xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CGDecl.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40 #include <optional>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
46               "Clang max alignment greater than what LLVM supports?");
47 
48 void CodeGenFunction::EmitDecl(const Decl &D) {
49   switch (D.getKind()) {
50   case Decl::BuiltinTemplate:
51   case Decl::TranslationUnit:
52   case Decl::ExternCContext:
53   case Decl::Namespace:
54   case Decl::UnresolvedUsingTypename:
55   case Decl::ClassTemplateSpecialization:
56   case Decl::ClassTemplatePartialSpecialization:
57   case Decl::VarTemplateSpecialization:
58   case Decl::VarTemplatePartialSpecialization:
59   case Decl::TemplateTypeParm:
60   case Decl::UnresolvedUsingValue:
61   case Decl::NonTypeTemplateParm:
62   case Decl::CXXDeductionGuide:
63   case Decl::CXXMethod:
64   case Decl::CXXConstructor:
65   case Decl::CXXDestructor:
66   case Decl::CXXConversion:
67   case Decl::Field:
68   case Decl::MSProperty:
69   case Decl::IndirectField:
70   case Decl::ObjCIvar:
71   case Decl::ObjCAtDefsField:
72   case Decl::ParmVar:
73   case Decl::ImplicitParam:
74   case Decl::ClassTemplate:
75   case Decl::VarTemplate:
76   case Decl::FunctionTemplate:
77   case Decl::TypeAliasTemplate:
78   case Decl::TemplateTemplateParm:
79   case Decl::ObjCMethod:
80   case Decl::ObjCCategory:
81   case Decl::ObjCProtocol:
82   case Decl::ObjCInterface:
83   case Decl::ObjCCategoryImpl:
84   case Decl::ObjCImplementation:
85   case Decl::ObjCProperty:
86   case Decl::ObjCCompatibleAlias:
87   case Decl::PragmaComment:
88   case Decl::PragmaDetectMismatch:
89   case Decl::AccessSpec:
90   case Decl::LinkageSpec:
91   case Decl::Export:
92   case Decl::ObjCPropertyImpl:
93   case Decl::FileScopeAsm:
94   case Decl::TopLevelStmt:
95   case Decl::Friend:
96   case Decl::FriendTemplate:
97   case Decl::Block:
98   case Decl::Captured:
99   case Decl::UsingShadow:
100   case Decl::ConstructorUsingShadow:
101   case Decl::ObjCTypeParam:
102   case Decl::Binding:
103   case Decl::UnresolvedUsingIfExists:
104   case Decl::HLSLBuffer:
105     llvm_unreachable("Declaration should not be in declstmts!");
106   case Decl::Record:    // struct/union/class X;
107   case Decl::CXXRecord: // struct/union/class X; [C++]
108     if (CGDebugInfo *DI = getDebugInfo())
109       if (cast<RecordDecl>(D).getDefinition())
110         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
111     return;
112   case Decl::Enum:      // enum X;
113     if (CGDebugInfo *DI = getDebugInfo())
114       if (cast<EnumDecl>(D).getDefinition())
115         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
116     return;
117   case Decl::Function:     // void X();
118   case Decl::EnumConstant: // enum ? { X = ? }
119   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
120   case Decl::Label:        // __label__ x;
121   case Decl::Import:
122   case Decl::MSGuid:    // __declspec(uuid("..."))
123   case Decl::UnnamedGlobalConstant:
124   case Decl::TemplateParamObject:
125   case Decl::OMPThreadPrivate:
126   case Decl::OMPAllocate:
127   case Decl::OMPCapturedExpr:
128   case Decl::OMPRequires:
129   case Decl::Empty:
130   case Decl::Concept:
131   case Decl::ImplicitConceptSpecialization:
132   case Decl::LifetimeExtendedTemporary:
133   case Decl::RequiresExprBody:
134     // None of these decls require codegen support.
135     return;
136 
137   case Decl::NamespaceAlias:
138     if (CGDebugInfo *DI = getDebugInfo())
139         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
140     return;
141   case Decl::Using:          // using X; [C++]
142     if (CGDebugInfo *DI = getDebugInfo())
143         DI->EmitUsingDecl(cast<UsingDecl>(D));
144     return;
145   case Decl::UsingEnum: // using enum X; [C++]
146     if (CGDebugInfo *DI = getDebugInfo())
147       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D));
148     return;
149   case Decl::UsingPack:
150     for (auto *Using : cast<UsingPackDecl>(D).expansions())
151       EmitDecl(*Using);
152     return;
153   case Decl::UsingDirective: // using namespace X; [C++]
154     if (CGDebugInfo *DI = getDebugInfo())
155       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
156     return;
157   case Decl::Var:
158   case Decl::Decomposition: {
159     const VarDecl &VD = cast<VarDecl>(D);
160     assert(VD.isLocalVarDecl() &&
161            "Should not see file-scope variables inside a function!");
162     EmitVarDecl(VD);
163     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
164       for (auto *B : DD->bindings())
165         if (auto *HD = B->getHoldingVar())
166           EmitVarDecl(*HD);
167     return;
168   }
169 
170   case Decl::OMPDeclareReduction:
171     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
172 
173   case Decl::OMPDeclareMapper:
174     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
175 
176   case Decl::Typedef:      // typedef int X;
177   case Decl::TypeAlias: {  // using X = int; [C++0x]
178     QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
179     if (CGDebugInfo *DI = getDebugInfo())
180       DI->EmitAndRetainType(Ty);
181     if (Ty->isVariablyModifiedType())
182       EmitVariablyModifiedType(Ty);
183     return;
184   }
185   }
186 }
187 
188 /// EmitVarDecl - This method handles emission of any variable declaration
189 /// inside a function, including static vars etc.
190 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
191   if (D.hasExternalStorage())
192     // Don't emit it now, allow it to be emitted lazily on its first use.
193     return;
194 
195   // Some function-scope variable does not have static storage but still
196   // needs to be emitted like a static variable, e.g. a function-scope
197   // variable in constant address space in OpenCL.
198   if (D.getStorageDuration() != SD_Automatic) {
199     // Static sampler variables translated to function calls.
200     if (D.getType()->isSamplerT())
201       return;
202 
203     llvm::GlobalValue::LinkageTypes Linkage =
204         CGM.getLLVMLinkageVarDefinition(&D);
205 
206     // FIXME: We need to force the emission/use of a guard variable for
207     // some variables even if we can constant-evaluate them because
208     // we can't guarantee every translation unit will constant-evaluate them.
209 
210     return EmitStaticVarDecl(D, Linkage);
211   }
212 
213   if (D.getType().getAddressSpace() == LangAS::opencl_local)
214     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
215 
216   assert(D.hasLocalStorage());
217   return EmitAutoVarDecl(D);
218 }
219 
220 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
221   if (CGM.getLangOpts().CPlusPlus)
222     return CGM.getMangledName(&D).str();
223 
224   // If this isn't C++, we don't need a mangled name, just a pretty one.
225   assert(!D.isExternallyVisible() && "name shouldn't matter");
226   std::string ContextName;
227   const DeclContext *DC = D.getDeclContext();
228   if (auto *CD = dyn_cast<CapturedDecl>(DC))
229     DC = cast<DeclContext>(CD->getNonClosureContext());
230   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
231     ContextName = std::string(CGM.getMangledName(FD));
232   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
233     ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
234   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
235     ContextName = OMD->getSelector().getAsString();
236   else
237     llvm_unreachable("Unknown context for static var decl");
238 
239   ContextName += "." + D.getNameAsString();
240   return ContextName;
241 }
242 
243 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
244     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
245   // In general, we don't always emit static var decls once before we reference
246   // them. It is possible to reference them before emitting the function that
247   // contains them, and it is possible to emit the containing function multiple
248   // times.
249   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
250     return ExistingGV;
251 
252   QualType Ty = D.getType();
253   assert(Ty->isConstantSizeType() && "VLAs can't be static");
254 
255   // Use the label if the variable is renamed with the asm-label extension.
256   std::string Name;
257   if (D.hasAttr<AsmLabelAttr>())
258     Name = std::string(getMangledName(&D));
259   else
260     Name = getStaticDeclName(*this, D);
261 
262   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
263   LangAS AS = GetGlobalVarAddressSpace(&D);
264   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
265 
266   // OpenCL variables in local address space and CUDA shared
267   // variables cannot have an initializer.
268   llvm::Constant *Init = nullptr;
269   if (Ty.getAddressSpace() == LangAS::opencl_local ||
270       D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
271     Init = llvm::UndefValue::get(LTy);
272   else
273     Init = EmitNullConstant(Ty);
274 
275   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
276       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
277       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
278   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
279 
280   if (supportsCOMDAT() && GV->isWeakForLinker())
281     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
282 
283   if (D.getTLSKind())
284     setTLSMode(GV, D);
285 
286   setGVProperties(GV, &D);
287 
288   // Make sure the result is of the correct type.
289   LangAS ExpectedAS = Ty.getAddressSpace();
290   llvm::Constant *Addr = GV;
291   if (AS != ExpectedAS) {
292     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
293         *this, GV, AS, ExpectedAS,
294         llvm::PointerType::get(getLLVMContext(),
295                                getContext().getTargetAddressSpace(ExpectedAS)));
296   }
297 
298   setStaticLocalDeclAddress(&D, Addr);
299 
300   // Ensure that the static local gets initialized by making sure the parent
301   // function gets emitted eventually.
302   const Decl *DC = cast<Decl>(D.getDeclContext());
303 
304   // We can't name blocks or captured statements directly, so try to emit their
305   // parents.
306   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
307     DC = DC->getNonClosureContext();
308     // FIXME: Ensure that global blocks get emitted.
309     if (!DC)
310       return Addr;
311   }
312 
313   GlobalDecl GD;
314   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
315     GD = GlobalDecl(CD, Ctor_Base);
316   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
317     GD = GlobalDecl(DD, Dtor_Base);
318   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
319     GD = GlobalDecl(FD);
320   else {
321     // Don't do anything for Obj-C method decls or global closures. We should
322     // never defer them.
323     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
324   }
325   if (GD.getDecl()) {
326     // Disable emission of the parent function for the OpenMP device codegen.
327     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
328     (void)GetAddrOfGlobal(GD);
329   }
330 
331   return Addr;
332 }
333 
334 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
335 /// global variable that has already been created for it.  If the initializer
336 /// has a different type than GV does, this may free GV and return a different
337 /// one.  Otherwise it just returns GV.
338 llvm::GlobalVariable *
339 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
340                                                llvm::GlobalVariable *GV) {
341   ConstantEmitter emitter(*this);
342   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
343 
344   // If constant emission failed, then this should be a C++ static
345   // initializer.
346   if (!Init) {
347     if (!getLangOpts().CPlusPlus)
348       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
349     else if (D.hasFlexibleArrayInit(getContext()))
350       CGM.ErrorUnsupported(D.getInit(), "flexible array initializer");
351     else if (HaveInsertPoint()) {
352       // Since we have a static initializer, this global variable can't
353       // be constant.
354       GV->setConstant(false);
355 
356       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
357     }
358     return GV;
359   }
360 
361 #ifndef NDEBUG
362   CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) +
363                       D.getFlexibleArrayInitChars(getContext());
364   CharUnits CstSize = CharUnits::fromQuantity(
365       CGM.getDataLayout().getTypeAllocSize(Init->getType()));
366   assert(VarSize == CstSize && "Emitted constant has unexpected size");
367 #endif
368 
369   // The initializer may differ in type from the global. Rewrite
370   // the global to match the initializer.  (We have to do this
371   // because some types, like unions, can't be completely represented
372   // in the LLVM type system.)
373   if (GV->getValueType() != Init->getType()) {
374     llvm::GlobalVariable *OldGV = GV;
375 
376     GV = new llvm::GlobalVariable(
377         CGM.getModule(), Init->getType(), OldGV->isConstant(),
378         OldGV->getLinkage(), Init, "",
379         /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(),
380         OldGV->getType()->getPointerAddressSpace());
381     GV->setVisibility(OldGV->getVisibility());
382     GV->setDSOLocal(OldGV->isDSOLocal());
383     GV->setComdat(OldGV->getComdat());
384 
385     // Steal the name of the old global
386     GV->takeName(OldGV);
387 
388     // Replace all uses of the old global with the new global
389     OldGV->replaceAllUsesWith(GV);
390 
391     // Erase the old global, since it is no longer used.
392     OldGV->eraseFromParent();
393   }
394 
395   bool NeedsDtor =
396       D.needsDestruction(getContext()) == QualType::DK_cxx_destructor;
397 
398   GV->setConstant(
399       D.getType().isConstantStorage(getContext(), true, !NeedsDtor));
400   GV->setInitializer(Init);
401 
402   emitter.finalize(GV);
403 
404   if (NeedsDtor && HaveInsertPoint()) {
405     // We have a constant initializer, but a nontrivial destructor. We still
406     // need to perform a guarded "initialization" in order to register the
407     // destructor.
408     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
409   }
410 
411   return GV;
412 }
413 
414 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
415                                       llvm::GlobalValue::LinkageTypes Linkage) {
416   // Check to see if we already have a global variable for this
417   // declaration.  This can happen when double-emitting function
418   // bodies, e.g. with complete and base constructors.
419   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
420   CharUnits alignment = getContext().getDeclAlign(&D);
421 
422   // Store into LocalDeclMap before generating initializer to handle
423   // circular references.
424   llvm::Type *elemTy = ConvertTypeForMem(D.getType());
425   setAddrOfLocalVar(&D, Address(addr, elemTy, alignment));
426 
427   // We can't have a VLA here, but we can have a pointer to a VLA,
428   // even though that doesn't really make any sense.
429   // Make sure to evaluate VLA bounds now so that we have them for later.
430   if (D.getType()->isVariablyModifiedType())
431     EmitVariablyModifiedType(D.getType());
432 
433   // Save the type in case adding the initializer forces a type change.
434   llvm::Type *expectedType = addr->getType();
435 
436   llvm::GlobalVariable *var =
437     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
438 
439   // CUDA's local and local static __shared__ variables should not
440   // have any non-empty initializers. This is ensured by Sema.
441   // Whatever initializer such variable may have when it gets here is
442   // a no-op and should not be emitted.
443   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
444                          D.hasAttr<CUDASharedAttr>();
445   // If this value has an initializer, emit it.
446   if (D.getInit() && !isCudaSharedVar)
447     var = AddInitializerToStaticVarDecl(D, var);
448 
449   var->setAlignment(alignment.getAsAlign());
450 
451   if (D.hasAttr<AnnotateAttr>())
452     CGM.AddGlobalAnnotations(&D, var);
453 
454   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
455     var->addAttribute("bss-section", SA->getName());
456   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
457     var->addAttribute("data-section", SA->getName());
458   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
459     var->addAttribute("rodata-section", SA->getName());
460   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
461     var->addAttribute("relro-section", SA->getName());
462 
463   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
464     var->setSection(SA->getName());
465 
466   if (D.hasAttr<RetainAttr>())
467     CGM.addUsedGlobal(var);
468   else if (D.hasAttr<UsedAttr>())
469     CGM.addUsedOrCompilerUsedGlobal(var);
470 
471   if (CGM.getCodeGenOpts().KeepPersistentStorageVariables)
472     CGM.addUsedOrCompilerUsedGlobal(var);
473 
474   // We may have to cast the constant because of the initializer
475   // mismatch above.
476   //
477   // FIXME: It is really dangerous to store this in the map; if anyone
478   // RAUW's the GV uses of this constant will be invalid.
479   llvm::Constant *castedAddr =
480     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
481   LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment);
482   CGM.setStaticLocalDeclAddress(&D, castedAddr);
483 
484   CGM.getSanitizerMetadata()->reportGlobal(var, D);
485 
486   // Emit global variable debug descriptor for static vars.
487   CGDebugInfo *DI = getDebugInfo();
488   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
489     DI->setLocation(D.getLocation());
490     DI->EmitGlobalVariable(var, &D);
491   }
492 }
493 
494 namespace {
495   struct DestroyObject final : EHScopeStack::Cleanup {
496     DestroyObject(Address addr, QualType type,
497                   CodeGenFunction::Destroyer *destroyer,
498                   bool useEHCleanupForArray)
499       : addr(addr), type(type), destroyer(destroyer),
500         useEHCleanupForArray(useEHCleanupForArray) {}
501 
502     Address addr;
503     QualType type;
504     CodeGenFunction::Destroyer *destroyer;
505     bool useEHCleanupForArray;
506 
507     void Emit(CodeGenFunction &CGF, Flags flags) override {
508       // Don't use an EH cleanup recursively from an EH cleanup.
509       bool useEHCleanupForArray =
510         flags.isForNormalCleanup() && this->useEHCleanupForArray;
511 
512       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
513     }
514   };
515 
516   template <class Derived>
517   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
518     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
519         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
520 
521     llvm::Value *NRVOFlag;
522     Address Loc;
523     QualType Ty;
524 
525     void Emit(CodeGenFunction &CGF, Flags flags) override {
526       // Along the exceptions path we always execute the dtor.
527       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
528 
529       llvm::BasicBlock *SkipDtorBB = nullptr;
530       if (NRVO) {
531         // If we exited via NRVO, we skip the destructor call.
532         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
533         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
534         llvm::Value *DidNRVO =
535           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
536         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
537         CGF.EmitBlock(RunDtorBB);
538       }
539 
540       static_cast<Derived *>(this)->emitDestructorCall(CGF);
541 
542       if (NRVO) CGF.EmitBlock(SkipDtorBB);
543     }
544 
545     virtual ~DestroyNRVOVariable() = default;
546   };
547 
548   struct DestroyNRVOVariableCXX final
549       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
550     DestroyNRVOVariableCXX(Address addr, QualType type,
551                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
552         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
553           Dtor(Dtor) {}
554 
555     const CXXDestructorDecl *Dtor;
556 
557     void emitDestructorCall(CodeGenFunction &CGF) {
558       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
559                                 /*ForVirtualBase=*/false,
560                                 /*Delegating=*/false, Loc, Ty);
561     }
562   };
563 
564   struct DestroyNRVOVariableC final
565       : DestroyNRVOVariable<DestroyNRVOVariableC> {
566     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
567         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
568 
569     void emitDestructorCall(CodeGenFunction &CGF) {
570       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
571     }
572   };
573 
574   struct CallStackRestore final : EHScopeStack::Cleanup {
575     Address Stack;
576     CallStackRestore(Address Stack) : Stack(Stack) {}
577     bool isRedundantBeforeReturn() override { return true; }
578     void Emit(CodeGenFunction &CGF, Flags flags) override {
579       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
580       CGF.Builder.CreateStackRestore(V);
581     }
582   };
583 
584   struct KmpcAllocFree final : EHScopeStack::Cleanup {
585     std::pair<llvm::Value *, llvm::Value *> AddrSizePair;
586     KmpcAllocFree(const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair)
587         : AddrSizePair(AddrSizePair) {}
588     void Emit(CodeGenFunction &CGF, Flags EmissionFlags) override {
589       auto &RT = CGF.CGM.getOpenMPRuntime();
590       RT.getKmpcFreeShared(CGF, AddrSizePair);
591     }
592   };
593 
594   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
595     const VarDecl &Var;
596     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
597 
598     void Emit(CodeGenFunction &CGF, Flags flags) override {
599       // Compute the address of the local variable, in case it's a
600       // byref or something.
601       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
602                       Var.getType(), VK_LValue, SourceLocation());
603       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
604                                                 SourceLocation());
605       CGF.EmitExtendGCLifetime(value);
606     }
607   };
608 
609   struct CallCleanupFunction final : EHScopeStack::Cleanup {
610     llvm::Constant *CleanupFn;
611     const CGFunctionInfo &FnInfo;
612     const VarDecl &Var;
613 
614     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
615                         const VarDecl *Var)
616       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
617 
618     void Emit(CodeGenFunction &CGF, Flags flags) override {
619       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
620                       Var.getType(), VK_LValue, SourceLocation());
621       // Compute the address of the local variable, in case it's a byref
622       // or something.
623       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
624 
625       // In some cases, the type of the function argument will be different from
626       // the type of the pointer. An example of this is
627       // void f(void* arg);
628       // __attribute__((cleanup(f))) void *g;
629       //
630       // To fix this we insert a bitcast here.
631       QualType ArgTy = FnInfo.arg_begin()->type;
632       llvm::Value *Arg =
633         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
634 
635       CallArgList Args;
636       Args.add(RValue::get(Arg),
637                CGF.getContext().getPointerType(Var.getType()));
638       auto Callee = CGCallee::forDirect(CleanupFn);
639       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
640     }
641   };
642 } // end anonymous namespace
643 
644 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
645 /// variable with lifetime.
646 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
647                                     Address addr,
648                                     Qualifiers::ObjCLifetime lifetime) {
649   switch (lifetime) {
650   case Qualifiers::OCL_None:
651     llvm_unreachable("present but none");
652 
653   case Qualifiers::OCL_ExplicitNone:
654     // nothing to do
655     break;
656 
657   case Qualifiers::OCL_Strong: {
658     CodeGenFunction::Destroyer *destroyer =
659       (var.hasAttr<ObjCPreciseLifetimeAttr>()
660        ? CodeGenFunction::destroyARCStrongPrecise
661        : CodeGenFunction::destroyARCStrongImprecise);
662 
663     CleanupKind cleanupKind = CGF.getARCCleanupKind();
664     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
665                     cleanupKind & EHCleanup);
666     break;
667   }
668   case Qualifiers::OCL_Autoreleasing:
669     // nothing to do
670     break;
671 
672   case Qualifiers::OCL_Weak:
673     // __weak objects always get EH cleanups; otherwise, exceptions
674     // could cause really nasty crashes instead of mere leaks.
675     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
676                     CodeGenFunction::destroyARCWeak,
677                     /*useEHCleanup*/ true);
678     break;
679   }
680 }
681 
682 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
683   if (const Expr *e = dyn_cast<Expr>(s)) {
684     // Skip the most common kinds of expressions that make
685     // hierarchy-walking expensive.
686     s = e = e->IgnoreParenCasts();
687 
688     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
689       return (ref->getDecl() == &var);
690     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
691       const BlockDecl *block = be->getBlockDecl();
692       for (const auto &I : block->captures()) {
693         if (I.getVariable() == &var)
694           return true;
695       }
696     }
697   }
698 
699   for (const Stmt *SubStmt : s->children())
700     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
701     if (SubStmt && isAccessedBy(var, SubStmt))
702       return true;
703 
704   return false;
705 }
706 
707 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
708   if (!decl) return false;
709   if (!isa<VarDecl>(decl)) return false;
710   const VarDecl *var = cast<VarDecl>(decl);
711   return isAccessedBy(*var, e);
712 }
713 
714 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
715                                    const LValue &destLV, const Expr *init) {
716   bool needsCast = false;
717 
718   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
719     switch (castExpr->getCastKind()) {
720     // Look through casts that don't require representation changes.
721     case CK_NoOp:
722     case CK_BitCast:
723     case CK_BlockPointerToObjCPointerCast:
724       needsCast = true;
725       break;
726 
727     // If we find an l-value to r-value cast from a __weak variable,
728     // emit this operation as a copy or move.
729     case CK_LValueToRValue: {
730       const Expr *srcExpr = castExpr->getSubExpr();
731       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
732         return false;
733 
734       // Emit the source l-value.
735       LValue srcLV = CGF.EmitLValue(srcExpr);
736 
737       // Handle a formal type change to avoid asserting.
738       auto srcAddr = srcLV.getAddress(CGF);
739       if (needsCast) {
740         srcAddr =
741             srcAddr.withElementType(destLV.getAddress(CGF).getElementType());
742       }
743 
744       // If it was an l-value, use objc_copyWeak.
745       if (srcExpr->isLValue()) {
746         CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
747       } else {
748         assert(srcExpr->isXValue());
749         CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
750       }
751       return true;
752     }
753 
754     // Stop at anything else.
755     default:
756       return false;
757     }
758 
759     init = castExpr->getSubExpr();
760   }
761   return false;
762 }
763 
764 static void drillIntoBlockVariable(CodeGenFunction &CGF,
765                                    LValue &lvalue,
766                                    const VarDecl *var) {
767   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
768 }
769 
770 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
771                                            SourceLocation Loc) {
772   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
773     return;
774 
775   auto Nullability = LHS.getType()->getNullability();
776   if (!Nullability || *Nullability != NullabilityKind::NonNull)
777     return;
778 
779   // Check if the right hand side of the assignment is nonnull, if the left
780   // hand side must be nonnull.
781   SanitizerScope SanScope(this);
782   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
783   llvm::Constant *StaticData[] = {
784       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
785       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
786       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
787   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
788             SanitizerHandler::TypeMismatch, StaticData, RHS);
789 }
790 
791 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
792                                      LValue lvalue, bool capturedByInit) {
793   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
794   if (!lifetime) {
795     llvm::Value *value = EmitScalarExpr(init);
796     if (capturedByInit)
797       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
798     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
799     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
800     return;
801   }
802 
803   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
804     init = DIE->getExpr();
805 
806   // If we're emitting a value with lifetime, we have to do the
807   // initialization *before* we leave the cleanup scopes.
808   if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) {
809     CodeGenFunction::RunCleanupsScope Scope(*this);
810     return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit);
811   }
812 
813   // We have to maintain the illusion that the variable is
814   // zero-initialized.  If the variable might be accessed in its
815   // initializer, zero-initialize before running the initializer, then
816   // actually perform the initialization with an assign.
817   bool accessedByInit = false;
818   if (lifetime != Qualifiers::OCL_ExplicitNone)
819     accessedByInit = (capturedByInit || isAccessedBy(D, init));
820   if (accessedByInit) {
821     LValue tempLV = lvalue;
822     // Drill down to the __block object if necessary.
823     if (capturedByInit) {
824       // We can use a simple GEP for this because it can't have been
825       // moved yet.
826       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
827                                               cast<VarDecl>(D),
828                                               /*follow*/ false));
829     }
830 
831     auto ty =
832         cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
833     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
834 
835     // If __weak, we want to use a barrier under certain conditions.
836     if (lifetime == Qualifiers::OCL_Weak)
837       EmitARCInitWeak(tempLV.getAddress(*this), zero);
838 
839     // Otherwise just do a simple store.
840     else
841       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
842   }
843 
844   // Emit the initializer.
845   llvm::Value *value = nullptr;
846 
847   switch (lifetime) {
848   case Qualifiers::OCL_None:
849     llvm_unreachable("present but none");
850 
851   case Qualifiers::OCL_Strong: {
852     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
853       value = EmitARCRetainScalarExpr(init);
854       break;
855     }
856     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
857     // that we omit the retain, and causes non-autoreleased return values to be
858     // immediately released.
859     [[fallthrough]];
860   }
861 
862   case Qualifiers::OCL_ExplicitNone:
863     value = EmitARCUnsafeUnretainedScalarExpr(init);
864     break;
865 
866   case Qualifiers::OCL_Weak: {
867     // If it's not accessed by the initializer, try to emit the
868     // initialization with a copy or move.
869     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
870       return;
871     }
872 
873     // No way to optimize a producing initializer into this.  It's not
874     // worth optimizing for, because the value will immediately
875     // disappear in the common case.
876     value = EmitScalarExpr(init);
877 
878     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
879     if (accessedByInit)
880       EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
881     else
882       EmitARCInitWeak(lvalue.getAddress(*this), value);
883     return;
884   }
885 
886   case Qualifiers::OCL_Autoreleasing:
887     value = EmitARCRetainAutoreleaseScalarExpr(init);
888     break;
889   }
890 
891   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
892 
893   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
894 
895   // If the variable might have been accessed by its initializer, we
896   // might have to initialize with a barrier.  We have to do this for
897   // both __weak and __strong, but __weak got filtered out above.
898   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
899     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
900     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
901     EmitARCRelease(oldValue, ARCImpreciseLifetime);
902     return;
903   }
904 
905   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
906 }
907 
908 /// Decide whether we can emit the non-zero parts of the specified initializer
909 /// with equal or fewer than NumStores scalar stores.
910 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
911                                                unsigned &NumStores) {
912   // Zero and Undef never requires any extra stores.
913   if (isa<llvm::ConstantAggregateZero>(Init) ||
914       isa<llvm::ConstantPointerNull>(Init) ||
915       isa<llvm::UndefValue>(Init))
916     return true;
917   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
918       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
919       isa<llvm::ConstantExpr>(Init))
920     return Init->isNullValue() || NumStores--;
921 
922   // See if we can emit each element.
923   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
924     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
925       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
926       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
927         return false;
928     }
929     return true;
930   }
931 
932   if (llvm::ConstantDataSequential *CDS =
933         dyn_cast<llvm::ConstantDataSequential>(Init)) {
934     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
935       llvm::Constant *Elt = CDS->getElementAsConstant(i);
936       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
937         return false;
938     }
939     return true;
940   }
941 
942   // Anything else is hard and scary.
943   return false;
944 }
945 
946 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
947 /// the scalar stores that would be required.
948 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
949                                         llvm::Constant *Init, Address Loc,
950                                         bool isVolatile, CGBuilderTy &Builder,
951                                         bool IsAutoInit) {
952   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
953          "called emitStoresForInitAfterBZero for zero or undef value.");
954 
955   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
956       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
957       isa<llvm::ConstantExpr>(Init)) {
958     auto *I = Builder.CreateStore(Init, Loc, isVolatile);
959     if (IsAutoInit)
960       I->addAnnotationMetadata("auto-init");
961     return;
962   }
963 
964   if (llvm::ConstantDataSequential *CDS =
965           dyn_cast<llvm::ConstantDataSequential>(Init)) {
966     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
967       llvm::Constant *Elt = CDS->getElementAsConstant(i);
968 
969       // If necessary, get a pointer to the element and emit it.
970       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
971         emitStoresForInitAfterBZero(
972             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
973             Builder, IsAutoInit);
974     }
975     return;
976   }
977 
978   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
979          "Unknown value type!");
980 
981   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
982     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
983 
984     // If necessary, get a pointer to the element and emit it.
985     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
986       emitStoresForInitAfterBZero(CGM, Elt,
987                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
988                                   isVolatile, Builder, IsAutoInit);
989   }
990 }
991 
992 /// Decide whether we should use bzero plus some stores to initialize a local
993 /// variable instead of using a memcpy from a constant global.  It is beneficial
994 /// to use bzero if the global is all zeros, or mostly zeros and large.
995 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
996                                                  uint64_t GlobalSize) {
997   // If a global is all zeros, always use a bzero.
998   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
999 
1000   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
1001   // do it if it will require 6 or fewer scalar stores.
1002   // TODO: Should budget depends on the size?  Avoiding a large global warrants
1003   // plopping in more stores.
1004   unsigned StoreBudget = 6;
1005   uint64_t SizeLimit = 32;
1006 
1007   return GlobalSize > SizeLimit &&
1008          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
1009 }
1010 
1011 /// Decide whether we should use memset to initialize a local variable instead
1012 /// of using a memcpy from a constant global. Assumes we've already decided to
1013 /// not user bzero.
1014 /// FIXME We could be more clever, as we are for bzero above, and generate
1015 ///       memset followed by stores. It's unclear that's worth the effort.
1016 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
1017                                                 uint64_t GlobalSize,
1018                                                 const llvm::DataLayout &DL) {
1019   uint64_t SizeLimit = 32;
1020   if (GlobalSize <= SizeLimit)
1021     return nullptr;
1022   return llvm::isBytewiseValue(Init, DL);
1023 }
1024 
1025 /// Decide whether we want to split a constant structure or array store into a
1026 /// sequence of its fields' stores. This may cost us code size and compilation
1027 /// speed, but plays better with store optimizations.
1028 static bool shouldSplitConstantStore(CodeGenModule &CGM,
1029                                      uint64_t GlobalByteSize) {
1030   // Don't break things that occupy more than one cacheline.
1031   uint64_t ByteSizeLimit = 64;
1032   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1033     return false;
1034   if (GlobalByteSize <= ByteSizeLimit)
1035     return true;
1036   return false;
1037 }
1038 
1039 enum class IsPattern { No, Yes };
1040 
1041 /// Generate a constant filled with either a pattern or zeroes.
1042 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1043                                         llvm::Type *Ty) {
1044   if (isPattern == IsPattern::Yes)
1045     return initializationPatternFor(CGM, Ty);
1046   else
1047     return llvm::Constant::getNullValue(Ty);
1048 }
1049 
1050 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1051                                         llvm::Constant *constant);
1052 
1053 /// Helper function for constWithPadding() to deal with padding in structures.
1054 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1055                                               IsPattern isPattern,
1056                                               llvm::StructType *STy,
1057                                               llvm::Constant *constant) {
1058   const llvm::DataLayout &DL = CGM.getDataLayout();
1059   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1060   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1061   unsigned SizeSoFar = 0;
1062   SmallVector<llvm::Constant *, 8> Values;
1063   bool NestedIntact = true;
1064   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1065     unsigned CurOff = Layout->getElementOffset(i);
1066     if (SizeSoFar < CurOff) {
1067       assert(!STy->isPacked());
1068       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1069       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1070     }
1071     llvm::Constant *CurOp;
1072     if (constant->isZeroValue())
1073       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1074     else
1075       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1076     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1077     if (CurOp != NewOp)
1078       NestedIntact = false;
1079     Values.push_back(NewOp);
1080     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1081   }
1082   unsigned TotalSize = Layout->getSizeInBytes();
1083   if (SizeSoFar < TotalSize) {
1084     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1085     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1086   }
1087   if (NestedIntact && Values.size() == STy->getNumElements())
1088     return constant;
1089   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1090 }
1091 
1092 /// Replace all padding bytes in a given constant with either a pattern byte or
1093 /// 0x00.
1094 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1095                                         llvm::Constant *constant) {
1096   llvm::Type *OrigTy = constant->getType();
1097   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1098     return constStructWithPadding(CGM, isPattern, STy, constant);
1099   if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1100     llvm::SmallVector<llvm::Constant *, 8> Values;
1101     uint64_t Size = ArrayTy->getNumElements();
1102     if (!Size)
1103       return constant;
1104     llvm::Type *ElemTy = ArrayTy->getElementType();
1105     bool ZeroInitializer = constant->isNullValue();
1106     llvm::Constant *OpValue, *PaddedOp;
1107     if (ZeroInitializer) {
1108       OpValue = llvm::Constant::getNullValue(ElemTy);
1109       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1110     }
1111     for (unsigned Op = 0; Op != Size; ++Op) {
1112       if (!ZeroInitializer) {
1113         OpValue = constant->getAggregateElement(Op);
1114         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1115       }
1116       Values.push_back(PaddedOp);
1117     }
1118     auto *NewElemTy = Values[0]->getType();
1119     if (NewElemTy == ElemTy)
1120       return constant;
1121     auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1122     return llvm::ConstantArray::get(NewArrayTy, Values);
1123   }
1124   // FIXME: Add handling for tail padding in vectors. Vectors don't
1125   // have padding between or inside elements, but the total amount of
1126   // data can be less than the allocated size.
1127   return constant;
1128 }
1129 
1130 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1131                                                llvm::Constant *Constant,
1132                                                CharUnits Align) {
1133   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1134     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1135       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1136         return CC->getNameAsString();
1137       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1138         return CD->getNameAsString();
1139       return std::string(getMangledName(FD));
1140     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1141       return OM->getNameAsString();
1142     } else if (isa<BlockDecl>(DC)) {
1143       return "<block>";
1144     } else if (isa<CapturedDecl>(DC)) {
1145       return "<captured>";
1146     } else {
1147       llvm_unreachable("expected a function or method");
1148     }
1149   };
1150 
1151   // Form a simple per-variable cache of these values in case we find we
1152   // want to reuse them.
1153   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1154   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1155     auto *Ty = Constant->getType();
1156     bool isConstant = true;
1157     llvm::GlobalVariable *InsertBefore = nullptr;
1158     unsigned AS =
1159         getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace());
1160     std::string Name;
1161     if (D.hasGlobalStorage())
1162       Name = getMangledName(&D).str() + ".const";
1163     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1164       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1165     else
1166       llvm_unreachable("local variable has no parent function or method");
1167     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1168         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1169         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1170     GV->setAlignment(Align.getAsAlign());
1171     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1172     CacheEntry = GV;
1173   } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) {
1174     CacheEntry->setAlignment(Align.getAsAlign());
1175   }
1176 
1177   return Address(CacheEntry, CacheEntry->getValueType(), Align);
1178 }
1179 
1180 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1181                                                 const VarDecl &D,
1182                                                 CGBuilderTy &Builder,
1183                                                 llvm::Constant *Constant,
1184                                                 CharUnits Align) {
1185   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1186   return SrcPtr.withElementType(CGM.Int8Ty);
1187 }
1188 
1189 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1190                                   Address Loc, bool isVolatile,
1191                                   CGBuilderTy &Builder,
1192                                   llvm::Constant *constant, bool IsAutoInit) {
1193   auto *Ty = constant->getType();
1194   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1195   if (!ConstantSize)
1196     return;
1197 
1198   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1199                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1200   if (canDoSingleStore) {
1201     auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1202     if (IsAutoInit)
1203       I->addAnnotationMetadata("auto-init");
1204     return;
1205   }
1206 
1207   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1208 
1209   // If the initializer is all or mostly the same, codegen with bzero / memset
1210   // then do a few stores afterward.
1211   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1212     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1213                                    SizeVal, isVolatile);
1214     if (IsAutoInit)
1215       I->addAnnotationMetadata("auto-init");
1216 
1217     bool valueAlreadyCorrect =
1218         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1219     if (!valueAlreadyCorrect) {
1220       Loc = Loc.withElementType(Ty);
1221       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1222                                   IsAutoInit);
1223     }
1224     return;
1225   }
1226 
1227   // If the initializer is a repeated byte pattern, use memset.
1228   llvm::Value *Pattern =
1229       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1230   if (Pattern) {
1231     uint64_t Value = 0x00;
1232     if (!isa<llvm::UndefValue>(Pattern)) {
1233       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1234       assert(AP.getBitWidth() <= 8);
1235       Value = AP.getLimitedValue();
1236     }
1237     auto *I = Builder.CreateMemSet(
1238         Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1239     if (IsAutoInit)
1240       I->addAnnotationMetadata("auto-init");
1241     return;
1242   }
1243 
1244   // If the initializer is small, use a handful of stores.
1245   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1246     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1247       const llvm::StructLayout *Layout =
1248           CGM.getDataLayout().getStructLayout(STy);
1249       for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1250         CharUnits CurOff = CharUnits::fromQuantity(Layout->getElementOffset(i));
1251         Address EltPtr = Builder.CreateConstInBoundsByteGEP(
1252             Loc.withElementType(CGM.Int8Ty), CurOff);
1253         emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1254                               constant->getAggregateElement(i), IsAutoInit);
1255       }
1256       return;
1257     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1258       for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1259         Address EltPtr = Builder.CreateConstGEP(
1260             Loc.withElementType(ATy->getElementType()), i);
1261         emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1262                               constant->getAggregateElement(i), IsAutoInit);
1263       }
1264       return;
1265     }
1266   }
1267 
1268   // Copy from a global.
1269   auto *I =
1270       Builder.CreateMemCpy(Loc,
1271                            createUnnamedGlobalForMemcpyFrom(
1272                                CGM, D, Builder, constant, Loc.getAlignment()),
1273                            SizeVal, isVolatile);
1274   if (IsAutoInit)
1275     I->addAnnotationMetadata("auto-init");
1276 }
1277 
1278 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1279                                   Address Loc, bool isVolatile,
1280                                   CGBuilderTy &Builder) {
1281   llvm::Type *ElTy = Loc.getElementType();
1282   llvm::Constant *constant =
1283       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1284   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1285                         /*IsAutoInit=*/true);
1286 }
1287 
1288 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1289                                      Address Loc, bool isVolatile,
1290                                      CGBuilderTy &Builder) {
1291   llvm::Type *ElTy = Loc.getElementType();
1292   llvm::Constant *constant = constWithPadding(
1293       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1294   assert(!isa<llvm::UndefValue>(constant));
1295   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1296                         /*IsAutoInit=*/true);
1297 }
1298 
1299 static bool containsUndef(llvm::Constant *constant) {
1300   auto *Ty = constant->getType();
1301   if (isa<llvm::UndefValue>(constant))
1302     return true;
1303   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1304     for (llvm::Use &Op : constant->operands())
1305       if (containsUndef(cast<llvm::Constant>(Op)))
1306         return true;
1307   return false;
1308 }
1309 
1310 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1311                                     llvm::Constant *constant) {
1312   auto *Ty = constant->getType();
1313   if (isa<llvm::UndefValue>(constant))
1314     return patternOrZeroFor(CGM, isPattern, Ty);
1315   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1316     return constant;
1317   if (!containsUndef(constant))
1318     return constant;
1319   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1320   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1321     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1322     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1323   }
1324   if (Ty->isStructTy())
1325     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1326   if (Ty->isArrayTy())
1327     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1328   assert(Ty->isVectorTy());
1329   return llvm::ConstantVector::get(Values);
1330 }
1331 
1332 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1333 /// variable declaration with auto, register, or no storage class specifier.
1334 /// These turn into simple stack objects, or GlobalValues depending on target.
1335 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1336   AutoVarEmission emission = EmitAutoVarAlloca(D);
1337   EmitAutoVarInit(emission);
1338   EmitAutoVarCleanups(emission);
1339 }
1340 
1341 /// Emit a lifetime.begin marker if some criteria are satisfied.
1342 /// \return a pointer to the temporary size Value if a marker was emitted, null
1343 /// otherwise
1344 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size,
1345                                                 llvm::Value *Addr) {
1346   if (!ShouldEmitLifetimeMarkers)
1347     return nullptr;
1348 
1349   assert(Addr->getType()->getPointerAddressSpace() ==
1350              CGM.getDataLayout().getAllocaAddrSpace() &&
1351          "Pointer should be in alloca address space");
1352   llvm::Value *SizeV = llvm::ConstantInt::get(
1353       Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue());
1354   llvm::CallInst *C =
1355       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1356   C->setDoesNotThrow();
1357   return SizeV;
1358 }
1359 
1360 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1361   assert(Addr->getType()->getPointerAddressSpace() ==
1362              CGM.getDataLayout().getAllocaAddrSpace() &&
1363          "Pointer should be in alloca address space");
1364   llvm::CallInst *C =
1365       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1366   C->setDoesNotThrow();
1367 }
1368 
1369 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1370     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1371   // For each dimension stores its QualType and corresponding
1372   // size-expression Value.
1373   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1374   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1375 
1376   // Break down the array into individual dimensions.
1377   QualType Type1D = D.getType();
1378   while (getContext().getAsVariableArrayType(Type1D)) {
1379     auto VlaSize = getVLAElements1D(Type1D);
1380     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1381       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1382     else {
1383       // Generate a locally unique name for the size expression.
1384       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1385       SmallString<12> Buffer;
1386       StringRef NameRef = Name.toStringRef(Buffer);
1387       auto &Ident = getContext().Idents.getOwn(NameRef);
1388       VLAExprNames.push_back(&Ident);
1389       auto SizeExprAddr =
1390           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1391       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1392       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1393                               Type1D.getUnqualifiedType());
1394     }
1395     Type1D = VlaSize.Type;
1396   }
1397 
1398   if (!EmitDebugInfo)
1399     return;
1400 
1401   // Register each dimension's size-expression with a DILocalVariable,
1402   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1403   // to describe this array.
1404   unsigned NameIdx = 0;
1405   for (auto &VlaSize : Dimensions) {
1406     llvm::Metadata *MD;
1407     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1408       MD = llvm::ConstantAsMetadata::get(C);
1409     else {
1410       // Create an artificial VarDecl to generate debug info for.
1411       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1412       auto QT = getContext().getIntTypeForBitwidth(
1413           SizeTy->getScalarSizeInBits(), false);
1414       auto *ArtificialDecl = VarDecl::Create(
1415           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1416           D.getLocation(), D.getLocation(), NameIdent, QT,
1417           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1418       ArtificialDecl->setImplicit();
1419 
1420       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1421                                          Builder);
1422     }
1423     assert(MD && "No Size expression debug node created");
1424     DI->registerVLASizeExpression(VlaSize.Type, MD);
1425   }
1426 }
1427 
1428 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1429 /// local variable.  Does not emit initialization or destruction.
1430 CodeGenFunction::AutoVarEmission
1431 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1432   QualType Ty = D.getType();
1433   assert(
1434       Ty.getAddressSpace() == LangAS::Default ||
1435       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1436 
1437   AutoVarEmission emission(D);
1438 
1439   bool isEscapingByRef = D.isEscapingByref();
1440   emission.IsEscapingByRef = isEscapingByRef;
1441 
1442   CharUnits alignment = getContext().getDeclAlign(&D);
1443 
1444   // If the type is variably-modified, emit all the VLA sizes for it.
1445   if (Ty->isVariablyModifiedType())
1446     EmitVariablyModifiedType(Ty);
1447 
1448   auto *DI = getDebugInfo();
1449   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1450 
1451   Address address = Address::invalid();
1452   Address AllocaAddr = Address::invalid();
1453   Address OpenMPLocalAddr = Address::invalid();
1454   if (CGM.getLangOpts().OpenMPIRBuilder)
1455     OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1456   else
1457     OpenMPLocalAddr =
1458         getLangOpts().OpenMP
1459             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1460             : Address::invalid();
1461 
1462   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1463 
1464   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1465     address = OpenMPLocalAddr;
1466     AllocaAddr = OpenMPLocalAddr;
1467   } else if (Ty->isConstantSizeType()) {
1468     // If this value is an array or struct with a statically determinable
1469     // constant initializer, there are optimizations we can do.
1470     //
1471     // TODO: We should constant-evaluate the initializer of any variable,
1472     // as long as it is initialized by a constant expression. Currently,
1473     // isConstantInitializer produces wrong answers for structs with
1474     // reference or bitfield members, and a few other cases, and checking
1475     // for POD-ness protects us from some of these.
1476     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1477         (D.isConstexpr() ||
1478          ((Ty.isPODType(getContext()) ||
1479            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1480           D.getInit()->isConstantInitializer(getContext(), false)))) {
1481 
1482       // If the variable's a const type, and it's neither an NRVO
1483       // candidate nor a __block variable and has no mutable members,
1484       // emit it as a global instead.
1485       // Exception is if a variable is located in non-constant address space
1486       // in OpenCL.
1487       bool NeedsDtor =
1488           D.needsDestruction(getContext()) == QualType::DK_cxx_destructor;
1489       if ((!getLangOpts().OpenCL ||
1490            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1491           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1492            !isEscapingByRef &&
1493            Ty.isConstantStorage(getContext(), true, !NeedsDtor))) {
1494         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1495 
1496         // Signal this condition to later callbacks.
1497         emission.Addr = Address::invalid();
1498         assert(emission.wasEmittedAsGlobal());
1499         return emission;
1500       }
1501 
1502       // Otherwise, tell the initialization code that we're in this case.
1503       emission.IsConstantAggregate = true;
1504     }
1505 
1506     // A normal fixed sized variable becomes an alloca in the entry block,
1507     // unless:
1508     // - it's an NRVO variable.
1509     // - we are compiling OpenMP and it's an OpenMP local variable.
1510     if (NRVO) {
1511       // The named return value optimization: allocate this variable in the
1512       // return slot, so that we can elide the copy when returning this
1513       // variable (C++0x [class.copy]p34).
1514       address = ReturnValue;
1515       AllocaAddr = ReturnValue;
1516 
1517       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1518         const auto *RD = RecordTy->getDecl();
1519         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1520         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1521             RD->isNonTrivialToPrimitiveDestroy()) {
1522           // Create a flag that is used to indicate when the NRVO was applied
1523           // to this variable. Set it to zero to indicate that NRVO was not
1524           // applied.
1525           llvm::Value *Zero = Builder.getFalse();
1526           Address NRVOFlag =
1527               CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1528           EnsureInsertPoint();
1529           Builder.CreateStore(Zero, NRVOFlag);
1530 
1531           // Record the NRVO flag for this variable.
1532           NRVOFlags[&D] = NRVOFlag.getPointer();
1533           emission.NRVOFlag = NRVOFlag.getPointer();
1534         }
1535       }
1536     } else {
1537       CharUnits allocaAlignment;
1538       llvm::Type *allocaTy;
1539       if (isEscapingByRef) {
1540         auto &byrefInfo = getBlockByrefInfo(&D);
1541         allocaTy = byrefInfo.Type;
1542         allocaAlignment = byrefInfo.ByrefAlignment;
1543       } else {
1544         allocaTy = ConvertTypeForMem(Ty);
1545         allocaAlignment = alignment;
1546       }
1547 
1548       // Create the alloca.  Note that we set the name separately from
1549       // building the instruction so that it's there even in no-asserts
1550       // builds.
1551       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1552                                  /*ArraySize=*/nullptr, &AllocaAddr);
1553 
1554       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1555       // the catch parameter starts in the catchpad instruction, and we can't
1556       // insert code in those basic blocks.
1557       bool IsMSCatchParam =
1558           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1559 
1560       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1561       // if we don't have a valid insertion point (?).
1562       if (HaveInsertPoint() && !IsMSCatchParam) {
1563         // If there's a jump into the lifetime of this variable, its lifetime
1564         // gets broken up into several regions in IR, which requires more work
1565         // to handle correctly. For now, just omit the intrinsics; this is a
1566         // rare case, and it's better to just be conservatively correct.
1567         // PR28267.
1568         //
1569         // We have to do this in all language modes if there's a jump past the
1570         // declaration. We also have to do it in C if there's a jump to an
1571         // earlier point in the current block because non-VLA lifetimes begin as
1572         // soon as the containing block is entered, not when its variables
1573         // actually come into scope; suppressing the lifetime annotations
1574         // completely in this case is unnecessarily pessimistic, but again, this
1575         // is rare.
1576         if (!Bypasses.IsBypassed(&D) &&
1577             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1578           llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1579           emission.SizeForLifetimeMarkers =
1580               EmitLifetimeStart(Size, AllocaAddr.getPointer());
1581         }
1582       } else {
1583         assert(!emission.useLifetimeMarkers());
1584       }
1585     }
1586   } else {
1587     EnsureInsertPoint();
1588 
1589     // Delayed globalization for variable length declarations. This ensures that
1590     // the expression representing the length has been emitted and can be used
1591     // by the definition of the VLA. Since this is an escaped declaration, in
1592     // OpenMP we have to use a call to __kmpc_alloc_shared(). The matching
1593     // deallocation call to __kmpc_free_shared() is emitted later.
1594     bool VarAllocated = false;
1595     if (getLangOpts().OpenMPIsTargetDevice) {
1596       auto &RT = CGM.getOpenMPRuntime();
1597       if (RT.isDelayedVariableLengthDecl(*this, &D)) {
1598         // Emit call to __kmpc_alloc_shared() instead of the alloca.
1599         std::pair<llvm::Value *, llvm::Value *> AddrSizePair =
1600             RT.getKmpcAllocShared(*this, &D);
1601 
1602         // Save the address of the allocation:
1603         LValue Base = MakeAddrLValue(AddrSizePair.first, D.getType(),
1604                                      CGM.getContext().getDeclAlign(&D),
1605                                      AlignmentSource::Decl);
1606         address = Base.getAddress(*this);
1607 
1608         // Push a cleanup block to emit the call to __kmpc_free_shared in the
1609         // appropriate location at the end of the scope of the
1610         // __kmpc_alloc_shared functions:
1611         pushKmpcAllocFree(NormalCleanup, AddrSizePair);
1612 
1613         // Mark variable as allocated:
1614         VarAllocated = true;
1615       }
1616     }
1617 
1618     if (!VarAllocated) {
1619       if (!DidCallStackSave) {
1620         // Save the stack.
1621         Address Stack =
1622             CreateDefaultAlignTempAlloca(AllocaInt8PtrTy, "saved_stack");
1623 
1624         llvm::Value *V = Builder.CreateStackSave();
1625         assert(V->getType() == AllocaInt8PtrTy);
1626         Builder.CreateStore(V, Stack);
1627 
1628         DidCallStackSave = true;
1629 
1630         // Push a cleanup block and restore the stack there.
1631         // FIXME: in general circumstances, this should be an EH cleanup.
1632         pushStackRestore(NormalCleanup, Stack);
1633       }
1634 
1635       auto VlaSize = getVLASize(Ty);
1636       llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1637 
1638       // Allocate memory for the array.
1639       address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1640                                  &AllocaAddr);
1641     }
1642 
1643     // If we have debug info enabled, properly describe the VLA dimensions for
1644     // this type by registering the vla size expression for each of the
1645     // dimensions.
1646     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1647   }
1648 
1649   setAddrOfLocalVar(&D, address);
1650   emission.Addr = address;
1651   emission.AllocaAddr = AllocaAddr;
1652 
1653   // Emit debug info for local var declaration.
1654   if (EmitDebugInfo && HaveInsertPoint()) {
1655     Address DebugAddr = address;
1656     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1657     DI->setLocation(D.getLocation());
1658 
1659     // If NRVO, use a pointer to the return address.
1660     if (UsePointerValue) {
1661       DebugAddr = ReturnValuePointer;
1662       AllocaAddr = ReturnValuePointer;
1663     }
1664     (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder,
1665                                         UsePointerValue);
1666   }
1667 
1668   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1669     EmitVarAnnotations(&D, address.getPointer());
1670 
1671   // Make sure we call @llvm.lifetime.end.
1672   if (emission.useLifetimeMarkers())
1673     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1674                                          emission.getOriginalAllocatedAddress(),
1675                                          emission.getSizeForLifetimeMarkers());
1676 
1677   return emission;
1678 }
1679 
1680 static bool isCapturedBy(const VarDecl &, const Expr *);
1681 
1682 /// Determines whether the given __block variable is potentially
1683 /// captured by the given statement.
1684 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1685   if (const Expr *E = dyn_cast<Expr>(S))
1686     return isCapturedBy(Var, E);
1687   for (const Stmt *SubStmt : S->children())
1688     if (isCapturedBy(Var, SubStmt))
1689       return true;
1690   return false;
1691 }
1692 
1693 /// Determines whether the given __block variable is potentially
1694 /// captured by the given expression.
1695 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1696   // Skip the most common kinds of expressions that make
1697   // hierarchy-walking expensive.
1698   E = E->IgnoreParenCasts();
1699 
1700   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1701     const BlockDecl *Block = BE->getBlockDecl();
1702     for (const auto &I : Block->captures()) {
1703       if (I.getVariable() == &Var)
1704         return true;
1705     }
1706 
1707     // No need to walk into the subexpressions.
1708     return false;
1709   }
1710 
1711   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1712     const CompoundStmt *CS = SE->getSubStmt();
1713     for (const auto *BI : CS->body())
1714       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1715         if (isCapturedBy(Var, BIE))
1716           return true;
1717       }
1718       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1719           // special case declarations
1720           for (const auto *I : DS->decls()) {
1721               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1722                 const Expr *Init = VD->getInit();
1723                 if (Init && isCapturedBy(Var, Init))
1724                   return true;
1725               }
1726           }
1727       }
1728       else
1729         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1730         // Later, provide code to poke into statements for capture analysis.
1731         return true;
1732     return false;
1733   }
1734 
1735   for (const Stmt *SubStmt : E->children())
1736     if (isCapturedBy(Var, SubStmt))
1737       return true;
1738 
1739   return false;
1740 }
1741 
1742 /// Determine whether the given initializer is trivial in the sense
1743 /// that it requires no code to be generated.
1744 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1745   if (!Init)
1746     return true;
1747 
1748   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1749     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1750       if (Constructor->isTrivial() &&
1751           Constructor->isDefaultConstructor() &&
1752           !Construct->requiresZeroInitialization())
1753         return true;
1754 
1755   return false;
1756 }
1757 
1758 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1759                                                       const VarDecl &D,
1760                                                       Address Loc) {
1761   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1762   CharUnits Size = getContext().getTypeSizeInChars(type);
1763   bool isVolatile = type.isVolatileQualified();
1764   if (!Size.isZero()) {
1765     switch (trivialAutoVarInit) {
1766     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1767       llvm_unreachable("Uninitialized handled by caller");
1768     case LangOptions::TrivialAutoVarInitKind::Zero:
1769       if (CGM.stopAutoInit())
1770         return;
1771       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1772       break;
1773     case LangOptions::TrivialAutoVarInitKind::Pattern:
1774       if (CGM.stopAutoInit())
1775         return;
1776       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1777       break;
1778     }
1779     return;
1780   }
1781 
1782   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1783   // them, so emit a memcpy with the VLA size to initialize each element.
1784   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1785   // will catch that code, but there exists code which generates zero-sized
1786   // VLAs. Be nice and initialize whatever they requested.
1787   const auto *VlaType = getContext().getAsVariableArrayType(type);
1788   if (!VlaType)
1789     return;
1790   auto VlaSize = getVLASize(VlaType);
1791   auto SizeVal = VlaSize.NumElts;
1792   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1793   switch (trivialAutoVarInit) {
1794   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1795     llvm_unreachable("Uninitialized handled by caller");
1796 
1797   case LangOptions::TrivialAutoVarInitKind::Zero: {
1798     if (CGM.stopAutoInit())
1799       return;
1800     if (!EltSize.isOne())
1801       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1802     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1803                                    SizeVal, isVolatile);
1804     I->addAnnotationMetadata("auto-init");
1805     break;
1806   }
1807 
1808   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1809     if (CGM.stopAutoInit())
1810       return;
1811     llvm::Type *ElTy = Loc.getElementType();
1812     llvm::Constant *Constant = constWithPadding(
1813         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1814     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1815     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1816     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1817     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1818     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1819         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1820         "vla.iszerosized");
1821     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1822     EmitBlock(SetupBB);
1823     if (!EltSize.isOne())
1824       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1825     llvm::Value *BaseSizeInChars =
1826         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1827     Address Begin = Loc.withElementType(Int8Ty);
1828     llvm::Value *End = Builder.CreateInBoundsGEP(
1829         Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end");
1830     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1831     EmitBlock(LoopBB);
1832     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1833     Cur->addIncoming(Begin.getPointer(), OriginBB);
1834     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1835     auto *I =
1836         Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign),
1837                              createUnnamedGlobalForMemcpyFrom(
1838                                  CGM, D, Builder, Constant, ConstantAlign),
1839                              BaseSizeInChars, isVolatile);
1840     I->addAnnotationMetadata("auto-init");
1841     llvm::Value *Next =
1842         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1843     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1844     Builder.CreateCondBr(Done, ContBB, LoopBB);
1845     Cur->addIncoming(Next, LoopBB);
1846     EmitBlock(ContBB);
1847   } break;
1848   }
1849 }
1850 
1851 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1852   assert(emission.Variable && "emission was not valid!");
1853 
1854   // If this was emitted as a global constant, we're done.
1855   if (emission.wasEmittedAsGlobal()) return;
1856 
1857   const VarDecl &D = *emission.Variable;
1858   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1859   QualType type = D.getType();
1860 
1861   // If this local has an initializer, emit it now.
1862   const Expr *Init = D.getInit();
1863 
1864   // If we are at an unreachable point, we don't need to emit the initializer
1865   // unless it contains a label.
1866   if (!HaveInsertPoint()) {
1867     if (!Init || !ContainsLabel(Init)) return;
1868     EnsureInsertPoint();
1869   }
1870 
1871   // Initialize the structure of a __block variable.
1872   if (emission.IsEscapingByRef)
1873     emitByrefStructureInit(emission);
1874 
1875   // Initialize the variable here if it doesn't have a initializer and it is a
1876   // C struct that is non-trivial to initialize or an array containing such a
1877   // struct.
1878   if (!Init &&
1879       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1880           QualType::PDIK_Struct) {
1881     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1882     if (emission.IsEscapingByRef)
1883       drillIntoBlockVariable(*this, Dst, &D);
1884     defaultInitNonTrivialCStructVar(Dst);
1885     return;
1886   }
1887 
1888   // Check whether this is a byref variable that's potentially
1889   // captured and moved by its own initializer.  If so, we'll need to
1890   // emit the initializer first, then copy into the variable.
1891   bool capturedByInit =
1892       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1893 
1894   bool locIsByrefHeader = !capturedByInit;
1895   const Address Loc =
1896       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1897 
1898   // Note: constexpr already initializes everything correctly.
1899   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1900       (D.isConstexpr()
1901            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1902            : (D.getAttr<UninitializedAttr>()
1903                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1904                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1905 
1906   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1907     if (trivialAutoVarInit ==
1908         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1909       return;
1910 
1911     // Only initialize a __block's storage: we always initialize the header.
1912     if (emission.IsEscapingByRef && !locIsByrefHeader)
1913       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1914 
1915     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1916   };
1917 
1918   if (isTrivialInitializer(Init))
1919     return initializeWhatIsTechnicallyUninitialized(Loc);
1920 
1921   llvm::Constant *constant = nullptr;
1922   if (emission.IsConstantAggregate ||
1923       D.mightBeUsableInConstantExpressions(getContext())) {
1924     assert(!capturedByInit && "constant init contains a capturing block?");
1925     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1926     if (constant && !constant->isZeroValue() &&
1927         (trivialAutoVarInit !=
1928          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1929       IsPattern isPattern =
1930           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1931               ? IsPattern::Yes
1932               : IsPattern::No;
1933       // C guarantees that brace-init with fewer initializers than members in
1934       // the aggregate will initialize the rest of the aggregate as-if it were
1935       // static initialization. In turn static initialization guarantees that
1936       // padding is initialized to zero bits. We could instead pattern-init if D
1937       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1938       // behavior.
1939       constant = constWithPadding(CGM, IsPattern::No,
1940                                   replaceUndef(CGM, isPattern, constant));
1941     }
1942   }
1943 
1944   if (!constant) {
1945     initializeWhatIsTechnicallyUninitialized(Loc);
1946     LValue lv = MakeAddrLValue(Loc, type);
1947     lv.setNonGC(true);
1948     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1949   }
1950 
1951   if (!emission.IsConstantAggregate) {
1952     // For simple scalar/complex initialization, store the value directly.
1953     LValue lv = MakeAddrLValue(Loc, type);
1954     lv.setNonGC(true);
1955     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1956   }
1957 
1958   emitStoresForConstant(CGM, D, Loc.withElementType(CGM.Int8Ty),
1959                         type.isVolatileQualified(), Builder, constant,
1960                         /*IsAutoInit=*/false);
1961 }
1962 
1963 /// Emit an expression as an initializer for an object (variable, field, etc.)
1964 /// at the given location.  The expression is not necessarily the normal
1965 /// initializer for the object, and the address is not necessarily
1966 /// its normal location.
1967 ///
1968 /// \param init the initializing expression
1969 /// \param D the object to act as if we're initializing
1970 /// \param lvalue the lvalue to initialize
1971 /// \param capturedByInit true if \p D is a __block variable
1972 ///   whose address is potentially changed by the initializer
1973 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1974                                      LValue lvalue, bool capturedByInit) {
1975   QualType type = D->getType();
1976 
1977   if (type->isReferenceType()) {
1978     RValue rvalue = EmitReferenceBindingToExpr(init);
1979     if (capturedByInit)
1980       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1981     EmitStoreThroughLValue(rvalue, lvalue, true);
1982     return;
1983   }
1984   switch (getEvaluationKind(type)) {
1985   case TEK_Scalar:
1986     EmitScalarInit(init, D, lvalue, capturedByInit);
1987     return;
1988   case TEK_Complex: {
1989     ComplexPairTy complex = EmitComplexExpr(init);
1990     if (capturedByInit)
1991       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1992     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1993     return;
1994   }
1995   case TEK_Aggregate:
1996     if (type->isAtomicType()) {
1997       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1998     } else {
1999       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
2000       if (isa<VarDecl>(D))
2001         Overlap = AggValueSlot::DoesNotOverlap;
2002       else if (auto *FD = dyn_cast<FieldDecl>(D))
2003         Overlap = getOverlapForFieldInit(FD);
2004       // TODO: how can we delay here if D is captured by its initializer?
2005       EmitAggExpr(init, AggValueSlot::forLValue(
2006                             lvalue, *this, AggValueSlot::IsDestructed,
2007                             AggValueSlot::DoesNotNeedGCBarriers,
2008                             AggValueSlot::IsNotAliased, Overlap));
2009     }
2010     return;
2011   }
2012   llvm_unreachable("bad evaluation kind");
2013 }
2014 
2015 /// Enter a destroy cleanup for the given local variable.
2016 void CodeGenFunction::emitAutoVarTypeCleanup(
2017                             const CodeGenFunction::AutoVarEmission &emission,
2018                             QualType::DestructionKind dtorKind) {
2019   assert(dtorKind != QualType::DK_none);
2020 
2021   // Note that for __block variables, we want to destroy the
2022   // original stack object, not the possibly forwarded object.
2023   Address addr = emission.getObjectAddress(*this);
2024 
2025   const VarDecl *var = emission.Variable;
2026   QualType type = var->getType();
2027 
2028   CleanupKind cleanupKind = NormalAndEHCleanup;
2029   CodeGenFunction::Destroyer *destroyer = nullptr;
2030 
2031   switch (dtorKind) {
2032   case QualType::DK_none:
2033     llvm_unreachable("no cleanup for trivially-destructible variable");
2034 
2035   case QualType::DK_cxx_destructor:
2036     // If there's an NRVO flag on the emission, we need a different
2037     // cleanup.
2038     if (emission.NRVOFlag) {
2039       assert(!type->isArrayType());
2040       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
2041       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
2042                                                   emission.NRVOFlag);
2043       return;
2044     }
2045     break;
2046 
2047   case QualType::DK_objc_strong_lifetime:
2048     // Suppress cleanups for pseudo-strong variables.
2049     if (var->isARCPseudoStrong()) return;
2050 
2051     // Otherwise, consider whether to use an EH cleanup or not.
2052     cleanupKind = getARCCleanupKind();
2053 
2054     // Use the imprecise destroyer by default.
2055     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
2056       destroyer = CodeGenFunction::destroyARCStrongImprecise;
2057     break;
2058 
2059   case QualType::DK_objc_weak_lifetime:
2060     break;
2061 
2062   case QualType::DK_nontrivial_c_struct:
2063     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
2064     if (emission.NRVOFlag) {
2065       assert(!type->isArrayType());
2066       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2067                                                 emission.NRVOFlag, type);
2068       return;
2069     }
2070     break;
2071   }
2072 
2073   // If we haven't chosen a more specific destroyer, use the default.
2074   if (!destroyer) destroyer = getDestroyer(dtorKind);
2075 
2076   // Use an EH cleanup in array destructors iff the destructor itself
2077   // is being pushed as an EH cleanup.
2078   bool useEHCleanup = (cleanupKind & EHCleanup);
2079   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2080                                      useEHCleanup);
2081 }
2082 
2083 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2084   assert(emission.Variable && "emission was not valid!");
2085 
2086   // If this was emitted as a global constant, we're done.
2087   if (emission.wasEmittedAsGlobal()) return;
2088 
2089   // If we don't have an insertion point, we're done.  Sema prevents
2090   // us from jumping into any of these scopes anyway.
2091   if (!HaveInsertPoint()) return;
2092 
2093   const VarDecl &D = *emission.Variable;
2094 
2095   // Check the type for a cleanup.
2096   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2097     emitAutoVarTypeCleanup(emission, dtorKind);
2098 
2099   // In GC mode, honor objc_precise_lifetime.
2100   if (getLangOpts().getGC() != LangOptions::NonGC &&
2101       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2102     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2103   }
2104 
2105   // Handle the cleanup attribute.
2106   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2107     const FunctionDecl *FD = CA->getFunctionDecl();
2108 
2109     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2110     assert(F && "Could not find function!");
2111 
2112     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2113     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2114   }
2115 
2116   // If this is a block variable, call _Block_object_destroy
2117   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2118   // mode.
2119   if (emission.IsEscapingByRef &&
2120       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2121     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2122     if (emission.Variable->getType().isObjCGCWeak())
2123       Flags |= BLOCK_FIELD_IS_WEAK;
2124     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2125                       /*LoadBlockVarAddr*/ false,
2126                       cxxDestructorCanThrow(emission.Variable->getType()));
2127   }
2128 }
2129 
2130 CodeGenFunction::Destroyer *
2131 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2132   switch (kind) {
2133   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2134   case QualType::DK_cxx_destructor:
2135     return destroyCXXObject;
2136   case QualType::DK_objc_strong_lifetime:
2137     return destroyARCStrongPrecise;
2138   case QualType::DK_objc_weak_lifetime:
2139     return destroyARCWeak;
2140   case QualType::DK_nontrivial_c_struct:
2141     return destroyNonTrivialCStruct;
2142   }
2143   llvm_unreachable("Unknown DestructionKind");
2144 }
2145 
2146 /// pushEHDestroy - Push the standard destructor for the given type as
2147 /// an EH-only cleanup.
2148 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2149                                     Address addr, QualType type) {
2150   assert(dtorKind && "cannot push destructor for trivial type");
2151   assert(needsEHCleanup(dtorKind));
2152 
2153   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2154 }
2155 
2156 /// pushDestroy - Push the standard destructor for the given type as
2157 /// at least a normal cleanup.
2158 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2159                                   Address addr, QualType type) {
2160   assert(dtorKind && "cannot push destructor for trivial type");
2161 
2162   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2163   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2164               cleanupKind & EHCleanup);
2165 }
2166 
2167 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2168                                   QualType type, Destroyer *destroyer,
2169                                   bool useEHCleanupForArray) {
2170   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2171                                      destroyer, useEHCleanupForArray);
2172 }
2173 
2174 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2175   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2176 }
2177 
2178 void CodeGenFunction::pushKmpcAllocFree(
2179     CleanupKind Kind, std::pair<llvm::Value *, llvm::Value *> AddrSizePair) {
2180   EHStack.pushCleanup<KmpcAllocFree>(Kind, AddrSizePair);
2181 }
2182 
2183 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2184                                                   Address addr, QualType type,
2185                                                   Destroyer *destroyer,
2186                                                   bool useEHCleanupForArray) {
2187   // If we're not in a conditional branch, we don't need to bother generating a
2188   // conditional cleanup.
2189   if (!isInConditionalBranch()) {
2190     // Push an EH-only cleanup for the object now.
2191     // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2192     // around in case a temporary's destructor throws an exception.
2193     if (cleanupKind & EHCleanup)
2194       EHStack.pushCleanup<DestroyObject>(
2195           static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2196           destroyer, useEHCleanupForArray);
2197 
2198     return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2199         cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2200   }
2201 
2202   // Otherwise, we should only destroy the object if it's been initialized.
2203   // Re-use the active flag and saved address across both the EH and end of
2204   // scope cleanups.
2205 
2206   using SavedType = typename DominatingValue<Address>::saved_type;
2207   using ConditionalCleanupType =
2208       EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2209                                        Destroyer *, bool>;
2210 
2211   Address ActiveFlag = createCleanupActiveFlag();
2212   SavedType SavedAddr = saveValueInCond(addr);
2213 
2214   if (cleanupKind & EHCleanup) {
2215     EHStack.pushCleanup<ConditionalCleanupType>(
2216         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2217         destroyer, useEHCleanupForArray);
2218     initFullExprCleanupWithFlag(ActiveFlag);
2219   }
2220 
2221   pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2222       cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2223       useEHCleanupForArray);
2224 }
2225 
2226 /// emitDestroy - Immediately perform the destruction of the given
2227 /// object.
2228 ///
2229 /// \param addr - the address of the object; a type*
2230 /// \param type - the type of the object; if an array type, all
2231 ///   objects are destroyed in reverse order
2232 /// \param destroyer - the function to call to destroy individual
2233 ///   elements
2234 /// \param useEHCleanupForArray - whether an EH cleanup should be
2235 ///   used when destroying array elements, in case one of the
2236 ///   destructions throws an exception
2237 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2238                                   Destroyer *destroyer,
2239                                   bool useEHCleanupForArray) {
2240   const ArrayType *arrayType = getContext().getAsArrayType(type);
2241   if (!arrayType)
2242     return destroyer(*this, addr, type);
2243 
2244   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2245 
2246   CharUnits elementAlign =
2247     addr.getAlignment()
2248         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2249 
2250   // Normally we have to check whether the array is zero-length.
2251   bool checkZeroLength = true;
2252 
2253   // But if the array length is constant, we can suppress that.
2254   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2255     // ...and if it's constant zero, we can just skip the entire thing.
2256     if (constLength->isZero()) return;
2257     checkZeroLength = false;
2258   }
2259 
2260   llvm::Value *begin = addr.getPointer();
2261   llvm::Value *end =
2262       Builder.CreateInBoundsGEP(addr.getElementType(), begin, length);
2263   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2264                    checkZeroLength, useEHCleanupForArray);
2265 }
2266 
2267 /// emitArrayDestroy - Destroys all the elements of the given array,
2268 /// beginning from last to first.  The array cannot be zero-length.
2269 ///
2270 /// \param begin - a type* denoting the first element of the array
2271 /// \param end - a type* denoting one past the end of the array
2272 /// \param elementType - the element type of the array
2273 /// \param destroyer - the function to call to destroy elements
2274 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2275 ///   the remaining elements in case the destruction of a single
2276 ///   element throws
2277 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2278                                        llvm::Value *end,
2279                                        QualType elementType,
2280                                        CharUnits elementAlign,
2281                                        Destroyer *destroyer,
2282                                        bool checkZeroLength,
2283                                        bool useEHCleanup) {
2284   assert(!elementType->isArrayType());
2285 
2286   // The basic structure here is a do-while loop, because we don't
2287   // need to check for the zero-element case.
2288   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2289   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2290 
2291   if (checkZeroLength) {
2292     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2293                                                 "arraydestroy.isempty");
2294     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2295   }
2296 
2297   // Enter the loop body, making that address the current address.
2298   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2299   EmitBlock(bodyBB);
2300   llvm::PHINode *elementPast =
2301     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2302   elementPast->addIncoming(end, entryBB);
2303 
2304   // Shift the address back by one element.
2305   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2306   llvm::Type *llvmElementType = ConvertTypeForMem(elementType);
2307   llvm::Value *element = Builder.CreateInBoundsGEP(
2308       llvmElementType, elementPast, negativeOne, "arraydestroy.element");
2309 
2310   if (useEHCleanup)
2311     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2312                                    destroyer);
2313 
2314   // Perform the actual destruction there.
2315   destroyer(*this, Address(element, llvmElementType, elementAlign),
2316             elementType);
2317 
2318   if (useEHCleanup)
2319     PopCleanupBlock();
2320 
2321   // Check whether we've reached the end.
2322   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2323   Builder.CreateCondBr(done, doneBB, bodyBB);
2324   elementPast->addIncoming(element, Builder.GetInsertBlock());
2325 
2326   // Done.
2327   EmitBlock(doneBB);
2328 }
2329 
2330 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2331 /// emitArrayDestroy, the element type here may still be an array type.
2332 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2333                                     llvm::Value *begin, llvm::Value *end,
2334                                     QualType type, CharUnits elementAlign,
2335                                     CodeGenFunction::Destroyer *destroyer) {
2336   llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2337 
2338   // If the element type is itself an array, drill down.
2339   unsigned arrayDepth = 0;
2340   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2341     // VLAs don't require a GEP index to walk into.
2342     if (!isa<VariableArrayType>(arrayType))
2343       arrayDepth++;
2344     type = arrayType->getElementType();
2345   }
2346 
2347   if (arrayDepth) {
2348     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2349 
2350     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2351     begin = CGF.Builder.CreateInBoundsGEP(
2352         elemTy, begin, gepIndices, "pad.arraybegin");
2353     end = CGF.Builder.CreateInBoundsGEP(
2354         elemTy, end, gepIndices, "pad.arrayend");
2355   }
2356 
2357   // Destroy the array.  We don't ever need an EH cleanup because we
2358   // assume that we're in an EH cleanup ourselves, so a throwing
2359   // destructor causes an immediate terminate.
2360   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2361                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2362 }
2363 
2364 namespace {
2365   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2366   /// array destroy where the end pointer is regularly determined and
2367   /// does not need to be loaded from a local.
2368   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2369     llvm::Value *ArrayBegin;
2370     llvm::Value *ArrayEnd;
2371     QualType ElementType;
2372     CodeGenFunction::Destroyer *Destroyer;
2373     CharUnits ElementAlign;
2374   public:
2375     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2376                                QualType elementType, CharUnits elementAlign,
2377                                CodeGenFunction::Destroyer *destroyer)
2378       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2379         ElementType(elementType), Destroyer(destroyer),
2380         ElementAlign(elementAlign) {}
2381 
2382     void Emit(CodeGenFunction &CGF, Flags flags) override {
2383       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2384                               ElementType, ElementAlign, Destroyer);
2385     }
2386   };
2387 
2388   /// IrregularPartialArrayDestroy - a cleanup which performs a
2389   /// partial array destroy where the end pointer is irregularly
2390   /// determined and must be loaded from a local.
2391   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2392     llvm::Value *ArrayBegin;
2393     Address ArrayEndPointer;
2394     QualType ElementType;
2395     CodeGenFunction::Destroyer *Destroyer;
2396     CharUnits ElementAlign;
2397   public:
2398     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2399                                  Address arrayEndPointer,
2400                                  QualType elementType,
2401                                  CharUnits elementAlign,
2402                                  CodeGenFunction::Destroyer *destroyer)
2403       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2404         ElementType(elementType), Destroyer(destroyer),
2405         ElementAlign(elementAlign) {}
2406 
2407     void Emit(CodeGenFunction &CGF, Flags flags) override {
2408       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2409       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2410                               ElementType, ElementAlign, Destroyer);
2411     }
2412   };
2413 } // end anonymous namespace
2414 
2415 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2416 /// already-constructed elements of the given array.  The cleanup
2417 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2418 ///
2419 /// \param elementType - the immediate element type of the array;
2420 ///   possibly still an array type
2421 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2422                                                        Address arrayEndPointer,
2423                                                        QualType elementType,
2424                                                        CharUnits elementAlign,
2425                                                        Destroyer *destroyer) {
2426   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2427                                                     arrayBegin, arrayEndPointer,
2428                                                     elementType, elementAlign,
2429                                                     destroyer);
2430 }
2431 
2432 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2433 /// already-constructed elements of the given array.  The cleanup
2434 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2435 ///
2436 /// \param elementType - the immediate element type of the array;
2437 ///   possibly still an array type
2438 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2439                                                      llvm::Value *arrayEnd,
2440                                                      QualType elementType,
2441                                                      CharUnits elementAlign,
2442                                                      Destroyer *destroyer) {
2443   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2444                                                   arrayBegin, arrayEnd,
2445                                                   elementType, elementAlign,
2446                                                   destroyer);
2447 }
2448 
2449 /// Lazily declare the @llvm.lifetime.start intrinsic.
2450 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2451   if (LifetimeStartFn)
2452     return LifetimeStartFn;
2453   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2454     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2455   return LifetimeStartFn;
2456 }
2457 
2458 /// Lazily declare the @llvm.lifetime.end intrinsic.
2459 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2460   if (LifetimeEndFn)
2461     return LifetimeEndFn;
2462   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2463     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2464   return LifetimeEndFn;
2465 }
2466 
2467 namespace {
2468   /// A cleanup to perform a release of an object at the end of a
2469   /// function.  This is used to balance out the incoming +1 of a
2470   /// ns_consumed argument when we can't reasonably do that just by
2471   /// not doing the initial retain for a __block argument.
2472   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2473     ConsumeARCParameter(llvm::Value *param,
2474                         ARCPreciseLifetime_t precise)
2475       : Param(param), Precise(precise) {}
2476 
2477     llvm::Value *Param;
2478     ARCPreciseLifetime_t Precise;
2479 
2480     void Emit(CodeGenFunction &CGF, Flags flags) override {
2481       CGF.EmitARCRelease(Param, Precise);
2482     }
2483   };
2484 } // end anonymous namespace
2485 
2486 /// Emit an alloca (or GlobalValue depending on target)
2487 /// for the specified parameter and set up LocalDeclMap.
2488 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2489                                    unsigned ArgNo) {
2490   bool NoDebugInfo = false;
2491   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2492   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2493          "Invalid argument to EmitParmDecl");
2494 
2495   // Set the name of the parameter's initial value to make IR easier to
2496   // read. Don't modify the names of globals.
2497   if (!isa<llvm::GlobalValue>(Arg.getAnyValue()))
2498     Arg.getAnyValue()->setName(D.getName());
2499 
2500   QualType Ty = D.getType();
2501 
2502   // Use better IR generation for certain implicit parameters.
2503   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2504     // The only implicit argument a block has is its literal.
2505     // This may be passed as an inalloca'ed value on Windows x86.
2506     if (BlockInfo) {
2507       llvm::Value *V = Arg.isIndirect()
2508                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2509                            : Arg.getDirectValue();
2510       setBlockContextParameter(IPD, ArgNo, V);
2511       return;
2512     }
2513     // Suppressing debug info for ThreadPrivateVar parameters, else it hides
2514     // debug info of TLS variables.
2515     NoDebugInfo =
2516         (IPD->getParameterKind() == ImplicitParamKind::ThreadPrivateVar);
2517   }
2518 
2519   Address DeclPtr = Address::invalid();
2520   Address AllocaPtr = Address::invalid();
2521   bool DoStore = false;
2522   bool IsScalar = hasScalarEvaluationKind(Ty);
2523   bool UseIndirectDebugAddress = false;
2524 
2525   // If we already have a pointer to the argument, reuse the input pointer.
2526   if (Arg.isIndirect()) {
2527     DeclPtr = Arg.getIndirectAddress();
2528     DeclPtr = DeclPtr.withElementType(ConvertTypeForMem(Ty));
2529     // Indirect argument is in alloca address space, which may be different
2530     // from the default address space.
2531     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2532     auto *V = DeclPtr.getPointer();
2533     AllocaPtr = DeclPtr;
2534 
2535     // For truly ABI indirect arguments -- those that are not `byval` -- store
2536     // the address of the argument on the stack to preserve debug information.
2537     ABIArgInfo ArgInfo = CurFnInfo->arguments()[ArgNo - 1].info;
2538     if (ArgInfo.isIndirect())
2539       UseIndirectDebugAddress = !ArgInfo.getIndirectByVal();
2540     if (UseIndirectDebugAddress) {
2541       auto PtrTy = getContext().getPointerType(Ty);
2542       AllocaPtr = CreateMemTemp(PtrTy, getContext().getTypeAlignInChars(PtrTy),
2543                                 D.getName() + ".indirect_addr");
2544       EmitStoreOfScalar(V, AllocaPtr, /* Volatile */ false, PtrTy);
2545     }
2546 
2547     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2548     auto DestLangAS =
2549         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2550     if (SrcLangAS != DestLangAS) {
2551       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2552              CGM.getDataLayout().getAllocaAddrSpace());
2553       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2554       auto *T = llvm::PointerType::get(getLLVMContext(), DestAS);
2555       DeclPtr =
2556           DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast(
2557                                   *this, V, SrcLangAS, DestLangAS, T, true),
2558                               DeclPtr.isKnownNonNull());
2559     }
2560 
2561     // Push a destructor cleanup for this parameter if the ABI requires it.
2562     // Don't push a cleanup in a thunk for a method that will also emit a
2563     // cleanup.
2564     if (Ty->isRecordType() && !CurFuncIsThunk &&
2565         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2566       if (QualType::DestructionKind DtorKind =
2567               D.needsDestruction(getContext())) {
2568         assert((DtorKind == QualType::DK_cxx_destructor ||
2569                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2570                "unexpected destructor type");
2571         pushDestroy(DtorKind, DeclPtr, Ty);
2572         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2573             EHStack.stable_begin();
2574       }
2575     }
2576   } else {
2577     // Check if the parameter address is controlled by OpenMP runtime.
2578     Address OpenMPLocalAddr =
2579         getLangOpts().OpenMP
2580             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2581             : Address::invalid();
2582     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2583       DeclPtr = OpenMPLocalAddr;
2584       AllocaPtr = DeclPtr;
2585     } else {
2586       // Otherwise, create a temporary to hold the value.
2587       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2588                               D.getName() + ".addr", &AllocaPtr);
2589     }
2590     DoStore = true;
2591   }
2592 
2593   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2594 
2595   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2596   if (IsScalar) {
2597     Qualifiers qs = Ty.getQualifiers();
2598     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2599       // We honor __attribute__((ns_consumed)) for types with lifetime.
2600       // For __strong, it's handled by just skipping the initial retain;
2601       // otherwise we have to balance out the initial +1 with an extra
2602       // cleanup to do the release at the end of the function.
2603       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2604 
2605       // If a parameter is pseudo-strong then we can omit the implicit retain.
2606       if (D.isARCPseudoStrong()) {
2607         assert(lt == Qualifiers::OCL_Strong &&
2608                "pseudo-strong variable isn't strong?");
2609         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2610         lt = Qualifiers::OCL_ExplicitNone;
2611       }
2612 
2613       // Load objects passed indirectly.
2614       if (Arg.isIndirect() && !ArgVal)
2615         ArgVal = Builder.CreateLoad(DeclPtr);
2616 
2617       if (lt == Qualifiers::OCL_Strong) {
2618         if (!isConsumed) {
2619           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2620             // use objc_storeStrong(&dest, value) for retaining the
2621             // object. But first, store a null into 'dest' because
2622             // objc_storeStrong attempts to release its old value.
2623             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2624             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2625             EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2626             DoStore = false;
2627           }
2628           else
2629           // Don't use objc_retainBlock for block pointers, because we
2630           // don't want to Block_copy something just because we got it
2631           // as a parameter.
2632             ArgVal = EmitARCRetainNonBlock(ArgVal);
2633         }
2634       } else {
2635         // Push the cleanup for a consumed parameter.
2636         if (isConsumed) {
2637           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2638                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2639           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2640                                                    precise);
2641         }
2642 
2643         if (lt == Qualifiers::OCL_Weak) {
2644           EmitARCInitWeak(DeclPtr, ArgVal);
2645           DoStore = false; // The weak init is a store, no need to do two.
2646         }
2647       }
2648 
2649       // Enter the cleanup scope.
2650       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2651     }
2652   }
2653 
2654   // Store the initial value into the alloca.
2655   if (DoStore)
2656     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2657 
2658   setAddrOfLocalVar(&D, DeclPtr);
2659 
2660   // Emit debug info for param declarations in non-thunk functions.
2661   if (CGDebugInfo *DI = getDebugInfo()) {
2662     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk &&
2663         !NoDebugInfo) {
2664       llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable(
2665           &D, AllocaPtr.getPointer(), ArgNo, Builder, UseIndirectDebugAddress);
2666       if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D))
2667         DI->getParamDbgMappings().insert({Var, DILocalVar});
2668     }
2669   }
2670 
2671   if (D.hasAttr<AnnotateAttr>())
2672     EmitVarAnnotations(&D, DeclPtr.getPointer());
2673 
2674   // We can only check return value nullability if all arguments to the
2675   // function satisfy their nullability preconditions. This makes it necessary
2676   // to emit null checks for args in the function body itself.
2677   if (requiresReturnValueNullabilityCheck()) {
2678     auto Nullability = Ty->getNullability();
2679     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2680       SanitizerScope SanScope(this);
2681       RetValNullabilityPrecondition =
2682           Builder.CreateAnd(RetValNullabilityPrecondition,
2683                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2684     }
2685   }
2686 }
2687 
2688 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2689                                             CodeGenFunction *CGF) {
2690   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2691     return;
2692   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2693 }
2694 
2695 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2696                                          CodeGenFunction *CGF) {
2697   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2698       (!LangOpts.EmitAllDecls && !D->isUsed()))
2699     return;
2700   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2701 }
2702 
2703 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2704   getOpenMPRuntime().processRequiresDirective(D);
2705 }
2706 
2707 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) {
2708   for (const Expr *E : D->varlists()) {
2709     const auto *DE = cast<DeclRefExpr>(E);
2710     const auto *VD = cast<VarDecl>(DE->getDecl());
2711 
2712     // Skip all but globals.
2713     if (!VD->hasGlobalStorage())
2714       continue;
2715 
2716     // Check if the global has been materialized yet or not. If not, we are done
2717     // as any later generation will utilize the OMPAllocateDeclAttr. However, if
2718     // we already emitted the global we might have done so before the
2719     // OMPAllocateDeclAttr was attached, leading to the wrong address space
2720     // (potentially). While not pretty, common practise is to remove the old IR
2721     // global and generate a new one, so we do that here too. Uses are replaced
2722     // properly.
2723     StringRef MangledName = getMangledName(VD);
2724     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2725     if (!Entry)
2726       continue;
2727 
2728     // We can also keep the existing global if the address space is what we
2729     // expect it to be, if not, it is replaced.
2730     QualType ASTTy = VD->getType();
2731     clang::LangAS GVAS = GetGlobalVarAddressSpace(VD);
2732     auto TargetAS = getContext().getTargetAddressSpace(GVAS);
2733     if (Entry->getType()->getAddressSpace() == TargetAS)
2734       continue;
2735 
2736     // Make a new global with the correct type / address space.
2737     llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
2738     llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS);
2739 
2740     // Replace all uses of the old global with a cast. Since we mutate the type
2741     // in place we neeed an intermediate that takes the spot of the old entry
2742     // until we can create the cast.
2743     llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable(
2744         getModule(), Entry->getValueType(), false,
2745         llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr,
2746         llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace());
2747     Entry->replaceAllUsesWith(DummyGV);
2748 
2749     Entry->mutateType(PTy);
2750     llvm::Constant *NewPtrForOldDecl =
2751         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2752             Entry, DummyGV->getType());
2753 
2754     // Now we have a casted version of the changed global, the dummy can be
2755     // replaced and deleted.
2756     DummyGV->replaceAllUsesWith(NewPtrForOldDecl);
2757     DummyGV->eraseFromParent();
2758   }
2759 }
2760 
2761 std::optional<CharUnits>
2762 CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) {
2763   if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) {
2764     if (Expr *Alignment = AA->getAlignment()) {
2765       unsigned UserAlign =
2766           Alignment->EvaluateKnownConstInt(getContext()).getExtValue();
2767       CharUnits NaturalAlign =
2768           getNaturalTypeAlignment(VD->getType().getNonReferenceType());
2769 
2770       // OpenMP5.1 pg 185 lines 7-10
2771       //   Each item in the align modifier list must be aligned to the maximum
2772       //   of the specified alignment and the type's natural alignment.
2773       return CharUnits::fromQuantity(
2774           std::max<unsigned>(UserAlign, NaturalAlign.getQuantity()));
2775     }
2776   }
2777   return std::nullopt;
2778 }
2779