1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/Basic/CodeGenOptions.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 41 42 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 43 isa<CXXOperatorCallExpr>(CE)); 44 assert(MD->isImplicitObjectMemberFunction() && 45 "Trying to emit a member or operator call expr on a static method!"); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD); 50 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 51 52 // If there is an implicit parameter (e.g. VTT), emit it. 53 if (ImplicitParam) { 54 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 55 } 56 57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 58 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 59 unsigned PrefixSize = Args.size() - 1; 60 61 // And the rest of the call args. 62 if (RtlArgs) { 63 // Special case: if the caller emitted the arguments right-to-left already 64 // (prior to emitting the *this argument), we're done. This happens for 65 // assignment operators. 66 Args.addFrom(*RtlArgs); 67 } else if (CE) { 68 // Special case: skip first argument of CXXOperatorCall (it is "this"). 69 unsigned ArgsToSkip = 0; 70 if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(CE)) { 71 if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl())) 72 ArgsToSkip = 73 static_cast<unsigned>(!M->isExplicitObjectMemberFunction()); 74 } 75 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 76 CE->getDirectCallee()); 77 } else { 78 assert( 79 FPT->getNumParams() == 0 && 80 "No CallExpr specified for function with non-zero number of arguments"); 81 } 82 return {required, PrefixSize}; 83 } 84 85 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 86 const CXXMethodDecl *MD, const CGCallee &Callee, 87 ReturnValueSlot ReturnValue, 88 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 89 const CallExpr *CE, CallArgList *RtlArgs) { 90 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 91 CallArgList Args; 92 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 93 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 94 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 95 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 96 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 97 CE && CE == MustTailCall, 98 CE ? CE->getExprLoc() : SourceLocation()); 99 } 100 101 RValue CodeGenFunction::EmitCXXDestructorCall( 102 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 103 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 104 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 105 106 assert(!ThisTy.isNull()); 107 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 108 "Pointer/Object mixup"); 109 110 LangAS SrcAS = ThisTy.getAddressSpace(); 111 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 112 if (SrcAS != DstAS) { 113 QualType DstTy = DtorDecl->getThisType(); 114 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 115 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 116 NewType); 117 } 118 119 CallArgList Args; 120 commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam, 121 ImplicitParamTy, CE, Args, nullptr); 122 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 123 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall, 124 CE ? CE->getExprLoc() : SourceLocation{}); 125 } 126 127 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 128 const CXXPseudoDestructorExpr *E) { 129 QualType DestroyedType = E->getDestroyedType(); 130 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 131 // Automatic Reference Counting: 132 // If the pseudo-expression names a retainable object with weak or 133 // strong lifetime, the object shall be released. 134 Expr *BaseExpr = E->getBase(); 135 Address BaseValue = Address::invalid(); 136 Qualifiers BaseQuals; 137 138 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 139 if (E->isArrow()) { 140 BaseValue = EmitPointerWithAlignment(BaseExpr); 141 const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); 142 BaseQuals = PTy->getPointeeType().getQualifiers(); 143 } else { 144 LValue BaseLV = EmitLValue(BaseExpr); 145 BaseValue = BaseLV.getAddress(*this); 146 QualType BaseTy = BaseExpr->getType(); 147 BaseQuals = BaseTy.getQualifiers(); 148 } 149 150 switch (DestroyedType.getObjCLifetime()) { 151 case Qualifiers::OCL_None: 152 case Qualifiers::OCL_ExplicitNone: 153 case Qualifiers::OCL_Autoreleasing: 154 break; 155 156 case Qualifiers::OCL_Strong: 157 EmitARCRelease(Builder.CreateLoad(BaseValue, 158 DestroyedType.isVolatileQualified()), 159 ARCPreciseLifetime); 160 break; 161 162 case Qualifiers::OCL_Weak: 163 EmitARCDestroyWeak(BaseValue); 164 break; 165 } 166 } else { 167 // C++ [expr.pseudo]p1: 168 // The result shall only be used as the operand for the function call 169 // operator (), and the result of such a call has type void. The only 170 // effect is the evaluation of the postfix-expression before the dot or 171 // arrow. 172 EmitIgnoredExpr(E->getBase()); 173 } 174 175 return RValue::get(nullptr); 176 } 177 178 static CXXRecordDecl *getCXXRecord(const Expr *E) { 179 QualType T = E->getType(); 180 if (const PointerType *PTy = T->getAs<PointerType>()) 181 T = PTy->getPointeeType(); 182 const RecordType *Ty = T->castAs<RecordType>(); 183 return cast<CXXRecordDecl>(Ty->getDecl()); 184 } 185 186 // Note: This function also emit constructor calls to support a MSVC 187 // extensions allowing explicit constructor function call. 188 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 189 ReturnValueSlot ReturnValue) { 190 const Expr *callee = CE->getCallee()->IgnoreParens(); 191 192 if (isa<BinaryOperator>(callee)) 193 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 194 195 const MemberExpr *ME = cast<MemberExpr>(callee); 196 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 197 198 if (MD->isStatic()) { 199 // The method is static, emit it as we would a regular call. 200 CGCallee callee = 201 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 202 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 203 ReturnValue); 204 } 205 206 bool HasQualifier = ME->hasQualifier(); 207 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 208 bool IsArrow = ME->isArrow(); 209 const Expr *Base = ME->getBase(); 210 211 return EmitCXXMemberOrOperatorMemberCallExpr( 212 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 213 } 214 215 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 216 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 217 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 218 const Expr *Base) { 219 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 220 221 // Compute the object pointer. 222 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 223 224 const CXXMethodDecl *DevirtualizedMethod = nullptr; 225 if (CanUseVirtualCall && 226 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 227 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 228 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 229 assert(DevirtualizedMethod); 230 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 231 const Expr *Inner = Base->IgnoreParenBaseCasts(); 232 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 233 MD->getReturnType().getCanonicalType()) 234 // If the return types are not the same, this might be a case where more 235 // code needs to run to compensate for it. For example, the derived 236 // method might return a type that inherits form from the return 237 // type of MD and has a prefix. 238 // For now we just avoid devirtualizing these covariant cases. 239 DevirtualizedMethod = nullptr; 240 else if (getCXXRecord(Inner) == DevirtualizedClass) 241 // If the class of the Inner expression is where the dynamic method 242 // is defined, build the this pointer from it. 243 Base = Inner; 244 else if (getCXXRecord(Base) != DevirtualizedClass) { 245 // If the method is defined in a class that is not the best dynamic 246 // one or the one of the full expression, we would have to build 247 // a derived-to-base cast to compute the correct this pointer, but 248 // we don't have support for that yet, so do a virtual call. 249 DevirtualizedMethod = nullptr; 250 } 251 } 252 253 bool TrivialForCodegen = 254 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); 255 bool TrivialAssignment = 256 TrivialForCodegen && 257 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 258 !MD->getParent()->mayInsertExtraPadding(); 259 260 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 261 // operator before the LHS. 262 CallArgList RtlArgStorage; 263 CallArgList *RtlArgs = nullptr; 264 LValue TrivialAssignmentRHS; 265 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 266 if (OCE->isAssignmentOp()) { 267 if (TrivialAssignment) { 268 TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); 269 } else { 270 RtlArgs = &RtlArgStorage; 271 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 272 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 273 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 274 } 275 } 276 } 277 278 LValue This; 279 if (IsArrow) { 280 LValueBaseInfo BaseInfo; 281 TBAAAccessInfo TBAAInfo; 282 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 283 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 284 } else { 285 This = EmitLValue(Base); 286 } 287 288 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 289 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 290 // constructing a new complete object of type Ctor. 291 assert(!RtlArgs); 292 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 293 CallArgList Args; 294 commonEmitCXXMemberOrOperatorCall( 295 *this, {Ctor, Ctor_Complete}, This.getPointer(*this), 296 /*ImplicitParam=*/nullptr, 297 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 298 299 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 300 /*Delegating=*/false, This.getAddress(*this), Args, 301 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 302 /*NewPointerIsChecked=*/false); 303 return RValue::get(nullptr); 304 } 305 306 if (TrivialForCodegen) { 307 if (isa<CXXDestructorDecl>(MD)) 308 return RValue::get(nullptr); 309 310 if (TrivialAssignment) { 311 // We don't like to generate the trivial copy/move assignment operator 312 // when it isn't necessary; just produce the proper effect here. 313 // It's important that we use the result of EmitLValue here rather than 314 // emitting call arguments, in order to preserve TBAA information from 315 // the RHS. 316 LValue RHS = isa<CXXOperatorCallExpr>(CE) 317 ? TrivialAssignmentRHS 318 : EmitLValue(*CE->arg_begin()); 319 EmitAggregateAssign(This, RHS, CE->getType()); 320 return RValue::get(This.getPointer(*this)); 321 } 322 323 assert(MD->getParent()->mayInsertExtraPadding() && 324 "unknown trivial member function"); 325 } 326 327 // Compute the function type we're calling. 328 const CXXMethodDecl *CalleeDecl = 329 DevirtualizedMethod ? DevirtualizedMethod : MD; 330 const CGFunctionInfo *FInfo = nullptr; 331 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 332 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 333 GlobalDecl(Dtor, Dtor_Complete)); 334 else 335 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 336 337 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 338 339 // C++11 [class.mfct.non-static]p2: 340 // If a non-static member function of a class X is called for an object that 341 // is not of type X, or of a type derived from X, the behavior is undefined. 342 SourceLocation CallLoc; 343 ASTContext &C = getContext(); 344 if (CE) 345 CallLoc = CE->getExprLoc(); 346 347 SanitizerSet SkippedChecks; 348 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 349 auto *IOA = CMCE->getImplicitObjectArgument(); 350 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 351 if (IsImplicitObjectCXXThis) 352 SkippedChecks.set(SanitizerKind::Alignment, true); 353 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 354 SkippedChecks.set(SanitizerKind::Null, true); 355 } 356 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, 357 This.getPointer(*this), 358 C.getRecordType(CalleeDecl->getParent()), 359 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 360 361 // C++ [class.virtual]p12: 362 // Explicit qualification with the scope operator (5.1) suppresses the 363 // virtual call mechanism. 364 // 365 // We also don't emit a virtual call if the base expression has a record type 366 // because then we know what the type is. 367 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 368 369 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 370 assert(CE->arg_begin() == CE->arg_end() && 371 "Destructor shouldn't have explicit parameters"); 372 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 373 if (UseVirtualCall) { 374 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 375 This.getAddress(*this), 376 cast<CXXMemberCallExpr>(CE)); 377 } else { 378 GlobalDecl GD(Dtor, Dtor_Complete); 379 CGCallee Callee; 380 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 381 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 382 else if (!DevirtualizedMethod) 383 Callee = 384 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 385 else { 386 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 387 } 388 389 QualType ThisTy = 390 IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 391 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, 392 /*ImplicitParam=*/nullptr, 393 /*ImplicitParamTy=*/QualType(), CE); 394 } 395 return RValue::get(nullptr); 396 } 397 398 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 399 // 'CalleeDecl' instead. 400 401 CGCallee Callee; 402 if (UseVirtualCall) { 403 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty); 404 } else { 405 if (SanOpts.has(SanitizerKind::CFINVCall) && 406 MD->getParent()->isDynamicClass()) { 407 llvm::Value *VTable; 408 const CXXRecordDecl *RD; 409 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( 410 *this, This.getAddress(*this), CalleeDecl->getParent()); 411 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 412 } 413 414 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 415 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 416 else if (!DevirtualizedMethod) 417 Callee = 418 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 419 else { 420 Callee = 421 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 422 GlobalDecl(DevirtualizedMethod)); 423 } 424 } 425 426 if (MD->isVirtual()) { 427 Address NewThisAddr = 428 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 429 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall); 430 This.setAddress(NewThisAddr); 431 } 432 433 return EmitCXXMemberOrOperatorCall( 434 CalleeDecl, Callee, ReturnValue, This.getPointer(*this), 435 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 436 } 437 438 RValue 439 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 440 ReturnValueSlot ReturnValue) { 441 const BinaryOperator *BO = 442 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 443 const Expr *BaseExpr = BO->getLHS(); 444 const Expr *MemFnExpr = BO->getRHS(); 445 446 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 447 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 448 const auto *RD = 449 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 450 451 // Emit the 'this' pointer. 452 Address This = Address::invalid(); 453 if (BO->getOpcode() == BO_PtrMemI) 454 This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull); 455 else 456 This = EmitLValue(BaseExpr, KnownNonNull).getAddress(*this); 457 458 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 459 QualType(MPT->getClass(), 0)); 460 461 // Get the member function pointer. 462 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 463 464 // Ask the ABI to load the callee. Note that This is modified. 465 llvm::Value *ThisPtrForCall = nullptr; 466 CGCallee Callee = 467 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 468 ThisPtrForCall, MemFnPtr, MPT); 469 470 CallArgList Args; 471 472 QualType ThisType = 473 getContext().getPointerType(getContext().getTagDeclType(RD)); 474 475 // Push the this ptr. 476 Args.add(RValue::get(ThisPtrForCall), ThisType); 477 478 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 479 480 // And the rest of the call args 481 EmitCallArgs(Args, FPT, E->arguments()); 482 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 483 /*PrefixSize=*/0), 484 Callee, ReturnValue, Args, nullptr, E == MustTailCall, 485 E->getExprLoc()); 486 } 487 488 RValue 489 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 490 const CXXMethodDecl *MD, 491 ReturnValueSlot ReturnValue) { 492 assert(MD->isImplicitObjectMemberFunction() && 493 "Trying to emit a member call expr on a static method!"); 494 return EmitCXXMemberOrOperatorMemberCallExpr( 495 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 496 /*IsArrow=*/false, E->getArg(0)); 497 } 498 499 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 500 ReturnValueSlot ReturnValue) { 501 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 502 } 503 504 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 505 Address DestPtr, 506 const CXXRecordDecl *Base) { 507 if (Base->isEmpty()) 508 return; 509 510 DestPtr = DestPtr.withElementType(CGF.Int8Ty); 511 512 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 513 CharUnits NVSize = Layout.getNonVirtualSize(); 514 515 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 516 // present, they are initialized by the most derived class before calling the 517 // constructor. 518 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 519 Stores.emplace_back(CharUnits::Zero(), NVSize); 520 521 // Each store is split by the existence of a vbptr. 522 CharUnits VBPtrWidth = CGF.getPointerSize(); 523 std::vector<CharUnits> VBPtrOffsets = 524 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 525 for (CharUnits VBPtrOffset : VBPtrOffsets) { 526 // Stop before we hit any virtual base pointers located in virtual bases. 527 if (VBPtrOffset >= NVSize) 528 break; 529 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 530 CharUnits LastStoreOffset = LastStore.first; 531 CharUnits LastStoreSize = LastStore.second; 532 533 CharUnits SplitBeforeOffset = LastStoreOffset; 534 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 535 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 536 if (!SplitBeforeSize.isZero()) 537 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 538 539 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 540 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 541 assert(!SplitAfterSize.isNegative() && "negative store size!"); 542 if (!SplitAfterSize.isZero()) 543 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 544 } 545 546 // If the type contains a pointer to data member we can't memset it to zero. 547 // Instead, create a null constant and copy it to the destination. 548 // TODO: there are other patterns besides zero that we can usefully memset, 549 // like -1, which happens to be the pattern used by member-pointers. 550 // TODO: isZeroInitializable can be over-conservative in the case where a 551 // virtual base contains a member pointer. 552 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 553 if (!NullConstantForBase->isNullValue()) { 554 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 555 CGF.CGM.getModule(), NullConstantForBase->getType(), 556 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 557 NullConstantForBase, Twine()); 558 559 CharUnits Align = 560 std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment()); 561 NullVariable->setAlignment(Align.getAsAlign()); 562 563 Address SrcPtr(NullVariable, CGF.Int8Ty, Align); 564 565 // Get and call the appropriate llvm.memcpy overload. 566 for (std::pair<CharUnits, CharUnits> Store : Stores) { 567 CharUnits StoreOffset = Store.first; 568 CharUnits StoreSize = Store.second; 569 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 570 CGF.Builder.CreateMemCpy( 571 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 572 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 573 StoreSizeVal); 574 } 575 576 // Otherwise, just memset the whole thing to zero. This is legal 577 // because in LLVM, all default initializers (other than the ones we just 578 // handled above) are guaranteed to have a bit pattern of all zeros. 579 } else { 580 for (std::pair<CharUnits, CharUnits> Store : Stores) { 581 CharUnits StoreOffset = Store.first; 582 CharUnits StoreSize = Store.second; 583 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 584 CGF.Builder.CreateMemSet( 585 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 586 CGF.Builder.getInt8(0), StoreSizeVal); 587 } 588 } 589 } 590 591 void 592 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 593 AggValueSlot Dest) { 594 assert(!Dest.isIgnored() && "Must have a destination!"); 595 const CXXConstructorDecl *CD = E->getConstructor(); 596 597 // If we require zero initialization before (or instead of) calling the 598 // constructor, as can be the case with a non-user-provided default 599 // constructor, emit the zero initialization now, unless destination is 600 // already zeroed. 601 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 602 switch (E->getConstructionKind()) { 603 case CXXConstructionKind::Delegating: 604 case CXXConstructionKind::Complete: 605 EmitNullInitialization(Dest.getAddress(), E->getType()); 606 break; 607 case CXXConstructionKind::VirtualBase: 608 case CXXConstructionKind::NonVirtualBase: 609 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 610 CD->getParent()); 611 break; 612 } 613 } 614 615 // If this is a call to a trivial default constructor, do nothing. 616 if (CD->isTrivial() && CD->isDefaultConstructor()) 617 return; 618 619 // Elide the constructor if we're constructing from a temporary. 620 if (getLangOpts().ElideConstructors && E->isElidable()) { 621 // FIXME: This only handles the simplest case, where the source object 622 // is passed directly as the first argument to the constructor. 623 // This should also handle stepping though implicit casts and 624 // conversion sequences which involve two steps, with a 625 // conversion operator followed by a converting constructor. 626 const Expr *SrcObj = E->getArg(0); 627 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent())); 628 assert( 629 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 630 EmitAggExpr(SrcObj, Dest); 631 return; 632 } 633 634 if (const ArrayType *arrayType 635 = getContext().getAsArrayType(E->getType())) { 636 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 637 Dest.isSanitizerChecked()); 638 } else { 639 CXXCtorType Type = Ctor_Complete; 640 bool ForVirtualBase = false; 641 bool Delegating = false; 642 643 switch (E->getConstructionKind()) { 644 case CXXConstructionKind::Delegating: 645 // We should be emitting a constructor; GlobalDecl will assert this 646 Type = CurGD.getCtorType(); 647 Delegating = true; 648 break; 649 650 case CXXConstructionKind::Complete: 651 Type = Ctor_Complete; 652 break; 653 654 case CXXConstructionKind::VirtualBase: 655 ForVirtualBase = true; 656 [[fallthrough]]; 657 658 case CXXConstructionKind::NonVirtualBase: 659 Type = Ctor_Base; 660 } 661 662 // Call the constructor. 663 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 664 } 665 } 666 667 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 668 const Expr *Exp) { 669 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 670 Exp = E->getSubExpr(); 671 assert(isa<CXXConstructExpr>(Exp) && 672 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 673 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 674 const CXXConstructorDecl *CD = E->getConstructor(); 675 RunCleanupsScope Scope(*this); 676 677 // If we require zero initialization before (or instead of) calling the 678 // constructor, as can be the case with a non-user-provided default 679 // constructor, emit the zero initialization now. 680 // FIXME. Do I still need this for a copy ctor synthesis? 681 if (E->requiresZeroInitialization()) 682 EmitNullInitialization(Dest, E->getType()); 683 684 assert(!getContext().getAsConstantArrayType(E->getType()) 685 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 686 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 687 } 688 689 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 690 const CXXNewExpr *E) { 691 if (!E->isArray()) 692 return CharUnits::Zero(); 693 694 // No cookie is required if the operator new[] being used is the 695 // reserved placement operator new[]. 696 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 697 return CharUnits::Zero(); 698 699 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 700 } 701 702 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 703 const CXXNewExpr *e, 704 unsigned minElements, 705 llvm::Value *&numElements, 706 llvm::Value *&sizeWithoutCookie) { 707 QualType type = e->getAllocatedType(); 708 709 if (!e->isArray()) { 710 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 711 sizeWithoutCookie 712 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 713 return sizeWithoutCookie; 714 } 715 716 // The width of size_t. 717 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 718 719 // Figure out the cookie size. 720 llvm::APInt cookieSize(sizeWidth, 721 CalculateCookiePadding(CGF, e).getQuantity()); 722 723 // Emit the array size expression. 724 // We multiply the size of all dimensions for NumElements. 725 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 726 numElements = 727 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 728 if (!numElements) 729 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 730 assert(isa<llvm::IntegerType>(numElements->getType())); 731 732 // The number of elements can be have an arbitrary integer type; 733 // essentially, we need to multiply it by a constant factor, add a 734 // cookie size, and verify that the result is representable as a 735 // size_t. That's just a gloss, though, and it's wrong in one 736 // important way: if the count is negative, it's an error even if 737 // the cookie size would bring the total size >= 0. 738 bool isSigned 739 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 740 llvm::IntegerType *numElementsType 741 = cast<llvm::IntegerType>(numElements->getType()); 742 unsigned numElementsWidth = numElementsType->getBitWidth(); 743 744 // Compute the constant factor. 745 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 746 while (const ConstantArrayType *CAT 747 = CGF.getContext().getAsConstantArrayType(type)) { 748 type = CAT->getElementType(); 749 arraySizeMultiplier *= CAT->getSize(); 750 } 751 752 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 753 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 754 typeSizeMultiplier *= arraySizeMultiplier; 755 756 // This will be a size_t. 757 llvm::Value *size; 758 759 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 760 // Don't bloat the -O0 code. 761 if (llvm::ConstantInt *numElementsC = 762 dyn_cast<llvm::ConstantInt>(numElements)) { 763 const llvm::APInt &count = numElementsC->getValue(); 764 765 bool hasAnyOverflow = false; 766 767 // If 'count' was a negative number, it's an overflow. 768 if (isSigned && count.isNegative()) 769 hasAnyOverflow = true; 770 771 // We want to do all this arithmetic in size_t. If numElements is 772 // wider than that, check whether it's already too big, and if so, 773 // overflow. 774 else if (numElementsWidth > sizeWidth && 775 numElementsWidth - sizeWidth > count.countl_zero()) 776 hasAnyOverflow = true; 777 778 // Okay, compute a count at the right width. 779 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 780 781 // If there is a brace-initializer, we cannot allocate fewer elements than 782 // there are initializers. If we do, that's treated like an overflow. 783 if (adjustedCount.ult(minElements)) 784 hasAnyOverflow = true; 785 786 // Scale numElements by that. This might overflow, but we don't 787 // care because it only overflows if allocationSize does, too, and 788 // if that overflows then we shouldn't use this. 789 numElements = llvm::ConstantInt::get(CGF.SizeTy, 790 adjustedCount * arraySizeMultiplier); 791 792 // Compute the size before cookie, and track whether it overflowed. 793 bool overflow; 794 llvm::APInt allocationSize 795 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 796 hasAnyOverflow |= overflow; 797 798 // Add in the cookie, and check whether it's overflowed. 799 if (cookieSize != 0) { 800 // Save the current size without a cookie. This shouldn't be 801 // used if there was overflow. 802 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 803 804 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 805 hasAnyOverflow |= overflow; 806 } 807 808 // On overflow, produce a -1 so operator new will fail. 809 if (hasAnyOverflow) { 810 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 811 } else { 812 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 813 } 814 815 // Otherwise, we might need to use the overflow intrinsics. 816 } else { 817 // There are up to five conditions we need to test for: 818 // 1) if isSigned, we need to check whether numElements is negative; 819 // 2) if numElementsWidth > sizeWidth, we need to check whether 820 // numElements is larger than something representable in size_t; 821 // 3) if minElements > 0, we need to check whether numElements is smaller 822 // than that. 823 // 4) we need to compute 824 // sizeWithoutCookie := numElements * typeSizeMultiplier 825 // and check whether it overflows; and 826 // 5) if we need a cookie, we need to compute 827 // size := sizeWithoutCookie + cookieSize 828 // and check whether it overflows. 829 830 llvm::Value *hasOverflow = nullptr; 831 832 // If numElementsWidth > sizeWidth, then one way or another, we're 833 // going to have to do a comparison for (2), and this happens to 834 // take care of (1), too. 835 if (numElementsWidth > sizeWidth) { 836 llvm::APInt threshold = 837 llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth); 838 839 llvm::Value *thresholdV 840 = llvm::ConstantInt::get(numElementsType, threshold); 841 842 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 843 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 844 845 // Otherwise, if we're signed, we want to sext up to size_t. 846 } else if (isSigned) { 847 if (numElementsWidth < sizeWidth) 848 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 849 850 // If there's a non-1 type size multiplier, then we can do the 851 // signedness check at the same time as we do the multiply 852 // because a negative number times anything will cause an 853 // unsigned overflow. Otherwise, we have to do it here. But at least 854 // in this case, we can subsume the >= minElements check. 855 if (typeSizeMultiplier == 1) 856 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 857 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 858 859 // Otherwise, zext up to size_t if necessary. 860 } else if (numElementsWidth < sizeWidth) { 861 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 862 } 863 864 assert(numElements->getType() == CGF.SizeTy); 865 866 if (minElements) { 867 // Don't allow allocation of fewer elements than we have initializers. 868 if (!hasOverflow) { 869 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 870 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 871 } else if (numElementsWidth > sizeWidth) { 872 // The other existing overflow subsumes this check. 873 // We do an unsigned comparison, since any signed value < -1 is 874 // taken care of either above or below. 875 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 876 CGF.Builder.CreateICmpULT(numElements, 877 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 878 } 879 } 880 881 size = numElements; 882 883 // Multiply by the type size if necessary. This multiplier 884 // includes all the factors for nested arrays. 885 // 886 // This step also causes numElements to be scaled up by the 887 // nested-array factor if necessary. Overflow on this computation 888 // can be ignored because the result shouldn't be used if 889 // allocation fails. 890 if (typeSizeMultiplier != 1) { 891 llvm::Function *umul_with_overflow 892 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 893 894 llvm::Value *tsmV = 895 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 896 llvm::Value *result = 897 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 898 899 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 900 if (hasOverflow) 901 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 902 else 903 hasOverflow = overflowed; 904 905 size = CGF.Builder.CreateExtractValue(result, 0); 906 907 // Also scale up numElements by the array size multiplier. 908 if (arraySizeMultiplier != 1) { 909 // If the base element type size is 1, then we can re-use the 910 // multiply we just did. 911 if (typeSize.isOne()) { 912 assert(arraySizeMultiplier == typeSizeMultiplier); 913 numElements = size; 914 915 // Otherwise we need a separate multiply. 916 } else { 917 llvm::Value *asmV = 918 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 919 numElements = CGF.Builder.CreateMul(numElements, asmV); 920 } 921 } 922 } else { 923 // numElements doesn't need to be scaled. 924 assert(arraySizeMultiplier == 1); 925 } 926 927 // Add in the cookie size if necessary. 928 if (cookieSize != 0) { 929 sizeWithoutCookie = size; 930 931 llvm::Function *uadd_with_overflow 932 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 933 934 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 935 llvm::Value *result = 936 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 937 938 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 939 if (hasOverflow) 940 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 941 else 942 hasOverflow = overflowed; 943 944 size = CGF.Builder.CreateExtractValue(result, 0); 945 } 946 947 // If we had any possibility of dynamic overflow, make a select to 948 // overwrite 'size' with an all-ones value, which should cause 949 // operator new to throw. 950 if (hasOverflow) 951 size = CGF.Builder.CreateSelect(hasOverflow, 952 llvm::Constant::getAllOnesValue(CGF.SizeTy), 953 size); 954 } 955 956 if (cookieSize == 0) 957 sizeWithoutCookie = size; 958 else 959 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 960 961 return size; 962 } 963 964 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 965 QualType AllocType, Address NewPtr, 966 AggValueSlot::Overlap_t MayOverlap) { 967 // FIXME: Refactor with EmitExprAsInit. 968 switch (CGF.getEvaluationKind(AllocType)) { 969 case TEK_Scalar: 970 CGF.EmitScalarInit(Init, nullptr, 971 CGF.MakeAddrLValue(NewPtr, AllocType), false); 972 return; 973 case TEK_Complex: 974 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 975 /*isInit*/ true); 976 return; 977 case TEK_Aggregate: { 978 AggValueSlot Slot 979 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 980 AggValueSlot::IsDestructed, 981 AggValueSlot::DoesNotNeedGCBarriers, 982 AggValueSlot::IsNotAliased, 983 MayOverlap, AggValueSlot::IsNotZeroed, 984 AggValueSlot::IsSanitizerChecked); 985 CGF.EmitAggExpr(Init, Slot); 986 return; 987 } 988 } 989 llvm_unreachable("bad evaluation kind"); 990 } 991 992 void CodeGenFunction::EmitNewArrayInitializer( 993 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 994 Address BeginPtr, llvm::Value *NumElements, 995 llvm::Value *AllocSizeWithoutCookie) { 996 // If we have a type with trivial initialization and no initializer, 997 // there's nothing to do. 998 if (!E->hasInitializer()) 999 return; 1000 1001 Address CurPtr = BeginPtr; 1002 1003 unsigned InitListElements = 0; 1004 1005 const Expr *Init = E->getInitializer(); 1006 Address EndOfInit = Address::invalid(); 1007 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 1008 EHScopeStack::stable_iterator Cleanup; 1009 llvm::Instruction *CleanupDominator = nullptr; 1010 1011 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 1012 CharUnits ElementAlign = 1013 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 1014 1015 // Attempt to perform zero-initialization using memset. 1016 auto TryMemsetInitialization = [&]() -> bool { 1017 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 1018 // we can initialize with a memset to -1. 1019 if (!CGM.getTypes().isZeroInitializable(ElementType)) 1020 return false; 1021 1022 // Optimization: since zero initialization will just set the memory 1023 // to all zeroes, generate a single memset to do it in one shot. 1024 1025 // Subtract out the size of any elements we've already initialized. 1026 auto *RemainingSize = AllocSizeWithoutCookie; 1027 if (InitListElements) { 1028 // We know this can't overflow; we check this when doing the allocation. 1029 auto *InitializedSize = llvm::ConstantInt::get( 1030 RemainingSize->getType(), 1031 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1032 InitListElements); 1033 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1034 } 1035 1036 // Create the memset. 1037 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1038 return true; 1039 }; 1040 1041 // If the initializer is an initializer list, first do the explicit elements. 1042 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1043 // Initializing from a (braced) string literal is a special case; the init 1044 // list element does not initialize a (single) array element. 1045 if (ILE->isStringLiteralInit()) { 1046 // Initialize the initial portion of length equal to that of the string 1047 // literal. The allocation must be for at least this much; we emitted a 1048 // check for that earlier. 1049 AggValueSlot Slot = 1050 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1051 AggValueSlot::IsDestructed, 1052 AggValueSlot::DoesNotNeedGCBarriers, 1053 AggValueSlot::IsNotAliased, 1054 AggValueSlot::DoesNotOverlap, 1055 AggValueSlot::IsNotZeroed, 1056 AggValueSlot::IsSanitizerChecked); 1057 EmitAggExpr(ILE->getInit(0), Slot); 1058 1059 // Move past these elements. 1060 InitListElements = 1061 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1062 ->getSize().getZExtValue(); 1063 CurPtr = Builder.CreateConstInBoundsGEP( 1064 CurPtr, InitListElements, "string.init.end"); 1065 1066 // Zero out the rest, if any remain. 1067 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1068 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1069 bool OK = TryMemsetInitialization(); 1070 (void)OK; 1071 assert(OK && "couldn't memset character type?"); 1072 } 1073 return; 1074 } 1075 1076 InitListElements = ILE->getNumInits(); 1077 1078 // If this is a multi-dimensional array new, we will initialize multiple 1079 // elements with each init list element. 1080 QualType AllocType = E->getAllocatedType(); 1081 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1082 AllocType->getAsArrayTypeUnsafe())) { 1083 ElementTy = ConvertTypeForMem(AllocType); 1084 CurPtr = CurPtr.withElementType(ElementTy); 1085 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1086 } 1087 1088 // Enter a partial-destruction Cleanup if necessary. 1089 if (needsEHCleanup(DtorKind)) { 1090 // In principle we could tell the Cleanup where we are more 1091 // directly, but the control flow can get so varied here that it 1092 // would actually be quite complex. Therefore we go through an 1093 // alloca. 1094 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1095 "array.init.end"); 1096 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1097 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1098 ElementType, ElementAlign, 1099 getDestroyer(DtorKind)); 1100 Cleanup = EHStack.stable_begin(); 1101 } 1102 1103 CharUnits StartAlign = CurPtr.getAlignment(); 1104 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1105 // Tell the cleanup that it needs to destroy up to this 1106 // element. TODO: some of these stores can be trivially 1107 // observed to be unnecessary. 1108 if (EndOfInit.isValid()) { 1109 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1110 } 1111 // FIXME: If the last initializer is an incomplete initializer list for 1112 // an array, and we have an array filler, we can fold together the two 1113 // initialization loops. 1114 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1115 ILE->getInit(i)->getType(), CurPtr, 1116 AggValueSlot::DoesNotOverlap); 1117 CurPtr = Address(Builder.CreateInBoundsGEP( 1118 CurPtr.getElementType(), CurPtr.getPointer(), 1119 Builder.getSize(1), "array.exp.next"), 1120 CurPtr.getElementType(), 1121 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1122 } 1123 1124 // The remaining elements are filled with the array filler expression. 1125 Init = ILE->getArrayFiller(); 1126 1127 // Extract the initializer for the individual array elements by pulling 1128 // out the array filler from all the nested initializer lists. This avoids 1129 // generating a nested loop for the initialization. 1130 while (Init && Init->getType()->isConstantArrayType()) { 1131 auto *SubILE = dyn_cast<InitListExpr>(Init); 1132 if (!SubILE) 1133 break; 1134 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1135 Init = SubILE->getArrayFiller(); 1136 } 1137 1138 // Switch back to initializing one base element at a time. 1139 CurPtr = CurPtr.withElementType(BeginPtr.getElementType()); 1140 } 1141 1142 // If all elements have already been initialized, skip any further 1143 // initialization. 1144 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1145 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1146 // If there was a Cleanup, deactivate it. 1147 if (CleanupDominator) 1148 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1149 return; 1150 } 1151 1152 assert(Init && "have trailing elements to initialize but no initializer"); 1153 1154 // If this is a constructor call, try to optimize it out, and failing that 1155 // emit a single loop to initialize all remaining elements. 1156 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1157 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1158 if (Ctor->isTrivial()) { 1159 // If new expression did not specify value-initialization, then there 1160 // is no initialization. 1161 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1162 return; 1163 1164 if (TryMemsetInitialization()) 1165 return; 1166 } 1167 1168 // Store the new Cleanup position for irregular Cleanups. 1169 // 1170 // FIXME: Share this cleanup with the constructor call emission rather than 1171 // having it create a cleanup of its own. 1172 if (EndOfInit.isValid()) 1173 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1174 1175 // Emit a constructor call loop to initialize the remaining elements. 1176 if (InitListElements) 1177 NumElements = Builder.CreateSub( 1178 NumElements, 1179 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1180 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1181 /*NewPointerIsChecked*/true, 1182 CCE->requiresZeroInitialization()); 1183 return; 1184 } 1185 1186 // If this is value-initialization, we can usually use memset. 1187 ImplicitValueInitExpr IVIE(ElementType); 1188 if (isa<ImplicitValueInitExpr>(Init)) { 1189 if (TryMemsetInitialization()) 1190 return; 1191 1192 // Switch to an ImplicitValueInitExpr for the element type. This handles 1193 // only one case: multidimensional array new of pointers to members. In 1194 // all other cases, we already have an initializer for the array element. 1195 Init = &IVIE; 1196 } 1197 1198 // At this point we should have found an initializer for the individual 1199 // elements of the array. 1200 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1201 "got wrong type of element to initialize"); 1202 1203 // If we have an empty initializer list, we can usually use memset. 1204 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1205 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1206 return; 1207 1208 // If we have a struct whose every field is value-initialized, we can 1209 // usually use memset. 1210 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1211 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1212 if (RType->getDecl()->isStruct()) { 1213 unsigned NumElements = 0; 1214 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1215 NumElements = CXXRD->getNumBases(); 1216 for (auto *Field : RType->getDecl()->fields()) 1217 if (!Field->isUnnamedBitfield()) 1218 ++NumElements; 1219 // FIXME: Recurse into nested InitListExprs. 1220 if (ILE->getNumInits() == NumElements) 1221 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1222 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1223 --NumElements; 1224 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1225 return; 1226 } 1227 } 1228 } 1229 1230 // Create the loop blocks. 1231 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1232 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1233 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1234 1235 // Find the end of the array, hoisted out of the loop. 1236 llvm::Value *EndPtr = 1237 Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(), 1238 NumElements, "array.end"); 1239 1240 // If the number of elements isn't constant, we have to now check if there is 1241 // anything left to initialize. 1242 if (!ConstNum) { 1243 llvm::Value *IsEmpty = 1244 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1245 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1246 } 1247 1248 // Enter the loop. 1249 EmitBlock(LoopBB); 1250 1251 // Set up the current-element phi. 1252 llvm::PHINode *CurPtrPhi = 1253 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1254 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1255 1256 CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign); 1257 1258 // Store the new Cleanup position for irregular Cleanups. 1259 if (EndOfInit.isValid()) 1260 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1261 1262 // Enter a partial-destruction Cleanup if necessary. 1263 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1264 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1265 ElementType, ElementAlign, 1266 getDestroyer(DtorKind)); 1267 Cleanup = EHStack.stable_begin(); 1268 CleanupDominator = Builder.CreateUnreachable(); 1269 } 1270 1271 // Emit the initializer into this element. 1272 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1273 AggValueSlot::DoesNotOverlap); 1274 1275 // Leave the Cleanup if we entered one. 1276 if (CleanupDominator) { 1277 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1278 CleanupDominator->eraseFromParent(); 1279 } 1280 1281 // Advance to the next element by adjusting the pointer type as necessary. 1282 llvm::Value *NextPtr = 1283 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1284 "array.next"); 1285 1286 // Check whether we've gotten to the end of the array and, if so, 1287 // exit the loop. 1288 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1289 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1290 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1291 1292 EmitBlock(ContBB); 1293 } 1294 1295 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1296 QualType ElementType, llvm::Type *ElementTy, 1297 Address NewPtr, llvm::Value *NumElements, 1298 llvm::Value *AllocSizeWithoutCookie) { 1299 ApplyDebugLocation DL(CGF, E); 1300 if (E->isArray()) 1301 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1302 AllocSizeWithoutCookie); 1303 else if (const Expr *Init = E->getInitializer()) 1304 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1305 AggValueSlot::DoesNotOverlap); 1306 } 1307 1308 /// Emit a call to an operator new or operator delete function, as implicitly 1309 /// created by new-expressions and delete-expressions. 1310 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1311 const FunctionDecl *CalleeDecl, 1312 const FunctionProtoType *CalleeType, 1313 const CallArgList &Args) { 1314 llvm::CallBase *CallOrInvoke; 1315 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1316 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1317 RValue RV = 1318 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1319 Args, CalleeType, /*ChainCall=*/false), 1320 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1321 1322 /// C++1y [expr.new]p10: 1323 /// [In a new-expression,] an implementation is allowed to omit a call 1324 /// to a replaceable global allocation function. 1325 /// 1326 /// We model such elidable calls with the 'builtin' attribute. 1327 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1328 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1329 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1330 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin); 1331 } 1332 1333 return RV; 1334 } 1335 1336 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1337 const CallExpr *TheCall, 1338 bool IsDelete) { 1339 CallArgList Args; 1340 EmitCallArgs(Args, Type, TheCall->arguments()); 1341 // Find the allocation or deallocation function that we're calling. 1342 ASTContext &Ctx = getContext(); 1343 DeclarationName Name = Ctx.DeclarationNames 1344 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1345 1346 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1347 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1348 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1349 return EmitNewDeleteCall(*this, FD, Type, Args); 1350 llvm_unreachable("predeclared global operator new/delete is missing"); 1351 } 1352 1353 namespace { 1354 /// The parameters to pass to a usual operator delete. 1355 struct UsualDeleteParams { 1356 bool DestroyingDelete = false; 1357 bool Size = false; 1358 bool Alignment = false; 1359 }; 1360 } 1361 1362 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1363 UsualDeleteParams Params; 1364 1365 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1366 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1367 1368 // The first argument is always a void*. 1369 ++AI; 1370 1371 // The next parameter may be a std::destroying_delete_t. 1372 if (FD->isDestroyingOperatorDelete()) { 1373 Params.DestroyingDelete = true; 1374 assert(AI != AE); 1375 ++AI; 1376 } 1377 1378 // Figure out what other parameters we should be implicitly passing. 1379 if (AI != AE && (*AI)->isIntegerType()) { 1380 Params.Size = true; 1381 ++AI; 1382 } 1383 1384 if (AI != AE && (*AI)->isAlignValT()) { 1385 Params.Alignment = true; 1386 ++AI; 1387 } 1388 1389 assert(AI == AE && "unexpected usual deallocation function parameter"); 1390 return Params; 1391 } 1392 1393 namespace { 1394 /// A cleanup to call the given 'operator delete' function upon abnormal 1395 /// exit from a new expression. Templated on a traits type that deals with 1396 /// ensuring that the arguments dominate the cleanup if necessary. 1397 template<typename Traits> 1398 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1399 /// Type used to hold llvm::Value*s. 1400 typedef typename Traits::ValueTy ValueTy; 1401 /// Type used to hold RValues. 1402 typedef typename Traits::RValueTy RValueTy; 1403 struct PlacementArg { 1404 RValueTy ArgValue; 1405 QualType ArgType; 1406 }; 1407 1408 unsigned NumPlacementArgs : 31; 1409 unsigned PassAlignmentToPlacementDelete : 1; 1410 const FunctionDecl *OperatorDelete; 1411 ValueTy Ptr; 1412 ValueTy AllocSize; 1413 CharUnits AllocAlign; 1414 1415 PlacementArg *getPlacementArgs() { 1416 return reinterpret_cast<PlacementArg *>(this + 1); 1417 } 1418 1419 public: 1420 static size_t getExtraSize(size_t NumPlacementArgs) { 1421 return NumPlacementArgs * sizeof(PlacementArg); 1422 } 1423 1424 CallDeleteDuringNew(size_t NumPlacementArgs, 1425 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1426 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1427 CharUnits AllocAlign) 1428 : NumPlacementArgs(NumPlacementArgs), 1429 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1430 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1431 AllocAlign(AllocAlign) {} 1432 1433 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1434 assert(I < NumPlacementArgs && "index out of range"); 1435 getPlacementArgs()[I] = {Arg, Type}; 1436 } 1437 1438 void Emit(CodeGenFunction &CGF, Flags flags) override { 1439 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); 1440 CallArgList DeleteArgs; 1441 1442 // The first argument is always a void* (or C* for a destroying operator 1443 // delete for class type C). 1444 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1445 1446 // Figure out what other parameters we should be implicitly passing. 1447 UsualDeleteParams Params; 1448 if (NumPlacementArgs) { 1449 // A placement deallocation function is implicitly passed an alignment 1450 // if the placement allocation function was, but is never passed a size. 1451 Params.Alignment = PassAlignmentToPlacementDelete; 1452 } else { 1453 // For a non-placement new-expression, 'operator delete' can take a 1454 // size and/or an alignment if it has the right parameters. 1455 Params = getUsualDeleteParams(OperatorDelete); 1456 } 1457 1458 assert(!Params.DestroyingDelete && 1459 "should not call destroying delete in a new-expression"); 1460 1461 // The second argument can be a std::size_t (for non-placement delete). 1462 if (Params.Size) 1463 DeleteArgs.add(Traits::get(CGF, AllocSize), 1464 CGF.getContext().getSizeType()); 1465 1466 // The next (second or third) argument can be a std::align_val_t, which 1467 // is an enum whose underlying type is std::size_t. 1468 // FIXME: Use the right type as the parameter type. Note that in a call 1469 // to operator delete(size_t, ...), we may not have it available. 1470 if (Params.Alignment) 1471 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1472 CGF.SizeTy, AllocAlign.getQuantity())), 1473 CGF.getContext().getSizeType()); 1474 1475 // Pass the rest of the arguments, which must match exactly. 1476 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1477 auto Arg = getPlacementArgs()[I]; 1478 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1479 } 1480 1481 // Call 'operator delete'. 1482 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1483 } 1484 }; 1485 } 1486 1487 /// Enter a cleanup to call 'operator delete' if the initializer in a 1488 /// new-expression throws. 1489 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1490 const CXXNewExpr *E, 1491 Address NewPtr, 1492 llvm::Value *AllocSize, 1493 CharUnits AllocAlign, 1494 const CallArgList &NewArgs) { 1495 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1496 1497 // If we're not inside a conditional branch, then the cleanup will 1498 // dominate and we can do the easier (and more efficient) thing. 1499 if (!CGF.isInConditionalBranch()) { 1500 struct DirectCleanupTraits { 1501 typedef llvm::Value *ValueTy; 1502 typedef RValue RValueTy; 1503 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1504 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1505 }; 1506 1507 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1508 1509 DirectCleanup *Cleanup = CGF.EHStack 1510 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1511 E->getNumPlacementArgs(), 1512 E->getOperatorDelete(), 1513 NewPtr.getPointer(), 1514 AllocSize, 1515 E->passAlignment(), 1516 AllocAlign); 1517 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1518 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1519 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1520 } 1521 1522 return; 1523 } 1524 1525 // Otherwise, we need to save all this stuff. 1526 DominatingValue<RValue>::saved_type SavedNewPtr = 1527 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1528 DominatingValue<RValue>::saved_type SavedAllocSize = 1529 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1530 1531 struct ConditionalCleanupTraits { 1532 typedef DominatingValue<RValue>::saved_type ValueTy; 1533 typedef DominatingValue<RValue>::saved_type RValueTy; 1534 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1535 return V.restore(CGF); 1536 } 1537 }; 1538 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1539 1540 ConditionalCleanup *Cleanup = CGF.EHStack 1541 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1542 E->getNumPlacementArgs(), 1543 E->getOperatorDelete(), 1544 SavedNewPtr, 1545 SavedAllocSize, 1546 E->passAlignment(), 1547 AllocAlign); 1548 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1549 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1550 Cleanup->setPlacementArg( 1551 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1552 } 1553 1554 CGF.initFullExprCleanup(); 1555 } 1556 1557 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1558 // The element type being allocated. 1559 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1560 1561 // 1. Build a call to the allocation function. 1562 FunctionDecl *allocator = E->getOperatorNew(); 1563 1564 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1565 unsigned minElements = 0; 1566 if (E->isArray() && E->hasInitializer()) { 1567 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1568 if (ILE && ILE->isStringLiteralInit()) 1569 minElements = 1570 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1571 ->getSize().getZExtValue(); 1572 else if (ILE) 1573 minElements = ILE->getNumInits(); 1574 } 1575 1576 llvm::Value *numElements = nullptr; 1577 llvm::Value *allocSizeWithoutCookie = nullptr; 1578 llvm::Value *allocSize = 1579 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1580 allocSizeWithoutCookie); 1581 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1582 1583 // Emit the allocation call. If the allocator is a global placement 1584 // operator, just "inline" it directly. 1585 Address allocation = Address::invalid(); 1586 CallArgList allocatorArgs; 1587 if (allocator->isReservedGlobalPlacementOperator()) { 1588 assert(E->getNumPlacementArgs() == 1); 1589 const Expr *arg = *E->placement_arguments().begin(); 1590 1591 LValueBaseInfo BaseInfo; 1592 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1593 1594 // The pointer expression will, in many cases, be an opaque void*. 1595 // In these cases, discard the computed alignment and use the 1596 // formal alignment of the allocated type. 1597 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1598 allocation = allocation.withAlignment(allocAlign); 1599 1600 // Set up allocatorArgs for the call to operator delete if it's not 1601 // the reserved global operator. 1602 if (E->getOperatorDelete() && 1603 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1604 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1605 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1606 } 1607 1608 } else { 1609 const FunctionProtoType *allocatorType = 1610 allocator->getType()->castAs<FunctionProtoType>(); 1611 unsigned ParamsToSkip = 0; 1612 1613 // The allocation size is the first argument. 1614 QualType sizeType = getContext().getSizeType(); 1615 allocatorArgs.add(RValue::get(allocSize), sizeType); 1616 ++ParamsToSkip; 1617 1618 if (allocSize != allocSizeWithoutCookie) { 1619 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1620 allocAlign = std::max(allocAlign, cookieAlign); 1621 } 1622 1623 // The allocation alignment may be passed as the second argument. 1624 if (E->passAlignment()) { 1625 QualType AlignValT = sizeType; 1626 if (allocatorType->getNumParams() > 1) { 1627 AlignValT = allocatorType->getParamType(1); 1628 assert(getContext().hasSameUnqualifiedType( 1629 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1630 sizeType) && 1631 "wrong type for alignment parameter"); 1632 ++ParamsToSkip; 1633 } else { 1634 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1635 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1636 } 1637 allocatorArgs.add( 1638 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1639 AlignValT); 1640 } 1641 1642 // FIXME: Why do we not pass a CalleeDecl here? 1643 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1644 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1645 1646 RValue RV = 1647 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1648 1649 // Set !heapallocsite metadata on the call to operator new. 1650 if (getDebugInfo()) 1651 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal())) 1652 getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType, 1653 E->getExprLoc()); 1654 1655 // If this was a call to a global replaceable allocation function that does 1656 // not take an alignment argument, the allocator is known to produce 1657 // storage that's suitably aligned for any object that fits, up to a known 1658 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1659 CharUnits allocationAlign = allocAlign; 1660 if (!E->passAlignment() && 1661 allocator->isReplaceableGlobalAllocationFunction()) { 1662 unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>( 1663 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1664 allocationAlign = std::max( 1665 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1666 } 1667 1668 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign); 1669 } 1670 1671 // Emit a null check on the allocation result if the allocation 1672 // function is allowed to return null (because it has a non-throwing 1673 // exception spec or is the reserved placement new) and we have an 1674 // interesting initializer will be running sanitizers on the initialization. 1675 bool nullCheck = E->shouldNullCheckAllocation() && 1676 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1677 sanitizePerformTypeCheck()); 1678 1679 llvm::BasicBlock *nullCheckBB = nullptr; 1680 llvm::BasicBlock *contBB = nullptr; 1681 1682 // The null-check means that the initializer is conditionally 1683 // evaluated. 1684 ConditionalEvaluation conditional(*this); 1685 1686 if (nullCheck) { 1687 conditional.begin(*this); 1688 1689 nullCheckBB = Builder.GetInsertBlock(); 1690 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1691 contBB = createBasicBlock("new.cont"); 1692 1693 llvm::Value *isNull = 1694 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1695 Builder.CreateCondBr(isNull, contBB, notNullBB); 1696 EmitBlock(notNullBB); 1697 } 1698 1699 // If there's an operator delete, enter a cleanup to call it if an 1700 // exception is thrown. 1701 EHScopeStack::stable_iterator operatorDeleteCleanup; 1702 llvm::Instruction *cleanupDominator = nullptr; 1703 if (E->getOperatorDelete() && 1704 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1705 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1706 allocatorArgs); 1707 operatorDeleteCleanup = EHStack.stable_begin(); 1708 cleanupDominator = Builder.CreateUnreachable(); 1709 } 1710 1711 assert((allocSize == allocSizeWithoutCookie) == 1712 CalculateCookiePadding(*this, E).isZero()); 1713 if (allocSize != allocSizeWithoutCookie) { 1714 assert(E->isArray()); 1715 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1716 numElements, 1717 E, allocType); 1718 } 1719 1720 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1721 Address result = allocation.withElementType(elementTy); 1722 1723 // Passing pointer through launder.invariant.group to avoid propagation of 1724 // vptrs information which may be included in previous type. 1725 // To not break LTO with different optimizations levels, we do it regardless 1726 // of optimization level. 1727 if (CGM.getCodeGenOpts().StrictVTablePointers && 1728 allocator->isReservedGlobalPlacementOperator()) 1729 result = Builder.CreateLaunderInvariantGroup(result); 1730 1731 // Emit sanitizer checks for pointer value now, so that in the case of an 1732 // array it was checked only once and not at each constructor call. We may 1733 // have already checked that the pointer is non-null. 1734 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1735 // we'll null check the wrong pointer here. 1736 SanitizerSet SkippedChecks; 1737 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1738 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1739 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1740 result.getPointer(), allocType, result.getAlignment(), 1741 SkippedChecks, numElements); 1742 1743 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1744 allocSizeWithoutCookie); 1745 llvm::Value *resultPtr = result.getPointer(); 1746 if (E->isArray()) { 1747 // NewPtr is a pointer to the base element type. If we're 1748 // allocating an array of arrays, we'll need to cast back to the 1749 // array pointer type. 1750 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1751 if (resultPtr->getType() != resultType) 1752 resultPtr = Builder.CreateBitCast(resultPtr, resultType); 1753 } 1754 1755 // Deactivate the 'operator delete' cleanup if we finished 1756 // initialization. 1757 if (operatorDeleteCleanup.isValid()) { 1758 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1759 cleanupDominator->eraseFromParent(); 1760 } 1761 1762 if (nullCheck) { 1763 conditional.end(*this); 1764 1765 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1766 EmitBlock(contBB); 1767 1768 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1769 PHI->addIncoming(resultPtr, notNullBB); 1770 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1771 nullCheckBB); 1772 1773 resultPtr = PHI; 1774 } 1775 1776 return resultPtr; 1777 } 1778 1779 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1780 llvm::Value *Ptr, QualType DeleteTy, 1781 llvm::Value *NumElements, 1782 CharUnits CookieSize) { 1783 assert((!NumElements && CookieSize.isZero()) || 1784 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1785 1786 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); 1787 CallArgList DeleteArgs; 1788 1789 auto Params = getUsualDeleteParams(DeleteFD); 1790 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1791 1792 // Pass the pointer itself. 1793 QualType ArgTy = *ParamTypeIt++; 1794 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1795 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1796 1797 // Pass the std::destroying_delete tag if present. 1798 llvm::AllocaInst *DestroyingDeleteTag = nullptr; 1799 if (Params.DestroyingDelete) { 1800 QualType DDTag = *ParamTypeIt++; 1801 llvm::Type *Ty = getTypes().ConvertType(DDTag); 1802 CharUnits Align = CGM.getNaturalTypeAlignment(DDTag); 1803 DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag"); 1804 DestroyingDeleteTag->setAlignment(Align.getAsAlign()); 1805 DeleteArgs.add( 1806 RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag); 1807 } 1808 1809 // Pass the size if the delete function has a size_t parameter. 1810 if (Params.Size) { 1811 QualType SizeType = *ParamTypeIt++; 1812 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1813 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1814 DeleteTypeSize.getQuantity()); 1815 1816 // For array new, multiply by the number of elements. 1817 if (NumElements) 1818 Size = Builder.CreateMul(Size, NumElements); 1819 1820 // If there is a cookie, add the cookie size. 1821 if (!CookieSize.isZero()) 1822 Size = Builder.CreateAdd( 1823 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1824 1825 DeleteArgs.add(RValue::get(Size), SizeType); 1826 } 1827 1828 // Pass the alignment if the delete function has an align_val_t parameter. 1829 if (Params.Alignment) { 1830 QualType AlignValType = *ParamTypeIt++; 1831 CharUnits DeleteTypeAlign = 1832 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown( 1833 DeleteTy, true /* NeedsPreferredAlignment */)); 1834 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1835 DeleteTypeAlign.getQuantity()); 1836 DeleteArgs.add(RValue::get(Align), AlignValType); 1837 } 1838 1839 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1840 "unknown parameter to usual delete function"); 1841 1842 // Emit the call to delete. 1843 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1844 1845 // If call argument lowering didn't use the destroying_delete_t alloca, 1846 // remove it again. 1847 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty()) 1848 DestroyingDeleteTag->eraseFromParent(); 1849 } 1850 1851 namespace { 1852 /// Calls the given 'operator delete' on a single object. 1853 struct CallObjectDelete final : EHScopeStack::Cleanup { 1854 llvm::Value *Ptr; 1855 const FunctionDecl *OperatorDelete; 1856 QualType ElementType; 1857 1858 CallObjectDelete(llvm::Value *Ptr, 1859 const FunctionDecl *OperatorDelete, 1860 QualType ElementType) 1861 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1862 1863 void Emit(CodeGenFunction &CGF, Flags flags) override { 1864 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1865 } 1866 }; 1867 } 1868 1869 void 1870 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1871 llvm::Value *CompletePtr, 1872 QualType ElementType) { 1873 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1874 OperatorDelete, ElementType); 1875 } 1876 1877 /// Emit the code for deleting a single object with a destroying operator 1878 /// delete. If the element type has a non-virtual destructor, Ptr has already 1879 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1880 /// Ptr points to an object of the static type. 1881 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1882 const CXXDeleteExpr *DE, Address Ptr, 1883 QualType ElementType) { 1884 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1885 if (Dtor && Dtor->isVirtual()) 1886 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1887 Dtor); 1888 else 1889 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1890 } 1891 1892 /// Emit the code for deleting a single object. 1893 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false 1894 /// if not. 1895 static bool EmitObjectDelete(CodeGenFunction &CGF, 1896 const CXXDeleteExpr *DE, 1897 Address Ptr, 1898 QualType ElementType, 1899 llvm::BasicBlock *UnconditionalDeleteBlock) { 1900 // C++11 [expr.delete]p3: 1901 // If the static type of the object to be deleted is different from its 1902 // dynamic type, the static type shall be a base class of the dynamic type 1903 // of the object to be deleted and the static type shall have a virtual 1904 // destructor or the behavior is undefined. 1905 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1906 DE->getExprLoc(), Ptr.getPointer(), 1907 ElementType); 1908 1909 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1910 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1911 1912 // Find the destructor for the type, if applicable. If the 1913 // destructor is virtual, we'll just emit the vcall and return. 1914 const CXXDestructorDecl *Dtor = nullptr; 1915 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1916 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1917 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1918 Dtor = RD->getDestructor(); 1919 1920 if (Dtor->isVirtual()) { 1921 bool UseVirtualCall = true; 1922 const Expr *Base = DE->getArgument(); 1923 if (auto *DevirtualizedDtor = 1924 dyn_cast_or_null<const CXXDestructorDecl>( 1925 Dtor->getDevirtualizedMethod( 1926 Base, CGF.CGM.getLangOpts().AppleKext))) { 1927 UseVirtualCall = false; 1928 const CXXRecordDecl *DevirtualizedClass = 1929 DevirtualizedDtor->getParent(); 1930 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1931 // Devirtualized to the class of the base type (the type of the 1932 // whole expression). 1933 Dtor = DevirtualizedDtor; 1934 } else { 1935 // Devirtualized to some other type. Would need to cast the this 1936 // pointer to that type but we don't have support for that yet, so 1937 // do a virtual call. FIXME: handle the case where it is 1938 // devirtualized to the derived type (the type of the inner 1939 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1940 UseVirtualCall = true; 1941 } 1942 } 1943 if (UseVirtualCall) { 1944 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1945 Dtor); 1946 return false; 1947 } 1948 } 1949 } 1950 } 1951 1952 // Make sure that we call delete even if the dtor throws. 1953 // This doesn't have to a conditional cleanup because we're going 1954 // to pop it off in a second. 1955 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1956 Ptr.getPointer(), 1957 OperatorDelete, ElementType); 1958 1959 if (Dtor) 1960 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1961 /*ForVirtualBase=*/false, 1962 /*Delegating=*/false, 1963 Ptr, ElementType); 1964 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1965 switch (Lifetime) { 1966 case Qualifiers::OCL_None: 1967 case Qualifiers::OCL_ExplicitNone: 1968 case Qualifiers::OCL_Autoreleasing: 1969 break; 1970 1971 case Qualifiers::OCL_Strong: 1972 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1973 break; 1974 1975 case Qualifiers::OCL_Weak: 1976 CGF.EmitARCDestroyWeak(Ptr); 1977 break; 1978 } 1979 } 1980 1981 // When optimizing for size, call 'operator delete' unconditionally. 1982 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) { 1983 CGF.EmitBlock(UnconditionalDeleteBlock); 1984 CGF.PopCleanupBlock(); 1985 return true; 1986 } 1987 1988 CGF.PopCleanupBlock(); 1989 return false; 1990 } 1991 1992 namespace { 1993 /// Calls the given 'operator delete' on an array of objects. 1994 struct CallArrayDelete final : EHScopeStack::Cleanup { 1995 llvm::Value *Ptr; 1996 const FunctionDecl *OperatorDelete; 1997 llvm::Value *NumElements; 1998 QualType ElementType; 1999 CharUnits CookieSize; 2000 2001 CallArrayDelete(llvm::Value *Ptr, 2002 const FunctionDecl *OperatorDelete, 2003 llvm::Value *NumElements, 2004 QualType ElementType, 2005 CharUnits CookieSize) 2006 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 2007 ElementType(ElementType), CookieSize(CookieSize) {} 2008 2009 void Emit(CodeGenFunction &CGF, Flags flags) override { 2010 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 2011 CookieSize); 2012 } 2013 }; 2014 } 2015 2016 /// Emit the code for deleting an array of objects. 2017 static void EmitArrayDelete(CodeGenFunction &CGF, 2018 const CXXDeleteExpr *E, 2019 Address deletedPtr, 2020 QualType elementType) { 2021 llvm::Value *numElements = nullptr; 2022 llvm::Value *allocatedPtr = nullptr; 2023 CharUnits cookieSize; 2024 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 2025 numElements, allocatedPtr, cookieSize); 2026 2027 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 2028 2029 // Make sure that we call delete even if one of the dtors throws. 2030 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 2031 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 2032 allocatedPtr, operatorDelete, 2033 numElements, elementType, 2034 cookieSize); 2035 2036 // Destroy the elements. 2037 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 2038 assert(numElements && "no element count for a type with a destructor!"); 2039 2040 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2041 CharUnits elementAlign = 2042 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 2043 2044 llvm::Value *arrayBegin = deletedPtr.getPointer(); 2045 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP( 2046 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end"); 2047 2048 // Note that it is legal to allocate a zero-length array, and we 2049 // can never fold the check away because the length should always 2050 // come from a cookie. 2051 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 2052 CGF.getDestroyer(dtorKind), 2053 /*checkZeroLength*/ true, 2054 CGF.needsEHCleanup(dtorKind)); 2055 } 2056 2057 // Pop the cleanup block. 2058 CGF.PopCleanupBlock(); 2059 } 2060 2061 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 2062 const Expr *Arg = E->getArgument(); 2063 Address Ptr = EmitPointerWithAlignment(Arg); 2064 2065 // Null check the pointer. 2066 // 2067 // We could avoid this null check if we can determine that the object 2068 // destruction is trivial and doesn't require an array cookie; we can 2069 // unconditionally perform the operator delete call in that case. For now, we 2070 // assume that deleted pointers are null rarely enough that it's better to 2071 // keep the branch. This might be worth revisiting for a -O0 code size win. 2072 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2073 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2074 2075 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2076 2077 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2078 EmitBlock(DeleteNotNull); 2079 Ptr.setKnownNonNull(); 2080 2081 QualType DeleteTy = E->getDestroyedType(); 2082 2083 // A destroying operator delete overrides the entire operation of the 2084 // delete expression. 2085 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2086 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2087 EmitBlock(DeleteEnd); 2088 return; 2089 } 2090 2091 // We might be deleting a pointer to array. If so, GEP down to the 2092 // first non-array element. 2093 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2094 if (DeleteTy->isConstantArrayType()) { 2095 llvm::Value *Zero = Builder.getInt32(0); 2096 SmallVector<llvm::Value*,8> GEP; 2097 2098 GEP.push_back(Zero); // point at the outermost array 2099 2100 // For each layer of array type we're pointing at: 2101 while (const ConstantArrayType *Arr 2102 = getContext().getAsConstantArrayType(DeleteTy)) { 2103 // 1. Unpeel the array type. 2104 DeleteTy = Arr->getElementType(); 2105 2106 // 2. GEP to the first element of the array. 2107 GEP.push_back(Zero); 2108 } 2109 2110 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(), 2111 Ptr.getPointer(), GEP, "del.first"), 2112 ConvertTypeForMem(DeleteTy), Ptr.getAlignment(), 2113 Ptr.isKnownNonNull()); 2114 } 2115 2116 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2117 2118 if (E->isArrayForm()) { 2119 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2120 EmitBlock(DeleteEnd); 2121 } else { 2122 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd)) 2123 EmitBlock(DeleteEnd); 2124 } 2125 } 2126 2127 static bool isGLValueFromPointerDeref(const Expr *E) { 2128 E = E->IgnoreParens(); 2129 2130 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2131 if (!CE->getSubExpr()->isGLValue()) 2132 return false; 2133 return isGLValueFromPointerDeref(CE->getSubExpr()); 2134 } 2135 2136 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2137 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2138 2139 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2140 if (BO->getOpcode() == BO_Comma) 2141 return isGLValueFromPointerDeref(BO->getRHS()); 2142 2143 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2144 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2145 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2146 2147 // C++11 [expr.sub]p1: 2148 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2149 if (isa<ArraySubscriptExpr>(E)) 2150 return true; 2151 2152 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2153 if (UO->getOpcode() == UO_Deref) 2154 return true; 2155 2156 return false; 2157 } 2158 2159 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2160 llvm::Type *StdTypeInfoPtrTy) { 2161 // Get the vtable pointer. 2162 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF); 2163 2164 QualType SrcRecordTy = E->getType(); 2165 2166 // C++ [class.cdtor]p4: 2167 // If the operand of typeid refers to the object under construction or 2168 // destruction and the static type of the operand is neither the constructor 2169 // or destructor’s class nor one of its bases, the behavior is undefined. 2170 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2171 ThisPtr.getPointer(), SrcRecordTy); 2172 2173 // C++ [expr.typeid]p2: 2174 // If the glvalue expression is obtained by applying the unary * operator to 2175 // a pointer and the pointer is a null pointer value, the typeid expression 2176 // throws the std::bad_typeid exception. 2177 // 2178 // However, this paragraph's intent is not clear. We choose a very generous 2179 // interpretation which implores us to consider comma operators, conditional 2180 // operators, parentheses and other such constructs. 2181 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2182 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2183 llvm::BasicBlock *BadTypeidBlock = 2184 CGF.createBasicBlock("typeid.bad_typeid"); 2185 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2186 2187 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2188 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2189 2190 CGF.EmitBlock(BadTypeidBlock); 2191 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2192 CGF.EmitBlock(EndBlock); 2193 } 2194 2195 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2196 StdTypeInfoPtrTy); 2197 } 2198 2199 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2200 llvm::Type *PtrTy = llvm::PointerType::getUnqual(getLLVMContext()); 2201 LangAS GlobAS = CGM.GetGlobalVarAddressSpace(nullptr); 2202 2203 auto MaybeASCast = [=](auto &&TypeInfo) { 2204 if (GlobAS == LangAS::Default) 2205 return TypeInfo; 2206 return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS, 2207 LangAS::Default, PtrTy); 2208 }; 2209 2210 if (E->isTypeOperand()) { 2211 llvm::Constant *TypeInfo = 2212 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2213 return MaybeASCast(TypeInfo); 2214 } 2215 2216 // C++ [expr.typeid]p2: 2217 // When typeid is applied to a glvalue expression whose type is a 2218 // polymorphic class type, the result refers to a std::type_info object 2219 // representing the type of the most derived object (that is, the dynamic 2220 // type) to which the glvalue refers. 2221 // If the operand is already most derived object, no need to look up vtable. 2222 if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext())) 2223 return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy); 2224 2225 QualType OperandTy = E->getExprOperand()->getType(); 2226 return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(OperandTy)); 2227 } 2228 2229 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2230 QualType DestTy) { 2231 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2232 if (DestTy->isPointerType()) 2233 return llvm::Constant::getNullValue(DestLTy); 2234 2235 /// C++ [expr.dynamic.cast]p9: 2236 /// A failed cast to reference type throws std::bad_cast 2237 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2238 return nullptr; 2239 2240 CGF.Builder.ClearInsertionPoint(); 2241 return llvm::PoisonValue::get(DestLTy); 2242 } 2243 2244 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2245 const CXXDynamicCastExpr *DCE) { 2246 CGM.EmitExplicitCastExprType(DCE, this); 2247 QualType DestTy = DCE->getTypeAsWritten(); 2248 2249 QualType SrcTy = DCE->getSubExpr()->getType(); 2250 2251 // C++ [expr.dynamic.cast]p7: 2252 // If T is "pointer to cv void," then the result is a pointer to the most 2253 // derived object pointed to by v. 2254 bool IsDynamicCastToVoid = DestTy->isVoidPointerType(); 2255 QualType SrcRecordTy; 2256 QualType DestRecordTy; 2257 if (IsDynamicCastToVoid) { 2258 SrcRecordTy = SrcTy->getPointeeType(); 2259 // No DestRecordTy. 2260 } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 2261 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2262 DestRecordTy = DestPTy->getPointeeType(); 2263 } else { 2264 SrcRecordTy = SrcTy; 2265 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2266 } 2267 2268 // C++ [class.cdtor]p5: 2269 // If the operand of the dynamic_cast refers to the object under 2270 // construction or destruction and the static type of the operand is not a 2271 // pointer to or object of the constructor or destructor’s own class or one 2272 // of its bases, the dynamic_cast results in undefined behavior. 2273 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2274 SrcRecordTy); 2275 2276 if (DCE->isAlwaysNull()) { 2277 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) { 2278 // Expression emission is expected to retain a valid insertion point. 2279 if (!Builder.GetInsertBlock()) 2280 EmitBlock(createBasicBlock("dynamic_cast.unreachable")); 2281 return T; 2282 } 2283 } 2284 2285 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2286 2287 // If the destination is effectively final, the cast succeeds if and only 2288 // if the dynamic type of the pointer is exactly the destination type. 2289 bool IsExact = !IsDynamicCastToVoid && 2290 CGM.getCodeGenOpts().OptimizationLevel > 0 && 2291 DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() && 2292 CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy); 2293 2294 // C++ [expr.dynamic.cast]p4: 2295 // If the value of v is a null pointer value in the pointer case, the result 2296 // is the null pointer value of type T. 2297 bool ShouldNullCheckSrcValue = 2298 IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked( 2299 SrcTy->isPointerType(), SrcRecordTy); 2300 2301 llvm::BasicBlock *CastNull = nullptr; 2302 llvm::BasicBlock *CastNotNull = nullptr; 2303 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2304 2305 if (ShouldNullCheckSrcValue) { 2306 CastNull = createBasicBlock("dynamic_cast.null"); 2307 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2308 2309 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2310 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2311 EmitBlock(CastNotNull); 2312 } 2313 2314 llvm::Value *Value; 2315 if (IsDynamicCastToVoid) { 2316 Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy); 2317 } else if (IsExact) { 2318 // If the destination type is effectively final, this pointer points to the 2319 // right type if and only if its vptr has the right value. 2320 Value = CGM.getCXXABI().emitExactDynamicCast( 2321 *this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastEnd, CastNull); 2322 } else { 2323 assert(DestRecordTy->isRecordType() && 2324 "destination type must be a record type!"); 2325 Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2326 DestTy, DestRecordTy, CastEnd); 2327 } 2328 CastNotNull = Builder.GetInsertBlock(); 2329 2330 llvm::Value *NullValue = nullptr; 2331 if (ShouldNullCheckSrcValue) { 2332 EmitBranch(CastEnd); 2333 2334 EmitBlock(CastNull); 2335 NullValue = EmitDynamicCastToNull(*this, DestTy); 2336 CastNull = Builder.GetInsertBlock(); 2337 2338 EmitBranch(CastEnd); 2339 } 2340 2341 EmitBlock(CastEnd); 2342 2343 if (CastNull) { 2344 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2345 PHI->addIncoming(Value, CastNotNull); 2346 PHI->addIncoming(NullValue, CastNull); 2347 2348 Value = PHI; 2349 } 2350 2351 return Value; 2352 } 2353