOTE: conversion from negative to zero is considered to change the sign. 1113 // (We want to get 'false' when the conversion changed the sign) 1114 // So we should just equality-compare the negativity statuses. 1115 llvm::Value *Check = nullptr; 1116 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1117 // If the comparison result is 'false', then the conversion changed the sign. 1118 return std::make_pair( 1119 ScalarExprEmitter::ICCK_IntegerSignChange, 1120 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1121 } 1122 1123 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1124 Value *Dst, QualType DstType, 1125 SourceLocation Loc) { 1126 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1127 return; 1128 1129 llvm::Type *SrcTy = Src->getType(); 1130 llvm::Type *DstTy = Dst->getType(); 1131 1132 // We only care about int->int conversions here. 1133 // We ignore conversions to/from pointer and/or bool. 1134 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1135 DstType)) 1136 return; 1137 1138 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1139 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1140 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1141 unsigned DstBits = DstTy->getScalarSizeInBits(); 1142 1143 // Now, we do not need to emit the check in *all* of the cases. 1144 // We can avoid emitting it in some obvious cases where it would have been 1145 // dropped by the opt passes (instcombine) always anyways. 1146 // If it's a cast between effectively the same type, no check. 1147 // NOTE: this is *not* equivalent to checking the canonical types. 1148 if (SrcSigned == DstSigned && SrcBits == DstBits) 1149 return; 1150 // At least one of the values needs to have signed type. 1151 // If both are unsigned, then obviously, neither of them can be negative. 1152 if (!SrcSigned && !DstSigned) 1153 return; 1154 // If the conversion is to *larger* *signed* type, then no check is needed. 1155 // Because either sign-extension happens (so the sign will remain), 1156 // or zero-extension will happen (the sign bit will be zero.) 1157 if ((DstBits > SrcBits) && DstSigned) 1158 return; 1159 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1160 (SrcBits > DstBits) && SrcSigned) { 1161 // If the signed integer truncation sanitizer is enabled, 1162 // and this is a truncation from signed type, then no check is needed. 1163 // Because here sign change check is interchangeable with truncation check. 1164 return; 1165 } 1166 // That's it. We can't rule out any more cases with the data we have. 1167 1168 CodeGenFunction::SanitizerScope SanScope(&CGF); 1169 1170 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1171 std::pair<llvm::Value *, SanitizerMask>> 1172 Check; 1173 1174 // Each of these checks needs to return 'false' when an issue was detected. 1175 ImplicitConversionCheckKind CheckKind; 1176 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1177 // So we can 'and' all the checks together, and still get 'false', 1178 // if at least one of the checks detected an issue. 1179 1180 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1181 CheckKind = Check.first; 1182 Checks.emplace_back(Check.second); 1183 1184 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1185 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1186 // If the signed integer truncation sanitizer was enabled, 1187 // and we are truncating from larger unsigned type to smaller signed type, 1188 // let's handle the case we skipped in that check. 1189 Check = 1190 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1191 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1192 Checks.emplace_back(Check.second); 1193 // If the comparison result is 'i1 false', then the truncation was lossy. 1194 } 1195 1196 llvm::Constant *StaticArgs[] = { 1197 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1198 CGF.EmitCheckTypeDescriptor(DstType), 1199 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1200 // EmitCheck() will 'and' all the checks together. 1201 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1202 {Src, Dst}); 1203 } 1204 1205 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, 1206 QualType DstType, llvm::Type *SrcTy, 1207 llvm::Type *DstTy, 1208 ScalarConversionOpts Opts) { 1209 // The Element types determine the type of cast to perform. 1210 llvm::Type *SrcElementTy; 1211 llvm::Type *DstElementTy; 1212 QualType SrcElementType; 1213 QualType DstElementType; 1214 if (SrcType->isMatrixType() && DstType->isMatrixType()) { 1215 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1216 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1217 SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); 1218 DstElementType = DstType->castAs<MatrixType>()->getElementType(); 1219 } else { 1220 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && 1221 "cannot cast between matrix and non-matrix types"); 1222 SrcElementTy = SrcTy; 1223 DstElementTy = DstTy; 1224 SrcElementType = SrcType; 1225 DstElementType = DstType; 1226 } 1227 1228 if (isa<llvm::IntegerType>(SrcElementTy)) { 1229 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); 1230 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1231 InputSigned = true; 1232 } 1233 1234 if (isa<llvm::IntegerType>(DstElementTy)) 1235 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1236 if (InputSigned) 1237 return Builder.CreateSIToFP(Src, DstTy, "conv"); 1238 return Builder.CreateUIToFP(Src, DstTy, "conv"); 1239 } 1240 1241 if (isa<llvm::IntegerType>(DstElementTy)) { 1242 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); 1243 if (DstElementType->isSignedIntegerOrEnumerationType()) 1244 return Builder.CreateFPToSI(Src, DstTy, "conv"); 1245 return Builder.CreateFPToUI(Src, DstTy, "conv"); 1246 } 1247 1248 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) 1249 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1250 return Builder.CreateFPExt(Src, DstTy, "conv"); 1251 } 1252 1253 /// Emit a conversion from the specified type to the specified destination type, 1254 /// both of which are LLVM scalar types. 1255 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1256 QualType DstType, 1257 SourceLocation Loc, 1258 ScalarConversionOpts Opts) { 1259 // All conversions involving fixed point types should be handled by the 1260 // EmitFixedPoint family functions. This is done to prevent bloating up this 1261 // function more, and although fixed point numbers are represented by 1262 // integers, we do not want to follow any logic that assumes they should be 1263 // treated as integers. 1264 // TODO(leonardchan): When necessary, add another if statement checking for 1265 // conversions to fixed point types from other types. 1266 if (SrcType->isFixedPointType()) { 1267 if (DstType->isBooleanType()) 1268 // It is important that we check this before checking if the dest type is 1269 // an integer because booleans are technically integer types. 1270 // We do not need to check the padding bit on unsigned types if unsigned 1271 // padding is enabled because overflow into this bit is undefined 1272 // behavior. 1273 return Builder.CreateIsNotNull(Src, "tobool"); 1274 if (DstType->isFixedPointType() || DstType->isIntegerType() || 1275 DstType->isRealFloatingType()) 1276 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1277 1278 llvm_unreachable( 1279 "Unhandled scalar conversion from a fixed point type to another type."); 1280 } else if (DstType->isFixedPointType()) { 1281 if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) 1282 // This also includes converting booleans and enums to fixed point types. 1283 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1284 1285 llvm_unreachable( 1286 "Unhandled scalar conversion to a fixed point type from another type."); 1287 } 1288 1289 QualType NoncanonicalSrcType = SrcType; 1290 QualType NoncanonicalDstType = DstType; 1291 1292 SrcType = CGF.getContext().getCanonicalType(SrcType); 1293 DstType = CGF.getContext().getCanonicalType(DstType); 1294 if (SrcType == DstType) return Src; 1295 1296 if (DstType->isVoidType()) return nullptr; 1297 1298 llvm::Value *OrigSrc = Src; 1299 QualType OrigSrcType = SrcType; 1300 llvm::Type *SrcTy = Src->getType(); 1301 1302 // Handle conversions to bool first, they are special: comparisons against 0. 1303 if (DstType->isBooleanType()) 1304 return EmitConversionToBool(Src, SrcType); 1305 1306 llvm::Type *DstTy = ConvertType(DstType); 1307 1308 // Cast from half through float if half isn't a native type. 1309 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1310 // Cast to FP using the intrinsic if the half type itself isn't supported. 1311 if (DstTy->isFloatingPointTy()) { 1312 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1313 return Builder.CreateCall( 1314 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1315 Src); 1316 } else { 1317 // Cast to other types through float, using either the intrinsic or FPExt, 1318 // depending on whether the half type itself is supported 1319 // (as opposed to operations on half, available with NativeHalfType). 1320 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1321 Src = Builder.CreateCall( 1322 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1323 CGF.CGM.FloatTy), 1324 Src); 1325 } else { 1326 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1327 } 1328 SrcType = CGF.getContext().FloatTy; 1329 SrcTy = CGF.FloatTy; 1330 } 1331 } 1332 1333 // Ignore conversions like int -> uint. 1334 if (SrcTy == DstTy) { 1335 if (Opts.EmitImplicitIntegerSignChangeChecks) 1336 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1337 NoncanonicalDstType, Loc); 1338 1339 return Src; 1340 } 1341 1342 // Handle pointer conversions next: pointers can only be converted to/from 1343 // other pointers and integers. Check for pointer types in terms of LLVM, as 1344 // some native types (like Obj-C id) may map to a pointer type. 1345 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1346 // The source value may be an integer, or a pointer. 1347 if (isa<llvm::PointerType>(SrcTy)) 1348 return Builder.CreateBitCast(Src, DstTy, "conv"); 1349 1350 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1351 // First, convert to the correct width so that we control the kind of 1352 // extension. 1353 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1354 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1355 llvm::Value* IntResult = 1356 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1357 // Then, cast to pointer. 1358 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1359 } 1360 1361 if (isa<llvm::PointerType>(SrcTy)) { 1362 // Must be an ptr to int cast. 1363 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1364 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1365 } 1366 1367 // A scalar can be splatted to an extended vector of the same element type 1368 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1369 // Sema should add casts to make sure that the source expression's type is 1370 // the same as the vector's element type (sans qualifiers) 1371 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1372 SrcType.getTypePtr() && 1373 "Splatted expr doesn't match with vector element type?"); 1374 1375 // Splat the element across to all elements 1376 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1377 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1378 } 1379 1380 if (SrcType->isMatrixType() && DstType->isMatrixType()) 1381 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1382 1383 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1384 // Allow bitcast from vector to integer/fp of the same size. 1385 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1386 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1387 if (SrcSize == DstSize) 1388 return Builder.CreateBitCast(Src, DstTy, "conv"); 1389 1390 // Conversions between vectors of different sizes are not allowed except 1391 // when vectors of half are involved. Operations on storage-only half 1392 // vectors require promoting half vector operands to float vectors and 1393 // truncating the result, which is either an int or float vector, to a 1394 // short or half vector. 1395 1396 // Source and destination are both expected to be vectors. 1397 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1398 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1399 (void)DstElementTy; 1400 1401 assert(((SrcElementTy->isIntegerTy() && 1402 DstElementTy->isIntegerTy()) || 1403 (SrcElementTy->isFloatingPointTy() && 1404 DstElementTy->isFloatingPointTy())) && 1405 "unexpected conversion between a floating-point vector and an " 1406 "integer vector"); 1407 1408 // Truncate an i32 vector to an i16 vector. 1409 if (SrcElementTy->isIntegerTy()) 1410 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1411 1412 // Truncate a float vector to a half vector. 1413 if (SrcSize > DstSize) 1414 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1415 1416 // Promote a half vector to a float vector. 1417 return Builder.CreateFPExt(Src, DstTy, "conv"); 1418 } 1419 1420 // Finally, we have the arithmetic types: real int/float. 1421 Value *Res = nullptr; 1422 llvm::Type *ResTy = DstTy; 1423 1424 // An overflowing conversion has undefined behavior if either the source type 1425 // or the destination type is a floating-point type. However, we consider the 1426 // range of representable values for all floating-point types to be 1427 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1428 // floating-point type. 1429 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1430 OrigSrcType->isFloatingType()) 1431 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1432 Loc); 1433 1434 // Cast to half through float if half isn't a native type. 1435 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1436 // Make sure we cast in a single step if from another FP type. 1437 if (SrcTy->isFloatingPointTy()) { 1438 // Use the intrinsic if the half type itself isn't supported 1439 // (as opposed to operations on half, available with NativeHalfType). 1440 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1441 return Builder.CreateCall( 1442 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1443 // If the half type is supported, just use an fptrunc. 1444 return Builder.CreateFPTrunc(Src, DstTy); 1445 } 1446 DstTy = CGF.FloatTy; 1447 } 1448 1449 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1450 1451 if (DstTy != ResTy) { 1452 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1453 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1454 Res = Builder.CreateCall( 1455 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1456 Res); 1457 } else { 1458 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1459 } 1460 } 1461 1462 if (Opts.EmitImplicitIntegerTruncationChecks) 1463 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1464 NoncanonicalDstType, Loc); 1465 1466 if (Opts.EmitImplicitIntegerSignChangeChecks) 1467 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1468 NoncanonicalDstType, Loc); 1469 1470 return Res; 1471 } 1472 1473 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1474 QualType DstTy, 1475 SourceLocation Loc) { 1476 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1477 llvm::Value *Result; 1478 if (SrcTy->isRealFloatingType()) 1479 Result = FPBuilder.CreateFloatingToFixed(Src, 1480 CGF.getContext().getFixedPointSemantics(DstTy)); 1481 else if (DstTy->isRealFloatingType()) 1482 Result = FPBuilder.CreateFixedToFloating(Src, 1483 CGF.getContext().getFixedPointSemantics(SrcTy), 1484 ConvertType(DstTy)); 1485 else { 1486 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1487 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1488 1489 if (DstTy->isIntegerType()) 1490 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1491 DstFPSema.getWidth(), 1492 DstFPSema.isSigned()); 1493 else if (SrcTy->isIntegerType()) 1494 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1495 DstFPSema); 1496 else 1497 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1498 } 1499 return Result; 1500 } 1501 1502 /// Emit a conversion from the specified complex type to the specified 1503 /// destination type, where the destination type is an LLVM scalar type. 1504 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1505 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1506 SourceLocation Loc) { 1507 // Get the source element type. 1508 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1509 1510 // Handle conversions to bool first, they are special: comparisons against 0. 1511 if (DstTy->isBooleanType()) { 1512 // Complex != 0 -> (Real != 0) | (Imag != 0) 1513 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1514 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1515 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1516 } 1517 1518 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1519 // the imaginary part of the complex value is discarded and the value of the 1520 // real part is converted according to the conversion rules for the 1521 // corresponding real type. 1522 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1523 } 1524 1525 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1526 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1527 } 1528 1529 /// Emit a sanitization check for the given "binary" operation (which 1530 /// might actually be a unary increment which has been lowered to a binary 1531 /// operation). The check passes if all values in \p Checks (which are \c i1), 1532 /// are \c true. 1533 void ScalarExprEmitter::EmitBinOpCheck( 1534 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1535 assert(CGF.IsSanitizerScope); 1536 SanitizerHandler Check; 1537 SmallVector<llvm::Constant *, 4> StaticData; 1538 SmallVector<llvm::Value *, 2> DynamicData; 1539 1540 BinaryOperatorKind Opcode = Info.Opcode; 1541 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1542 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1543 1544 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1545 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1546 if (UO && UO->getOpcode() == UO_Minus) { 1547 Check = SanitizerHandler::NegateOverflow; 1548 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1549 DynamicData.push_back(Info.RHS); 1550 } else { 1551 if (BinaryOperator::isShiftOp(Opcode)) { 1552 // Shift LHS negative or too large, or RHS out of bounds. 1553 Check = SanitizerHandler::ShiftOutOfBounds; 1554 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1555 StaticData.push_back( 1556 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1557 StaticData.push_back( 1558 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1559 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1560 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1561 Check = SanitizerHandler::DivremOverflow; 1562 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1563 } else { 1564 // Arithmetic overflow (+, -, *). 1565 switch (Opcode) { 1566 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1567 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1568 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1569 default: llvm_unreachable("unexpected opcode for bin op check"); 1570 } 1571 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1572 } 1573 DynamicData.push_back(Info.LHS); 1574 DynamicData.push_back(Info.RHS); 1575 } 1576 1577 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1578 } 1579 1580 //===----------------------------------------------------------------------===// 1581 // Visitor Methods 1582 //===----------------------------------------------------------------------===// 1583 1584 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1585 CGF.ErrorUnsupported(E, "scalar expression"); 1586 if (E->getType()->isVoidType()) 1587 return nullptr; 1588 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1589 } 1590 1591 Value * 1592 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { 1593 ASTContext &Context = CGF.getContext(); 1594 llvm::Optional<LangAS> GlobalAS = 1595 Context.getTargetInfo().getConstantAddressSpace(); 1596 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( 1597 E->ComputeName(Context), "__usn_str", 1598 static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default))); 1599 1600 unsigned ExprAS = Context.getTargetAddressSpace(E->getType()); 1601 1602 if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS) 1603 return GlobalConstStr; 1604 1605 llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType(); 1606 llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS); 1607 return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast"); 1608 } 1609 1610 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1611 // Vector Mask Case 1612 if (E->getNumSubExprs() == 2) { 1613 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1614 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1615 Value *Mask; 1616 1617 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1618 unsigned LHSElts = LTy->getNumElements(); 1619 1620 Mask = RHS; 1621 1622 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1623 1624 // Mask off the high bits of each shuffle index. 1625 Value *MaskBits = 1626 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1627 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1628 1629 // newv = undef 1630 // mask = mask & maskbits 1631 // for each elt 1632 // n = extract mask i 1633 // x = extract val n 1634 // newv = insert newv, x, i 1635 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1636 MTy->getNumElements()); 1637 Value* NewV = llvm::UndefValue::get(RTy); 1638 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1639 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1640 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1641 1642 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1643 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1644 } 1645 return NewV; 1646 } 1647 1648 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1649 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1650 1651 SmallVector<int, 32> Indices; 1652 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1653 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1654 // Check for -1 and output it as undef in the IR. 1655 if (Idx.isSigned() && Idx.isAllOnes()) 1656 Indices.push_back(-1); 1657 else 1658 Indices.push_back(Idx.getZExtValue()); 1659 } 1660 1661 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1662 } 1663 1664 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1665 QualType SrcType = E->getSrcExpr()->getType(), 1666 DstType = E->getType(); 1667 1668 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1669 1670 SrcType = CGF.getContext().getCanonicalType(SrcType); 1671 DstType = CGF.getContext().getCanonicalType(DstType); 1672 if (SrcType == DstType) return Src; 1673 1674 assert(SrcType->isVectorType() && 1675 "ConvertVector source type must be a vector"); 1676 assert(DstType->isVectorType() && 1677 "ConvertVector destination type must be a vector"); 1678 1679 llvm::Type *SrcTy = Src->getType(); 1680 llvm::Type *DstTy = ConvertType(DstType); 1681 1682 // Ignore conversions like int -> uint. 1683 if (SrcTy == DstTy) 1684 return Src; 1685 1686 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1687 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1688 1689 assert(SrcTy->isVectorTy() && 1690 "ConvertVector source IR type must be a vector"); 1691 assert(DstTy->isVectorTy() && 1692 "ConvertVector destination IR type must be a vector"); 1693 1694 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1695 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1696 1697 if (DstEltType->isBooleanType()) { 1698 assert((SrcEltTy->isFloatingPointTy() || 1699 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1700 1701 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1702 if (SrcEltTy->isFloatingPointTy()) { 1703 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1704 } else { 1705 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1706 } 1707 } 1708 1709 // We have the arithmetic types: real int/float. 1710 Value *Res = nullptr; 1711 1712 if (isa<llvm::IntegerType>(SrcEltTy)) { 1713 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1714 if (isa<llvm::IntegerType>(DstEltTy)) 1715 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1716 else if (InputSigned) 1717 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1718 else 1719 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1720 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1721 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1722 if (DstEltType->isSignedIntegerOrEnumerationType()) 1723 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1724 else 1725 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1726 } else { 1727 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1728 "Unknown real conversion"); 1729 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1730 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1731 else 1732 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1733 } 1734 1735 return Res; 1736 } 1737 1738 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1739 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1740 CGF.EmitIgnoredExpr(E->getBase()); 1741 return CGF.emitScalarConstant(Constant, E); 1742 } else { 1743 Expr::EvalResult Result; 1744 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1745 llvm::APSInt Value = Result.Val.getInt(); 1746 CGF.EmitIgnoredExpr(E->getBase()); 1747 return Builder.getInt(Value); 1748 } 1749 } 1750 1751 return EmitLoadOfLValue(E); 1752 } 1753 1754 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1755 TestAndClearIgnoreResultAssign(); 1756 1757 // Emit subscript expressions in rvalue context's. For most cases, this just 1758 // loads the lvalue formed by the subscript expr. However, we have to be 1759 // careful, because the base of a vector subscript is occasionally an rvalue, 1760 // so we can't get it as an lvalue. 1761 if (!E->getBase()->getType()->isVectorType()) 1762 return EmitLoadOfLValue(E); 1763 1764 // Handle the vector case. The base must be a vector, the index must be an 1765 // integer value. 1766 Value *Base = Visit(E->getBase()); 1767 Value *Idx = Visit(E->getIdx()); 1768 QualType IdxTy = E->getIdx()->getType(); 1769 1770 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1771 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1772 1773 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1774 } 1775 1776 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1777 TestAndClearIgnoreResultAssign(); 1778 1779 // Handle the vector case. The base must be a vector, the index must be an 1780 // integer value. 1781 Value *RowIdx = Visit(E->getRowIdx()); 1782 Value *ColumnIdx = Visit(E->getColumnIdx()); 1783 1784 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); 1785 unsigned NumRows = MatrixTy->getNumRows(); 1786 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1787 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); 1788 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) 1789 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); 1790 1791 Value *Matrix = Visit(E->getBase()); 1792 1793 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1794 return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); 1795 } 1796 1797 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1798 unsigned Off) { 1799 int MV = SVI->getMaskValue(Idx); 1800 if (MV == -1) 1801 return -1; 1802 return Off + MV; 1803 } 1804 1805 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1806 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1807 "Index operand too large for shufflevector mask!"); 1808 return C->getZExtValue(); 1809 } 1810 1811 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1812 bool Ignore = TestAndClearIgnoreResultAssign(); 1813 (void)Ignore; 1814 assert (Ignore == false && "init list ignored"); 1815 unsigned NumInitElements = E->getNumInits(); 1816 1817 if (E->hadArrayRangeDesignator()) 1818 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1819 1820 llvm::VectorType *VType = 1821 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1822 1823 if (!VType) { 1824 if (NumInitElements == 0) { 1825 // C++11 value-initialization for the scalar. 1826 return EmitNullValue(E->getType()); 1827 } 1828 // We have a scalar in braces. Just use the first element. 1829 return Visit(E->getInit(0)); 1830 } 1831 1832 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1833 1834 // Loop over initializers collecting the Value for each, and remembering 1835 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1836 // us to fold the shuffle for the swizzle into the shuffle for the vector 1837 // initializer, since LLVM optimizers generally do not want to touch 1838 // shuffles. 1839 unsigned CurIdx = 0; 1840 bool VIsUndefShuffle = false; 1841 llvm::Value *V = llvm::UndefValue::get(VType); 1842 for (unsigned i = 0; i != NumInitElements; ++i) { 1843 Expr *IE = E->getInit(i); 1844 Value *Init = Visit(IE); 1845 SmallVector<int, 16> Args; 1846 1847 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1848 1849 // Handle scalar elements. If the scalar initializer is actually one 1850 // element of a different vector of the same width, use shuffle instead of 1851 // extract+insert. 1852 if (!VVT) { 1853 if (isa<ExtVectorElementExpr>(IE)) { 1854 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1855 1856 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1857 ->getNumElements() == ResElts) { 1858 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1859 Value *LHS = nullptr, *RHS = nullptr; 1860 if (CurIdx == 0) { 1861 // insert into undef -> shuffle (src, undef) 1862 // shufflemask must use an i32 1863 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1864 Args.resize(ResElts, -1); 1865 1866 LHS = EI->getVectorOperand(); 1867 RHS = V; 1868 VIsUndefShuffle = true; 1869 } else if (VIsUndefShuffle) { 1870 // insert into undefshuffle && size match -> shuffle (v, src) 1871 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1872 for (unsigned j = 0; j != CurIdx; ++j) 1873 Args.push_back(getMaskElt(SVV, j, 0)); 1874 Args.push_back(ResElts + C->getZExtValue()); 1875 Args.resize(ResElts, -1); 1876 1877 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1878 RHS = EI->getVectorOperand(); 1879 VIsUndefShuffle = false; 1880 } 1881 if (!Args.empty()) { 1882 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1883 ++CurIdx; 1884 continue; 1885 } 1886 } 1887 } 1888 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1889 "vecinit"); 1890 VIsUndefShuffle = false; 1891 ++CurIdx; 1892 continue; 1893 } 1894 1895 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1896 1897 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1898 // input is the same width as the vector being constructed, generate an 1899 // optimized shuffle of the swizzle input into the result. 1900 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1901 if (isa<ExtVectorElementExpr>(IE)) { 1902 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1903 Value *SVOp = SVI->getOperand(0); 1904 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1905 1906 if (OpTy->getNumElements() == ResElts) { 1907 for (unsigned j = 0; j != CurIdx; ++j) { 1908 // If the current vector initializer is a shuffle with undef, merge 1909 // this shuffle directly into it. 1910 if (VIsUndefShuffle) { 1911 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1912 } else { 1913 Args.push_back(j); 1914 } 1915 } 1916 for (unsigned j = 0, je = InitElts; j != je; ++j) 1917 Args.push_back(getMaskElt(SVI, j, Offset)); 1918 Args.resize(ResElts, -1); 1919 1920 if (VIsUndefShuffle) 1921 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1922 1923 Init = SVOp; 1924 } 1925 } 1926 1927 // Extend init to result vector length, and then shuffle its contribution 1928 // to the vector initializer into V. 1929 if (Args.empty()) { 1930 for (unsigned j = 0; j != InitElts; ++j) 1931 Args.push_back(j); 1932 Args.resize(ResElts, -1); 1933 Init = Builder.CreateShuffleVector(Init, Args, "vext"); 1934 1935 Args.clear(); 1936 for (unsigned j = 0; j != CurIdx; ++j) 1937 Args.push_back(j); 1938 for (unsigned j = 0; j != InitElts; ++j) 1939 Args.push_back(j + Offset); 1940 Args.resize(ResElts, -1); 1941 } 1942 1943 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1944 // merging subsequent shuffles into this one. 1945 if (CurIdx == 0) 1946 std::swap(V, Init); 1947 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1948 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1949 CurIdx += InitElts; 1950 } 1951 1952 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1953 // Emit remaining default initializers. 1954 llvm::Type *EltTy = VType->getElementType(); 1955 1956 // Emit remaining default initializers 1957 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1958 Value *Idx = Builder.getInt32(CurIdx); 1959 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1960 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1961 } 1962 return V; 1963 } 1964 1965 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1966 const Expr *E = CE->getSubExpr(); 1967 1968 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1969 return false; 1970 1971 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1972 // We always assume that 'this' is never null. 1973 return false; 1974 } 1975 1976 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1977 // And that glvalue casts are never null. 1978 if (ICE->isGLValue()) 1979 return false; 1980 } 1981 1982 return true; 1983 } 1984 1985 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1986 // have to handle a more broad range of conversions than explicit casts, as they 1987 // handle things like function to ptr-to-function decay etc. 1988 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1989 Expr *E = CE->getSubExpr(); 1990 QualType DestTy = CE->getType(); 1991 CastKind Kind = CE->getCastKind(); 1992 1993 // These cases are generally not written to ignore the result of 1994 // evaluating their sub-expressions, so we clear this now. 1995 bool Ignored = TestAndClearIgnoreResultAssign(); 1996 1997 // Since almost all cast kinds apply to scalars, this switch doesn't have 1998 // a default case, so the compiler will warn on a missing case. The cases 1999 // are in the same order as in the CastKind enum. 2000 switch (Kind) { 2001 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 2002 case CK_BuiltinFnToFnPtr: 2003 llvm_unreachable("builtin functions are handled elsewhere"); 2004 2005 case CK_LValueBitCast: 2006 case CK_ObjCObjectLValueCast: { 2007 Address Addr = EmitLValue(E).getAddress(CGF); 2008 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2009 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2010 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2011 } 2012 2013 case CK_LValueToRValueBitCast: { 2014 LValue SourceLVal = CGF.EmitLValue(E); 2015 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 2016 CGF.ConvertTypeForMem(DestTy)); 2017 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2018 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2019 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2020 } 2021 2022 case CK_CPointerToObjCPointerCast: 2023 case CK_BlockPointerToObjCPointerCast: 2024 case CK_AnyPointerToBlockPointerCast: 2025 case CK_BitCast: { 2026 Value *Src = Visit(const_cast<Expr*>(E)); 2027 llvm::Type *SrcTy = Src->getType(); 2028 llvm::Type *DstTy = ConvertType(DestTy); 2029 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2030 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2031 llvm_unreachable("wrong cast for pointers in different address spaces" 2032 "(must be an address space cast)!"); 2033 } 2034 2035 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2036 if (auto PT = DestTy->getAs<PointerType>()) 2037 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2038 /*MayBeNull=*/true, 2039 CodeGenFunction::CFITCK_UnrelatedCast, 2040 CE->getBeginLoc()); 2041 } 2042 2043 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2044 const QualType SrcType = E->getType(); 2045 2046 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2047 // Casting to pointer that could carry dynamic information (provided by 2048 // invariant.group) requires launder. 2049 Src = Builder.CreateLaunderInvariantGroup(Src); 2050 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2051 // Casting to pointer that does not carry dynamic information (provided 2052 // by invariant.group) requires stripping it. Note that we don't do it 2053 // if the source could not be dynamic type and destination could be 2054 // dynamic because dynamic information is already laundered. It is 2055 // because launder(strip(src)) == launder(src), so there is no need to 2056 // add extra strip before launder. 2057 Src = Builder.CreateStripInvariantGroup(Src); 2058 } 2059 } 2060 2061 // Update heapallocsite metadata when there is an explicit pointer cast. 2062 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 2063 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 2064 QualType PointeeType = DestTy->getPointeeType(); 2065 if (!PointeeType.isNull()) 2066 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2067 CE->getExprLoc()); 2068 } 2069 } 2070 2071 // If Src is a fixed vector and Dst is a scalable vector, and both have the 2072 // same element type, use the llvm.experimental.vector.insert intrinsic to 2073 // perform the bitcast. 2074 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 2075 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { 2076 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 2077 // vector, use a vector insert and bitcast the result. 2078 bool NeedsBitCast = false; 2079 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2080 llvm::Type *OrigType = DstTy; 2081 if (ScalableDst == PredType && 2082 FixedSrc->getElementType() == Builder.getInt8Ty()) { 2083 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2084 ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy); 2085 NeedsBitCast = true; 2086 } 2087 if (FixedSrc->getElementType() == ScalableDst->getElementType()) { 2088 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); 2089 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2090 llvm::Value *Result = Builder.CreateInsertVector( 2091 DstTy, UndefVec, Src, Zero, "castScalableSve"); 2092 if (NeedsBitCast) 2093 Result = Builder.CreateBitCast(Result, OrigType); 2094 return Result; 2095 } 2096 } 2097 } 2098 2099 // If Src is a scalable vector and Dst is a fixed vector, and both have the 2100 // same element type, use the llvm.experimental.vector.extract intrinsic to 2101 // perform the bitcast. 2102 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { 2103 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { 2104 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2105 // vector, bitcast the source and use a vector extract. 2106 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2107 if (ScalableSrc == PredType && 2108 FixedDst->getElementType() == Builder.getInt8Ty()) { 2109 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2110 ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy); 2111 Src = Builder.CreateBitCast(Src, SrcTy); 2112 } 2113 if (ScalableSrc->getElementType() == FixedDst->getElementType()) { 2114 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2115 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve"); 2116 } 2117 } 2118 } 2119 2120 // Perform VLAT <-> VLST bitcast through memory. 2121 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics 2122 // require the element types of the vectors to be the same, we 2123 // need to keep this around for bitcasts between VLAT <-> VLST where 2124 // the element types of the vectors are not the same, until we figure 2125 // out a better way of doing these casts. 2126 if ((isa<llvm::FixedVectorType>(SrcTy) && 2127 isa<llvm::ScalableVectorType>(DstTy)) || 2128 (isa<llvm::ScalableVectorType>(SrcTy) && 2129 isa<llvm::FixedVectorType>(DstTy))) { 2130 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); 2131 LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); 2132 CGF.EmitStoreOfScalar(Src, LV); 2133 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2134 "castFixedSve"); 2135 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2136 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2137 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2138 } 2139 2140 return Builder.CreateBitCast(Src, DstTy); 2141 } 2142 case CK_AddressSpaceConversion: { 2143 Expr::EvalResult Result; 2144 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2145 Result.Val.isNullPointer()) { 2146 // If E has side effect, it is emitted even if its final result is a 2147 // null pointer. In that case, a DCE pass should be able to 2148 // eliminate the useless instructions emitted during translating E. 2149 if (Result.HasSideEffects) 2150 Visit(E); 2151 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2152 ConvertType(DestTy)), DestTy); 2153 } 2154 // Since target may map different address spaces in AST to the same address 2155 // space, an address space conversion may end up as a bitcast. 2156 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2157 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2158 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2159 } 2160 case CK_AtomicToNonAtomic: 2161 case CK_NonAtomicToAtomic: 2162 case CK_UserDefinedConversion: 2163 return Visit(const_cast<Expr*>(E)); 2164 2165 case CK_NoOp: { 2166 llvm::Value *V = Visit(const_cast<Expr *>(E)); 2167 if (V) { 2168 // CK_NoOp can model a pointer qualification conversion, which can remove 2169 // an array bound and change the IR type. 2170 // FIXME: Once pointee types are removed from IR, remove this. 2171 llvm::Type *T = ConvertType(DestTy); 2172 if (T != V->getType()) 2173 V = Builder.CreateBitCast(V, T); 2174 } 2175 return V; 2176 } 2177 2178 case CK_BaseToDerived: { 2179 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2180 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2181 2182 Address Base = CGF.EmitPointerWithAlignment(E); 2183 Address Derived = 2184 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2185 CE->path_begin(), CE->path_end(), 2186 CGF.ShouldNullCheckClassCastValue(CE)); 2187 2188 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2189 // performed and the object is not of the derived type. 2190 if (CGF.sanitizePerformTypeCheck()) 2191 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2192 Derived.getPointer(), DestTy->getPointeeType()); 2193 2194 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2195 CGF.EmitVTablePtrCheckForCast( 2196 DestTy->getPointeeType(), Derived.getPointer(), 2197 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2198 CE->getBeginLoc()); 2199 2200 return Derived.getPointer(); 2201 } 2202 case CK_UncheckedDerivedToBase: 2203 case CK_DerivedToBase: { 2204 // The EmitPointerWithAlignment path does this fine; just discard 2205 // the alignment. 2206 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2207 } 2208 2209 case CK_Dynamic: { 2210 Address V = CGF.EmitPointerWithAlignment(E); 2211 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2212 return CGF.EmitDynamicCast(V, DCE); 2213 } 2214 2215 case CK_ArrayToPointerDecay: 2216 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2217 case CK_FunctionToPointerDecay: 2218 return EmitLValue(E).getPointer(CGF); 2219 2220 case CK_NullToPointer: 2221 if (MustVisitNullValue(E)) 2222 CGF.EmitIgnoredExpr(E); 2223 2224 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2225 DestTy); 2226 2227 case CK_NullToMemberPointer: { 2228 if (MustVisitNullValue(E)) 2229 CGF.EmitIgnoredExpr(E); 2230 2231 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2232 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2233 } 2234 2235 case CK_ReinterpretMemberPointer: 2236 case CK_BaseToDerivedMemberPointer: 2237 case CK_DerivedToBaseMemberPointer: { 2238 Value *Src = Visit(E); 2239 2240 // Note that the AST doesn't distinguish between checked and 2241 // unchecked member pointer conversions, so we always have to 2242 // implement checked conversions here. This is inefficient when 2243 // actual control flow may be required in order to perform the 2244 // check, which it is for data member pointers (but not member 2245 // function pointers on Itanium and ARM). 2246 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2247 } 2248 2249 case CK_ARCProduceObject: 2250 return CGF.EmitARCRetainScalarExpr(E); 2251 case CK_ARCConsumeObject: 2252 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2253 case CK_ARCReclaimReturnedObject: 2254 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2255 case CK_ARCExtendBlockObject: 2256 return CGF.EmitARCExtendBlockObject(E); 2257 2258 case CK_CopyAndAutoreleaseBlockObject: 2259 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2260 2261 case CK_FloatingRealToComplex: 2262 case CK_FloatingComplexCast: 2263 case CK_IntegralRealToComplex: 2264 case CK_IntegralComplexCast: 2265 case CK_IntegralComplexToFloatingComplex: 2266 case CK_FloatingComplexToIntegralComplex: 2267 case CK_ConstructorConversion: 2268 case CK_ToUnion: 2269 llvm_unreachable("scalar cast to non-scalar value"); 2270 2271 case CK_LValueToRValue: 2272 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2273 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2274 return Visit(const_cast<Expr*>(E)); 2275 2276 case CK_IntegralToPointer: { 2277 Value *Src = Visit(const_cast<Expr*>(E)); 2278 2279 // First, convert to the correct width so that we control the kind of 2280 // extension. 2281 auto DestLLVMTy = ConvertType(DestTy); 2282 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2283 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2284 llvm::Value* IntResult = 2285 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2286 2287 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2288 2289 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2290 // Going from integer to pointer that could be dynamic requires reloading 2291 // dynamic information from invariant.group. 2292 if (DestTy.mayBeDynamicClass()) 2293 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2294 } 2295 return IntToPtr; 2296 } 2297 case CK_PointerToIntegral: { 2298 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2299 auto *PtrExpr = Visit(E); 2300 2301 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2302 const QualType SrcType = E->getType(); 2303 2304 // Casting to integer requires stripping dynamic information as it does 2305 // not carries it. 2306 if (SrcType.mayBeDynamicClass()) 2307 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2308 } 2309 2310 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2311 } 2312 case CK_ToVoid: { 2313 CGF.EmitIgnoredExpr(E); 2314 return nullptr; 2315 } 2316 case CK_MatrixCast: { 2317 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2318 CE->getExprLoc()); 2319 } 2320 case CK_VectorSplat: { 2321 llvm::Type *DstTy = ConvertType(DestTy); 2322 Value *Elt = Visit(const_cast<Expr*>(E)); 2323 // Splat the element across to all elements 2324 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2325 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2326 } 2327 2328 case CK_FixedPointCast: 2329 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2330 CE->getExprLoc()); 2331 2332 case CK_FixedPointToBoolean: 2333 assert(E->getType()->isFixedPointType() && 2334 "Expected src type to be fixed point type"); 2335 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2336 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2337 CE->getExprLoc()); 2338 2339 case CK_FixedPointToIntegral: 2340 assert(E->getType()->isFixedPointType() && 2341 "Expected src type to be fixed point type"); 2342 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2343 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2344 CE->getExprLoc()); 2345 2346 case CK_IntegralToFixedPoint: 2347 assert(E->getType()->isIntegerType() && 2348 "Expected src type to be an integer"); 2349 assert(DestTy->isFixedPointType() && 2350 "Expected dest type to be fixed point type"); 2351 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2352 CE->getExprLoc()); 2353 2354 case CK_IntegralCast: { 2355 ScalarConversionOpts Opts; 2356 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2357 if (!ICE->isPartOfExplicitCast()) 2358 Opts = ScalarConversionOpts(CGF.SanOpts); 2359 } 2360 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2361 CE->getExprLoc(), Opts); 2362 } 2363 case CK_IntegralToFloating: 2364 case CK_FloatingToIntegral: 2365 case CK_FloatingCast: 2366 case CK_FixedPointToFloating: 2367 case CK_FloatingToFixedPoint: { 2368 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2369 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2370 CE->getExprLoc()); 2371 } 2372 case CK_BooleanToSignedIntegral: { 2373 ScalarConversionOpts Opts; 2374 Opts.TreatBooleanAsSigned = true; 2375 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2376 CE->getExprLoc(), Opts); 2377 } 2378 case CK_IntegralToBoolean: 2379 return EmitIntToBoolConversion(Visit(E)); 2380 case CK_PointerToBoolean: 2381 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2382 case CK_FloatingToBoolean: { 2383 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2384 return EmitFloatToBoolConversion(Visit(E)); 2385 } 2386 case CK_MemberPointerToBoolean: { 2387 llvm::Value *MemPtr = Visit(E); 2388 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2389 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2390 } 2391 2392 case CK_FloatingComplexToReal: 2393 case CK_IntegralComplexToReal: 2394 return CGF.EmitComplexExpr(E, false, true).first; 2395 2396 case CK_FloatingComplexToBoolean: 2397 case CK_IntegralComplexToBoolean: { 2398 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2399 2400 // TODO: kill this function off, inline appropriate case here 2401 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2402 CE->getExprLoc()); 2403 } 2404 2405 case CK_ZeroToOCLOpaqueType: { 2406 assert((DestTy->isEventT() || DestTy->isQueueT() || 2407 DestTy->isOCLIntelSubgroupAVCType()) && 2408 "CK_ZeroToOCLEvent cast on non-event type"); 2409 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2410 } 2411 2412 case CK_IntToOCLSampler: 2413 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2414 2415 } // end of switch 2416 2417 llvm_unreachable("unknown scalar cast"); 2418 } 2419 2420 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2421 CodeGenFunction::StmtExprEvaluation eval(CGF); 2422 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2423 !E->getType()->isVoidType()); 2424 if (!RetAlloca.isValid()) 2425 return nullptr; 2426 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2427 E->getExprLoc()); 2428 } 2429 2430 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2431 CodeGenFunction::RunCleanupsScope Scope(CGF); 2432 Value *V = Visit(E->getSubExpr()); 2433 // Defend against dominance problems caused by jumps out of expression 2434 // evaluation through the shared cleanup block. 2435 Scope.ForceCleanup({&V}); 2436 return V; 2437 } 2438 2439 //===----------------------------------------------------------------------===// 2440 // Unary Operators 2441 //===----------------------------------------------------------------------===// 2442 2443 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2444 llvm::Value *InVal, bool IsInc, 2445 FPOptions FPFeatures) { 2446 BinOpInfo BinOp; 2447 BinOp.LHS = InVal; 2448 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2449 BinOp.Ty = E->getType(); 2450 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2451 BinOp.FPFeatures = FPFeatures; 2452 BinOp.E = E; 2453 return BinOp; 2454 } 2455 2456 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2457 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2458 llvm::Value *Amount = 2459 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2460 StringRef Name = IsInc ? "inc" : "dec"; 2461 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2462 case LangOptions::SOB_Defined: 2463 return Builder.CreateAdd(InVal, Amount, Name); 2464 case LangOptions::SOB_Undefined: 2465 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2466 return Builder.CreateNSWAdd(InVal, Amount, Name); 2467 LLVM_FALLTHROUGH; 2468 case LangOptions::SOB_Trapping: 2469 if (!E->canOverflow()) 2470 return Builder.CreateNSWAdd(InVal, Amount, Name); 2471 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2472 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2473 } 2474 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2475 } 2476 2477 namespace { 2478 /// Handles check and update for lastprivate conditional variables. 2479 class OMPLastprivateConditionalUpdateRAII { 2480 private: 2481 CodeGenFunction &CGF; 2482 const UnaryOperator *E; 2483 2484 public: 2485 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2486 const UnaryOperator *E) 2487 : CGF(CGF), E(E) {} 2488 ~OMPLastprivateConditionalUpdateRAII() { 2489 if (CGF.getLangOpts().OpenMP) 2490 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2491 CGF, E->getSubExpr()); 2492 } 2493 }; 2494 } // namespace 2495 2496 llvm::Value * 2497 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2498 bool isInc, bool isPre) { 2499 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2500 QualType type = E->getSubExpr()->getType(); 2501 llvm::PHINode *atomicPHI = nullptr; 2502 llvm::Value *value; 2503 llvm::Value *input; 2504 2505 int amount = (isInc ? 1 : -1); 2506 bool isSubtraction = !isInc; 2507 2508 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2509 type = atomicTy->getValueType(); 2510 if (isInc && type->isBooleanType()) { 2511 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2512 if (isPre) { 2513 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2514 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2515 return Builder.getTrue(); 2516 } 2517 // For atomic bool increment, we just store true and return it for 2518 // preincrement, do an atomic swap with true for postincrement 2519 return Builder.CreateAtomicRMW( 2520 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2521 llvm::AtomicOrdering::SequentiallyConsistent); 2522 } 2523 // Special case for atomic increment / decrement on integers, emit 2524 // atomicrmw instructions. We skip this if we want to be doing overflow 2525 // checking, and fall into the slow path with the atomic cmpxchg loop. 2526 if (!type->isBooleanType() && type->isIntegerType() && 2527 !(type->isUnsignedIntegerType() && 2528 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2529 CGF.getLangOpts().getSignedOverflowBehavior() != 2530 LangOptions::SOB_Trapping) { 2531 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2532 llvm::AtomicRMWInst::Sub; 2533 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2534 llvm::Instruction::Sub; 2535 llvm::Value *amt = CGF.EmitToMemory( 2536 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2537 llvm::Value *old = 2538 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2539 llvm::AtomicOrdering::SequentiallyConsistent); 2540 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2541 } 2542 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2543 input = value; 2544 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2545 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2546 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2547 value = CGF.EmitToMemory(value, type); 2548 Builder.CreateBr(opBB); 2549 Builder.SetInsertPoint(opBB); 2550 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2551 atomicPHI->addIncoming(value, startBB); 2552 value = atomicPHI; 2553 } else { 2554 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2555 input = value; 2556 } 2557 2558 // Special case of integer increment that we have to check first: bool++. 2559 // Due to promotion rules, we get: 2560 // bool++ -> bool = bool + 1 2561 // -> bool = (int)bool + 1 2562 // -> bool = ((int)bool + 1 != 0) 2563 // An interesting aspect of this is that increment is always true. 2564 // Decrement does not have this property. 2565 if (isInc && type->isBooleanType()) { 2566 value = Builder.getTrue(); 2567 2568 // Most common case by far: integer increment. 2569 } else if (type->isIntegerType()) { 2570 QualType promotedType; 2571 bool canPerformLossyDemotionCheck = false; 2572 if (type->isPromotableIntegerType()) { 2573 promotedType = CGF.getContext().getPromotedIntegerType(type); 2574 assert(promotedType != type && "Shouldn't promote to the same type."); 2575 canPerformLossyDemotionCheck = true; 2576 canPerformLossyDemotionCheck &= 2577 CGF.getContext().getCanonicalType(type) != 2578 CGF.getContext().getCanonicalType(promotedType); 2579 canPerformLossyDemotionCheck &= 2580 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2581 type, promotedType); 2582 assert((!canPerformLossyDemotionCheck || 2583 type->isSignedIntegerOrEnumerationType() || 2584 promotedType->isSignedIntegerOrEnumerationType() || 2585 ConvertType(type)->getScalarSizeInBits() == 2586 ConvertType(promotedType)->getScalarSizeInBits()) && 2587 "The following check expects that if we do promotion to different " 2588 "underlying canonical type, at least one of the types (either " 2589 "base or promoted) will be signed, or the bitwidths will match."); 2590 } 2591 if (CGF.SanOpts.hasOneOf( 2592 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2593 canPerformLossyDemotionCheck) { 2594 // While `x += 1` (for `x` with width less than int) is modeled as 2595 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2596 // ease; inc/dec with width less than int can't overflow because of 2597 // promotion rules, so we omit promotion+demotion, which means that we can 2598 // not catch lossy "demotion". Because we still want to catch these cases 2599 // when the sanitizer is enabled, we perform the promotion, then perform 2600 // the increment/decrement in the wider type, and finally 2601 // perform the demotion. This will catch lossy demotions. 2602 2603 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2604 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2605 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2606 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2607 // emitted. 2608 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2609 ScalarConversionOpts(CGF.SanOpts)); 2610 2611 // Note that signed integer inc/dec with width less than int can't 2612 // overflow because of promotion rules; we're just eliding a few steps 2613 // here. 2614 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2615 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2616 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2617 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2618 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2619 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2620 } else { 2621 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2622 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2623 } 2624 2625 // Next most common: pointer increment. 2626 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2627 QualType type = ptr->getPointeeType(); 2628 2629 // VLA types don't have constant size. 2630 if (const VariableArrayType *vla 2631 = CGF.getContext().getAsVariableArrayType(type)) { 2632 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2633 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2634 if (CGF.getLangOpts().isSignedOverflowDefined()) 2635 value = Builder.CreateGEP(value->getType()->getPointerElementType(), 2636 value, numElts, "vla.inc"); 2637 else 2638 value = CGF.EmitCheckedInBoundsGEP( 2639 value, numElts, /*SignedIndices=*/false, isSubtraction, 2640 E->getExprLoc(), "vla.inc"); 2641 2642 // Arithmetic on function pointers (!) is just +-1. 2643 } else if (type->isFunctionType()) { 2644 llvm::Value *amt = Builder.getInt32(amount); 2645 2646 value = CGF.EmitCastToVoidPtr(value); 2647 if (CGF.getLangOpts().isSignedOverflowDefined()) 2648 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); 2649 else 2650 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2651 isSubtraction, E->getExprLoc(), 2652 "incdec.funcptr"); 2653 value = Builder.CreateBitCast(value, input->getType()); 2654 2655 // For everything else, we can just do a simple increment. 2656 } else { 2657 llvm::Value *amt = Builder.getInt32(amount); 2658 if (CGF.getLangOpts().isSignedOverflowDefined()) 2659 value = Builder.CreateGEP(value->getType()->getPointerElementType(), 2660 value, amt, "incdec.ptr"); 2661 else 2662 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2663 isSubtraction, E->getExprLoc(), 2664 "incdec.ptr"); 2665 } 2666 2667 // Vector increment/decrement. 2668 } else if (type->isVectorType()) { 2669 if (type->hasIntegerRepresentation()) { 2670 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2671 2672 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2673 } else { 2674 value = Builder.CreateFAdd( 2675 value, 2676 llvm::ConstantFP::get(value->getType(), amount), 2677 isInc ? "inc" : "dec"); 2678 } 2679 2680 // Floating point. 2681 } else if (type->isRealFloatingType()) { 2682 // Add the inc/dec to the real part. 2683 llvm::Value *amt; 2684 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 2685 2686 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2687 // Another special case: half FP increment should be done via float 2688 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2689 value = Builder.CreateCall( 2690 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2691 CGF.CGM.FloatTy), 2692 input, "incdec.conv"); 2693 } else { 2694 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2695 } 2696 } 2697 2698 if (value->getType()->isFloatTy()) 2699 amt = llvm::ConstantFP::get(VMContext, 2700 llvm::APFloat(static_cast<float>(amount))); 2701 else if (value->getType()->isDoubleTy()) 2702 amt = llvm::ConstantFP::get(VMContext, 2703 llvm::APFloat(static_cast<double>(amount))); 2704 else { 2705 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert 2706 // from float. 2707 llvm::APFloat F(static_cast<float>(amount)); 2708 bool ignored; 2709 const llvm::fltSemantics *FS; 2710 // Don't use getFloatTypeSemantics because Half isn't 2711 // necessarily represented using the "half" LLVM type. 2712 if (value->getType()->isFP128Ty()) 2713 FS = &CGF.getTarget().getFloat128Format(); 2714 else if (value->getType()->isHalfTy()) 2715 FS = &CGF.getTarget().getHalfFormat(); 2716 else if (value->getType()->isPPC_FP128Ty()) 2717 FS = &CGF.getTarget().getIbm128Format(); 2718 else 2719 FS = &CGF.getTarget().getLongDoubleFormat(); 2720 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2721 amt = llvm::ConstantFP::get(VMContext, F); 2722 } 2723 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2724 2725 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2726 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2727 value = Builder.CreateCall( 2728 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2729 CGF.CGM.FloatTy), 2730 value, "incdec.conv"); 2731 } else { 2732 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2733 } 2734 } 2735 2736 // Fixed-point types. 2737 } else if (type->isFixedPointType()) { 2738 // Fixed-point types are tricky. In some cases, it isn't possible to 2739 // represent a 1 or a -1 in the type at all. Piggyback off of 2740 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2741 BinOpInfo Info; 2742 Info.E = E; 2743 Info.Ty = E->getType(); 2744 Info.Opcode = isInc ? BO_Add : BO_Sub; 2745 Info.LHS = value; 2746 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2747 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2748 // since -1 is guaranteed to be representable. 2749 if (type->isSignedFixedPointType()) { 2750 Info.Opcode = isInc ? BO_Sub : BO_Add; 2751 Info.RHS = Builder.CreateNeg(Info.RHS); 2752 } 2753 // Now, convert from our invented integer literal to the type of the unary 2754 // op. This will upscale and saturate if necessary. This value can become 2755 // undef in some cases. 2756 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2757 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2758 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2759 value = EmitFixedPointBinOp(Info); 2760 2761 // Objective-C pointer types. 2762 } else { 2763 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2764 value = CGF.EmitCastToVoidPtr(value); 2765 2766 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2767 if (!isInc) size = -size; 2768 llvm::Value *sizeValue = 2769 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2770 2771 if (CGF.getLangOpts().isSignedOverflowDefined()) 2772 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); 2773 else 2774 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2775 /*SignedIndices=*/false, isSubtraction, 2776 E->getExprLoc(), "incdec.objptr"); 2777 value = Builder.CreateBitCast(value, input->getType()); 2778 } 2779 2780 if (atomicPHI) { 2781 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2782 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2783 auto Pair = CGF.EmitAtomicCompareExchange( 2784 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2785 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2786 llvm::Value *success = Pair.second; 2787 atomicPHI->addIncoming(old, curBlock); 2788 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2789 Builder.SetInsertPoint(contBB); 2790 return isPre ? value : input; 2791 } 2792 2793 // Store the updated result through the lvalue. 2794 if (LV.isBitField()) 2795 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2796 else 2797 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2798 2799 // If this is a postinc, return the value read from memory, otherwise use the 2800 // updated value. 2801 return isPre ? value : input; 2802 } 2803 2804 2805 2806 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2807 TestAndClearIgnoreResultAssign(); 2808 Value *Op = Visit(E->getSubExpr()); 2809 2810 // Generate a unary FNeg for FP ops. 2811 if (Op->getType()->isFPOrFPVectorTy()) 2812 return Builder.CreateFNeg(Op, "fneg"); 2813 2814 // Emit unary minus with EmitSub so we handle overflow cases etc. 2815 BinOpInfo BinOp; 2816 BinOp.RHS = Op; 2817 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2818 BinOp.Ty = E->getType(); 2819 BinOp.Opcode = BO_Sub; 2820 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2821 BinOp.E = E; 2822 return EmitSub(BinOp); 2823 } 2824 2825 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2826 TestAndClearIgnoreResultAssign(); 2827 Value *Op = Visit(E->getSubExpr()); 2828 return Builder.CreateNot(Op, "neg"); 2829 } 2830 2831 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2832 // Perform vector logical not on comparison with zero vector. 2833 if (E->getType()->isVectorType() && 2834 E->getType()->castAs<VectorType>()->getVectorKind() == 2835 VectorType::GenericVector) { 2836 Value *Oper = Visit(E->getSubExpr()); 2837 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2838 Value *Result; 2839 if (Oper->getType()->isFPOrFPVectorTy()) { 2840 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2841 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2842 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2843 } else 2844 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2845 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2846 } 2847 2848 // Compare operand to zero. 2849 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2850 2851 // Invert value. 2852 // TODO: Could dynamically modify easy computations here. For example, if 2853 // the operand is an icmp ne, turn into icmp eq. 2854 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2855 2856 // ZExt result to the expr type. 2857 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2858 } 2859 2860 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2861 // Try folding the offsetof to a constant. 2862 Expr::EvalResult EVResult; 2863 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2864 llvm::APSInt Value = EVResult.Val.getInt(); 2865 return Builder.getInt(Value); 2866 } 2867 2868 // Loop over the components of the offsetof to compute the value. 2869 unsigned n = E->getNumComponents(); 2870 llvm::Type* ResultType = ConvertType(E->getType()); 2871 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2872 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2873 for (unsigned i = 0; i != n; ++i) { 2874 OffsetOfNode ON = E->getComponent(i); 2875 llvm::Value *Offset = nullptr; 2876 switch (ON.getKind()) { 2877 case OffsetOfNode::Array: { 2878 // Compute the index 2879 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2880 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2881 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2882 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2883 2884 // Save the element type 2885 CurrentType = 2886 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2887 2888 // Compute the element size 2889 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2890 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2891 2892 // Multiply out to compute the result 2893 Offset = Builder.CreateMul(Idx, ElemSize); 2894 break; 2895 } 2896 2897 case OffsetOfNode::Field: { 2898 FieldDecl *MemberDecl = ON.getField(); 2899 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2900 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2901 2902 // Compute the index of the field in its parent. 2903 unsigned i = 0; 2904 // FIXME: It would be nice if we didn't have to loop here! 2905 for (RecordDecl::field_iterator Field = RD->field_begin(), 2906 FieldEnd = RD->field_end(); 2907 Field != FieldEnd; ++Field, ++i) { 2908 if (*Field == MemberDecl) 2909 break; 2910 } 2911 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2912 2913 // Compute the offset to the field 2914 int64_t OffsetInt = RL.getFieldOffset(i) / 2915 CGF.getContext().getCharWidth(); 2916 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2917 2918 // Save the element type. 2919 CurrentType = MemberDecl->getType(); 2920 break; 2921 } 2922 2923 case OffsetOfNode::Identifier: 2924 llvm_unreachable("dependent __builtin_offsetof"); 2925 2926 case OffsetOfNode::Base: { 2927 if (ON.getBase()->isVirtual()) { 2928 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2929 continue; 2930 } 2931 2932 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2933 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2934 2935 // Save the element type. 2936 CurrentType = ON.getBase()->getType(); 2937 2938 // Compute the offset to the base. 2939 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2940 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2941 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2942 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2943 break; 2944 } 2945 } 2946 Result = Builder.CreateAdd(Result, Offset); 2947 } 2948 return Result; 2949 } 2950 2951 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2952 /// argument of the sizeof expression as an integer. 2953 Value * 2954 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2955 const UnaryExprOrTypeTraitExpr *E) { 2956 QualType TypeToSize = E->getTypeOfArgument(); 2957 if (E->getKind() == UETT_SizeOf) { 2958 if (const VariableArrayType *VAT = 2959 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2960 if (E->isArgumentType()) { 2961 // sizeof(type) - make sure to emit the VLA size. 2962 CGF.EmitVariablyModifiedType(TypeToSize); 2963 } else { 2964 // C99 6.5.3.4p2: If the argument is an expression of type 2965 // VLA, it is evaluated. 2966 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2967 } 2968 2969 auto VlaSize = CGF.getVLASize(VAT); 2970 llvm::Value *size = VlaSize.NumElts; 2971 2972 // Scale the number of non-VLA elements by the non-VLA element size. 2973 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2974 if (!eltSize.isOne()) 2975 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2976 2977 return size; 2978 } 2979 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2980 auto Alignment = 2981 CGF.getContext() 2982 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2983 E->getTypeOfArgument()->getPointeeType())) 2984 .getQuantity(); 2985 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2986 } 2987 2988 // If this isn't sizeof(vla), the result must be constant; use the constant 2989 // folding logic so we don't have to duplicate it here. 2990 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2991 } 2992 2993 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2994 Expr *Op = E->getSubExpr(); 2995 if (Op->getType()->isAnyComplexType()) { 2996 // If it's an l-value, load through the appropriate subobject l-value. 2997 // Note that we have to ask E because Op might be an l-value that 2998 // this won't work for, e.g. an Obj-C property. 2999 if (E->isGLValue()) 3000 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3001 E->getExprLoc()).getScalarVal(); 3002 3003 // Otherwise, calculate and project. 3004 return CGF.EmitComplexExpr(Op, false, true).first; 3005 } 3006 3007 return Visit(Op); 3008 } 3009 3010 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 3011 Expr *Op = E->getSubExpr(); 3012 if (Op->getType()->isAnyComplexType()) { 3013 // If it's an l-value, load through the appropriate subobject l-value. 3014 // Note that we have to ask E because Op might be an l-value that 3015 // this won't work for, e.g. an Obj-C property. 3016 if (Op->isGLValue()) 3017 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3018 E->getExprLoc()).getScalarVal(); 3019 3020 // Otherwise, calculate and project. 3021 return CGF.EmitComplexExpr(Op, true, false).second; 3022 } 3023 3024 // __imag on a scalar returns zero. Emit the subexpr to ensure side 3025 // effects are evaluated, but not the actual value. 3026 if (Op->isGLValue()) 3027 CGF.EmitLValue(Op); 3028 else 3029 CGF.EmitScalarExpr(Op, true); 3030 return llvm::Constant::getNullValue(ConvertType(E->getType())); 3031 } 3032 3033 //===----------------------------------------------------------------------===// 3034 // Binary Operators 3035 //===----------------------------------------------------------------------===// 3036 3037 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 3038 TestAndClearIgnoreResultAssign(); 3039 BinOpInfo Result; 3040 Result.LHS = Visit(E->getLHS()); 3041 Result.RHS = Visit(E->getRHS()); 3042 Result.Ty = E->getType(); 3043 Result.Opcode = E->getOpcode(); 3044 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3045 Result.E = E; 3046 return Result; 3047 } 3048 3049 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 3050 const CompoundAssignOperator *E, 3051 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 3052 Value *&Result) { 3053 QualType LHSTy = E->getLHS()->getType(); 3054 BinOpInfo OpInfo; 3055 3056 if (E->getComputationResultType()->isAnyComplexType()) 3057 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 3058 3059 // Emit the RHS first. __block variables need to have the rhs evaluated 3060 // first, plus this should improve codegen a little. 3061 OpInfo.RHS = Visit(E->getRHS()); 3062 OpInfo.Ty = E->getComputationResultType(); 3063 OpInfo.Opcode = E->getOpcode(); 3064 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3065 OpInfo.E = E; 3066 // Load/convert the LHS. 3067 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3068 3069 llvm::PHINode *atomicPHI = nullptr; 3070 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 3071 QualType type = atomicTy->getValueType(); 3072 if (!type->isBooleanType() && type->isIntegerType() && 3073 !(type->isUnsignedIntegerType() && 3074 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 3075 CGF.getLangOpts().getSignedOverflowBehavior() != 3076 LangOptions::SOB_Trapping) { 3077 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 3078 llvm::Instruction::BinaryOps Op; 3079 switch (OpInfo.Opcode) { 3080 // We don't have atomicrmw operands for *, %, /, <<, >> 3081 case BO_MulAssign: case BO_DivAssign: 3082 case BO_RemAssign: 3083 case BO_ShlAssign: 3084 case BO_ShrAssign: 3085 break; 3086 case BO_AddAssign: 3087 AtomicOp = llvm::AtomicRMWInst::Add; 3088 Op = llvm::Instruction::Add; 3089 break; 3090 case BO_SubAssign: 3091 AtomicOp = llvm::AtomicRMWInst::Sub; 3092 Op = llvm::Instruction::Sub; 3093 break; 3094 case BO_AndAssign: 3095 AtomicOp = llvm::AtomicRMWInst::And; 3096 Op = llvm::Instruction::And; 3097 break; 3098 case BO_XorAssign: 3099 AtomicOp = llvm::AtomicRMWInst::Xor; 3100 Op = llvm::Instruction::Xor; 3101 break; 3102 case BO_OrAssign: 3103 AtomicOp = llvm::AtomicRMWInst::Or; 3104 Op = llvm::Instruction::Or; 3105 break; 3106 default: 3107 llvm_unreachable("Invalid compound assignment type"); 3108 } 3109 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3110 llvm::Value *Amt = CGF.EmitToMemory( 3111 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3112 E->getExprLoc()), 3113 LHSTy); 3114 Value *OldVal = Builder.CreateAtomicRMW( 3115 AtomicOp, LHSLV.getPointer(CGF), Amt, 3116 llvm::AtomicOrdering::SequentiallyConsistent); 3117 3118 // Since operation is atomic, the result type is guaranteed to be the 3119 // same as the input in LLVM terms. 3120 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3121 return LHSLV; 3122 } 3123 } 3124 // FIXME: For floating point types, we should be saving and restoring the 3125 // floating point environment in the loop. 3126 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3127 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3128 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3129 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3130 Builder.CreateBr(opBB); 3131 Builder.SetInsertPoint(opBB); 3132 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3133 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3134 OpInfo.LHS = atomicPHI; 3135 } 3136 else 3137 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3138 3139 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 3140 SourceLocation Loc = E->getExprLoc(); 3141 OpInfo.LHS = 3142 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3143 3144 // Expand the binary operator. 3145 Result = (this->*Func)(OpInfo); 3146 3147 // Convert the result back to the LHS type, 3148 // potentially with Implicit Conversion sanitizer check. 3149 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3150 Loc, ScalarConversionOpts(CGF.SanOpts)); 3151 3152 if (atomicPHI) { 3153 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3154 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3155 auto Pair = CGF.EmitAtomicCompareExchange( 3156 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3157 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3158 llvm::Value *success = Pair.second; 3159 atomicPHI->addIncoming(old, curBlock); 3160 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3161 Builder.SetInsertPoint(contBB); 3162 return LHSLV; 3163 } 3164 3165 // Store the result value into the LHS lvalue. Bit-fields are handled 3166 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3167 // 'An assignment expression has the value of the left operand after the 3168 // assignment...'. 3169 if (LHSLV.isBitField()) 3170 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3171 else 3172 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3173 3174 if (CGF.getLangOpts().OpenMP) 3175 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3176 E->getLHS()); 3177 return LHSLV; 3178 } 3179 3180 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3181 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3182 bool Ignore = TestAndClearIgnoreResultAssign(); 3183 Value *RHS = nullptr; 3184 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3185 3186 // If the result is clearly ignored, return now. 3187 if (Ignore) 3188 return nullptr; 3189 3190 // The result of an assignment in C is the assigned r-value. 3191 if (!CGF.getLangOpts().CPlusPlus) 3192 return RHS; 3193 3194 // If the lvalue is non-volatile, return the computed value of the assignment. 3195 if (!LHS.isVolatileQualified()) 3196 return RHS; 3197 3198 // Otherwise, reload the value. 3199 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3200 } 3201 3202 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3203 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3204 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3205 3206 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3207 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3208 SanitizerKind::IntegerDivideByZero)); 3209 } 3210 3211 const auto *BO = cast<BinaryOperator>(Ops.E); 3212 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3213 Ops.Ty->hasSignedIntegerRepresentation() && 3214 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3215 Ops.mayHaveIntegerOverflow()) { 3216 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3217 3218 llvm::Value *IntMin = 3219 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3220 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); 3221 3222 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3223 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3224 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3225 Checks.push_back( 3226 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3227 } 3228 3229 if (Checks.size() > 0) 3230 EmitBinOpCheck(Checks, Ops); 3231 } 3232 3233 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3234 { 3235 CodeGenFunction::SanitizerScope SanScope(&CGF); 3236 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3237 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3238 Ops.Ty->isIntegerType() && 3239 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3240 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3241 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3242 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3243 Ops.Ty->isRealFloatingType() && 3244 Ops.mayHaveFloatDivisionByZero()) { 3245 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3246 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3247 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3248 Ops); 3249 } 3250 } 3251 3252 if (Ops.Ty->isConstantMatrixType()) { 3253 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3254 // We need to check the types of the operands of the operator to get the 3255 // correct matrix dimensions. 3256 auto *BO = cast<BinaryOperator>(Ops.E); 3257 (void)BO; 3258 assert( 3259 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && 3260 "first operand must be a matrix"); 3261 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && 3262 "second operand must be an arithmetic type"); 3263 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3264 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, 3265 Ops.Ty->hasUnsignedIntegerRepresentation()); 3266 } 3267 3268 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3269 llvm::Value *Val; 3270 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3271 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3272 if ((CGF.getLangOpts().OpenCL && 3273 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 3274 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice && 3275 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 3276 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3277 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3278 // build option allows an application to specify that single precision 3279 // floating-point divide (x/y and 1/x) and sqrt used in the program 3280 // source are correctly rounded. 3281 llvm::Type *ValTy = Val->getType(); 3282 if (ValTy->isFloatTy() || 3283 (isa<llvm::VectorType>(ValTy) && 3284 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3285 CGF.SetFPAccuracy(Val, 2.5); 3286 } 3287 return Val; 3288 } 3289 else if (Ops.isFixedPointOp()) 3290 return EmitFixedPointBinOp(Ops); 3291 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3292 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3293 else 3294 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3295 } 3296 3297 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3298 // Rem in C can't be a floating point type: C99 6.5.5p2. 3299 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3300 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3301 Ops.Ty->isIntegerType() && 3302 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3303 CodeGenFunction::SanitizerScope SanScope(&CGF); 3304 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3305 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3306 } 3307 3308 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3309 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3310 else 3311 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3312 } 3313 3314 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3315 unsigned IID; 3316 unsigned OpID = 0; 3317 SanitizerHandler OverflowKind; 3318 3319 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3320 switch (Ops.Opcode) { 3321 case BO_Add: 3322 case BO_AddAssign: 3323 OpID = 1; 3324 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3325 llvm::Intrinsic::uadd_with_overflow; 3326 OverflowKind = SanitizerHandler::AddOverflow; 3327 break; 3328 case BO_Sub: 3329 case BO_SubAssign: 3330 OpID = 2; 3331 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3332 llvm::Intrinsic::usub_with_overflow; 3333 OverflowKind = SanitizerHandler::SubOverflow; 3334 break; 3335 case BO_Mul: 3336 case BO_MulAssign: 3337 OpID = 3; 3338 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3339 llvm::Intrinsic::umul_with_overflow; 3340 OverflowKind = SanitizerHandler::MulOverflow; 3341 break; 3342 default: 3343 llvm_unreachable("Unsupported operation for overflow detection"); 3344 } 3345 OpID <<= 1; 3346 if (isSigned) 3347 OpID |= 1; 3348 3349 CodeGenFunction::SanitizerScope SanScope(&CGF); 3350 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3351 3352 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3353 3354 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3355 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3356 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3357 3358 // Handle overflow with llvm.trap if no custom handler has been specified. 3359 const std::string *handlerName = 3360 &CGF.getLangOpts().OverflowHandler; 3361 if (handlerName->empty()) { 3362 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3363 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3364 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3365 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3366 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3367 : SanitizerKind::UnsignedIntegerOverflow; 3368 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3369 } else 3370 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); 3371 return result; 3372 } 3373 3374 // Branch in case of overflow. 3375 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3376 llvm::BasicBlock *continueBB = 3377 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3378 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3379 3380 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3381 3382 // If an overflow handler is set, then we want to call it and then use its 3383 // result, if it returns. 3384 Builder.SetInsertPoint(overflowBB); 3385 3386 // Get the overflow handler. 3387 llvm::Type *Int8Ty = CGF.Int8Ty; 3388 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3389 llvm::FunctionType *handlerTy = 3390 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3391 llvm::FunctionCallee handler = 3392 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3393 3394 // Sign extend the args to 64-bit, so that we can use the same handler for 3395 // all types of overflow. 3396 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3397 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3398 3399 // Call the handler with the two arguments, the operation, and the size of 3400 // the result. 3401 llvm::Value *handlerArgs[] = { 3402 lhs, 3403 rhs, 3404 Builder.getInt8(OpID), 3405 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3406 }; 3407 llvm::Value *handlerResult = 3408 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3409 3410 // Truncate the result back to the desired size. 3411 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3412 Builder.CreateBr(continueBB); 3413 3414 Builder.SetInsertPoint(continueBB); 3415 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3416 phi->addIncoming(result, initialBB); 3417 phi->addIncoming(handlerResult, overflowBB); 3418 3419 return phi; 3420 } 3421 3422 /// Emit pointer + index arithmetic. 3423 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3424 const BinOpInfo &op, 3425 bool isSubtraction) { 3426 // Must have binary (not unary) expr here. Unary pointer 3427 // increment/decrement doesn't use this path. 3428 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3429 3430 Value *pointer = op.LHS; 3431 Expr *pointerOperand = expr->getLHS(); 3432 Value *index = op.RHS; 3433 Expr *indexOperand = expr->getRHS(); 3434 3435 // In a subtraction, the LHS is always the pointer. 3436 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3437 std::swap(pointer, index); 3438 std::swap(pointerOperand, indexOperand); 3439 } 3440 3441 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3442 3443 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3444 auto &DL = CGF.CGM.getDataLayout(); 3445 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3446 3447 // Some versions of glibc and gcc use idioms (particularly in their malloc 3448 // routines) that add a pointer-sized integer (known to be a pointer value) 3449 // to a null pointer in order to cast the value back to an integer or as 3450 // part of a pointer alignment algorithm. This is undefined behavior, but 3451 // we'd like to be able to compile programs that use it. 3452 // 3453 // Normally, we'd generate a GEP with a null-pointer base here in response 3454 // to that code, but it's also UB to dereference a pointer created that 3455 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3456 // generate a direct cast of the integer value to a pointer. 3457 // 3458 // The idiom (p = nullptr + N) is not met if any of the following are true: 3459 // 3460 // The operation is subtraction. 3461 // The index is not pointer-sized. 3462 // The pointer type is not byte-sized. 3463 // 3464 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3465 op.Opcode, 3466 expr->getLHS(), 3467 expr->getRHS())) 3468 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3469 3470 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3471 // Zero-extend or sign-extend the pointer value according to 3472 // whether the index is signed or not. 3473 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3474 "idx.ext"); 3475 } 3476 3477 // If this is subtraction, negate the index. 3478 if (isSubtraction) 3479 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3480 3481 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3482 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3483 /*Accessed*/ false); 3484 3485 const PointerType *pointerType 3486 = pointerOperand->getType()->getAs<PointerType>(); 3487 if (!pointerType) { 3488 QualType objectType = pointerOperand->getType() 3489 ->castAs<ObjCObjectPointerType>() 3490 ->getPointeeType(); 3491 llvm::Value *objectSize 3492 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3493 3494 index = CGF.Builder.CreateMul(index, objectSize); 3495 3496 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3497 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3498 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3499 } 3500 3501 QualType elementType = pointerType->getPointeeType(); 3502 if (const VariableArrayType *vla 3503 = CGF.getContext().getAsVariableArrayType(elementType)) { 3504 // The element count here is the total number of non-VLA elements. 3505 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3506 3507 // Effectively, the multiply by the VLA size is part of the GEP. 3508 // GEP indexes are signed, and scaling an index isn't permitted to 3509 // signed-overflow, so we use the same semantics for our explicit 3510 // multiply. We suppress this if overflow is not undefined behavior. 3511 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3512 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3513 pointer = CGF.Builder.CreateGEP( 3514 pointer->getType()->getPointerElementType(), pointer, index, 3515 "add.ptr"); 3516 } else { 3517 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3518 pointer = 3519 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3520 op.E->getExprLoc(), "add.ptr"); 3521 } 3522 return pointer; 3523 } 3524 3525 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3526 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3527 // future proof. 3528 if (elementType->isVoidType() || elementType->isFunctionType()) { 3529 Value *result = CGF.EmitCastToVoidPtr(pointer); 3530 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3531 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3532 } 3533 3534 if (CGF.getLangOpts().isSignedOverflowDefined()) 3535 return CGF.Builder.CreateGEP( 3536 pointer->getType()->getPointerElementType(), pointer, index, "add.ptr"); 3537 3538 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3539 op.E->getExprLoc(), "add.ptr"); 3540 } 3541 3542 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3543 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3544 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3545 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3546 // efficient operations. 3547 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3548 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3549 bool negMul, bool negAdd) { 3550 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3551 3552 Value *MulOp0 = MulOp->getOperand(0); 3553 Value *MulOp1 = MulOp->getOperand(1); 3554 if (negMul) 3555 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3556 if (negAdd) 3557 Addend = Builder.CreateFNeg(Addend, "neg"); 3558 3559 Value *FMulAdd = nullptr; 3560 if (Builder.getIsFPConstrained()) { 3561 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3562 "Only constrained operation should be created when Builder is in FP " 3563 "constrained mode"); 3564 FMulAdd = Builder.CreateConstrainedFPCall( 3565 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3566 Addend->getType()), 3567 {MulOp0, MulOp1, Addend}); 3568 } else { 3569 FMulAdd = Builder.CreateCall( 3570 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3571 {MulOp0, MulOp1, Addend}); 3572 } 3573 MulOp->eraseFromParent(); 3574 3575 return FMulAdd; 3576 } 3577 3578 // Check whether it would be legal to emit an fmuladd intrinsic call to 3579 // represent op and if so, build the fmuladd. 3580 // 3581 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3582 // Does NOT check the type of the operation - it's assumed that this function 3583 // will be called from contexts where it's known that the type is contractable. 3584 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3585 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3586 bool isSub=false) { 3587 3588 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3589 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3590 "Only fadd/fsub can be the root of an fmuladd."); 3591 3592 // Check whether this op is marked as fusable. 3593 if (!op.FPFeatures.allowFPContractWithinStatement()) 3594 return nullptr; 3595 3596 // We have a potentially fusable op. Look for a mul on one of the operands. 3597 // Also, make sure that the mul result isn't used directly. In that case, 3598 // there's no point creating a muladd operation. 3599 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3600 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3601 LHSBinOp->use_empty()) 3602 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3603 } 3604 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3605 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3606 RHSBinOp->use_empty()) 3607 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3608 } 3609 3610 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3611 if (LHSBinOp->getIntrinsicID() == 3612 llvm::Intrinsic::experimental_constrained_fmul && 3613 LHSBinOp->use_empty()) 3614 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3615 } 3616 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3617 if (RHSBinOp->getIntrinsicID() == 3618 llvm::Intrinsic::experimental_constrained_fmul && 3619 RHSBinOp->use_empty()) 3620 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3621 } 3622 3623 return nullptr; 3624 } 3625 3626 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3627 if (op.LHS->getType()->isPointerTy() || 3628 op.RHS->getType()->isPointerTy()) 3629 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3630 3631 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3632 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3633 case LangOptions::SOB_Defined: 3634 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3635 case LangOptions::SOB_Undefined: 3636 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3637 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3638 LLVM_FALLTHROUGH; 3639 case LangOptions::SOB_Trapping: 3640 if (CanElideOverflowCheck(CGF.getContext(), op)) 3641 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3642 return EmitOverflowCheckedBinOp(op); 3643 } 3644 } 3645 3646 if (op.Ty->isConstantMatrixType()) { 3647 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3648 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3649 return MB.CreateAdd(op.LHS, op.RHS); 3650 } 3651 3652 if (op.Ty->isUnsignedIntegerType() && 3653 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3654 !CanElideOverflowCheck(CGF.getContext(), op)) 3655 return EmitOverflowCheckedBinOp(op); 3656 3657 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3658 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3659 // Try to form an fmuladd. 3660 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3661 return FMulAdd; 3662 3663 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3664 } 3665 3666 if (op.isFixedPointOp()) 3667 return EmitFixedPointBinOp(op); 3668 3669 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3670 } 3671 3672 /// The resulting value must be calculated with exact precision, so the operands 3673 /// may not be the same type. 3674 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3675 using llvm::APSInt; 3676 using llvm::ConstantInt; 3677 3678 // This is either a binary operation where at least one of the operands is 3679 // a fixed-point type, or a unary operation where the operand is a fixed-point 3680 // type. The result type of a binary operation is determined by 3681 // Sema::handleFixedPointConversions(). 3682 QualType ResultTy = op.Ty; 3683 QualType LHSTy, RHSTy; 3684 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3685 RHSTy = BinOp->getRHS()->getType(); 3686 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3687 // For compound assignment, the effective type of the LHS at this point 3688 // is the computation LHS type, not the actual LHS type, and the final 3689 // result type is not the type of the expression but rather the 3690 // computation result type. 3691 LHSTy = CAO->getComputationLHSType(); 3692 ResultTy = CAO->getComputationResultType(); 3693 } else 3694 LHSTy = BinOp->getLHS()->getType(); 3695 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3696 LHSTy = UnOp->getSubExpr()->getType(); 3697 RHSTy = UnOp->getSubExpr()->getType(); 3698 } 3699 ASTContext &Ctx = CGF.getContext(); 3700 Value *LHS = op.LHS; 3701 Value *RHS = op.RHS; 3702 3703 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3704 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3705 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3706 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3707 3708 // Perform the actual operation. 3709 Value *Result; 3710 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3711 switch (op.Opcode) { 3712 case BO_AddAssign: 3713 case BO_Add: 3714 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3715 break; 3716 case BO_SubAssign: 3717 case BO_Sub: 3718 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3719 break; 3720 case BO_MulAssign: 3721 case BO_Mul: 3722 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3723 break; 3724 case BO_DivAssign: 3725 case BO_Div: 3726 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3727 break; 3728 case BO_ShlAssign: 3729 case BO_Shl: 3730 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3731 break; 3732 case BO_ShrAssign: 3733 case BO_Shr: 3734 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3735 break; 3736 case BO_LT: 3737 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3738 case BO_GT: 3739 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3740 case BO_LE: 3741 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3742 case BO_GE: 3743 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3744 case BO_EQ: 3745 // For equality operations, we assume any padding bits on unsigned types are 3746 // zero'd out. They could be overwritten through non-saturating operations 3747 // that cause overflow, but this leads to undefined behavior. 3748 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3749 case BO_NE: 3750 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3751 case BO_Cmp: 3752 case BO_LAnd: 3753 case BO_LOr: 3754 llvm_unreachable("Found unimplemented fixed point binary operation"); 3755 case BO_PtrMemD: 3756 case BO_PtrMemI: 3757 case BO_Rem: 3758 case BO_Xor: 3759 case BO_And: 3760 case BO_Or: 3761 case BO_Assign: 3762 case BO_RemAssign: 3763 case BO_AndAssign: 3764 case BO_XorAssign: 3765 case BO_OrAssign: 3766 case BO_Comma: 3767 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3768 } 3769 3770 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3771 BinaryOperator::isShiftAssignOp(op.Opcode); 3772 // Convert to the result type. 3773 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3774 : CommonFixedSema, 3775 ResultFixedSema); 3776 } 3777 3778 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3779 // The LHS is always a pointer if either side is. 3780 if (!op.LHS->getType()->isPointerTy()) { 3781 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3782 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3783 case LangOptions::SOB_Defined: 3784 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3785 case LangOptions::SOB_Undefined: 3786 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3787 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3788 LLVM_FALLTHROUGH; 3789 case LangOptions::SOB_Trapping: 3790 if (CanElideOverflowCheck(CGF.getContext(), op)) 3791 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3792 return EmitOverflowCheckedBinOp(op); 3793 } 3794 } 3795 3796 if (op.Ty->isConstantMatrixType()) { 3797 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3798 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3799 return MB.CreateSub(op.LHS, op.RHS); 3800 } 3801 3802 if (op.Ty->isUnsignedIntegerType() && 3803 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3804 !CanElideOverflowCheck(CGF.getContext(), op)) 3805 return EmitOverflowCheckedBinOp(op); 3806 3807 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3808 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3809 // Try to form an fmuladd. 3810 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3811 return FMulAdd; 3812 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3813 } 3814 3815 if (op.isFixedPointOp()) 3816 return EmitFixedPointBinOp(op); 3817 3818 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3819 } 3820 3821 // If the RHS is not a pointer, then we have normal pointer 3822 // arithmetic. 3823 if (!op.RHS->getType()->isPointerTy()) 3824 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3825 3826 // Otherwise, this is a pointer subtraction. 3827 3828 // Do the raw subtraction part. 3829 llvm::Value *LHS 3830 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3831 llvm::Value *RHS 3832 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3833 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3834 3835 // Okay, figure out the element size. 3836 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3837 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3838 3839 llvm::Value *divisor = nullptr; 3840 3841 // For a variable-length array, this is going to be non-constant. 3842 if (const VariableArrayType *vla 3843 = CGF.getContext().getAsVariableArrayType(elementType)) { 3844 auto VlaSize = CGF.getVLASize(vla); 3845 elementType = VlaSize.Type; 3846 divisor = VlaSize.NumElts; 3847 3848 // Scale the number of non-VLA elements by the non-VLA element size. 3849 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3850 if (!eltSize.isOne()) 3851 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3852 3853 // For everything elese, we can just compute it, safe in the 3854 // assumption that Sema won't let anything through that we can't 3855 // safely compute the size of. 3856 } else { 3857 CharUnits elementSize; 3858 // Handle GCC extension for pointer arithmetic on void* and 3859 // function pointer types. 3860 if (elementType->isVoidType() || elementType->isFunctionType()) 3861 elementSize = CharUnits::One(); 3862 else 3863 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3864 3865 // Don't even emit the divide for element size of 1. 3866 if (elementSize.isOne()) 3867 return diffInChars; 3868 3869 divisor = CGF.CGM.getSize(elementSize); 3870 } 3871 3872 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3873 // pointer difference in C is only defined in the case where both operands 3874 // are pointing to elements of an array. 3875 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3876 } 3877 3878 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3879 llvm::IntegerType *Ty; 3880 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3881 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3882 else 3883 Ty = cast<llvm::IntegerType>(LHS->getType()); 3884 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3885 } 3886 3887 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3888 const Twine &Name) { 3889 llvm::IntegerType *Ty; 3890 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3891 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3892 else 3893 Ty = cast<llvm::IntegerType>(LHS->getType()); 3894 3895 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3896 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3897 3898 return Builder.CreateURem( 3899 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3900 } 3901 3902 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3903 // TODO: This misses out on the sanitizer check below. 3904 if (Ops.isFixedPointOp()) 3905 return EmitFixedPointBinOp(Ops); 3906 3907 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3908 // RHS to the same size as the LHS. 3909 Value *RHS = Ops.RHS; 3910 if (Ops.LHS->getType() != RHS->getType()) 3911 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3912 3913 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3914 Ops.Ty->hasSignedIntegerRepresentation() && 3915 !CGF.getLangOpts().isSignedOverflowDefined() && 3916 !CGF.getLangOpts().CPlusPlus20; 3917 bool SanitizeUnsignedBase = 3918 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3919 Ops.Ty->hasUnsignedIntegerRepresentation(); 3920 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3921 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3922 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3923 if (CGF.getLangOpts().OpenCL) 3924 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3925 else if ((SanitizeBase || SanitizeExponent) && 3926 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3927 CodeGenFunction::SanitizerScope SanScope(&CGF); 3928 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3929 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3930 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3931 3932 if (SanitizeExponent) { 3933 Checks.push_back( 3934 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3935 } 3936 3937 if (SanitizeBase) { 3938 // Check whether we are shifting any non-zero bits off the top of the 3939 // integer. We only emit this check if exponent is valid - otherwise 3940 // instructions below will have undefined behavior themselves. 3941 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3942 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3943 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3944 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3945 llvm::Value *PromotedWidthMinusOne = 3946 (RHS == Ops.RHS) ? WidthMinusOne 3947 : GetWidthMinusOneValue(Ops.LHS, RHS); 3948 CGF.EmitBlock(CheckShiftBase); 3949 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3950 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3951 /*NUW*/ true, /*NSW*/ true), 3952 "shl.check"); 3953 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3954 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3955 // Under C++11's rules, shifting a 1 bit into the sign bit is 3956 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3957 // define signed left shifts, so we use the C99 and C++11 rules there). 3958 // Unsigned shifts can always shift into the top bit. 3959 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3960 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3961 } 3962 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3963 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3964 CGF.EmitBlock(Cont); 3965 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3966 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3967 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3968 Checks.push_back(std::make_pair( 3969 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3970 : SanitizerKind::UnsignedShiftBase)); 3971 } 3972 3973 assert(!Checks.empty()); 3974 EmitBinOpCheck(Checks, Ops); 3975 } 3976 3977 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3978 } 3979 3980 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3981 // TODO: This misses out on the sanitizer check below. 3982 if (Ops.isFixedPointOp()) 3983 return EmitFixedPointBinOp(Ops); 3984 3985 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3986 // RHS to the same size as the LHS. 3987 Value *RHS = Ops.RHS; 3988 if (Ops.LHS->getType() != RHS->getType()) 3989 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3990 3991 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3992 if (CGF.getLangOpts().OpenCL) 3993 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 3994 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3995 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3996 CodeGenFunction::SanitizerScope SanScope(&CGF); 3997 llvm::Value *Valid = 3998 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3999 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 4000 } 4001 4002 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 4003 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 4004 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 4005 } 4006 4007 enum IntrinsicType { VCMPEQ, VCMPGT }; 4008 // return corresponding comparison intrinsic for given vector type 4009 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 4010 BuiltinType::Kind ElemKind) { 4011 switch (ElemKind) { 4012 default: llvm_unreachable("unexpected element type"); 4013 case BuiltinType::Char_U: 4014 case BuiltinType::UChar: 4015 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4016 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 4017 case BuiltinType::Char_S: 4018 case BuiltinType::SChar: 4019 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4020 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 4021 case BuiltinType::UShort: 4022 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4023 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 4024 case BuiltinType::Short: 4025 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4026 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 4027 case BuiltinType::UInt: 4028 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4029 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 4030 case BuiltinType::Int: 4031 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4032 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 4033 case BuiltinType::ULong: 4034 case BuiltinType::ULongLong: 4035 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4036 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 4037 case BuiltinType::Long: 4038 case BuiltinType::LongLong: 4039 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4040 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 4041 case BuiltinType::Float: 4042 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 4043 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 4044 case BuiltinType::Double: 4045 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 4046 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 4047 case BuiltinType::UInt128: 4048 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4049 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 4050 case BuiltinType::Int128: 4051 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4052 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 4053 } 4054 } 4055 4056 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 4057 llvm::CmpInst::Predicate UICmpOpc, 4058 llvm::CmpInst::Predicate SICmpOpc, 4059 llvm::CmpInst::Predicate FCmpOpc, 4060 bool IsSignaling) { 4061 TestAndClearIgnoreResultAssign(); 4062 Value *Result; 4063 QualType LHSTy = E->getLHS()->getType(); 4064 QualType RHSTy = E->getRHS()->getType(); 4065 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 4066 assert(E->getOpcode() == BO_EQ || 4067 E->getOpcode() == BO_NE); 4068 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 4069 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 4070 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 4071 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 4072 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 4073 BinOpInfo BOInfo = EmitBinOps(E); 4074 Value *LHS = BOInfo.LHS; 4075 Value *RHS = BOInfo.RHS; 4076 4077 // If AltiVec, the comparison results in a numeric type, so we use 4078 // intrinsics comparing vectors and giving 0 or 1 as a result 4079 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 4080 // constants for mapping CR6 register bits to predicate result 4081 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 4082 4083 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 4084 4085 // in several cases vector arguments order will be reversed 4086 Value *FirstVecArg = LHS, 4087 *SecondVecArg = RHS; 4088 4089 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 4090 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 4091 4092 switch(E->getOpcode()) { 4093 default: llvm_unreachable("is not a comparison operation"); 4094 case BO_EQ: 4095 CR6 = CR6_LT; 4096 ID = GetIntrinsic(VCMPEQ, ElementKind); 4097 break; 4098 case BO_NE: 4099 CR6 = CR6_EQ; 4100 ID = GetIntrinsic(VCMPEQ, ElementKind); 4101 break; 4102 case BO_LT: 4103 CR6 = CR6_LT; 4104 ID = GetIntrinsic(VCMPGT, ElementKind); 4105 std::swap(FirstVecArg, SecondVecArg); 4106 break; 4107 case BO_GT: 4108 CR6 = CR6_LT; 4109 ID = GetIntrinsic(VCMPGT, ElementKind); 4110 break; 4111 case BO_LE: 4112 if (ElementKind == BuiltinType::Float) { 4113 CR6 = CR6_LT; 4114 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4115 std::swap(FirstVecArg, SecondVecArg); 4116 } 4117 else { 4118 CR6 = CR6_EQ; 4119 ID = GetIntrinsic(VCMPGT, ElementKind); 4120 } 4121 break; 4122 case BO_GE: 4123 if (ElementKind == BuiltinType::Float) { 4124 CR6 = CR6_LT; 4125 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4126 } 4127 else { 4128 CR6 = CR6_EQ; 4129 ID = GetIntrinsic(VCMPGT, ElementKind); 4130 std::swap(FirstVecArg, SecondVecArg); 4131 } 4132 break; 4133 } 4134 4135 Value *CR6Param = Builder.getInt32(CR6); 4136 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4137 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4138 4139 // The result type of intrinsic may not be same as E->getType(). 4140 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4141 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4142 // do nothing, if ResultTy is not i1 at the same time, it will cause 4143 // crash later. 4144 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4145 if (ResultTy->getBitWidth() > 1 && 4146 E->getType() == CGF.getContext().BoolTy) 4147 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4148 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4149 E->getExprLoc()); 4150 } 4151 4152 if (BOInfo.isFixedPointOp()) { 4153 Result = EmitFixedPointBinOp(BOInfo); 4154 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4155 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4156 if (!IsSignaling) 4157 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4158 else 4159 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4160 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4161 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4162 } else { 4163 // Unsigned integers and pointers. 4164 4165 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4166 !isa<llvm::ConstantPointerNull>(LHS) && 4167 !isa<llvm::ConstantPointerNull>(RHS)) { 4168 4169 // Dynamic information is required to be stripped for comparisons, 4170 // because it could leak the dynamic information. Based on comparisons 4171 // of pointers to dynamic objects, the optimizer can replace one pointer 4172 // with another, which might be incorrect in presence of invariant 4173 // groups. Comparison with null is safe because null does not carry any 4174 // dynamic information. 4175 if (LHSTy.mayBeDynamicClass()) 4176 LHS = Builder.CreateStripInvariantGroup(LHS); 4177 if (RHSTy.mayBeDynamicClass()) 4178 RHS = Builder.CreateStripInvariantGroup(RHS); 4179 } 4180 4181 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4182 } 4183 4184 // If this is a vector comparison, sign extend the result to the appropriate 4185 // vector integer type and return it (don't convert to bool). 4186 if (LHSTy->isVectorType()) 4187 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4188 4189 } else { 4190 // Complex Comparison: can only be an equality comparison. 4191 CodeGenFunction::ComplexPairTy LHS, RHS; 4192 QualType CETy; 4193 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4194 LHS = CGF.EmitComplexExpr(E->getLHS()); 4195 CETy = CTy->getElementType(); 4196 } else { 4197 LHS.first = Visit(E->getLHS()); 4198 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4199 CETy = LHSTy; 4200 } 4201 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4202 RHS = CGF.EmitComplexExpr(E->getRHS()); 4203 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4204 CTy->getElementType()) && 4205 "The element types must always match."); 4206 (void)CTy; 4207 } else { 4208 RHS.first = Visit(E->getRHS()); 4209 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4210 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4211 "The element types must always match."); 4212 } 4213 4214 Value *ResultR, *ResultI; 4215 if (CETy->isRealFloatingType()) { 4216 // As complex comparisons can only be equality comparisons, they 4217 // are never signaling comparisons. 4218 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4219 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4220 } else { 4221 // Complex comparisons can only be equality comparisons. As such, signed 4222 // and unsigned opcodes are the same. 4223 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4224 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4225 } 4226 4227 if (E->getOpcode() == BO_EQ) { 4228 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4229 } else { 4230 assert(E->getOpcode() == BO_NE && 4231 "Complex comparison other than == or != ?"); 4232 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4233 } 4234 } 4235 4236 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4237 E->getExprLoc()); 4238 } 4239 4240 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4241 bool Ignore = TestAndClearIgnoreResultAssign(); 4242 4243 Value *RHS; 4244 LValue LHS; 4245 4246 switch (E->getLHS()->getType().getObjCLifetime()) { 4247 case Qualifiers::OCL_Strong: 4248 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4249 break; 4250 4251 case Qualifiers::OCL_Autoreleasing: 4252 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4253 break; 4254 4255 case Qualifiers::OCL_ExplicitNone: 4256 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4257 break; 4258 4259 case Qualifiers::OCL_Weak: 4260 RHS = Visit(E->getRHS()); 4261 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4262 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4263 break; 4264 4265 case Qualifiers::OCL_None: 4266 // __block variables need to have the rhs evaluated first, plus 4267 // this should improve codegen just a little. 4268 RHS = Visit(E->getRHS()); 4269 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4270 4271 // Store the value into the LHS. Bit-fields are handled specially 4272 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4273 // 'An assignment expression has the value of the left operand after 4274 // the assignment...'. 4275 if (LHS.isBitField()) { 4276 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4277 } else { 4278 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4279 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4280 } 4281 } 4282 4283 // If the result is clearly ignored, return now. 4284 if (Ignore) 4285 return nullptr; 4286 4287 // The result of an assignment in C is the assigned r-value. 4288 if (!CGF.getLangOpts().CPlusPlus) 4289 return RHS; 4290 4291 // If the lvalue is non-volatile, return the computed value of the assignment. 4292 if (!LHS.isVolatileQualified()) 4293 return RHS; 4294 4295 // Otherwise, reload the value. 4296 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4297 } 4298 4299 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4300 // Perform vector logical and on comparisons with zero vectors. 4301 if (E->getType()->isVectorType()) { 4302 CGF.incrementProfileCounter(E); 4303 4304 Value *LHS = Visit(E->getLHS()); 4305 Value *RHS = Visit(E->getRHS()); 4306 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4307 if (LHS->getType()->isFPOrFPVectorTy()) { 4308 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4309 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4310 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4311 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4312 } else { 4313 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4314 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4315 } 4316 Value *And = Builder.CreateAnd(LHS, RHS); 4317 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4318 } 4319 4320 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4321 llvm::Type *ResTy = ConvertType(E->getType()); 4322 4323 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4324 // If we have 1 && X, just emit X without inserting the control flow. 4325 bool LHSCondVal; 4326 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4327 if (LHSCondVal) { // If we have 1 && X, just emit X. 4328 CGF.incrementProfileCounter(E); 4329 4330 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4331 4332 // If we're generating for profiling or coverage, generate a branch to a 4333 // block that increments the RHS counter needed to track branch condition 4334 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4335 // "FalseBlock" after the increment is done. 4336 if (InstrumentRegions && 4337 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4338 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); 4339 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4340 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); 4341 CGF.EmitBlock(RHSBlockCnt); 4342 CGF.incrementProfileCounter(E->getRHS()); 4343 CGF.EmitBranch(FBlock); 4344 CGF.EmitBlock(FBlock); 4345 } 4346 4347 // ZExt result to int or bool. 4348 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4349 } 4350 4351 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4352 if (!CGF.ContainsLabel(E->getRHS())) 4353 return llvm::Constant::getNullValue(ResTy); 4354 } 4355 4356 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4357 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4358 4359 CodeGenFunction::ConditionalEvaluation eval(CGF); 4360 4361 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4362 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4363 CGF.getProfileCount(E->getRHS())); 4364 4365 // Any edges into the ContBlock are now from an (indeterminate number of) 4366 // edges from this first condition. All of these values will be false. Start 4367 // setting up the PHI node in the Cont Block for this. 4368 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4369 "", ContBlock); 4370 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4371 PI != PE; ++PI) 4372 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4373 4374 eval.begin(CGF); 4375 CGF.EmitBlock(RHSBlock); 4376 CGF.incrementProfileCounter(E); 4377 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4378 eval.end(CGF); 4379 4380 // Reaquire the RHS block, as there may be subblocks inserted. 4381 RHSBlock = Builder.GetInsertBlock(); 4382 4383 // If we're generating for profiling or coverage, generate a branch on the 4384 // RHS to a block that increments the RHS true counter needed to track branch 4385 // condition coverage. 4386 if (InstrumentRegions && 4387 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4388 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4389 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); 4390 CGF.EmitBlock(RHSBlockCnt); 4391 CGF.incrementProfileCounter(E->getRHS()); 4392 CGF.EmitBranch(ContBlock); 4393 PN->addIncoming(RHSCond, RHSBlockCnt); 4394 } 4395 4396 // Emit an unconditional branch from this block to ContBlock. 4397 { 4398 // There is no need to emit line number for unconditional branch. 4399 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4400 CGF.EmitBlock(ContBlock); 4401 } 4402 // Insert an entry into the phi node for the edge with the value of RHSCond. 4403 PN->addIncoming(RHSCond, RHSBlock); 4404 4405 // Artificial location to preserve the scope information 4406 { 4407 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4408 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4409 } 4410 4411 // ZExt result to int. 4412 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4413 } 4414 4415 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4416 // Perform vector logical or on comparisons with zero vectors. 4417 if (E->getType()->isVectorType()) { 4418 CGF.incrementProfileCounter(E); 4419 4420 Value *LHS = Visit(E->getLHS()); 4421 Value *RHS = Visit(E->getRHS()); 4422 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4423 if (LHS->getType()->isFPOrFPVectorTy()) { 4424 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4425 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4426 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4427 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4428 } else { 4429 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4430 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4431 } 4432 Value *Or = Builder.CreateOr(LHS, RHS); 4433 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4434 } 4435 4436 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4437 llvm::Type *ResTy = ConvertType(E->getType()); 4438 4439 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4440 // If we have 0 || X, just emit X without inserting the control flow. 4441 bool LHSCondVal; 4442 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4443 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4444 CGF.incrementProfileCounter(E); 4445 4446 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4447 4448 // If we're generating for profiling or coverage, generate a branch to a 4449 // block that increments the RHS counter need to track branch condition 4450 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4451 // "FalseBlock" after the increment is done. 4452 if (InstrumentRegions && 4453 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4454 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); 4455 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4456 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); 4457 CGF.EmitBlock(RHSBlockCnt); 4458 CGF.incrementProfileCounter(E->getRHS()); 4459 CGF.EmitBranch(FBlock); 4460 CGF.EmitBlock(FBlock); 4461 } 4462 4463 // ZExt result to int or bool. 4464 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4465 } 4466 4467 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4468 if (!CGF.ContainsLabel(E->getRHS())) 4469 return llvm::ConstantInt::get(ResTy, 1); 4470 } 4471 4472 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4473 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4474 4475 CodeGenFunction::ConditionalEvaluation eval(CGF); 4476 4477 // Branch on the LHS first. If it is true, go to the success (cont) block. 4478 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4479 CGF.getCurrentProfileCount() - 4480 CGF.getProfileCount(E->getRHS())); 4481 4482 // Any edges into the ContBlock are now from an (indeterminate number of) 4483 // edges from this first condition. All of these values will be true. Start 4484 // setting up the PHI node in the Cont Block for this. 4485 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4486 "", ContBlock); 4487 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4488 PI != PE; ++PI) 4489 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4490 4491 eval.begin(CGF); 4492 4493 // Emit the RHS condition as a bool value. 4494 CGF.EmitBlock(RHSBlock); 4495 CGF.incrementProfileCounter(E); 4496 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4497 4498 eval.end(CGF); 4499 4500 // Reaquire the RHS block, as there may be subblocks inserted. 4501 RHSBlock = Builder.GetInsertBlock(); 4502 4503 // If we're generating for profiling or coverage, generate a branch on the 4504 // RHS to a block that increments the RHS true counter needed to track branch 4505 // condition coverage. 4506 if (InstrumentRegions && 4507 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4508 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4509 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); 4510 CGF.EmitBlock(RHSBlockCnt); 4511 CGF.incrementProfileCounter(E->getRHS()); 4512 CGF.EmitBranch(ContBlock); 4513 PN->addIncoming(RHSCond, RHSBlockCnt); 4514 } 4515 4516 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4517 // into the phi node for the edge with the value of RHSCond. 4518 CGF.EmitBlock(ContBlock); 4519 PN->addIncoming(RHSCond, RHSBlock); 4520 4521 // ZExt result to int. 4522 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4523 } 4524 4525 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4526 CGF.EmitIgnoredExpr(E->getLHS()); 4527 CGF.EnsureInsertPoint(); 4528 return Visit(E->getRHS()); 4529 } 4530 4531 //===----------------------------------------------------------------------===// 4532 // Other Operators 4533 //===----------------------------------------------------------------------===// 4534 4535 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4536 /// expression is cheap enough and side-effect-free enough to evaluate 4537 /// unconditionally instead of conditionally. This is used to convert control 4538 /// flow into selects in some cases. 4539 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4540 CodeGenFunction &CGF) { 4541 // Anything that is an integer or floating point constant is fine. 4542 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4543 4544 // Even non-volatile automatic variables can't be evaluated unconditionally. 4545 // Referencing a thread_local may cause non-trivial initialization work to 4546 // occur. If we're inside a lambda and one of the variables is from the scope 4547 // outside the lambda, that function may have returned already. Reading its 4548 // locals is a bad idea. Also, these reads may introduce races there didn't 4549 // exist in the source-level program. 4550 } 4551 4552 4553 Value *ScalarExprEmitter:: 4554 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4555 TestAndClearIgnoreResultAssign(); 4556 4557 // Bind the common expression if necessary. 4558 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4559 4560 Expr *condExpr = E->getCond(); 4561 Expr *lhsExpr = E->getTrueExpr(); 4562 Expr *rhsExpr = E->getFalseExpr(); 4563 4564 // If the condition constant folds and can be elided, try to avoid emitting 4565 // the condition and the dead arm. 4566 bool CondExprBool; 4567 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4568 Expr *live = lhsExpr, *dead = rhsExpr; 4569 if (!CondExprBool) std::swap(live, dead); 4570 4571 // If the dead side doesn't have labels we need, just emit the Live part. 4572 if (!CGF.ContainsLabel(dead)) { 4573 if (CondExprBool) 4574 CGF.incrementProfileCounter(E); 4575 Value *Result = Visit(live); 4576 4577 // If the live part is a throw expression, it acts like it has a void 4578 // type, so evaluating it returns a null Value*. However, a conditional 4579 // with non-void type must return a non-null Value*. 4580 if (!Result && !E->getType()->isVoidType()) 4581 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4582 4583 return Result; 4584 } 4585 } 4586 4587 // OpenCL: If the condition is a vector, we can treat this condition like 4588 // the select function. 4589 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4590 condExpr->getType()->isExtVectorType()) { 4591 CGF.incrementProfileCounter(E); 4592 4593 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4594 llvm::Value *LHS = Visit(lhsExpr); 4595 llvm::Value *RHS = Visit(rhsExpr); 4596 4597 llvm::Type *condType = ConvertType(condExpr->getType()); 4598 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4599 4600 unsigned numElem = vecTy->getNumElements(); 4601 llvm::Type *elemType = vecTy->getElementType(); 4602 4603 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4604 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4605 llvm::Value *tmp = Builder.CreateSExt( 4606 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4607 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4608 4609 // Cast float to int to perform ANDs if necessary. 4610 llvm::Value *RHSTmp = RHS; 4611 llvm::Value *LHSTmp = LHS; 4612 bool wasCast = false; 4613 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4614 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4615 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4616 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4617 wasCast = true; 4618 } 4619 4620 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4621 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4622 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4623 if (wasCast) 4624 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4625 4626 return tmp5; 4627 } 4628 4629 if (condExpr->getType()->isVectorType()) { 4630 CGF.incrementProfileCounter(E); 4631 4632 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4633 llvm::Value *LHS = Visit(lhsExpr); 4634 llvm::Value *RHS = Visit(rhsExpr); 4635 4636 llvm::Type *CondType = ConvertType(condExpr->getType()); 4637 auto *VecTy = cast<llvm::VectorType>(CondType); 4638 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4639 4640 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4641 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4642 } 4643 4644 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4645 // select instead of as control flow. We can only do this if it is cheap and 4646 // safe to evaluate the LHS and RHS unconditionally. 4647 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4648 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4649 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4650 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4651 4652 CGF.incrementProfileCounter(E, StepV); 4653 4654 llvm::Value *LHS = Visit(lhsExpr); 4655 llvm::Value *RHS = Visit(rhsExpr); 4656 if (!LHS) { 4657 // If the conditional has void type, make sure we return a null Value*. 4658 assert(!RHS && "LHS and RHS types must match"); 4659 return nullptr; 4660 } 4661 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4662 } 4663 4664 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4665 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4666 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4667 4668 CodeGenFunction::ConditionalEvaluation eval(CGF); 4669 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4670 CGF.getProfileCount(lhsExpr)); 4671 4672 CGF.EmitBlock(LHSBlock); 4673 CGF.incrementProfileCounter(E); 4674 eval.begin(CGF); 4675 Value *LHS = Visit(lhsExpr); 4676 eval.end(CGF); 4677 4678 LHSBlock = Builder.GetInsertBlock(); 4679 Builder.CreateBr(ContBlock); 4680 4681 CGF.EmitBlock(RHSBlock); 4682 eval.begin(CGF); 4683 Value *RHS = Visit(rhsExpr); 4684 eval.end(CGF); 4685 4686 RHSBlock = Builder.GetInsertBlock(); 4687 CGF.EmitBlock(ContBlock); 4688 4689 // If the LHS or RHS is a throw expression, it will be legitimately null. 4690 if (!LHS) 4691 return RHS; 4692 if (!RHS) 4693 return LHS; 4694 4695 // Create a PHI node for the real part. 4696 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4697 PN->addIncoming(LHS, LHSBlock); 4698 PN->addIncoming(RHS, RHSBlock); 4699 return PN; 4700 } 4701 4702 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4703 return Visit(E->getChosenSubExpr()); 4704 } 4705 4706 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4707 QualType Ty = VE->getType(); 4708 4709 if (Ty->isVariablyModifiedType()) 4710 CGF.EmitVariablyModifiedType(Ty); 4711 4712 Address ArgValue = Address::invalid(); 4713 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4714 4715 llvm::Type *ArgTy = ConvertType(VE->getType()); 4716 4717 // If EmitVAArg fails, emit an error. 4718 if (!ArgPtr.isValid()) { 4719 CGF.ErrorUnsupported(VE, "va_arg expression"); 4720 return llvm::UndefValue::get(ArgTy); 4721 } 4722 4723 // FIXME Volatility. 4724 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4725 4726 // If EmitVAArg promoted the type, we must truncate it. 4727 if (ArgTy != Val->getType()) { 4728 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4729 Val = Builder.CreateIntToPtr(Val, ArgTy); 4730 else 4731 Val = Builder.CreateTrunc(Val, ArgTy); 4732 } 4733 4734 return Val; 4735 } 4736 4737 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4738 return CGF.EmitBlockLiteral(block); 4739 } 4740 4741 // Convert a vec3 to vec4, or vice versa. 4742 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4743 Value *Src, unsigned NumElementsDst) { 4744 static constexpr int Mask[] = {0, 1, 2, -1}; 4745 return Builder.CreateShuffleVector(Src, 4746 llvm::makeArrayRef(Mask, NumElementsDst)); 4747 } 4748 4749 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4750 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4751 // but could be scalar or vectors of different lengths, and either can be 4752 // pointer. 4753 // There are 4 cases: 4754 // 1. non-pointer -> non-pointer : needs 1 bitcast 4755 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4756 // 3. pointer -> non-pointer 4757 // a) pointer -> intptr_t : needs 1 ptrtoint 4758 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4759 // 4. non-pointer -> pointer 4760 // a) intptr_t -> pointer : needs 1 inttoptr 4761 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4762 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4763 // allow casting directly between pointer types and non-integer non-pointer 4764 // types. 4765 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4766 const llvm::DataLayout &DL, 4767 Value *Src, llvm::Type *DstTy, 4768 StringRef Name = "") { 4769 auto SrcTy = Src->getType(); 4770 4771 // Case 1. 4772 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4773 return Builder.CreateBitCast(Src, DstTy, Name); 4774 4775 // Case 2. 4776 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4777 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4778 4779 // Case 3. 4780 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4781 // Case 3b. 4782 if (!DstTy->isIntegerTy()) 4783 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4784 // Cases 3a and 3b. 4785 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4786 } 4787 4788 // Case 4b. 4789 if (!SrcTy->isIntegerTy()) 4790 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4791 // Cases 4a and 4b. 4792 return Builder.CreateIntToPtr(Src, DstTy, Name); 4793 } 4794 4795 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4796 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4797 llvm::Type *DstTy = ConvertType(E->getType()); 4798 4799 llvm::Type *SrcTy = Src->getType(); 4800 unsigned NumElementsSrc = 4801 isa<llvm::VectorType>(SrcTy) 4802 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4803 : 0; 4804 unsigned NumElementsDst = 4805 isa<llvm::VectorType>(DstTy) 4806 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4807 : 0; 4808 4809 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4810 // vector to get a vec4, then a bitcast if the target type is different. 4811 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4812 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4813 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4814 DstTy); 4815 4816 Src->setName("astype"); 4817 return Src; 4818 } 4819 4820 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4821 // to vec4 if the original type is not vec4, then a shuffle vector to 4822 // get a vec3. 4823 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4824 auto *Vec4Ty = llvm::FixedVectorType::get( 4825 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4826 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4827 Vec4Ty); 4828 4829 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4830 Src->setName("astype"); 4831 return Src; 4832 } 4833 4834 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4835 Src, DstTy, "astype"); 4836 } 4837 4838 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4839 return CGF.EmitAtomicExpr(E).getScalarVal(); 4840 } 4841 4842 //===----------------------------------------------------------------------===// 4843 // Entry Point into this File 4844 //===----------------------------------------------------------------------===// 4845 4846 /// Emit the computation of the specified expression of scalar type, ignoring 4847 /// the result. 4848 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4849 assert(E && hasScalarEvaluationKind(E->getType()) && 4850 "Invalid scalar expression to emit"); 4851 4852 return ScalarExprEmitter(*this, IgnoreResultAssign) 4853 .Visit(const_cast<Expr *>(E)); 4854 } 4855 4856 /// Emit a conversion from the specified type to the specified destination type, 4857 /// both of which are LLVM scalar types. 4858 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4859 QualType DstTy, 4860 SourceLocation Loc) { 4861 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4862 "Invalid scalar expression to emit"); 4863 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4864 } 4865 4866 /// Emit a conversion from the specified complex type to the specified 4867 /// destination type, where the destination type is an LLVM scalar type. 4868 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4869 QualType SrcTy, 4870 QualType DstTy, 4871 SourceLocation Loc) { 4872 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4873 "Invalid complex -> scalar conversion"); 4874 return ScalarExprEmitter(*this) 4875 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4876 } 4877 4878 4879 llvm::Value *CodeGenFunction:: 4880 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4881 bool isInc, bool isPre) { 4882 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4883 } 4884 4885 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4886 // object->isa or (*object).isa 4887 // Generate code as for: *(Class*)object 4888 4889 Expr *BaseExpr = E->getBase(); 4890 Address Addr = Address::invalid(); 4891 if (BaseExpr->isPRValue()) { 4892 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4893 } else { 4894 Addr = EmitLValue(BaseExpr).getAddress(*this); 4895 } 4896 4897 // Cast the address to Class*. 4898 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4899 return MakeAddrLValue(Addr, E->getType()); 4900 } 4901 4902 4903 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4904 const CompoundAssignOperator *E) { 4905 ScalarExprEmitter Scalar(*this); 4906 Value *Result = nullptr; 4907 switch (E->getOpcode()) { 4908 #define COMPOUND_OP(Op) \ 4909 case BO_##Op##Assign: \ 4910 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4911 Result) 4912 COMPOUND_OP(Mul); 4913 COMPOUND_OP(Div); 4914 COMPOUND_OP(Rem); 4915 COMPOUND_OP(Add); 4916 COMPOUND_OP(Sub); 4917 COMPOUND_OP(Shl); 4918 COMPOUND_OP(Shr); 4919 COMPOUND_OP(And); 4920 COMPOUND_OP(Xor); 4921 COMPOUND_OP(Or); 4922 #undef COMPOUND_OP 4923 4924 case BO_PtrMemD: 4925 case BO_PtrMemI: 4926 case BO_Mul: 4927 case BO_Div: 4928 case BO_Rem: 4929 case BO_Add: 4930 case BO_Sub: 4931 case BO_Shl: 4932 case BO_Shr: 4933 case BO_LT: 4934 case BO_GT: 4935 case BO_LE: 4936 case BO_GE: 4937 case BO_EQ: 4938 case BO_NE: 4939 case BO_Cmp: 4940 case BO_And: 4941 case BO_Xor: 4942 case BO_Or: 4943 case BO_LAnd: 4944 case BO_LOr: 4945 case BO_Assign: 4946 case BO_Comma: 4947 llvm_unreachable("Not valid compound assignment operators"); 4948 } 4949 4950 llvm_unreachable("Unhandled compound assignment operator"); 4951 } 4952 4953 struct GEPOffsetAndOverflow { 4954 // The total (signed) byte offset for the GEP. 4955 llvm::Value *TotalOffset; 4956 // The offset overflow flag - true if the total offset overflows. 4957 llvm::Value *OffsetOverflows; 4958 }; 4959 4960 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4961 /// and compute the total offset it applies from it's base pointer BasePtr. 4962 /// Returns offset in bytes and a boolean flag whether an overflow happened 4963 /// during evaluation. 4964 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4965 llvm::LLVMContext &VMContext, 4966 CodeGenModule &CGM, 4967 CGBuilderTy &Builder) { 4968 const auto &DL = CGM.getDataLayout(); 4969 4970 // The total (signed) byte offset for the GEP. 4971 llvm::Value *TotalOffset = nullptr; 4972 4973 // Was the GEP already reduced to a constant? 4974 if (isa<llvm::Constant>(GEPVal)) { 4975 // Compute the offset by casting both pointers to integers and subtracting: 4976 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4977 Value *BasePtr_int = 4978 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4979 Value *GEPVal_int = 4980 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4981 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4982 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4983 } 4984 4985 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4986 assert(GEP->getPointerOperand() == BasePtr && 4987 "BasePtr must be the base of the GEP."); 4988 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4989 4990 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4991 4992 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4993 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4994 auto *SAddIntrinsic = 4995 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4996 auto *SMulIntrinsic = 4997 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4998 4999 // The offset overflow flag - true if the total offset overflows. 5000 llvm::Value *OffsetOverflows = Builder.getFalse(); 5001 5002 /// Return the result of the given binary operation. 5003 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 5004 llvm::Value *RHS) -> llvm::Value * { 5005 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 5006 5007 // If the operands are constants, return a constant result. 5008 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 5009 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 5010 llvm::APInt N; 5011 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 5012 /*Signed=*/true, N); 5013 if (HasOverflow) 5014 OffsetOverflows = Builder.getTrue(); 5015 return llvm::ConstantInt::get(VMContext, N); 5016 } 5017 } 5018 5019 // Otherwise, compute the result with checked arithmetic. 5020 auto *ResultAndOverflow = Builder.CreateCall( 5021 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 5022 OffsetOverflows = Builder.CreateOr( 5023 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 5024 return Builder.CreateExtractValue(ResultAndOverflow, 0); 5025 }; 5026 5027 // Determine the total byte offset by looking at each GEP operand. 5028 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 5029 GTI != GTE; ++GTI) { 5030 llvm::Value *LocalOffset; 5031 auto *Index = GTI.getOperand(); 5032 // Compute the local offset contributed by this indexing step: 5033 if (auto *STy = GTI.getStructTypeOrNull()) { 5034 // For struct indexing, the local offset is the byte position of the 5035 // specified field. 5036 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 5037 LocalOffset = llvm::ConstantInt::get( 5038 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 5039 } else { 5040 // Otherwise this is array-like indexing. The local offset is the index 5041 // multiplied by the element size. 5042 auto *ElementSize = llvm::ConstantInt::get( 5043 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 5044 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 5045 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 5046 } 5047 5048 // If this is the first offset, set it as the total offset. Otherwise, add 5049 // the local offset into the running total. 5050 if (!TotalOffset || TotalOffset == Zero) 5051 TotalOffset = LocalOffset; 5052 else 5053 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 5054 } 5055 5056 return {TotalOffset, OffsetOverflows}; 5057 } 5058 5059 Value * 5060 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 5061 bool SignedIndices, bool IsSubtraction, 5062 SourceLocation Loc, const Twine &Name) { 5063 llvm::Type *PtrTy = Ptr->getType(); 5064 Value *GEPVal = Builder.CreateInBoundsGEP( 5065 PtrTy->getPointerElementType(), Ptr, IdxList, Name); 5066 5067 // If the pointer overflow sanitizer isn't enabled, do nothing. 5068 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 5069 return GEPVal; 5070 5071 // Perform nullptr-and-offset check unless the nullptr is defined. 5072 bool PerformNullCheck = !NullPointerIsDefined( 5073 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 5074 // Check for overflows unless the GEP got constant-folded, 5075 // and only in the default address space 5076 bool PerformOverflowCheck = 5077 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 5078 5079 if (!(PerformNullCheck || PerformOverflowCheck)) 5080 return GEPVal; 5081 5082 const auto &DL = CGM.getDataLayout(); 5083 5084 SanitizerScope SanScope(this); 5085 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 5086 5087 GEPOffsetAndOverflow EvaluatedGEP = 5088 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 5089 5090 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 5091 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 5092 "If the offset got constant-folded, we don't expect that there was an " 5093 "overflow."); 5094 5095 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5096 5097 // Common case: if the total offset is zero, and we are using C++ semantics, 5098 // where nullptr+0 is defined, don't emit a check. 5099 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 5100 return GEPVal; 5101 5102 // Now that we've computed the total offset, add it to the base pointer (with 5103 // wrapping semantics). 5104 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 5105 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 5106 5107 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 5108 5109 if (PerformNullCheck) { 5110 // In C++, if the base pointer evaluates to a null pointer value, 5111 // the only valid pointer this inbounds GEP can produce is also 5112 // a null pointer, so the offset must also evaluate to zero. 5113 // Likewise, if we have non-zero base pointer, we can not get null pointer 5114 // as a result, so the offset can not be -intptr_t(BasePtr). 5115 // In other words, both pointers are either null, or both are non-null, 5116 // or the behaviour is undefined. 5117 // 5118 // C, however, is more strict in this regard, and gives more 5119 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 5120 // So both the input to the 'gep inbounds' AND the output must not be null. 5121 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 5122 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 5123 auto *Valid = 5124 CGM.getLangOpts().CPlusPlus 5125 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 5126 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 5127 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 5128 } 5129 5130 if (PerformOverflowCheck) { 5131 // The GEP is valid if: 5132 // 1) The total offset doesn't overflow, and 5133 // 2) The sign of the difference between the computed address and the base 5134 // pointer matches the sign of the total offset. 5135 llvm::Value *ValidGEP; 5136 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 5137 if (SignedIndices) { 5138 // GEP is computed as `unsigned base + signed offset`, therefore: 5139 // * If offset was positive, then the computed pointer can not be 5140 // [unsigned] less than the base pointer, unless it overflowed. 5141 // * If offset was negative, then the computed pointer can not be 5142 // [unsigned] greater than the bas pointere, unless it overflowed. 5143 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5144 auto *PosOrZeroOffset = 5145 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 5146 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 5147 ValidGEP = 5148 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 5149 } else if (!IsSubtraction) { 5150 // GEP is computed as `unsigned base + unsigned offset`, therefore the 5151 // computed pointer can not be [unsigned] less than base pointer, 5152 // unless there was an overflow. 5153 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 5154 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5155 } else { 5156 // GEP is computed as `unsigned base - unsigned offset`, therefore the 5157 // computed pointer can not be [unsigned] greater than base pointer, 5158 // unless there was an overflow. 5159 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 5160 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 5161 } 5162 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 5163 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 5164 } 5165 5166 assert(!Checks.empty() && "Should have produced some checks."); 5167 5168 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 5169 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 5170 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 5171 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 5172 5173 return GEPVal; 5174 } 5175