1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "ConstantEmitter.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Metadata.h" 23 #include <algorithm> 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Complex Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 32 33 /// Return the complex type that we are meant to emit. 34 static const ComplexType *getComplexType(QualType type) { 35 type = type.getCanonicalType(); 36 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 37 return comp; 38 } else { 39 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 40 } 41 } 42 43 namespace { 44 class ComplexExprEmitter 45 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 46 CodeGenFunction &CGF; 47 CGBuilderTy &Builder; 48 bool IgnoreReal; 49 bool IgnoreImag; 50 public: 51 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 52 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 53 } 54 55 56 //===--------------------------------------------------------------------===// 57 // Utilities 58 //===--------------------------------------------------------------------===// 59 60 bool TestAndClearIgnoreReal() { 61 bool I = IgnoreReal; 62 IgnoreReal = false; 63 return I; 64 } 65 bool TestAndClearIgnoreImag() { 66 bool I = IgnoreImag; 67 IgnoreImag = false; 68 return I; 69 } 70 71 /// EmitLoadOfLValue - Given an expression with complex type that represents a 72 /// value l-value, this method emits the address of the l-value, then loads 73 /// and returns the result. 74 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 75 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 76 } 77 78 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 79 80 /// EmitStoreOfComplex - Store the specified real/imag parts into the 81 /// specified value pointer. 82 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 83 84 /// Emit a cast from complex value Val to DestType. 85 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 86 QualType DestType, SourceLocation Loc); 87 /// Emit a cast from scalar value Val to DestType. 88 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 89 QualType DestType, SourceLocation Loc); 90 91 //===--------------------------------------------------------------------===// 92 // Visitor Methods 93 //===--------------------------------------------------------------------===// 94 95 ComplexPairTy Visit(Expr *E) { 96 ApplyDebugLocation DL(CGF, E); 97 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 98 } 99 100 ComplexPairTy VisitStmt(Stmt *S) { 101 S->dump(llvm::errs(), CGF.getContext()); 102 llvm_unreachable("Stmt can't have complex result type!"); 103 } 104 ComplexPairTy VisitExpr(Expr *S); 105 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 106 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) 107 return ComplexPairTy(Result->getAggregateElement(0U), 108 Result->getAggregateElement(1U)); 109 return Visit(E->getSubExpr()); 110 } 111 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 112 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 return Visit(GE->getResultExpr()); 114 } 115 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 116 ComplexPairTy 117 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 118 return Visit(PE->getReplacement()); 119 } 120 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 121 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 122 } 123 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 124 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 125 } 126 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 127 return Visit(E->getSubExpr()); 128 } 129 130 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 131 Expr *E) { 132 assert(Constant && "not a constant"); 133 if (Constant.isReference()) 134 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 135 E->getExprLoc()); 136 137 llvm::Constant *pair = Constant.getValue(); 138 return ComplexPairTy(pair->getAggregateElement(0U), 139 pair->getAggregateElement(1U)); 140 } 141 142 // l-values. 143 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 144 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 145 return emitConstant(Constant, E); 146 return EmitLoadOfLValue(E); 147 } 148 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 149 return EmitLoadOfLValue(E); 150 } 151 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 152 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 153 } 154 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 155 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 156 if (CodeGenFunction::ConstantEmission Constant = 157 CGF.tryEmitAsConstant(ME)) { 158 CGF.EmitIgnoredExpr(ME->getBase()); 159 return emitConstant(Constant, ME); 160 } 161 return EmitLoadOfLValue(ME); 162 } 163 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 164 if (E->isGLValue()) 165 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 166 E->getExprLoc()); 167 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 168 } 169 170 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 171 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 172 } 173 174 // FIXME: CompoundLiteralExpr 175 176 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 177 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 178 // Unlike for scalars, we don't have to worry about function->ptr demotion 179 // here. 180 if (E->changesVolatileQualification()) 181 return EmitLoadOfLValue(E); 182 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 183 } 184 ComplexPairTy VisitCastExpr(CastExpr *E) { 185 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 186 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 187 if (E->changesVolatileQualification()) 188 return EmitLoadOfLValue(E); 189 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 190 } 191 ComplexPairTy VisitCallExpr(const CallExpr *E); 192 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 193 194 // Operators. 195 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 196 bool isInc, bool isPre) { 197 LValue LV = CGF.EmitLValue(E->getSubExpr()); 198 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 199 } 200 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 201 return VisitPrePostIncDec(E, false, false); 202 } 203 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 204 return VisitPrePostIncDec(E, true, false); 205 } 206 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 207 return VisitPrePostIncDec(E, false, true); 208 } 209 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 210 return VisitPrePostIncDec(E, true, true); 211 } 212 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 213 214 ComplexPairTy VisitUnaryPlus(const UnaryOperator *E, 215 QualType PromotionType = QualType()); 216 ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType); 217 ComplexPairTy VisitUnaryMinus(const UnaryOperator *E, 218 QualType PromotionType = QualType()); 219 ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType); 220 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 221 // LNot,Real,Imag never return complex. 222 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 223 return Visit(E->getSubExpr()); 224 } 225 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 226 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 227 return Visit(DAE->getExpr()); 228 } 229 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 230 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 231 return Visit(DIE->getExpr()); 232 } 233 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 234 CodeGenFunction::RunCleanupsScope Scope(CGF); 235 ComplexPairTy Vals = Visit(E->getSubExpr()); 236 // Defend against dominance problems caused by jumps out of expression 237 // evaluation through the shared cleanup block. 238 Scope.ForceCleanup({&Vals.first, &Vals.second}); 239 return Vals; 240 } 241 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 242 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 243 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 244 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 245 return ComplexPairTy(Null, Null); 246 } 247 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 248 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 249 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 250 llvm::Constant *Null = 251 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 252 return ComplexPairTy(Null, Null); 253 } 254 255 struct BinOpInfo { 256 ComplexPairTy LHS; 257 ComplexPairTy RHS; 258 QualType Ty; // Computation Type. 259 FPOptions FPFeatures; 260 }; 261 262 BinOpInfo EmitBinOps(const BinaryOperator *E, 263 QualType PromotionTy = QualType()); 264 ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy); 265 ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy); 266 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 267 ComplexPairTy (ComplexExprEmitter::*Func) 268 (const BinOpInfo &), 269 RValue &Val); 270 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 271 ComplexPairTy (ComplexExprEmitter::*Func) 272 (const BinOpInfo &)); 273 274 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 275 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 276 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 277 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 278 ComplexPairTy EmitAlgebraicDiv(llvm::Value *A, llvm::Value *B, llvm::Value *C, 279 llvm::Value *D); 280 ComplexPairTy EmitRangeReductionDiv(llvm::Value *A, llvm::Value *B, 281 llvm::Value *C, llvm::Value *D); 282 283 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 284 const BinOpInfo &Op); 285 286 QualType getPromotionType(QualType Ty) { 287 if (auto *CT = Ty->getAs<ComplexType>()) { 288 QualType ElementType = CT->getElementType(); 289 if (ElementType.UseExcessPrecision(CGF.getContext())) 290 return CGF.getContext().getComplexType(CGF.getContext().FloatTy); 291 } 292 if (Ty.UseExcessPrecision(CGF.getContext())) 293 return CGF.getContext().FloatTy; 294 return QualType(); 295 } 296 297 #define HANDLEBINOP(OP) \ 298 ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \ 299 QualType promotionTy = getPromotionType(E->getType()); \ 300 ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \ 301 if (!promotionTy.isNull()) \ 302 result = \ 303 CGF.EmitUnPromotedValue(result, E->getType()); \ 304 return result; \ 305 } 306 307 HANDLEBINOP(Mul) 308 HANDLEBINOP(Div) 309 HANDLEBINOP(Add) 310 HANDLEBINOP(Sub) 311 #undef HANDLEBINOP 312 313 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 314 return Visit(E->getSemanticForm()); 315 } 316 317 // Compound assignments. 318 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 319 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 320 } 321 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 322 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 323 } 324 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 325 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 326 } 327 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 328 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 329 } 330 331 // GCC rejects rem/and/or/xor for integer complex. 332 // Logical and/or always return int, never complex. 333 334 // No comparisons produce a complex result. 335 336 LValue EmitBinAssignLValue(const BinaryOperator *E, 337 ComplexPairTy &Val); 338 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 339 ComplexPairTy VisitBinComma (const BinaryOperator *E); 340 341 342 ComplexPairTy 343 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 344 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 345 346 ComplexPairTy VisitInitListExpr(InitListExpr *E); 347 348 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 349 return EmitLoadOfLValue(E); 350 } 351 352 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 353 354 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 355 return CGF.EmitAtomicExpr(E).getComplexVal(); 356 } 357 }; 358 } // end anonymous namespace. 359 360 //===----------------------------------------------------------------------===// 361 // Utilities 362 //===----------------------------------------------------------------------===// 363 364 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 365 QualType complexType) { 366 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 367 } 368 369 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 370 QualType complexType) { 371 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 372 } 373 374 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 375 /// load the real and imaginary pieces, returning them as Real/Imag. 376 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 377 SourceLocation loc) { 378 assert(lvalue.isSimple() && "non-simple complex l-value?"); 379 if (lvalue.getType()->isAtomicType()) 380 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 381 382 Address SrcPtr = lvalue.getAddress(CGF); 383 bool isVolatile = lvalue.isVolatileQualified(); 384 385 llvm::Value *Real = nullptr, *Imag = nullptr; 386 387 if (!IgnoreReal || isVolatile) { 388 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 389 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 390 } 391 392 if (!IgnoreImag || isVolatile) { 393 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 394 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 395 } 396 397 return ComplexPairTy(Real, Imag); 398 } 399 400 /// EmitStoreOfComplex - Store the specified real/imag parts into the 401 /// specified value pointer. 402 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 403 bool isInit) { 404 if (lvalue.getType()->isAtomicType() || 405 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 406 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 407 408 Address Ptr = lvalue.getAddress(CGF); 409 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 410 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 411 412 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 413 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 414 } 415 416 417 418 //===----------------------------------------------------------------------===// 419 // Visitor Methods 420 //===----------------------------------------------------------------------===// 421 422 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 423 CGF.ErrorUnsupported(E, "complex expression"); 424 llvm::Type *EltTy = 425 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 426 llvm::Value *U = llvm::UndefValue::get(EltTy); 427 return ComplexPairTy(U, U); 428 } 429 430 ComplexPairTy ComplexExprEmitter:: 431 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 432 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 433 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 434 } 435 436 437 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 438 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 439 return EmitLoadOfLValue(E); 440 441 return CGF.EmitCallExpr(E).getComplexVal(); 442 } 443 444 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 445 CodeGenFunction::StmtExprEvaluation eval(CGF); 446 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 447 assert(RetAlloca.isValid() && "Expected complex return value"); 448 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 449 E->getExprLoc()); 450 } 451 452 /// Emit a cast from complex value Val to DestType. 453 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 454 QualType SrcType, 455 QualType DestType, 456 SourceLocation Loc) { 457 // Get the src/dest element type. 458 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 459 DestType = DestType->castAs<ComplexType>()->getElementType(); 460 461 // C99 6.3.1.6: When a value of complex type is converted to another 462 // complex type, both the real and imaginary parts follow the conversion 463 // rules for the corresponding real types. 464 if (Val.first) 465 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 466 if (Val.second) 467 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 468 return Val; 469 } 470 471 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 472 QualType SrcType, 473 QualType DestType, 474 SourceLocation Loc) { 475 // Convert the input element to the element type of the complex. 476 DestType = DestType->castAs<ComplexType>()->getElementType(); 477 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 478 479 // Return (realval, 0). 480 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 481 } 482 483 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 484 QualType DestTy) { 485 switch (CK) { 486 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 487 488 // Atomic to non-atomic casts may be more than a no-op for some platforms and 489 // for some types. 490 case CK_AtomicToNonAtomic: 491 case CK_NonAtomicToAtomic: 492 case CK_NoOp: 493 case CK_LValueToRValue: 494 case CK_UserDefinedConversion: 495 return Visit(Op); 496 497 case CK_LValueBitCast: { 498 LValue origLV = CGF.EmitLValue(Op); 499 Address V = origLV.getAddress(CGF).withElementType(CGF.ConvertType(DestTy)); 500 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 501 } 502 503 case CK_LValueToRValueBitCast: { 504 LValue SourceLVal = CGF.EmitLValue(Op); 505 Address Addr = SourceLVal.getAddress(CGF).withElementType( 506 CGF.ConvertTypeForMem(DestTy)); 507 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 508 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 509 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 510 } 511 512 case CK_BitCast: 513 case CK_BaseToDerived: 514 case CK_DerivedToBase: 515 case CK_UncheckedDerivedToBase: 516 case CK_Dynamic: 517 case CK_ToUnion: 518 case CK_ArrayToPointerDecay: 519 case CK_FunctionToPointerDecay: 520 case CK_NullToPointer: 521 case CK_NullToMemberPointer: 522 case CK_BaseToDerivedMemberPointer: 523 case CK_DerivedToBaseMemberPointer: 524 case CK_MemberPointerToBoolean: 525 case CK_ReinterpretMemberPointer: 526 case CK_ConstructorConversion: 527 case CK_IntegralToPointer: 528 case CK_PointerToIntegral: 529 case CK_PointerToBoolean: 530 case CK_ToVoid: 531 case CK_VectorSplat: 532 case CK_IntegralCast: 533 case CK_BooleanToSignedIntegral: 534 case CK_IntegralToBoolean: 535 case CK_IntegralToFloating: 536 case CK_FloatingToIntegral: 537 case CK_FloatingToBoolean: 538 case CK_FloatingCast: 539 case CK_CPointerToObjCPointerCast: 540 case CK_BlockPointerToObjCPointerCast: 541 case CK_AnyPointerToBlockPointerCast: 542 case CK_ObjCObjectLValueCast: 543 case CK_FloatingComplexToReal: 544 case CK_FloatingComplexToBoolean: 545 case CK_IntegralComplexToReal: 546 case CK_IntegralComplexToBoolean: 547 case CK_ARCProduceObject: 548 case CK_ARCConsumeObject: 549 case CK_ARCReclaimReturnedObject: 550 case CK_ARCExtendBlockObject: 551 case CK_CopyAndAutoreleaseBlockObject: 552 case CK_BuiltinFnToFnPtr: 553 case CK_ZeroToOCLOpaqueType: 554 case CK_AddressSpaceConversion: 555 case CK_IntToOCLSampler: 556 case CK_FloatingToFixedPoint: 557 case CK_FixedPointToFloating: 558 case CK_FixedPointCast: 559 case CK_FixedPointToBoolean: 560 case CK_FixedPointToIntegral: 561 case CK_IntegralToFixedPoint: 562 case CK_MatrixCast: 563 llvm_unreachable("invalid cast kind for complex value"); 564 565 case CK_FloatingRealToComplex: 566 case CK_IntegralRealToComplex: { 567 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 568 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 569 DestTy, Op->getExprLoc()); 570 } 571 572 case CK_FloatingComplexCast: 573 case CK_FloatingComplexToIntegralComplex: 574 case CK_IntegralComplexCast: 575 case CK_IntegralComplexToFloatingComplex: { 576 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 577 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 578 Op->getExprLoc()); 579 } 580 } 581 582 llvm_unreachable("unknown cast resulting in complex value"); 583 } 584 585 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E, 586 QualType PromotionType) { 587 QualType promotionTy = PromotionType.isNull() 588 ? getPromotionType(E->getSubExpr()->getType()) 589 : PromotionType; 590 ComplexPairTy result = VisitPlus(E, promotionTy); 591 if (!promotionTy.isNull()) 592 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 593 return result; 594 } 595 596 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E, 597 QualType PromotionType) { 598 TestAndClearIgnoreReal(); 599 TestAndClearIgnoreImag(); 600 if (!PromotionType.isNull()) 601 return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 602 return Visit(E->getSubExpr()); 603 } 604 605 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E, 606 QualType PromotionType) { 607 QualType promotionTy = PromotionType.isNull() 608 ? getPromotionType(E->getSubExpr()->getType()) 609 : PromotionType; 610 ComplexPairTy result = VisitMinus(E, promotionTy); 611 if (!promotionTy.isNull()) 612 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 613 return result; 614 } 615 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E, 616 QualType PromotionType) { 617 TestAndClearIgnoreReal(); 618 TestAndClearIgnoreImag(); 619 ComplexPairTy Op; 620 if (!PromotionType.isNull()) 621 Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 622 else 623 Op = Visit(E->getSubExpr()); 624 625 llvm::Value *ResR, *ResI; 626 if (Op.first->getType()->isFloatingPointTy()) { 627 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 628 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 629 } else { 630 ResR = Builder.CreateNeg(Op.first, "neg.r"); 631 ResI = Builder.CreateNeg(Op.second, "neg.i"); 632 } 633 return ComplexPairTy(ResR, ResI); 634 } 635 636 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 637 TestAndClearIgnoreReal(); 638 TestAndClearIgnoreImag(); 639 // ~(a+ib) = a + i*-b 640 ComplexPairTy Op = Visit(E->getSubExpr()); 641 llvm::Value *ResI; 642 if (Op.second->getType()->isFloatingPointTy()) 643 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 644 else 645 ResI = Builder.CreateNeg(Op.second, "conj.i"); 646 647 return ComplexPairTy(Op.first, ResI); 648 } 649 650 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 651 llvm::Value *ResR, *ResI; 652 653 if (Op.LHS.first->getType()->isFloatingPointTy()) { 654 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 655 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 656 if (Op.LHS.second && Op.RHS.second) 657 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 658 else 659 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 660 assert(ResI && "Only one operand may be real!"); 661 } else { 662 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 663 assert(Op.LHS.second && Op.RHS.second && 664 "Both operands of integer complex operators must be complex!"); 665 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 666 } 667 return ComplexPairTy(ResR, ResI); 668 } 669 670 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 671 llvm::Value *ResR, *ResI; 672 if (Op.LHS.first->getType()->isFloatingPointTy()) { 673 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 674 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 675 if (Op.LHS.second && Op.RHS.second) 676 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 677 else 678 ResI = Op.LHS.second ? Op.LHS.second 679 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 680 assert(ResI && "Only one operand may be real!"); 681 } else { 682 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 683 assert(Op.LHS.second && Op.RHS.second && 684 "Both operands of integer complex operators must be complex!"); 685 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 686 } 687 return ComplexPairTy(ResR, ResI); 688 } 689 690 /// Emit a libcall for a binary operation on complex types. 691 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 692 const BinOpInfo &Op) { 693 CallArgList Args; 694 Args.add(RValue::get(Op.LHS.first), 695 Op.Ty->castAs<ComplexType>()->getElementType()); 696 Args.add(RValue::get(Op.LHS.second), 697 Op.Ty->castAs<ComplexType>()->getElementType()); 698 Args.add(RValue::get(Op.RHS.first), 699 Op.Ty->castAs<ComplexType>()->getElementType()); 700 Args.add(RValue::get(Op.RHS.second), 701 Op.Ty->castAs<ComplexType>()->getElementType()); 702 703 // We *must* use the full CG function call building logic here because the 704 // complex type has special ABI handling. We also should not forget about 705 // special calling convention which may be used for compiler builtins. 706 707 // We create a function qualified type to state that this call does not have 708 // any exceptions. 709 FunctionProtoType::ExtProtoInfo EPI; 710 EPI = EPI.withExceptionSpec( 711 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 712 SmallVector<QualType, 4> ArgsQTys( 713 4, Op.Ty->castAs<ComplexType>()->getElementType()); 714 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 715 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 716 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 717 718 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 719 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 720 FTy, LibCallName, llvm::AttributeList(), true); 721 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 722 723 llvm::CallBase *Call; 724 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 725 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 726 return Res.getComplexVal(); 727 } 728 729 /// Lookup the libcall name for a given floating point type complex 730 /// multiply. 731 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 732 switch (Ty->getTypeID()) { 733 default: 734 llvm_unreachable("Unsupported floating point type!"); 735 case llvm::Type::HalfTyID: 736 return "__mulhc3"; 737 case llvm::Type::FloatTyID: 738 return "__mulsc3"; 739 case llvm::Type::DoubleTyID: 740 return "__muldc3"; 741 case llvm::Type::PPC_FP128TyID: 742 return "__multc3"; 743 case llvm::Type::X86_FP80TyID: 744 return "__mulxc3"; 745 case llvm::Type::FP128TyID: 746 return "__multc3"; 747 } 748 } 749 750 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 751 // typed values. 752 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 753 using llvm::Value; 754 Value *ResR, *ResI; 755 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 756 757 if (Op.LHS.first->getType()->isFloatingPointTy()) { 758 // The general formulation is: 759 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 760 // 761 // But we can fold away components which would be zero due to a real 762 // operand according to C11 Annex G.5.1p2. 763 // FIXME: C11 also provides for imaginary types which would allow folding 764 // still more of this within the type system. 765 766 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 767 if (Op.LHS.second && Op.RHS.second) { 768 // If both operands are complex, emit the core math directly, and then 769 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 770 // to carefully re-compute the correct infinity representation if 771 // possible. The expectation is that the presence of NaNs here is 772 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 773 // This is good, because the libcall re-computes the core multiplication 774 // exactly the same as we do here and re-tests for NaNs in order to be 775 // a generic complex*complex libcall. 776 777 // First compute the four products. 778 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 779 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 780 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 781 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 782 783 // The real part is the difference of the first two, the imaginary part is 784 // the sum of the second. 785 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 786 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 787 788 if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Limited || 789 Op.FPFeatures.getComplexRange() == LangOptions::CX_Fortran) 790 return ComplexPairTy(ResR, ResI); 791 792 // Emit the test for the real part becoming NaN and create a branch to 793 // handle it. We test for NaN by comparing the number to itself. 794 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 795 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 796 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 797 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 798 llvm::BasicBlock *OrigBB = Branch->getParent(); 799 800 // Give hint that we very much don't expect to see NaNs. 801 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 802 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 803 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 804 805 // Now test the imaginary part and create its branch. 806 CGF.EmitBlock(INaNBB); 807 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 808 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 809 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 810 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 811 812 // Now emit the libcall on this slowest of the slow paths. 813 CGF.EmitBlock(LibCallBB); 814 Value *LibCallR, *LibCallI; 815 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 816 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 817 Builder.CreateBr(ContBB); 818 819 // Finally continue execution by phi-ing together the different 820 // computation paths. 821 CGF.EmitBlock(ContBB); 822 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 823 RealPHI->addIncoming(ResR, OrigBB); 824 RealPHI->addIncoming(ResR, INaNBB); 825 RealPHI->addIncoming(LibCallR, LibCallBB); 826 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 827 ImagPHI->addIncoming(ResI, OrigBB); 828 ImagPHI->addIncoming(ResI, INaNBB); 829 ImagPHI->addIncoming(LibCallI, LibCallBB); 830 return ComplexPairTy(RealPHI, ImagPHI); 831 } 832 assert((Op.LHS.second || Op.RHS.second) && 833 "At least one operand must be complex!"); 834 835 // If either of the operands is a real rather than a complex, the 836 // imaginary component is ignored when computing the real component of the 837 // result. 838 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 839 840 ResI = Op.LHS.second 841 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 842 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 843 } else { 844 assert(Op.LHS.second && Op.RHS.second && 845 "Both operands of integer complex operators must be complex!"); 846 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 847 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 848 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 849 850 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 851 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 852 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 853 } 854 return ComplexPairTy(ResR, ResI); 855 } 856 857 ComplexPairTy ComplexExprEmitter::EmitAlgebraicDiv(llvm::Value *LHSr, 858 llvm::Value *LHSi, 859 llvm::Value *RHSr, 860 llvm::Value *RHSi) { 861 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 862 llvm::Value *DSTr, *DSTi; 863 864 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 865 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 866 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 867 868 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 869 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 870 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 871 872 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 873 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 874 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 875 876 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 877 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 878 return ComplexPairTy(DSTr, DSTi); 879 } 880 881 // EmitFAbs - Emit a call to @llvm.fabs. 882 static llvm::Value *EmitllvmFAbs(CodeGenFunction &CGF, llvm::Value *Value) { 883 llvm::Function *Func = 884 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Value->getType()); 885 llvm::Value *Call = CGF.Builder.CreateCall(Func, Value); 886 return Call; 887 } 888 889 // EmitRangeReductionDiv - Implements Smith's algorithm for complex division. 890 // SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962). 891 ComplexPairTy ComplexExprEmitter::EmitRangeReductionDiv(llvm::Value *LHSr, 892 llvm::Value *LHSi, 893 llvm::Value *RHSr, 894 llvm::Value *RHSi) { 895 // (a + ib) / (c + id) = (e + if) 896 llvm::Value *FAbsRHSr = EmitllvmFAbs(CGF, RHSr); // |c| 897 llvm::Value *FAbsRHSi = EmitllvmFAbs(CGF, RHSi); // |d| 898 // |c| >= |d| 899 llvm::Value *IsR = Builder.CreateFCmpUGT(FAbsRHSr, FAbsRHSi, "abs_cmp"); 900 901 llvm::BasicBlock *TrueBB = 902 CGF.createBasicBlock("abs_rhsr_greater_or_equal_abs_rhsi"); 903 llvm::BasicBlock *FalseBB = 904 CGF.createBasicBlock("abs_rhsr_less_than_abs_rhsi"); 905 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_div"); 906 Builder.CreateCondBr(IsR, TrueBB, FalseBB); 907 908 CGF.EmitBlock(TrueBB); 909 // abs(c) >= abs(d) 910 // r = d/c 911 // tmp = c + rd 912 // e = (a + br)/tmp 913 // f = (b - ar)/tmp 914 llvm::Value *DdC = Builder.CreateFDiv(RHSi, RHSr); // r=d/c 915 916 llvm::Value *RD = Builder.CreateFMul(DdC, RHSi); // rd 917 llvm::Value *CpRD = Builder.CreateFAdd(RHSr, RD); // tmp=c+rd 918 919 llvm::Value *T3 = Builder.CreateFMul(LHSi, DdC); // br 920 llvm::Value *T4 = Builder.CreateFAdd(LHSr, T3); // a+br 921 llvm::Value *DSTTr = Builder.CreateFDiv(T4, CpRD); // (a+br)/tmp 922 923 llvm::Value *T5 = Builder.CreateFMul(LHSr, DdC); // ar 924 llvm::Value *T6 = Builder.CreateFSub(LHSi, T5); // b-ar 925 llvm::Value *DSTTi = Builder.CreateFDiv(T6, CpRD); // (b-ar)/tmp 926 Builder.CreateBr(ContBB); 927 928 CGF.EmitBlock(FalseBB); 929 // abs(c) < abs(d) 930 // r = c/d 931 // tmp = d + rc 932 // e = (ar + b)/tmp 933 // f = (br - a)/tmp 934 llvm::Value *CdD = Builder.CreateFDiv(RHSr, RHSi); // r=c/d 935 936 llvm::Value *RC = Builder.CreateFMul(CdD, RHSr); // rc 937 llvm::Value *DpRC = Builder.CreateFAdd(RHSi, RC); // tmp=d+rc 938 939 llvm::Value *T7 = Builder.CreateFMul(LHSr, RC); // ar 940 llvm::Value *T8 = Builder.CreateFAdd(T7, LHSi); // ar+b 941 llvm::Value *DSTFr = Builder.CreateFDiv(T8, DpRC); // (ar+b)/tmp 942 943 llvm::Value *T9 = Builder.CreateFMul(LHSi, CdD); // br 944 llvm::Value *T10 = Builder.CreateFSub(T9, LHSr); // br-a 945 llvm::Value *DSTFi = Builder.CreateFDiv(T10, DpRC); // (br-a)/tmp 946 Builder.CreateBr(ContBB); 947 948 // Phi together the computation paths. 949 CGF.EmitBlock(ContBB); 950 llvm::PHINode *VALr = Builder.CreatePHI(DSTTr->getType(), 2); 951 VALr->addIncoming(DSTTr, TrueBB); 952 VALr->addIncoming(DSTFr, FalseBB); 953 llvm::PHINode *VALi = Builder.CreatePHI(DSTTi->getType(), 2); 954 VALi->addIncoming(DSTTi, TrueBB); 955 VALi->addIncoming(DSTFi, FalseBB); 956 return ComplexPairTy(VALr, VALi); 957 } 958 959 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 960 // typed values. 961 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 962 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 963 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 964 llvm::Value *DSTr, *DSTi; 965 if (LHSr->getType()->isFloatingPointTy()) { 966 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 967 if (!RHSi) { 968 assert(LHSi && "Can have at most one non-complex operand!"); 969 970 DSTr = Builder.CreateFDiv(LHSr, RHSr); 971 DSTi = Builder.CreateFDiv(LHSi, RHSr); 972 return ComplexPairTy(DSTr, DSTi); 973 } 974 llvm::Value *OrigLHSi = LHSi; 975 if (!LHSi) 976 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 977 if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Fortran) 978 return EmitRangeReductionDiv(LHSr, LHSi, RHSr, RHSi); 979 else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Limited) 980 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); 981 else if (!CGF.getLangOpts().FastMath) { 982 LHSi = OrigLHSi; 983 // If we have a complex operand on the RHS and FastMath is not allowed, we 984 // delegate to a libcall to handle all of the complexities and minimize 985 // underflow/overflow cases. When FastMath is allowed we construct the 986 // divide inline using the same algorithm as for integer operands. 987 // 988 // FIXME: We would be able to avoid the libcall in many places if we 989 // supported imaginary types in addition to complex types. 990 BinOpInfo LibCallOp = Op; 991 // If LHS was a real, supply a null imaginary part. 992 if (!LHSi) 993 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 994 995 switch (LHSr->getType()->getTypeID()) { 996 default: 997 llvm_unreachable("Unsupported floating point type!"); 998 case llvm::Type::HalfTyID: 999 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 1000 case llvm::Type::FloatTyID: 1001 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 1002 case llvm::Type::DoubleTyID: 1003 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 1004 case llvm::Type::PPC_FP128TyID: 1005 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 1006 case llvm::Type::X86_FP80TyID: 1007 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 1008 case llvm::Type::FP128TyID: 1009 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 1010 } 1011 } else { 1012 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); 1013 } 1014 } else { 1015 assert(Op.LHS.second && Op.RHS.second && 1016 "Both operands of integer complex operators must be complex!"); 1017 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 1018 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 1019 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 1020 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 1021 1022 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 1023 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 1024 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 1025 1026 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 1027 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 1028 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 1029 1030 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 1031 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 1032 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 1033 } else { 1034 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 1035 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 1036 } 1037 } 1038 1039 return ComplexPairTy(DSTr, DSTi); 1040 } 1041 1042 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result, 1043 QualType UnPromotionType) { 1044 llvm::Type *ComplexElementTy = 1045 ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType()); 1046 if (result.first) 1047 result.first = 1048 Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion"); 1049 if (result.second) 1050 result.second = 1051 Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion"); 1052 return result; 1053 } 1054 1055 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result, 1056 QualType PromotionType) { 1057 llvm::Type *ComplexElementTy = 1058 ConvertType(PromotionType->castAs<ComplexType>()->getElementType()); 1059 if (result.first) 1060 result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext"); 1061 if (result.second) 1062 result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext"); 1063 1064 return result; 1065 } 1066 1067 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E, 1068 QualType PromotionType) { 1069 E = E->IgnoreParens(); 1070 if (auto BO = dyn_cast<BinaryOperator>(E)) { 1071 switch (BO->getOpcode()) { 1072 #define HANDLE_BINOP(OP) \ 1073 case BO_##OP: \ 1074 return EmitBin##OP(EmitBinOps(BO, PromotionType)); 1075 HANDLE_BINOP(Add) 1076 HANDLE_BINOP(Sub) 1077 HANDLE_BINOP(Mul) 1078 HANDLE_BINOP(Div) 1079 #undef HANDLE_BINOP 1080 default: 1081 break; 1082 } 1083 } else if (auto UO = dyn_cast<UnaryOperator>(E)) { 1084 switch (UO->getOpcode()) { 1085 case UO_Minus: 1086 return VisitMinus(UO, PromotionType); 1087 case UO_Plus: 1088 return VisitPlus(UO, PromotionType); 1089 default: 1090 break; 1091 } 1092 } 1093 auto result = Visit(const_cast<Expr *>(E)); 1094 if (!PromotionType.isNull()) 1095 return CGF.EmitPromotedValue(result, PromotionType); 1096 else 1097 return result; 1098 } 1099 1100 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E, 1101 QualType DstTy) { 1102 return ComplexExprEmitter(*this).EmitPromoted(E, DstTy); 1103 } 1104 1105 ComplexPairTy 1106 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E, 1107 QualType OverallPromotionType) { 1108 if (E->getType()->isAnyComplexType()) { 1109 if (!OverallPromotionType.isNull()) 1110 return CGF.EmitPromotedComplexExpr(E, OverallPromotionType); 1111 else 1112 return Visit(const_cast<Expr *>(E)); 1113 } else { 1114 if (!OverallPromotionType.isNull()) { 1115 QualType ComplexElementTy = 1116 OverallPromotionType->castAs<ComplexType>()->getElementType(); 1117 return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy), 1118 nullptr); 1119 } else { 1120 return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr); 1121 } 1122 } 1123 } 1124 1125 ComplexExprEmitter::BinOpInfo 1126 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E, 1127 QualType PromotionType) { 1128 TestAndClearIgnoreReal(); 1129 TestAndClearIgnoreImag(); 1130 BinOpInfo Ops; 1131 1132 Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType); 1133 Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType); 1134 if (!PromotionType.isNull()) 1135 Ops.Ty = PromotionType; 1136 else 1137 Ops.Ty = E->getType(); 1138 Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1139 return Ops; 1140 } 1141 1142 1143 LValue ComplexExprEmitter:: 1144 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 1145 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 1146 RValue &Val) { 1147 TestAndClearIgnoreReal(); 1148 TestAndClearIgnoreImag(); 1149 QualType LHSTy = E->getLHS()->getType(); 1150 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 1151 LHSTy = AT->getValueType(); 1152 1153 BinOpInfo OpInfo; 1154 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1155 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 1156 1157 // Load the RHS and LHS operands. 1158 // __block variables need to have the rhs evaluated first, plus this should 1159 // improve codegen a little. 1160 QualType PromotionTypeCR; 1161 PromotionTypeCR = getPromotionType(E->getComputationResultType()); 1162 if (PromotionTypeCR.isNull()) 1163 PromotionTypeCR = E->getComputationResultType(); 1164 OpInfo.Ty = PromotionTypeCR; 1165 QualType ComplexElementTy = 1166 OpInfo.Ty->castAs<ComplexType>()->getElementType(); 1167 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType()); 1168 1169 // The RHS should have been converted to the computation type. 1170 if (E->getRHS()->getType()->isRealFloatingType()) { 1171 if (!PromotionTypeRHS.isNull()) 1172 OpInfo.RHS = ComplexPairTy( 1173 CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr); 1174 else { 1175 assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, 1176 E->getRHS()->getType())); 1177 1178 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 1179 } 1180 } else { 1181 if (!PromotionTypeRHS.isNull()) { 1182 OpInfo.RHS = ComplexPairTy( 1183 CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS)); 1184 } else { 1185 assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty, 1186 E->getRHS()->getType())); 1187 OpInfo.RHS = Visit(E->getRHS()); 1188 } 1189 } 1190 1191 LValue LHS = CGF.EmitLValue(E->getLHS()); 1192 1193 // Load from the l-value and convert it. 1194 SourceLocation Loc = E->getExprLoc(); 1195 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType()); 1196 if (LHSTy->isAnyComplexType()) { 1197 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 1198 if (!PromotionTypeLHS.isNull()) 1199 OpInfo.LHS = 1200 EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc); 1201 else 1202 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1203 } else { 1204 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 1205 // For floating point real operands we can directly pass the scalar form 1206 // to the binary operator emission and potentially get more efficient code. 1207 if (LHSTy->isRealFloatingType()) { 1208 QualType PromotedComplexElementTy; 1209 if (!PromotionTypeLHS.isNull()) { 1210 PromotedComplexElementTy = 1211 cast<ComplexType>(PromotionTypeLHS)->getElementType(); 1212 if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy, 1213 PromotionTypeLHS)) 1214 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, 1215 PromotedComplexElementTy, Loc); 1216 } else { 1217 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 1218 LHSVal = 1219 CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 1220 } 1221 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 1222 } else { 1223 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1224 } 1225 } 1226 1227 // Expand the binary operator. 1228 ComplexPairTy Result = (this->*Func)(OpInfo); 1229 1230 // Truncate the result and store it into the LHS lvalue. 1231 if (LHSTy->isAnyComplexType()) { 1232 ComplexPairTy ResVal = 1233 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 1234 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 1235 Val = RValue::getComplex(ResVal); 1236 } else { 1237 llvm::Value *ResVal = 1238 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 1239 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 1240 Val = RValue::get(ResVal); 1241 } 1242 1243 return LHS; 1244 } 1245 1246 // Compound assignments. 1247 ComplexPairTy ComplexExprEmitter:: 1248 EmitCompoundAssign(const CompoundAssignOperator *E, 1249 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 1250 RValue Val; 1251 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 1252 1253 // The result of an assignment in C is the assigned r-value. 1254 if (!CGF.getLangOpts().CPlusPlus) 1255 return Val.getComplexVal(); 1256 1257 // If the lvalue is non-volatile, return the computed value of the assignment. 1258 if (!LV.isVolatileQualified()) 1259 return Val.getComplexVal(); 1260 1261 return EmitLoadOfLValue(LV, E->getExprLoc()); 1262 } 1263 1264 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 1265 ComplexPairTy &Val) { 1266 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1267 E->getRHS()->getType()) && 1268 "Invalid assignment"); 1269 TestAndClearIgnoreReal(); 1270 TestAndClearIgnoreImag(); 1271 1272 // Emit the RHS. __block variables need the RHS evaluated first. 1273 Val = Visit(E->getRHS()); 1274 1275 // Compute the address to store into. 1276 LValue LHS = CGF.EmitLValue(E->getLHS()); 1277 1278 // Store the result value into the LHS lvalue. 1279 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 1280 1281 return LHS; 1282 } 1283 1284 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1285 ComplexPairTy Val; 1286 LValue LV = EmitBinAssignLValue(E, Val); 1287 1288 // The result of an assignment in C is the assigned r-value. 1289 if (!CGF.getLangOpts().CPlusPlus) 1290 return Val; 1291 1292 // If the lvalue is non-volatile, return the computed value of the assignment. 1293 if (!LV.isVolatileQualified()) 1294 return Val; 1295 1296 return EmitLoadOfLValue(LV, E->getExprLoc()); 1297 } 1298 1299 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1300 CGF.EmitIgnoredExpr(E->getLHS()); 1301 return Visit(E->getRHS()); 1302 } 1303 1304 ComplexPairTy ComplexExprEmitter:: 1305 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1306 TestAndClearIgnoreReal(); 1307 TestAndClearIgnoreImag(); 1308 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1309 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1310 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1311 1312 // Bind the common expression if necessary. 1313 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1314 1315 1316 CodeGenFunction::ConditionalEvaluation eval(CGF); 1317 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1318 CGF.getProfileCount(E)); 1319 1320 eval.begin(CGF); 1321 CGF.EmitBlock(LHSBlock); 1322 CGF.incrementProfileCounter(E); 1323 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1324 LHSBlock = Builder.GetInsertBlock(); 1325 CGF.EmitBranch(ContBlock); 1326 eval.end(CGF); 1327 1328 eval.begin(CGF); 1329 CGF.EmitBlock(RHSBlock); 1330 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1331 RHSBlock = Builder.GetInsertBlock(); 1332 CGF.EmitBlock(ContBlock); 1333 eval.end(CGF); 1334 1335 // Create a PHI node for the real part. 1336 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1337 RealPN->addIncoming(LHS.first, LHSBlock); 1338 RealPN->addIncoming(RHS.first, RHSBlock); 1339 1340 // Create a PHI node for the imaginary part. 1341 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1342 ImagPN->addIncoming(LHS.second, LHSBlock); 1343 ImagPN->addIncoming(RHS.second, RHSBlock); 1344 1345 return ComplexPairTy(RealPN, ImagPN); 1346 } 1347 1348 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1349 return Visit(E->getChosenSubExpr()); 1350 } 1351 1352 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1353 bool Ignore = TestAndClearIgnoreReal(); 1354 (void)Ignore; 1355 assert (Ignore == false && "init list ignored"); 1356 Ignore = TestAndClearIgnoreImag(); 1357 (void)Ignore; 1358 assert (Ignore == false && "init list ignored"); 1359 1360 if (E->getNumInits() == 2) { 1361 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1362 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1363 return ComplexPairTy(Real, Imag); 1364 } else if (E->getNumInits() == 1) { 1365 return Visit(E->getInit(0)); 1366 } 1367 1368 // Empty init list initializes to null 1369 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1370 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1371 llvm::Type* LTy = CGF.ConvertType(Ty); 1372 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1373 return ComplexPairTy(zeroConstant, zeroConstant); 1374 } 1375 1376 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1377 Address ArgValue = Address::invalid(); 1378 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1379 1380 if (!ArgPtr.isValid()) { 1381 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1382 llvm::Type *EltTy = 1383 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1384 llvm::Value *U = llvm::UndefValue::get(EltTy); 1385 return ComplexPairTy(U, U); 1386 } 1387 1388 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1389 E->getExprLoc()); 1390 } 1391 1392 //===----------------------------------------------------------------------===// 1393 // Entry Point into this File 1394 //===----------------------------------------------------------------------===// 1395 1396 /// EmitComplexExpr - Emit the computation of the specified expression of 1397 /// complex type, ignoring the result. 1398 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1399 bool IgnoreImag) { 1400 assert(E && getComplexType(E->getType()) && 1401 "Invalid complex expression to emit"); 1402 1403 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1404 .Visit(const_cast<Expr *>(E)); 1405 } 1406 1407 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1408 bool isInit) { 1409 assert(E && getComplexType(E->getType()) && 1410 "Invalid complex expression to emit"); 1411 ComplexExprEmitter Emitter(*this); 1412 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1413 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1414 } 1415 1416 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1417 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1418 bool isInit) { 1419 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1420 } 1421 1422 /// EmitLoadOfComplex - Load a complex number from the specified address. 1423 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1424 SourceLocation loc) { 1425 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1426 } 1427 1428 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1429 assert(E->getOpcode() == BO_Assign); 1430 ComplexPairTy Val; // ignored 1431 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1432 if (getLangOpts().OpenMP) 1433 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1434 E->getLHS()); 1435 return LVal; 1436 } 1437 1438 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1439 const ComplexExprEmitter::BinOpInfo &); 1440 1441 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1442 switch (Op) { 1443 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1444 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1445 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1446 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1447 default: 1448 llvm_unreachable("unexpected complex compound assignment"); 1449 } 1450 } 1451 1452 LValue CodeGenFunction:: 1453 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1454 CompoundFunc Op = getComplexOp(E->getOpcode()); 1455 RValue Val; 1456 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1457 } 1458 1459 LValue CodeGenFunction:: 1460 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1461 llvm::Value *&Result) { 1462 CompoundFunc Op = getComplexOp(E->getOpcode()); 1463 RValue Val; 1464 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1465 Result = Val.getScalarVal(); 1466 return Ret; 1467 } 1468