1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/MatrixBuilder.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SaveAndRestore.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 #include <string> 46 47 using namespace clang; 48 using namespace CodeGen; 49 50 //===--------------------------------------------------------------------===// 51 // Miscellaneous Helper Methods 52 //===--------------------------------------------------------------------===// 53 54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 55 unsigned addressSpace = 56 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 57 58 llvm::PointerType *destType = Int8PtrTy; 59 if (addressSpace) 60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 61 62 if (value->getType() == destType) return value; 63 return Builder.CreateBitCast(value, destType); 64 } 65 66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 67 /// block. 68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 69 CharUnits Align, 70 const Twine &Name, 71 llvm::Value *ArraySize) { 72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 73 Alloca->setAlignment(Align.getAsAlign()); 74 return Address(Alloca, Ty, Align); 75 } 76 77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 78 /// block. The alloca is casted to default address space if necessary. 79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 80 const Twine &Name, 81 llvm::Value *ArraySize, 82 Address *AllocaAddr) { 83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 84 if (AllocaAddr) 85 *AllocaAddr = Alloca; 86 llvm::Value *V = Alloca.getPointer(); 87 // Alloca always returns a pointer in alloca address space, which may 88 // be different from the type defined by the language. For example, 89 // in C++ the auto variables are in the default address space. Therefore 90 // cast alloca to the default address space when necessary. 91 if (getASTAllocaAddressSpace() != LangAS::Default) { 92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 95 // otherwise alloca is inserted at the current insertion point of the 96 // builder. 97 if (!ArraySize) 98 Builder.SetInsertPoint(getPostAllocaInsertPoint()); 99 V = getTargetHooks().performAddrSpaceCast( 100 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 102 } 103 104 return Address(V, Ty, Align); 105 } 106 107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 109 /// insertion point of the builder. 110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 111 const Twine &Name, 112 llvm::Value *ArraySize) { 113 if (ArraySize) 114 return Builder.CreateAlloca(Ty, ArraySize, Name); 115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 116 ArraySize, Name, AllocaInsertPt); 117 } 118 119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 120 /// default alignment of the corresponding LLVM type, which is *not* 121 /// guaranteed to be related in any way to the expected alignment of 122 /// an AST type that might have been lowered to Ty. 123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 124 const Twine &Name) { 125 CharUnits Align = 126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty)); 127 return CreateTempAlloca(Ty, Align, Name); 128 } 129 130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 131 CharUnits Align = getContext().getTypeAlignInChars(Ty); 132 return CreateTempAlloca(ConvertType(Ty), Align, Name); 133 } 134 135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 136 Address *Alloca) { 137 // FIXME: Should we prefer the preferred type alignment here? 138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 139 } 140 141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 142 const Twine &Name, Address *Alloca) { 143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 144 /*ArraySize=*/nullptr, Alloca); 145 146 if (Ty->isConstantMatrixType()) { 147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType()); 148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 149 ArrayTy->getNumElements()); 150 151 Result = Address( 152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 153 VectorTy, Result.getAlignment()); 154 } 155 return Result; 156 } 157 158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 159 const Twine &Name) { 160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 161 } 162 163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 164 const Twine &Name) { 165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 166 Name); 167 } 168 169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 170 /// expression and compare the result against zero, returning an Int1Ty value. 171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 172 PGO.setCurrentStmt(E); 173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 174 llvm::Value *MemPtr = EmitScalarExpr(E); 175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 176 } 177 178 QualType BoolTy = getContext().BoolTy; 179 SourceLocation Loc = E->getExprLoc(); 180 CGFPOptionsRAII FPOptsRAII(*this, E); 181 if (!E->getType()->isAnyComplexType()) 182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 183 184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 185 Loc); 186 } 187 188 /// EmitIgnoredExpr - Emit code to compute the specified expression, 189 /// ignoring the result. 190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 191 if (E->isPRValue()) 192 return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true); 193 194 // if this is a bitfield-resulting conditional operator, we can special case 195 // emit this. The normal 'EmitLValue' version of this is particularly 196 // difficult to codegen for, since creating a single "LValue" for two 197 // different sized arguments here is not particularly doable. 198 if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>( 199 E->IgnoreParenNoopCasts(getContext()))) { 200 if (CondOp->getObjectKind() == OK_BitField) 201 return EmitIgnoredConditionalOperator(CondOp); 202 } 203 204 // Just emit it as an l-value and drop the result. 205 EmitLValue(E); 206 } 207 208 /// EmitAnyExpr - Emit code to compute the specified expression which 209 /// can have any type. The result is returned as an RValue struct. 210 /// If this is an aggregate expression, AggSlot indicates where the 211 /// result should be returned. 212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 213 AggValueSlot aggSlot, 214 bool ignoreResult) { 215 switch (getEvaluationKind(E->getType())) { 216 case TEK_Scalar: 217 return RValue::get(EmitScalarExpr(E, ignoreResult)); 218 case TEK_Complex: 219 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 220 case TEK_Aggregate: 221 if (!ignoreResult && aggSlot.isIgnored()) 222 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 223 EmitAggExpr(E, aggSlot); 224 return aggSlot.asRValue(); 225 } 226 llvm_unreachable("bad evaluation kind"); 227 } 228 229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 230 /// always be accessible even if no aggregate location is provided. 231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 232 AggValueSlot AggSlot = AggValueSlot::ignored(); 233 234 if (hasAggregateEvaluationKind(E->getType())) 235 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 236 return EmitAnyExpr(E, AggSlot); 237 } 238 239 /// EmitAnyExprToMem - Evaluate an expression into a given memory 240 /// location. 241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 242 Address Location, 243 Qualifiers Quals, 244 bool IsInit) { 245 // FIXME: This function should take an LValue as an argument. 246 switch (getEvaluationKind(E->getType())) { 247 case TEK_Complex: 248 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 249 /*isInit*/ false); 250 return; 251 252 case TEK_Aggregate: { 253 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 254 AggValueSlot::IsDestructed_t(IsInit), 255 AggValueSlot::DoesNotNeedGCBarriers, 256 AggValueSlot::IsAliased_t(!IsInit), 257 AggValueSlot::MayOverlap)); 258 return; 259 } 260 261 case TEK_Scalar: { 262 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 263 LValue LV = MakeAddrLValue(Location, E->getType()); 264 EmitStoreThroughLValue(RV, LV); 265 return; 266 } 267 } 268 llvm_unreachable("bad evaluation kind"); 269 } 270 271 static void 272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 273 const Expr *E, Address ReferenceTemporary) { 274 // Objective-C++ ARC: 275 // If we are binding a reference to a temporary that has ownership, we 276 // need to perform retain/release operations on the temporary. 277 // 278 // FIXME: This should be looking at E, not M. 279 if (auto Lifetime = M->getType().getObjCLifetime()) { 280 switch (Lifetime) { 281 case Qualifiers::OCL_None: 282 case Qualifiers::OCL_ExplicitNone: 283 // Carry on to normal cleanup handling. 284 break; 285 286 case Qualifiers::OCL_Autoreleasing: 287 // Nothing to do; cleaned up by an autorelease pool. 288 return; 289 290 case Qualifiers::OCL_Strong: 291 case Qualifiers::OCL_Weak: 292 switch (StorageDuration Duration = M->getStorageDuration()) { 293 case SD_Static: 294 // Note: we intentionally do not register a cleanup to release 295 // the object on program termination. 296 return; 297 298 case SD_Thread: 299 // FIXME: We should probably register a cleanup in this case. 300 return; 301 302 case SD_Automatic: 303 case SD_FullExpression: 304 CodeGenFunction::Destroyer *Destroy; 305 CleanupKind CleanupKind; 306 if (Lifetime == Qualifiers::OCL_Strong) { 307 const ValueDecl *VD = M->getExtendingDecl(); 308 bool Precise = 309 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 310 CleanupKind = CGF.getARCCleanupKind(); 311 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 312 : &CodeGenFunction::destroyARCStrongImprecise; 313 } else { 314 // __weak objects always get EH cleanups; otherwise, exceptions 315 // could cause really nasty crashes instead of mere leaks. 316 CleanupKind = NormalAndEHCleanup; 317 Destroy = &CodeGenFunction::destroyARCWeak; 318 } 319 if (Duration == SD_FullExpression) 320 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 321 M->getType(), *Destroy, 322 CleanupKind & EHCleanup); 323 else 324 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 325 M->getType(), 326 *Destroy, CleanupKind & EHCleanup); 327 return; 328 329 case SD_Dynamic: 330 llvm_unreachable("temporary cannot have dynamic storage duration"); 331 } 332 llvm_unreachable("unknown storage duration"); 333 } 334 } 335 336 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 337 if (const RecordType *RT = 338 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 339 // Get the destructor for the reference temporary. 340 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 341 if (!ClassDecl->hasTrivialDestructor()) 342 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 343 } 344 345 if (!ReferenceTemporaryDtor) 346 return; 347 348 // Call the destructor for the temporary. 349 switch (M->getStorageDuration()) { 350 case SD_Static: 351 case SD_Thread: { 352 llvm::FunctionCallee CleanupFn; 353 llvm::Constant *CleanupArg; 354 if (E->getType()->isArrayType()) { 355 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 356 ReferenceTemporary, E->getType(), 357 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 358 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 359 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 360 } else { 361 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 362 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 363 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 364 } 365 CGF.CGM.getCXXABI().registerGlobalDtor( 366 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 367 break; 368 } 369 370 case SD_FullExpression: 371 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 372 CodeGenFunction::destroyCXXObject, 373 CGF.getLangOpts().Exceptions); 374 break; 375 376 case SD_Automatic: 377 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 378 ReferenceTemporary, E->getType(), 379 CodeGenFunction::destroyCXXObject, 380 CGF.getLangOpts().Exceptions); 381 break; 382 383 case SD_Dynamic: 384 llvm_unreachable("temporary cannot have dynamic storage duration"); 385 } 386 } 387 388 static Address createReferenceTemporary(CodeGenFunction &CGF, 389 const MaterializeTemporaryExpr *M, 390 const Expr *Inner, 391 Address *Alloca = nullptr) { 392 auto &TCG = CGF.getTargetHooks(); 393 switch (M->getStorageDuration()) { 394 case SD_FullExpression: 395 case SD_Automatic: { 396 // If we have a constant temporary array or record try to promote it into a 397 // constant global under the same rules a normal constant would've been 398 // promoted. This is easier on the optimizer and generally emits fewer 399 // instructions. 400 QualType Ty = Inner->getType(); 401 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 402 (Ty->isArrayType() || Ty->isRecordType()) && 403 CGF.CGM.isTypeConstant(Ty, true)) 404 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 405 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 406 auto *GV = new llvm::GlobalVariable( 407 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 408 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 409 llvm::GlobalValue::NotThreadLocal, 410 CGF.getContext().getTargetAddressSpace(AS)); 411 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 412 GV->setAlignment(alignment.getAsAlign()); 413 llvm::Constant *C = GV; 414 if (AS != LangAS::Default) 415 C = TCG.performAddrSpaceCast( 416 CGF.CGM, GV, AS, LangAS::Default, 417 GV->getValueType()->getPointerTo( 418 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 419 // FIXME: Should we put the new global into a COMDAT? 420 return Address(C, GV->getValueType(), alignment); 421 } 422 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 423 } 424 case SD_Thread: 425 case SD_Static: 426 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 427 428 case SD_Dynamic: 429 llvm_unreachable("temporary can't have dynamic storage duration"); 430 } 431 llvm_unreachable("unknown storage duration"); 432 } 433 434 /// Helper method to check if the underlying ABI is AAPCS 435 static bool isAAPCS(const TargetInfo &TargetInfo) { 436 return TargetInfo.getABI().startswith("aapcs"); 437 } 438 439 LValue CodeGenFunction:: 440 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 441 const Expr *E = M->getSubExpr(); 442 443 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 444 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 445 "Reference should never be pseudo-strong!"); 446 447 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 448 // as that will cause the lifetime adjustment to be lost for ARC 449 auto ownership = M->getType().getObjCLifetime(); 450 if (ownership != Qualifiers::OCL_None && 451 ownership != Qualifiers::OCL_ExplicitNone) { 452 Address Object = createReferenceTemporary(*this, M, E); 453 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 454 llvm::Type *Ty = ConvertTypeForMem(E->getType()); 455 Object = Address(llvm::ConstantExpr::getBitCast( 456 Var, Ty->getPointerTo(Object.getAddressSpace())), 457 Ty, Object.getAlignment()); 458 459 // createReferenceTemporary will promote the temporary to a global with a 460 // constant initializer if it can. It can only do this to a value of 461 // ARC-manageable type if the value is global and therefore "immune" to 462 // ref-counting operations. Therefore we have no need to emit either a 463 // dynamic initialization or a cleanup and we can just return the address 464 // of the temporary. 465 if (Var->hasInitializer()) 466 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 467 468 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 469 } 470 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 471 AlignmentSource::Decl); 472 473 switch (getEvaluationKind(E->getType())) { 474 default: llvm_unreachable("expected scalar or aggregate expression"); 475 case TEK_Scalar: 476 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 477 break; 478 case TEK_Aggregate: { 479 EmitAggExpr(E, AggValueSlot::forAddr(Object, 480 E->getType().getQualifiers(), 481 AggValueSlot::IsDestructed, 482 AggValueSlot::DoesNotNeedGCBarriers, 483 AggValueSlot::IsNotAliased, 484 AggValueSlot::DoesNotOverlap)); 485 break; 486 } 487 } 488 489 pushTemporaryCleanup(*this, M, E, Object); 490 return RefTempDst; 491 } 492 493 SmallVector<const Expr *, 2> CommaLHSs; 494 SmallVector<SubobjectAdjustment, 2> Adjustments; 495 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 496 497 for (const auto &Ignored : CommaLHSs) 498 EmitIgnoredExpr(Ignored); 499 500 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 501 if (opaque->getType()->isRecordType()) { 502 assert(Adjustments.empty()); 503 return EmitOpaqueValueLValue(opaque); 504 } 505 } 506 507 // Create and initialize the reference temporary. 508 Address Alloca = Address::invalid(); 509 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 510 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 511 Object.getPointer()->stripPointerCasts())) { 512 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType()); 513 Object = Address(llvm::ConstantExpr::getBitCast( 514 cast<llvm::Constant>(Object.getPointer()), 515 TemporaryType->getPointerTo()), 516 TemporaryType, 517 Object.getAlignment()); 518 // If the temporary is a global and has a constant initializer or is a 519 // constant temporary that we promoted to a global, we may have already 520 // initialized it. 521 if (!Var->hasInitializer()) { 522 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 523 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 524 } 525 } else { 526 switch (M->getStorageDuration()) { 527 case SD_Automatic: 528 if (auto *Size = EmitLifetimeStart( 529 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 530 Alloca.getPointer())) { 531 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 532 Alloca, Size); 533 } 534 break; 535 536 case SD_FullExpression: { 537 if (!ShouldEmitLifetimeMarkers) 538 break; 539 540 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 541 // marker. Instead, start the lifetime of a conditional temporary earlier 542 // so that it's unconditional. Don't do this with sanitizers which need 543 // more precise lifetime marks. 544 ConditionalEvaluation *OldConditional = nullptr; 545 CGBuilderTy::InsertPoint OldIP; 546 if (isInConditionalBranch() && !E->getType().isDestructedType() && 547 !SanOpts.has(SanitizerKind::HWAddress) && 548 !SanOpts.has(SanitizerKind::Memory) && 549 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 550 OldConditional = OutermostConditional; 551 OutermostConditional = nullptr; 552 553 OldIP = Builder.saveIP(); 554 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 555 Builder.restoreIP(CGBuilderTy::InsertPoint( 556 Block, llvm::BasicBlock::iterator(Block->back()))); 557 } 558 559 if (auto *Size = EmitLifetimeStart( 560 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 561 Alloca.getPointer())) { 562 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 563 Size); 564 } 565 566 if (OldConditional) { 567 OutermostConditional = OldConditional; 568 Builder.restoreIP(OldIP); 569 } 570 break; 571 } 572 573 default: 574 break; 575 } 576 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 577 } 578 pushTemporaryCleanup(*this, M, E, Object); 579 580 // Perform derived-to-base casts and/or field accesses, to get from the 581 // temporary object we created (and, potentially, for which we extended 582 // the lifetime) to the subobject we're binding the reference to. 583 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 584 switch (Adjustment.Kind) { 585 case SubobjectAdjustment::DerivedToBaseAdjustment: 586 Object = 587 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 588 Adjustment.DerivedToBase.BasePath->path_begin(), 589 Adjustment.DerivedToBase.BasePath->path_end(), 590 /*NullCheckValue=*/ false, E->getExprLoc()); 591 break; 592 593 case SubobjectAdjustment::FieldAdjustment: { 594 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 595 LV = EmitLValueForField(LV, Adjustment.Field); 596 assert(LV.isSimple() && 597 "materialized temporary field is not a simple lvalue"); 598 Object = LV.getAddress(*this); 599 break; 600 } 601 602 case SubobjectAdjustment::MemberPointerAdjustment: { 603 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 604 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 605 Adjustment.Ptr.MPT); 606 break; 607 } 608 } 609 } 610 611 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 612 } 613 614 RValue 615 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 616 // Emit the expression as an lvalue. 617 LValue LV = EmitLValue(E); 618 assert(LV.isSimple()); 619 llvm::Value *Value = LV.getPointer(*this); 620 621 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 622 // C++11 [dcl.ref]p5 (as amended by core issue 453): 623 // If a glvalue to which a reference is directly bound designates neither 624 // an existing object or function of an appropriate type nor a region of 625 // storage of suitable size and alignment to contain an object of the 626 // reference's type, the behavior is undefined. 627 QualType Ty = E->getType(); 628 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 629 } 630 631 return RValue::get(Value); 632 } 633 634 635 /// getAccessedFieldNo - Given an encoded value and a result number, return the 636 /// input field number being accessed. 637 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 638 const llvm::Constant *Elts) { 639 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 640 ->getZExtValue(); 641 } 642 643 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 644 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 645 llvm::Value *High) { 646 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 647 llvm::Value *K47 = Builder.getInt64(47); 648 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 649 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 650 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 651 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 652 return Builder.CreateMul(B1, KMul); 653 } 654 655 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 656 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 657 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 658 } 659 660 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 661 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 662 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 663 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 664 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 665 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 666 } 667 668 bool CodeGenFunction::sanitizePerformTypeCheck() const { 669 return SanOpts.has(SanitizerKind::Null) || 670 SanOpts.has(SanitizerKind::Alignment) || 671 SanOpts.has(SanitizerKind::ObjectSize) || 672 SanOpts.has(SanitizerKind::Vptr); 673 } 674 675 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 676 llvm::Value *Ptr, QualType Ty, 677 CharUnits Alignment, 678 SanitizerSet SkippedChecks, 679 llvm::Value *ArraySize) { 680 if (!sanitizePerformTypeCheck()) 681 return; 682 683 // Don't check pointers outside the default address space. The null check 684 // isn't correct, the object-size check isn't supported by LLVM, and we can't 685 // communicate the addresses to the runtime handler for the vptr check. 686 if (Ptr->getType()->getPointerAddressSpace()) 687 return; 688 689 // Don't check pointers to volatile data. The behavior here is implementation- 690 // defined. 691 if (Ty.isVolatileQualified()) 692 return; 693 694 SanitizerScope SanScope(this); 695 696 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 697 llvm::BasicBlock *Done = nullptr; 698 699 // Quickly determine whether we have a pointer to an alloca. It's possible 700 // to skip null checks, and some alignment checks, for these pointers. This 701 // can reduce compile-time significantly. 702 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 703 704 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 705 llvm::Value *IsNonNull = nullptr; 706 bool IsGuaranteedNonNull = 707 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 708 bool AllowNullPointers = isNullPointerAllowed(TCK); 709 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 710 !IsGuaranteedNonNull) { 711 // The glvalue must not be an empty glvalue. 712 IsNonNull = Builder.CreateIsNotNull(Ptr); 713 714 // The IR builder can constant-fold the null check if the pointer points to 715 // a constant. 716 IsGuaranteedNonNull = IsNonNull == True; 717 718 // Skip the null check if the pointer is known to be non-null. 719 if (!IsGuaranteedNonNull) { 720 if (AllowNullPointers) { 721 // When performing pointer casts, it's OK if the value is null. 722 // Skip the remaining checks in that case. 723 Done = createBasicBlock("null"); 724 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 725 Builder.CreateCondBr(IsNonNull, Rest, Done); 726 EmitBlock(Rest); 727 } else { 728 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 729 } 730 } 731 } 732 733 if (SanOpts.has(SanitizerKind::ObjectSize) && 734 !SkippedChecks.has(SanitizerKind::ObjectSize) && 735 !Ty->isIncompleteType()) { 736 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 737 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 738 if (ArraySize) 739 Size = Builder.CreateMul(Size, ArraySize); 740 741 // Degenerate case: new X[0] does not need an objectsize check. 742 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 743 if (!ConstantSize || !ConstantSize->isNullValue()) { 744 // The glvalue must refer to a large enough storage region. 745 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 746 // to check this. 747 // FIXME: Get object address space 748 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 749 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 750 llvm::Value *Min = Builder.getFalse(); 751 llvm::Value *NullIsUnknown = Builder.getFalse(); 752 llvm::Value *Dynamic = Builder.getFalse(); 753 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 754 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 755 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 756 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 757 } 758 } 759 760 llvm::MaybeAlign AlignVal; 761 llvm::Value *PtrAsInt = nullptr; 762 763 if (SanOpts.has(SanitizerKind::Alignment) && 764 !SkippedChecks.has(SanitizerKind::Alignment)) { 765 AlignVal = Alignment.getAsMaybeAlign(); 766 if (!Ty->isIncompleteType() && !AlignVal) 767 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 768 /*ForPointeeType=*/true) 769 .getAsMaybeAlign(); 770 771 // The glvalue must be suitably aligned. 772 if (AlignVal && *AlignVal > llvm::Align(1) && 773 (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) { 774 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 775 llvm::Value *Align = Builder.CreateAnd( 776 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1)); 777 llvm::Value *Aligned = 778 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 779 if (Aligned != True) 780 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 781 } 782 } 783 784 if (Checks.size() > 0) { 785 llvm::Constant *StaticData[] = { 786 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 787 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1), 788 llvm::ConstantInt::get(Int8Ty, TCK)}; 789 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 790 PtrAsInt ? PtrAsInt : Ptr); 791 } 792 793 // If possible, check that the vptr indicates that there is a subobject of 794 // type Ty at offset zero within this object. 795 // 796 // C++11 [basic.life]p5,6: 797 // [For storage which does not refer to an object within its lifetime] 798 // The program has undefined behavior if: 799 // -- the [pointer or glvalue] is used to access a non-static data member 800 // or call a non-static member function 801 if (SanOpts.has(SanitizerKind::Vptr) && 802 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 803 // Ensure that the pointer is non-null before loading it. If there is no 804 // compile-time guarantee, reuse the run-time null check or emit a new one. 805 if (!IsGuaranteedNonNull) { 806 if (!IsNonNull) 807 IsNonNull = Builder.CreateIsNotNull(Ptr); 808 if (!Done) 809 Done = createBasicBlock("vptr.null"); 810 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 811 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 812 EmitBlock(VptrNotNull); 813 } 814 815 // Compute a hash of the mangled name of the type. 816 // 817 // FIXME: This is not guaranteed to be deterministic! Move to a 818 // fingerprinting mechanism once LLVM provides one. For the time 819 // being the implementation happens to be deterministic. 820 SmallString<64> MangledName; 821 llvm::raw_svector_ostream Out(MangledName); 822 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 823 Out); 824 825 // Contained in NoSanitizeList based on the mangled type. 826 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 827 Out.str())) { 828 llvm::hash_code TypeHash = hash_value(Out.str()); 829 830 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 831 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 832 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 833 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy, 834 getPointerAlign()); 835 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 836 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 837 838 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 839 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 840 841 // Look the hash up in our cache. 842 const int CacheSize = 128; 843 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 844 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 845 "__ubsan_vptr_type_cache"); 846 llvm::Value *Slot = Builder.CreateAnd(Hash, 847 llvm::ConstantInt::get(IntPtrTy, 848 CacheSize-1)); 849 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 850 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 851 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 852 getPointerAlign()); 853 854 // If the hash isn't in the cache, call a runtime handler to perform the 855 // hard work of checking whether the vptr is for an object of the right 856 // type. This will either fill in the cache and return, or produce a 857 // diagnostic. 858 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 859 llvm::Constant *StaticData[] = { 860 EmitCheckSourceLocation(Loc), 861 EmitCheckTypeDescriptor(Ty), 862 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 863 llvm::ConstantInt::get(Int8Ty, TCK) 864 }; 865 llvm::Value *DynamicData[] = { Ptr, Hash }; 866 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 867 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 868 DynamicData); 869 } 870 } 871 872 if (Done) { 873 Builder.CreateBr(Done); 874 EmitBlock(Done); 875 } 876 } 877 878 /// Determine whether this expression refers to a flexible array member in a 879 /// struct. We disable array bounds checks for such members. 880 static bool isFlexibleArrayMemberExpr(const Expr *E) { 881 // For compatibility with existing code, we treat arrays of length 0 or 882 // 1 as flexible array members. 883 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 884 // the two mechanisms. 885 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 886 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 887 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 888 // was produced by macro expansion. 889 if (CAT->getSize().ugt(1)) 890 return false; 891 } else if (!isa<IncompleteArrayType>(AT)) 892 return false; 893 894 E = E->IgnoreParens(); 895 896 // A flexible array member must be the last member in the class. 897 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 898 // FIXME: If the base type of the member expr is not FD->getParent(), 899 // this should not be treated as a flexible array member access. 900 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 901 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 902 // member, only a T[0] or T[] member gets that treatment. 903 if (FD->getParent()->isUnion()) 904 return true; 905 RecordDecl::field_iterator FI( 906 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 907 return ++FI == FD->getParent()->field_end(); 908 } 909 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 910 return IRE->getDecl()->getNextIvar() == nullptr; 911 } 912 913 return false; 914 } 915 916 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 917 QualType EltTy) { 918 ASTContext &C = getContext(); 919 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 920 if (!EltSize) 921 return nullptr; 922 923 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 924 if (!ArrayDeclRef) 925 return nullptr; 926 927 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 928 if (!ParamDecl) 929 return nullptr; 930 931 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 932 if (!POSAttr) 933 return nullptr; 934 935 // Don't load the size if it's a lower bound. 936 int POSType = POSAttr->getType(); 937 if (POSType != 0 && POSType != 1) 938 return nullptr; 939 940 // Find the implicit size parameter. 941 auto PassedSizeIt = SizeArguments.find(ParamDecl); 942 if (PassedSizeIt == SizeArguments.end()) 943 return nullptr; 944 945 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 946 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 947 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 948 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 949 C.getSizeType(), E->getExprLoc()); 950 llvm::Value *SizeOfElement = 951 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 952 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 953 } 954 955 /// If Base is known to point to the start of an array, return the length of 956 /// that array. Return 0 if the length cannot be determined. 957 static llvm::Value *getArrayIndexingBound( 958 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 959 // For the vector indexing extension, the bound is the number of elements. 960 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 961 IndexedType = Base->getType(); 962 return CGF.Builder.getInt32(VT->getNumElements()); 963 } 964 965 Base = Base->IgnoreParens(); 966 967 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 968 if (CE->getCastKind() == CK_ArrayToPointerDecay && 969 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 970 IndexedType = CE->getSubExpr()->getType(); 971 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 972 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 973 return CGF.Builder.getInt(CAT->getSize()); 974 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 975 return CGF.getVLASize(VAT).NumElts; 976 // Ignore pass_object_size here. It's not applicable on decayed pointers. 977 } 978 } 979 980 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 981 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 982 IndexedType = Base->getType(); 983 return POS; 984 } 985 986 return nullptr; 987 } 988 989 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 990 llvm::Value *Index, QualType IndexType, 991 bool Accessed) { 992 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 993 "should not be called unless adding bounds checks"); 994 SanitizerScope SanScope(this); 995 996 QualType IndexedType; 997 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 998 if (!Bound) 999 return; 1000 1001 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 1002 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 1003 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 1004 1005 llvm::Constant *StaticData[] = { 1006 EmitCheckSourceLocation(E->getExprLoc()), 1007 EmitCheckTypeDescriptor(IndexedType), 1008 EmitCheckTypeDescriptor(IndexType) 1009 }; 1010 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1011 : Builder.CreateICmpULE(IndexVal, BoundVal); 1012 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1013 SanitizerHandler::OutOfBounds, StaticData, Index); 1014 } 1015 1016 1017 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1018 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1019 bool isInc, bool isPre) { 1020 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1021 1022 llvm::Value *NextVal; 1023 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1024 uint64_t AmountVal = isInc ? 1 : -1; 1025 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1026 1027 // Add the inc/dec to the real part. 1028 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1029 } else { 1030 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1031 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1032 if (!isInc) 1033 FVal.changeSign(); 1034 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1035 1036 // Add the inc/dec to the real part. 1037 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1038 } 1039 1040 ComplexPairTy IncVal(NextVal, InVal.second); 1041 1042 // Store the updated result through the lvalue. 1043 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1044 if (getLangOpts().OpenMP) 1045 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1046 E->getSubExpr()); 1047 1048 // If this is a postinc, return the value read from memory, otherwise use the 1049 // updated value. 1050 return isPre ? IncVal : InVal; 1051 } 1052 1053 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1054 CodeGenFunction *CGF) { 1055 // Bind VLAs in the cast type. 1056 if (CGF && E->getType()->isVariablyModifiedType()) 1057 CGF->EmitVariablyModifiedType(E->getType()); 1058 1059 if (CGDebugInfo *DI = getModuleDebugInfo()) 1060 DI->EmitExplicitCastType(E->getType()); 1061 } 1062 1063 //===----------------------------------------------------------------------===// 1064 // LValue Expression Emission 1065 //===----------------------------------------------------------------------===// 1066 1067 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1068 /// derive a more accurate bound on the alignment of the pointer. 1069 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1070 LValueBaseInfo *BaseInfo, 1071 TBAAAccessInfo *TBAAInfo) { 1072 // We allow this with ObjC object pointers because of fragile ABIs. 1073 assert(E->getType()->isPointerType() || 1074 E->getType()->isObjCObjectPointerType()); 1075 E = E->IgnoreParens(); 1076 1077 // Casts: 1078 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1079 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1080 CGM.EmitExplicitCastExprType(ECE, this); 1081 1082 switch (CE->getCastKind()) { 1083 // Non-converting casts (but not C's implicit conversion from void*). 1084 case CK_BitCast: 1085 case CK_NoOp: 1086 case CK_AddressSpaceConversion: 1087 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1088 if (PtrTy->getPointeeType()->isVoidType()) 1089 break; 1090 1091 LValueBaseInfo InnerBaseInfo; 1092 TBAAAccessInfo InnerTBAAInfo; 1093 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1094 &InnerBaseInfo, 1095 &InnerTBAAInfo); 1096 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1097 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1098 1099 if (isa<ExplicitCastExpr>(CE)) { 1100 LValueBaseInfo TargetTypeBaseInfo; 1101 TBAAAccessInfo TargetTypeTBAAInfo; 1102 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1103 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1104 if (TBAAInfo) 1105 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1106 TargetTypeTBAAInfo); 1107 // If the source l-value is opaque, honor the alignment of the 1108 // casted-to type. 1109 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1110 if (BaseInfo) 1111 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1112 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align); 1113 } 1114 } 1115 1116 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1117 CE->getCastKind() == CK_BitCast) { 1118 if (auto PT = E->getType()->getAs<PointerType>()) 1119 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr, 1120 /*MayBeNull=*/true, 1121 CodeGenFunction::CFITCK_UnrelatedCast, 1122 CE->getBeginLoc()); 1123 } 1124 1125 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1126 Addr = Builder.CreateElementBitCast(Addr, ElemTy); 1127 if (CE->getCastKind() == CK_AddressSpaceConversion) 1128 Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType())); 1129 return Addr; 1130 } 1131 break; 1132 1133 // Array-to-pointer decay. 1134 case CK_ArrayToPointerDecay: 1135 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1136 1137 // Derived-to-base conversions. 1138 case CK_UncheckedDerivedToBase: 1139 case CK_DerivedToBase: { 1140 // TODO: Support accesses to members of base classes in TBAA. For now, we 1141 // conservatively pretend that the complete object is of the base class 1142 // type. 1143 if (TBAAInfo) 1144 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1145 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1146 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1147 return GetAddressOfBaseClass(Addr, Derived, 1148 CE->path_begin(), CE->path_end(), 1149 ShouldNullCheckClassCastValue(CE), 1150 CE->getExprLoc()); 1151 } 1152 1153 // TODO: Is there any reason to treat base-to-derived conversions 1154 // specially? 1155 default: 1156 break; 1157 } 1158 } 1159 1160 // Unary &. 1161 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1162 if (UO->getOpcode() == UO_AddrOf) { 1163 LValue LV = EmitLValue(UO->getSubExpr()); 1164 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1165 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1166 return LV.getAddress(*this); 1167 } 1168 } 1169 1170 // std::addressof and variants. 1171 if (auto *Call = dyn_cast<CallExpr>(E)) { 1172 switch (Call->getBuiltinCallee()) { 1173 default: 1174 break; 1175 case Builtin::BIaddressof: 1176 case Builtin::BI__addressof: 1177 case Builtin::BI__builtin_addressof: { 1178 LValue LV = EmitLValue(Call->getArg(0)); 1179 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1180 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1181 return LV.getAddress(*this); 1182 } 1183 } 1184 } 1185 1186 // TODO: conditional operators, comma. 1187 1188 // Otherwise, use the alignment of the type. 1189 CharUnits Align = 1190 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1191 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1192 return Address(EmitScalarExpr(E), ElemTy, Align); 1193 } 1194 1195 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1196 llvm::Value *V = RV.getScalarVal(); 1197 if (auto MPT = T->getAs<MemberPointerType>()) 1198 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1199 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1200 } 1201 1202 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1203 if (Ty->isVoidType()) 1204 return RValue::get(nullptr); 1205 1206 switch (getEvaluationKind(Ty)) { 1207 case TEK_Complex: { 1208 llvm::Type *EltTy = 1209 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1210 llvm::Value *U = llvm::UndefValue::get(EltTy); 1211 return RValue::getComplex(std::make_pair(U, U)); 1212 } 1213 1214 // If this is a use of an undefined aggregate type, the aggregate must have an 1215 // identifiable address. Just because the contents of the value are undefined 1216 // doesn't mean that the address can't be taken and compared. 1217 case TEK_Aggregate: { 1218 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1219 return RValue::getAggregate(DestPtr); 1220 } 1221 1222 case TEK_Scalar: 1223 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1224 } 1225 llvm_unreachable("bad evaluation kind"); 1226 } 1227 1228 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1229 const char *Name) { 1230 ErrorUnsupported(E, Name); 1231 return GetUndefRValue(E->getType()); 1232 } 1233 1234 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1235 const char *Name) { 1236 ErrorUnsupported(E, Name); 1237 llvm::Type *ElTy = ConvertType(E->getType()); 1238 llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy); 1239 return MakeAddrLValue( 1240 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType()); 1241 } 1242 1243 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1244 const Expr *Base = Obj; 1245 while (!isa<CXXThisExpr>(Base)) { 1246 // The result of a dynamic_cast can be null. 1247 if (isa<CXXDynamicCastExpr>(Base)) 1248 return false; 1249 1250 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1251 Base = CE->getSubExpr(); 1252 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1253 Base = PE->getSubExpr(); 1254 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1255 if (UO->getOpcode() == UO_Extension) 1256 Base = UO->getSubExpr(); 1257 else 1258 return false; 1259 } else { 1260 return false; 1261 } 1262 } 1263 return true; 1264 } 1265 1266 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1267 LValue LV; 1268 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1269 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1270 else 1271 LV = EmitLValue(E); 1272 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1273 SanitizerSet SkippedChecks; 1274 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1275 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1276 if (IsBaseCXXThis) 1277 SkippedChecks.set(SanitizerKind::Alignment, true); 1278 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1279 SkippedChecks.set(SanitizerKind::Null, true); 1280 } 1281 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1282 LV.getAlignment(), SkippedChecks); 1283 } 1284 return LV; 1285 } 1286 1287 /// EmitLValue - Emit code to compute a designator that specifies the location 1288 /// of the expression. 1289 /// 1290 /// This can return one of two things: a simple address or a bitfield reference. 1291 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1292 /// an LLVM pointer type. 1293 /// 1294 /// If this returns a bitfield reference, nothing about the pointee type of the 1295 /// LLVM value is known: For example, it may not be a pointer to an integer. 1296 /// 1297 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1298 /// this method guarantees that the returned pointer type will point to an LLVM 1299 /// type of the same size of the lvalue's type. If the lvalue has a variable 1300 /// length type, this is not possible. 1301 /// 1302 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1303 ApplyDebugLocation DL(*this, E); 1304 switch (E->getStmtClass()) { 1305 default: return EmitUnsupportedLValue(E, "l-value expression"); 1306 1307 case Expr::ObjCPropertyRefExprClass: 1308 llvm_unreachable("cannot emit a property reference directly"); 1309 1310 case Expr::ObjCSelectorExprClass: 1311 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1312 case Expr::ObjCIsaExprClass: 1313 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1314 case Expr::BinaryOperatorClass: 1315 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1316 case Expr::CompoundAssignOperatorClass: { 1317 QualType Ty = E->getType(); 1318 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1319 Ty = AT->getValueType(); 1320 if (!Ty->isAnyComplexType()) 1321 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1322 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1323 } 1324 case Expr::CallExprClass: 1325 case Expr::CXXMemberCallExprClass: 1326 case Expr::CXXOperatorCallExprClass: 1327 case Expr::UserDefinedLiteralClass: 1328 return EmitCallExprLValue(cast<CallExpr>(E)); 1329 case Expr::CXXRewrittenBinaryOperatorClass: 1330 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1331 case Expr::VAArgExprClass: 1332 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1333 case Expr::DeclRefExprClass: 1334 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1335 case Expr::ConstantExprClass: { 1336 const ConstantExpr *CE = cast<ConstantExpr>(E); 1337 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1338 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1339 ->getCallReturnType(getContext()) 1340 ->getPointeeType(); 1341 return MakeNaturalAlignAddrLValue(Result, RetType); 1342 } 1343 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1344 } 1345 case Expr::ParenExprClass: 1346 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1347 case Expr::GenericSelectionExprClass: 1348 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1349 case Expr::PredefinedExprClass: 1350 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1351 case Expr::StringLiteralClass: 1352 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1353 case Expr::ObjCEncodeExprClass: 1354 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1355 case Expr::PseudoObjectExprClass: 1356 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1357 case Expr::InitListExprClass: 1358 return EmitInitListLValue(cast<InitListExpr>(E)); 1359 case Expr::CXXTemporaryObjectExprClass: 1360 case Expr::CXXConstructExprClass: 1361 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1362 case Expr::CXXBindTemporaryExprClass: 1363 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1364 case Expr::CXXUuidofExprClass: 1365 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1366 case Expr::LambdaExprClass: 1367 return EmitAggExprToLValue(E); 1368 1369 case Expr::ExprWithCleanupsClass: { 1370 const auto *cleanups = cast<ExprWithCleanups>(E); 1371 RunCleanupsScope Scope(*this); 1372 LValue LV = EmitLValue(cleanups->getSubExpr()); 1373 if (LV.isSimple()) { 1374 // Defend against branches out of gnu statement expressions surrounded by 1375 // cleanups. 1376 Address Addr = LV.getAddress(*this); 1377 llvm::Value *V = Addr.getPointer(); 1378 Scope.ForceCleanup({&V}); 1379 return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(), 1380 LV.getBaseInfo(), LV.getTBAAInfo()); 1381 } 1382 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1383 // bitfield lvalue or some other non-simple lvalue? 1384 return LV; 1385 } 1386 1387 case Expr::CXXDefaultArgExprClass: { 1388 auto *DAE = cast<CXXDefaultArgExpr>(E); 1389 CXXDefaultArgExprScope Scope(*this, DAE); 1390 return EmitLValue(DAE->getExpr()); 1391 } 1392 case Expr::CXXDefaultInitExprClass: { 1393 auto *DIE = cast<CXXDefaultInitExpr>(E); 1394 CXXDefaultInitExprScope Scope(*this, DIE); 1395 return EmitLValue(DIE->getExpr()); 1396 } 1397 case Expr::CXXTypeidExprClass: 1398 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1399 1400 case Expr::ObjCMessageExprClass: 1401 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1402 case Expr::ObjCIvarRefExprClass: 1403 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1404 case Expr::StmtExprClass: 1405 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1406 case Expr::UnaryOperatorClass: 1407 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1408 case Expr::ArraySubscriptExprClass: 1409 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1410 case Expr::MatrixSubscriptExprClass: 1411 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1412 case Expr::OMPArraySectionExprClass: 1413 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1414 case Expr::ExtVectorElementExprClass: 1415 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1416 case Expr::MemberExprClass: 1417 return EmitMemberExpr(cast<MemberExpr>(E)); 1418 case Expr::CompoundLiteralExprClass: 1419 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1420 case Expr::ConditionalOperatorClass: 1421 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1422 case Expr::BinaryConditionalOperatorClass: 1423 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1424 case Expr::ChooseExprClass: 1425 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1426 case Expr::OpaqueValueExprClass: 1427 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1428 case Expr::SubstNonTypeTemplateParmExprClass: 1429 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1430 case Expr::ImplicitCastExprClass: 1431 case Expr::CStyleCastExprClass: 1432 case Expr::CXXFunctionalCastExprClass: 1433 case Expr::CXXStaticCastExprClass: 1434 case Expr::CXXDynamicCastExprClass: 1435 case Expr::CXXReinterpretCastExprClass: 1436 case Expr::CXXConstCastExprClass: 1437 case Expr::CXXAddrspaceCastExprClass: 1438 case Expr::ObjCBridgedCastExprClass: 1439 return EmitCastLValue(cast<CastExpr>(E)); 1440 1441 case Expr::MaterializeTemporaryExprClass: 1442 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1443 1444 case Expr::CoawaitExprClass: 1445 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1446 case Expr::CoyieldExprClass: 1447 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1448 } 1449 } 1450 1451 /// Given an object of the given canonical type, can we safely copy a 1452 /// value out of it based on its initializer? 1453 static bool isConstantEmittableObjectType(QualType type) { 1454 assert(type.isCanonical()); 1455 assert(!type->isReferenceType()); 1456 1457 // Must be const-qualified but non-volatile. 1458 Qualifiers qs = type.getLocalQualifiers(); 1459 if (!qs.hasConst() || qs.hasVolatile()) return false; 1460 1461 // Otherwise, all object types satisfy this except C++ classes with 1462 // mutable subobjects or non-trivial copy/destroy behavior. 1463 if (const auto *RT = dyn_cast<RecordType>(type)) 1464 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1465 if (RD->hasMutableFields() || !RD->isTrivial()) 1466 return false; 1467 1468 return true; 1469 } 1470 1471 /// Can we constant-emit a load of a reference to a variable of the 1472 /// given type? This is different from predicates like 1473 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1474 /// in situations that don't necessarily satisfy the language's rules 1475 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1476 /// to do this with const float variables even if those variables 1477 /// aren't marked 'constexpr'. 1478 enum ConstantEmissionKind { 1479 CEK_None, 1480 CEK_AsReferenceOnly, 1481 CEK_AsValueOrReference, 1482 CEK_AsValueOnly 1483 }; 1484 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1485 type = type.getCanonicalType(); 1486 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1487 if (isConstantEmittableObjectType(ref->getPointeeType())) 1488 return CEK_AsValueOrReference; 1489 return CEK_AsReferenceOnly; 1490 } 1491 if (isConstantEmittableObjectType(type)) 1492 return CEK_AsValueOnly; 1493 return CEK_None; 1494 } 1495 1496 /// Try to emit a reference to the given value without producing it as 1497 /// an l-value. This is just an optimization, but it avoids us needing 1498 /// to emit global copies of variables if they're named without triggering 1499 /// a formal use in a context where we can't emit a direct reference to them, 1500 /// for instance if a block or lambda or a member of a local class uses a 1501 /// const int variable or constexpr variable from an enclosing function. 1502 CodeGenFunction::ConstantEmission 1503 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1504 ValueDecl *value = refExpr->getDecl(); 1505 1506 // The value needs to be an enum constant or a constant variable. 1507 ConstantEmissionKind CEK; 1508 if (isa<ParmVarDecl>(value)) { 1509 CEK = CEK_None; 1510 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1511 CEK = checkVarTypeForConstantEmission(var->getType()); 1512 } else if (isa<EnumConstantDecl>(value)) { 1513 CEK = CEK_AsValueOnly; 1514 } else { 1515 CEK = CEK_None; 1516 } 1517 if (CEK == CEK_None) return ConstantEmission(); 1518 1519 Expr::EvalResult result; 1520 bool resultIsReference; 1521 QualType resultType; 1522 1523 // It's best to evaluate all the way as an r-value if that's permitted. 1524 if (CEK != CEK_AsReferenceOnly && 1525 refExpr->EvaluateAsRValue(result, getContext())) { 1526 resultIsReference = false; 1527 resultType = refExpr->getType(); 1528 1529 // Otherwise, try to evaluate as an l-value. 1530 } else if (CEK != CEK_AsValueOnly && 1531 refExpr->EvaluateAsLValue(result, getContext())) { 1532 resultIsReference = true; 1533 resultType = value->getType(); 1534 1535 // Failure. 1536 } else { 1537 return ConstantEmission(); 1538 } 1539 1540 // In any case, if the initializer has side-effects, abandon ship. 1541 if (result.HasSideEffects) 1542 return ConstantEmission(); 1543 1544 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1545 // referencing a global host variable by copy. In this case the lambda should 1546 // make a copy of the value of the global host variable. The DRE of the 1547 // captured reference variable cannot be emitted as load from the host 1548 // global variable as compile time constant, since the host variable is not 1549 // accessible on device. The DRE of the captured reference variable has to be 1550 // loaded from captures. 1551 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1552 refExpr->refersToEnclosingVariableOrCapture()) { 1553 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1554 if (MD && MD->getParent()->isLambda() && 1555 MD->getOverloadedOperator() == OO_Call) { 1556 const APValue::LValueBase &base = result.Val.getLValueBase(); 1557 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1558 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1559 if (!VD->hasAttr<CUDADeviceAttr>()) { 1560 return ConstantEmission(); 1561 } 1562 } 1563 } 1564 } 1565 } 1566 1567 // Emit as a constant. 1568 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1569 result.Val, resultType); 1570 1571 // Make sure we emit a debug reference to the global variable. 1572 // This should probably fire even for 1573 if (isa<VarDecl>(value)) { 1574 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1575 EmitDeclRefExprDbgValue(refExpr, result.Val); 1576 } else { 1577 assert(isa<EnumConstantDecl>(value)); 1578 EmitDeclRefExprDbgValue(refExpr, result.Val); 1579 } 1580 1581 // If we emitted a reference constant, we need to dereference that. 1582 if (resultIsReference) 1583 return ConstantEmission::forReference(C); 1584 1585 return ConstantEmission::forValue(C); 1586 } 1587 1588 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1589 const MemberExpr *ME) { 1590 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1591 // Try to emit static variable member expressions as DREs. 1592 return DeclRefExpr::Create( 1593 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1594 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1595 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1596 } 1597 return nullptr; 1598 } 1599 1600 CodeGenFunction::ConstantEmission 1601 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1602 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1603 return tryEmitAsConstant(DRE); 1604 return ConstantEmission(); 1605 } 1606 1607 llvm::Value *CodeGenFunction::emitScalarConstant( 1608 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1609 assert(Constant && "not a constant"); 1610 if (Constant.isReference()) 1611 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1612 E->getExprLoc()) 1613 .getScalarVal(); 1614 return Constant.getValue(); 1615 } 1616 1617 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1618 SourceLocation Loc) { 1619 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1620 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1621 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1622 } 1623 1624 static bool hasBooleanRepresentation(QualType Ty) { 1625 if (Ty->isBooleanType()) 1626 return true; 1627 1628 if (const EnumType *ET = Ty->getAs<EnumType>()) 1629 return ET->getDecl()->getIntegerType()->isBooleanType(); 1630 1631 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1632 return hasBooleanRepresentation(AT->getValueType()); 1633 1634 return false; 1635 } 1636 1637 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1638 llvm::APInt &Min, llvm::APInt &End, 1639 bool StrictEnums, bool IsBool) { 1640 const EnumType *ET = Ty->getAs<EnumType>(); 1641 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1642 ET && !ET->getDecl()->isFixed(); 1643 if (!IsBool && !IsRegularCPlusPlusEnum) 1644 return false; 1645 1646 if (IsBool) { 1647 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1648 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1649 } else { 1650 const EnumDecl *ED = ET->getDecl(); 1651 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1652 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1653 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1654 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1655 1656 if (NumNegativeBits) { 1657 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1658 assert(NumBits <= Bitwidth); 1659 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1660 Min = -End; 1661 } else { 1662 assert(NumPositiveBits <= Bitwidth); 1663 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1664 Min = llvm::APInt::getZero(Bitwidth); 1665 } 1666 } 1667 return true; 1668 } 1669 1670 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1671 llvm::APInt Min, End; 1672 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1673 hasBooleanRepresentation(Ty))) 1674 return nullptr; 1675 1676 llvm::MDBuilder MDHelper(getLLVMContext()); 1677 return MDHelper.createRange(Min, End); 1678 } 1679 1680 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1681 SourceLocation Loc) { 1682 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1683 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1684 if (!HasBoolCheck && !HasEnumCheck) 1685 return false; 1686 1687 bool IsBool = hasBooleanRepresentation(Ty) || 1688 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1689 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1690 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1691 if (!NeedsBoolCheck && !NeedsEnumCheck) 1692 return false; 1693 1694 // Single-bit booleans don't need to be checked. Special-case this to avoid 1695 // a bit width mismatch when handling bitfield values. This is handled by 1696 // EmitFromMemory for the non-bitfield case. 1697 if (IsBool && 1698 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1699 return false; 1700 1701 llvm::APInt Min, End; 1702 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1703 return true; 1704 1705 auto &Ctx = getLLVMContext(); 1706 SanitizerScope SanScope(this); 1707 llvm::Value *Check; 1708 --End; 1709 if (!Min) { 1710 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1711 } else { 1712 llvm::Value *Upper = 1713 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1714 llvm::Value *Lower = 1715 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1716 Check = Builder.CreateAnd(Upper, Lower); 1717 } 1718 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1719 EmitCheckTypeDescriptor(Ty)}; 1720 SanitizerMask Kind = 1721 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1722 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1723 StaticArgs, EmitCheckValue(Value)); 1724 return true; 1725 } 1726 1727 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1728 QualType Ty, 1729 SourceLocation Loc, 1730 LValueBaseInfo BaseInfo, 1731 TBAAAccessInfo TBAAInfo, 1732 bool isNontemporal) { 1733 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 1734 // Boolean vectors use `iN` as storage type. 1735 if (ClangVecTy->isExtVectorBoolType()) { 1736 llvm::Type *ValTy = ConvertType(Ty); 1737 unsigned ValNumElems = 1738 cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 1739 // Load the `iP` storage object (P is the padded vector size). 1740 auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits"); 1741 const auto *RawIntTy = RawIntV->getType(); 1742 assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors"); 1743 // Bitcast iP --> <P x i1>. 1744 auto *PaddedVecTy = llvm::FixedVectorType::get( 1745 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 1746 llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy); 1747 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 1748 V = emitBoolVecConversion(V, ValNumElems, "extractvec"); 1749 1750 return EmitFromMemory(V, Ty); 1751 } 1752 1753 // Handle vectors of size 3 like size 4 for better performance. 1754 const llvm::Type *EltTy = Addr.getElementType(); 1755 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1756 1757 if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) { 1758 1759 // Bitcast to vec4 type. 1760 llvm::VectorType *vec4Ty = 1761 llvm::FixedVectorType::get(VTy->getElementType(), 4); 1762 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1763 // Now load value. 1764 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1765 1766 // Shuffle vector to get vec3. 1767 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec"); 1768 return EmitFromMemory(V, Ty); 1769 } 1770 } 1771 1772 // Atomic operations have to be done on integral types. 1773 LValue AtomicLValue = 1774 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1775 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1776 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1777 } 1778 1779 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1780 if (isNontemporal) { 1781 llvm::MDNode *Node = llvm::MDNode::get( 1782 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1783 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1784 } 1785 1786 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1787 1788 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1789 // In order to prevent the optimizer from throwing away the check, don't 1790 // attach range metadata to the load. 1791 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1792 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1793 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1794 1795 return EmitFromMemory(Load, Ty); 1796 } 1797 1798 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1799 // Bool has a different representation in memory than in registers. 1800 if (hasBooleanRepresentation(Ty)) { 1801 // This should really always be an i1, but sometimes it's already 1802 // an i8, and it's awkward to track those cases down. 1803 if (Value->getType()->isIntegerTy(1)) 1804 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1805 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1806 "wrong value rep of bool"); 1807 } 1808 1809 return Value; 1810 } 1811 1812 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1813 // Bool has a different representation in memory than in registers. 1814 if (hasBooleanRepresentation(Ty)) { 1815 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1816 "wrong value rep of bool"); 1817 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1818 } 1819 if (Ty->isExtVectorBoolType()) { 1820 const auto *RawIntTy = Value->getType(); 1821 // Bitcast iP --> <P x i1>. 1822 auto *PaddedVecTy = llvm::FixedVectorType::get( 1823 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 1824 auto *V = Builder.CreateBitCast(Value, PaddedVecTy); 1825 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 1826 llvm::Type *ValTy = ConvertType(Ty); 1827 unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 1828 return emitBoolVecConversion(V, ValNumElems, "extractvec"); 1829 } 1830 1831 return Value; 1832 } 1833 1834 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1835 // MatrixType), if it points to a array (the memory type of MatrixType). 1836 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1837 bool IsVector = true) { 1838 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType()); 1839 if (ArrayTy && IsVector) { 1840 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1841 ArrayTy->getNumElements()); 1842 1843 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1844 } 1845 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType()); 1846 if (VectorTy && !IsVector) { 1847 auto *ArrayTy = llvm::ArrayType::get( 1848 VectorTy->getElementType(), 1849 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1850 1851 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1852 } 1853 1854 return Addr; 1855 } 1856 1857 // Emit a store of a matrix LValue. This may require casting the original 1858 // pointer to memory address (ArrayType) to a pointer to the value type 1859 // (VectorType). 1860 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1861 bool isInit, CodeGenFunction &CGF) { 1862 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1863 value->getType()->isVectorTy()); 1864 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1865 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1866 lvalue.isNontemporal()); 1867 } 1868 1869 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1870 bool Volatile, QualType Ty, 1871 LValueBaseInfo BaseInfo, 1872 TBAAAccessInfo TBAAInfo, 1873 bool isInit, bool isNontemporal) { 1874 llvm::Type *SrcTy = Value->getType(); 1875 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 1876 auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy); 1877 if (VecTy && ClangVecTy->isExtVectorBoolType()) { 1878 auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType()); 1879 // Expand to the memory bit width. 1880 unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits(); 1881 // <N x i1> --> <P x i1>. 1882 Value = emitBoolVecConversion(Value, MemNumElems, "insertvec"); 1883 // <P x i1> --> iP. 1884 Value = Builder.CreateBitCast(Value, MemIntTy); 1885 } else if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1886 // Handle vec3 special. 1887 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1888 // Our source is a vec3, do a shuffle vector to make it a vec4. 1889 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1890 "extractVec"); 1891 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1892 } 1893 if (Addr.getElementType() != SrcTy) { 1894 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1895 } 1896 } 1897 } 1898 1899 Value = EmitToMemory(Value, Ty); 1900 1901 LValue AtomicLValue = 1902 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1903 if (Ty->isAtomicType() || 1904 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1905 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1906 return; 1907 } 1908 1909 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1910 if (isNontemporal) { 1911 llvm::MDNode *Node = 1912 llvm::MDNode::get(Store->getContext(), 1913 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1914 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1915 } 1916 1917 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1918 } 1919 1920 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1921 bool isInit) { 1922 if (lvalue.getType()->isConstantMatrixType()) { 1923 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1924 return; 1925 } 1926 1927 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1928 lvalue.getType(), lvalue.getBaseInfo(), 1929 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1930 } 1931 1932 // Emit a load of a LValue of matrix type. This may require casting the pointer 1933 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1934 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1935 CodeGenFunction &CGF) { 1936 assert(LV.getType()->isConstantMatrixType()); 1937 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1938 LV.setAddress(Addr); 1939 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1940 } 1941 1942 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1943 /// method emits the address of the lvalue, then loads the result as an rvalue, 1944 /// returning the rvalue. 1945 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1946 if (LV.isObjCWeak()) { 1947 // load of a __weak object. 1948 Address AddrWeakObj = LV.getAddress(*this); 1949 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1950 AddrWeakObj)); 1951 } 1952 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1953 // In MRC mode, we do a load+autorelease. 1954 if (!getLangOpts().ObjCAutoRefCount) { 1955 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1956 } 1957 1958 // In ARC mode, we load retained and then consume the value. 1959 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1960 Object = EmitObjCConsumeObject(LV.getType(), Object); 1961 return RValue::get(Object); 1962 } 1963 1964 if (LV.isSimple()) { 1965 assert(!LV.getType()->isFunctionType()); 1966 1967 if (LV.getType()->isConstantMatrixType()) 1968 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1969 1970 // Everything needs a load. 1971 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1972 } 1973 1974 if (LV.isVectorElt()) { 1975 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1976 LV.isVolatileQualified()); 1977 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1978 "vecext")); 1979 } 1980 1981 // If this is a reference to a subset of the elements of a vector, either 1982 // shuffle the input or extract/insert them as appropriate. 1983 if (LV.isExtVectorElt()) { 1984 return EmitLoadOfExtVectorElementLValue(LV); 1985 } 1986 1987 // Global Register variables always invoke intrinsics 1988 if (LV.isGlobalReg()) 1989 return EmitLoadOfGlobalRegLValue(LV); 1990 1991 if (LV.isMatrixElt()) { 1992 llvm::Value *Idx = LV.getMatrixIdx(); 1993 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 1994 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>(); 1995 llvm::MatrixBuilder MB(Builder); 1996 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 1997 } 1998 llvm::LoadInst *Load = 1999 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 2000 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 2001 } 2002 2003 assert(LV.isBitField() && "Unknown LValue type!"); 2004 return EmitLoadOfBitfieldLValue(LV, Loc); 2005 } 2006 2007 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 2008 SourceLocation Loc) { 2009 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 2010 2011 // Get the output type. 2012 llvm::Type *ResLTy = ConvertType(LV.getType()); 2013 2014 Address Ptr = LV.getBitFieldAddress(); 2015 llvm::Value *Val = 2016 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 2017 2018 bool UseVolatile = LV.isVolatileQualified() && 2019 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2020 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2021 const unsigned StorageSize = 2022 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2023 if (Info.IsSigned) { 2024 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 2025 unsigned HighBits = StorageSize - Offset - Info.Size; 2026 if (HighBits) 2027 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 2028 if (Offset + HighBits) 2029 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 2030 } else { 2031 if (Offset) 2032 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 2033 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 2034 Val = Builder.CreateAnd( 2035 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 2036 } 2037 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 2038 EmitScalarRangeCheck(Val, LV.getType(), Loc); 2039 return RValue::get(Val); 2040 } 2041 2042 // If this is a reference to a subset of the elements of a vector, create an 2043 // appropriate shufflevector. 2044 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 2045 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 2046 LV.isVolatileQualified()); 2047 2048 const llvm::Constant *Elts = LV.getExtVectorElts(); 2049 2050 // If the result of the expression is a non-vector type, we must be extracting 2051 // a single element. Just codegen as an extractelement. 2052 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2053 if (!ExprVT) { 2054 unsigned InIdx = getAccessedFieldNo(0, Elts); 2055 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2056 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 2057 } 2058 2059 // Always use shuffle vector to try to retain the original program structure 2060 unsigned NumResultElts = ExprVT->getNumElements(); 2061 2062 SmallVector<int, 4> Mask; 2063 for (unsigned i = 0; i != NumResultElts; ++i) 2064 Mask.push_back(getAccessedFieldNo(i, Elts)); 2065 2066 Vec = Builder.CreateShuffleVector(Vec, Mask); 2067 return RValue::get(Vec); 2068 } 2069 2070 /// Generates lvalue for partial ext_vector access. 2071 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2072 Address VectorAddress = LV.getExtVectorAddress(); 2073 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2074 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2075 2076 Address CastToPointerElement = 2077 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2078 "conv.ptr.element"); 2079 2080 const llvm::Constant *Elts = LV.getExtVectorElts(); 2081 unsigned ix = getAccessedFieldNo(0, Elts); 2082 2083 Address VectorBasePtrPlusIx = 2084 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2085 "vector.elt"); 2086 2087 return VectorBasePtrPlusIx; 2088 } 2089 2090 /// Load of global gamed gegisters are always calls to intrinsics. 2091 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2092 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2093 "Bad type for register variable"); 2094 llvm::MDNode *RegName = cast<llvm::MDNode>( 2095 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2096 2097 // We accept integer and pointer types only 2098 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2099 llvm::Type *Ty = OrigTy; 2100 if (OrigTy->isPointerTy()) 2101 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2102 llvm::Type *Types[] = { Ty }; 2103 2104 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2105 llvm::Value *Call = Builder.CreateCall( 2106 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2107 if (OrigTy->isPointerTy()) 2108 Call = Builder.CreateIntToPtr(Call, OrigTy); 2109 return RValue::get(Call); 2110 } 2111 2112 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2113 /// lvalue, where both are guaranteed to the have the same type, and that type 2114 /// is 'Ty'. 2115 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2116 bool isInit) { 2117 if (!Dst.isSimple()) { 2118 if (Dst.isVectorElt()) { 2119 // Read/modify/write the vector, inserting the new element. 2120 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2121 Dst.isVolatileQualified()); 2122 auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType()); 2123 if (IRStoreTy) { 2124 auto *IRVecTy = llvm::FixedVectorType::get( 2125 Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits()); 2126 Vec = Builder.CreateBitCast(Vec, IRVecTy); 2127 // iN --> <N x i1>. 2128 } 2129 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2130 Dst.getVectorIdx(), "vecins"); 2131 if (IRStoreTy) { 2132 // <N x i1> --> <iN>. 2133 Vec = Builder.CreateBitCast(Vec, IRStoreTy); 2134 } 2135 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2136 Dst.isVolatileQualified()); 2137 return; 2138 } 2139 2140 // If this is an update of extended vector elements, insert them as 2141 // appropriate. 2142 if (Dst.isExtVectorElt()) 2143 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2144 2145 if (Dst.isGlobalReg()) 2146 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2147 2148 if (Dst.isMatrixElt()) { 2149 llvm::Value *Idx = Dst.getMatrixIdx(); 2150 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2151 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>(); 2152 llvm::MatrixBuilder MB(Builder); 2153 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2154 } 2155 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2156 llvm::Value *Vec = 2157 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2158 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2159 Dst.isVolatileQualified()); 2160 return; 2161 } 2162 2163 assert(Dst.isBitField() && "Unknown LValue type"); 2164 return EmitStoreThroughBitfieldLValue(Src, Dst); 2165 } 2166 2167 // There's special magic for assigning into an ARC-qualified l-value. 2168 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2169 switch (Lifetime) { 2170 case Qualifiers::OCL_None: 2171 llvm_unreachable("present but none"); 2172 2173 case Qualifiers::OCL_ExplicitNone: 2174 // nothing special 2175 break; 2176 2177 case Qualifiers::OCL_Strong: 2178 if (isInit) { 2179 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2180 break; 2181 } 2182 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2183 return; 2184 2185 case Qualifiers::OCL_Weak: 2186 if (isInit) 2187 // Initialize and then skip the primitive store. 2188 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2189 else 2190 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2191 /*ignore*/ true); 2192 return; 2193 2194 case Qualifiers::OCL_Autoreleasing: 2195 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2196 Src.getScalarVal())); 2197 // fall into the normal path 2198 break; 2199 } 2200 } 2201 2202 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2203 // load of a __weak object. 2204 Address LvalueDst = Dst.getAddress(*this); 2205 llvm::Value *src = Src.getScalarVal(); 2206 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2207 return; 2208 } 2209 2210 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2211 // load of a __strong object. 2212 Address LvalueDst = Dst.getAddress(*this); 2213 llvm::Value *src = Src.getScalarVal(); 2214 if (Dst.isObjCIvar()) { 2215 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2216 llvm::Type *ResultType = IntPtrTy; 2217 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2218 llvm::Value *RHS = dst.getPointer(); 2219 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2220 llvm::Value *LHS = 2221 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2222 "sub.ptr.lhs.cast"); 2223 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2224 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2225 BytesBetween); 2226 } else if (Dst.isGlobalObjCRef()) { 2227 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2228 Dst.isThreadLocalRef()); 2229 } 2230 else 2231 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2232 return; 2233 } 2234 2235 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2236 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2237 } 2238 2239 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2240 llvm::Value **Result) { 2241 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2242 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2243 Address Ptr = Dst.getBitFieldAddress(); 2244 2245 // Get the source value, truncated to the width of the bit-field. 2246 llvm::Value *SrcVal = Src.getScalarVal(); 2247 2248 // Cast the source to the storage type and shift it into place. 2249 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2250 /*isSigned=*/false); 2251 llvm::Value *MaskedVal = SrcVal; 2252 2253 const bool UseVolatile = 2254 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2255 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2256 const unsigned StorageSize = 2257 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2258 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2259 // See if there are other bits in the bitfield's storage we'll need to load 2260 // and mask together with source before storing. 2261 if (StorageSize != Info.Size) { 2262 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2263 llvm::Value *Val = 2264 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2265 2266 // Mask the source value as needed. 2267 if (!hasBooleanRepresentation(Dst.getType())) 2268 SrcVal = Builder.CreateAnd( 2269 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2270 "bf.value"); 2271 MaskedVal = SrcVal; 2272 if (Offset) 2273 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2274 2275 // Mask out the original value. 2276 Val = Builder.CreateAnd( 2277 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2278 "bf.clear"); 2279 2280 // Or together the unchanged values and the source value. 2281 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2282 } else { 2283 assert(Offset == 0); 2284 // According to the AACPS: 2285 // When a volatile bit-field is written, and its container does not overlap 2286 // with any non-bit-field member, its container must be read exactly once 2287 // and written exactly once using the access width appropriate to the type 2288 // of the container. The two accesses are not atomic. 2289 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2290 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2291 Builder.CreateLoad(Ptr, true, "bf.load"); 2292 } 2293 2294 // Write the new value back out. 2295 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2296 2297 // Return the new value of the bit-field, if requested. 2298 if (Result) { 2299 llvm::Value *ResultVal = MaskedVal; 2300 2301 // Sign extend the value if needed. 2302 if (Info.IsSigned) { 2303 assert(Info.Size <= StorageSize); 2304 unsigned HighBits = StorageSize - Info.Size; 2305 if (HighBits) { 2306 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2307 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2308 } 2309 } 2310 2311 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2312 "bf.result.cast"); 2313 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2314 } 2315 } 2316 2317 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2318 LValue Dst) { 2319 // This access turns into a read/modify/write of the vector. Load the input 2320 // value now. 2321 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2322 Dst.isVolatileQualified()); 2323 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2324 2325 llvm::Value *SrcVal = Src.getScalarVal(); 2326 2327 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2328 unsigned NumSrcElts = VTy->getNumElements(); 2329 unsigned NumDstElts = 2330 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2331 if (NumDstElts == NumSrcElts) { 2332 // Use shuffle vector is the src and destination are the same number of 2333 // elements and restore the vector mask since it is on the side it will be 2334 // stored. 2335 SmallVector<int, 4> Mask(NumDstElts); 2336 for (unsigned i = 0; i != NumSrcElts; ++i) 2337 Mask[getAccessedFieldNo(i, Elts)] = i; 2338 2339 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2340 } else if (NumDstElts > NumSrcElts) { 2341 // Extended the source vector to the same length and then shuffle it 2342 // into the destination. 2343 // FIXME: since we're shuffling with undef, can we just use the indices 2344 // into that? This could be simpler. 2345 SmallVector<int, 4> ExtMask; 2346 for (unsigned i = 0; i != NumSrcElts; ++i) 2347 ExtMask.push_back(i); 2348 ExtMask.resize(NumDstElts, -1); 2349 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2350 // build identity 2351 SmallVector<int, 4> Mask; 2352 for (unsigned i = 0; i != NumDstElts; ++i) 2353 Mask.push_back(i); 2354 2355 // When the vector size is odd and .odd or .hi is used, the last element 2356 // of the Elts constant array will be one past the size of the vector. 2357 // Ignore the last element here, if it is greater than the mask size. 2358 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2359 NumSrcElts--; 2360 2361 // modify when what gets shuffled in 2362 for (unsigned i = 0; i != NumSrcElts; ++i) 2363 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2364 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2365 } else { 2366 // We should never shorten the vector 2367 llvm_unreachable("unexpected shorten vector length"); 2368 } 2369 } else { 2370 // If the Src is a scalar (not a vector) it must be updating one element. 2371 unsigned InIdx = getAccessedFieldNo(0, Elts); 2372 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2373 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2374 } 2375 2376 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2377 Dst.isVolatileQualified()); 2378 } 2379 2380 /// Store of global named registers are always calls to intrinsics. 2381 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2382 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2383 "Bad type for register variable"); 2384 llvm::MDNode *RegName = cast<llvm::MDNode>( 2385 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2386 assert(RegName && "Register LValue is not metadata"); 2387 2388 // We accept integer and pointer types only 2389 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2390 llvm::Type *Ty = OrigTy; 2391 if (OrigTy->isPointerTy()) 2392 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2393 llvm::Type *Types[] = { Ty }; 2394 2395 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2396 llvm::Value *Value = Src.getScalarVal(); 2397 if (OrigTy->isPointerTy()) 2398 Value = Builder.CreatePtrToInt(Value, Ty); 2399 Builder.CreateCall( 2400 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2401 } 2402 2403 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2404 // generating write-barries API. It is currently a global, ivar, 2405 // or neither. 2406 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2407 LValue &LV, 2408 bool IsMemberAccess=false) { 2409 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2410 return; 2411 2412 if (isa<ObjCIvarRefExpr>(E)) { 2413 QualType ExpTy = E->getType(); 2414 if (IsMemberAccess && ExpTy->isPointerType()) { 2415 // If ivar is a structure pointer, assigning to field of 2416 // this struct follows gcc's behavior and makes it a non-ivar 2417 // writer-barrier conservatively. 2418 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2419 if (ExpTy->isRecordType()) { 2420 LV.setObjCIvar(false); 2421 return; 2422 } 2423 } 2424 LV.setObjCIvar(true); 2425 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2426 LV.setBaseIvarExp(Exp->getBase()); 2427 LV.setObjCArray(E->getType()->isArrayType()); 2428 return; 2429 } 2430 2431 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2432 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2433 if (VD->hasGlobalStorage()) { 2434 LV.setGlobalObjCRef(true); 2435 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2436 } 2437 } 2438 LV.setObjCArray(E->getType()->isArrayType()); 2439 return; 2440 } 2441 2442 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2443 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2444 return; 2445 } 2446 2447 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2448 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2449 if (LV.isObjCIvar()) { 2450 // If cast is to a structure pointer, follow gcc's behavior and make it 2451 // a non-ivar write-barrier. 2452 QualType ExpTy = E->getType(); 2453 if (ExpTy->isPointerType()) 2454 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2455 if (ExpTy->isRecordType()) 2456 LV.setObjCIvar(false); 2457 } 2458 return; 2459 } 2460 2461 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2462 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2463 return; 2464 } 2465 2466 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2467 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2468 return; 2469 } 2470 2471 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2472 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2473 return; 2474 } 2475 2476 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2477 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2478 return; 2479 } 2480 2481 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2482 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2483 if (LV.isObjCIvar() && !LV.isObjCArray()) 2484 // Using array syntax to assigning to what an ivar points to is not 2485 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2486 LV.setObjCIvar(false); 2487 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2488 // Using array syntax to assigning to what global points to is not 2489 // same as assigning to the global itself. {id *G;} G[i] = 0; 2490 LV.setGlobalObjCRef(false); 2491 return; 2492 } 2493 2494 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2495 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2496 // We don't know if member is an 'ivar', but this flag is looked at 2497 // only in the context of LV.isObjCIvar(). 2498 LV.setObjCArray(E->getType()->isArrayType()); 2499 return; 2500 } 2501 } 2502 2503 static llvm::Value * 2504 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2505 llvm::Value *V, llvm::Type *IRType, 2506 StringRef Name = StringRef()) { 2507 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2508 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2509 } 2510 2511 static LValue EmitThreadPrivateVarDeclLValue( 2512 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2513 llvm::Type *RealVarTy, SourceLocation Loc) { 2514 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2515 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2516 CGF, VD, Addr, Loc); 2517 else 2518 Addr = 2519 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2520 2521 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2522 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2523 } 2524 2525 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2526 const VarDecl *VD, QualType T) { 2527 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2528 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2529 // Return an invalid address if variable is MT_To and unified 2530 // memory is not enabled. For all other cases: MT_Link and 2531 // MT_To with unified memory, return a valid address. 2532 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2533 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2534 return Address::invalid(); 2535 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2536 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2537 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2538 "Expected link clause OR to clause with unified memory enabled."); 2539 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2540 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2541 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2542 } 2543 2544 Address 2545 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2546 LValueBaseInfo *PointeeBaseInfo, 2547 TBAAAccessInfo *PointeeTBAAInfo) { 2548 llvm::LoadInst *Load = 2549 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2550 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2551 2552 QualType PointeeType = RefLVal.getType()->getPointeeType(); 2553 CharUnits Align = CGM.getNaturalTypeAlignment( 2554 PointeeType, PointeeBaseInfo, PointeeTBAAInfo, 2555 /* forPointeeType= */ true); 2556 return Address(Load, ConvertTypeForMem(PointeeType), Align); 2557 } 2558 2559 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2560 LValueBaseInfo PointeeBaseInfo; 2561 TBAAAccessInfo PointeeTBAAInfo; 2562 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2563 &PointeeTBAAInfo); 2564 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2565 PointeeBaseInfo, PointeeTBAAInfo); 2566 } 2567 2568 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2569 const PointerType *PtrTy, 2570 LValueBaseInfo *BaseInfo, 2571 TBAAAccessInfo *TBAAInfo) { 2572 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2573 return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()), 2574 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo, 2575 TBAAInfo, 2576 /*forPointeeType=*/true)); 2577 } 2578 2579 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2580 const PointerType *PtrTy) { 2581 LValueBaseInfo BaseInfo; 2582 TBAAAccessInfo TBAAInfo; 2583 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2584 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2585 } 2586 2587 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2588 const Expr *E, const VarDecl *VD) { 2589 QualType T = E->getType(); 2590 2591 // If it's thread_local, emit a call to its wrapper function instead. 2592 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2593 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2594 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2595 // Check if the variable is marked as declare target with link clause in 2596 // device codegen. 2597 if (CGF.getLangOpts().OpenMPIsDevice) { 2598 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2599 if (Addr.isValid()) 2600 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2601 } 2602 2603 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2604 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2605 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2606 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2607 Address Addr(V, RealVarTy, Alignment); 2608 // Emit reference to the private copy of the variable if it is an OpenMP 2609 // threadprivate variable. 2610 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2611 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2612 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2613 E->getExprLoc()); 2614 } 2615 LValue LV = VD->getType()->isReferenceType() ? 2616 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2617 AlignmentSource::Decl) : 2618 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2619 setObjCGCLValueClass(CGF.getContext(), E, LV); 2620 return LV; 2621 } 2622 2623 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2624 GlobalDecl GD) { 2625 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2626 if (FD->hasAttr<WeakRefAttr>()) { 2627 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2628 return aliasee.getPointer(); 2629 } 2630 2631 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2632 if (!FD->hasPrototype()) { 2633 if (const FunctionProtoType *Proto = 2634 FD->getType()->getAs<FunctionProtoType>()) { 2635 // Ugly case: for a K&R-style definition, the type of the definition 2636 // isn't the same as the type of a use. Correct for this with a 2637 // bitcast. 2638 QualType NoProtoType = 2639 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2640 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2641 V = llvm::ConstantExpr::getBitCast(V, 2642 CGM.getTypes().ConvertType(NoProtoType)); 2643 } 2644 } 2645 return V; 2646 } 2647 2648 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2649 GlobalDecl GD) { 2650 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2651 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2652 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2653 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2654 AlignmentSource::Decl); 2655 } 2656 2657 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2658 llvm::Value *ThisValue) { 2659 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2660 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2661 return CGF.EmitLValueForField(LV, FD); 2662 } 2663 2664 /// Named Registers are named metadata pointing to the register name 2665 /// which will be read from/written to as an argument to the intrinsic 2666 /// @llvm.read/write_register. 2667 /// So far, only the name is being passed down, but other options such as 2668 /// register type, allocation type or even optimization options could be 2669 /// passed down via the metadata node. 2670 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2671 SmallString<64> Name("llvm.named.register."); 2672 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2673 assert(Asm->getLabel().size() < 64-Name.size() && 2674 "Register name too big"); 2675 Name.append(Asm->getLabel()); 2676 llvm::NamedMDNode *M = 2677 CGM.getModule().getOrInsertNamedMetadata(Name); 2678 if (M->getNumOperands() == 0) { 2679 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2680 Asm->getLabel()); 2681 llvm::Metadata *Ops[] = {Str}; 2682 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2683 } 2684 2685 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2686 2687 llvm::Value *Ptr = 2688 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2689 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType()); 2690 } 2691 2692 /// Determine whether we can emit a reference to \p VD from the current 2693 /// context, despite not necessarily having seen an odr-use of the variable in 2694 /// this context. 2695 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2696 const DeclRefExpr *E, 2697 const VarDecl *VD, 2698 bool IsConstant) { 2699 // For a variable declared in an enclosing scope, do not emit a spurious 2700 // reference even if we have a capture, as that will emit an unwarranted 2701 // reference to our capture state, and will likely generate worse code than 2702 // emitting a local copy. 2703 if (E->refersToEnclosingVariableOrCapture()) 2704 return false; 2705 2706 // For a local declaration declared in this function, we can always reference 2707 // it even if we don't have an odr-use. 2708 if (VD->hasLocalStorage()) { 2709 return VD->getDeclContext() == 2710 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2711 } 2712 2713 // For a global declaration, we can emit a reference to it if we know 2714 // for sure that we are able to emit a definition of it. 2715 VD = VD->getDefinition(CGF.getContext()); 2716 if (!VD) 2717 return false; 2718 2719 // Don't emit a spurious reference if it might be to a variable that only 2720 // exists on a different device / target. 2721 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2722 // cross-target reference. 2723 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2724 CGF.getLangOpts().OpenCL) { 2725 return false; 2726 } 2727 2728 // We can emit a spurious reference only if the linkage implies that we'll 2729 // be emitting a non-interposable symbol that will be retained until link 2730 // time. 2731 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2732 case llvm::GlobalValue::ExternalLinkage: 2733 case llvm::GlobalValue::LinkOnceODRLinkage: 2734 case llvm::GlobalValue::WeakODRLinkage: 2735 case llvm::GlobalValue::InternalLinkage: 2736 case llvm::GlobalValue::PrivateLinkage: 2737 return true; 2738 default: 2739 return false; 2740 } 2741 } 2742 2743 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2744 const NamedDecl *ND = E->getDecl(); 2745 QualType T = E->getType(); 2746 2747 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2748 "should not emit an unevaluated operand"); 2749 2750 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2751 // Global Named registers access via intrinsics only 2752 if (VD->getStorageClass() == SC_Register && 2753 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2754 return EmitGlobalNamedRegister(VD, CGM); 2755 2756 // If this DeclRefExpr does not constitute an odr-use of the variable, 2757 // we're not permitted to emit a reference to it in general, and it might 2758 // not be captured if capture would be necessary for a use. Emit the 2759 // constant value directly instead. 2760 if (E->isNonOdrUse() == NOUR_Constant && 2761 (VD->getType()->isReferenceType() || 2762 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2763 VD->getAnyInitializer(VD); 2764 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2765 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2766 assert(Val && "failed to emit constant expression"); 2767 2768 Address Addr = Address::invalid(); 2769 if (!VD->getType()->isReferenceType()) { 2770 // Spill the constant value to a global. 2771 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2772 getContext().getDeclAlign(VD)); 2773 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2774 auto *PTy = llvm::PointerType::get( 2775 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2776 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy); 2777 } else { 2778 // Should we be using the alignment of the constant pointer we emitted? 2779 CharUnits Alignment = 2780 CGM.getNaturalTypeAlignment(E->getType(), 2781 /* BaseInfo= */ nullptr, 2782 /* TBAAInfo= */ nullptr, 2783 /* forPointeeType= */ true); 2784 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment); 2785 } 2786 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2787 } 2788 2789 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2790 2791 // Check for captured variables. 2792 if (E->refersToEnclosingVariableOrCapture()) { 2793 VD = VD->getCanonicalDecl(); 2794 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2795 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2796 if (CapturedStmtInfo) { 2797 auto I = LocalDeclMap.find(VD); 2798 if (I != LocalDeclMap.end()) { 2799 LValue CapLVal; 2800 if (VD->getType()->isReferenceType()) 2801 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2802 AlignmentSource::Decl); 2803 else 2804 CapLVal = MakeAddrLValue(I->second, T); 2805 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2806 // in simd context. 2807 if (getLangOpts().OpenMP && 2808 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2809 CapLVal.setNontemporal(/*Value=*/true); 2810 return CapLVal; 2811 } 2812 LValue CapLVal = 2813 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2814 CapturedStmtInfo->getContextValue()); 2815 Address LValueAddress = CapLVal.getAddress(*this); 2816 CapLVal = MakeAddrLValue( 2817 Address(LValueAddress.getPointer(), LValueAddress.getElementType(), 2818 getContext().getDeclAlign(VD)), 2819 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2820 CapLVal.getTBAAInfo()); 2821 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2822 // in simd context. 2823 if (getLangOpts().OpenMP && 2824 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2825 CapLVal.setNontemporal(/*Value=*/true); 2826 return CapLVal; 2827 } 2828 2829 assert(isa<BlockDecl>(CurCodeDecl)); 2830 Address addr = GetAddrOfBlockDecl(VD); 2831 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2832 } 2833 } 2834 2835 // FIXME: We should be able to assert this for FunctionDecls as well! 2836 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2837 // those with a valid source location. 2838 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2839 !E->getLocation().isValid()) && 2840 "Should not use decl without marking it used!"); 2841 2842 if (ND->hasAttr<WeakRefAttr>()) { 2843 const auto *VD = cast<ValueDecl>(ND); 2844 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2845 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2846 } 2847 2848 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2849 // Check if this is a global variable. 2850 if (VD->hasLinkage() || VD->isStaticDataMember()) 2851 return EmitGlobalVarDeclLValue(*this, E, VD); 2852 2853 Address addr = Address::invalid(); 2854 2855 // The variable should generally be present in the local decl map. 2856 auto iter = LocalDeclMap.find(VD); 2857 if (iter != LocalDeclMap.end()) { 2858 addr = iter->second; 2859 2860 // Otherwise, it might be static local we haven't emitted yet for 2861 // some reason; most likely, because it's in an outer function. 2862 } else if (VD->isStaticLocal()) { 2863 llvm::Constant *var = CGM.getOrCreateStaticVarDecl( 2864 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 2865 addr = Address( 2866 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD)); 2867 2868 // No other cases for now. 2869 } else { 2870 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2871 } 2872 2873 2874 // Check for OpenMP threadprivate variables. 2875 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2876 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2877 return EmitThreadPrivateVarDeclLValue( 2878 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2879 E->getExprLoc()); 2880 } 2881 2882 // Drill into block byref variables. 2883 bool isBlockByref = VD->isEscapingByref(); 2884 if (isBlockByref) { 2885 addr = emitBlockByrefAddress(addr, VD); 2886 } 2887 2888 // Drill into reference types. 2889 LValue LV = VD->getType()->isReferenceType() ? 2890 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2891 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2892 2893 bool isLocalStorage = VD->hasLocalStorage(); 2894 2895 bool NonGCable = isLocalStorage && 2896 !VD->getType()->isReferenceType() && 2897 !isBlockByref; 2898 if (NonGCable) { 2899 LV.getQuals().removeObjCGCAttr(); 2900 LV.setNonGC(true); 2901 } 2902 2903 bool isImpreciseLifetime = 2904 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2905 if (isImpreciseLifetime) 2906 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2907 setObjCGCLValueClass(getContext(), E, LV); 2908 return LV; 2909 } 2910 2911 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2912 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2913 2914 // Emit debuginfo for the function declaration if the target wants to. 2915 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2916 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2917 auto *Fn = 2918 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2919 if (!Fn->getSubprogram()) 2920 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2921 } 2922 } 2923 2924 return LV; 2925 } 2926 2927 // FIXME: While we're emitting a binding from an enclosing scope, all other 2928 // DeclRefExprs we see should be implicitly treated as if they also refer to 2929 // an enclosing scope. 2930 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2931 return EmitLValue(BD->getBinding()); 2932 2933 // We can form DeclRefExprs naming GUID declarations when reconstituting 2934 // non-type template parameters into expressions. 2935 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2936 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2937 AlignmentSource::Decl); 2938 2939 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2940 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2941 AlignmentSource::Decl); 2942 2943 llvm_unreachable("Unhandled DeclRefExpr"); 2944 } 2945 2946 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2947 // __extension__ doesn't affect lvalue-ness. 2948 if (E->getOpcode() == UO_Extension) 2949 return EmitLValue(E->getSubExpr()); 2950 2951 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2952 switch (E->getOpcode()) { 2953 default: llvm_unreachable("Unknown unary operator lvalue!"); 2954 case UO_Deref: { 2955 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2956 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2957 2958 LValueBaseInfo BaseInfo; 2959 TBAAAccessInfo TBAAInfo; 2960 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2961 &TBAAInfo); 2962 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2963 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2964 2965 // We should not generate __weak write barrier on indirect reference 2966 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2967 // But, we continue to generate __strong write barrier on indirect write 2968 // into a pointer to object. 2969 if (getLangOpts().ObjC && 2970 getLangOpts().getGC() != LangOptions::NonGC && 2971 LV.isObjCWeak()) 2972 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2973 return LV; 2974 } 2975 case UO_Real: 2976 case UO_Imag: { 2977 LValue LV = EmitLValue(E->getSubExpr()); 2978 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2979 2980 // __real is valid on scalars. This is a faster way of testing that. 2981 // __imag can only produce an rvalue on scalars. 2982 if (E->getOpcode() == UO_Real && 2983 !LV.getAddress(*this).getElementType()->isStructTy()) { 2984 assert(E->getSubExpr()->getType()->isArithmeticType()); 2985 return LV; 2986 } 2987 2988 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2989 2990 Address Component = 2991 (E->getOpcode() == UO_Real 2992 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2993 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2994 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2995 CGM.getTBAAInfoForSubobject(LV, T)); 2996 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2997 return ElemLV; 2998 } 2999 case UO_PreInc: 3000 case UO_PreDec: { 3001 LValue LV = EmitLValue(E->getSubExpr()); 3002 bool isInc = E->getOpcode() == UO_PreInc; 3003 3004 if (E->getType()->isAnyComplexType()) 3005 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 3006 else 3007 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 3008 return LV; 3009 } 3010 } 3011 } 3012 3013 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 3014 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 3015 E->getType(), AlignmentSource::Decl); 3016 } 3017 3018 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 3019 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 3020 E->getType(), AlignmentSource::Decl); 3021 } 3022 3023 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 3024 auto SL = E->getFunctionName(); 3025 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 3026 StringRef FnName = CurFn->getName(); 3027 if (FnName.startswith("\01")) 3028 FnName = FnName.substr(1); 3029 StringRef NameItems[] = { 3030 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 3031 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 3032 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 3033 std::string Name = std::string(SL->getString()); 3034 if (!Name.empty()) { 3035 unsigned Discriminator = 3036 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 3037 if (Discriminator) 3038 Name += "_" + Twine(Discriminator + 1).str(); 3039 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 3040 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3041 } else { 3042 auto C = 3043 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 3044 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3045 } 3046 } 3047 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 3048 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3049 } 3050 3051 /// Emit a type description suitable for use by a runtime sanitizer library. The 3052 /// format of a type descriptor is 3053 /// 3054 /// \code 3055 /// { i16 TypeKind, i16 TypeInfo } 3056 /// \endcode 3057 /// 3058 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 3059 /// integer, 1 for a floating point value, and -1 for anything else. 3060 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 3061 // Only emit each type's descriptor once. 3062 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 3063 return C; 3064 3065 uint16_t TypeKind = -1; 3066 uint16_t TypeInfo = 0; 3067 3068 if (T->isIntegerType()) { 3069 TypeKind = 0; 3070 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 3071 (T->isSignedIntegerType() ? 1 : 0); 3072 } else if (T->isFloatingType()) { 3073 TypeKind = 1; 3074 TypeInfo = getContext().getTypeSize(T); 3075 } 3076 3077 // Format the type name as if for a diagnostic, including quotes and 3078 // optionally an 'aka'. 3079 SmallString<32> Buffer; 3080 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 3081 (intptr_t)T.getAsOpaquePtr(), 3082 StringRef(), StringRef(), None, Buffer, 3083 None); 3084 3085 llvm::Constant *Components[] = { 3086 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3087 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3088 }; 3089 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3090 3091 auto *GV = new llvm::GlobalVariable( 3092 CGM.getModule(), Descriptor->getType(), 3093 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3094 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3095 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3096 3097 // Remember the descriptor for this type. 3098 CGM.setTypeDescriptorInMap(T, GV); 3099 3100 return GV; 3101 } 3102 3103 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3104 llvm::Type *TargetTy = IntPtrTy; 3105 3106 if (V->getType() == TargetTy) 3107 return V; 3108 3109 // Floating-point types which fit into intptr_t are bitcast to integers 3110 // and then passed directly (after zero-extension, if necessary). 3111 if (V->getType()->isFloatingPointTy()) { 3112 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3113 if (Bits <= TargetTy->getIntegerBitWidth()) 3114 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3115 Bits)); 3116 } 3117 3118 // Integers which fit in intptr_t are zero-extended and passed directly. 3119 if (V->getType()->isIntegerTy() && 3120 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3121 return Builder.CreateZExt(V, TargetTy); 3122 3123 // Pointers are passed directly, everything else is passed by address. 3124 if (!V->getType()->isPointerTy()) { 3125 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3126 Builder.CreateStore(V, Ptr); 3127 V = Ptr.getPointer(); 3128 } 3129 return Builder.CreatePtrToInt(V, TargetTy); 3130 } 3131 3132 /// Emit a representation of a SourceLocation for passing to a handler 3133 /// in a sanitizer runtime library. The format for this data is: 3134 /// \code 3135 /// struct SourceLocation { 3136 /// const char *Filename; 3137 /// int32_t Line, Column; 3138 /// }; 3139 /// \endcode 3140 /// For an invalid SourceLocation, the Filename pointer is null. 3141 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3142 llvm::Constant *Filename; 3143 int Line, Column; 3144 3145 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3146 if (PLoc.isValid()) { 3147 StringRef FilenameString = PLoc.getFilename(); 3148 3149 int PathComponentsToStrip = 3150 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3151 if (PathComponentsToStrip < 0) { 3152 assert(PathComponentsToStrip != INT_MIN); 3153 int PathComponentsToKeep = -PathComponentsToStrip; 3154 auto I = llvm::sys::path::rbegin(FilenameString); 3155 auto E = llvm::sys::path::rend(FilenameString); 3156 while (I != E && --PathComponentsToKeep) 3157 ++I; 3158 3159 FilenameString = FilenameString.substr(I - E); 3160 } else if (PathComponentsToStrip > 0) { 3161 auto I = llvm::sys::path::begin(FilenameString); 3162 auto E = llvm::sys::path::end(FilenameString); 3163 while (I != E && PathComponentsToStrip--) 3164 ++I; 3165 3166 if (I != E) 3167 FilenameString = 3168 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3169 else 3170 FilenameString = llvm::sys::path::filename(FilenameString); 3171 } 3172 3173 auto FilenameGV = 3174 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3175 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3176 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3177 Filename = FilenameGV.getPointer(); 3178 Line = PLoc.getLine(); 3179 Column = PLoc.getColumn(); 3180 } else { 3181 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3182 Line = Column = 0; 3183 } 3184 3185 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3186 Builder.getInt32(Column)}; 3187 3188 return llvm::ConstantStruct::getAnon(Data); 3189 } 3190 3191 namespace { 3192 /// Specify under what conditions this check can be recovered 3193 enum class CheckRecoverableKind { 3194 /// Always terminate program execution if this check fails. 3195 Unrecoverable, 3196 /// Check supports recovering, runtime has both fatal (noreturn) and 3197 /// non-fatal handlers for this check. 3198 Recoverable, 3199 /// Runtime conditionally aborts, always need to support recovery. 3200 AlwaysRecoverable 3201 }; 3202 } 3203 3204 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3205 assert(Kind.countPopulation() == 1); 3206 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3207 return CheckRecoverableKind::AlwaysRecoverable; 3208 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3209 return CheckRecoverableKind::Unrecoverable; 3210 else 3211 return CheckRecoverableKind::Recoverable; 3212 } 3213 3214 namespace { 3215 struct SanitizerHandlerInfo { 3216 char const *const Name; 3217 unsigned Version; 3218 }; 3219 } 3220 3221 const SanitizerHandlerInfo SanitizerHandlers[] = { 3222 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3223 LIST_SANITIZER_CHECKS 3224 #undef SANITIZER_CHECK 3225 }; 3226 3227 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3228 llvm::FunctionType *FnType, 3229 ArrayRef<llvm::Value *> FnArgs, 3230 SanitizerHandler CheckHandler, 3231 CheckRecoverableKind RecoverKind, bool IsFatal, 3232 llvm::BasicBlock *ContBB) { 3233 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3234 Optional<ApplyDebugLocation> DL; 3235 if (!CGF.Builder.getCurrentDebugLocation()) { 3236 // Ensure that the call has at least an artificial debug location. 3237 DL.emplace(CGF, SourceLocation()); 3238 } 3239 bool NeedsAbortSuffix = 3240 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3241 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3242 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3243 const StringRef CheckName = CheckInfo.Name; 3244 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3245 if (CheckInfo.Version && !MinimalRuntime) 3246 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3247 if (MinimalRuntime) 3248 FnName += "_minimal"; 3249 if (NeedsAbortSuffix) 3250 FnName += "_abort"; 3251 bool MayReturn = 3252 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3253 3254 llvm::AttrBuilder B(CGF.getLLVMContext()); 3255 if (!MayReturn) { 3256 B.addAttribute(llvm::Attribute::NoReturn) 3257 .addAttribute(llvm::Attribute::NoUnwind); 3258 } 3259 B.addUWTableAttr(llvm::UWTableKind::Default); 3260 3261 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3262 FnType, FnName, 3263 llvm::AttributeList::get(CGF.getLLVMContext(), 3264 llvm::AttributeList::FunctionIndex, B), 3265 /*Local=*/true); 3266 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3267 if (!MayReturn) { 3268 HandlerCall->setDoesNotReturn(); 3269 CGF.Builder.CreateUnreachable(); 3270 } else { 3271 CGF.Builder.CreateBr(ContBB); 3272 } 3273 } 3274 3275 void CodeGenFunction::EmitCheck( 3276 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3277 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3278 ArrayRef<llvm::Value *> DynamicArgs) { 3279 assert(IsSanitizerScope); 3280 assert(Checked.size() > 0); 3281 assert(CheckHandler >= 0 && 3282 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3283 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3284 3285 llvm::Value *FatalCond = nullptr; 3286 llvm::Value *RecoverableCond = nullptr; 3287 llvm::Value *TrapCond = nullptr; 3288 for (int i = 0, n = Checked.size(); i < n; ++i) { 3289 llvm::Value *Check = Checked[i].first; 3290 // -fsanitize-trap= overrides -fsanitize-recover=. 3291 llvm::Value *&Cond = 3292 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3293 ? TrapCond 3294 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3295 ? RecoverableCond 3296 : FatalCond; 3297 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3298 } 3299 3300 if (TrapCond) 3301 EmitTrapCheck(TrapCond, CheckHandler); 3302 if (!FatalCond && !RecoverableCond) 3303 return; 3304 3305 llvm::Value *JointCond; 3306 if (FatalCond && RecoverableCond) 3307 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3308 else 3309 JointCond = FatalCond ? FatalCond : RecoverableCond; 3310 assert(JointCond); 3311 3312 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3313 assert(SanOpts.has(Checked[0].second)); 3314 #ifndef NDEBUG 3315 for (int i = 1, n = Checked.size(); i < n; ++i) { 3316 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3317 "All recoverable kinds in a single check must be same!"); 3318 assert(SanOpts.has(Checked[i].second)); 3319 } 3320 #endif 3321 3322 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3323 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3324 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3325 // Give hint that we very much don't expect to execute the handler 3326 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3327 llvm::MDBuilder MDHelper(getLLVMContext()); 3328 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3329 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3330 EmitBlock(Handlers); 3331 3332 // Handler functions take an i8* pointing to the (handler-specific) static 3333 // information block, followed by a sequence of intptr_t arguments 3334 // representing operand values. 3335 SmallVector<llvm::Value *, 4> Args; 3336 SmallVector<llvm::Type *, 4> ArgTypes; 3337 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3338 Args.reserve(DynamicArgs.size() + 1); 3339 ArgTypes.reserve(DynamicArgs.size() + 1); 3340 3341 // Emit handler arguments and create handler function type. 3342 if (!StaticArgs.empty()) { 3343 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3344 auto *InfoPtr = 3345 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3346 llvm::GlobalVariable::PrivateLinkage, Info); 3347 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3348 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3349 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3350 ArgTypes.push_back(Int8PtrTy); 3351 } 3352 3353 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3354 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3355 ArgTypes.push_back(IntPtrTy); 3356 } 3357 } 3358 3359 llvm::FunctionType *FnType = 3360 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3361 3362 if (!FatalCond || !RecoverableCond) { 3363 // Simple case: we need to generate a single handler call, either 3364 // fatal, or non-fatal. 3365 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3366 (FatalCond != nullptr), Cont); 3367 } else { 3368 // Emit two handler calls: first one for set of unrecoverable checks, 3369 // another one for recoverable. 3370 llvm::BasicBlock *NonFatalHandlerBB = 3371 createBasicBlock("non_fatal." + CheckName); 3372 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3373 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3374 EmitBlock(FatalHandlerBB); 3375 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3376 NonFatalHandlerBB); 3377 EmitBlock(NonFatalHandlerBB); 3378 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3379 Cont); 3380 } 3381 3382 EmitBlock(Cont); 3383 } 3384 3385 void CodeGenFunction::EmitCfiSlowPathCheck( 3386 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3387 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3388 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3389 3390 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3391 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3392 3393 llvm::MDBuilder MDHelper(getLLVMContext()); 3394 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3395 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3396 3397 EmitBlock(CheckBB); 3398 3399 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3400 3401 llvm::CallInst *CheckCall; 3402 llvm::FunctionCallee SlowPathFn; 3403 if (WithDiag) { 3404 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3405 auto *InfoPtr = 3406 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3407 llvm::GlobalVariable::PrivateLinkage, Info); 3408 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3409 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3410 3411 SlowPathFn = CGM.getModule().getOrInsertFunction( 3412 "__cfi_slowpath_diag", 3413 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3414 false)); 3415 CheckCall = Builder.CreateCall( 3416 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3417 } else { 3418 SlowPathFn = CGM.getModule().getOrInsertFunction( 3419 "__cfi_slowpath", 3420 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3421 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3422 } 3423 3424 CGM.setDSOLocal( 3425 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3426 CheckCall->setDoesNotThrow(); 3427 3428 EmitBlock(Cont); 3429 } 3430 3431 // Emit a stub for __cfi_check function so that the linker knows about this 3432 // symbol in LTO mode. 3433 void CodeGenFunction::EmitCfiCheckStub() { 3434 llvm::Module *M = &CGM.getModule(); 3435 auto &Ctx = M->getContext(); 3436 llvm::Function *F = llvm::Function::Create( 3437 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3438 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3439 CGM.setDSOLocal(F); 3440 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3441 // FIXME: consider emitting an intrinsic call like 3442 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3443 // which can be lowered in CrossDSOCFI pass to the actual contents of 3444 // __cfi_check. This would allow inlining of __cfi_check calls. 3445 llvm::CallInst::Create( 3446 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3447 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3448 } 3449 3450 // This function is basically a switch over the CFI failure kind, which is 3451 // extracted from CFICheckFailData (1st function argument). Each case is either 3452 // llvm.trap or a call to one of the two runtime handlers, based on 3453 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3454 // failure kind) traps, but this should really never happen. CFICheckFailData 3455 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3456 // check kind; in this case __cfi_check_fail traps as well. 3457 void CodeGenFunction::EmitCfiCheckFail() { 3458 SanitizerScope SanScope(this); 3459 FunctionArgList Args; 3460 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3461 ImplicitParamDecl::Other); 3462 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3463 ImplicitParamDecl::Other); 3464 Args.push_back(&ArgData); 3465 Args.push_back(&ArgAddr); 3466 3467 const CGFunctionInfo &FI = 3468 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3469 3470 llvm::Function *F = llvm::Function::Create( 3471 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3472 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3473 3474 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3475 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3476 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3477 3478 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3479 SourceLocation()); 3480 3481 // This function is not affected by NoSanitizeList. This function does 3482 // not have a source location, but "src:*" would still apply. Revert any 3483 // changes to SanOpts made in StartFunction. 3484 SanOpts = CGM.getLangOpts().Sanitize; 3485 3486 llvm::Value *Data = 3487 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3488 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3489 llvm::Value *Addr = 3490 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3491 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3492 3493 // Data == nullptr means the calling module has trap behaviour for this check. 3494 llvm::Value *DataIsNotNullPtr = 3495 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3496 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3497 3498 llvm::StructType *SourceLocationTy = 3499 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3500 llvm::StructType *CfiCheckFailDataTy = 3501 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3502 3503 llvm::Value *V = Builder.CreateConstGEP2_32( 3504 CfiCheckFailDataTy, 3505 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3506 0); 3507 3508 Address CheckKindAddr(V, Int8Ty, getIntAlign()); 3509 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3510 3511 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3512 CGM.getLLVMContext(), 3513 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3514 llvm::Value *ValidVtable = Builder.CreateZExt( 3515 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3516 {Addr, AllVtables}), 3517 IntPtrTy); 3518 3519 const std::pair<int, SanitizerMask> CheckKinds[] = { 3520 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3521 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3522 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3523 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3524 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3525 3526 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3527 for (auto CheckKindMaskPair : CheckKinds) { 3528 int Kind = CheckKindMaskPair.first; 3529 SanitizerMask Mask = CheckKindMaskPair.second; 3530 llvm::Value *Cond = 3531 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3532 if (CGM.getLangOpts().Sanitize.has(Mask)) 3533 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3534 {Data, Addr, ValidVtable}); 3535 else 3536 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3537 } 3538 3539 FinishFunction(); 3540 // The only reference to this function will be created during LTO link. 3541 // Make sure it survives until then. 3542 CGM.addUsedGlobal(F); 3543 } 3544 3545 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3546 if (SanOpts.has(SanitizerKind::Unreachable)) { 3547 SanitizerScope SanScope(this); 3548 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3549 SanitizerKind::Unreachable), 3550 SanitizerHandler::BuiltinUnreachable, 3551 EmitCheckSourceLocation(Loc), None); 3552 } 3553 Builder.CreateUnreachable(); 3554 } 3555 3556 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3557 SanitizerHandler CheckHandlerID) { 3558 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3559 3560 // If we're optimizing, collapse all calls to trap down to just one per 3561 // check-type per function to save on code size. 3562 if (TrapBBs.size() <= CheckHandlerID) 3563 TrapBBs.resize(CheckHandlerID + 1); 3564 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3565 3566 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3567 TrapBB = createBasicBlock("trap"); 3568 Builder.CreateCondBr(Checked, Cont, TrapBB); 3569 EmitBlock(TrapBB); 3570 3571 llvm::CallInst *TrapCall = 3572 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3573 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3574 3575 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3576 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3577 CGM.getCodeGenOpts().TrapFuncName); 3578 TrapCall->addFnAttr(A); 3579 } 3580 TrapCall->setDoesNotReturn(); 3581 TrapCall->setDoesNotThrow(); 3582 Builder.CreateUnreachable(); 3583 } else { 3584 auto Call = TrapBB->begin(); 3585 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3586 3587 Call->applyMergedLocation(Call->getDebugLoc(), 3588 Builder.getCurrentDebugLocation()); 3589 Builder.CreateCondBr(Checked, Cont, TrapBB); 3590 } 3591 3592 EmitBlock(Cont); 3593 } 3594 3595 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3596 llvm::CallInst *TrapCall = 3597 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3598 3599 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3600 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3601 CGM.getCodeGenOpts().TrapFuncName); 3602 TrapCall->addFnAttr(A); 3603 } 3604 3605 return TrapCall; 3606 } 3607 3608 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3609 LValueBaseInfo *BaseInfo, 3610 TBAAAccessInfo *TBAAInfo) { 3611 assert(E->getType()->isArrayType() && 3612 "Array to pointer decay must have array source type!"); 3613 3614 // Expressions of array type can't be bitfields or vector elements. 3615 LValue LV = EmitLValue(E); 3616 Address Addr = LV.getAddress(*this); 3617 3618 // If the array type was an incomplete type, we need to make sure 3619 // the decay ends up being the right type. 3620 llvm::Type *NewTy = ConvertType(E->getType()); 3621 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3622 3623 // Note that VLA pointers are always decayed, so we don't need to do 3624 // anything here. 3625 if (!E->getType()->isVariableArrayType()) { 3626 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3627 "Expected pointer to array"); 3628 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3629 } 3630 3631 // The result of this decay conversion points to an array element within the 3632 // base lvalue. However, since TBAA currently does not support representing 3633 // accesses to elements of member arrays, we conservatively represent accesses 3634 // to the pointee object as if it had no any base lvalue specified. 3635 // TODO: Support TBAA for member arrays. 3636 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3637 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3638 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3639 3640 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3641 } 3642 3643 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3644 /// array to pointer, return the array subexpression. 3645 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3646 // If this isn't just an array->pointer decay, bail out. 3647 const auto *CE = dyn_cast<CastExpr>(E); 3648 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3649 return nullptr; 3650 3651 // If this is a decay from variable width array, bail out. 3652 const Expr *SubExpr = CE->getSubExpr(); 3653 if (SubExpr->getType()->isVariableArrayType()) 3654 return nullptr; 3655 3656 return SubExpr; 3657 } 3658 3659 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3660 llvm::Type *elemType, 3661 llvm::Value *ptr, 3662 ArrayRef<llvm::Value*> indices, 3663 bool inbounds, 3664 bool signedIndices, 3665 SourceLocation loc, 3666 const llvm::Twine &name = "arrayidx") { 3667 if (inbounds) { 3668 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices, 3669 CodeGenFunction::NotSubtraction, loc, 3670 name); 3671 } else { 3672 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3673 } 3674 } 3675 3676 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3677 llvm::Value *idx, 3678 CharUnits eltSize) { 3679 // If we have a constant index, we can use the exact offset of the 3680 // element we're accessing. 3681 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3682 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3683 return arrayAlign.alignmentAtOffset(offset); 3684 3685 // Otherwise, use the worst-case alignment for any element. 3686 } else { 3687 return arrayAlign.alignmentOfArrayElement(eltSize); 3688 } 3689 } 3690 3691 static QualType getFixedSizeElementType(const ASTContext &ctx, 3692 const VariableArrayType *vla) { 3693 QualType eltType; 3694 do { 3695 eltType = vla->getElementType(); 3696 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3697 return eltType; 3698 } 3699 3700 /// Given an array base, check whether its member access belongs to a record 3701 /// with preserve_access_index attribute or not. 3702 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3703 if (!ArrayBase || !CGF.getDebugInfo()) 3704 return false; 3705 3706 // Only support base as either a MemberExpr or DeclRefExpr. 3707 // DeclRefExpr to cover cases like: 3708 // struct s { int a; int b[10]; }; 3709 // struct s *p; 3710 // p[1].a 3711 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3712 // p->b[5] is a MemberExpr example. 3713 const Expr *E = ArrayBase->IgnoreImpCasts(); 3714 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3715 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3716 3717 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3718 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3719 if (!VarDef) 3720 return false; 3721 3722 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3723 if (!PtrT) 3724 return false; 3725 3726 const auto *PointeeT = PtrT->getPointeeType() 3727 ->getUnqualifiedDesugaredType(); 3728 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3729 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3730 return false; 3731 } 3732 3733 return false; 3734 } 3735 3736 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3737 ArrayRef<llvm::Value *> indices, 3738 QualType eltType, bool inbounds, 3739 bool signedIndices, SourceLocation loc, 3740 QualType *arrayType = nullptr, 3741 const Expr *Base = nullptr, 3742 const llvm::Twine &name = "arrayidx") { 3743 // All the indices except that last must be zero. 3744 #ifndef NDEBUG 3745 for (auto idx : indices.drop_back()) 3746 assert(isa<llvm::ConstantInt>(idx) && 3747 cast<llvm::ConstantInt>(idx)->isZero()); 3748 #endif 3749 3750 // Determine the element size of the statically-sized base. This is 3751 // the thing that the indices are expressed in terms of. 3752 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3753 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3754 } 3755 3756 // We can use that to compute the best alignment of the element. 3757 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3758 CharUnits eltAlign = 3759 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3760 3761 llvm::Value *eltPtr; 3762 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3763 if (!LastIndex || 3764 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3765 eltPtr = emitArraySubscriptGEP( 3766 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3767 signedIndices, loc, name); 3768 } else { 3769 // Remember the original array subscript for bpf target 3770 unsigned idx = LastIndex->getZExtValue(); 3771 llvm::DIType *DbgInfo = nullptr; 3772 if (arrayType) 3773 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3774 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3775 addr.getPointer(), 3776 indices.size() - 1, 3777 idx, DbgInfo); 3778 } 3779 3780 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign); 3781 } 3782 3783 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3784 bool Accessed) { 3785 // The index must always be an integer, which is not an aggregate. Emit it 3786 // in lexical order (this complexity is, sadly, required by C++17). 3787 llvm::Value *IdxPre = 3788 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3789 bool SignedIndices = false; 3790 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3791 auto *Idx = IdxPre; 3792 if (E->getLHS() != E->getIdx()) { 3793 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3794 Idx = EmitScalarExpr(E->getIdx()); 3795 } 3796 3797 QualType IdxTy = E->getIdx()->getType(); 3798 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3799 SignedIndices |= IdxSigned; 3800 3801 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3802 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3803 3804 // Extend or truncate the index type to 32 or 64-bits. 3805 if (Promote && Idx->getType() != IntPtrTy) 3806 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3807 3808 return Idx; 3809 }; 3810 IdxPre = nullptr; 3811 3812 // If the base is a vector type, then we are forming a vector element lvalue 3813 // with this subscript. 3814 if (E->getBase()->getType()->isVectorType() && 3815 !isa<ExtVectorElementExpr>(E->getBase())) { 3816 // Emit the vector as an lvalue to get its address. 3817 LValue LHS = EmitLValue(E->getBase()); 3818 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3819 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3820 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3821 E->getBase()->getType(), LHS.getBaseInfo(), 3822 TBAAAccessInfo()); 3823 } 3824 3825 // All the other cases basically behave like simple offsetting. 3826 3827 // Handle the extvector case we ignored above. 3828 if (isa<ExtVectorElementExpr>(E->getBase())) { 3829 LValue LV = EmitLValue(E->getBase()); 3830 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3831 Address Addr = EmitExtVectorElementLValue(LV); 3832 3833 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3834 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3835 SignedIndices, E->getExprLoc()); 3836 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3837 CGM.getTBAAInfoForSubobject(LV, EltType)); 3838 } 3839 3840 LValueBaseInfo EltBaseInfo; 3841 TBAAAccessInfo EltTBAAInfo; 3842 Address Addr = Address::invalid(); 3843 if (const VariableArrayType *vla = 3844 getContext().getAsVariableArrayType(E->getType())) { 3845 // The base must be a pointer, which is not an aggregate. Emit 3846 // it. It needs to be emitted first in case it's what captures 3847 // the VLA bounds. 3848 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3849 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3850 3851 // The element count here is the total number of non-VLA elements. 3852 llvm::Value *numElements = getVLASize(vla).NumElts; 3853 3854 // Effectively, the multiply by the VLA size is part of the GEP. 3855 // GEP indexes are signed, and scaling an index isn't permitted to 3856 // signed-overflow, so we use the same semantics for our explicit 3857 // multiply. We suppress this if overflow is not undefined behavior. 3858 if (getLangOpts().isSignedOverflowDefined()) { 3859 Idx = Builder.CreateMul(Idx, numElements); 3860 } else { 3861 Idx = Builder.CreateNSWMul(Idx, numElements); 3862 } 3863 3864 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3865 !getLangOpts().isSignedOverflowDefined(), 3866 SignedIndices, E->getExprLoc()); 3867 3868 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3869 // Indexing over an interface, as in "NSString *P; P[4];" 3870 3871 // Emit the base pointer. 3872 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3873 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3874 3875 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3876 llvm::Value *InterfaceSizeVal = 3877 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3878 3879 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3880 3881 // We don't necessarily build correct LLVM struct types for ObjC 3882 // interfaces, so we can't rely on GEP to do this scaling 3883 // correctly, so we need to cast to i8*. FIXME: is this actually 3884 // true? A lot of other things in the fragile ABI would break... 3885 llvm::Type *OrigBaseElemTy = Addr.getElementType(); 3886 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3887 3888 // Do the GEP. 3889 CharUnits EltAlign = 3890 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3891 llvm::Value *EltPtr = 3892 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3893 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3894 Addr = Address(EltPtr, Addr.getElementType(), EltAlign); 3895 3896 // Cast back. 3897 Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy); 3898 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3899 // If this is A[i] where A is an array, the frontend will have decayed the 3900 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3901 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3902 // "gep x, i" here. Emit one "gep A, 0, i". 3903 assert(Array->getType()->isArrayType() && 3904 "Array to pointer decay must have array source type!"); 3905 LValue ArrayLV; 3906 // For simple multidimensional array indexing, set the 'accessed' flag for 3907 // better bounds-checking of the base expression. 3908 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3909 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3910 else 3911 ArrayLV = EmitLValue(Array); 3912 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3913 3914 // Propagate the alignment from the array itself to the result. 3915 QualType arrayType = Array->getType(); 3916 Addr = emitArraySubscriptGEP( 3917 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3918 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3919 E->getExprLoc(), &arrayType, E->getBase()); 3920 EltBaseInfo = ArrayLV.getBaseInfo(); 3921 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3922 } else { 3923 // The base must be a pointer; emit it with an estimate of its alignment. 3924 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3925 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3926 QualType ptrType = E->getBase()->getType(); 3927 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3928 !getLangOpts().isSignedOverflowDefined(), 3929 SignedIndices, E->getExprLoc(), &ptrType, 3930 E->getBase()); 3931 } 3932 3933 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3934 3935 if (getLangOpts().ObjC && 3936 getLangOpts().getGC() != LangOptions::NonGC) { 3937 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3938 setObjCGCLValueClass(getContext(), E, LV); 3939 } 3940 return LV; 3941 } 3942 3943 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3944 assert( 3945 !E->isIncomplete() && 3946 "incomplete matrix subscript expressions should be rejected during Sema"); 3947 LValue Base = EmitLValue(E->getBase()); 3948 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3949 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3950 llvm::Value *NumRows = Builder.getIntN( 3951 RowIdx->getType()->getScalarSizeInBits(), 3952 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3953 llvm::Value *FinalIdx = 3954 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3955 return LValue::MakeMatrixElt( 3956 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3957 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3958 } 3959 3960 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3961 LValueBaseInfo &BaseInfo, 3962 TBAAAccessInfo &TBAAInfo, 3963 QualType BaseTy, QualType ElTy, 3964 bool IsLowerBound) { 3965 LValue BaseLVal; 3966 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3967 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3968 if (BaseTy->isArrayType()) { 3969 Address Addr = BaseLVal.getAddress(CGF); 3970 BaseInfo = BaseLVal.getBaseInfo(); 3971 3972 // If the array type was an incomplete type, we need to make sure 3973 // the decay ends up being the right type. 3974 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3975 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3976 3977 // Note that VLA pointers are always decayed, so we don't need to do 3978 // anything here. 3979 if (!BaseTy->isVariableArrayType()) { 3980 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3981 "Expected pointer to array"); 3982 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3983 } 3984 3985 return CGF.Builder.CreateElementBitCast(Addr, 3986 CGF.ConvertTypeForMem(ElTy)); 3987 } 3988 LValueBaseInfo TypeBaseInfo; 3989 TBAAAccessInfo TypeTBAAInfo; 3990 CharUnits Align = 3991 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3992 BaseInfo.mergeForCast(TypeBaseInfo); 3993 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3994 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), 3995 CGF.ConvertTypeForMem(ElTy), Align); 3996 } 3997 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3998 } 3999 4000 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 4001 bool IsLowerBound) { 4002 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 4003 QualType ResultExprTy; 4004 if (auto *AT = getContext().getAsArrayType(BaseTy)) 4005 ResultExprTy = AT->getElementType(); 4006 else 4007 ResultExprTy = BaseTy->getPointeeType(); 4008 llvm::Value *Idx = nullptr; 4009 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 4010 // Requesting lower bound or upper bound, but without provided length and 4011 // without ':' symbol for the default length -> length = 1. 4012 // Idx = LowerBound ?: 0; 4013 if (auto *LowerBound = E->getLowerBound()) { 4014 Idx = Builder.CreateIntCast( 4015 EmitScalarExpr(LowerBound), IntPtrTy, 4016 LowerBound->getType()->hasSignedIntegerRepresentation()); 4017 } else 4018 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 4019 } else { 4020 // Try to emit length or lower bound as constant. If this is possible, 1 4021 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 4022 // IR (LB + Len) - 1. 4023 auto &C = CGM.getContext(); 4024 auto *Length = E->getLength(); 4025 llvm::APSInt ConstLength; 4026 if (Length) { 4027 // Idx = LowerBound + Length - 1; 4028 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 4029 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 4030 Length = nullptr; 4031 } 4032 auto *LowerBound = E->getLowerBound(); 4033 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 4034 if (LowerBound) { 4035 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 4036 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 4037 LowerBound = nullptr; 4038 } 4039 } 4040 if (!Length) 4041 --ConstLength; 4042 else if (!LowerBound) 4043 --ConstLowerBound; 4044 4045 if (Length || LowerBound) { 4046 auto *LowerBoundVal = 4047 LowerBound 4048 ? Builder.CreateIntCast( 4049 EmitScalarExpr(LowerBound), IntPtrTy, 4050 LowerBound->getType()->hasSignedIntegerRepresentation()) 4051 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 4052 auto *LengthVal = 4053 Length 4054 ? Builder.CreateIntCast( 4055 EmitScalarExpr(Length), IntPtrTy, 4056 Length->getType()->hasSignedIntegerRepresentation()) 4057 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 4058 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 4059 /*HasNUW=*/false, 4060 !getLangOpts().isSignedOverflowDefined()); 4061 if (Length && LowerBound) { 4062 Idx = Builder.CreateSub( 4063 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 4064 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4065 } 4066 } else 4067 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 4068 } else { 4069 // Idx = ArraySize - 1; 4070 QualType ArrayTy = BaseTy->isPointerType() 4071 ? E->getBase()->IgnoreParenImpCasts()->getType() 4072 : BaseTy; 4073 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 4074 Length = VAT->getSizeExpr(); 4075 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 4076 ConstLength = *L; 4077 Length = nullptr; 4078 } 4079 } else { 4080 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4081 ConstLength = CAT->getSize(); 4082 } 4083 if (Length) { 4084 auto *LengthVal = Builder.CreateIntCast( 4085 EmitScalarExpr(Length), IntPtrTy, 4086 Length->getType()->hasSignedIntegerRepresentation()); 4087 Idx = Builder.CreateSub( 4088 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4089 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4090 } else { 4091 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4092 --ConstLength; 4093 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4094 } 4095 } 4096 } 4097 assert(Idx); 4098 4099 Address EltPtr = Address::invalid(); 4100 LValueBaseInfo BaseInfo; 4101 TBAAAccessInfo TBAAInfo; 4102 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4103 // The base must be a pointer, which is not an aggregate. Emit 4104 // it. It needs to be emitted first in case it's what captures 4105 // the VLA bounds. 4106 Address Base = 4107 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4108 BaseTy, VLA->getElementType(), IsLowerBound); 4109 // The element count here is the total number of non-VLA elements. 4110 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4111 4112 // Effectively, the multiply by the VLA size is part of the GEP. 4113 // GEP indexes are signed, and scaling an index isn't permitted to 4114 // signed-overflow, so we use the same semantics for our explicit 4115 // multiply. We suppress this if overflow is not undefined behavior. 4116 if (getLangOpts().isSignedOverflowDefined()) 4117 Idx = Builder.CreateMul(Idx, NumElements); 4118 else 4119 Idx = Builder.CreateNSWMul(Idx, NumElements); 4120 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4121 !getLangOpts().isSignedOverflowDefined(), 4122 /*signedIndices=*/false, E->getExprLoc()); 4123 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4124 // If this is A[i] where A is an array, the frontend will have decayed the 4125 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4126 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4127 // "gep x, i" here. Emit one "gep A, 0, i". 4128 assert(Array->getType()->isArrayType() && 4129 "Array to pointer decay must have array source type!"); 4130 LValue ArrayLV; 4131 // For simple multidimensional array indexing, set the 'accessed' flag for 4132 // better bounds-checking of the base expression. 4133 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4134 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4135 else 4136 ArrayLV = EmitLValue(Array); 4137 4138 // Propagate the alignment from the array itself to the result. 4139 EltPtr = emitArraySubscriptGEP( 4140 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4141 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4142 /*signedIndices=*/false, E->getExprLoc()); 4143 BaseInfo = ArrayLV.getBaseInfo(); 4144 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4145 } else { 4146 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4147 TBAAInfo, BaseTy, ResultExprTy, 4148 IsLowerBound); 4149 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4150 !getLangOpts().isSignedOverflowDefined(), 4151 /*signedIndices=*/false, E->getExprLoc()); 4152 } 4153 4154 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4155 } 4156 4157 LValue CodeGenFunction:: 4158 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4159 // Emit the base vector as an l-value. 4160 LValue Base; 4161 4162 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4163 if (E->isArrow()) { 4164 // If it is a pointer to a vector, emit the address and form an lvalue with 4165 // it. 4166 LValueBaseInfo BaseInfo; 4167 TBAAAccessInfo TBAAInfo; 4168 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4169 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4170 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4171 Base.getQuals().removeObjCGCAttr(); 4172 } else if (E->getBase()->isGLValue()) { 4173 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4174 // emit the base as an lvalue. 4175 assert(E->getBase()->getType()->isVectorType()); 4176 Base = EmitLValue(E->getBase()); 4177 } else { 4178 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4179 assert(E->getBase()->getType()->isVectorType() && 4180 "Result must be a vector"); 4181 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4182 4183 // Store the vector to memory (because LValue wants an address). 4184 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4185 Builder.CreateStore(Vec, VecMem); 4186 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4187 AlignmentSource::Decl); 4188 } 4189 4190 QualType type = 4191 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4192 4193 // Encode the element access list into a vector of unsigned indices. 4194 SmallVector<uint32_t, 4> Indices; 4195 E->getEncodedElementAccess(Indices); 4196 4197 if (Base.isSimple()) { 4198 llvm::Constant *CV = 4199 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4200 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4201 Base.getBaseInfo(), TBAAAccessInfo()); 4202 } 4203 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4204 4205 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4206 SmallVector<llvm::Constant *, 4> CElts; 4207 4208 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4209 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4210 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4211 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4212 Base.getBaseInfo(), TBAAAccessInfo()); 4213 } 4214 4215 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4216 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4217 EmitIgnoredExpr(E->getBase()); 4218 return EmitDeclRefLValue(DRE); 4219 } 4220 4221 Expr *BaseExpr = E->getBase(); 4222 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4223 LValue BaseLV; 4224 if (E->isArrow()) { 4225 LValueBaseInfo BaseInfo; 4226 TBAAAccessInfo TBAAInfo; 4227 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4228 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4229 SanitizerSet SkippedChecks; 4230 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4231 if (IsBaseCXXThis) 4232 SkippedChecks.set(SanitizerKind::Alignment, true); 4233 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4234 SkippedChecks.set(SanitizerKind::Null, true); 4235 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4236 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4237 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4238 } else 4239 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4240 4241 NamedDecl *ND = E->getMemberDecl(); 4242 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4243 LValue LV = EmitLValueForField(BaseLV, Field); 4244 setObjCGCLValueClass(getContext(), E, LV); 4245 if (getLangOpts().OpenMP) { 4246 // If the member was explicitly marked as nontemporal, mark it as 4247 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4248 // to children as nontemporal too. 4249 if ((IsWrappedCXXThis(BaseExpr) && 4250 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4251 BaseLV.isNontemporal()) 4252 LV.setNontemporal(/*Value=*/true); 4253 } 4254 return LV; 4255 } 4256 4257 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4258 return EmitFunctionDeclLValue(*this, E, FD); 4259 4260 llvm_unreachable("Unhandled member declaration!"); 4261 } 4262 4263 /// Given that we are currently emitting a lambda, emit an l-value for 4264 /// one of its members. 4265 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4266 if (CurCodeDecl) { 4267 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4268 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4269 } 4270 QualType LambdaTagType = 4271 getContext().getTagDeclType(Field->getParent()); 4272 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4273 return EmitLValueForField(LambdaLV, Field); 4274 } 4275 4276 /// Get the field index in the debug info. The debug info structure/union 4277 /// will ignore the unnamed bitfields. 4278 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4279 unsigned FieldIndex) { 4280 unsigned I = 0, Skipped = 0; 4281 4282 for (auto F : Rec->getDefinition()->fields()) { 4283 if (I == FieldIndex) 4284 break; 4285 if (F->isUnnamedBitfield()) 4286 Skipped++; 4287 I++; 4288 } 4289 4290 return FieldIndex - Skipped; 4291 } 4292 4293 /// Get the address of a zero-sized field within a record. The resulting 4294 /// address doesn't necessarily have the right type. 4295 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4296 const FieldDecl *Field) { 4297 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4298 CGF.getContext().getFieldOffset(Field)); 4299 if (Offset.isZero()) 4300 return Base; 4301 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4302 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4303 } 4304 4305 /// Drill down to the storage of a field without walking into 4306 /// reference types. 4307 /// 4308 /// The resulting address doesn't necessarily have the right type. 4309 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4310 const FieldDecl *field) { 4311 if (field->isZeroSize(CGF.getContext())) 4312 return emitAddrOfZeroSizeField(CGF, base, field); 4313 4314 const RecordDecl *rec = field->getParent(); 4315 4316 unsigned idx = 4317 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4318 4319 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4320 } 4321 4322 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4323 Address addr, const FieldDecl *field) { 4324 const RecordDecl *rec = field->getParent(); 4325 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4326 base.getType(), rec->getLocation()); 4327 4328 unsigned idx = 4329 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4330 4331 return CGF.Builder.CreatePreserveStructAccessIndex( 4332 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4333 } 4334 4335 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4336 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4337 if (!RD) 4338 return false; 4339 4340 if (RD->isDynamicClass()) 4341 return true; 4342 4343 for (const auto &Base : RD->bases()) 4344 if (hasAnyVptr(Base.getType(), Context)) 4345 return true; 4346 4347 for (const FieldDecl *Field : RD->fields()) 4348 if (hasAnyVptr(Field->getType(), Context)) 4349 return true; 4350 4351 return false; 4352 } 4353 4354 LValue CodeGenFunction::EmitLValueForField(LValue base, 4355 const FieldDecl *field) { 4356 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4357 4358 if (field->isBitField()) { 4359 const CGRecordLayout &RL = 4360 CGM.getTypes().getCGRecordLayout(field->getParent()); 4361 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4362 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4363 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4364 Info.VolatileStorageSize != 0 && 4365 field->getType() 4366 .withCVRQualifiers(base.getVRQualifiers()) 4367 .isVolatileQualified(); 4368 Address Addr = base.getAddress(*this); 4369 unsigned Idx = RL.getLLVMFieldNo(field); 4370 const RecordDecl *rec = field->getParent(); 4371 if (!UseVolatile) { 4372 if (!IsInPreservedAIRegion && 4373 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4374 if (Idx != 0) 4375 // For structs, we GEP to the field that the record layout suggests. 4376 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4377 } else { 4378 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4379 getContext().getRecordType(rec), rec->getLocation()); 4380 Addr = Builder.CreatePreserveStructAccessIndex( 4381 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4382 DbgInfo); 4383 } 4384 } 4385 const unsigned SS = 4386 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4387 // Get the access type. 4388 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4389 if (Addr.getElementType() != FieldIntTy) 4390 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4391 if (UseVolatile) { 4392 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4393 if (VolatileOffset) 4394 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4395 } 4396 4397 QualType fieldType = 4398 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4399 // TODO: Support TBAA for bit fields. 4400 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4401 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4402 TBAAAccessInfo()); 4403 } 4404 4405 // Fields of may-alias structures are may-alias themselves. 4406 // FIXME: this should get propagated down through anonymous structs 4407 // and unions. 4408 QualType FieldType = field->getType(); 4409 const RecordDecl *rec = field->getParent(); 4410 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4411 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4412 TBAAAccessInfo FieldTBAAInfo; 4413 if (base.getTBAAInfo().isMayAlias() || 4414 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4415 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4416 } else if (rec->isUnion()) { 4417 // TODO: Support TBAA for unions. 4418 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4419 } else { 4420 // If no base type been assigned for the base access, then try to generate 4421 // one for this base lvalue. 4422 FieldTBAAInfo = base.getTBAAInfo(); 4423 if (!FieldTBAAInfo.BaseType) { 4424 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4425 assert(!FieldTBAAInfo.Offset && 4426 "Nonzero offset for an access with no base type!"); 4427 } 4428 4429 // Adjust offset to be relative to the base type. 4430 const ASTRecordLayout &Layout = 4431 getContext().getASTRecordLayout(field->getParent()); 4432 unsigned CharWidth = getContext().getCharWidth(); 4433 if (FieldTBAAInfo.BaseType) 4434 FieldTBAAInfo.Offset += 4435 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4436 4437 // Update the final access type and size. 4438 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4439 FieldTBAAInfo.Size = 4440 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4441 } 4442 4443 Address addr = base.getAddress(*this); 4444 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4445 if (CGM.getCodeGenOpts().StrictVTablePointers && 4446 ClassDef->isDynamicClass()) { 4447 // Getting to any field of dynamic object requires stripping dynamic 4448 // information provided by invariant.group. This is because accessing 4449 // fields may leak the real address of dynamic object, which could result 4450 // in miscompilation when leaked pointer would be compared. 4451 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4452 addr = Address(stripped, addr.getElementType(), addr.getAlignment()); 4453 } 4454 } 4455 4456 unsigned RecordCVR = base.getVRQualifiers(); 4457 if (rec->isUnion()) { 4458 // For unions, there is no pointer adjustment. 4459 if (CGM.getCodeGenOpts().StrictVTablePointers && 4460 hasAnyVptr(FieldType, getContext())) 4461 // Because unions can easily skip invariant.barriers, we need to add 4462 // a barrier every time CXXRecord field with vptr is referenced. 4463 addr = Builder.CreateLaunderInvariantGroup(addr); 4464 4465 if (IsInPreservedAIRegion || 4466 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4467 // Remember the original union field index 4468 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4469 rec->getLocation()); 4470 addr = Address( 4471 Builder.CreatePreserveUnionAccessIndex( 4472 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4473 addr.getElementType(), addr.getAlignment()); 4474 } 4475 4476 if (FieldType->isReferenceType()) 4477 addr = Builder.CreateElementBitCast( 4478 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4479 } else { 4480 if (!IsInPreservedAIRegion && 4481 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4482 // For structs, we GEP to the field that the record layout suggests. 4483 addr = emitAddrOfFieldStorage(*this, addr, field); 4484 else 4485 // Remember the original struct field index 4486 addr = emitPreserveStructAccess(*this, base, addr, field); 4487 } 4488 4489 // If this is a reference field, load the reference right now. 4490 if (FieldType->isReferenceType()) { 4491 LValue RefLVal = 4492 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4493 if (RecordCVR & Qualifiers::Volatile) 4494 RefLVal.getQuals().addVolatile(); 4495 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4496 4497 // Qualifiers on the struct don't apply to the referencee. 4498 RecordCVR = 0; 4499 FieldType = FieldType->getPointeeType(); 4500 } 4501 4502 // Make sure that the address is pointing to the right type. This is critical 4503 // for both unions and structs. A union needs a bitcast, a struct element 4504 // will need a bitcast if the LLVM type laid out doesn't match the desired 4505 // type. 4506 addr = Builder.CreateElementBitCast( 4507 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4508 4509 if (field->hasAttr<AnnotateAttr>()) 4510 addr = EmitFieldAnnotations(field, addr); 4511 4512 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4513 LV.getQuals().addCVRQualifiers(RecordCVR); 4514 4515 // __weak attribute on a field is ignored. 4516 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4517 LV.getQuals().removeObjCGCAttr(); 4518 4519 return LV; 4520 } 4521 4522 LValue 4523 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4524 const FieldDecl *Field) { 4525 QualType FieldType = Field->getType(); 4526 4527 if (!FieldType->isReferenceType()) 4528 return EmitLValueForField(Base, Field); 4529 4530 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4531 4532 // Make sure that the address is pointing to the right type. 4533 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4534 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4535 4536 // TODO: Generate TBAA information that describes this access as a structure 4537 // member access and not just an access to an object of the field's type. This 4538 // should be similar to what we do in EmitLValueForField(). 4539 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4540 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4541 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4542 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4543 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4544 } 4545 4546 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4547 if (E->isFileScope()) { 4548 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4549 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4550 } 4551 if (E->getType()->isVariablyModifiedType()) 4552 // make sure to emit the VLA size. 4553 EmitVariablyModifiedType(E->getType()); 4554 4555 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4556 const Expr *InitExpr = E->getInitializer(); 4557 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4558 4559 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4560 /*Init*/ true); 4561 4562 // Block-scope compound literals are destroyed at the end of the enclosing 4563 // scope in C. 4564 if (!getLangOpts().CPlusPlus) 4565 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4566 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4567 E->getType(), getDestroyer(DtorKind), 4568 DtorKind & EHCleanup); 4569 4570 return Result; 4571 } 4572 4573 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4574 if (!E->isGLValue()) 4575 // Initializing an aggregate temporary in C++11: T{...}. 4576 return EmitAggExprToLValue(E); 4577 4578 // An lvalue initializer list must be initializing a reference. 4579 assert(E->isTransparent() && "non-transparent glvalue init list"); 4580 return EmitLValue(E->getInit(0)); 4581 } 4582 4583 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4584 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4585 /// LValue is returned and the current block has been terminated. 4586 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4587 const Expr *Operand) { 4588 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4589 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4590 return None; 4591 } 4592 4593 return CGF.EmitLValue(Operand); 4594 } 4595 4596 namespace { 4597 // Handle the case where the condition is a constant evaluatable simple integer, 4598 // which means we don't have to separately handle the true/false blocks. 4599 llvm::Optional<LValue> HandleConditionalOperatorLValueSimpleCase( 4600 CodeGenFunction &CGF, const AbstractConditionalOperator *E) { 4601 const Expr *condExpr = E->getCond(); 4602 bool CondExprBool; 4603 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4604 const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr(); 4605 if (!CondExprBool) 4606 std::swap(Live, Dead); 4607 4608 if (!CGF.ContainsLabel(Dead)) { 4609 // If the true case is live, we need to track its region. 4610 if (CondExprBool) 4611 CGF.incrementProfileCounter(E); 4612 // If a throw expression we emit it and return an undefined lvalue 4613 // because it can't be used. 4614 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) { 4615 CGF.EmitCXXThrowExpr(ThrowExpr); 4616 llvm::Type *ElemTy = CGF.ConvertType(Dead->getType()); 4617 llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy); 4618 return CGF.MakeAddrLValue( 4619 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()), 4620 Dead->getType()); 4621 } 4622 return CGF.EmitLValue(Live); 4623 } 4624 } 4625 return llvm::None; 4626 } 4627 struct ConditionalInfo { 4628 llvm::BasicBlock *lhsBlock, *rhsBlock; 4629 Optional<LValue> LHS, RHS; 4630 }; 4631 4632 // Create and generate the 3 blocks for a conditional operator. 4633 // Leaves the 'current block' in the continuation basic block. 4634 template<typename FuncTy> 4635 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF, 4636 const AbstractConditionalOperator *E, 4637 const FuncTy &BranchGenFunc) { 4638 ConditionalInfo Info{CGF.createBasicBlock("cond.true"), 4639 CGF.createBasicBlock("cond.false"), llvm::None, 4640 llvm::None}; 4641 llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end"); 4642 4643 CodeGenFunction::ConditionalEvaluation eval(CGF); 4644 CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock, 4645 CGF.getProfileCount(E)); 4646 4647 // Any temporaries created here are conditional. 4648 CGF.EmitBlock(Info.lhsBlock); 4649 CGF.incrementProfileCounter(E); 4650 eval.begin(CGF); 4651 Info.LHS = BranchGenFunc(CGF, E->getTrueExpr()); 4652 eval.end(CGF); 4653 Info.lhsBlock = CGF.Builder.GetInsertBlock(); 4654 4655 if (Info.LHS) 4656 CGF.Builder.CreateBr(endBlock); 4657 4658 // Any temporaries created here are conditional. 4659 CGF.EmitBlock(Info.rhsBlock); 4660 eval.begin(CGF); 4661 Info.RHS = BranchGenFunc(CGF, E->getFalseExpr()); 4662 eval.end(CGF); 4663 Info.rhsBlock = CGF.Builder.GetInsertBlock(); 4664 CGF.EmitBlock(endBlock); 4665 4666 return Info; 4667 } 4668 } // namespace 4669 4670 void CodeGenFunction::EmitIgnoredConditionalOperator( 4671 const AbstractConditionalOperator *E) { 4672 if (!E->isGLValue()) { 4673 // ?: here should be an aggregate. 4674 assert(hasAggregateEvaluationKind(E->getType()) && 4675 "Unexpected conditional operator!"); 4676 return (void)EmitAggExprToLValue(E); 4677 } 4678 4679 OpaqueValueMapping binding(*this, E); 4680 if (HandleConditionalOperatorLValueSimpleCase(*this, E)) 4681 return; 4682 4683 EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) { 4684 CGF.EmitIgnoredExpr(E); 4685 return LValue{}; 4686 }); 4687 } 4688 LValue CodeGenFunction::EmitConditionalOperatorLValue( 4689 const AbstractConditionalOperator *expr) { 4690 if (!expr->isGLValue()) { 4691 // ?: here should be an aggregate. 4692 assert(hasAggregateEvaluationKind(expr->getType()) && 4693 "Unexpected conditional operator!"); 4694 return EmitAggExprToLValue(expr); 4695 } 4696 4697 OpaqueValueMapping binding(*this, expr); 4698 if (llvm::Optional<LValue> Res = 4699 HandleConditionalOperatorLValueSimpleCase(*this, expr)) 4700 return *Res; 4701 4702 ConditionalInfo Info = EmitConditionalBlocks( 4703 *this, expr, [](CodeGenFunction &CGF, const Expr *E) { 4704 return EmitLValueOrThrowExpression(CGF, E); 4705 }); 4706 4707 if ((Info.LHS && !Info.LHS->isSimple()) || 4708 (Info.RHS && !Info.RHS->isSimple())) 4709 return EmitUnsupportedLValue(expr, "conditional operator"); 4710 4711 if (Info.LHS && Info.RHS) { 4712 Address lhsAddr = Info.LHS->getAddress(*this); 4713 Address rhsAddr = Info.RHS->getAddress(*this); 4714 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue"); 4715 phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock); 4716 phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock); 4717 Address result(phi, lhsAddr.getElementType(), 4718 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment())); 4719 AlignmentSource alignSource = 4720 std::max(Info.LHS->getBaseInfo().getAlignmentSource(), 4721 Info.RHS->getBaseInfo().getAlignmentSource()); 4722 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4723 Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo()); 4724 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4725 TBAAInfo); 4726 } else { 4727 assert((Info.LHS || Info.RHS) && 4728 "both operands of glvalue conditional are throw-expressions?"); 4729 return Info.LHS ? *Info.LHS : *Info.RHS; 4730 } 4731 } 4732 4733 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4734 /// type. If the cast is to a reference, we can have the usual lvalue result, 4735 /// otherwise if a cast is needed by the code generator in an lvalue context, 4736 /// then it must mean that we need the address of an aggregate in order to 4737 /// access one of its members. This can happen for all the reasons that casts 4738 /// are permitted with aggregate result, including noop aggregate casts, and 4739 /// cast from scalar to union. 4740 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4741 switch (E->getCastKind()) { 4742 case CK_ToVoid: 4743 case CK_BitCast: 4744 case CK_LValueToRValueBitCast: 4745 case CK_ArrayToPointerDecay: 4746 case CK_FunctionToPointerDecay: 4747 case CK_NullToMemberPointer: 4748 case CK_NullToPointer: 4749 case CK_IntegralToPointer: 4750 case CK_PointerToIntegral: 4751 case CK_PointerToBoolean: 4752 case CK_VectorSplat: 4753 case CK_IntegralCast: 4754 case CK_BooleanToSignedIntegral: 4755 case CK_IntegralToBoolean: 4756 case CK_IntegralToFloating: 4757 case CK_FloatingToIntegral: 4758 case CK_FloatingToBoolean: 4759 case CK_FloatingCast: 4760 case CK_FloatingRealToComplex: 4761 case CK_FloatingComplexToReal: 4762 case CK_FloatingComplexToBoolean: 4763 case CK_FloatingComplexCast: 4764 case CK_FloatingComplexToIntegralComplex: 4765 case CK_IntegralRealToComplex: 4766 case CK_IntegralComplexToReal: 4767 case CK_IntegralComplexToBoolean: 4768 case CK_IntegralComplexCast: 4769 case CK_IntegralComplexToFloatingComplex: 4770 case CK_DerivedToBaseMemberPointer: 4771 case CK_BaseToDerivedMemberPointer: 4772 case CK_MemberPointerToBoolean: 4773 case CK_ReinterpretMemberPointer: 4774 case CK_AnyPointerToBlockPointerCast: 4775 case CK_ARCProduceObject: 4776 case CK_ARCConsumeObject: 4777 case CK_ARCReclaimReturnedObject: 4778 case CK_ARCExtendBlockObject: 4779 case CK_CopyAndAutoreleaseBlockObject: 4780 case CK_IntToOCLSampler: 4781 case CK_FloatingToFixedPoint: 4782 case CK_FixedPointToFloating: 4783 case CK_FixedPointCast: 4784 case CK_FixedPointToBoolean: 4785 case CK_FixedPointToIntegral: 4786 case CK_IntegralToFixedPoint: 4787 case CK_MatrixCast: 4788 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4789 4790 case CK_Dependent: 4791 llvm_unreachable("dependent cast kind in IR gen!"); 4792 4793 case CK_BuiltinFnToFnPtr: 4794 llvm_unreachable("builtin functions are handled elsewhere"); 4795 4796 // These are never l-values; just use the aggregate emission code. 4797 case CK_NonAtomicToAtomic: 4798 case CK_AtomicToNonAtomic: 4799 return EmitAggExprToLValue(E); 4800 4801 case CK_Dynamic: { 4802 LValue LV = EmitLValue(E->getSubExpr()); 4803 Address V = LV.getAddress(*this); 4804 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4805 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4806 } 4807 4808 case CK_ConstructorConversion: 4809 case CK_UserDefinedConversion: 4810 case CK_CPointerToObjCPointerCast: 4811 case CK_BlockPointerToObjCPointerCast: 4812 case CK_LValueToRValue: 4813 return EmitLValue(E->getSubExpr()); 4814 4815 case CK_NoOp: { 4816 // CK_NoOp can model a qualification conversion, which can remove an array 4817 // bound and change the IR type. 4818 // FIXME: Once pointee types are removed from IR, remove this. 4819 LValue LV = EmitLValue(E->getSubExpr()); 4820 if (LV.isSimple()) { 4821 Address V = LV.getAddress(*this); 4822 if (V.isValid()) { 4823 llvm::Type *T = ConvertTypeForMem(E->getType()); 4824 if (V.getElementType() != T) 4825 LV.setAddress(Builder.CreateElementBitCast(V, T)); 4826 } 4827 } 4828 return LV; 4829 } 4830 4831 case CK_UncheckedDerivedToBase: 4832 case CK_DerivedToBase: { 4833 const auto *DerivedClassTy = 4834 E->getSubExpr()->getType()->castAs<RecordType>(); 4835 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4836 4837 LValue LV = EmitLValue(E->getSubExpr()); 4838 Address This = LV.getAddress(*this); 4839 4840 // Perform the derived-to-base conversion 4841 Address Base = GetAddressOfBaseClass( 4842 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4843 /*NullCheckValue=*/false, E->getExprLoc()); 4844 4845 // TODO: Support accesses to members of base classes in TBAA. For now, we 4846 // conservatively pretend that the complete object is of the base class 4847 // type. 4848 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4849 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4850 } 4851 case CK_ToUnion: 4852 return EmitAggExprToLValue(E); 4853 case CK_BaseToDerived: { 4854 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4855 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4856 4857 LValue LV = EmitLValue(E->getSubExpr()); 4858 4859 // Perform the base-to-derived conversion 4860 Address Derived = GetAddressOfDerivedClass( 4861 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4862 /*NullCheckValue=*/false); 4863 4864 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4865 // performed and the object is not of the derived type. 4866 if (sanitizePerformTypeCheck()) 4867 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4868 Derived.getPointer(), E->getType()); 4869 4870 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4871 EmitVTablePtrCheckForCast(E->getType(), Derived, 4872 /*MayBeNull=*/false, CFITCK_DerivedCast, 4873 E->getBeginLoc()); 4874 4875 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4876 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4877 } 4878 case CK_LValueBitCast: { 4879 // This must be a reinterpret_cast (or c-style equivalent). 4880 const auto *CE = cast<ExplicitCastExpr>(E); 4881 4882 CGM.EmitExplicitCastExprType(CE, this); 4883 LValue LV = EmitLValue(E->getSubExpr()); 4884 Address V = Builder.CreateElementBitCast( 4885 LV.getAddress(*this), 4886 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType())); 4887 4888 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4889 EmitVTablePtrCheckForCast(E->getType(), V, 4890 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4891 E->getBeginLoc()); 4892 4893 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4894 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4895 } 4896 case CK_AddressSpaceConversion: { 4897 LValue LV = EmitLValue(E->getSubExpr()); 4898 QualType DestTy = getContext().getPointerType(E->getType()); 4899 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4900 *this, LV.getPointer(*this), 4901 E->getSubExpr()->getType().getAddressSpace(), 4902 E->getType().getAddressSpace(), ConvertType(DestTy)); 4903 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()), 4904 LV.getAddress(*this).getAlignment()), 4905 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4906 } 4907 case CK_ObjCObjectLValueCast: { 4908 LValue LV = EmitLValue(E->getSubExpr()); 4909 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4910 ConvertType(E->getType())); 4911 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4912 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4913 } 4914 case CK_ZeroToOCLOpaqueType: 4915 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4916 } 4917 4918 llvm_unreachable("Unhandled lvalue cast kind?"); 4919 } 4920 4921 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4922 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4923 return getOrCreateOpaqueLValueMapping(e); 4924 } 4925 4926 LValue 4927 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4928 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4929 4930 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4931 it = OpaqueLValues.find(e); 4932 4933 if (it != OpaqueLValues.end()) 4934 return it->second; 4935 4936 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4937 return EmitLValue(e->getSourceExpr()); 4938 } 4939 4940 RValue 4941 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4942 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4943 4944 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4945 it = OpaqueRValues.find(e); 4946 4947 if (it != OpaqueRValues.end()) 4948 return it->second; 4949 4950 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4951 return EmitAnyExpr(e->getSourceExpr()); 4952 } 4953 4954 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4955 const FieldDecl *FD, 4956 SourceLocation Loc) { 4957 QualType FT = FD->getType(); 4958 LValue FieldLV = EmitLValueForField(LV, FD); 4959 switch (getEvaluationKind(FT)) { 4960 case TEK_Complex: 4961 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4962 case TEK_Aggregate: 4963 return FieldLV.asAggregateRValue(*this); 4964 case TEK_Scalar: 4965 // This routine is used to load fields one-by-one to perform a copy, so 4966 // don't load reference fields. 4967 if (FD->getType()->isReferenceType()) 4968 return RValue::get(FieldLV.getPointer(*this)); 4969 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4970 // primitive load. 4971 if (FieldLV.isBitField()) 4972 return EmitLoadOfLValue(FieldLV, Loc); 4973 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4974 } 4975 llvm_unreachable("bad evaluation kind"); 4976 } 4977 4978 //===--------------------------------------------------------------------===// 4979 // Expression Emission 4980 //===--------------------------------------------------------------------===// 4981 4982 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4983 ReturnValueSlot ReturnValue) { 4984 // Builtins never have block type. 4985 if (E->getCallee()->getType()->isBlockPointerType()) 4986 return EmitBlockCallExpr(E, ReturnValue); 4987 4988 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4989 return EmitCXXMemberCallExpr(CE, ReturnValue); 4990 4991 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4992 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4993 4994 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4995 if (const CXXMethodDecl *MD = 4996 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4997 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4998 4999 CGCallee callee = EmitCallee(E->getCallee()); 5000 5001 if (callee.isBuiltin()) { 5002 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 5003 E, ReturnValue); 5004 } 5005 5006 if (callee.isPseudoDestructor()) { 5007 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 5008 } 5009 5010 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 5011 } 5012 5013 /// Emit a CallExpr without considering whether it might be a subclass. 5014 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 5015 ReturnValueSlot ReturnValue) { 5016 CGCallee Callee = EmitCallee(E->getCallee()); 5017 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 5018 } 5019 5020 // Detect the unusual situation where an inline version is shadowed by a 5021 // non-inline version. In that case we should pick the external one 5022 // everywhere. That's GCC behavior too. 5023 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) { 5024 for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl()) 5025 if (!PD->isInlineBuiltinDeclaration()) 5026 return false; 5027 return true; 5028 } 5029 5030 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 5031 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 5032 5033 if (auto builtinID = FD->getBuiltinID()) { 5034 std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str(); 5035 std::string NoBuiltins = "no-builtins"; 5036 std::string FDInlineName = (FD->getName() + ".inline").str(); 5037 5038 bool IsPredefinedLibFunction = 5039 CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID); 5040 bool HasAttributeNoBuiltin = 5041 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) || 5042 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins); 5043 5044 // When directing calling an inline builtin, call it through it's mangled 5045 // name to make it clear it's not the actual builtin. 5046 if (CGF.CurFn->getName() != FDInlineName && 5047 OnlyHasInlineBuiltinDeclaration(FD)) { 5048 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5049 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 5050 llvm::Module *M = Fn->getParent(); 5051 llvm::Function *Clone = M->getFunction(FDInlineName); 5052 if (!Clone) { 5053 Clone = llvm::Function::Create(Fn->getFunctionType(), 5054 llvm::GlobalValue::InternalLinkage, 5055 Fn->getAddressSpace(), FDInlineName, M); 5056 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 5057 } 5058 return CGCallee::forDirect(Clone, GD); 5059 } 5060 5061 // Replaceable builtins provide their own implementation of a builtin. If we 5062 // are in an inline builtin implementation, avoid trivial infinite 5063 // recursion. Honor __attribute__((no_builtin("foo"))) or 5064 // __attribute__((no_builtin)) on the current function unless foo is 5065 // not a predefined library function which means we must generate the 5066 // builtin no matter what. 5067 else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin) 5068 return CGCallee::forBuiltin(builtinID, FD); 5069 } 5070 5071 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5072 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 5073 FD->hasAttr<CUDAGlobalAttr>()) 5074 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 5075 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 5076 5077 return CGCallee::forDirect(CalleePtr, GD); 5078 } 5079 5080 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 5081 E = E->IgnoreParens(); 5082 5083 // Look through function-to-pointer decay. 5084 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 5085 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 5086 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 5087 return EmitCallee(ICE->getSubExpr()); 5088 } 5089 5090 // Resolve direct calls. 5091 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 5092 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 5093 return EmitDirectCallee(*this, FD); 5094 } 5095 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 5096 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 5097 EmitIgnoredExpr(ME->getBase()); 5098 return EmitDirectCallee(*this, FD); 5099 } 5100 5101 // Look through template substitutions. 5102 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 5103 return EmitCallee(NTTP->getReplacement()); 5104 5105 // Treat pseudo-destructor calls differently. 5106 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 5107 return CGCallee::forPseudoDestructor(PDE); 5108 } 5109 5110 // Otherwise, we have an indirect reference. 5111 llvm::Value *calleePtr; 5112 QualType functionType; 5113 if (auto ptrType = E->getType()->getAs<PointerType>()) { 5114 calleePtr = EmitScalarExpr(E); 5115 functionType = ptrType->getPointeeType(); 5116 } else { 5117 functionType = E->getType(); 5118 calleePtr = EmitLValue(E).getPointer(*this); 5119 } 5120 assert(functionType->isFunctionType()); 5121 5122 GlobalDecl GD; 5123 if (const auto *VD = 5124 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 5125 GD = GlobalDecl(VD); 5126 5127 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 5128 CGCallee callee(calleeInfo, calleePtr); 5129 return callee; 5130 } 5131 5132 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 5133 // Comma expressions just emit their LHS then their RHS as an l-value. 5134 if (E->getOpcode() == BO_Comma) { 5135 EmitIgnoredExpr(E->getLHS()); 5136 EnsureInsertPoint(); 5137 return EmitLValue(E->getRHS()); 5138 } 5139 5140 if (E->getOpcode() == BO_PtrMemD || 5141 E->getOpcode() == BO_PtrMemI) 5142 return EmitPointerToDataMemberBinaryExpr(E); 5143 5144 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 5145 5146 // Note that in all of these cases, __block variables need the RHS 5147 // evaluated first just in case the variable gets moved by the RHS. 5148 5149 switch (getEvaluationKind(E->getType())) { 5150 case TEK_Scalar: { 5151 switch (E->getLHS()->getType().getObjCLifetime()) { 5152 case Qualifiers::OCL_Strong: 5153 return EmitARCStoreStrong(E, /*ignored*/ false).first; 5154 5155 case Qualifiers::OCL_Autoreleasing: 5156 return EmitARCStoreAutoreleasing(E).first; 5157 5158 // No reason to do any of these differently. 5159 case Qualifiers::OCL_None: 5160 case Qualifiers::OCL_ExplicitNone: 5161 case Qualifiers::OCL_Weak: 5162 break; 5163 } 5164 5165 RValue RV = EmitAnyExpr(E->getRHS()); 5166 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5167 if (RV.isScalar()) 5168 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5169 EmitStoreThroughLValue(RV, LV); 5170 if (getLangOpts().OpenMP) 5171 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5172 E->getLHS()); 5173 return LV; 5174 } 5175 5176 case TEK_Complex: 5177 return EmitComplexAssignmentLValue(E); 5178 5179 case TEK_Aggregate: 5180 return EmitAggExprToLValue(E); 5181 } 5182 llvm_unreachable("bad evaluation kind"); 5183 } 5184 5185 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5186 RValue RV = EmitCallExpr(E); 5187 5188 if (!RV.isScalar()) 5189 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5190 AlignmentSource::Decl); 5191 5192 assert(E->getCallReturnType(getContext())->isReferenceType() && 5193 "Can't have a scalar return unless the return type is a " 5194 "reference type!"); 5195 5196 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5197 } 5198 5199 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5200 // FIXME: This shouldn't require another copy. 5201 return EmitAggExprToLValue(E); 5202 } 5203 5204 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5205 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5206 && "binding l-value to type which needs a temporary"); 5207 AggValueSlot Slot = CreateAggTemp(E->getType()); 5208 EmitCXXConstructExpr(E, Slot); 5209 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5210 } 5211 5212 LValue 5213 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5214 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5215 } 5216 5217 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5218 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5219 ConvertType(E->getType())); 5220 } 5221 5222 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5223 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5224 AlignmentSource::Decl); 5225 } 5226 5227 LValue 5228 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5229 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5230 Slot.setExternallyDestructed(); 5231 EmitAggExpr(E->getSubExpr(), Slot); 5232 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5233 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5234 } 5235 5236 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5237 RValue RV = EmitObjCMessageExpr(E); 5238 5239 if (!RV.isScalar()) 5240 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5241 AlignmentSource::Decl); 5242 5243 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5244 "Can't have a scalar return unless the return type is a " 5245 "reference type!"); 5246 5247 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5248 } 5249 5250 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5251 Address V = 5252 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5253 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5254 } 5255 5256 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5257 const ObjCIvarDecl *Ivar) { 5258 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5259 } 5260 5261 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5262 llvm::Value *BaseValue, 5263 const ObjCIvarDecl *Ivar, 5264 unsigned CVRQualifiers) { 5265 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5266 Ivar, CVRQualifiers); 5267 } 5268 5269 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5270 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5271 llvm::Value *BaseValue = nullptr; 5272 const Expr *BaseExpr = E->getBase(); 5273 Qualifiers BaseQuals; 5274 QualType ObjectTy; 5275 if (E->isArrow()) { 5276 BaseValue = EmitScalarExpr(BaseExpr); 5277 ObjectTy = BaseExpr->getType()->getPointeeType(); 5278 BaseQuals = ObjectTy.getQualifiers(); 5279 } else { 5280 LValue BaseLV = EmitLValue(BaseExpr); 5281 BaseValue = BaseLV.getPointer(*this); 5282 ObjectTy = BaseExpr->getType(); 5283 BaseQuals = ObjectTy.getQualifiers(); 5284 } 5285 5286 LValue LV = 5287 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5288 BaseQuals.getCVRQualifiers()); 5289 setObjCGCLValueClass(getContext(), E, LV); 5290 return LV; 5291 } 5292 5293 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5294 // Can only get l-value for message expression returning aggregate type 5295 RValue RV = EmitAnyExprToTemp(E); 5296 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5297 AlignmentSource::Decl); 5298 } 5299 5300 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5301 const CallExpr *E, ReturnValueSlot ReturnValue, 5302 llvm::Value *Chain) { 5303 // Get the actual function type. The callee type will always be a pointer to 5304 // function type or a block pointer type. 5305 assert(CalleeType->isFunctionPointerType() && 5306 "Call must have function pointer type!"); 5307 5308 const Decl *TargetDecl = 5309 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5310 5311 CalleeType = getContext().getCanonicalType(CalleeType); 5312 5313 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5314 5315 CGCallee Callee = OrigCallee; 5316 5317 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5318 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5319 if (llvm::Constant *PrefixSig = 5320 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5321 SanitizerScope SanScope(this); 5322 // Remove any (C++17) exception specifications, to allow calling e.g. a 5323 // noexcept function through a non-noexcept pointer. 5324 auto ProtoTy = 5325 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5326 llvm::Constant *FTRTTIConst = 5327 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5328 llvm::Type *PrefixSigType = PrefixSig->getType(); 5329 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5330 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5331 5332 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5333 5334 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5335 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5336 llvm::Value *CalleeSigPtr = 5337 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5338 llvm::Value *CalleeSig = 5339 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5340 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5341 5342 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5343 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5344 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5345 5346 EmitBlock(TypeCheck); 5347 llvm::Value *CalleeRTTIPtr = 5348 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5349 llvm::Value *CalleeRTTIEncoded = 5350 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5351 llvm::Value *CalleeRTTI = 5352 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5353 llvm::Value *CalleeRTTIMatch = 5354 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5355 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5356 EmitCheckTypeDescriptor(CalleeType)}; 5357 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5358 SanitizerHandler::FunctionTypeMismatch, StaticData, 5359 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5360 5361 Builder.CreateBr(Cont); 5362 EmitBlock(Cont); 5363 } 5364 } 5365 5366 const auto *FnType = cast<FunctionType>(PointeeType); 5367 5368 // If we are checking indirect calls and this call is indirect, check that the 5369 // function pointer is a member of the bit set for the function type. 5370 if (SanOpts.has(SanitizerKind::CFIICall) && 5371 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5372 SanitizerScope SanScope(this); 5373 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5374 5375 llvm::Metadata *MD; 5376 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5377 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5378 else 5379 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5380 5381 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5382 5383 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5384 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5385 llvm::Value *TypeTest = Builder.CreateCall( 5386 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5387 5388 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5389 llvm::Constant *StaticData[] = { 5390 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5391 EmitCheckSourceLocation(E->getBeginLoc()), 5392 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5393 }; 5394 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5395 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5396 CastedCallee, StaticData); 5397 } else { 5398 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5399 SanitizerHandler::CFICheckFail, StaticData, 5400 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5401 } 5402 } 5403 5404 CallArgList Args; 5405 if (Chain) 5406 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5407 CGM.getContext().VoidPtrTy); 5408 5409 // C++17 requires that we evaluate arguments to a call using assignment syntax 5410 // right-to-left, and that we evaluate arguments to certain other operators 5411 // left-to-right. Note that we allow this to override the order dictated by 5412 // the calling convention on the MS ABI, which means that parameter 5413 // destruction order is not necessarily reverse construction order. 5414 // FIXME: Revisit this based on C++ committee response to unimplementability. 5415 EvaluationOrder Order = EvaluationOrder::Default; 5416 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5417 if (OCE->isAssignmentOp()) 5418 Order = EvaluationOrder::ForceRightToLeft; 5419 else { 5420 switch (OCE->getOperator()) { 5421 case OO_LessLess: 5422 case OO_GreaterGreater: 5423 case OO_AmpAmp: 5424 case OO_PipePipe: 5425 case OO_Comma: 5426 case OO_ArrowStar: 5427 Order = EvaluationOrder::ForceLeftToRight; 5428 break; 5429 default: 5430 break; 5431 } 5432 } 5433 } 5434 5435 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5436 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5437 5438 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5439 Args, FnType, /*ChainCall=*/Chain); 5440 5441 // C99 6.5.2.2p6: 5442 // If the expression that denotes the called function has a type 5443 // that does not include a prototype, [the default argument 5444 // promotions are performed]. If the number of arguments does not 5445 // equal the number of parameters, the behavior is undefined. If 5446 // the function is defined with a type that includes a prototype, 5447 // and either the prototype ends with an ellipsis (, ...) or the 5448 // types of the arguments after promotion are not compatible with 5449 // the types of the parameters, the behavior is undefined. If the 5450 // function is defined with a type that does not include a 5451 // prototype, and the types of the arguments after promotion are 5452 // not compatible with those of the parameters after promotion, 5453 // the behavior is undefined [except in some trivial cases]. 5454 // That is, in the general case, we should assume that a call 5455 // through an unprototyped function type works like a *non-variadic* 5456 // call. The way we make this work is to cast to the exact type 5457 // of the promoted arguments. 5458 // 5459 // Chain calls use this same code path to add the invisible chain parameter 5460 // to the function type. 5461 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5462 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5463 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5464 CalleeTy = CalleeTy->getPointerTo(AS); 5465 5466 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5467 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5468 Callee.setFunctionPointer(CalleePtr); 5469 } 5470 5471 // HIP function pointer contains kernel handle when it is used in triple 5472 // chevron. The kernel stub needs to be loaded from kernel handle and used 5473 // as callee. 5474 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5475 isa<CUDAKernelCallExpr>(E) && 5476 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5477 llvm::Value *Handle = Callee.getFunctionPointer(); 5478 auto *Cast = 5479 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5480 auto *Stub = Builder.CreateLoad( 5481 Address(Cast, Handle->getType(), CGM.getPointerAlign())); 5482 Callee.setFunctionPointer(Stub); 5483 } 5484 llvm::CallBase *CallOrInvoke = nullptr; 5485 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5486 E == MustTailCall, E->getExprLoc()); 5487 5488 // Generate function declaration DISuprogram in order to be used 5489 // in debug info about call sites. 5490 if (CGDebugInfo *DI = getDebugInfo()) { 5491 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5492 FunctionArgList Args; 5493 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5494 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5495 DI->getFunctionType(CalleeDecl, ResTy, Args), 5496 CalleeDecl); 5497 } 5498 } 5499 5500 return Call; 5501 } 5502 5503 LValue CodeGenFunction:: 5504 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5505 Address BaseAddr = Address::invalid(); 5506 if (E->getOpcode() == BO_PtrMemI) { 5507 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5508 } else { 5509 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5510 } 5511 5512 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5513 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5514 5515 LValueBaseInfo BaseInfo; 5516 TBAAAccessInfo TBAAInfo; 5517 Address MemberAddr = 5518 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5519 &TBAAInfo); 5520 5521 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5522 } 5523 5524 /// Given the address of a temporary variable, produce an r-value of 5525 /// its type. 5526 RValue CodeGenFunction::convertTempToRValue(Address addr, 5527 QualType type, 5528 SourceLocation loc) { 5529 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5530 switch (getEvaluationKind(type)) { 5531 case TEK_Complex: 5532 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5533 case TEK_Aggregate: 5534 return lvalue.asAggregateRValue(*this); 5535 case TEK_Scalar: 5536 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5537 } 5538 llvm_unreachable("bad evaluation kind"); 5539 } 5540 5541 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5542 assert(Val->getType()->isFPOrFPVectorTy()); 5543 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5544 return; 5545 5546 llvm::MDBuilder MDHelper(getLLVMContext()); 5547 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5548 5549 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5550 } 5551 5552 namespace { 5553 struct LValueOrRValue { 5554 LValue LV; 5555 RValue RV; 5556 }; 5557 } 5558 5559 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5560 const PseudoObjectExpr *E, 5561 bool forLValue, 5562 AggValueSlot slot) { 5563 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5564 5565 // Find the result expression, if any. 5566 const Expr *resultExpr = E->getResultExpr(); 5567 LValueOrRValue result; 5568 5569 for (PseudoObjectExpr::const_semantics_iterator 5570 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5571 const Expr *semantic = *i; 5572 5573 // If this semantic expression is an opaque value, bind it 5574 // to the result of its source expression. 5575 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5576 // Skip unique OVEs. 5577 if (ov->isUnique()) { 5578 assert(ov != resultExpr && 5579 "A unique OVE cannot be used as the result expression"); 5580 continue; 5581 } 5582 5583 // If this is the result expression, we may need to evaluate 5584 // directly into the slot. 5585 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5586 OVMA opaqueData; 5587 if (ov == resultExpr && ov->isPRValue() && !forLValue && 5588 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5589 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5590 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5591 AlignmentSource::Decl); 5592 opaqueData = OVMA::bind(CGF, ov, LV); 5593 result.RV = slot.asRValue(); 5594 5595 // Otherwise, emit as normal. 5596 } else { 5597 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5598 5599 // If this is the result, also evaluate the result now. 5600 if (ov == resultExpr) { 5601 if (forLValue) 5602 result.LV = CGF.EmitLValue(ov); 5603 else 5604 result.RV = CGF.EmitAnyExpr(ov, slot); 5605 } 5606 } 5607 5608 opaques.push_back(opaqueData); 5609 5610 // Otherwise, if the expression is the result, evaluate it 5611 // and remember the result. 5612 } else if (semantic == resultExpr) { 5613 if (forLValue) 5614 result.LV = CGF.EmitLValue(semantic); 5615 else 5616 result.RV = CGF.EmitAnyExpr(semantic, slot); 5617 5618 // Otherwise, evaluate the expression in an ignored context. 5619 } else { 5620 CGF.EmitIgnoredExpr(semantic); 5621 } 5622 } 5623 5624 // Unbind all the opaques now. 5625 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5626 opaques[i].unbind(CGF); 5627 5628 return result; 5629 } 5630 5631 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5632 AggValueSlot slot) { 5633 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5634 } 5635 5636 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5637 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5638 } 5639