xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352                         llvm::Type *SrcTy, llvm::Type *DstTy,
353                         ScalarConversionOpts Opts);
354   Value *
355   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                        SourceLocation Loc,
357                        ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359   /// Convert between either a fixed point and other fixed point or fixed point
360   /// and an integer.
361   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362                                   SourceLocation Loc);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     // A constant expression of type 'void' generates no code and produces no
423     // value.
424     if (E->getType()->isVoidType())
425       return nullptr;
426 
427     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
428       if (E->isGLValue())
429         return CGF.Builder.CreateLoad(Address(
430             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
431       return Result;
432     }
433     return Visit(E->getSubExpr());
434   }
435   Value *VisitParenExpr(ParenExpr *PE) {
436     return Visit(PE->getSubExpr());
437   }
438   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
439     return Visit(E->getReplacement());
440   }
441   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
442     return Visit(GE->getResultExpr());
443   }
444   Value *VisitCoawaitExpr(CoawaitExpr *S) {
445     return CGF.EmitCoawaitExpr(*S).getScalarVal();
446   }
447   Value *VisitCoyieldExpr(CoyieldExpr *S) {
448     return CGF.EmitCoyieldExpr(*S).getScalarVal();
449   }
450   Value *VisitUnaryCoawait(const UnaryOperator *E) {
451     return Visit(E->getSubExpr());
452   }
453 
454   // Leaves.
455   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
456     return Builder.getInt(E->getValue());
457   }
458   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
459     return Builder.getInt(E->getValue());
460   }
461   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
462     return llvm::ConstantFP::get(VMContext, E->getValue());
463   }
464   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
465     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466   }
467   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
468     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469   }
470   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
471     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472   }
473   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
474     return EmitNullValue(E->getType());
475   }
476   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
477     return EmitNullValue(E->getType());
478   }
479   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
480   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
481   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
482     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
483     return Builder.CreateBitCast(V, ConvertType(E->getType()));
484   }
485 
486   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
487     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
488   }
489 
490   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
491     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
492   }
493 
494   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
495 
496   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
497     if (E->isGLValue())
498       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
499                               E->getExprLoc());
500 
501     // Otherwise, assume the mapping is the scalar directly.
502     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
503   }
504 
505   // l-values.
506   Value *VisitDeclRefExpr(DeclRefExpr *E) {
507     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
508       return CGF.emitScalarConstant(Constant, E);
509     return EmitLoadOfLValue(E);
510   }
511 
512   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
513     return CGF.EmitObjCSelectorExpr(E);
514   }
515   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
516     return CGF.EmitObjCProtocolExpr(E);
517   }
518   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
519     return EmitLoadOfLValue(E);
520   }
521   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
522     if (E->getMethodDecl() &&
523         E->getMethodDecl()->getReturnType()->isReferenceType())
524       return EmitLoadOfLValue(E);
525     return CGF.EmitObjCMessageExpr(E).getScalarVal();
526   }
527 
528   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
529     LValue LV = CGF.EmitObjCIsaExpr(E);
530     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
531     return V;
532   }
533 
534   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
535     VersionTuple Version = E->getVersion();
536 
537     // If we're checking for a platform older than our minimum deployment
538     // target, we can fold the check away.
539     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
540       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
541 
542     return CGF.EmitBuiltinAvailable(Version);
543   }
544 
545   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
546   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
547   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
548   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
549   Value *VisitMemberExpr(MemberExpr *E);
550   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
551   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
552     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
553     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
554     // literals aren't l-values in C++. We do so simply because that's the
555     // cleanest way to handle compound literals in C++.
556     // See the discussion here: https://reviews.llvm.org/D64464
557     return EmitLoadOfLValue(E);
558   }
559 
560   Value *VisitInitListExpr(InitListExpr *E);
561 
562   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
563     assert(CGF.getArrayInitIndex() &&
564            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
565     return CGF.getArrayInitIndex();
566   }
567 
568   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
569     return EmitNullValue(E->getType());
570   }
571   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
572     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
573     return VisitCastExpr(E);
574   }
575   Value *VisitCastExpr(CastExpr *E);
576 
577   Value *VisitCallExpr(const CallExpr *E) {
578     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
579       return EmitLoadOfLValue(E);
580 
581     Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 
583     EmitLValueAlignmentAssumption(E, V);
584     return V;
585   }
586 
587   Value *VisitStmtExpr(const StmtExpr *E);
588 
589   // Unary Operators.
590   Value *VisitUnaryPostDec(const UnaryOperator *E) {
591     LValue LV = EmitLValue(E->getSubExpr());
592     return EmitScalarPrePostIncDec(E, LV, false, false);
593   }
594   Value *VisitUnaryPostInc(const UnaryOperator *E) {
595     LValue LV = EmitLValue(E->getSubExpr());
596     return EmitScalarPrePostIncDec(E, LV, true, false);
597   }
598   Value *VisitUnaryPreDec(const UnaryOperator *E) {
599     LValue LV = EmitLValue(E->getSubExpr());
600     return EmitScalarPrePostIncDec(E, LV, false, true);
601   }
602   Value *VisitUnaryPreInc(const UnaryOperator *E) {
603     LValue LV = EmitLValue(E->getSubExpr());
604     return EmitScalarPrePostIncDec(E, LV, true, true);
605   }
606 
607   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
608                                                   llvm::Value *InVal,
609                                                   bool IsInc);
610 
611   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
612                                        bool isInc, bool isPre);
613 
614 
615   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
616     if (isa<MemberPointerType>(E->getType())) // never sugared
617       return CGF.CGM.getMemberPointerConstant(E);
618 
619     return EmitLValue(E->getSubExpr()).getPointer(CGF);
620   }
621   Value *VisitUnaryDeref(const UnaryOperator *E) {
622     if (E->getType()->isVoidType())
623       return Visit(E->getSubExpr()); // the actual value should be unused
624     return EmitLoadOfLValue(E);
625   }
626   Value *VisitUnaryPlus(const UnaryOperator *E) {
627     // This differs from gcc, though, most likely due to a bug in gcc.
628     TestAndClearIgnoreResultAssign();
629     return Visit(E->getSubExpr());
630   }
631   Value *VisitUnaryMinus    (const UnaryOperator *E);
632   Value *VisitUnaryNot      (const UnaryOperator *E);
633   Value *VisitUnaryLNot     (const UnaryOperator *E);
634   Value *VisitUnaryReal     (const UnaryOperator *E);
635   Value *VisitUnaryImag     (const UnaryOperator *E);
636   Value *VisitUnaryExtension(const UnaryOperator *E) {
637     return Visit(E->getSubExpr());
638   }
639 
640   // C++
641   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
642     return EmitLoadOfLValue(E);
643   }
644   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
645     auto &Ctx = CGF.getContext();
646     APValue Evaluated =
647         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
648     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
649                                              SLE->getType());
650   }
651 
652   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
653     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
654     return Visit(DAE->getExpr());
655   }
656   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
657     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
658     return Visit(DIE->getExpr());
659   }
660   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
661     return CGF.LoadCXXThis();
662   }
663 
664   Value *VisitExprWithCleanups(ExprWithCleanups *E);
665   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
666     return CGF.EmitCXXNewExpr(E);
667   }
668   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
669     CGF.EmitCXXDeleteExpr(E);
670     return nullptr;
671   }
672 
673   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
674     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
675   }
676 
677   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
678     return Builder.getInt1(E->isSatisfied());
679   }
680 
681   Value *VisitRequiresExpr(const RequiresExpr *E) {
682     return Builder.getInt1(E->isSatisfied());
683   }
684 
685   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
686     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
687   }
688 
689   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
690     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
691   }
692 
693   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
694     // C++ [expr.pseudo]p1:
695     //   The result shall only be used as the operand for the function call
696     //   operator (), and the result of such a call has type void. The only
697     //   effect is the evaluation of the postfix-expression before the dot or
698     //   arrow.
699     CGF.EmitScalarExpr(E->getBase());
700     return nullptr;
701   }
702 
703   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
704     return EmitNullValue(E->getType());
705   }
706 
707   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
708     CGF.EmitCXXThrowExpr(E);
709     return nullptr;
710   }
711 
712   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
713     return Builder.getInt1(E->getValue());
714   }
715 
716   // Binary Operators.
717   Value *EmitMul(const BinOpInfo &Ops) {
718     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
719       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
720       case LangOptions::SOB_Defined:
721         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
722       case LangOptions::SOB_Undefined:
723         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
724           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
725         LLVM_FALLTHROUGH;
726       case LangOptions::SOB_Trapping:
727         if (CanElideOverflowCheck(CGF.getContext(), Ops))
728           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
729         return EmitOverflowCheckedBinOp(Ops);
730       }
731     }
732 
733     if (Ops.Ty->isConstantMatrixType()) {
734       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
735       // We need to check the types of the operands of the operator to get the
736       // correct matrix dimensions.
737       auto *BO = cast<BinaryOperator>(Ops.E);
738       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
739           BO->getLHS()->getType().getCanonicalType());
740       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
741           BO->getRHS()->getType().getCanonicalType());
742       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
743       if (LHSMatTy && RHSMatTy)
744         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
745                                        LHSMatTy->getNumColumns(),
746                                        RHSMatTy->getNumColumns());
747       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
748     }
749 
750     if (Ops.Ty->isUnsignedIntegerType() &&
751         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
752         !CanElideOverflowCheck(CGF.getContext(), Ops))
753       return EmitOverflowCheckedBinOp(Ops);
754 
755     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
756       //  Preserve the old values
757       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
758       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
759     }
760     if (Ops.isFixedPointOp())
761       return EmitFixedPointBinOp(Ops);
762     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
763   }
764   /// Create a binary op that checks for overflow.
765   /// Currently only supports +, - and *.
766   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
767 
768   // Check for undefined division and modulus behaviors.
769   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
770                                                   llvm::Value *Zero,bool isDiv);
771   // Common helper for getting how wide LHS of shift is.
772   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
773 
774   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
775   // non powers of two.
776   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
777 
778   Value *EmitDiv(const BinOpInfo &Ops);
779   Value *EmitRem(const BinOpInfo &Ops);
780   Value *EmitAdd(const BinOpInfo &Ops);
781   Value *EmitSub(const BinOpInfo &Ops);
782   Value *EmitShl(const BinOpInfo &Ops);
783   Value *EmitShr(const BinOpInfo &Ops);
784   Value *EmitAnd(const BinOpInfo &Ops) {
785     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
786   }
787   Value *EmitXor(const BinOpInfo &Ops) {
788     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
789   }
790   Value *EmitOr (const BinOpInfo &Ops) {
791     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
792   }
793 
794   // Helper functions for fixed point binary operations.
795   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
796 
797   BinOpInfo EmitBinOps(const BinaryOperator *E);
798   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
799                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
800                                   Value *&Result);
801 
802   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
803                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
804 
805   // Binary operators and binary compound assignment operators.
806 #define HANDLEBINOP(OP) \
807   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
808     return Emit ## OP(EmitBinOps(E));                                      \
809   }                                                                        \
810   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
811     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
812   }
813   HANDLEBINOP(Mul)
814   HANDLEBINOP(Div)
815   HANDLEBINOP(Rem)
816   HANDLEBINOP(Add)
817   HANDLEBINOP(Sub)
818   HANDLEBINOP(Shl)
819   HANDLEBINOP(Shr)
820   HANDLEBINOP(And)
821   HANDLEBINOP(Xor)
822   HANDLEBINOP(Or)
823 #undef HANDLEBINOP
824 
825   // Comparisons.
826   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
827                      llvm::CmpInst::Predicate SICmpOpc,
828                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
829 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
830     Value *VisitBin##CODE(const BinaryOperator *E) { \
831       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
832                          llvm::FCmpInst::FP, SIG); }
833   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
834   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
835   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
836   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
837   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
838   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
839 #undef VISITCOMP
840 
841   Value *VisitBinAssign     (const BinaryOperator *E);
842 
843   Value *VisitBinLAnd       (const BinaryOperator *E);
844   Value *VisitBinLOr        (const BinaryOperator *E);
845   Value *VisitBinComma      (const BinaryOperator *E);
846 
847   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
848   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
849 
850   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
851     return Visit(E->getSemanticForm());
852   }
853 
854   // Other Operators.
855   Value *VisitBlockExpr(const BlockExpr *BE);
856   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
857   Value *VisitChooseExpr(ChooseExpr *CE);
858   Value *VisitVAArgExpr(VAArgExpr *VE);
859   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
860     return CGF.EmitObjCStringLiteral(E);
861   }
862   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
863     return CGF.EmitObjCBoxedExpr(E);
864   }
865   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
866     return CGF.EmitObjCArrayLiteral(E);
867   }
868   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
869     return CGF.EmitObjCDictionaryLiteral(E);
870   }
871   Value *VisitAsTypeExpr(AsTypeExpr *CE);
872   Value *VisitAtomicExpr(AtomicExpr *AE);
873 };
874 }  // end anonymous namespace.
875 
876 //===----------------------------------------------------------------------===//
877 //                                Utilities
878 //===----------------------------------------------------------------------===//
879 
880 /// EmitConversionToBool - Convert the specified expression value to a
881 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
882 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
883   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
884 
885   if (SrcType->isRealFloatingType())
886     return EmitFloatToBoolConversion(Src);
887 
888   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
889     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
890 
891   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
892          "Unknown scalar type to convert");
893 
894   if (isa<llvm::IntegerType>(Src->getType()))
895     return EmitIntToBoolConversion(Src);
896 
897   assert(isa<llvm::PointerType>(Src->getType()));
898   return EmitPointerToBoolConversion(Src, SrcType);
899 }
900 
901 void ScalarExprEmitter::EmitFloatConversionCheck(
902     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
903     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
904   assert(SrcType->isFloatingType() && "not a conversion from floating point");
905   if (!isa<llvm::IntegerType>(DstTy))
906     return;
907 
908   CodeGenFunction::SanitizerScope SanScope(&CGF);
909   using llvm::APFloat;
910   using llvm::APSInt;
911 
912   llvm::Value *Check = nullptr;
913   const llvm::fltSemantics &SrcSema =
914     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
915 
916   // Floating-point to integer. This has undefined behavior if the source is
917   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
918   // to an integer).
919   unsigned Width = CGF.getContext().getIntWidth(DstType);
920   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
921 
922   APSInt Min = APSInt::getMinValue(Width, Unsigned);
923   APFloat MinSrc(SrcSema, APFloat::uninitialized);
924   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
925       APFloat::opOverflow)
926     // Don't need an overflow check for lower bound. Just check for
927     // -Inf/NaN.
928     MinSrc = APFloat::getInf(SrcSema, true);
929   else
930     // Find the largest value which is too small to represent (before
931     // truncation toward zero).
932     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
933 
934   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
935   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
936   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
937       APFloat::opOverflow)
938     // Don't need an overflow check for upper bound. Just check for
939     // +Inf/NaN.
940     MaxSrc = APFloat::getInf(SrcSema, false);
941   else
942     // Find the smallest value which is too large to represent (before
943     // truncation toward zero).
944     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
945 
946   // If we're converting from __half, convert the range to float to match
947   // the type of src.
948   if (OrigSrcType->isHalfType()) {
949     const llvm::fltSemantics &Sema =
950       CGF.getContext().getFloatTypeSemantics(SrcType);
951     bool IsInexact;
952     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
953     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
954   }
955 
956   llvm::Value *GE =
957     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
958   llvm::Value *LE =
959     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
960   Check = Builder.CreateAnd(GE, LE);
961 
962   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
963                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
964                                   CGF.EmitCheckTypeDescriptor(DstType)};
965   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
966                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
967 }
968 
969 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
970 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
971 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
972                  std::pair<llvm::Value *, SanitizerMask>>
973 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
974                                  QualType DstType, CGBuilderTy &Builder) {
975   llvm::Type *SrcTy = Src->getType();
976   llvm::Type *DstTy = Dst->getType();
977   (void)DstTy; // Only used in assert()
978 
979   // This should be truncation of integral types.
980   assert(Src != Dst);
981   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
982   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
983          "non-integer llvm type");
984 
985   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
986   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
987 
988   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
989   // Else, it is a signed truncation.
990   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
991   SanitizerMask Mask;
992   if (!SrcSigned && !DstSigned) {
993     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
994     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
995   } else {
996     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
997     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
998   }
999 
1000   llvm::Value *Check = nullptr;
1001   // 1. Extend the truncated value back to the same width as the Src.
1002   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1003   // 2. Equality-compare with the original source value
1004   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1005   // If the comparison result is 'i1 false', then the truncation was lossy.
1006   return std::make_pair(Kind, std::make_pair(Check, Mask));
1007 }
1008 
1009 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1010     QualType SrcType, QualType DstType) {
1011   return SrcType->isIntegerType() && DstType->isIntegerType();
1012 }
1013 
1014 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1015                                                    Value *Dst, QualType DstType,
1016                                                    SourceLocation Loc) {
1017   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1018     return;
1019 
1020   // We only care about int->int conversions here.
1021   // We ignore conversions to/from pointer and/or bool.
1022   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1023                                                                        DstType))
1024     return;
1025 
1026   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1027   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1028   // This must be truncation. Else we do not care.
1029   if (SrcBits <= DstBits)
1030     return;
1031 
1032   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1033 
1034   // If the integer sign change sanitizer is enabled,
1035   // and we are truncating from larger unsigned type to smaller signed type,
1036   // let that next sanitizer deal with it.
1037   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1038   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1039   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1040       (!SrcSigned && DstSigned))
1041     return;
1042 
1043   CodeGenFunction::SanitizerScope SanScope(&CGF);
1044 
1045   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1046             std::pair<llvm::Value *, SanitizerMask>>
1047       Check =
1048           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1049   // If the comparison result is 'i1 false', then the truncation was lossy.
1050 
1051   // Do we care about this type of truncation?
1052   if (!CGF.SanOpts.has(Check.second.second))
1053     return;
1054 
1055   llvm::Constant *StaticArgs[] = {
1056       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1057       CGF.EmitCheckTypeDescriptor(DstType),
1058       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1059   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1060                 {Src, Dst});
1061 }
1062 
1063 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1064 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1065 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1066                  std::pair<llvm::Value *, SanitizerMask>>
1067 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1068                                  QualType DstType, CGBuilderTy &Builder) {
1069   llvm::Type *SrcTy = Src->getType();
1070   llvm::Type *DstTy = Dst->getType();
1071 
1072   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1073          "non-integer llvm type");
1074 
1075   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1076   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1077   (void)SrcSigned; // Only used in assert()
1078   (void)DstSigned; // Only used in assert()
1079   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1080   unsigned DstBits = DstTy->getScalarSizeInBits();
1081   (void)SrcBits; // Only used in assert()
1082   (void)DstBits; // Only used in assert()
1083 
1084   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1085          "either the widths should be different, or the signednesses.");
1086 
1087   // NOTE: zero value is considered to be non-negative.
1088   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1089                                        const char *Name) -> Value * {
1090     // Is this value a signed type?
1091     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1092     llvm::Type *VTy = V->getType();
1093     if (!VSigned) {
1094       // If the value is unsigned, then it is never negative.
1095       // FIXME: can we encounter non-scalar VTy here?
1096       return llvm::ConstantInt::getFalse(VTy->getContext());
1097     }
1098     // Get the zero of the same type with which we will be comparing.
1099     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1100     // %V.isnegative = icmp slt %V, 0
1101     // I.e is %V *strictly* less than zero, does it have negative value?
1102     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1103                               llvm::Twine(Name) + "." + V->getName() +
1104                                   ".negativitycheck");
1105   };
1106 
1107   // 1. Was the old Value negative?
1108   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1109   // 2. Is the new Value negative?
1110   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1111   // 3. Now, was the 'negativity status' preserved during the conversion?
1112   //    NOTE: conversion from negative to zero is considered to change the sign.
1113   //    (We want to get 'false' when the conversion changed the sign)
1114   //    So we should just equality-compare the negativity statuses.
1115   llvm::Value *Check = nullptr;
1116   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1117   // If the comparison result is 'false', then the conversion changed the sign.
1118   return std::make_pair(
1119       ScalarExprEmitter::ICCK_IntegerSignChange,
1120       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1121 }
1122 
1123 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1124                                                    Value *Dst, QualType DstType,
1125                                                    SourceLocation Loc) {
1126   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1127     return;
1128 
1129   llvm::Type *SrcTy = Src->getType();
1130   llvm::Type *DstTy = Dst->getType();
1131 
1132   // We only care about int->int conversions here.
1133   // We ignore conversions to/from pointer and/or bool.
1134   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1135                                                                        DstType))
1136     return;
1137 
1138   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1139   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1140   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1141   unsigned DstBits = DstTy->getScalarSizeInBits();
1142 
1143   // Now, we do not need to emit the check in *all* of the cases.
1144   // We can avoid emitting it in some obvious cases where it would have been
1145   // dropped by the opt passes (instcombine) always anyways.
1146   // If it's a cast between effectively the same type, no check.
1147   // NOTE: this is *not* equivalent to checking the canonical types.
1148   if (SrcSigned == DstSigned && SrcBits == DstBits)
1149     return;
1150   // At least one of the values needs to have signed type.
1151   // If both are unsigned, then obviously, neither of them can be negative.
1152   if (!SrcSigned && !DstSigned)
1153     return;
1154   // If the conversion is to *larger* *signed* type, then no check is needed.
1155   // Because either sign-extension happens (so the sign will remain),
1156   // or zero-extension will happen (the sign bit will be zero.)
1157   if ((DstBits > SrcBits) && DstSigned)
1158     return;
1159   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1160       (SrcBits > DstBits) && SrcSigned) {
1161     // If the signed integer truncation sanitizer is enabled,
1162     // and this is a truncation from signed type, then no check is needed.
1163     // Because here sign change check is interchangeable with truncation check.
1164     return;
1165   }
1166   // That's it. We can't rule out any more cases with the data we have.
1167 
1168   CodeGenFunction::SanitizerScope SanScope(&CGF);
1169 
1170   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1171             std::pair<llvm::Value *, SanitizerMask>>
1172       Check;
1173 
1174   // Each of these checks needs to return 'false' when an issue was detected.
1175   ImplicitConversionCheckKind CheckKind;
1176   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1177   // So we can 'and' all the checks together, and still get 'false',
1178   // if at least one of the checks detected an issue.
1179 
1180   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1181   CheckKind = Check.first;
1182   Checks.emplace_back(Check.second);
1183 
1184   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1185       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1186     // If the signed integer truncation sanitizer was enabled,
1187     // and we are truncating from larger unsigned type to smaller signed type,
1188     // let's handle the case we skipped in that check.
1189     Check =
1190         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1191     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1192     Checks.emplace_back(Check.second);
1193     // If the comparison result is 'i1 false', then the truncation was lossy.
1194   }
1195 
1196   llvm::Constant *StaticArgs[] = {
1197       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1198       CGF.EmitCheckTypeDescriptor(DstType),
1199       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1200   // EmitCheck() will 'and' all the checks together.
1201   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1202                 {Src, Dst});
1203 }
1204 
1205 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1206                                          QualType DstType, llvm::Type *SrcTy,
1207                                          llvm::Type *DstTy,
1208                                          ScalarConversionOpts Opts) {
1209   // The Element types determine the type of cast to perform.
1210   llvm::Type *SrcElementTy;
1211   llvm::Type *DstElementTy;
1212   QualType SrcElementType;
1213   QualType DstElementType;
1214   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1215     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1216     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1217     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1218     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1219   } else {
1220     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1221            "cannot cast between matrix and non-matrix types");
1222     SrcElementTy = SrcTy;
1223     DstElementTy = DstTy;
1224     SrcElementType = SrcType;
1225     DstElementType = DstType;
1226   }
1227 
1228   if (isa<llvm::IntegerType>(SrcElementTy)) {
1229     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1230     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1231       InputSigned = true;
1232     }
1233 
1234     if (isa<llvm::IntegerType>(DstElementTy))
1235       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1236     if (InputSigned)
1237       return Builder.CreateSIToFP(Src, DstTy, "conv");
1238     return Builder.CreateUIToFP(Src, DstTy, "conv");
1239   }
1240 
1241   if (isa<llvm::IntegerType>(DstElementTy)) {
1242     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1243     if (DstElementType->isSignedIntegerOrEnumerationType())
1244       return Builder.CreateFPToSI(Src, DstTy, "conv");
1245     return Builder.CreateFPToUI(Src, DstTy, "conv");
1246   }
1247 
1248   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1249     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1250   return Builder.CreateFPExt(Src, DstTy, "conv");
1251 }
1252 
1253 /// Emit a conversion from the specified type to the specified destination type,
1254 /// both of which are LLVM scalar types.
1255 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1256                                                QualType DstType,
1257                                                SourceLocation Loc,
1258                                                ScalarConversionOpts Opts) {
1259   // All conversions involving fixed point types should be handled by the
1260   // EmitFixedPoint family functions. This is done to prevent bloating up this
1261   // function more, and although fixed point numbers are represented by
1262   // integers, we do not want to follow any logic that assumes they should be
1263   // treated as integers.
1264   // TODO(leonardchan): When necessary, add another if statement checking for
1265   // conversions to fixed point types from other types.
1266   if (SrcType->isFixedPointType()) {
1267     if (DstType->isBooleanType())
1268       // It is important that we check this before checking if the dest type is
1269       // an integer because booleans are technically integer types.
1270       // We do not need to check the padding bit on unsigned types if unsigned
1271       // padding is enabled because overflow into this bit is undefined
1272       // behavior.
1273       return Builder.CreateIsNotNull(Src, "tobool");
1274     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1275         DstType->isRealFloatingType())
1276       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1277 
1278     llvm_unreachable(
1279         "Unhandled scalar conversion from a fixed point type to another type.");
1280   } else if (DstType->isFixedPointType()) {
1281     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1282       // This also includes converting booleans and enums to fixed point types.
1283       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1284 
1285     llvm_unreachable(
1286         "Unhandled scalar conversion to a fixed point type from another type.");
1287   }
1288 
1289   QualType NoncanonicalSrcType = SrcType;
1290   QualType NoncanonicalDstType = DstType;
1291 
1292   SrcType = CGF.getContext().getCanonicalType(SrcType);
1293   DstType = CGF.getContext().getCanonicalType(DstType);
1294   if (SrcType == DstType) return Src;
1295 
1296   if (DstType->isVoidType()) return nullptr;
1297 
1298   llvm::Value *OrigSrc = Src;
1299   QualType OrigSrcType = SrcType;
1300   llvm::Type *SrcTy = Src->getType();
1301 
1302   // Handle conversions to bool first, they are special: comparisons against 0.
1303   if (DstType->isBooleanType())
1304     return EmitConversionToBool(Src, SrcType);
1305 
1306   llvm::Type *DstTy = ConvertType(DstType);
1307 
1308   // Cast from half through float if half isn't a native type.
1309   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1310     // Cast to FP using the intrinsic if the half type itself isn't supported.
1311     if (DstTy->isFloatingPointTy()) {
1312       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1313         return Builder.CreateCall(
1314             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1315             Src);
1316     } else {
1317       // Cast to other types through float, using either the intrinsic or FPExt,
1318       // depending on whether the half type itself is supported
1319       // (as opposed to operations on half, available with NativeHalfType).
1320       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1321         Src = Builder.CreateCall(
1322             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1323                                  CGF.CGM.FloatTy),
1324             Src);
1325       } else {
1326         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1327       }
1328       SrcType = CGF.getContext().FloatTy;
1329       SrcTy = CGF.FloatTy;
1330     }
1331   }
1332 
1333   // Ignore conversions like int -> uint.
1334   if (SrcTy == DstTy) {
1335     if (Opts.EmitImplicitIntegerSignChangeChecks)
1336       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1337                                  NoncanonicalDstType, Loc);
1338 
1339     return Src;
1340   }
1341 
1342   // Handle pointer conversions next: pointers can only be converted to/from
1343   // other pointers and integers. Check for pointer types in terms of LLVM, as
1344   // some native types (like Obj-C id) may map to a pointer type.
1345   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1346     // The source value may be an integer, or a pointer.
1347     if (isa<llvm::PointerType>(SrcTy))
1348       return Builder.CreateBitCast(Src, DstTy, "conv");
1349 
1350     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1351     // First, convert to the correct width so that we control the kind of
1352     // extension.
1353     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1354     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1355     llvm::Value* IntResult =
1356         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1357     // Then, cast to pointer.
1358     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1359   }
1360 
1361   if (isa<llvm::PointerType>(SrcTy)) {
1362     // Must be an ptr to int cast.
1363     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1364     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1365   }
1366 
1367   // A scalar can be splatted to an extended vector of the same element type
1368   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1369     // Sema should add casts to make sure that the source expression's type is
1370     // the same as the vector's element type (sans qualifiers)
1371     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1372                SrcType.getTypePtr() &&
1373            "Splatted expr doesn't match with vector element type?");
1374 
1375     // Splat the element across to all elements
1376     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1377     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1378   }
1379 
1380   if (SrcType->isMatrixType() && DstType->isMatrixType())
1381     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1382 
1383   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1384     // Allow bitcast from vector to integer/fp of the same size.
1385     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1386     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1387     if (SrcSize == DstSize)
1388       return Builder.CreateBitCast(Src, DstTy, "conv");
1389 
1390     // Conversions between vectors of different sizes are not allowed except
1391     // when vectors of half are involved. Operations on storage-only half
1392     // vectors require promoting half vector operands to float vectors and
1393     // truncating the result, which is either an int or float vector, to a
1394     // short or half vector.
1395 
1396     // Source and destination are both expected to be vectors.
1397     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1398     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1399     (void)DstElementTy;
1400 
1401     assert(((SrcElementTy->isIntegerTy() &&
1402              DstElementTy->isIntegerTy()) ||
1403             (SrcElementTy->isFloatingPointTy() &&
1404              DstElementTy->isFloatingPointTy())) &&
1405            "unexpected conversion between a floating-point vector and an "
1406            "integer vector");
1407 
1408     // Truncate an i32 vector to an i16 vector.
1409     if (SrcElementTy->isIntegerTy())
1410       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1411 
1412     // Truncate a float vector to a half vector.
1413     if (SrcSize > DstSize)
1414       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1415 
1416     // Promote a half vector to a float vector.
1417     return Builder.CreateFPExt(Src, DstTy, "conv");
1418   }
1419 
1420   // Finally, we have the arithmetic types: real int/float.
1421   Value *Res = nullptr;
1422   llvm::Type *ResTy = DstTy;
1423 
1424   // An overflowing conversion has undefined behavior if either the source type
1425   // or the destination type is a floating-point type. However, we consider the
1426   // range of representable values for all floating-point types to be
1427   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1428   // floating-point type.
1429   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1430       OrigSrcType->isFloatingType())
1431     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1432                              Loc);
1433 
1434   // Cast to half through float if half isn't a native type.
1435   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1436     // Make sure we cast in a single step if from another FP type.
1437     if (SrcTy->isFloatingPointTy()) {
1438       // Use the intrinsic if the half type itself isn't supported
1439       // (as opposed to operations on half, available with NativeHalfType).
1440       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1441         return Builder.CreateCall(
1442             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1443       // If the half type is supported, just use an fptrunc.
1444       return Builder.CreateFPTrunc(Src, DstTy);
1445     }
1446     DstTy = CGF.FloatTy;
1447   }
1448 
1449   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1450 
1451   if (DstTy != ResTy) {
1452     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1453       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1454       Res = Builder.CreateCall(
1455         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1456         Res);
1457     } else {
1458       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1459     }
1460   }
1461 
1462   if (Opts.EmitImplicitIntegerTruncationChecks)
1463     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1464                                NoncanonicalDstType, Loc);
1465 
1466   if (Opts.EmitImplicitIntegerSignChangeChecks)
1467     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1468                                NoncanonicalDstType, Loc);
1469 
1470   return Res;
1471 }
1472 
1473 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1474                                                    QualType DstTy,
1475                                                    SourceLocation Loc) {
1476   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1477   llvm::Value *Result;
1478   if (SrcTy->isRealFloatingType())
1479     Result = FPBuilder.CreateFloatingToFixed(Src,
1480         CGF.getContext().getFixedPointSemantics(DstTy));
1481   else if (DstTy->isRealFloatingType())
1482     Result = FPBuilder.CreateFixedToFloating(Src,
1483         CGF.getContext().getFixedPointSemantics(SrcTy),
1484         ConvertType(DstTy));
1485   else {
1486     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1487     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1488 
1489     if (DstTy->isIntegerType())
1490       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1491                                               DstFPSema.getWidth(),
1492                                               DstFPSema.isSigned());
1493     else if (SrcTy->isIntegerType())
1494       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1495                                                DstFPSema);
1496     else
1497       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1498   }
1499   return Result;
1500 }
1501 
1502 /// Emit a conversion from the specified complex type to the specified
1503 /// destination type, where the destination type is an LLVM scalar type.
1504 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1505     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1506     SourceLocation Loc) {
1507   // Get the source element type.
1508   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1509 
1510   // Handle conversions to bool first, they are special: comparisons against 0.
1511   if (DstTy->isBooleanType()) {
1512     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1513     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1514     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1515     return Builder.CreateOr(Src.first, Src.second, "tobool");
1516   }
1517 
1518   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1519   // the imaginary part of the complex value is discarded and the value of the
1520   // real part is converted according to the conversion rules for the
1521   // corresponding real type.
1522   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1523 }
1524 
1525 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1526   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1527 }
1528 
1529 /// Emit a sanitization check for the given "binary" operation (which
1530 /// might actually be a unary increment which has been lowered to a binary
1531 /// operation). The check passes if all values in \p Checks (which are \c i1),
1532 /// are \c true.
1533 void ScalarExprEmitter::EmitBinOpCheck(
1534     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1535   assert(CGF.IsSanitizerScope);
1536   SanitizerHandler Check;
1537   SmallVector<llvm::Constant *, 4> StaticData;
1538   SmallVector<llvm::Value *, 2> DynamicData;
1539 
1540   BinaryOperatorKind Opcode = Info.Opcode;
1541   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1542     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1543 
1544   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1545   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1546   if (UO && UO->getOpcode() == UO_Minus) {
1547     Check = SanitizerHandler::NegateOverflow;
1548     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1549     DynamicData.push_back(Info.RHS);
1550   } else {
1551     if (BinaryOperator::isShiftOp(Opcode)) {
1552       // Shift LHS negative or too large, or RHS out of bounds.
1553       Check = SanitizerHandler::ShiftOutOfBounds;
1554       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1555       StaticData.push_back(
1556         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1557       StaticData.push_back(
1558         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1559     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1560       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1561       Check = SanitizerHandler::DivremOverflow;
1562       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1563     } else {
1564       // Arithmetic overflow (+, -, *).
1565       switch (Opcode) {
1566       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1567       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1568       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1569       default: llvm_unreachable("unexpected opcode for bin op check");
1570       }
1571       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1572     }
1573     DynamicData.push_back(Info.LHS);
1574     DynamicData.push_back(Info.RHS);
1575   }
1576 
1577   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1578 }
1579 
1580 //===----------------------------------------------------------------------===//
1581 //                            Visitor Methods
1582 //===----------------------------------------------------------------------===//
1583 
1584 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1585   CGF.ErrorUnsupported(E, "scalar expression");
1586   if (E->getType()->isVoidType())
1587     return nullptr;
1588   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1589 }
1590 
1591 Value *
1592 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1593   ASTContext &Context = CGF.getContext();
1594   llvm::Optional<LangAS> GlobalAS =
1595       Context.getTargetInfo().getConstantAddressSpace();
1596   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1597       E->ComputeName(Context), "__usn_str",
1598       static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
1599 
1600   unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1601 
1602   if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1603     return GlobalConstStr;
1604 
1605   llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType();
1606   llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS);
1607   return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1608 }
1609 
1610 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1611   // Vector Mask Case
1612   if (E->getNumSubExprs() == 2) {
1613     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1614     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1615     Value *Mask;
1616 
1617     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1618     unsigned LHSElts = LTy->getNumElements();
1619 
1620     Mask = RHS;
1621 
1622     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1623 
1624     // Mask off the high bits of each shuffle index.
1625     Value *MaskBits =
1626         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1627     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1628 
1629     // newv = undef
1630     // mask = mask & maskbits
1631     // for each elt
1632     //   n = extract mask i
1633     //   x = extract val n
1634     //   newv = insert newv, x, i
1635     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1636                                            MTy->getNumElements());
1637     Value* NewV = llvm::UndefValue::get(RTy);
1638     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1639       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1640       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1641 
1642       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1643       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1644     }
1645     return NewV;
1646   }
1647 
1648   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1649   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1650 
1651   SmallVector<int, 32> Indices;
1652   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1653     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1654     // Check for -1 and output it as undef in the IR.
1655     if (Idx.isSigned() && Idx.isAllOnes())
1656       Indices.push_back(-1);
1657     else
1658       Indices.push_back(Idx.getZExtValue());
1659   }
1660 
1661   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1662 }
1663 
1664 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1665   QualType SrcType = E->getSrcExpr()->getType(),
1666            DstType = E->getType();
1667 
1668   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1669 
1670   SrcType = CGF.getContext().getCanonicalType(SrcType);
1671   DstType = CGF.getContext().getCanonicalType(DstType);
1672   if (SrcType == DstType) return Src;
1673 
1674   assert(SrcType->isVectorType() &&
1675          "ConvertVector source type must be a vector");
1676   assert(DstType->isVectorType() &&
1677          "ConvertVector destination type must be a vector");
1678 
1679   llvm::Type *SrcTy = Src->getType();
1680   llvm::Type *DstTy = ConvertType(DstType);
1681 
1682   // Ignore conversions like int -> uint.
1683   if (SrcTy == DstTy)
1684     return Src;
1685 
1686   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1687            DstEltType = DstType->castAs<VectorType>()->getElementType();
1688 
1689   assert(SrcTy->isVectorTy() &&
1690          "ConvertVector source IR type must be a vector");
1691   assert(DstTy->isVectorTy() &&
1692          "ConvertVector destination IR type must be a vector");
1693 
1694   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1695              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1696 
1697   if (DstEltType->isBooleanType()) {
1698     assert((SrcEltTy->isFloatingPointTy() ||
1699             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1700 
1701     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1702     if (SrcEltTy->isFloatingPointTy()) {
1703       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1704     } else {
1705       return Builder.CreateICmpNE(Src, Zero, "tobool");
1706     }
1707   }
1708 
1709   // We have the arithmetic types: real int/float.
1710   Value *Res = nullptr;
1711 
1712   if (isa<llvm::IntegerType>(SrcEltTy)) {
1713     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1714     if (isa<llvm::IntegerType>(DstEltTy))
1715       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1716     else if (InputSigned)
1717       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1718     else
1719       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1720   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1721     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1722     if (DstEltType->isSignedIntegerOrEnumerationType())
1723       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1724     else
1725       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1726   } else {
1727     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1728            "Unknown real conversion");
1729     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1730       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1731     else
1732       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1733   }
1734 
1735   return Res;
1736 }
1737 
1738 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1739   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1740     CGF.EmitIgnoredExpr(E->getBase());
1741     return CGF.emitScalarConstant(Constant, E);
1742   } else {
1743     Expr::EvalResult Result;
1744     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1745       llvm::APSInt Value = Result.Val.getInt();
1746       CGF.EmitIgnoredExpr(E->getBase());
1747       return Builder.getInt(Value);
1748     }
1749   }
1750 
1751   return EmitLoadOfLValue(E);
1752 }
1753 
1754 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1755   TestAndClearIgnoreResultAssign();
1756 
1757   // Emit subscript expressions in rvalue context's.  For most cases, this just
1758   // loads the lvalue formed by the subscript expr.  However, we have to be
1759   // careful, because the base of a vector subscript is occasionally an rvalue,
1760   // so we can't get it as an lvalue.
1761   if (!E->getBase()->getType()->isVectorType())
1762     return EmitLoadOfLValue(E);
1763 
1764   // Handle the vector case.  The base must be a vector, the index must be an
1765   // integer value.
1766   Value *Base = Visit(E->getBase());
1767   Value *Idx  = Visit(E->getIdx());
1768   QualType IdxTy = E->getIdx()->getType();
1769 
1770   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1771     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1772 
1773   return Builder.CreateExtractElement(Base, Idx, "vecext");
1774 }
1775 
1776 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1777   TestAndClearIgnoreResultAssign();
1778 
1779   // Handle the vector case.  The base must be a vector, the index must be an
1780   // integer value.
1781   Value *RowIdx = Visit(E->getRowIdx());
1782   Value *ColumnIdx = Visit(E->getColumnIdx());
1783 
1784   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1785   unsigned NumRows = MatrixTy->getNumRows();
1786   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1787   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1788   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1789     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1790 
1791   Value *Matrix = Visit(E->getBase());
1792 
1793   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1794   return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1795 }
1796 
1797 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1798                       unsigned Off) {
1799   int MV = SVI->getMaskValue(Idx);
1800   if (MV == -1)
1801     return -1;
1802   return Off + MV;
1803 }
1804 
1805 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1806   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1807          "Index operand too large for shufflevector mask!");
1808   return C->getZExtValue();
1809 }
1810 
1811 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1812   bool Ignore = TestAndClearIgnoreResultAssign();
1813   (void)Ignore;
1814   assert (Ignore == false && "init list ignored");
1815   unsigned NumInitElements = E->getNumInits();
1816 
1817   if (E->hadArrayRangeDesignator())
1818     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1819 
1820   llvm::VectorType *VType =
1821     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1822 
1823   if (!VType) {
1824     if (NumInitElements == 0) {
1825       // C++11 value-initialization for the scalar.
1826       return EmitNullValue(E->getType());
1827     }
1828     // We have a scalar in braces. Just use the first element.
1829     return Visit(E->getInit(0));
1830   }
1831 
1832   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1833 
1834   // Loop over initializers collecting the Value for each, and remembering
1835   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1836   // us to fold the shuffle for the swizzle into the shuffle for the vector
1837   // initializer, since LLVM optimizers generally do not want to touch
1838   // shuffles.
1839   unsigned CurIdx = 0;
1840   bool VIsUndefShuffle = false;
1841   llvm::Value *V = llvm::UndefValue::get(VType);
1842   for (unsigned i = 0; i != NumInitElements; ++i) {
1843     Expr *IE = E->getInit(i);
1844     Value *Init = Visit(IE);
1845     SmallVector<int, 16> Args;
1846 
1847     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1848 
1849     // Handle scalar elements.  If the scalar initializer is actually one
1850     // element of a different vector of the same width, use shuffle instead of
1851     // extract+insert.
1852     if (!VVT) {
1853       if (isa<ExtVectorElementExpr>(IE)) {
1854         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1855 
1856         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1857                 ->getNumElements() == ResElts) {
1858           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1859           Value *LHS = nullptr, *RHS = nullptr;
1860           if (CurIdx == 0) {
1861             // insert into undef -> shuffle (src, undef)
1862             // shufflemask must use an i32
1863             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1864             Args.resize(ResElts, -1);
1865 
1866             LHS = EI->getVectorOperand();
1867             RHS = V;
1868             VIsUndefShuffle = true;
1869           } else if (VIsUndefShuffle) {
1870             // insert into undefshuffle && size match -> shuffle (v, src)
1871             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1872             for (unsigned j = 0; j != CurIdx; ++j)
1873               Args.push_back(getMaskElt(SVV, j, 0));
1874             Args.push_back(ResElts + C->getZExtValue());
1875             Args.resize(ResElts, -1);
1876 
1877             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1878             RHS = EI->getVectorOperand();
1879             VIsUndefShuffle = false;
1880           }
1881           if (!Args.empty()) {
1882             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1883             ++CurIdx;
1884             continue;
1885           }
1886         }
1887       }
1888       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1889                                       "vecinit");
1890       VIsUndefShuffle = false;
1891       ++CurIdx;
1892       continue;
1893     }
1894 
1895     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1896 
1897     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1898     // input is the same width as the vector being constructed, generate an
1899     // optimized shuffle of the swizzle input into the result.
1900     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1901     if (isa<ExtVectorElementExpr>(IE)) {
1902       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1903       Value *SVOp = SVI->getOperand(0);
1904       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1905 
1906       if (OpTy->getNumElements() == ResElts) {
1907         for (unsigned j = 0; j != CurIdx; ++j) {
1908           // If the current vector initializer is a shuffle with undef, merge
1909           // this shuffle directly into it.
1910           if (VIsUndefShuffle) {
1911             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1912           } else {
1913             Args.push_back(j);
1914           }
1915         }
1916         for (unsigned j = 0, je = InitElts; j != je; ++j)
1917           Args.push_back(getMaskElt(SVI, j, Offset));
1918         Args.resize(ResElts, -1);
1919 
1920         if (VIsUndefShuffle)
1921           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1922 
1923         Init = SVOp;
1924       }
1925     }
1926 
1927     // Extend init to result vector length, and then shuffle its contribution
1928     // to the vector initializer into V.
1929     if (Args.empty()) {
1930       for (unsigned j = 0; j != InitElts; ++j)
1931         Args.push_back(j);
1932       Args.resize(ResElts, -1);
1933       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1934 
1935       Args.clear();
1936       for (unsigned j = 0; j != CurIdx; ++j)
1937         Args.push_back(j);
1938       for (unsigned j = 0; j != InitElts; ++j)
1939         Args.push_back(j + Offset);
1940       Args.resize(ResElts, -1);
1941     }
1942 
1943     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1944     // merging subsequent shuffles into this one.
1945     if (CurIdx == 0)
1946       std::swap(V, Init);
1947     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1948     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1949     CurIdx += InitElts;
1950   }
1951 
1952   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1953   // Emit remaining default initializers.
1954   llvm::Type *EltTy = VType->getElementType();
1955 
1956   // Emit remaining default initializers
1957   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1958     Value *Idx = Builder.getInt32(CurIdx);
1959     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1960     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1961   }
1962   return V;
1963 }
1964 
1965 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1966   const Expr *E = CE->getSubExpr();
1967 
1968   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1969     return false;
1970 
1971   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1972     // We always assume that 'this' is never null.
1973     return false;
1974   }
1975 
1976   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1977     // And that glvalue casts are never null.
1978     if (ICE->isGLValue())
1979       return false;
1980   }
1981 
1982   return true;
1983 }
1984 
1985 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1986 // have to handle a more broad range of conversions than explicit casts, as they
1987 // handle things like function to ptr-to-function decay etc.
1988 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1989   Expr *E = CE->getSubExpr();
1990   QualType DestTy = CE->getType();
1991   CastKind Kind = CE->getCastKind();
1992 
1993   // These cases are generally not written to ignore the result of
1994   // evaluating their sub-expressions, so we clear this now.
1995   bool Ignored = TestAndClearIgnoreResultAssign();
1996 
1997   // Since almost all cast kinds apply to scalars, this switch doesn't have
1998   // a default case, so the compiler will warn on a missing case.  The cases
1999   // are in the same order as in the CastKind enum.
2000   switch (Kind) {
2001   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2002   case CK_BuiltinFnToFnPtr:
2003     llvm_unreachable("builtin functions are handled elsewhere");
2004 
2005   case CK_LValueBitCast:
2006   case CK_ObjCObjectLValueCast: {
2007     Address Addr = EmitLValue(E).getAddress(CGF);
2008     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2009     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2010     return EmitLoadOfLValue(LV, CE->getExprLoc());
2011   }
2012 
2013   case CK_LValueToRValueBitCast: {
2014     LValue SourceLVal = CGF.EmitLValue(E);
2015     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2016                                                 CGF.ConvertTypeForMem(DestTy));
2017     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2018     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2019     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2020   }
2021 
2022   case CK_CPointerToObjCPointerCast:
2023   case CK_BlockPointerToObjCPointerCast:
2024   case CK_AnyPointerToBlockPointerCast:
2025   case CK_BitCast: {
2026     Value *Src = Visit(const_cast<Expr*>(E));
2027     llvm::Type *SrcTy = Src->getType();
2028     llvm::Type *DstTy = ConvertType(DestTy);
2029     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2030         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2031       llvm_unreachable("wrong cast for pointers in different address spaces"
2032                        "(must be an address space cast)!");
2033     }
2034 
2035     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2036       if (auto PT = DestTy->getAs<PointerType>())
2037         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2038                                       /*MayBeNull=*/true,
2039                                       CodeGenFunction::CFITCK_UnrelatedCast,
2040                                       CE->getBeginLoc());
2041     }
2042 
2043     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2044       const QualType SrcType = E->getType();
2045 
2046       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2047         // Casting to pointer that could carry dynamic information (provided by
2048         // invariant.group) requires launder.
2049         Src = Builder.CreateLaunderInvariantGroup(Src);
2050       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2051         // Casting to pointer that does not carry dynamic information (provided
2052         // by invariant.group) requires stripping it.  Note that we don't do it
2053         // if the source could not be dynamic type and destination could be
2054         // dynamic because dynamic information is already laundered.  It is
2055         // because launder(strip(src)) == launder(src), so there is no need to
2056         // add extra strip before launder.
2057         Src = Builder.CreateStripInvariantGroup(Src);
2058       }
2059     }
2060 
2061     // Update heapallocsite metadata when there is an explicit pointer cast.
2062     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2063       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2064         QualType PointeeType = DestTy->getPointeeType();
2065         if (!PointeeType.isNull())
2066           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2067                                                        CE->getExprLoc());
2068       }
2069     }
2070 
2071     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2072     // same element type, use the llvm.experimental.vector.insert intrinsic to
2073     // perform the bitcast.
2074     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2075       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2076         // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2077         // vector, use a vector insert and bitcast the result.
2078         bool NeedsBitCast = false;
2079         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2080         llvm::Type *OrigType = DstTy;
2081         if (ScalableDst == PredType &&
2082             FixedSrc->getElementType() == Builder.getInt8Ty()) {
2083           DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2084           ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy);
2085           NeedsBitCast = true;
2086         }
2087         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2088           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2089           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2090           llvm::Value *Result = Builder.CreateInsertVector(
2091               DstTy, UndefVec, Src, Zero, "castScalableSve");
2092           if (NeedsBitCast)
2093             Result = Builder.CreateBitCast(Result, OrigType);
2094           return Result;
2095         }
2096       }
2097     }
2098 
2099     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2100     // same element type, use the llvm.experimental.vector.extract intrinsic to
2101     // perform the bitcast.
2102     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2103       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2104         // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2105         // vector, bitcast the source and use a vector extract.
2106         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2107         if (ScalableSrc == PredType &&
2108             FixedDst->getElementType() == Builder.getInt8Ty()) {
2109           SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2110           ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy);
2111           Src = Builder.CreateBitCast(Src, SrcTy);
2112         }
2113         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2114           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2115           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2116         }
2117       }
2118     }
2119 
2120     // Perform VLAT <-> VLST bitcast through memory.
2121     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2122     //       require the element types of the vectors to be the same, we
2123     //       need to keep this around for bitcasts between VLAT <-> VLST where
2124     //       the element types of the vectors are not the same, until we figure
2125     //       out a better way of doing these casts.
2126     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2127          isa<llvm::ScalableVectorType>(DstTy)) ||
2128         (isa<llvm::ScalableVectorType>(SrcTy) &&
2129          isa<llvm::FixedVectorType>(DstTy))) {
2130       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2131       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2132       CGF.EmitStoreOfScalar(Src, LV);
2133       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2134                                           "castFixedSve");
2135       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2136       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2137       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2138     }
2139 
2140     return Builder.CreateBitCast(Src, DstTy);
2141   }
2142   case CK_AddressSpaceConversion: {
2143     Expr::EvalResult Result;
2144     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2145         Result.Val.isNullPointer()) {
2146       // If E has side effect, it is emitted even if its final result is a
2147       // null pointer. In that case, a DCE pass should be able to
2148       // eliminate the useless instructions emitted during translating E.
2149       if (Result.HasSideEffects)
2150         Visit(E);
2151       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2152           ConvertType(DestTy)), DestTy);
2153     }
2154     // Since target may map different address spaces in AST to the same address
2155     // space, an address space conversion may end up as a bitcast.
2156     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2157         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2158         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2159   }
2160   case CK_AtomicToNonAtomic:
2161   case CK_NonAtomicToAtomic:
2162   case CK_UserDefinedConversion:
2163     return Visit(const_cast<Expr*>(E));
2164 
2165   case CK_NoOp: {
2166     llvm::Value *V = Visit(const_cast<Expr *>(E));
2167     if (V) {
2168       // CK_NoOp can model a pointer qualification conversion, which can remove
2169       // an array bound and change the IR type.
2170       // FIXME: Once pointee types are removed from IR, remove this.
2171       llvm::Type *T = ConvertType(DestTy);
2172       if (T != V->getType())
2173         V = Builder.CreateBitCast(V, T);
2174     }
2175     return V;
2176   }
2177 
2178   case CK_BaseToDerived: {
2179     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2180     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2181 
2182     Address Base = CGF.EmitPointerWithAlignment(E);
2183     Address Derived =
2184       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2185                                    CE->path_begin(), CE->path_end(),
2186                                    CGF.ShouldNullCheckClassCastValue(CE));
2187 
2188     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2189     // performed and the object is not of the derived type.
2190     if (CGF.sanitizePerformTypeCheck())
2191       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2192                         Derived.getPointer(), DestTy->getPointeeType());
2193 
2194     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2195       CGF.EmitVTablePtrCheckForCast(
2196           DestTy->getPointeeType(), Derived.getPointer(),
2197           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2198           CE->getBeginLoc());
2199 
2200     return Derived.getPointer();
2201   }
2202   case CK_UncheckedDerivedToBase:
2203   case CK_DerivedToBase: {
2204     // The EmitPointerWithAlignment path does this fine; just discard
2205     // the alignment.
2206     return CGF.EmitPointerWithAlignment(CE).getPointer();
2207   }
2208 
2209   case CK_Dynamic: {
2210     Address V = CGF.EmitPointerWithAlignment(E);
2211     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2212     return CGF.EmitDynamicCast(V, DCE);
2213   }
2214 
2215   case CK_ArrayToPointerDecay:
2216     return CGF.EmitArrayToPointerDecay(E).getPointer();
2217   case CK_FunctionToPointerDecay:
2218     return EmitLValue(E).getPointer(CGF);
2219 
2220   case CK_NullToPointer:
2221     if (MustVisitNullValue(E))
2222       CGF.EmitIgnoredExpr(E);
2223 
2224     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2225                               DestTy);
2226 
2227   case CK_NullToMemberPointer: {
2228     if (MustVisitNullValue(E))
2229       CGF.EmitIgnoredExpr(E);
2230 
2231     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2232     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2233   }
2234 
2235   case CK_ReinterpretMemberPointer:
2236   case CK_BaseToDerivedMemberPointer:
2237   case CK_DerivedToBaseMemberPointer: {
2238     Value *Src = Visit(E);
2239 
2240     // Note that the AST doesn't distinguish between checked and
2241     // unchecked member pointer conversions, so we always have to
2242     // implement checked conversions here.  This is inefficient when
2243     // actual control flow may be required in order to perform the
2244     // check, which it is for data member pointers (but not member
2245     // function pointers on Itanium and ARM).
2246     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2247   }
2248 
2249   case CK_ARCProduceObject:
2250     return CGF.EmitARCRetainScalarExpr(E);
2251   case CK_ARCConsumeObject:
2252     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2253   case CK_ARCReclaimReturnedObject:
2254     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2255   case CK_ARCExtendBlockObject:
2256     return CGF.EmitARCExtendBlockObject(E);
2257 
2258   case CK_CopyAndAutoreleaseBlockObject:
2259     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2260 
2261   case CK_FloatingRealToComplex:
2262   case CK_FloatingComplexCast:
2263   case CK_IntegralRealToComplex:
2264   case CK_IntegralComplexCast:
2265   case CK_IntegralComplexToFloatingComplex:
2266   case CK_FloatingComplexToIntegralComplex:
2267   case CK_ConstructorConversion:
2268   case CK_ToUnion:
2269     llvm_unreachable("scalar cast to non-scalar value");
2270 
2271   case CK_LValueToRValue:
2272     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2273     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2274     return Visit(const_cast<Expr*>(E));
2275 
2276   case CK_IntegralToPointer: {
2277     Value *Src = Visit(const_cast<Expr*>(E));
2278 
2279     // First, convert to the correct width so that we control the kind of
2280     // extension.
2281     auto DestLLVMTy = ConvertType(DestTy);
2282     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2283     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2284     llvm::Value* IntResult =
2285       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2286 
2287     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2288 
2289     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2290       // Going from integer to pointer that could be dynamic requires reloading
2291       // dynamic information from invariant.group.
2292       if (DestTy.mayBeDynamicClass())
2293         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2294     }
2295     return IntToPtr;
2296   }
2297   case CK_PointerToIntegral: {
2298     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2299     auto *PtrExpr = Visit(E);
2300 
2301     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2302       const QualType SrcType = E->getType();
2303 
2304       // Casting to integer requires stripping dynamic information as it does
2305       // not carries it.
2306       if (SrcType.mayBeDynamicClass())
2307         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2308     }
2309 
2310     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2311   }
2312   case CK_ToVoid: {
2313     CGF.EmitIgnoredExpr(E);
2314     return nullptr;
2315   }
2316   case CK_MatrixCast: {
2317     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2318                                 CE->getExprLoc());
2319   }
2320   case CK_VectorSplat: {
2321     llvm::Type *DstTy = ConvertType(DestTy);
2322     Value *Elt = Visit(const_cast<Expr*>(E));
2323     // Splat the element across to all elements
2324     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2325     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2326   }
2327 
2328   case CK_FixedPointCast:
2329     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2330                                 CE->getExprLoc());
2331 
2332   case CK_FixedPointToBoolean:
2333     assert(E->getType()->isFixedPointType() &&
2334            "Expected src type to be fixed point type");
2335     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2336     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2337                                 CE->getExprLoc());
2338 
2339   case CK_FixedPointToIntegral:
2340     assert(E->getType()->isFixedPointType() &&
2341            "Expected src type to be fixed point type");
2342     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2343     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2344                                 CE->getExprLoc());
2345 
2346   case CK_IntegralToFixedPoint:
2347     assert(E->getType()->isIntegerType() &&
2348            "Expected src type to be an integer");
2349     assert(DestTy->isFixedPointType() &&
2350            "Expected dest type to be fixed point type");
2351     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2352                                 CE->getExprLoc());
2353 
2354   case CK_IntegralCast: {
2355     ScalarConversionOpts Opts;
2356     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2357       if (!ICE->isPartOfExplicitCast())
2358         Opts = ScalarConversionOpts(CGF.SanOpts);
2359     }
2360     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2361                                 CE->getExprLoc(), Opts);
2362   }
2363   case CK_IntegralToFloating:
2364   case CK_FloatingToIntegral:
2365   case CK_FloatingCast:
2366   case CK_FixedPointToFloating:
2367   case CK_FloatingToFixedPoint: {
2368     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2369     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2370                                 CE->getExprLoc());
2371   }
2372   case CK_BooleanToSignedIntegral: {
2373     ScalarConversionOpts Opts;
2374     Opts.TreatBooleanAsSigned = true;
2375     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2376                                 CE->getExprLoc(), Opts);
2377   }
2378   case CK_IntegralToBoolean:
2379     return EmitIntToBoolConversion(Visit(E));
2380   case CK_PointerToBoolean:
2381     return EmitPointerToBoolConversion(Visit(E), E->getType());
2382   case CK_FloatingToBoolean: {
2383     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2384     return EmitFloatToBoolConversion(Visit(E));
2385   }
2386   case CK_MemberPointerToBoolean: {
2387     llvm::Value *MemPtr = Visit(E);
2388     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2389     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2390   }
2391 
2392   case CK_FloatingComplexToReal:
2393   case CK_IntegralComplexToReal:
2394     return CGF.EmitComplexExpr(E, false, true).first;
2395 
2396   case CK_FloatingComplexToBoolean:
2397   case CK_IntegralComplexToBoolean: {
2398     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2399 
2400     // TODO: kill this function off, inline appropriate case here
2401     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2402                                          CE->getExprLoc());
2403   }
2404 
2405   case CK_ZeroToOCLOpaqueType: {
2406     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2407             DestTy->isOCLIntelSubgroupAVCType()) &&
2408            "CK_ZeroToOCLEvent cast on non-event type");
2409     return llvm::Constant::getNullValue(ConvertType(DestTy));
2410   }
2411 
2412   case CK_IntToOCLSampler:
2413     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2414 
2415   } // end of switch
2416 
2417   llvm_unreachable("unknown scalar cast");
2418 }
2419 
2420 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2421   CodeGenFunction::StmtExprEvaluation eval(CGF);
2422   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2423                                            !E->getType()->isVoidType());
2424   if (!RetAlloca.isValid())
2425     return nullptr;
2426   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2427                               E->getExprLoc());
2428 }
2429 
2430 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2431   CodeGenFunction::RunCleanupsScope Scope(CGF);
2432   Value *V = Visit(E->getSubExpr());
2433   // Defend against dominance problems caused by jumps out of expression
2434   // evaluation through the shared cleanup block.
2435   Scope.ForceCleanup({&V});
2436   return V;
2437 }
2438 
2439 //===----------------------------------------------------------------------===//
2440 //                             Unary Operators
2441 //===----------------------------------------------------------------------===//
2442 
2443 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2444                                            llvm::Value *InVal, bool IsInc,
2445                                            FPOptions FPFeatures) {
2446   BinOpInfo BinOp;
2447   BinOp.LHS = InVal;
2448   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2449   BinOp.Ty = E->getType();
2450   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2451   BinOp.FPFeatures = FPFeatures;
2452   BinOp.E = E;
2453   return BinOp;
2454 }
2455 
2456 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2457     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2458   llvm::Value *Amount =
2459       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2460   StringRef Name = IsInc ? "inc" : "dec";
2461   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2462   case LangOptions::SOB_Defined:
2463     return Builder.CreateAdd(InVal, Amount, Name);
2464   case LangOptions::SOB_Undefined:
2465     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2466       return Builder.CreateNSWAdd(InVal, Amount, Name);
2467     LLVM_FALLTHROUGH;
2468   case LangOptions::SOB_Trapping:
2469     if (!E->canOverflow())
2470       return Builder.CreateNSWAdd(InVal, Amount, Name);
2471     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2472         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2473   }
2474   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2475 }
2476 
2477 namespace {
2478 /// Handles check and update for lastprivate conditional variables.
2479 class OMPLastprivateConditionalUpdateRAII {
2480 private:
2481   CodeGenFunction &CGF;
2482   const UnaryOperator *E;
2483 
2484 public:
2485   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2486                                       const UnaryOperator *E)
2487       : CGF(CGF), E(E) {}
2488   ~OMPLastprivateConditionalUpdateRAII() {
2489     if (CGF.getLangOpts().OpenMP)
2490       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2491           CGF, E->getSubExpr());
2492   }
2493 };
2494 } // namespace
2495 
2496 llvm::Value *
2497 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2498                                            bool isInc, bool isPre) {
2499   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2500   QualType type = E->getSubExpr()->getType();
2501   llvm::PHINode *atomicPHI = nullptr;
2502   llvm::Value *value;
2503   llvm::Value *input;
2504 
2505   int amount = (isInc ? 1 : -1);
2506   bool isSubtraction = !isInc;
2507 
2508   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2509     type = atomicTy->getValueType();
2510     if (isInc && type->isBooleanType()) {
2511       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2512       if (isPre) {
2513         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2514             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2515         return Builder.getTrue();
2516       }
2517       // For atomic bool increment, we just store true and return it for
2518       // preincrement, do an atomic swap with true for postincrement
2519       return Builder.CreateAtomicRMW(
2520           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2521           llvm::AtomicOrdering::SequentiallyConsistent);
2522     }
2523     // Special case for atomic increment / decrement on integers, emit
2524     // atomicrmw instructions.  We skip this if we want to be doing overflow
2525     // checking, and fall into the slow path with the atomic cmpxchg loop.
2526     if (!type->isBooleanType() && type->isIntegerType() &&
2527         !(type->isUnsignedIntegerType() &&
2528           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2529         CGF.getLangOpts().getSignedOverflowBehavior() !=
2530             LangOptions::SOB_Trapping) {
2531       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2532         llvm::AtomicRMWInst::Sub;
2533       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2534         llvm::Instruction::Sub;
2535       llvm::Value *amt = CGF.EmitToMemory(
2536           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2537       llvm::Value *old =
2538           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2539                                   llvm::AtomicOrdering::SequentiallyConsistent);
2540       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2541     }
2542     value = EmitLoadOfLValue(LV, E->getExprLoc());
2543     input = value;
2544     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2545     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2546     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2547     value = CGF.EmitToMemory(value, type);
2548     Builder.CreateBr(opBB);
2549     Builder.SetInsertPoint(opBB);
2550     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2551     atomicPHI->addIncoming(value, startBB);
2552     value = atomicPHI;
2553   } else {
2554     value = EmitLoadOfLValue(LV, E->getExprLoc());
2555     input = value;
2556   }
2557 
2558   // Special case of integer increment that we have to check first: bool++.
2559   // Due to promotion rules, we get:
2560   //   bool++ -> bool = bool + 1
2561   //          -> bool = (int)bool + 1
2562   //          -> bool = ((int)bool + 1 != 0)
2563   // An interesting aspect of this is that increment is always true.
2564   // Decrement does not have this property.
2565   if (isInc && type->isBooleanType()) {
2566     value = Builder.getTrue();
2567 
2568   // Most common case by far: integer increment.
2569   } else if (type->isIntegerType()) {
2570     QualType promotedType;
2571     bool canPerformLossyDemotionCheck = false;
2572     if (type->isPromotableIntegerType()) {
2573       promotedType = CGF.getContext().getPromotedIntegerType(type);
2574       assert(promotedType != type && "Shouldn't promote to the same type.");
2575       canPerformLossyDemotionCheck = true;
2576       canPerformLossyDemotionCheck &=
2577           CGF.getContext().getCanonicalType(type) !=
2578           CGF.getContext().getCanonicalType(promotedType);
2579       canPerformLossyDemotionCheck &=
2580           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2581               type, promotedType);
2582       assert((!canPerformLossyDemotionCheck ||
2583               type->isSignedIntegerOrEnumerationType() ||
2584               promotedType->isSignedIntegerOrEnumerationType() ||
2585               ConvertType(type)->getScalarSizeInBits() ==
2586                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2587              "The following check expects that if we do promotion to different "
2588              "underlying canonical type, at least one of the types (either "
2589              "base or promoted) will be signed, or the bitwidths will match.");
2590     }
2591     if (CGF.SanOpts.hasOneOf(
2592             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2593         canPerformLossyDemotionCheck) {
2594       // While `x += 1` (for `x` with width less than int) is modeled as
2595       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2596       // ease; inc/dec with width less than int can't overflow because of
2597       // promotion rules, so we omit promotion+demotion, which means that we can
2598       // not catch lossy "demotion". Because we still want to catch these cases
2599       // when the sanitizer is enabled, we perform the promotion, then perform
2600       // the increment/decrement in the wider type, and finally
2601       // perform the demotion. This will catch lossy demotions.
2602 
2603       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2604       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2605       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2606       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2607       // emitted.
2608       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2609                                    ScalarConversionOpts(CGF.SanOpts));
2610 
2611       // Note that signed integer inc/dec with width less than int can't
2612       // overflow because of promotion rules; we're just eliding a few steps
2613       // here.
2614     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2615       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2616     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2617                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2618       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2619           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2620     } else {
2621       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2622       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2623     }
2624 
2625   // Next most common: pointer increment.
2626   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2627     QualType type = ptr->getPointeeType();
2628 
2629     // VLA types don't have constant size.
2630     if (const VariableArrayType *vla
2631           = CGF.getContext().getAsVariableArrayType(type)) {
2632       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2633       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2634       if (CGF.getLangOpts().isSignedOverflowDefined())
2635         value = Builder.CreateGEP(value->getType()->getPointerElementType(),
2636                                   value, numElts, "vla.inc");
2637       else
2638         value = CGF.EmitCheckedInBoundsGEP(
2639             value, numElts, /*SignedIndices=*/false, isSubtraction,
2640             E->getExprLoc(), "vla.inc");
2641 
2642     // Arithmetic on function pointers (!) is just +-1.
2643     } else if (type->isFunctionType()) {
2644       llvm::Value *amt = Builder.getInt32(amount);
2645 
2646       value = CGF.EmitCastToVoidPtr(value);
2647       if (CGF.getLangOpts().isSignedOverflowDefined())
2648         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2649       else
2650         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2651                                            isSubtraction, E->getExprLoc(),
2652                                            "incdec.funcptr");
2653       value = Builder.CreateBitCast(value, input->getType());
2654 
2655     // For everything else, we can just do a simple increment.
2656     } else {
2657       llvm::Value *amt = Builder.getInt32(amount);
2658       if (CGF.getLangOpts().isSignedOverflowDefined())
2659         value = Builder.CreateGEP(value->getType()->getPointerElementType(),
2660                                   value, amt, "incdec.ptr");
2661       else
2662         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2663                                            isSubtraction, E->getExprLoc(),
2664                                            "incdec.ptr");
2665     }
2666 
2667   // Vector increment/decrement.
2668   } else if (type->isVectorType()) {
2669     if (type->hasIntegerRepresentation()) {
2670       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2671 
2672       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2673     } else {
2674       value = Builder.CreateFAdd(
2675                   value,
2676                   llvm::ConstantFP::get(value->getType(), amount),
2677                   isInc ? "inc" : "dec");
2678     }
2679 
2680   // Floating point.
2681   } else if (type->isRealFloatingType()) {
2682     // Add the inc/dec to the real part.
2683     llvm::Value *amt;
2684     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2685 
2686     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2687       // Another special case: half FP increment should be done via float
2688       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2689         value = Builder.CreateCall(
2690             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2691                                  CGF.CGM.FloatTy),
2692             input, "incdec.conv");
2693       } else {
2694         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2695       }
2696     }
2697 
2698     if (value->getType()->isFloatTy())
2699       amt = llvm::ConstantFP::get(VMContext,
2700                                   llvm::APFloat(static_cast<float>(amount)));
2701     else if (value->getType()->isDoubleTy())
2702       amt = llvm::ConstantFP::get(VMContext,
2703                                   llvm::APFloat(static_cast<double>(amount)));
2704     else {
2705       // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2706       // from float.
2707       llvm::APFloat F(static_cast<float>(amount));
2708       bool ignored;
2709       const llvm::fltSemantics *FS;
2710       // Don't use getFloatTypeSemantics because Half isn't
2711       // necessarily represented using the "half" LLVM type.
2712       if (value->getType()->isFP128Ty())
2713         FS = &CGF.getTarget().getFloat128Format();
2714       else if (value->getType()->isHalfTy())
2715         FS = &CGF.getTarget().getHalfFormat();
2716       else if (value->getType()->isPPC_FP128Ty())
2717         FS = &CGF.getTarget().getIbm128Format();
2718       else
2719         FS = &CGF.getTarget().getLongDoubleFormat();
2720       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2721       amt = llvm::ConstantFP::get(VMContext, F);
2722     }
2723     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2724 
2725     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2726       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2727         value = Builder.CreateCall(
2728             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2729                                  CGF.CGM.FloatTy),
2730             value, "incdec.conv");
2731       } else {
2732         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2733       }
2734     }
2735 
2736   // Fixed-point types.
2737   } else if (type->isFixedPointType()) {
2738     // Fixed-point types are tricky. In some cases, it isn't possible to
2739     // represent a 1 or a -1 in the type at all. Piggyback off of
2740     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2741     BinOpInfo Info;
2742     Info.E = E;
2743     Info.Ty = E->getType();
2744     Info.Opcode = isInc ? BO_Add : BO_Sub;
2745     Info.LHS = value;
2746     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2747     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2748     // since -1 is guaranteed to be representable.
2749     if (type->isSignedFixedPointType()) {
2750       Info.Opcode = isInc ? BO_Sub : BO_Add;
2751       Info.RHS = Builder.CreateNeg(Info.RHS);
2752     }
2753     // Now, convert from our invented integer literal to the type of the unary
2754     // op. This will upscale and saturate if necessary. This value can become
2755     // undef in some cases.
2756     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2757     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2758     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2759     value = EmitFixedPointBinOp(Info);
2760 
2761   // Objective-C pointer types.
2762   } else {
2763     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2764     value = CGF.EmitCastToVoidPtr(value);
2765 
2766     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2767     if (!isInc) size = -size;
2768     llvm::Value *sizeValue =
2769       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2770 
2771     if (CGF.getLangOpts().isSignedOverflowDefined())
2772       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2773     else
2774       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2775                                          /*SignedIndices=*/false, isSubtraction,
2776                                          E->getExprLoc(), "incdec.objptr");
2777     value = Builder.CreateBitCast(value, input->getType());
2778   }
2779 
2780   if (atomicPHI) {
2781     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2782     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2783     auto Pair = CGF.EmitAtomicCompareExchange(
2784         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2785     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2786     llvm::Value *success = Pair.second;
2787     atomicPHI->addIncoming(old, curBlock);
2788     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2789     Builder.SetInsertPoint(contBB);
2790     return isPre ? value : input;
2791   }
2792 
2793   // Store the updated result through the lvalue.
2794   if (LV.isBitField())
2795     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2796   else
2797     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2798 
2799   // If this is a postinc, return the value read from memory, otherwise use the
2800   // updated value.
2801   return isPre ? value : input;
2802 }
2803 
2804 
2805 
2806 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2807   TestAndClearIgnoreResultAssign();
2808   Value *Op = Visit(E->getSubExpr());
2809 
2810   // Generate a unary FNeg for FP ops.
2811   if (Op->getType()->isFPOrFPVectorTy())
2812     return Builder.CreateFNeg(Op, "fneg");
2813 
2814   // Emit unary minus with EmitSub so we handle overflow cases etc.
2815   BinOpInfo BinOp;
2816   BinOp.RHS = Op;
2817   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2818   BinOp.Ty = E->getType();
2819   BinOp.Opcode = BO_Sub;
2820   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2821   BinOp.E = E;
2822   return EmitSub(BinOp);
2823 }
2824 
2825 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2826   TestAndClearIgnoreResultAssign();
2827   Value *Op = Visit(E->getSubExpr());
2828   return Builder.CreateNot(Op, "neg");
2829 }
2830 
2831 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2832   // Perform vector logical not on comparison with zero vector.
2833   if (E->getType()->isVectorType() &&
2834       E->getType()->castAs<VectorType>()->getVectorKind() ==
2835           VectorType::GenericVector) {
2836     Value *Oper = Visit(E->getSubExpr());
2837     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2838     Value *Result;
2839     if (Oper->getType()->isFPOrFPVectorTy()) {
2840       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2841           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2842       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2843     } else
2844       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2845     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2846   }
2847 
2848   // Compare operand to zero.
2849   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2850 
2851   // Invert value.
2852   // TODO: Could dynamically modify easy computations here.  For example, if
2853   // the operand is an icmp ne, turn into icmp eq.
2854   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2855 
2856   // ZExt result to the expr type.
2857   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2858 }
2859 
2860 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2861   // Try folding the offsetof to a constant.
2862   Expr::EvalResult EVResult;
2863   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2864     llvm::APSInt Value = EVResult.Val.getInt();
2865     return Builder.getInt(Value);
2866   }
2867 
2868   // Loop over the components of the offsetof to compute the value.
2869   unsigned n = E->getNumComponents();
2870   llvm::Type* ResultType = ConvertType(E->getType());
2871   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2872   QualType CurrentType = E->getTypeSourceInfo()->getType();
2873   for (unsigned i = 0; i != n; ++i) {
2874     OffsetOfNode ON = E->getComponent(i);
2875     llvm::Value *Offset = nullptr;
2876     switch (ON.getKind()) {
2877     case OffsetOfNode::Array: {
2878       // Compute the index
2879       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2880       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2881       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2882       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2883 
2884       // Save the element type
2885       CurrentType =
2886           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2887 
2888       // Compute the element size
2889       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2890           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2891 
2892       // Multiply out to compute the result
2893       Offset = Builder.CreateMul(Idx, ElemSize);
2894       break;
2895     }
2896 
2897     case OffsetOfNode::Field: {
2898       FieldDecl *MemberDecl = ON.getField();
2899       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2900       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2901 
2902       // Compute the index of the field in its parent.
2903       unsigned i = 0;
2904       // FIXME: It would be nice if we didn't have to loop here!
2905       for (RecordDecl::field_iterator Field = RD->field_begin(),
2906                                       FieldEnd = RD->field_end();
2907            Field != FieldEnd; ++Field, ++i) {
2908         if (*Field == MemberDecl)
2909           break;
2910       }
2911       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2912 
2913       // Compute the offset to the field
2914       int64_t OffsetInt = RL.getFieldOffset(i) /
2915                           CGF.getContext().getCharWidth();
2916       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2917 
2918       // Save the element type.
2919       CurrentType = MemberDecl->getType();
2920       break;
2921     }
2922 
2923     case OffsetOfNode::Identifier:
2924       llvm_unreachable("dependent __builtin_offsetof");
2925 
2926     case OffsetOfNode::Base: {
2927       if (ON.getBase()->isVirtual()) {
2928         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2929         continue;
2930       }
2931 
2932       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2933       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2934 
2935       // Save the element type.
2936       CurrentType = ON.getBase()->getType();
2937 
2938       // Compute the offset to the base.
2939       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2940       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2941       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2942       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2943       break;
2944     }
2945     }
2946     Result = Builder.CreateAdd(Result, Offset);
2947   }
2948   return Result;
2949 }
2950 
2951 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2952 /// argument of the sizeof expression as an integer.
2953 Value *
2954 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2955                               const UnaryExprOrTypeTraitExpr *E) {
2956   QualType TypeToSize = E->getTypeOfArgument();
2957   if (E->getKind() == UETT_SizeOf) {
2958     if (const VariableArrayType *VAT =
2959           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2960       if (E->isArgumentType()) {
2961         // sizeof(type) - make sure to emit the VLA size.
2962         CGF.EmitVariablyModifiedType(TypeToSize);
2963       } else {
2964         // C99 6.5.3.4p2: If the argument is an expression of type
2965         // VLA, it is evaluated.
2966         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2967       }
2968 
2969       auto VlaSize = CGF.getVLASize(VAT);
2970       llvm::Value *size = VlaSize.NumElts;
2971 
2972       // Scale the number of non-VLA elements by the non-VLA element size.
2973       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2974       if (!eltSize.isOne())
2975         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2976 
2977       return size;
2978     }
2979   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2980     auto Alignment =
2981         CGF.getContext()
2982             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2983                 E->getTypeOfArgument()->getPointeeType()))
2984             .getQuantity();
2985     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2986   }
2987 
2988   // If this isn't sizeof(vla), the result must be constant; use the constant
2989   // folding logic so we don't have to duplicate it here.
2990   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2991 }
2992 
2993 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2994   Expr *Op = E->getSubExpr();
2995   if (Op->getType()->isAnyComplexType()) {
2996     // If it's an l-value, load through the appropriate subobject l-value.
2997     // Note that we have to ask E because Op might be an l-value that
2998     // this won't work for, e.g. an Obj-C property.
2999     if (E->isGLValue())
3000       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3001                                   E->getExprLoc()).getScalarVal();
3002 
3003     // Otherwise, calculate and project.
3004     return CGF.EmitComplexExpr(Op, false, true).first;
3005   }
3006 
3007   return Visit(Op);
3008 }
3009 
3010 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
3011   Expr *Op = E->getSubExpr();
3012   if (Op->getType()->isAnyComplexType()) {
3013     // If it's an l-value, load through the appropriate subobject l-value.
3014     // Note that we have to ask E because Op might be an l-value that
3015     // this won't work for, e.g. an Obj-C property.
3016     if (Op->isGLValue())
3017       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3018                                   E->getExprLoc()).getScalarVal();
3019 
3020     // Otherwise, calculate and project.
3021     return CGF.EmitComplexExpr(Op, true, false).second;
3022   }
3023 
3024   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3025   // effects are evaluated, but not the actual value.
3026   if (Op->isGLValue())
3027     CGF.EmitLValue(Op);
3028   else
3029     CGF.EmitScalarExpr(Op, true);
3030   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3031 }
3032 
3033 //===----------------------------------------------------------------------===//
3034 //                           Binary Operators
3035 //===----------------------------------------------------------------------===//
3036 
3037 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
3038   TestAndClearIgnoreResultAssign();
3039   BinOpInfo Result;
3040   Result.LHS = Visit(E->getLHS());
3041   Result.RHS = Visit(E->getRHS());
3042   Result.Ty  = E->getType();
3043   Result.Opcode = E->getOpcode();
3044   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3045   Result.E = E;
3046   return Result;
3047 }
3048 
3049 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3050                                               const CompoundAssignOperator *E,
3051                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3052                                                    Value *&Result) {
3053   QualType LHSTy = E->getLHS()->getType();
3054   BinOpInfo OpInfo;
3055 
3056   if (E->getComputationResultType()->isAnyComplexType())
3057     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3058 
3059   // Emit the RHS first.  __block variables need to have the rhs evaluated
3060   // first, plus this should improve codegen a little.
3061   OpInfo.RHS = Visit(E->getRHS());
3062   OpInfo.Ty = E->getComputationResultType();
3063   OpInfo.Opcode = E->getOpcode();
3064   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3065   OpInfo.E = E;
3066   // Load/convert the LHS.
3067   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3068 
3069   llvm::PHINode *atomicPHI = nullptr;
3070   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3071     QualType type = atomicTy->getValueType();
3072     if (!type->isBooleanType() && type->isIntegerType() &&
3073         !(type->isUnsignedIntegerType() &&
3074           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3075         CGF.getLangOpts().getSignedOverflowBehavior() !=
3076             LangOptions::SOB_Trapping) {
3077       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3078       llvm::Instruction::BinaryOps Op;
3079       switch (OpInfo.Opcode) {
3080         // We don't have atomicrmw operands for *, %, /, <<, >>
3081         case BO_MulAssign: case BO_DivAssign:
3082         case BO_RemAssign:
3083         case BO_ShlAssign:
3084         case BO_ShrAssign:
3085           break;
3086         case BO_AddAssign:
3087           AtomicOp = llvm::AtomicRMWInst::Add;
3088           Op = llvm::Instruction::Add;
3089           break;
3090         case BO_SubAssign:
3091           AtomicOp = llvm::AtomicRMWInst::Sub;
3092           Op = llvm::Instruction::Sub;
3093           break;
3094         case BO_AndAssign:
3095           AtomicOp = llvm::AtomicRMWInst::And;
3096           Op = llvm::Instruction::And;
3097           break;
3098         case BO_XorAssign:
3099           AtomicOp = llvm::AtomicRMWInst::Xor;
3100           Op = llvm::Instruction::Xor;
3101           break;
3102         case BO_OrAssign:
3103           AtomicOp = llvm::AtomicRMWInst::Or;
3104           Op = llvm::Instruction::Or;
3105           break;
3106         default:
3107           llvm_unreachable("Invalid compound assignment type");
3108       }
3109       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3110         llvm::Value *Amt = CGF.EmitToMemory(
3111             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3112                                  E->getExprLoc()),
3113             LHSTy);
3114         Value *OldVal = Builder.CreateAtomicRMW(
3115             AtomicOp, LHSLV.getPointer(CGF), Amt,
3116             llvm::AtomicOrdering::SequentiallyConsistent);
3117 
3118         // Since operation is atomic, the result type is guaranteed to be the
3119         // same as the input in LLVM terms.
3120         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3121         return LHSLV;
3122       }
3123     }
3124     // FIXME: For floating point types, we should be saving and restoring the
3125     // floating point environment in the loop.
3126     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3127     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3128     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3129     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3130     Builder.CreateBr(opBB);
3131     Builder.SetInsertPoint(opBB);
3132     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3133     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3134     OpInfo.LHS = atomicPHI;
3135   }
3136   else
3137     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3138 
3139   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3140   SourceLocation Loc = E->getExprLoc();
3141   OpInfo.LHS =
3142       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3143 
3144   // Expand the binary operator.
3145   Result = (this->*Func)(OpInfo);
3146 
3147   // Convert the result back to the LHS type,
3148   // potentially with Implicit Conversion sanitizer check.
3149   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3150                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3151 
3152   if (atomicPHI) {
3153     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3154     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3155     auto Pair = CGF.EmitAtomicCompareExchange(
3156         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3157     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3158     llvm::Value *success = Pair.second;
3159     atomicPHI->addIncoming(old, curBlock);
3160     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3161     Builder.SetInsertPoint(contBB);
3162     return LHSLV;
3163   }
3164 
3165   // Store the result value into the LHS lvalue. Bit-fields are handled
3166   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3167   // 'An assignment expression has the value of the left operand after the
3168   // assignment...'.
3169   if (LHSLV.isBitField())
3170     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3171   else
3172     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3173 
3174   if (CGF.getLangOpts().OpenMP)
3175     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3176                                                                   E->getLHS());
3177   return LHSLV;
3178 }
3179 
3180 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3181                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3182   bool Ignore = TestAndClearIgnoreResultAssign();
3183   Value *RHS = nullptr;
3184   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3185 
3186   // If the result is clearly ignored, return now.
3187   if (Ignore)
3188     return nullptr;
3189 
3190   // The result of an assignment in C is the assigned r-value.
3191   if (!CGF.getLangOpts().CPlusPlus)
3192     return RHS;
3193 
3194   // If the lvalue is non-volatile, return the computed value of the assignment.
3195   if (!LHS.isVolatileQualified())
3196     return RHS;
3197 
3198   // Otherwise, reload the value.
3199   return EmitLoadOfLValue(LHS, E->getExprLoc());
3200 }
3201 
3202 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3203     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3204   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3205 
3206   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3207     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3208                                     SanitizerKind::IntegerDivideByZero));
3209   }
3210 
3211   const auto *BO = cast<BinaryOperator>(Ops.E);
3212   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3213       Ops.Ty->hasSignedIntegerRepresentation() &&
3214       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3215       Ops.mayHaveIntegerOverflow()) {
3216     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3217 
3218     llvm::Value *IntMin =
3219       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3220     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3221 
3222     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3223     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3224     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3225     Checks.push_back(
3226         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3227   }
3228 
3229   if (Checks.size() > 0)
3230     EmitBinOpCheck(Checks, Ops);
3231 }
3232 
3233 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3234   {
3235     CodeGenFunction::SanitizerScope SanScope(&CGF);
3236     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3237          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3238         Ops.Ty->isIntegerType() &&
3239         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3240       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3241       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3242     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3243                Ops.Ty->isRealFloatingType() &&
3244                Ops.mayHaveFloatDivisionByZero()) {
3245       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3246       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3247       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3248                      Ops);
3249     }
3250   }
3251 
3252   if (Ops.Ty->isConstantMatrixType()) {
3253     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3254     // We need to check the types of the operands of the operator to get the
3255     // correct matrix dimensions.
3256     auto *BO = cast<BinaryOperator>(Ops.E);
3257     (void)BO;
3258     assert(
3259         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3260         "first operand must be a matrix");
3261     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3262            "second operand must be an arithmetic type");
3263     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3264     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3265                               Ops.Ty->hasUnsignedIntegerRepresentation());
3266   }
3267 
3268   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3269     llvm::Value *Val;
3270     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3271     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3272     if ((CGF.getLangOpts().OpenCL &&
3273          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3274         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3275          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3276       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3277       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3278       // build option allows an application to specify that single precision
3279       // floating-point divide (x/y and 1/x) and sqrt used in the program
3280       // source are correctly rounded.
3281       llvm::Type *ValTy = Val->getType();
3282       if (ValTy->isFloatTy() ||
3283           (isa<llvm::VectorType>(ValTy) &&
3284            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3285         CGF.SetFPAccuracy(Val, 2.5);
3286     }
3287     return Val;
3288   }
3289   else if (Ops.isFixedPointOp())
3290     return EmitFixedPointBinOp(Ops);
3291   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3292     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3293   else
3294     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3295 }
3296 
3297 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3298   // Rem in C can't be a floating point type: C99 6.5.5p2.
3299   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3300        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3301       Ops.Ty->isIntegerType() &&
3302       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3303     CodeGenFunction::SanitizerScope SanScope(&CGF);
3304     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3305     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3306   }
3307 
3308   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3309     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3310   else
3311     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3312 }
3313 
3314 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3315   unsigned IID;
3316   unsigned OpID = 0;
3317   SanitizerHandler OverflowKind;
3318 
3319   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3320   switch (Ops.Opcode) {
3321   case BO_Add:
3322   case BO_AddAssign:
3323     OpID = 1;
3324     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3325                      llvm::Intrinsic::uadd_with_overflow;
3326     OverflowKind = SanitizerHandler::AddOverflow;
3327     break;
3328   case BO_Sub:
3329   case BO_SubAssign:
3330     OpID = 2;
3331     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3332                      llvm::Intrinsic::usub_with_overflow;
3333     OverflowKind = SanitizerHandler::SubOverflow;
3334     break;
3335   case BO_Mul:
3336   case BO_MulAssign:
3337     OpID = 3;
3338     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3339                      llvm::Intrinsic::umul_with_overflow;
3340     OverflowKind = SanitizerHandler::MulOverflow;
3341     break;
3342   default:
3343     llvm_unreachable("Unsupported operation for overflow detection");
3344   }
3345   OpID <<= 1;
3346   if (isSigned)
3347     OpID |= 1;
3348 
3349   CodeGenFunction::SanitizerScope SanScope(&CGF);
3350   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3351 
3352   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3353 
3354   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3355   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3356   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3357 
3358   // Handle overflow with llvm.trap if no custom handler has been specified.
3359   const std::string *handlerName =
3360     &CGF.getLangOpts().OverflowHandler;
3361   if (handlerName->empty()) {
3362     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3363     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3364     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3365       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3366       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3367                               : SanitizerKind::UnsignedIntegerOverflow;
3368       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3369     } else
3370       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3371     return result;
3372   }
3373 
3374   // Branch in case of overflow.
3375   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3376   llvm::BasicBlock *continueBB =
3377       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3378   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3379 
3380   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3381 
3382   // If an overflow handler is set, then we want to call it and then use its
3383   // result, if it returns.
3384   Builder.SetInsertPoint(overflowBB);
3385 
3386   // Get the overflow handler.
3387   llvm::Type *Int8Ty = CGF.Int8Ty;
3388   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3389   llvm::FunctionType *handlerTy =
3390       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3391   llvm::FunctionCallee handler =
3392       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3393 
3394   // Sign extend the args to 64-bit, so that we can use the same handler for
3395   // all types of overflow.
3396   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3397   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3398 
3399   // Call the handler with the two arguments, the operation, and the size of
3400   // the result.
3401   llvm::Value *handlerArgs[] = {
3402     lhs,
3403     rhs,
3404     Builder.getInt8(OpID),
3405     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3406   };
3407   llvm::Value *handlerResult =
3408     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3409 
3410   // Truncate the result back to the desired size.
3411   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3412   Builder.CreateBr(continueBB);
3413 
3414   Builder.SetInsertPoint(continueBB);
3415   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3416   phi->addIncoming(result, initialBB);
3417   phi->addIncoming(handlerResult, overflowBB);
3418 
3419   return phi;
3420 }
3421 
3422 /// Emit pointer + index arithmetic.
3423 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3424                                     const BinOpInfo &op,
3425                                     bool isSubtraction) {
3426   // Must have binary (not unary) expr here.  Unary pointer
3427   // increment/decrement doesn't use this path.
3428   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3429 
3430   Value *pointer = op.LHS;
3431   Expr *pointerOperand = expr->getLHS();
3432   Value *index = op.RHS;
3433   Expr *indexOperand = expr->getRHS();
3434 
3435   // In a subtraction, the LHS is always the pointer.
3436   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3437     std::swap(pointer, index);
3438     std::swap(pointerOperand, indexOperand);
3439   }
3440 
3441   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3442 
3443   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3444   auto &DL = CGF.CGM.getDataLayout();
3445   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3446 
3447   // Some versions of glibc and gcc use idioms (particularly in their malloc
3448   // routines) that add a pointer-sized integer (known to be a pointer value)
3449   // to a null pointer in order to cast the value back to an integer or as
3450   // part of a pointer alignment algorithm.  This is undefined behavior, but
3451   // we'd like to be able to compile programs that use it.
3452   //
3453   // Normally, we'd generate a GEP with a null-pointer base here in response
3454   // to that code, but it's also UB to dereference a pointer created that
3455   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3456   // generate a direct cast of the integer value to a pointer.
3457   //
3458   // The idiom (p = nullptr + N) is not met if any of the following are true:
3459   //
3460   //   The operation is subtraction.
3461   //   The index is not pointer-sized.
3462   //   The pointer type is not byte-sized.
3463   //
3464   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3465                                                        op.Opcode,
3466                                                        expr->getLHS(),
3467                                                        expr->getRHS()))
3468     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3469 
3470   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3471     // Zero-extend or sign-extend the pointer value according to
3472     // whether the index is signed or not.
3473     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3474                                       "idx.ext");
3475   }
3476 
3477   // If this is subtraction, negate the index.
3478   if (isSubtraction)
3479     index = CGF.Builder.CreateNeg(index, "idx.neg");
3480 
3481   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3482     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3483                         /*Accessed*/ false);
3484 
3485   const PointerType *pointerType
3486     = pointerOperand->getType()->getAs<PointerType>();
3487   if (!pointerType) {
3488     QualType objectType = pointerOperand->getType()
3489                                         ->castAs<ObjCObjectPointerType>()
3490                                         ->getPointeeType();
3491     llvm::Value *objectSize
3492       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3493 
3494     index = CGF.Builder.CreateMul(index, objectSize);
3495 
3496     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3497     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3498     return CGF.Builder.CreateBitCast(result, pointer->getType());
3499   }
3500 
3501   QualType elementType = pointerType->getPointeeType();
3502   if (const VariableArrayType *vla
3503         = CGF.getContext().getAsVariableArrayType(elementType)) {
3504     // The element count here is the total number of non-VLA elements.
3505     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3506 
3507     // Effectively, the multiply by the VLA size is part of the GEP.
3508     // GEP indexes are signed, and scaling an index isn't permitted to
3509     // signed-overflow, so we use the same semantics for our explicit
3510     // multiply.  We suppress this if overflow is not undefined behavior.
3511     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3512       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3513       pointer = CGF.Builder.CreateGEP(
3514           pointer->getType()->getPointerElementType(), pointer, index,
3515           "add.ptr");
3516     } else {
3517       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3518       pointer =
3519           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3520                                      op.E->getExprLoc(), "add.ptr");
3521     }
3522     return pointer;
3523   }
3524 
3525   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3526   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3527   // future proof.
3528   if (elementType->isVoidType() || elementType->isFunctionType()) {
3529     Value *result = CGF.EmitCastToVoidPtr(pointer);
3530     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3531     return CGF.Builder.CreateBitCast(result, pointer->getType());
3532   }
3533 
3534   if (CGF.getLangOpts().isSignedOverflowDefined())
3535     return CGF.Builder.CreateGEP(
3536         pointer->getType()->getPointerElementType(), pointer, index, "add.ptr");
3537 
3538   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3539                                     op.E->getExprLoc(), "add.ptr");
3540 }
3541 
3542 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3543 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3544 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3545 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3546 // efficient operations.
3547 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3548                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3549                            bool negMul, bool negAdd) {
3550   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3551 
3552   Value *MulOp0 = MulOp->getOperand(0);
3553   Value *MulOp1 = MulOp->getOperand(1);
3554   if (negMul)
3555     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3556   if (negAdd)
3557     Addend = Builder.CreateFNeg(Addend, "neg");
3558 
3559   Value *FMulAdd = nullptr;
3560   if (Builder.getIsFPConstrained()) {
3561     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3562            "Only constrained operation should be created when Builder is in FP "
3563            "constrained mode");
3564     FMulAdd = Builder.CreateConstrainedFPCall(
3565         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3566                              Addend->getType()),
3567         {MulOp0, MulOp1, Addend});
3568   } else {
3569     FMulAdd = Builder.CreateCall(
3570         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3571         {MulOp0, MulOp1, Addend});
3572   }
3573   MulOp->eraseFromParent();
3574 
3575   return FMulAdd;
3576 }
3577 
3578 // Check whether it would be legal to emit an fmuladd intrinsic call to
3579 // represent op and if so, build the fmuladd.
3580 //
3581 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3582 // Does NOT check the type of the operation - it's assumed that this function
3583 // will be called from contexts where it's known that the type is contractable.
3584 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3585                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3586                          bool isSub=false) {
3587 
3588   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3589           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3590          "Only fadd/fsub can be the root of an fmuladd.");
3591 
3592   // Check whether this op is marked as fusable.
3593   if (!op.FPFeatures.allowFPContractWithinStatement())
3594     return nullptr;
3595 
3596   // We have a potentially fusable op. Look for a mul on one of the operands.
3597   // Also, make sure that the mul result isn't used directly. In that case,
3598   // there's no point creating a muladd operation.
3599   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3600     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3601         LHSBinOp->use_empty())
3602       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3603   }
3604   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3605     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3606         RHSBinOp->use_empty())
3607       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3608   }
3609 
3610   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3611     if (LHSBinOp->getIntrinsicID() ==
3612             llvm::Intrinsic::experimental_constrained_fmul &&
3613         LHSBinOp->use_empty())
3614       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3615   }
3616   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3617     if (RHSBinOp->getIntrinsicID() ==
3618             llvm::Intrinsic::experimental_constrained_fmul &&
3619         RHSBinOp->use_empty())
3620       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3621   }
3622 
3623   return nullptr;
3624 }
3625 
3626 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3627   if (op.LHS->getType()->isPointerTy() ||
3628       op.RHS->getType()->isPointerTy())
3629     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3630 
3631   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3632     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3633     case LangOptions::SOB_Defined:
3634       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3635     case LangOptions::SOB_Undefined:
3636       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3637         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3638       LLVM_FALLTHROUGH;
3639     case LangOptions::SOB_Trapping:
3640       if (CanElideOverflowCheck(CGF.getContext(), op))
3641         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3642       return EmitOverflowCheckedBinOp(op);
3643     }
3644   }
3645 
3646   if (op.Ty->isConstantMatrixType()) {
3647     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3648     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3649     return MB.CreateAdd(op.LHS, op.RHS);
3650   }
3651 
3652   if (op.Ty->isUnsignedIntegerType() &&
3653       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3654       !CanElideOverflowCheck(CGF.getContext(), op))
3655     return EmitOverflowCheckedBinOp(op);
3656 
3657   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3658     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3659     // Try to form an fmuladd.
3660     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3661       return FMulAdd;
3662 
3663     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3664   }
3665 
3666   if (op.isFixedPointOp())
3667     return EmitFixedPointBinOp(op);
3668 
3669   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3670 }
3671 
3672 /// The resulting value must be calculated with exact precision, so the operands
3673 /// may not be the same type.
3674 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3675   using llvm::APSInt;
3676   using llvm::ConstantInt;
3677 
3678   // This is either a binary operation where at least one of the operands is
3679   // a fixed-point type, or a unary operation where the operand is a fixed-point
3680   // type. The result type of a binary operation is determined by
3681   // Sema::handleFixedPointConversions().
3682   QualType ResultTy = op.Ty;
3683   QualType LHSTy, RHSTy;
3684   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3685     RHSTy = BinOp->getRHS()->getType();
3686     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3687       // For compound assignment, the effective type of the LHS at this point
3688       // is the computation LHS type, not the actual LHS type, and the final
3689       // result type is not the type of the expression but rather the
3690       // computation result type.
3691       LHSTy = CAO->getComputationLHSType();
3692       ResultTy = CAO->getComputationResultType();
3693     } else
3694       LHSTy = BinOp->getLHS()->getType();
3695   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3696     LHSTy = UnOp->getSubExpr()->getType();
3697     RHSTy = UnOp->getSubExpr()->getType();
3698   }
3699   ASTContext &Ctx = CGF.getContext();
3700   Value *LHS = op.LHS;
3701   Value *RHS = op.RHS;
3702 
3703   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3704   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3705   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3706   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3707 
3708   // Perform the actual operation.
3709   Value *Result;
3710   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3711   switch (op.Opcode) {
3712   case BO_AddAssign:
3713   case BO_Add:
3714     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3715     break;
3716   case BO_SubAssign:
3717   case BO_Sub:
3718     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3719     break;
3720   case BO_MulAssign:
3721   case BO_Mul:
3722     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3723     break;
3724   case BO_DivAssign:
3725   case BO_Div:
3726     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3727     break;
3728   case BO_ShlAssign:
3729   case BO_Shl:
3730     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3731     break;
3732   case BO_ShrAssign:
3733   case BO_Shr:
3734     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3735     break;
3736   case BO_LT:
3737     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3738   case BO_GT:
3739     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3740   case BO_LE:
3741     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3742   case BO_GE:
3743     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3744   case BO_EQ:
3745     // For equality operations, we assume any padding bits on unsigned types are
3746     // zero'd out. They could be overwritten through non-saturating operations
3747     // that cause overflow, but this leads to undefined behavior.
3748     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3749   case BO_NE:
3750     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3751   case BO_Cmp:
3752   case BO_LAnd:
3753   case BO_LOr:
3754     llvm_unreachable("Found unimplemented fixed point binary operation");
3755   case BO_PtrMemD:
3756   case BO_PtrMemI:
3757   case BO_Rem:
3758   case BO_Xor:
3759   case BO_And:
3760   case BO_Or:
3761   case BO_Assign:
3762   case BO_RemAssign:
3763   case BO_AndAssign:
3764   case BO_XorAssign:
3765   case BO_OrAssign:
3766   case BO_Comma:
3767     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3768   }
3769 
3770   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3771                  BinaryOperator::isShiftAssignOp(op.Opcode);
3772   // Convert to the result type.
3773   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3774                                                       : CommonFixedSema,
3775                                       ResultFixedSema);
3776 }
3777 
3778 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3779   // The LHS is always a pointer if either side is.
3780   if (!op.LHS->getType()->isPointerTy()) {
3781     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3782       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3783       case LangOptions::SOB_Defined:
3784         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3785       case LangOptions::SOB_Undefined:
3786         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3787           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3788         LLVM_FALLTHROUGH;
3789       case LangOptions::SOB_Trapping:
3790         if (CanElideOverflowCheck(CGF.getContext(), op))
3791           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3792         return EmitOverflowCheckedBinOp(op);
3793       }
3794     }
3795 
3796     if (op.Ty->isConstantMatrixType()) {
3797       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3798       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3799       return MB.CreateSub(op.LHS, op.RHS);
3800     }
3801 
3802     if (op.Ty->isUnsignedIntegerType() &&
3803         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3804         !CanElideOverflowCheck(CGF.getContext(), op))
3805       return EmitOverflowCheckedBinOp(op);
3806 
3807     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3808       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3809       // Try to form an fmuladd.
3810       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3811         return FMulAdd;
3812       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3813     }
3814 
3815     if (op.isFixedPointOp())
3816       return EmitFixedPointBinOp(op);
3817 
3818     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3819   }
3820 
3821   // If the RHS is not a pointer, then we have normal pointer
3822   // arithmetic.
3823   if (!op.RHS->getType()->isPointerTy())
3824     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3825 
3826   // Otherwise, this is a pointer subtraction.
3827 
3828   // Do the raw subtraction part.
3829   llvm::Value *LHS
3830     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3831   llvm::Value *RHS
3832     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3833   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3834 
3835   // Okay, figure out the element size.
3836   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3837   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3838 
3839   llvm::Value *divisor = nullptr;
3840 
3841   // For a variable-length array, this is going to be non-constant.
3842   if (const VariableArrayType *vla
3843         = CGF.getContext().getAsVariableArrayType(elementType)) {
3844     auto VlaSize = CGF.getVLASize(vla);
3845     elementType = VlaSize.Type;
3846     divisor = VlaSize.NumElts;
3847 
3848     // Scale the number of non-VLA elements by the non-VLA element size.
3849     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3850     if (!eltSize.isOne())
3851       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3852 
3853   // For everything elese, we can just compute it, safe in the
3854   // assumption that Sema won't let anything through that we can't
3855   // safely compute the size of.
3856   } else {
3857     CharUnits elementSize;
3858     // Handle GCC extension for pointer arithmetic on void* and
3859     // function pointer types.
3860     if (elementType->isVoidType() || elementType->isFunctionType())
3861       elementSize = CharUnits::One();
3862     else
3863       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3864 
3865     // Don't even emit the divide for element size of 1.
3866     if (elementSize.isOne())
3867       return diffInChars;
3868 
3869     divisor = CGF.CGM.getSize(elementSize);
3870   }
3871 
3872   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3873   // pointer difference in C is only defined in the case where both operands
3874   // are pointing to elements of an array.
3875   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3876 }
3877 
3878 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3879   llvm::IntegerType *Ty;
3880   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3881     Ty = cast<llvm::IntegerType>(VT->getElementType());
3882   else
3883     Ty = cast<llvm::IntegerType>(LHS->getType());
3884   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3885 }
3886 
3887 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3888                                               const Twine &Name) {
3889   llvm::IntegerType *Ty;
3890   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3891     Ty = cast<llvm::IntegerType>(VT->getElementType());
3892   else
3893     Ty = cast<llvm::IntegerType>(LHS->getType());
3894 
3895   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3896         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3897 
3898   return Builder.CreateURem(
3899       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3900 }
3901 
3902 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3903   // TODO: This misses out on the sanitizer check below.
3904   if (Ops.isFixedPointOp())
3905     return EmitFixedPointBinOp(Ops);
3906 
3907   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3908   // RHS to the same size as the LHS.
3909   Value *RHS = Ops.RHS;
3910   if (Ops.LHS->getType() != RHS->getType())
3911     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3912 
3913   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3914                             Ops.Ty->hasSignedIntegerRepresentation() &&
3915                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3916                             !CGF.getLangOpts().CPlusPlus20;
3917   bool SanitizeUnsignedBase =
3918       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3919       Ops.Ty->hasUnsignedIntegerRepresentation();
3920   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3921   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3922   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3923   if (CGF.getLangOpts().OpenCL)
3924     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3925   else if ((SanitizeBase || SanitizeExponent) &&
3926            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3927     CodeGenFunction::SanitizerScope SanScope(&CGF);
3928     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3929     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3930     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3931 
3932     if (SanitizeExponent) {
3933       Checks.push_back(
3934           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3935     }
3936 
3937     if (SanitizeBase) {
3938       // Check whether we are shifting any non-zero bits off the top of the
3939       // integer. We only emit this check if exponent is valid - otherwise
3940       // instructions below will have undefined behavior themselves.
3941       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3942       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3943       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3944       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3945       llvm::Value *PromotedWidthMinusOne =
3946           (RHS == Ops.RHS) ? WidthMinusOne
3947                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3948       CGF.EmitBlock(CheckShiftBase);
3949       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3950           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3951                                      /*NUW*/ true, /*NSW*/ true),
3952           "shl.check");
3953       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3954         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3955         // Under C++11's rules, shifting a 1 bit into the sign bit is
3956         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3957         // define signed left shifts, so we use the C99 and C++11 rules there).
3958         // Unsigned shifts can always shift into the top bit.
3959         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3960         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3961       }
3962       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3963       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3964       CGF.EmitBlock(Cont);
3965       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3966       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3967       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3968       Checks.push_back(std::make_pair(
3969           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3970                                         : SanitizerKind::UnsignedShiftBase));
3971     }
3972 
3973     assert(!Checks.empty());
3974     EmitBinOpCheck(Checks, Ops);
3975   }
3976 
3977   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3978 }
3979 
3980 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3981   // TODO: This misses out on the sanitizer check below.
3982   if (Ops.isFixedPointOp())
3983     return EmitFixedPointBinOp(Ops);
3984 
3985   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3986   // RHS to the same size as the LHS.
3987   Value *RHS = Ops.RHS;
3988   if (Ops.LHS->getType() != RHS->getType())
3989     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3990 
3991   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3992   if (CGF.getLangOpts().OpenCL)
3993     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3994   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3995            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3996     CodeGenFunction::SanitizerScope SanScope(&CGF);
3997     llvm::Value *Valid =
3998         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3999     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4000   }
4001 
4002   if (Ops.Ty->hasUnsignedIntegerRepresentation())
4003     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4004   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4005 }
4006 
4007 enum IntrinsicType { VCMPEQ, VCMPGT };
4008 // return corresponding comparison intrinsic for given vector type
4009 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4010                                         BuiltinType::Kind ElemKind) {
4011   switch (ElemKind) {
4012   default: llvm_unreachable("unexpected element type");
4013   case BuiltinType::Char_U:
4014   case BuiltinType::UChar:
4015     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4016                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4017   case BuiltinType::Char_S:
4018   case BuiltinType::SChar:
4019     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4020                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4021   case BuiltinType::UShort:
4022     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4023                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4024   case BuiltinType::Short:
4025     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4026                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4027   case BuiltinType::UInt:
4028     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4029                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4030   case BuiltinType::Int:
4031     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4032                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4033   case BuiltinType::ULong:
4034   case BuiltinType::ULongLong:
4035     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4036                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4037   case BuiltinType::Long:
4038   case BuiltinType::LongLong:
4039     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4040                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4041   case BuiltinType::Float:
4042     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4043                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4044   case BuiltinType::Double:
4045     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4046                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4047   case BuiltinType::UInt128:
4048     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4049                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4050   case BuiltinType::Int128:
4051     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4052                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4053   }
4054 }
4055 
4056 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4057                                       llvm::CmpInst::Predicate UICmpOpc,
4058                                       llvm::CmpInst::Predicate SICmpOpc,
4059                                       llvm::CmpInst::Predicate FCmpOpc,
4060                                       bool IsSignaling) {
4061   TestAndClearIgnoreResultAssign();
4062   Value *Result;
4063   QualType LHSTy = E->getLHS()->getType();
4064   QualType RHSTy = E->getRHS()->getType();
4065   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4066     assert(E->getOpcode() == BO_EQ ||
4067            E->getOpcode() == BO_NE);
4068     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4069     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4070     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4071                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4072   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4073     BinOpInfo BOInfo = EmitBinOps(E);
4074     Value *LHS = BOInfo.LHS;
4075     Value *RHS = BOInfo.RHS;
4076 
4077     // If AltiVec, the comparison results in a numeric type, so we use
4078     // intrinsics comparing vectors and giving 0 or 1 as a result
4079     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4080       // constants for mapping CR6 register bits to predicate result
4081       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4082 
4083       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4084 
4085       // in several cases vector arguments order will be reversed
4086       Value *FirstVecArg = LHS,
4087             *SecondVecArg = RHS;
4088 
4089       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4090       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4091 
4092       switch(E->getOpcode()) {
4093       default: llvm_unreachable("is not a comparison operation");
4094       case BO_EQ:
4095         CR6 = CR6_LT;
4096         ID = GetIntrinsic(VCMPEQ, ElementKind);
4097         break;
4098       case BO_NE:
4099         CR6 = CR6_EQ;
4100         ID = GetIntrinsic(VCMPEQ, ElementKind);
4101         break;
4102       case BO_LT:
4103         CR6 = CR6_LT;
4104         ID = GetIntrinsic(VCMPGT, ElementKind);
4105         std::swap(FirstVecArg, SecondVecArg);
4106         break;
4107       case BO_GT:
4108         CR6 = CR6_LT;
4109         ID = GetIntrinsic(VCMPGT, ElementKind);
4110         break;
4111       case BO_LE:
4112         if (ElementKind == BuiltinType::Float) {
4113           CR6 = CR6_LT;
4114           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4115           std::swap(FirstVecArg, SecondVecArg);
4116         }
4117         else {
4118           CR6 = CR6_EQ;
4119           ID = GetIntrinsic(VCMPGT, ElementKind);
4120         }
4121         break;
4122       case BO_GE:
4123         if (ElementKind == BuiltinType::Float) {
4124           CR6 = CR6_LT;
4125           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4126         }
4127         else {
4128           CR6 = CR6_EQ;
4129           ID = GetIntrinsic(VCMPGT, ElementKind);
4130           std::swap(FirstVecArg, SecondVecArg);
4131         }
4132         break;
4133       }
4134 
4135       Value *CR6Param = Builder.getInt32(CR6);
4136       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4137       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4138 
4139       // The result type of intrinsic may not be same as E->getType().
4140       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4141       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4142       // do nothing, if ResultTy is not i1 at the same time, it will cause
4143       // crash later.
4144       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4145       if (ResultTy->getBitWidth() > 1 &&
4146           E->getType() == CGF.getContext().BoolTy)
4147         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4148       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4149                                   E->getExprLoc());
4150     }
4151 
4152     if (BOInfo.isFixedPointOp()) {
4153       Result = EmitFixedPointBinOp(BOInfo);
4154     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4155       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4156       if (!IsSignaling)
4157         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4158       else
4159         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4160     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4161       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4162     } else {
4163       // Unsigned integers and pointers.
4164 
4165       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4166           !isa<llvm::ConstantPointerNull>(LHS) &&
4167           !isa<llvm::ConstantPointerNull>(RHS)) {
4168 
4169         // Dynamic information is required to be stripped for comparisons,
4170         // because it could leak the dynamic information.  Based on comparisons
4171         // of pointers to dynamic objects, the optimizer can replace one pointer
4172         // with another, which might be incorrect in presence of invariant
4173         // groups. Comparison with null is safe because null does not carry any
4174         // dynamic information.
4175         if (LHSTy.mayBeDynamicClass())
4176           LHS = Builder.CreateStripInvariantGroup(LHS);
4177         if (RHSTy.mayBeDynamicClass())
4178           RHS = Builder.CreateStripInvariantGroup(RHS);
4179       }
4180 
4181       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4182     }
4183 
4184     // If this is a vector comparison, sign extend the result to the appropriate
4185     // vector integer type and return it (don't convert to bool).
4186     if (LHSTy->isVectorType())
4187       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4188 
4189   } else {
4190     // Complex Comparison: can only be an equality comparison.
4191     CodeGenFunction::ComplexPairTy LHS, RHS;
4192     QualType CETy;
4193     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4194       LHS = CGF.EmitComplexExpr(E->getLHS());
4195       CETy = CTy->getElementType();
4196     } else {
4197       LHS.first = Visit(E->getLHS());
4198       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4199       CETy = LHSTy;
4200     }
4201     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4202       RHS = CGF.EmitComplexExpr(E->getRHS());
4203       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4204                                                      CTy->getElementType()) &&
4205              "The element types must always match.");
4206       (void)CTy;
4207     } else {
4208       RHS.first = Visit(E->getRHS());
4209       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4210       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4211              "The element types must always match.");
4212     }
4213 
4214     Value *ResultR, *ResultI;
4215     if (CETy->isRealFloatingType()) {
4216       // As complex comparisons can only be equality comparisons, they
4217       // are never signaling comparisons.
4218       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4219       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4220     } else {
4221       // Complex comparisons can only be equality comparisons.  As such, signed
4222       // and unsigned opcodes are the same.
4223       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4224       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4225     }
4226 
4227     if (E->getOpcode() == BO_EQ) {
4228       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4229     } else {
4230       assert(E->getOpcode() == BO_NE &&
4231              "Complex comparison other than == or != ?");
4232       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4233     }
4234   }
4235 
4236   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4237                               E->getExprLoc());
4238 }
4239 
4240 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4241   bool Ignore = TestAndClearIgnoreResultAssign();
4242 
4243   Value *RHS;
4244   LValue LHS;
4245 
4246   switch (E->getLHS()->getType().getObjCLifetime()) {
4247   case Qualifiers::OCL_Strong:
4248     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4249     break;
4250 
4251   case Qualifiers::OCL_Autoreleasing:
4252     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4253     break;
4254 
4255   case Qualifiers::OCL_ExplicitNone:
4256     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4257     break;
4258 
4259   case Qualifiers::OCL_Weak:
4260     RHS = Visit(E->getRHS());
4261     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4262     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4263     break;
4264 
4265   case Qualifiers::OCL_None:
4266     // __block variables need to have the rhs evaluated first, plus
4267     // this should improve codegen just a little.
4268     RHS = Visit(E->getRHS());
4269     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4270 
4271     // Store the value into the LHS.  Bit-fields are handled specially
4272     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4273     // 'An assignment expression has the value of the left operand after
4274     // the assignment...'.
4275     if (LHS.isBitField()) {
4276       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4277     } else {
4278       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4279       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4280     }
4281   }
4282 
4283   // If the result is clearly ignored, return now.
4284   if (Ignore)
4285     return nullptr;
4286 
4287   // The result of an assignment in C is the assigned r-value.
4288   if (!CGF.getLangOpts().CPlusPlus)
4289     return RHS;
4290 
4291   // If the lvalue is non-volatile, return the computed value of the assignment.
4292   if (!LHS.isVolatileQualified())
4293     return RHS;
4294 
4295   // Otherwise, reload the value.
4296   return EmitLoadOfLValue(LHS, E->getExprLoc());
4297 }
4298 
4299 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4300   // Perform vector logical and on comparisons with zero vectors.
4301   if (E->getType()->isVectorType()) {
4302     CGF.incrementProfileCounter(E);
4303 
4304     Value *LHS = Visit(E->getLHS());
4305     Value *RHS = Visit(E->getRHS());
4306     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4307     if (LHS->getType()->isFPOrFPVectorTy()) {
4308       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4309           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4310       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4311       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4312     } else {
4313       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4314       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4315     }
4316     Value *And = Builder.CreateAnd(LHS, RHS);
4317     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4318   }
4319 
4320   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4321   llvm::Type *ResTy = ConvertType(E->getType());
4322 
4323   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4324   // If we have 1 && X, just emit X without inserting the control flow.
4325   bool LHSCondVal;
4326   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4327     if (LHSCondVal) { // If we have 1 && X, just emit X.
4328       CGF.incrementProfileCounter(E);
4329 
4330       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4331 
4332       // If we're generating for profiling or coverage, generate a branch to a
4333       // block that increments the RHS counter needed to track branch condition
4334       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4335       // "FalseBlock" after the increment is done.
4336       if (InstrumentRegions &&
4337           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4338         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4339         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4340         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4341         CGF.EmitBlock(RHSBlockCnt);
4342         CGF.incrementProfileCounter(E->getRHS());
4343         CGF.EmitBranch(FBlock);
4344         CGF.EmitBlock(FBlock);
4345       }
4346 
4347       // ZExt result to int or bool.
4348       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4349     }
4350 
4351     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4352     if (!CGF.ContainsLabel(E->getRHS()))
4353       return llvm::Constant::getNullValue(ResTy);
4354   }
4355 
4356   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4357   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4358 
4359   CodeGenFunction::ConditionalEvaluation eval(CGF);
4360 
4361   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4362   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4363                            CGF.getProfileCount(E->getRHS()));
4364 
4365   // Any edges into the ContBlock are now from an (indeterminate number of)
4366   // edges from this first condition.  All of these values will be false.  Start
4367   // setting up the PHI node in the Cont Block for this.
4368   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4369                                             "", ContBlock);
4370   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4371        PI != PE; ++PI)
4372     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4373 
4374   eval.begin(CGF);
4375   CGF.EmitBlock(RHSBlock);
4376   CGF.incrementProfileCounter(E);
4377   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4378   eval.end(CGF);
4379 
4380   // Reaquire the RHS block, as there may be subblocks inserted.
4381   RHSBlock = Builder.GetInsertBlock();
4382 
4383   // If we're generating for profiling or coverage, generate a branch on the
4384   // RHS to a block that increments the RHS true counter needed to track branch
4385   // condition coverage.
4386   if (InstrumentRegions &&
4387       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4388     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4389     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4390     CGF.EmitBlock(RHSBlockCnt);
4391     CGF.incrementProfileCounter(E->getRHS());
4392     CGF.EmitBranch(ContBlock);
4393     PN->addIncoming(RHSCond, RHSBlockCnt);
4394   }
4395 
4396   // Emit an unconditional branch from this block to ContBlock.
4397   {
4398     // There is no need to emit line number for unconditional branch.
4399     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4400     CGF.EmitBlock(ContBlock);
4401   }
4402   // Insert an entry into the phi node for the edge with the value of RHSCond.
4403   PN->addIncoming(RHSCond, RHSBlock);
4404 
4405   // Artificial location to preserve the scope information
4406   {
4407     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4408     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4409   }
4410 
4411   // ZExt result to int.
4412   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4413 }
4414 
4415 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4416   // Perform vector logical or on comparisons with zero vectors.
4417   if (E->getType()->isVectorType()) {
4418     CGF.incrementProfileCounter(E);
4419 
4420     Value *LHS = Visit(E->getLHS());
4421     Value *RHS = Visit(E->getRHS());
4422     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4423     if (LHS->getType()->isFPOrFPVectorTy()) {
4424       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4425           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4426       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4427       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4428     } else {
4429       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4430       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4431     }
4432     Value *Or = Builder.CreateOr(LHS, RHS);
4433     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4434   }
4435 
4436   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4437   llvm::Type *ResTy = ConvertType(E->getType());
4438 
4439   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4440   // If we have 0 || X, just emit X without inserting the control flow.
4441   bool LHSCondVal;
4442   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4443     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4444       CGF.incrementProfileCounter(E);
4445 
4446       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4447 
4448       // If we're generating for profiling or coverage, generate a branch to a
4449       // block that increments the RHS counter need to track branch condition
4450       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4451       // "FalseBlock" after the increment is done.
4452       if (InstrumentRegions &&
4453           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4454         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4455         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4456         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4457         CGF.EmitBlock(RHSBlockCnt);
4458         CGF.incrementProfileCounter(E->getRHS());
4459         CGF.EmitBranch(FBlock);
4460         CGF.EmitBlock(FBlock);
4461       }
4462 
4463       // ZExt result to int or bool.
4464       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4465     }
4466 
4467     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4468     if (!CGF.ContainsLabel(E->getRHS()))
4469       return llvm::ConstantInt::get(ResTy, 1);
4470   }
4471 
4472   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4473   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4474 
4475   CodeGenFunction::ConditionalEvaluation eval(CGF);
4476 
4477   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4478   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4479                            CGF.getCurrentProfileCount() -
4480                                CGF.getProfileCount(E->getRHS()));
4481 
4482   // Any edges into the ContBlock are now from an (indeterminate number of)
4483   // edges from this first condition.  All of these values will be true.  Start
4484   // setting up the PHI node in the Cont Block for this.
4485   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4486                                             "", ContBlock);
4487   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4488        PI != PE; ++PI)
4489     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4490 
4491   eval.begin(CGF);
4492 
4493   // Emit the RHS condition as a bool value.
4494   CGF.EmitBlock(RHSBlock);
4495   CGF.incrementProfileCounter(E);
4496   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4497 
4498   eval.end(CGF);
4499 
4500   // Reaquire the RHS block, as there may be subblocks inserted.
4501   RHSBlock = Builder.GetInsertBlock();
4502 
4503   // If we're generating for profiling or coverage, generate a branch on the
4504   // RHS to a block that increments the RHS true counter needed to track branch
4505   // condition coverage.
4506   if (InstrumentRegions &&
4507       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4508     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4509     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4510     CGF.EmitBlock(RHSBlockCnt);
4511     CGF.incrementProfileCounter(E->getRHS());
4512     CGF.EmitBranch(ContBlock);
4513     PN->addIncoming(RHSCond, RHSBlockCnt);
4514   }
4515 
4516   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4517   // into the phi node for the edge with the value of RHSCond.
4518   CGF.EmitBlock(ContBlock);
4519   PN->addIncoming(RHSCond, RHSBlock);
4520 
4521   // ZExt result to int.
4522   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4523 }
4524 
4525 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4526   CGF.EmitIgnoredExpr(E->getLHS());
4527   CGF.EnsureInsertPoint();
4528   return Visit(E->getRHS());
4529 }
4530 
4531 //===----------------------------------------------------------------------===//
4532 //                             Other Operators
4533 //===----------------------------------------------------------------------===//
4534 
4535 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4536 /// expression is cheap enough and side-effect-free enough to evaluate
4537 /// unconditionally instead of conditionally.  This is used to convert control
4538 /// flow into selects in some cases.
4539 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4540                                                    CodeGenFunction &CGF) {
4541   // Anything that is an integer or floating point constant is fine.
4542   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4543 
4544   // Even non-volatile automatic variables can't be evaluated unconditionally.
4545   // Referencing a thread_local may cause non-trivial initialization work to
4546   // occur. If we're inside a lambda and one of the variables is from the scope
4547   // outside the lambda, that function may have returned already. Reading its
4548   // locals is a bad idea. Also, these reads may introduce races there didn't
4549   // exist in the source-level program.
4550 }
4551 
4552 
4553 Value *ScalarExprEmitter::
4554 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4555   TestAndClearIgnoreResultAssign();
4556 
4557   // Bind the common expression if necessary.
4558   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4559 
4560   Expr *condExpr = E->getCond();
4561   Expr *lhsExpr = E->getTrueExpr();
4562   Expr *rhsExpr = E->getFalseExpr();
4563 
4564   // If the condition constant folds and can be elided, try to avoid emitting
4565   // the condition and the dead arm.
4566   bool CondExprBool;
4567   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4568     Expr *live = lhsExpr, *dead = rhsExpr;
4569     if (!CondExprBool) std::swap(live, dead);
4570 
4571     // If the dead side doesn't have labels we need, just emit the Live part.
4572     if (!CGF.ContainsLabel(dead)) {
4573       if (CondExprBool)
4574         CGF.incrementProfileCounter(E);
4575       Value *Result = Visit(live);
4576 
4577       // If the live part is a throw expression, it acts like it has a void
4578       // type, so evaluating it returns a null Value*.  However, a conditional
4579       // with non-void type must return a non-null Value*.
4580       if (!Result && !E->getType()->isVoidType())
4581         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4582 
4583       return Result;
4584     }
4585   }
4586 
4587   // OpenCL: If the condition is a vector, we can treat this condition like
4588   // the select function.
4589   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4590       condExpr->getType()->isExtVectorType()) {
4591     CGF.incrementProfileCounter(E);
4592 
4593     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4594     llvm::Value *LHS = Visit(lhsExpr);
4595     llvm::Value *RHS = Visit(rhsExpr);
4596 
4597     llvm::Type *condType = ConvertType(condExpr->getType());
4598     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4599 
4600     unsigned numElem = vecTy->getNumElements();
4601     llvm::Type *elemType = vecTy->getElementType();
4602 
4603     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4604     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4605     llvm::Value *tmp = Builder.CreateSExt(
4606         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4607     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4608 
4609     // Cast float to int to perform ANDs if necessary.
4610     llvm::Value *RHSTmp = RHS;
4611     llvm::Value *LHSTmp = LHS;
4612     bool wasCast = false;
4613     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4614     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4615       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4616       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4617       wasCast = true;
4618     }
4619 
4620     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4621     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4622     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4623     if (wasCast)
4624       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4625 
4626     return tmp5;
4627   }
4628 
4629   if (condExpr->getType()->isVectorType()) {
4630     CGF.incrementProfileCounter(E);
4631 
4632     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4633     llvm::Value *LHS = Visit(lhsExpr);
4634     llvm::Value *RHS = Visit(rhsExpr);
4635 
4636     llvm::Type *CondType = ConvertType(condExpr->getType());
4637     auto *VecTy = cast<llvm::VectorType>(CondType);
4638     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4639 
4640     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4641     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4642   }
4643 
4644   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4645   // select instead of as control flow.  We can only do this if it is cheap and
4646   // safe to evaluate the LHS and RHS unconditionally.
4647   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4648       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4649     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4650     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4651 
4652     CGF.incrementProfileCounter(E, StepV);
4653 
4654     llvm::Value *LHS = Visit(lhsExpr);
4655     llvm::Value *RHS = Visit(rhsExpr);
4656     if (!LHS) {
4657       // If the conditional has void type, make sure we return a null Value*.
4658       assert(!RHS && "LHS and RHS types must match");
4659       return nullptr;
4660     }
4661     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4662   }
4663 
4664   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4665   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4666   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4667 
4668   CodeGenFunction::ConditionalEvaluation eval(CGF);
4669   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4670                            CGF.getProfileCount(lhsExpr));
4671 
4672   CGF.EmitBlock(LHSBlock);
4673   CGF.incrementProfileCounter(E);
4674   eval.begin(CGF);
4675   Value *LHS = Visit(lhsExpr);
4676   eval.end(CGF);
4677 
4678   LHSBlock = Builder.GetInsertBlock();
4679   Builder.CreateBr(ContBlock);
4680 
4681   CGF.EmitBlock(RHSBlock);
4682   eval.begin(CGF);
4683   Value *RHS = Visit(rhsExpr);
4684   eval.end(CGF);
4685 
4686   RHSBlock = Builder.GetInsertBlock();
4687   CGF.EmitBlock(ContBlock);
4688 
4689   // If the LHS or RHS is a throw expression, it will be legitimately null.
4690   if (!LHS)
4691     return RHS;
4692   if (!RHS)
4693     return LHS;
4694 
4695   // Create a PHI node for the real part.
4696   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4697   PN->addIncoming(LHS, LHSBlock);
4698   PN->addIncoming(RHS, RHSBlock);
4699   return PN;
4700 }
4701 
4702 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4703   return Visit(E->getChosenSubExpr());
4704 }
4705 
4706 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4707   QualType Ty = VE->getType();
4708 
4709   if (Ty->isVariablyModifiedType())
4710     CGF.EmitVariablyModifiedType(Ty);
4711 
4712   Address ArgValue = Address::invalid();
4713   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4714 
4715   llvm::Type *ArgTy = ConvertType(VE->getType());
4716 
4717   // If EmitVAArg fails, emit an error.
4718   if (!ArgPtr.isValid()) {
4719     CGF.ErrorUnsupported(VE, "va_arg expression");
4720     return llvm::UndefValue::get(ArgTy);
4721   }
4722 
4723   // FIXME Volatility.
4724   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4725 
4726   // If EmitVAArg promoted the type, we must truncate it.
4727   if (ArgTy != Val->getType()) {
4728     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4729       Val = Builder.CreateIntToPtr(Val, ArgTy);
4730     else
4731       Val = Builder.CreateTrunc(Val, ArgTy);
4732   }
4733 
4734   return Val;
4735 }
4736 
4737 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4738   return CGF.EmitBlockLiteral(block);
4739 }
4740 
4741 // Convert a vec3 to vec4, or vice versa.
4742 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4743                                  Value *Src, unsigned NumElementsDst) {
4744   static constexpr int Mask[] = {0, 1, 2, -1};
4745   return Builder.CreateShuffleVector(Src,
4746                                      llvm::makeArrayRef(Mask, NumElementsDst));
4747 }
4748 
4749 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4750 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4751 // but could be scalar or vectors of different lengths, and either can be
4752 // pointer.
4753 // There are 4 cases:
4754 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4755 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4756 // 3. pointer -> non-pointer
4757 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4758 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4759 // 4. non-pointer -> pointer
4760 //   a) intptr_t -> pointer       : needs 1 inttoptr
4761 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4762 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4763 // allow casting directly between pointer types and non-integer non-pointer
4764 // types.
4765 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4766                                            const llvm::DataLayout &DL,
4767                                            Value *Src, llvm::Type *DstTy,
4768                                            StringRef Name = "") {
4769   auto SrcTy = Src->getType();
4770 
4771   // Case 1.
4772   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4773     return Builder.CreateBitCast(Src, DstTy, Name);
4774 
4775   // Case 2.
4776   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4777     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4778 
4779   // Case 3.
4780   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4781     // Case 3b.
4782     if (!DstTy->isIntegerTy())
4783       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4784     // Cases 3a and 3b.
4785     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4786   }
4787 
4788   // Case 4b.
4789   if (!SrcTy->isIntegerTy())
4790     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4791   // Cases 4a and 4b.
4792   return Builder.CreateIntToPtr(Src, DstTy, Name);
4793 }
4794 
4795 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4796   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4797   llvm::Type *DstTy = ConvertType(E->getType());
4798 
4799   llvm::Type *SrcTy = Src->getType();
4800   unsigned NumElementsSrc =
4801       isa<llvm::VectorType>(SrcTy)
4802           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4803           : 0;
4804   unsigned NumElementsDst =
4805       isa<llvm::VectorType>(DstTy)
4806           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4807           : 0;
4808 
4809   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4810   // vector to get a vec4, then a bitcast if the target type is different.
4811   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4812     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4813     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4814                                        DstTy);
4815 
4816     Src->setName("astype");
4817     return Src;
4818   }
4819 
4820   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4821   // to vec4 if the original type is not vec4, then a shuffle vector to
4822   // get a vec3.
4823   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4824     auto *Vec4Ty = llvm::FixedVectorType::get(
4825         cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4826     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4827                                        Vec4Ty);
4828 
4829     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4830     Src->setName("astype");
4831     return Src;
4832   }
4833 
4834   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4835                                       Src, DstTy, "astype");
4836 }
4837 
4838 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4839   return CGF.EmitAtomicExpr(E).getScalarVal();
4840 }
4841 
4842 //===----------------------------------------------------------------------===//
4843 //                         Entry Point into this File
4844 //===----------------------------------------------------------------------===//
4845 
4846 /// Emit the computation of the specified expression of scalar type, ignoring
4847 /// the result.
4848 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4849   assert(E && hasScalarEvaluationKind(E->getType()) &&
4850          "Invalid scalar expression to emit");
4851 
4852   return ScalarExprEmitter(*this, IgnoreResultAssign)
4853       .Visit(const_cast<Expr *>(E));
4854 }
4855 
4856 /// Emit a conversion from the specified type to the specified destination type,
4857 /// both of which are LLVM scalar types.
4858 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4859                                              QualType DstTy,
4860                                              SourceLocation Loc) {
4861   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4862          "Invalid scalar expression to emit");
4863   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4864 }
4865 
4866 /// Emit a conversion from the specified complex type to the specified
4867 /// destination type, where the destination type is an LLVM scalar type.
4868 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4869                                                       QualType SrcTy,
4870                                                       QualType DstTy,
4871                                                       SourceLocation Loc) {
4872   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4873          "Invalid complex -> scalar conversion");
4874   return ScalarExprEmitter(*this)
4875       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4876 }
4877 
4878 
4879 llvm::Value *CodeGenFunction::
4880 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4881                         bool isInc, bool isPre) {
4882   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4883 }
4884 
4885 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4886   // object->isa or (*object).isa
4887   // Generate code as for: *(Class*)object
4888 
4889   Expr *BaseExpr = E->getBase();
4890   Address Addr = Address::invalid();
4891   if (BaseExpr->isPRValue()) {
4892     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4893   } else {
4894     Addr = EmitLValue(BaseExpr).getAddress(*this);
4895   }
4896 
4897   // Cast the address to Class*.
4898   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4899   return MakeAddrLValue(Addr, E->getType());
4900 }
4901 
4902 
4903 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4904                                             const CompoundAssignOperator *E) {
4905   ScalarExprEmitter Scalar(*this);
4906   Value *Result = nullptr;
4907   switch (E->getOpcode()) {
4908 #define COMPOUND_OP(Op)                                                       \
4909     case BO_##Op##Assign:                                                     \
4910       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4911                                              Result)
4912   COMPOUND_OP(Mul);
4913   COMPOUND_OP(Div);
4914   COMPOUND_OP(Rem);
4915   COMPOUND_OP(Add);
4916   COMPOUND_OP(Sub);
4917   COMPOUND_OP(Shl);
4918   COMPOUND_OP(Shr);
4919   COMPOUND_OP(And);
4920   COMPOUND_OP(Xor);
4921   COMPOUND_OP(Or);
4922 #undef COMPOUND_OP
4923 
4924   case BO_PtrMemD:
4925   case BO_PtrMemI:
4926   case BO_Mul:
4927   case BO_Div:
4928   case BO_Rem:
4929   case BO_Add:
4930   case BO_Sub:
4931   case BO_Shl:
4932   case BO_Shr:
4933   case BO_LT:
4934   case BO_GT:
4935   case BO_LE:
4936   case BO_GE:
4937   case BO_EQ:
4938   case BO_NE:
4939   case BO_Cmp:
4940   case BO_And:
4941   case BO_Xor:
4942   case BO_Or:
4943   case BO_LAnd:
4944   case BO_LOr:
4945   case BO_Assign:
4946   case BO_Comma:
4947     llvm_unreachable("Not valid compound assignment operators");
4948   }
4949 
4950   llvm_unreachable("Unhandled compound assignment operator");
4951 }
4952 
4953 struct GEPOffsetAndOverflow {
4954   // The total (signed) byte offset for the GEP.
4955   llvm::Value *TotalOffset;
4956   // The offset overflow flag - true if the total offset overflows.
4957   llvm::Value *OffsetOverflows;
4958 };
4959 
4960 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4961 /// and compute the total offset it applies from it's base pointer BasePtr.
4962 /// Returns offset in bytes and a boolean flag whether an overflow happened
4963 /// during evaluation.
4964 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4965                                                  llvm::LLVMContext &VMContext,
4966                                                  CodeGenModule &CGM,
4967                                                  CGBuilderTy &Builder) {
4968   const auto &DL = CGM.getDataLayout();
4969 
4970   // The total (signed) byte offset for the GEP.
4971   llvm::Value *TotalOffset = nullptr;
4972 
4973   // Was the GEP already reduced to a constant?
4974   if (isa<llvm::Constant>(GEPVal)) {
4975     // Compute the offset by casting both pointers to integers and subtracting:
4976     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4977     Value *BasePtr_int =
4978         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4979     Value *GEPVal_int =
4980         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4981     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4982     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4983   }
4984 
4985   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4986   assert(GEP->getPointerOperand() == BasePtr &&
4987          "BasePtr must be the base of the GEP.");
4988   assert(GEP->isInBounds() && "Expected inbounds GEP");
4989 
4990   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4991 
4992   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4993   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4994   auto *SAddIntrinsic =
4995       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4996   auto *SMulIntrinsic =
4997       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4998 
4999   // The offset overflow flag - true if the total offset overflows.
5000   llvm::Value *OffsetOverflows = Builder.getFalse();
5001 
5002   /// Return the result of the given binary operation.
5003   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5004                   llvm::Value *RHS) -> llvm::Value * {
5005     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5006 
5007     // If the operands are constants, return a constant result.
5008     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5009       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5010         llvm::APInt N;
5011         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5012                                                   /*Signed=*/true, N);
5013         if (HasOverflow)
5014           OffsetOverflows = Builder.getTrue();
5015         return llvm::ConstantInt::get(VMContext, N);
5016       }
5017     }
5018 
5019     // Otherwise, compute the result with checked arithmetic.
5020     auto *ResultAndOverflow = Builder.CreateCall(
5021         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5022     OffsetOverflows = Builder.CreateOr(
5023         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5024     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5025   };
5026 
5027   // Determine the total byte offset by looking at each GEP operand.
5028   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5029        GTI != GTE; ++GTI) {
5030     llvm::Value *LocalOffset;
5031     auto *Index = GTI.getOperand();
5032     // Compute the local offset contributed by this indexing step:
5033     if (auto *STy = GTI.getStructTypeOrNull()) {
5034       // For struct indexing, the local offset is the byte position of the
5035       // specified field.
5036       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5037       LocalOffset = llvm::ConstantInt::get(
5038           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5039     } else {
5040       // Otherwise this is array-like indexing. The local offset is the index
5041       // multiplied by the element size.
5042       auto *ElementSize = llvm::ConstantInt::get(
5043           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5044       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5045       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5046     }
5047 
5048     // If this is the first offset, set it as the total offset. Otherwise, add
5049     // the local offset into the running total.
5050     if (!TotalOffset || TotalOffset == Zero)
5051       TotalOffset = LocalOffset;
5052     else
5053       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5054   }
5055 
5056   return {TotalOffset, OffsetOverflows};
5057 }
5058 
5059 Value *
5060 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
5061                                         bool SignedIndices, bool IsSubtraction,
5062                                         SourceLocation Loc, const Twine &Name) {
5063   llvm::Type *PtrTy = Ptr->getType();
5064   Value *GEPVal = Builder.CreateInBoundsGEP(
5065       PtrTy->getPointerElementType(), Ptr, IdxList, Name);
5066 
5067   // If the pointer overflow sanitizer isn't enabled, do nothing.
5068   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5069     return GEPVal;
5070 
5071   // Perform nullptr-and-offset check unless the nullptr is defined.
5072   bool PerformNullCheck = !NullPointerIsDefined(
5073       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5074   // Check for overflows unless the GEP got constant-folded,
5075   // and only in the default address space
5076   bool PerformOverflowCheck =
5077       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5078 
5079   if (!(PerformNullCheck || PerformOverflowCheck))
5080     return GEPVal;
5081 
5082   const auto &DL = CGM.getDataLayout();
5083 
5084   SanitizerScope SanScope(this);
5085   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5086 
5087   GEPOffsetAndOverflow EvaluatedGEP =
5088       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5089 
5090   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5091           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5092          "If the offset got constant-folded, we don't expect that there was an "
5093          "overflow.");
5094 
5095   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5096 
5097   // Common case: if the total offset is zero, and we are using C++ semantics,
5098   // where nullptr+0 is defined, don't emit a check.
5099   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5100     return GEPVal;
5101 
5102   // Now that we've computed the total offset, add it to the base pointer (with
5103   // wrapping semantics).
5104   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5105   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5106 
5107   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5108 
5109   if (PerformNullCheck) {
5110     // In C++, if the base pointer evaluates to a null pointer value,
5111     // the only valid  pointer this inbounds GEP can produce is also
5112     // a null pointer, so the offset must also evaluate to zero.
5113     // Likewise, if we have non-zero base pointer, we can not get null pointer
5114     // as a result, so the offset can not be -intptr_t(BasePtr).
5115     // In other words, both pointers are either null, or both are non-null,
5116     // or the behaviour is undefined.
5117     //
5118     // C, however, is more strict in this regard, and gives more
5119     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5120     // So both the input to the 'gep inbounds' AND the output must not be null.
5121     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5122     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5123     auto *Valid =
5124         CGM.getLangOpts().CPlusPlus
5125             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5126             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5127     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5128   }
5129 
5130   if (PerformOverflowCheck) {
5131     // The GEP is valid if:
5132     // 1) The total offset doesn't overflow, and
5133     // 2) The sign of the difference between the computed address and the base
5134     // pointer matches the sign of the total offset.
5135     llvm::Value *ValidGEP;
5136     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5137     if (SignedIndices) {
5138       // GEP is computed as `unsigned base + signed offset`, therefore:
5139       // * If offset was positive, then the computed pointer can not be
5140       //   [unsigned] less than the base pointer, unless it overflowed.
5141       // * If offset was negative, then the computed pointer can not be
5142       //   [unsigned] greater than the bas pointere, unless it overflowed.
5143       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5144       auto *PosOrZeroOffset =
5145           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5146       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5147       ValidGEP =
5148           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5149     } else if (!IsSubtraction) {
5150       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5151       // computed pointer can not be [unsigned] less than base pointer,
5152       // unless there was an overflow.
5153       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5154       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5155     } else {
5156       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5157       // computed pointer can not be [unsigned] greater than base pointer,
5158       // unless there was an overflow.
5159       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5160       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5161     }
5162     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5163     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5164   }
5165 
5166   assert(!Checks.empty() && "Should have produced some checks.");
5167 
5168   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5169   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5170   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5171   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5172 
5173   return GEPVal;
5174 }
5175