xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CGExprCXX.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29   RequiredArgs ReqArgs;
30   // Number of prefix arguments for the call. Ignores the `this` pointer.
31   unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
37                                   llvm::Value *This, llvm::Value *ImplicitParam,
38                                   QualType ImplicitParamTy, const CallExpr *CE,
39                                   CallArgList &Args, CallArgList *RtlArgs) {
40   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
41 
42   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
43          isa<CXXOperatorCallExpr>(CE));
44   assert(MD->isImplicitObjectMemberFunction() &&
45          "Trying to emit a member or operator call expr on a static method!");
46 
47   // Push the this ptr.
48   const CXXRecordDecl *RD =
49       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
50   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
51 
52   // If there is an implicit parameter (e.g. VTT), emit it.
53   if (ImplicitParam) {
54     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55   }
56 
57   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
59   unsigned PrefixSize = Args.size() - 1;
60 
61   // And the rest of the call args.
62   if (RtlArgs) {
63     // Special case: if the caller emitted the arguments right-to-left already
64     // (prior to emitting the *this argument), we're done. This happens for
65     // assignment operators.
66     Args.addFrom(*RtlArgs);
67   } else if (CE) {
68     // Special case: skip first argument of CXXOperatorCall (it is "this").
69     unsigned ArgsToSkip = 0;
70     if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(CE)) {
71       if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl()))
72         ArgsToSkip =
73             static_cast<unsigned>(!M->isExplicitObjectMemberFunction());
74     }
75     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
76                      CE->getDirectCallee());
77   } else {
78     assert(
79         FPT->getNumParams() == 0 &&
80         "No CallExpr specified for function with non-zero number of arguments");
81   }
82   return {required, PrefixSize};
83 }
84 
85 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
86     const CXXMethodDecl *MD, const CGCallee &Callee,
87     ReturnValueSlot ReturnValue,
88     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
89     const CallExpr *CE, CallArgList *RtlArgs) {
90   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
91   CallArgList Args;
92   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
93       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
94   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
95       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
96   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
97                   CE && CE == MustTailCall,
98                   CE ? CE->getExprLoc() : SourceLocation());
99 }
100 
101 RValue CodeGenFunction::EmitCXXDestructorCall(
102     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
103     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
104   const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
105 
106   assert(!ThisTy.isNull());
107   assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
108          "Pointer/Object mixup");
109 
110   LangAS SrcAS = ThisTy.getAddressSpace();
111   LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
112   if (SrcAS != DstAS) {
113     QualType DstTy = DtorDecl->getThisType();
114     llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
115     This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
116                                                  NewType);
117   }
118 
119   CallArgList Args;
120   commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam,
121                                     ImplicitParamTy, CE, Args, nullptr);
122   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
123                   ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
124                   CE ? CE->getExprLoc() : SourceLocation{});
125 }
126 
127 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
128                                             const CXXPseudoDestructorExpr *E) {
129   QualType DestroyedType = E->getDestroyedType();
130   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
131     // Automatic Reference Counting:
132     //   If the pseudo-expression names a retainable object with weak or
133     //   strong lifetime, the object shall be released.
134     Expr *BaseExpr = E->getBase();
135     Address BaseValue = Address::invalid();
136     Qualifiers BaseQuals;
137 
138     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
139     if (E->isArrow()) {
140       BaseValue = EmitPointerWithAlignment(BaseExpr);
141       const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
142       BaseQuals = PTy->getPointeeType().getQualifiers();
143     } else {
144       LValue BaseLV = EmitLValue(BaseExpr);
145       BaseValue = BaseLV.getAddress(*this);
146       QualType BaseTy = BaseExpr->getType();
147       BaseQuals = BaseTy.getQualifiers();
148     }
149 
150     switch (DestroyedType.getObjCLifetime()) {
151     case Qualifiers::OCL_None:
152     case Qualifiers::OCL_ExplicitNone:
153     case Qualifiers::OCL_Autoreleasing:
154       break;
155 
156     case Qualifiers::OCL_Strong:
157       EmitARCRelease(Builder.CreateLoad(BaseValue,
158                         DestroyedType.isVolatileQualified()),
159                      ARCPreciseLifetime);
160       break;
161 
162     case Qualifiers::OCL_Weak:
163       EmitARCDestroyWeak(BaseValue);
164       break;
165     }
166   } else {
167     // C++ [expr.pseudo]p1:
168     //   The result shall only be used as the operand for the function call
169     //   operator (), and the result of such a call has type void. The only
170     //   effect is the evaluation of the postfix-expression before the dot or
171     //   arrow.
172     EmitIgnoredExpr(E->getBase());
173   }
174 
175   return RValue::get(nullptr);
176 }
177 
178 static CXXRecordDecl *getCXXRecord(const Expr *E) {
179   QualType T = E->getType();
180   if (const PointerType *PTy = T->getAs<PointerType>())
181     T = PTy->getPointeeType();
182   const RecordType *Ty = T->castAs<RecordType>();
183   return cast<CXXRecordDecl>(Ty->getDecl());
184 }
185 
186 // Note: This function also emit constructor calls to support a MSVC
187 // extensions allowing explicit constructor function call.
188 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
189                                               ReturnValueSlot ReturnValue) {
190   const Expr *callee = CE->getCallee()->IgnoreParens();
191 
192   if (isa<BinaryOperator>(callee))
193     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
194 
195   const MemberExpr *ME = cast<MemberExpr>(callee);
196   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
197 
198   if (MD->isStatic()) {
199     // The method is static, emit it as we would a regular call.
200     CGCallee callee =
201         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
202     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
203                     ReturnValue);
204   }
205 
206   bool HasQualifier = ME->hasQualifier();
207   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
208   bool IsArrow = ME->isArrow();
209   const Expr *Base = ME->getBase();
210 
211   return EmitCXXMemberOrOperatorMemberCallExpr(
212       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
213 }
214 
215 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
216     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
217     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
218     const Expr *Base) {
219   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
220 
221   // Compute the object pointer.
222   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
223 
224   const CXXMethodDecl *DevirtualizedMethod = nullptr;
225   if (CanUseVirtualCall &&
226       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
227     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
228     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
229     assert(DevirtualizedMethod);
230     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
231     const Expr *Inner = Base->IgnoreParenBaseCasts();
232     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
233         MD->getReturnType().getCanonicalType())
234       // If the return types are not the same, this might be a case where more
235       // code needs to run to compensate for it. For example, the derived
236       // method might return a type that inherits form from the return
237       // type of MD and has a prefix.
238       // For now we just avoid devirtualizing these covariant cases.
239       DevirtualizedMethod = nullptr;
240     else if (getCXXRecord(Inner) == DevirtualizedClass)
241       // If the class of the Inner expression is where the dynamic method
242       // is defined, build the this pointer from it.
243       Base = Inner;
244     else if (getCXXRecord(Base) != DevirtualizedClass) {
245       // If the method is defined in a class that is not the best dynamic
246       // one or the one of the full expression, we would have to build
247       // a derived-to-base cast to compute the correct this pointer, but
248       // we don't have support for that yet, so do a virtual call.
249       DevirtualizedMethod = nullptr;
250     }
251   }
252 
253   bool TrivialForCodegen =
254       MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
255   bool TrivialAssignment =
256       TrivialForCodegen &&
257       (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
258       !MD->getParent()->mayInsertExtraPadding();
259 
260   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
261   // operator before the LHS.
262   CallArgList RtlArgStorage;
263   CallArgList *RtlArgs = nullptr;
264   LValue TrivialAssignmentRHS;
265   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
266     if (OCE->isAssignmentOp()) {
267       if (TrivialAssignment) {
268         TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
269       } else {
270         RtlArgs = &RtlArgStorage;
271         EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
272                      drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
273                      /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
274       }
275     }
276   }
277 
278   LValue This;
279   if (IsArrow) {
280     LValueBaseInfo BaseInfo;
281     TBAAAccessInfo TBAAInfo;
282     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
283     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
284   } else {
285     This = EmitLValue(Base);
286   }
287 
288   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
289     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
290     // constructing a new complete object of type Ctor.
291     assert(!RtlArgs);
292     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
293     CallArgList Args;
294     commonEmitCXXMemberOrOperatorCall(
295         *this, {Ctor, Ctor_Complete}, This.getPointer(*this),
296         /*ImplicitParam=*/nullptr,
297         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
298 
299     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
300                            /*Delegating=*/false, This.getAddress(*this), Args,
301                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
302                            /*NewPointerIsChecked=*/false);
303     return RValue::get(nullptr);
304   }
305 
306   if (TrivialForCodegen) {
307     if (isa<CXXDestructorDecl>(MD))
308       return RValue::get(nullptr);
309 
310     if (TrivialAssignment) {
311       // We don't like to generate the trivial copy/move assignment operator
312       // when it isn't necessary; just produce the proper effect here.
313       // It's important that we use the result of EmitLValue here rather than
314       // emitting call arguments, in order to preserve TBAA information from
315       // the RHS.
316       LValue RHS = isa<CXXOperatorCallExpr>(CE)
317                        ? TrivialAssignmentRHS
318                        : EmitLValue(*CE->arg_begin());
319       EmitAggregateAssign(This, RHS, CE->getType());
320       return RValue::get(This.getPointer(*this));
321     }
322 
323     assert(MD->getParent()->mayInsertExtraPadding() &&
324            "unknown trivial member function");
325   }
326 
327   // Compute the function type we're calling.
328   const CXXMethodDecl *CalleeDecl =
329       DevirtualizedMethod ? DevirtualizedMethod : MD;
330   const CGFunctionInfo *FInfo = nullptr;
331   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
332     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
333         GlobalDecl(Dtor, Dtor_Complete));
334   else
335     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
336 
337   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
338 
339   // C++11 [class.mfct.non-static]p2:
340   //   If a non-static member function of a class X is called for an object that
341   //   is not of type X, or of a type derived from X, the behavior is undefined.
342   SourceLocation CallLoc;
343   ASTContext &C = getContext();
344   if (CE)
345     CallLoc = CE->getExprLoc();
346 
347   SanitizerSet SkippedChecks;
348   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
349     auto *IOA = CMCE->getImplicitObjectArgument();
350     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
351     if (IsImplicitObjectCXXThis)
352       SkippedChecks.set(SanitizerKind::Alignment, true);
353     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
354       SkippedChecks.set(SanitizerKind::Null, true);
355   }
356   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
357                 This.getPointer(*this),
358                 C.getRecordType(CalleeDecl->getParent()),
359                 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
360 
361   // C++ [class.virtual]p12:
362   //   Explicit qualification with the scope operator (5.1) suppresses the
363   //   virtual call mechanism.
364   //
365   // We also don't emit a virtual call if the base expression has a record type
366   // because then we know what the type is.
367   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
368 
369   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
370     assert(CE->arg_begin() == CE->arg_end() &&
371            "Destructor shouldn't have explicit parameters");
372     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
373     if (UseVirtualCall) {
374       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
375                                                 This.getAddress(*this),
376                                                 cast<CXXMemberCallExpr>(CE));
377     } else {
378       GlobalDecl GD(Dtor, Dtor_Complete);
379       CGCallee Callee;
380       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
381         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
382       else if (!DevirtualizedMethod)
383         Callee =
384             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
385       else {
386         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
387       }
388 
389       QualType ThisTy =
390           IsArrow ? Base->getType()->getPointeeType() : Base->getType();
391       EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
392                             /*ImplicitParam=*/nullptr,
393                             /*ImplicitParamTy=*/QualType(), CE);
394     }
395     return RValue::get(nullptr);
396   }
397 
398   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
399   // 'CalleeDecl' instead.
400 
401   CGCallee Callee;
402   if (UseVirtualCall) {
403     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
404   } else {
405     if (SanOpts.has(SanitizerKind::CFINVCall) &&
406         MD->getParent()->isDynamicClass()) {
407       llvm::Value *VTable;
408       const CXXRecordDecl *RD;
409       std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
410           *this, This.getAddress(*this), CalleeDecl->getParent());
411       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
412     }
413 
414     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
415       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
416     else if (!DevirtualizedMethod)
417       Callee =
418           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
419     else {
420       Callee =
421           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
422                               GlobalDecl(DevirtualizedMethod));
423     }
424   }
425 
426   if (MD->isVirtual()) {
427     Address NewThisAddr =
428         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
429             *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
430     This.setAddress(NewThisAddr);
431   }
432 
433   return EmitCXXMemberOrOperatorCall(
434       CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
435       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
436 }
437 
438 RValue
439 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
440                                               ReturnValueSlot ReturnValue) {
441   const BinaryOperator *BO =
442       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
443   const Expr *BaseExpr = BO->getLHS();
444   const Expr *MemFnExpr = BO->getRHS();
445 
446   const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
447   const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
448   const auto *RD =
449       cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
450 
451   // Emit the 'this' pointer.
452   Address This = Address::invalid();
453   if (BO->getOpcode() == BO_PtrMemI)
454     This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull);
455   else
456     This = EmitLValue(BaseExpr, KnownNonNull).getAddress(*this);
457 
458   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
459                 QualType(MPT->getClass(), 0));
460 
461   // Get the member function pointer.
462   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
463 
464   // Ask the ABI to load the callee.  Note that This is modified.
465   llvm::Value *ThisPtrForCall = nullptr;
466   CGCallee Callee =
467     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
468                                              ThisPtrForCall, MemFnPtr, MPT);
469 
470   CallArgList Args;
471 
472   QualType ThisType =
473     getContext().getPointerType(getContext().getTagDeclType(RD));
474 
475   // Push the this ptr.
476   Args.add(RValue::get(ThisPtrForCall), ThisType);
477 
478   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
479 
480   // And the rest of the call args
481   EmitCallArgs(Args, FPT, E->arguments());
482   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
483                                                       /*PrefixSize=*/0),
484                   Callee, ReturnValue, Args, nullptr, E == MustTailCall,
485                   E->getExprLoc());
486 }
487 
488 RValue
489 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
490                                                const CXXMethodDecl *MD,
491                                                ReturnValueSlot ReturnValue) {
492   assert(MD->isImplicitObjectMemberFunction() &&
493          "Trying to emit a member call expr on a static method!");
494   return EmitCXXMemberOrOperatorMemberCallExpr(
495       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
496       /*IsArrow=*/false, E->getArg(0));
497 }
498 
499 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
500                                                ReturnValueSlot ReturnValue) {
501   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
502 }
503 
504 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
505                                             Address DestPtr,
506                                             const CXXRecordDecl *Base) {
507   if (Base->isEmpty())
508     return;
509 
510   DestPtr = DestPtr.withElementType(CGF.Int8Ty);
511 
512   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
513   CharUnits NVSize = Layout.getNonVirtualSize();
514 
515   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
516   // present, they are initialized by the most derived class before calling the
517   // constructor.
518   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
519   Stores.emplace_back(CharUnits::Zero(), NVSize);
520 
521   // Each store is split by the existence of a vbptr.
522   CharUnits VBPtrWidth = CGF.getPointerSize();
523   std::vector<CharUnits> VBPtrOffsets =
524       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
525   for (CharUnits VBPtrOffset : VBPtrOffsets) {
526     // Stop before we hit any virtual base pointers located in virtual bases.
527     if (VBPtrOffset >= NVSize)
528       break;
529     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
530     CharUnits LastStoreOffset = LastStore.first;
531     CharUnits LastStoreSize = LastStore.second;
532 
533     CharUnits SplitBeforeOffset = LastStoreOffset;
534     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
535     assert(!SplitBeforeSize.isNegative() && "negative store size!");
536     if (!SplitBeforeSize.isZero())
537       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
538 
539     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
540     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
541     assert(!SplitAfterSize.isNegative() && "negative store size!");
542     if (!SplitAfterSize.isZero())
543       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
544   }
545 
546   // If the type contains a pointer to data member we can't memset it to zero.
547   // Instead, create a null constant and copy it to the destination.
548   // TODO: there are other patterns besides zero that we can usefully memset,
549   // like -1, which happens to be the pattern used by member-pointers.
550   // TODO: isZeroInitializable can be over-conservative in the case where a
551   // virtual base contains a member pointer.
552   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
553   if (!NullConstantForBase->isNullValue()) {
554     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
555         CGF.CGM.getModule(), NullConstantForBase->getType(),
556         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
557         NullConstantForBase, Twine());
558 
559     CharUnits Align =
560         std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
561     NullVariable->setAlignment(Align.getAsAlign());
562 
563     Address SrcPtr(NullVariable, CGF.Int8Ty, Align);
564 
565     // Get and call the appropriate llvm.memcpy overload.
566     for (std::pair<CharUnits, CharUnits> Store : Stores) {
567       CharUnits StoreOffset = Store.first;
568       CharUnits StoreSize = Store.second;
569       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
570       CGF.Builder.CreateMemCpy(
571           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
572           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
573           StoreSizeVal);
574     }
575 
576   // Otherwise, just memset the whole thing to zero.  This is legal
577   // because in LLVM, all default initializers (other than the ones we just
578   // handled above) are guaranteed to have a bit pattern of all zeros.
579   } else {
580     for (std::pair<CharUnits, CharUnits> Store : Stores) {
581       CharUnits StoreOffset = Store.first;
582       CharUnits StoreSize = Store.second;
583       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
584       CGF.Builder.CreateMemSet(
585           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
586           CGF.Builder.getInt8(0), StoreSizeVal);
587     }
588   }
589 }
590 
591 void
592 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
593                                       AggValueSlot Dest) {
594   assert(!Dest.isIgnored() && "Must have a destination!");
595   const CXXConstructorDecl *CD = E->getConstructor();
596 
597   // If we require zero initialization before (or instead of) calling the
598   // constructor, as can be the case with a non-user-provided default
599   // constructor, emit the zero initialization now, unless destination is
600   // already zeroed.
601   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
602     switch (E->getConstructionKind()) {
603     case CXXConstructionKind::Delegating:
604     case CXXConstructionKind::Complete:
605       EmitNullInitialization(Dest.getAddress(), E->getType());
606       break;
607     case CXXConstructionKind::VirtualBase:
608     case CXXConstructionKind::NonVirtualBase:
609       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
610                                       CD->getParent());
611       break;
612     }
613   }
614 
615   // If this is a call to a trivial default constructor, do nothing.
616   if (CD->isTrivial() && CD->isDefaultConstructor())
617     return;
618 
619   // Elide the constructor if we're constructing from a temporary.
620   if (getLangOpts().ElideConstructors && E->isElidable()) {
621     // FIXME: This only handles the simplest case, where the source object
622     //        is passed directly as the first argument to the constructor.
623     //        This should also handle stepping though implicit casts and
624     //        conversion sequences which involve two steps, with a
625     //        conversion operator followed by a converting constructor.
626     const Expr *SrcObj = E->getArg(0);
627     assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
628     assert(
629         getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
630     EmitAggExpr(SrcObj, Dest);
631     return;
632   }
633 
634   if (const ArrayType *arrayType
635         = getContext().getAsArrayType(E->getType())) {
636     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
637                                Dest.isSanitizerChecked());
638   } else {
639     CXXCtorType Type = Ctor_Complete;
640     bool ForVirtualBase = false;
641     bool Delegating = false;
642 
643     switch (E->getConstructionKind()) {
644     case CXXConstructionKind::Delegating:
645       // We should be emitting a constructor; GlobalDecl will assert this
646       Type = CurGD.getCtorType();
647       Delegating = true;
648       break;
649 
650     case CXXConstructionKind::Complete:
651       Type = Ctor_Complete;
652       break;
653 
654     case CXXConstructionKind::VirtualBase:
655       ForVirtualBase = true;
656       [[fallthrough]];
657 
658     case CXXConstructionKind::NonVirtualBase:
659       Type = Ctor_Base;
660      }
661 
662      // Call the constructor.
663      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
664   }
665 }
666 
667 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
668                                                  const Expr *Exp) {
669   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
670     Exp = E->getSubExpr();
671   assert(isa<CXXConstructExpr>(Exp) &&
672          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
673   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
674   const CXXConstructorDecl *CD = E->getConstructor();
675   RunCleanupsScope Scope(*this);
676 
677   // If we require zero initialization before (or instead of) calling the
678   // constructor, as can be the case with a non-user-provided default
679   // constructor, emit the zero initialization now.
680   // FIXME. Do I still need this for a copy ctor synthesis?
681   if (E->requiresZeroInitialization())
682     EmitNullInitialization(Dest, E->getType());
683 
684   assert(!getContext().getAsConstantArrayType(E->getType())
685          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
686   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
687 }
688 
689 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
690                                         const CXXNewExpr *E) {
691   if (!E->isArray())
692     return CharUnits::Zero();
693 
694   // No cookie is required if the operator new[] being used is the
695   // reserved placement operator new[].
696   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
697     return CharUnits::Zero();
698 
699   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
700 }
701 
702 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
703                                         const CXXNewExpr *e,
704                                         unsigned minElements,
705                                         llvm::Value *&numElements,
706                                         llvm::Value *&sizeWithoutCookie) {
707   QualType type = e->getAllocatedType();
708 
709   if (!e->isArray()) {
710     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
711     sizeWithoutCookie
712       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
713     return sizeWithoutCookie;
714   }
715 
716   // The width of size_t.
717   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
718 
719   // Figure out the cookie size.
720   llvm::APInt cookieSize(sizeWidth,
721                          CalculateCookiePadding(CGF, e).getQuantity());
722 
723   // Emit the array size expression.
724   // We multiply the size of all dimensions for NumElements.
725   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
726   numElements =
727     ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
728   if (!numElements)
729     numElements = CGF.EmitScalarExpr(*e->getArraySize());
730   assert(isa<llvm::IntegerType>(numElements->getType()));
731 
732   // The number of elements can be have an arbitrary integer type;
733   // essentially, we need to multiply it by a constant factor, add a
734   // cookie size, and verify that the result is representable as a
735   // size_t.  That's just a gloss, though, and it's wrong in one
736   // important way: if the count is negative, it's an error even if
737   // the cookie size would bring the total size >= 0.
738   bool isSigned
739     = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
740   llvm::IntegerType *numElementsType
741     = cast<llvm::IntegerType>(numElements->getType());
742   unsigned numElementsWidth = numElementsType->getBitWidth();
743 
744   // Compute the constant factor.
745   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
746   while (const ConstantArrayType *CAT
747              = CGF.getContext().getAsConstantArrayType(type)) {
748     type = CAT->getElementType();
749     arraySizeMultiplier *= CAT->getSize();
750   }
751 
752   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
753   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
754   typeSizeMultiplier *= arraySizeMultiplier;
755 
756   // This will be a size_t.
757   llvm::Value *size;
758 
759   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
760   // Don't bloat the -O0 code.
761   if (llvm::ConstantInt *numElementsC =
762         dyn_cast<llvm::ConstantInt>(numElements)) {
763     const llvm::APInt &count = numElementsC->getValue();
764 
765     bool hasAnyOverflow = false;
766 
767     // If 'count' was a negative number, it's an overflow.
768     if (isSigned && count.isNegative())
769       hasAnyOverflow = true;
770 
771     // We want to do all this arithmetic in size_t.  If numElements is
772     // wider than that, check whether it's already too big, and if so,
773     // overflow.
774     else if (numElementsWidth > sizeWidth &&
775              numElementsWidth - sizeWidth > count.countl_zero())
776       hasAnyOverflow = true;
777 
778     // Okay, compute a count at the right width.
779     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
780 
781     // If there is a brace-initializer, we cannot allocate fewer elements than
782     // there are initializers. If we do, that's treated like an overflow.
783     if (adjustedCount.ult(minElements))
784       hasAnyOverflow = true;
785 
786     // Scale numElements by that.  This might overflow, but we don't
787     // care because it only overflows if allocationSize does, too, and
788     // if that overflows then we shouldn't use this.
789     numElements = llvm::ConstantInt::get(CGF.SizeTy,
790                                          adjustedCount * arraySizeMultiplier);
791 
792     // Compute the size before cookie, and track whether it overflowed.
793     bool overflow;
794     llvm::APInt allocationSize
795       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
796     hasAnyOverflow |= overflow;
797 
798     // Add in the cookie, and check whether it's overflowed.
799     if (cookieSize != 0) {
800       // Save the current size without a cookie.  This shouldn't be
801       // used if there was overflow.
802       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
803 
804       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
805       hasAnyOverflow |= overflow;
806     }
807 
808     // On overflow, produce a -1 so operator new will fail.
809     if (hasAnyOverflow) {
810       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
811     } else {
812       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
813     }
814 
815   // Otherwise, we might need to use the overflow intrinsics.
816   } else {
817     // There are up to five conditions we need to test for:
818     // 1) if isSigned, we need to check whether numElements is negative;
819     // 2) if numElementsWidth > sizeWidth, we need to check whether
820     //   numElements is larger than something representable in size_t;
821     // 3) if minElements > 0, we need to check whether numElements is smaller
822     //    than that.
823     // 4) we need to compute
824     //      sizeWithoutCookie := numElements * typeSizeMultiplier
825     //    and check whether it overflows; and
826     // 5) if we need a cookie, we need to compute
827     //      size := sizeWithoutCookie + cookieSize
828     //    and check whether it overflows.
829 
830     llvm::Value *hasOverflow = nullptr;
831 
832     // If numElementsWidth > sizeWidth, then one way or another, we're
833     // going to have to do a comparison for (2), and this happens to
834     // take care of (1), too.
835     if (numElementsWidth > sizeWidth) {
836       llvm::APInt threshold =
837           llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth);
838 
839       llvm::Value *thresholdV
840         = llvm::ConstantInt::get(numElementsType, threshold);
841 
842       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
843       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
844 
845     // Otherwise, if we're signed, we want to sext up to size_t.
846     } else if (isSigned) {
847       if (numElementsWidth < sizeWidth)
848         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
849 
850       // If there's a non-1 type size multiplier, then we can do the
851       // signedness check at the same time as we do the multiply
852       // because a negative number times anything will cause an
853       // unsigned overflow.  Otherwise, we have to do it here. But at least
854       // in this case, we can subsume the >= minElements check.
855       if (typeSizeMultiplier == 1)
856         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
857                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
858 
859     // Otherwise, zext up to size_t if necessary.
860     } else if (numElementsWidth < sizeWidth) {
861       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
862     }
863 
864     assert(numElements->getType() == CGF.SizeTy);
865 
866     if (minElements) {
867       // Don't allow allocation of fewer elements than we have initializers.
868       if (!hasOverflow) {
869         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
870                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
871       } else if (numElementsWidth > sizeWidth) {
872         // The other existing overflow subsumes this check.
873         // We do an unsigned comparison, since any signed value < -1 is
874         // taken care of either above or below.
875         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
876                           CGF.Builder.CreateICmpULT(numElements,
877                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
878       }
879     }
880 
881     size = numElements;
882 
883     // Multiply by the type size if necessary.  This multiplier
884     // includes all the factors for nested arrays.
885     //
886     // This step also causes numElements to be scaled up by the
887     // nested-array factor if necessary.  Overflow on this computation
888     // can be ignored because the result shouldn't be used if
889     // allocation fails.
890     if (typeSizeMultiplier != 1) {
891       llvm::Function *umul_with_overflow
892         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
893 
894       llvm::Value *tsmV =
895         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
896       llvm::Value *result =
897           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
898 
899       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
900       if (hasOverflow)
901         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
902       else
903         hasOverflow = overflowed;
904 
905       size = CGF.Builder.CreateExtractValue(result, 0);
906 
907       // Also scale up numElements by the array size multiplier.
908       if (arraySizeMultiplier != 1) {
909         // If the base element type size is 1, then we can re-use the
910         // multiply we just did.
911         if (typeSize.isOne()) {
912           assert(arraySizeMultiplier == typeSizeMultiplier);
913           numElements = size;
914 
915         // Otherwise we need a separate multiply.
916         } else {
917           llvm::Value *asmV =
918             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
919           numElements = CGF.Builder.CreateMul(numElements, asmV);
920         }
921       }
922     } else {
923       // numElements doesn't need to be scaled.
924       assert(arraySizeMultiplier == 1);
925     }
926 
927     // Add in the cookie size if necessary.
928     if (cookieSize != 0) {
929       sizeWithoutCookie = size;
930 
931       llvm::Function *uadd_with_overflow
932         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
933 
934       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
935       llvm::Value *result =
936           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
937 
938       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
939       if (hasOverflow)
940         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
941       else
942         hasOverflow = overflowed;
943 
944       size = CGF.Builder.CreateExtractValue(result, 0);
945     }
946 
947     // If we had any possibility of dynamic overflow, make a select to
948     // overwrite 'size' with an all-ones value, which should cause
949     // operator new to throw.
950     if (hasOverflow)
951       size = CGF.Builder.CreateSelect(hasOverflow,
952                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
953                                       size);
954   }
955 
956   if (cookieSize == 0)
957     sizeWithoutCookie = size;
958   else
959     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
960 
961   return size;
962 }
963 
964 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
965                                     QualType AllocType, Address NewPtr,
966                                     AggValueSlot::Overlap_t MayOverlap) {
967   // FIXME: Refactor with EmitExprAsInit.
968   switch (CGF.getEvaluationKind(AllocType)) {
969   case TEK_Scalar:
970     CGF.EmitScalarInit(Init, nullptr,
971                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
972     return;
973   case TEK_Complex:
974     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
975                                   /*isInit*/ true);
976     return;
977   case TEK_Aggregate: {
978     AggValueSlot Slot
979       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
980                               AggValueSlot::IsDestructed,
981                               AggValueSlot::DoesNotNeedGCBarriers,
982                               AggValueSlot::IsNotAliased,
983                               MayOverlap, AggValueSlot::IsNotZeroed,
984                               AggValueSlot::IsSanitizerChecked);
985     CGF.EmitAggExpr(Init, Slot);
986     return;
987   }
988   }
989   llvm_unreachable("bad evaluation kind");
990 }
991 
992 void CodeGenFunction::EmitNewArrayInitializer(
993     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
994     Address BeginPtr, llvm::Value *NumElements,
995     llvm::Value *AllocSizeWithoutCookie) {
996   // If we have a type with trivial initialization and no initializer,
997   // there's nothing to do.
998   if (!E->hasInitializer())
999     return;
1000 
1001   Address CurPtr = BeginPtr;
1002 
1003   unsigned InitListElements = 0;
1004 
1005   const Expr *Init = E->getInitializer();
1006   Address EndOfInit = Address::invalid();
1007   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1008   EHScopeStack::stable_iterator Cleanup;
1009   llvm::Instruction *CleanupDominator = nullptr;
1010 
1011   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1012   CharUnits ElementAlign =
1013     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1014 
1015   // Attempt to perform zero-initialization using memset.
1016   auto TryMemsetInitialization = [&]() -> bool {
1017     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1018     // we can initialize with a memset to -1.
1019     if (!CGM.getTypes().isZeroInitializable(ElementType))
1020       return false;
1021 
1022     // Optimization: since zero initialization will just set the memory
1023     // to all zeroes, generate a single memset to do it in one shot.
1024 
1025     // Subtract out the size of any elements we've already initialized.
1026     auto *RemainingSize = AllocSizeWithoutCookie;
1027     if (InitListElements) {
1028       // We know this can't overflow; we check this when doing the allocation.
1029       auto *InitializedSize = llvm::ConstantInt::get(
1030           RemainingSize->getType(),
1031           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1032               InitListElements);
1033       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1034     }
1035 
1036     // Create the memset.
1037     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1038     return true;
1039   };
1040 
1041   // If the initializer is an initializer list, first do the explicit elements.
1042   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1043     // Initializing from a (braced) string literal is a special case; the init
1044     // list element does not initialize a (single) array element.
1045     if (ILE->isStringLiteralInit()) {
1046       // Initialize the initial portion of length equal to that of the string
1047       // literal. The allocation must be for at least this much; we emitted a
1048       // check for that earlier.
1049       AggValueSlot Slot =
1050           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1051                                 AggValueSlot::IsDestructed,
1052                                 AggValueSlot::DoesNotNeedGCBarriers,
1053                                 AggValueSlot::IsNotAliased,
1054                                 AggValueSlot::DoesNotOverlap,
1055                                 AggValueSlot::IsNotZeroed,
1056                                 AggValueSlot::IsSanitizerChecked);
1057       EmitAggExpr(ILE->getInit(0), Slot);
1058 
1059       // Move past these elements.
1060       InitListElements =
1061           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1062               ->getSize().getZExtValue();
1063       CurPtr = Builder.CreateConstInBoundsGEP(
1064           CurPtr, InitListElements, "string.init.end");
1065 
1066       // Zero out the rest, if any remain.
1067       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1068       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1069         bool OK = TryMemsetInitialization();
1070         (void)OK;
1071         assert(OK && "couldn't memset character type?");
1072       }
1073       return;
1074     }
1075 
1076     InitListElements = ILE->getNumInits();
1077 
1078     // If this is a multi-dimensional array new, we will initialize multiple
1079     // elements with each init list element.
1080     QualType AllocType = E->getAllocatedType();
1081     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1082             AllocType->getAsArrayTypeUnsafe())) {
1083       ElementTy = ConvertTypeForMem(AllocType);
1084       CurPtr = CurPtr.withElementType(ElementTy);
1085       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1086     }
1087 
1088     // Enter a partial-destruction Cleanup if necessary.
1089     if (needsEHCleanup(DtorKind)) {
1090       // In principle we could tell the Cleanup where we are more
1091       // directly, but the control flow can get so varied here that it
1092       // would actually be quite complex.  Therefore we go through an
1093       // alloca.
1094       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1095                                    "array.init.end");
1096       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1097       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1098                                        ElementType, ElementAlign,
1099                                        getDestroyer(DtorKind));
1100       Cleanup = EHStack.stable_begin();
1101     }
1102 
1103     CharUnits StartAlign = CurPtr.getAlignment();
1104     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1105       // Tell the cleanup that it needs to destroy up to this
1106       // element.  TODO: some of these stores can be trivially
1107       // observed to be unnecessary.
1108       if (EndOfInit.isValid()) {
1109         Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1110       }
1111       // FIXME: If the last initializer is an incomplete initializer list for
1112       // an array, and we have an array filler, we can fold together the two
1113       // initialization loops.
1114       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1115                               ILE->getInit(i)->getType(), CurPtr,
1116                               AggValueSlot::DoesNotOverlap);
1117       CurPtr = Address(Builder.CreateInBoundsGEP(
1118                            CurPtr.getElementType(), CurPtr.getPointer(),
1119                            Builder.getSize(1), "array.exp.next"),
1120                        CurPtr.getElementType(),
1121                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1122     }
1123 
1124     // The remaining elements are filled with the array filler expression.
1125     Init = ILE->getArrayFiller();
1126 
1127     // Extract the initializer for the individual array elements by pulling
1128     // out the array filler from all the nested initializer lists. This avoids
1129     // generating a nested loop for the initialization.
1130     while (Init && Init->getType()->isConstantArrayType()) {
1131       auto *SubILE = dyn_cast<InitListExpr>(Init);
1132       if (!SubILE)
1133         break;
1134       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1135       Init = SubILE->getArrayFiller();
1136     }
1137 
1138     // Switch back to initializing one base element at a time.
1139     CurPtr = CurPtr.withElementType(BeginPtr.getElementType());
1140   }
1141 
1142   // If all elements have already been initialized, skip any further
1143   // initialization.
1144   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1145   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1146     // If there was a Cleanup, deactivate it.
1147     if (CleanupDominator)
1148       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1149     return;
1150   }
1151 
1152   assert(Init && "have trailing elements to initialize but no initializer");
1153 
1154   // If this is a constructor call, try to optimize it out, and failing that
1155   // emit a single loop to initialize all remaining elements.
1156   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1157     CXXConstructorDecl *Ctor = CCE->getConstructor();
1158     if (Ctor->isTrivial()) {
1159       // If new expression did not specify value-initialization, then there
1160       // is no initialization.
1161       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1162         return;
1163 
1164       if (TryMemsetInitialization())
1165         return;
1166     }
1167 
1168     // Store the new Cleanup position for irregular Cleanups.
1169     //
1170     // FIXME: Share this cleanup with the constructor call emission rather than
1171     // having it create a cleanup of its own.
1172     if (EndOfInit.isValid())
1173       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1174 
1175     // Emit a constructor call loop to initialize the remaining elements.
1176     if (InitListElements)
1177       NumElements = Builder.CreateSub(
1178           NumElements,
1179           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1180     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1181                                /*NewPointerIsChecked*/true,
1182                                CCE->requiresZeroInitialization());
1183     return;
1184   }
1185 
1186   // If this is value-initialization, we can usually use memset.
1187   ImplicitValueInitExpr IVIE(ElementType);
1188   if (isa<ImplicitValueInitExpr>(Init)) {
1189     if (TryMemsetInitialization())
1190       return;
1191 
1192     // Switch to an ImplicitValueInitExpr for the element type. This handles
1193     // only one case: multidimensional array new of pointers to members. In
1194     // all other cases, we already have an initializer for the array element.
1195     Init = &IVIE;
1196   }
1197 
1198   // At this point we should have found an initializer for the individual
1199   // elements of the array.
1200   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1201          "got wrong type of element to initialize");
1202 
1203   // If we have an empty initializer list, we can usually use memset.
1204   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1205     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1206       return;
1207 
1208   // If we have a struct whose every field is value-initialized, we can
1209   // usually use memset.
1210   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1211     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1212       if (RType->getDecl()->isStruct()) {
1213         unsigned NumElements = 0;
1214         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1215           NumElements = CXXRD->getNumBases();
1216         for (auto *Field : RType->getDecl()->fields())
1217           if (!Field->isUnnamedBitfield())
1218             ++NumElements;
1219         // FIXME: Recurse into nested InitListExprs.
1220         if (ILE->getNumInits() == NumElements)
1221           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1222             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1223               --NumElements;
1224         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1225           return;
1226       }
1227     }
1228   }
1229 
1230   // Create the loop blocks.
1231   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1232   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1233   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1234 
1235   // Find the end of the array, hoisted out of the loop.
1236   llvm::Value *EndPtr =
1237     Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
1238                               NumElements, "array.end");
1239 
1240   // If the number of elements isn't constant, we have to now check if there is
1241   // anything left to initialize.
1242   if (!ConstNum) {
1243     llvm::Value *IsEmpty =
1244       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1245     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1246   }
1247 
1248   // Enter the loop.
1249   EmitBlock(LoopBB);
1250 
1251   // Set up the current-element phi.
1252   llvm::PHINode *CurPtrPhi =
1253       Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1254   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1255 
1256   CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1257 
1258   // Store the new Cleanup position for irregular Cleanups.
1259   if (EndOfInit.isValid())
1260     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1261 
1262   // Enter a partial-destruction Cleanup if necessary.
1263   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1264     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1265                                    ElementType, ElementAlign,
1266                                    getDestroyer(DtorKind));
1267     Cleanup = EHStack.stable_begin();
1268     CleanupDominator = Builder.CreateUnreachable();
1269   }
1270 
1271   // Emit the initializer into this element.
1272   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1273                           AggValueSlot::DoesNotOverlap);
1274 
1275   // Leave the Cleanup if we entered one.
1276   if (CleanupDominator) {
1277     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1278     CleanupDominator->eraseFromParent();
1279   }
1280 
1281   // Advance to the next element by adjusting the pointer type as necessary.
1282   llvm::Value *NextPtr =
1283     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1284                                        "array.next");
1285 
1286   // Check whether we've gotten to the end of the array and, if so,
1287   // exit the loop.
1288   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1289   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1290   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1291 
1292   EmitBlock(ContBB);
1293 }
1294 
1295 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1296                                QualType ElementType, llvm::Type *ElementTy,
1297                                Address NewPtr, llvm::Value *NumElements,
1298                                llvm::Value *AllocSizeWithoutCookie) {
1299   ApplyDebugLocation DL(CGF, E);
1300   if (E->isArray())
1301     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1302                                 AllocSizeWithoutCookie);
1303   else if (const Expr *Init = E->getInitializer())
1304     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1305                             AggValueSlot::DoesNotOverlap);
1306 }
1307 
1308 /// Emit a call to an operator new or operator delete function, as implicitly
1309 /// created by new-expressions and delete-expressions.
1310 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1311                                 const FunctionDecl *CalleeDecl,
1312                                 const FunctionProtoType *CalleeType,
1313                                 const CallArgList &Args) {
1314   llvm::CallBase *CallOrInvoke;
1315   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1316   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1317   RValue RV =
1318       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1319                        Args, CalleeType, /*ChainCall=*/false),
1320                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1321 
1322   /// C++1y [expr.new]p10:
1323   ///   [In a new-expression,] an implementation is allowed to omit a call
1324   ///   to a replaceable global allocation function.
1325   ///
1326   /// We model such elidable calls with the 'builtin' attribute.
1327   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1328   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1329       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1330     CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1331   }
1332 
1333   return RV;
1334 }
1335 
1336 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1337                                                  const CallExpr *TheCall,
1338                                                  bool IsDelete) {
1339   CallArgList Args;
1340   EmitCallArgs(Args, Type, TheCall->arguments());
1341   // Find the allocation or deallocation function that we're calling.
1342   ASTContext &Ctx = getContext();
1343   DeclarationName Name = Ctx.DeclarationNames
1344       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1345 
1346   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1347     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1348       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1349         return EmitNewDeleteCall(*this, FD, Type, Args);
1350   llvm_unreachable("predeclared global operator new/delete is missing");
1351 }
1352 
1353 namespace {
1354 /// The parameters to pass to a usual operator delete.
1355 struct UsualDeleteParams {
1356   bool DestroyingDelete = false;
1357   bool Size = false;
1358   bool Alignment = false;
1359 };
1360 }
1361 
1362 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1363   UsualDeleteParams Params;
1364 
1365   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1366   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1367 
1368   // The first argument is always a void*.
1369   ++AI;
1370 
1371   // The next parameter may be a std::destroying_delete_t.
1372   if (FD->isDestroyingOperatorDelete()) {
1373     Params.DestroyingDelete = true;
1374     assert(AI != AE);
1375     ++AI;
1376   }
1377 
1378   // Figure out what other parameters we should be implicitly passing.
1379   if (AI != AE && (*AI)->isIntegerType()) {
1380     Params.Size = true;
1381     ++AI;
1382   }
1383 
1384   if (AI != AE && (*AI)->isAlignValT()) {
1385     Params.Alignment = true;
1386     ++AI;
1387   }
1388 
1389   assert(AI == AE && "unexpected usual deallocation function parameter");
1390   return Params;
1391 }
1392 
1393 namespace {
1394   /// A cleanup to call the given 'operator delete' function upon abnormal
1395   /// exit from a new expression. Templated on a traits type that deals with
1396   /// ensuring that the arguments dominate the cleanup if necessary.
1397   template<typename Traits>
1398   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1399     /// Type used to hold llvm::Value*s.
1400     typedef typename Traits::ValueTy ValueTy;
1401     /// Type used to hold RValues.
1402     typedef typename Traits::RValueTy RValueTy;
1403     struct PlacementArg {
1404       RValueTy ArgValue;
1405       QualType ArgType;
1406     };
1407 
1408     unsigned NumPlacementArgs : 31;
1409     unsigned PassAlignmentToPlacementDelete : 1;
1410     const FunctionDecl *OperatorDelete;
1411     ValueTy Ptr;
1412     ValueTy AllocSize;
1413     CharUnits AllocAlign;
1414 
1415     PlacementArg *getPlacementArgs() {
1416       return reinterpret_cast<PlacementArg *>(this + 1);
1417     }
1418 
1419   public:
1420     static size_t getExtraSize(size_t NumPlacementArgs) {
1421       return NumPlacementArgs * sizeof(PlacementArg);
1422     }
1423 
1424     CallDeleteDuringNew(size_t NumPlacementArgs,
1425                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1426                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1427                         CharUnits AllocAlign)
1428       : NumPlacementArgs(NumPlacementArgs),
1429         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1430         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1431         AllocAlign(AllocAlign) {}
1432 
1433     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1434       assert(I < NumPlacementArgs && "index out of range");
1435       getPlacementArgs()[I] = {Arg, Type};
1436     }
1437 
1438     void Emit(CodeGenFunction &CGF, Flags flags) override {
1439       const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1440       CallArgList DeleteArgs;
1441 
1442       // The first argument is always a void* (or C* for a destroying operator
1443       // delete for class type C).
1444       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1445 
1446       // Figure out what other parameters we should be implicitly passing.
1447       UsualDeleteParams Params;
1448       if (NumPlacementArgs) {
1449         // A placement deallocation function is implicitly passed an alignment
1450         // if the placement allocation function was, but is never passed a size.
1451         Params.Alignment = PassAlignmentToPlacementDelete;
1452       } else {
1453         // For a non-placement new-expression, 'operator delete' can take a
1454         // size and/or an alignment if it has the right parameters.
1455         Params = getUsualDeleteParams(OperatorDelete);
1456       }
1457 
1458       assert(!Params.DestroyingDelete &&
1459              "should not call destroying delete in a new-expression");
1460 
1461       // The second argument can be a std::size_t (for non-placement delete).
1462       if (Params.Size)
1463         DeleteArgs.add(Traits::get(CGF, AllocSize),
1464                        CGF.getContext().getSizeType());
1465 
1466       // The next (second or third) argument can be a std::align_val_t, which
1467       // is an enum whose underlying type is std::size_t.
1468       // FIXME: Use the right type as the parameter type. Note that in a call
1469       // to operator delete(size_t, ...), we may not have it available.
1470       if (Params.Alignment)
1471         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1472                            CGF.SizeTy, AllocAlign.getQuantity())),
1473                        CGF.getContext().getSizeType());
1474 
1475       // Pass the rest of the arguments, which must match exactly.
1476       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1477         auto Arg = getPlacementArgs()[I];
1478         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1479       }
1480 
1481       // Call 'operator delete'.
1482       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1483     }
1484   };
1485 }
1486 
1487 /// Enter a cleanup to call 'operator delete' if the initializer in a
1488 /// new-expression throws.
1489 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1490                                   const CXXNewExpr *E,
1491                                   Address NewPtr,
1492                                   llvm::Value *AllocSize,
1493                                   CharUnits AllocAlign,
1494                                   const CallArgList &NewArgs) {
1495   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1496 
1497   // If we're not inside a conditional branch, then the cleanup will
1498   // dominate and we can do the easier (and more efficient) thing.
1499   if (!CGF.isInConditionalBranch()) {
1500     struct DirectCleanupTraits {
1501       typedef llvm::Value *ValueTy;
1502       typedef RValue RValueTy;
1503       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1504       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1505     };
1506 
1507     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1508 
1509     DirectCleanup *Cleanup = CGF.EHStack
1510       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1511                                            E->getNumPlacementArgs(),
1512                                            E->getOperatorDelete(),
1513                                            NewPtr.getPointer(),
1514                                            AllocSize,
1515                                            E->passAlignment(),
1516                                            AllocAlign);
1517     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1518       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1519       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1520     }
1521 
1522     return;
1523   }
1524 
1525   // Otherwise, we need to save all this stuff.
1526   DominatingValue<RValue>::saved_type SavedNewPtr =
1527     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1528   DominatingValue<RValue>::saved_type SavedAllocSize =
1529     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1530 
1531   struct ConditionalCleanupTraits {
1532     typedef DominatingValue<RValue>::saved_type ValueTy;
1533     typedef DominatingValue<RValue>::saved_type RValueTy;
1534     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1535       return V.restore(CGF);
1536     }
1537   };
1538   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1539 
1540   ConditionalCleanup *Cleanup = CGF.EHStack
1541     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1542                                               E->getNumPlacementArgs(),
1543                                               E->getOperatorDelete(),
1544                                               SavedNewPtr,
1545                                               SavedAllocSize,
1546                                               E->passAlignment(),
1547                                               AllocAlign);
1548   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1549     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1550     Cleanup->setPlacementArg(
1551         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1552   }
1553 
1554   CGF.initFullExprCleanup();
1555 }
1556 
1557 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1558   // The element type being allocated.
1559   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1560 
1561   // 1. Build a call to the allocation function.
1562   FunctionDecl *allocator = E->getOperatorNew();
1563 
1564   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1565   unsigned minElements = 0;
1566   if (E->isArray() && E->hasInitializer()) {
1567     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1568     if (ILE && ILE->isStringLiteralInit())
1569       minElements =
1570           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1571               ->getSize().getZExtValue();
1572     else if (ILE)
1573       minElements = ILE->getNumInits();
1574   }
1575 
1576   llvm::Value *numElements = nullptr;
1577   llvm::Value *allocSizeWithoutCookie = nullptr;
1578   llvm::Value *allocSize =
1579     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1580                         allocSizeWithoutCookie);
1581   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1582 
1583   // Emit the allocation call.  If the allocator is a global placement
1584   // operator, just "inline" it directly.
1585   Address allocation = Address::invalid();
1586   CallArgList allocatorArgs;
1587   if (allocator->isReservedGlobalPlacementOperator()) {
1588     assert(E->getNumPlacementArgs() == 1);
1589     const Expr *arg = *E->placement_arguments().begin();
1590 
1591     LValueBaseInfo BaseInfo;
1592     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1593 
1594     // The pointer expression will, in many cases, be an opaque void*.
1595     // In these cases, discard the computed alignment and use the
1596     // formal alignment of the allocated type.
1597     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1598       allocation = allocation.withAlignment(allocAlign);
1599 
1600     // Set up allocatorArgs for the call to operator delete if it's not
1601     // the reserved global operator.
1602     if (E->getOperatorDelete() &&
1603         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1604       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1605       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1606     }
1607 
1608   } else {
1609     const FunctionProtoType *allocatorType =
1610       allocator->getType()->castAs<FunctionProtoType>();
1611     unsigned ParamsToSkip = 0;
1612 
1613     // The allocation size is the first argument.
1614     QualType sizeType = getContext().getSizeType();
1615     allocatorArgs.add(RValue::get(allocSize), sizeType);
1616     ++ParamsToSkip;
1617 
1618     if (allocSize != allocSizeWithoutCookie) {
1619       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1620       allocAlign = std::max(allocAlign, cookieAlign);
1621     }
1622 
1623     // The allocation alignment may be passed as the second argument.
1624     if (E->passAlignment()) {
1625       QualType AlignValT = sizeType;
1626       if (allocatorType->getNumParams() > 1) {
1627         AlignValT = allocatorType->getParamType(1);
1628         assert(getContext().hasSameUnqualifiedType(
1629                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1630                    sizeType) &&
1631                "wrong type for alignment parameter");
1632         ++ParamsToSkip;
1633       } else {
1634         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1635         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1636       }
1637       allocatorArgs.add(
1638           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1639           AlignValT);
1640     }
1641 
1642     // FIXME: Why do we not pass a CalleeDecl here?
1643     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1644                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1645 
1646     RValue RV =
1647       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1648 
1649     // Set !heapallocsite metadata on the call to operator new.
1650     if (getDebugInfo())
1651       if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1652         getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1653                                                  E->getExprLoc());
1654 
1655     // If this was a call to a global replaceable allocation function that does
1656     // not take an alignment argument, the allocator is known to produce
1657     // storage that's suitably aligned for any object that fits, up to a known
1658     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1659     CharUnits allocationAlign = allocAlign;
1660     if (!E->passAlignment() &&
1661         allocator->isReplaceableGlobalAllocationFunction()) {
1662       unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>(
1663           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1664       allocationAlign = std::max(
1665           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1666     }
1667 
1668     allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1669   }
1670 
1671   // Emit a null check on the allocation result if the allocation
1672   // function is allowed to return null (because it has a non-throwing
1673   // exception spec or is the reserved placement new) and we have an
1674   // interesting initializer will be running sanitizers on the initialization.
1675   bool nullCheck = E->shouldNullCheckAllocation() &&
1676                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1677                     sanitizePerformTypeCheck());
1678 
1679   llvm::BasicBlock *nullCheckBB = nullptr;
1680   llvm::BasicBlock *contBB = nullptr;
1681 
1682   // The null-check means that the initializer is conditionally
1683   // evaluated.
1684   ConditionalEvaluation conditional(*this);
1685 
1686   if (nullCheck) {
1687     conditional.begin(*this);
1688 
1689     nullCheckBB = Builder.GetInsertBlock();
1690     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1691     contBB = createBasicBlock("new.cont");
1692 
1693     llvm::Value *isNull =
1694       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1695     Builder.CreateCondBr(isNull, contBB, notNullBB);
1696     EmitBlock(notNullBB);
1697   }
1698 
1699   // If there's an operator delete, enter a cleanup to call it if an
1700   // exception is thrown.
1701   EHScopeStack::stable_iterator operatorDeleteCleanup;
1702   llvm::Instruction *cleanupDominator = nullptr;
1703   if (E->getOperatorDelete() &&
1704       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1705     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1706                           allocatorArgs);
1707     operatorDeleteCleanup = EHStack.stable_begin();
1708     cleanupDominator = Builder.CreateUnreachable();
1709   }
1710 
1711   assert((allocSize == allocSizeWithoutCookie) ==
1712          CalculateCookiePadding(*this, E).isZero());
1713   if (allocSize != allocSizeWithoutCookie) {
1714     assert(E->isArray());
1715     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1716                                                        numElements,
1717                                                        E, allocType);
1718   }
1719 
1720   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1721   Address result = allocation.withElementType(elementTy);
1722 
1723   // Passing pointer through launder.invariant.group to avoid propagation of
1724   // vptrs information which may be included in previous type.
1725   // To not break LTO with different optimizations levels, we do it regardless
1726   // of optimization level.
1727   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1728       allocator->isReservedGlobalPlacementOperator())
1729     result = Builder.CreateLaunderInvariantGroup(result);
1730 
1731   // Emit sanitizer checks for pointer value now, so that in the case of an
1732   // array it was checked only once and not at each constructor call. We may
1733   // have already checked that the pointer is non-null.
1734   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1735   // we'll null check the wrong pointer here.
1736   SanitizerSet SkippedChecks;
1737   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1738   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1739                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1740                 result.getPointer(), allocType, result.getAlignment(),
1741                 SkippedChecks, numElements);
1742 
1743   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1744                      allocSizeWithoutCookie);
1745   llvm::Value *resultPtr = result.getPointer();
1746   if (E->isArray()) {
1747     // NewPtr is a pointer to the base element type.  If we're
1748     // allocating an array of arrays, we'll need to cast back to the
1749     // array pointer type.
1750     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1751     if (resultPtr->getType() != resultType)
1752       resultPtr = Builder.CreateBitCast(resultPtr, resultType);
1753   }
1754 
1755   // Deactivate the 'operator delete' cleanup if we finished
1756   // initialization.
1757   if (operatorDeleteCleanup.isValid()) {
1758     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1759     cleanupDominator->eraseFromParent();
1760   }
1761 
1762   if (nullCheck) {
1763     conditional.end(*this);
1764 
1765     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1766     EmitBlock(contBB);
1767 
1768     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1769     PHI->addIncoming(resultPtr, notNullBB);
1770     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1771                      nullCheckBB);
1772 
1773     resultPtr = PHI;
1774   }
1775 
1776   return resultPtr;
1777 }
1778 
1779 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1780                                      llvm::Value *Ptr, QualType DeleteTy,
1781                                      llvm::Value *NumElements,
1782                                      CharUnits CookieSize) {
1783   assert((!NumElements && CookieSize.isZero()) ||
1784          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1785 
1786   const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1787   CallArgList DeleteArgs;
1788 
1789   auto Params = getUsualDeleteParams(DeleteFD);
1790   auto ParamTypeIt = DeleteFTy->param_type_begin();
1791 
1792   // Pass the pointer itself.
1793   QualType ArgTy = *ParamTypeIt++;
1794   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1795   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1796 
1797   // Pass the std::destroying_delete tag if present.
1798   llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1799   if (Params.DestroyingDelete) {
1800     QualType DDTag = *ParamTypeIt++;
1801     llvm::Type *Ty = getTypes().ConvertType(DDTag);
1802     CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1803     DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1804     DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1805     DeleteArgs.add(
1806         RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
1807   }
1808 
1809   // Pass the size if the delete function has a size_t parameter.
1810   if (Params.Size) {
1811     QualType SizeType = *ParamTypeIt++;
1812     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1813     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1814                                                DeleteTypeSize.getQuantity());
1815 
1816     // For array new, multiply by the number of elements.
1817     if (NumElements)
1818       Size = Builder.CreateMul(Size, NumElements);
1819 
1820     // If there is a cookie, add the cookie size.
1821     if (!CookieSize.isZero())
1822       Size = Builder.CreateAdd(
1823           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1824 
1825     DeleteArgs.add(RValue::get(Size), SizeType);
1826   }
1827 
1828   // Pass the alignment if the delete function has an align_val_t parameter.
1829   if (Params.Alignment) {
1830     QualType AlignValType = *ParamTypeIt++;
1831     CharUnits DeleteTypeAlign =
1832         getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1833             DeleteTy, true /* NeedsPreferredAlignment */));
1834     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1835                                                 DeleteTypeAlign.getQuantity());
1836     DeleteArgs.add(RValue::get(Align), AlignValType);
1837   }
1838 
1839   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1840          "unknown parameter to usual delete function");
1841 
1842   // Emit the call to delete.
1843   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1844 
1845   // If call argument lowering didn't use the destroying_delete_t alloca,
1846   // remove it again.
1847   if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1848     DestroyingDeleteTag->eraseFromParent();
1849 }
1850 
1851 namespace {
1852   /// Calls the given 'operator delete' on a single object.
1853   struct CallObjectDelete final : EHScopeStack::Cleanup {
1854     llvm::Value *Ptr;
1855     const FunctionDecl *OperatorDelete;
1856     QualType ElementType;
1857 
1858     CallObjectDelete(llvm::Value *Ptr,
1859                      const FunctionDecl *OperatorDelete,
1860                      QualType ElementType)
1861       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1862 
1863     void Emit(CodeGenFunction &CGF, Flags flags) override {
1864       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1865     }
1866   };
1867 }
1868 
1869 void
1870 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1871                                              llvm::Value *CompletePtr,
1872                                              QualType ElementType) {
1873   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1874                                         OperatorDelete, ElementType);
1875 }
1876 
1877 /// Emit the code for deleting a single object with a destroying operator
1878 /// delete. If the element type has a non-virtual destructor, Ptr has already
1879 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1880 /// Ptr points to an object of the static type.
1881 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1882                                        const CXXDeleteExpr *DE, Address Ptr,
1883                                        QualType ElementType) {
1884   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1885   if (Dtor && Dtor->isVirtual())
1886     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1887                                                 Dtor);
1888   else
1889     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1890 }
1891 
1892 /// Emit the code for deleting a single object.
1893 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1894 /// if not.
1895 static bool EmitObjectDelete(CodeGenFunction &CGF,
1896                              const CXXDeleteExpr *DE,
1897                              Address Ptr,
1898                              QualType ElementType,
1899                              llvm::BasicBlock *UnconditionalDeleteBlock) {
1900   // C++11 [expr.delete]p3:
1901   //   If the static type of the object to be deleted is different from its
1902   //   dynamic type, the static type shall be a base class of the dynamic type
1903   //   of the object to be deleted and the static type shall have a virtual
1904   //   destructor or the behavior is undefined.
1905   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1906                     DE->getExprLoc(), Ptr.getPointer(),
1907                     ElementType);
1908 
1909   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1910   assert(!OperatorDelete->isDestroyingOperatorDelete());
1911 
1912   // Find the destructor for the type, if applicable.  If the
1913   // destructor is virtual, we'll just emit the vcall and return.
1914   const CXXDestructorDecl *Dtor = nullptr;
1915   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1916     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1917     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1918       Dtor = RD->getDestructor();
1919 
1920       if (Dtor->isVirtual()) {
1921         bool UseVirtualCall = true;
1922         const Expr *Base = DE->getArgument();
1923         if (auto *DevirtualizedDtor =
1924                 dyn_cast_or_null<const CXXDestructorDecl>(
1925                     Dtor->getDevirtualizedMethod(
1926                         Base, CGF.CGM.getLangOpts().AppleKext))) {
1927           UseVirtualCall = false;
1928           const CXXRecordDecl *DevirtualizedClass =
1929               DevirtualizedDtor->getParent();
1930           if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1931             // Devirtualized to the class of the base type (the type of the
1932             // whole expression).
1933             Dtor = DevirtualizedDtor;
1934           } else {
1935             // Devirtualized to some other type. Would need to cast the this
1936             // pointer to that type but we don't have support for that yet, so
1937             // do a virtual call. FIXME: handle the case where it is
1938             // devirtualized to the derived type (the type of the inner
1939             // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1940             UseVirtualCall = true;
1941           }
1942         }
1943         if (UseVirtualCall) {
1944           CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1945                                                       Dtor);
1946           return false;
1947         }
1948       }
1949     }
1950   }
1951 
1952   // Make sure that we call delete even if the dtor throws.
1953   // This doesn't have to a conditional cleanup because we're going
1954   // to pop it off in a second.
1955   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1956                                             Ptr.getPointer(),
1957                                             OperatorDelete, ElementType);
1958 
1959   if (Dtor)
1960     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1961                               /*ForVirtualBase=*/false,
1962                               /*Delegating=*/false,
1963                               Ptr, ElementType);
1964   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1965     switch (Lifetime) {
1966     case Qualifiers::OCL_None:
1967     case Qualifiers::OCL_ExplicitNone:
1968     case Qualifiers::OCL_Autoreleasing:
1969       break;
1970 
1971     case Qualifiers::OCL_Strong:
1972       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1973       break;
1974 
1975     case Qualifiers::OCL_Weak:
1976       CGF.EmitARCDestroyWeak(Ptr);
1977       break;
1978     }
1979   }
1980 
1981   // When optimizing for size, call 'operator delete' unconditionally.
1982   if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
1983     CGF.EmitBlock(UnconditionalDeleteBlock);
1984     CGF.PopCleanupBlock();
1985     return true;
1986   }
1987 
1988   CGF.PopCleanupBlock();
1989   return false;
1990 }
1991 
1992 namespace {
1993   /// Calls the given 'operator delete' on an array of objects.
1994   struct CallArrayDelete final : EHScopeStack::Cleanup {
1995     llvm::Value *Ptr;
1996     const FunctionDecl *OperatorDelete;
1997     llvm::Value *NumElements;
1998     QualType ElementType;
1999     CharUnits CookieSize;
2000 
2001     CallArrayDelete(llvm::Value *Ptr,
2002                     const FunctionDecl *OperatorDelete,
2003                     llvm::Value *NumElements,
2004                     QualType ElementType,
2005                     CharUnits CookieSize)
2006       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2007         ElementType(ElementType), CookieSize(CookieSize) {}
2008 
2009     void Emit(CodeGenFunction &CGF, Flags flags) override {
2010       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2011                          CookieSize);
2012     }
2013   };
2014 }
2015 
2016 /// Emit the code for deleting an array of objects.
2017 static void EmitArrayDelete(CodeGenFunction &CGF,
2018                             const CXXDeleteExpr *E,
2019                             Address deletedPtr,
2020                             QualType elementType) {
2021   llvm::Value *numElements = nullptr;
2022   llvm::Value *allocatedPtr = nullptr;
2023   CharUnits cookieSize;
2024   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2025                                       numElements, allocatedPtr, cookieSize);
2026 
2027   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2028 
2029   // Make sure that we call delete even if one of the dtors throws.
2030   const FunctionDecl *operatorDelete = E->getOperatorDelete();
2031   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2032                                            allocatedPtr, operatorDelete,
2033                                            numElements, elementType,
2034                                            cookieSize);
2035 
2036   // Destroy the elements.
2037   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2038     assert(numElements && "no element count for a type with a destructor!");
2039 
2040     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2041     CharUnits elementAlign =
2042       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2043 
2044     llvm::Value *arrayBegin = deletedPtr.getPointer();
2045     llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2046       deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2047 
2048     // Note that it is legal to allocate a zero-length array, and we
2049     // can never fold the check away because the length should always
2050     // come from a cookie.
2051     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2052                          CGF.getDestroyer(dtorKind),
2053                          /*checkZeroLength*/ true,
2054                          CGF.needsEHCleanup(dtorKind));
2055   }
2056 
2057   // Pop the cleanup block.
2058   CGF.PopCleanupBlock();
2059 }
2060 
2061 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2062   const Expr *Arg = E->getArgument();
2063   Address Ptr = EmitPointerWithAlignment(Arg);
2064 
2065   // Null check the pointer.
2066   //
2067   // We could avoid this null check if we can determine that the object
2068   // destruction is trivial and doesn't require an array cookie; we can
2069   // unconditionally perform the operator delete call in that case. For now, we
2070   // assume that deleted pointers are null rarely enough that it's better to
2071   // keep the branch. This might be worth revisiting for a -O0 code size win.
2072   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2073   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2074 
2075   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2076 
2077   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2078   EmitBlock(DeleteNotNull);
2079   Ptr.setKnownNonNull();
2080 
2081   QualType DeleteTy = E->getDestroyedType();
2082 
2083   // A destroying operator delete overrides the entire operation of the
2084   // delete expression.
2085   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2086     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2087     EmitBlock(DeleteEnd);
2088     return;
2089   }
2090 
2091   // We might be deleting a pointer to array.  If so, GEP down to the
2092   // first non-array element.
2093   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2094   if (DeleteTy->isConstantArrayType()) {
2095     llvm::Value *Zero = Builder.getInt32(0);
2096     SmallVector<llvm::Value*,8> GEP;
2097 
2098     GEP.push_back(Zero); // point at the outermost array
2099 
2100     // For each layer of array type we're pointing at:
2101     while (const ConstantArrayType *Arr
2102              = getContext().getAsConstantArrayType(DeleteTy)) {
2103       // 1. Unpeel the array type.
2104       DeleteTy = Arr->getElementType();
2105 
2106       // 2. GEP to the first element of the array.
2107       GEP.push_back(Zero);
2108     }
2109 
2110     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
2111                                             Ptr.getPointer(), GEP, "del.first"),
2112                   ConvertTypeForMem(DeleteTy), Ptr.getAlignment(),
2113                   Ptr.isKnownNonNull());
2114   }
2115 
2116   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2117 
2118   if (E->isArrayForm()) {
2119     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2120     EmitBlock(DeleteEnd);
2121   } else {
2122     if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2123       EmitBlock(DeleteEnd);
2124   }
2125 }
2126 
2127 static bool isGLValueFromPointerDeref(const Expr *E) {
2128   E = E->IgnoreParens();
2129 
2130   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2131     if (!CE->getSubExpr()->isGLValue())
2132       return false;
2133     return isGLValueFromPointerDeref(CE->getSubExpr());
2134   }
2135 
2136   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2137     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2138 
2139   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2140     if (BO->getOpcode() == BO_Comma)
2141       return isGLValueFromPointerDeref(BO->getRHS());
2142 
2143   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2144     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2145            isGLValueFromPointerDeref(ACO->getFalseExpr());
2146 
2147   // C++11 [expr.sub]p1:
2148   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2149   if (isa<ArraySubscriptExpr>(E))
2150     return true;
2151 
2152   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2153     if (UO->getOpcode() == UO_Deref)
2154       return true;
2155 
2156   return false;
2157 }
2158 
2159 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2160                                          llvm::Type *StdTypeInfoPtrTy) {
2161   // Get the vtable pointer.
2162   Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2163 
2164   QualType SrcRecordTy = E->getType();
2165 
2166   // C++ [class.cdtor]p4:
2167   //   If the operand of typeid refers to the object under construction or
2168   //   destruction and the static type of the operand is neither the constructor
2169   //   or destructor’s class nor one of its bases, the behavior is undefined.
2170   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2171                     ThisPtr.getPointer(), SrcRecordTy);
2172 
2173   // C++ [expr.typeid]p2:
2174   //   If the glvalue expression is obtained by applying the unary * operator to
2175   //   a pointer and the pointer is a null pointer value, the typeid expression
2176   //   throws the std::bad_typeid exception.
2177   //
2178   // However, this paragraph's intent is not clear.  We choose a very generous
2179   // interpretation which implores us to consider comma operators, conditional
2180   // operators, parentheses and other such constructs.
2181   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2182           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2183     llvm::BasicBlock *BadTypeidBlock =
2184         CGF.createBasicBlock("typeid.bad_typeid");
2185     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2186 
2187     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2188     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2189 
2190     CGF.EmitBlock(BadTypeidBlock);
2191     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2192     CGF.EmitBlock(EndBlock);
2193   }
2194 
2195   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2196                                         StdTypeInfoPtrTy);
2197 }
2198 
2199 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2200   llvm::Type *PtrTy = llvm::PointerType::getUnqual(getLLVMContext());
2201   LangAS GlobAS = CGM.GetGlobalVarAddressSpace(nullptr);
2202 
2203   auto MaybeASCast = [=](auto &&TypeInfo) {
2204     if (GlobAS == LangAS::Default)
2205       return TypeInfo;
2206     return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS,
2207                                                  LangAS::Default, PtrTy);
2208   };
2209 
2210   if (E->isTypeOperand()) {
2211     llvm::Constant *TypeInfo =
2212         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2213     return MaybeASCast(TypeInfo);
2214   }
2215 
2216   // C++ [expr.typeid]p2:
2217   //   When typeid is applied to a glvalue expression whose type is a
2218   //   polymorphic class type, the result refers to a std::type_info object
2219   //   representing the type of the most derived object (that is, the dynamic
2220   //   type) to which the glvalue refers.
2221   // If the operand is already most derived object, no need to look up vtable.
2222   if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2223     return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy);
2224 
2225   QualType OperandTy = E->getExprOperand()->getType();
2226   return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(OperandTy));
2227 }
2228 
2229 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2230                                           QualType DestTy) {
2231   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2232   if (DestTy->isPointerType())
2233     return llvm::Constant::getNullValue(DestLTy);
2234 
2235   /// C++ [expr.dynamic.cast]p9:
2236   ///   A failed cast to reference type throws std::bad_cast
2237   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2238     return nullptr;
2239 
2240   CGF.Builder.ClearInsertionPoint();
2241   return llvm::PoisonValue::get(DestLTy);
2242 }
2243 
2244 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2245                                               const CXXDynamicCastExpr *DCE) {
2246   CGM.EmitExplicitCastExprType(DCE, this);
2247   QualType DestTy = DCE->getTypeAsWritten();
2248 
2249   QualType SrcTy = DCE->getSubExpr()->getType();
2250 
2251   // C++ [expr.dynamic.cast]p7:
2252   //   If T is "pointer to cv void," then the result is a pointer to the most
2253   //   derived object pointed to by v.
2254   bool IsDynamicCastToVoid = DestTy->isVoidPointerType();
2255   QualType SrcRecordTy;
2256   QualType DestRecordTy;
2257   if (IsDynamicCastToVoid) {
2258     SrcRecordTy = SrcTy->getPointeeType();
2259     // No DestRecordTy.
2260   } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
2261     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2262     DestRecordTy = DestPTy->getPointeeType();
2263   } else {
2264     SrcRecordTy = SrcTy;
2265     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2266   }
2267 
2268   // C++ [class.cdtor]p5:
2269   //   If the operand of the dynamic_cast refers to the object under
2270   //   construction or destruction and the static type of the operand is not a
2271   //   pointer to or object of the constructor or destructor’s own class or one
2272   //   of its bases, the dynamic_cast results in undefined behavior.
2273   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2274                 SrcRecordTy);
2275 
2276   if (DCE->isAlwaysNull()) {
2277     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) {
2278       // Expression emission is expected to retain a valid insertion point.
2279       if (!Builder.GetInsertBlock())
2280         EmitBlock(createBasicBlock("dynamic_cast.unreachable"));
2281       return T;
2282     }
2283   }
2284 
2285   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2286 
2287   // If the destination is effectively final, the cast succeeds if and only
2288   // if the dynamic type of the pointer is exactly the destination type.
2289   bool IsExact = !IsDynamicCastToVoid &&
2290                  CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2291                  DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() &&
2292                  CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy);
2293 
2294   // C++ [expr.dynamic.cast]p4:
2295   //   If the value of v is a null pointer value in the pointer case, the result
2296   //   is the null pointer value of type T.
2297   bool ShouldNullCheckSrcValue =
2298       IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(
2299                      SrcTy->isPointerType(), SrcRecordTy);
2300 
2301   llvm::BasicBlock *CastNull = nullptr;
2302   llvm::BasicBlock *CastNotNull = nullptr;
2303   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2304 
2305   if (ShouldNullCheckSrcValue) {
2306     CastNull = createBasicBlock("dynamic_cast.null");
2307     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2308 
2309     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2310     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2311     EmitBlock(CastNotNull);
2312   }
2313 
2314   llvm::Value *Value;
2315   if (IsDynamicCastToVoid) {
2316     Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy);
2317   } else if (IsExact) {
2318     // If the destination type is effectively final, this pointer points to the
2319     // right type if and only if its vptr has the right value.
2320     Value = CGM.getCXXABI().emitExactDynamicCast(
2321         *this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastEnd, CastNull);
2322   } else {
2323     assert(DestRecordTy->isRecordType() &&
2324            "destination type must be a record type!");
2325     Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2326                                                 DestTy, DestRecordTy, CastEnd);
2327   }
2328   CastNotNull = Builder.GetInsertBlock();
2329 
2330   llvm::Value *NullValue = nullptr;
2331   if (ShouldNullCheckSrcValue) {
2332     EmitBranch(CastEnd);
2333 
2334     EmitBlock(CastNull);
2335     NullValue = EmitDynamicCastToNull(*this, DestTy);
2336     CastNull = Builder.GetInsertBlock();
2337 
2338     EmitBranch(CastEnd);
2339   }
2340 
2341   EmitBlock(CastEnd);
2342 
2343   if (CastNull) {
2344     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2345     PHI->addIncoming(Value, CastNotNull);
2346     PHI->addIncoming(NullValue, CastNull);
2347 
2348     Value = PHI;
2349   }
2350 
2351   return Value;
2352 }
2353