1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Type.h" 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 void CodeGenFunction::EmitDecl(const Decl &D) { 43 switch (D.getKind()) { 44 case Decl::BuiltinTemplate: 45 case Decl::TranslationUnit: 46 case Decl::ExternCContext: 47 case Decl::Namespace: 48 case Decl::UnresolvedUsingTypename: 49 case Decl::ClassTemplateSpecialization: 50 case Decl::ClassTemplatePartialSpecialization: 51 case Decl::VarTemplateSpecialization: 52 case Decl::VarTemplatePartialSpecialization: 53 case Decl::TemplateTypeParm: 54 case Decl::UnresolvedUsingValue: 55 case Decl::NonTypeTemplateParm: 56 case Decl::CXXDeductionGuide: 57 case Decl::CXXMethod: 58 case Decl::CXXConstructor: 59 case Decl::CXXDestructor: 60 case Decl::CXXConversion: 61 case Decl::Field: 62 case Decl::MSProperty: 63 case Decl::IndirectField: 64 case Decl::ObjCIvar: 65 case Decl::ObjCAtDefsField: 66 case Decl::ParmVar: 67 case Decl::ImplicitParam: 68 case Decl::ClassTemplate: 69 case Decl::VarTemplate: 70 case Decl::FunctionTemplate: 71 case Decl::TypeAliasTemplate: 72 case Decl::TemplateTemplateParm: 73 case Decl::ObjCMethod: 74 case Decl::ObjCCategory: 75 case Decl::ObjCProtocol: 76 case Decl::ObjCInterface: 77 case Decl::ObjCCategoryImpl: 78 case Decl::ObjCImplementation: 79 case Decl::ObjCProperty: 80 case Decl::ObjCCompatibleAlias: 81 case Decl::PragmaComment: 82 case Decl::PragmaDetectMismatch: 83 case Decl::AccessSpec: 84 case Decl::LinkageSpec: 85 case Decl::Export: 86 case Decl::ObjCPropertyImpl: 87 case Decl::FileScopeAsm: 88 case Decl::Friend: 89 case Decl::FriendTemplate: 90 case Decl::Block: 91 case Decl::Captured: 92 case Decl::ClassScopeFunctionSpecialization: 93 case Decl::UsingShadow: 94 case Decl::ConstructorUsingShadow: 95 case Decl::ObjCTypeParam: 96 case Decl::Binding: 97 llvm_unreachable("Declaration should not be in declstmts!"); 98 case Decl::Function: // void X(); 99 case Decl::Record: // struct/union/class X; 100 case Decl::Enum: // enum X; 101 case Decl::EnumConstant: // enum ? { X = ? } 102 case Decl::CXXRecord: // struct/union/class X; [C++] 103 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 104 case Decl::Label: // __label__ x; 105 case Decl::Import: 106 case Decl::OMPThreadPrivate: 107 case Decl::OMPAllocate: 108 case Decl::OMPCapturedExpr: 109 case Decl::OMPRequires: 110 case Decl::Empty: 111 case Decl::Concept: 112 // None of these decls require codegen support. 113 return; 114 115 case Decl::NamespaceAlias: 116 if (CGDebugInfo *DI = getDebugInfo()) 117 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 118 return; 119 case Decl::Using: // using X; [C++] 120 if (CGDebugInfo *DI = getDebugInfo()) 121 DI->EmitUsingDecl(cast<UsingDecl>(D)); 122 return; 123 case Decl::UsingPack: 124 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 125 EmitDecl(*Using); 126 return; 127 case Decl::UsingDirective: // using namespace X; [C++] 128 if (CGDebugInfo *DI = getDebugInfo()) 129 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 130 return; 131 case Decl::Var: 132 case Decl::Decomposition: { 133 const VarDecl &VD = cast<VarDecl>(D); 134 assert(VD.isLocalVarDecl() && 135 "Should not see file-scope variables inside a function!"); 136 EmitVarDecl(VD); 137 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 138 for (auto *B : DD->bindings()) 139 if (auto *HD = B->getHoldingVar()) 140 EmitVarDecl(*HD); 141 return; 142 } 143 144 case Decl::OMPDeclareReduction: 145 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 146 147 case Decl::OMPDeclareMapper: 148 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 149 150 case Decl::Typedef: // typedef int X; 151 case Decl::TypeAlias: { // using X = int; [C++0x] 152 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 153 QualType Ty = TD.getUnderlyingType(); 154 155 if (Ty->isVariablyModifiedType()) 156 EmitVariablyModifiedType(Ty); 157 158 return; 159 } 160 } 161 } 162 163 /// EmitVarDecl - This method handles emission of any variable declaration 164 /// inside a function, including static vars etc. 165 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 166 if (D.hasExternalStorage()) 167 // Don't emit it now, allow it to be emitted lazily on its first use. 168 return; 169 170 // Some function-scope variable does not have static storage but still 171 // needs to be emitted like a static variable, e.g. a function-scope 172 // variable in constant address space in OpenCL. 173 if (D.getStorageDuration() != SD_Automatic) { 174 // Static sampler variables translated to function calls. 175 if (D.getType()->isSamplerT()) 176 return; 177 178 llvm::GlobalValue::LinkageTypes Linkage = 179 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 180 181 // FIXME: We need to force the emission/use of a guard variable for 182 // some variables even if we can constant-evaluate them because 183 // we can't guarantee every translation unit will constant-evaluate them. 184 185 return EmitStaticVarDecl(D, Linkage); 186 } 187 188 if (D.getType().getAddressSpace() == LangAS::opencl_local) 189 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 190 191 assert(D.hasLocalStorage()); 192 return EmitAutoVarDecl(D); 193 } 194 195 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 196 if (CGM.getLangOpts().CPlusPlus) 197 return CGM.getMangledName(&D).str(); 198 199 // If this isn't C++, we don't need a mangled name, just a pretty one. 200 assert(!D.isExternallyVisible() && "name shouldn't matter"); 201 std::string ContextName; 202 const DeclContext *DC = D.getDeclContext(); 203 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 204 DC = cast<DeclContext>(CD->getNonClosureContext()); 205 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 206 ContextName = CGM.getMangledName(FD); 207 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 208 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 209 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 210 ContextName = OMD->getSelector().getAsString(); 211 else 212 llvm_unreachable("Unknown context for static var decl"); 213 214 ContextName += "." + D.getNameAsString(); 215 return ContextName; 216 } 217 218 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 219 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 220 // In general, we don't always emit static var decls once before we reference 221 // them. It is possible to reference them before emitting the function that 222 // contains them, and it is possible to emit the containing function multiple 223 // times. 224 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 225 return ExistingGV; 226 227 QualType Ty = D.getType(); 228 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 229 230 // Use the label if the variable is renamed with the asm-label extension. 231 std::string Name; 232 if (D.hasAttr<AsmLabelAttr>()) 233 Name = getMangledName(&D); 234 else 235 Name = getStaticDeclName(*this, D); 236 237 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 238 LangAS AS = GetGlobalVarAddressSpace(&D); 239 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 240 241 // OpenCL variables in local address space and CUDA shared 242 // variables cannot have an initializer. 243 llvm::Constant *Init = nullptr; 244 if (Ty.getAddressSpace() == LangAS::opencl_local || 245 D.hasAttr<CUDASharedAttr>()) 246 Init = llvm::UndefValue::get(LTy); 247 else 248 Init = EmitNullConstant(Ty); 249 250 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 251 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 252 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 253 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 254 255 if (supportsCOMDAT() && GV->isWeakForLinker()) 256 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 257 258 if (D.getTLSKind()) 259 setTLSMode(GV, D); 260 261 setGVProperties(GV, &D); 262 263 // Make sure the result is of the correct type. 264 LangAS ExpectedAS = Ty.getAddressSpace(); 265 llvm::Constant *Addr = GV; 266 if (AS != ExpectedAS) { 267 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 268 *this, GV, AS, ExpectedAS, 269 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 270 } 271 272 setStaticLocalDeclAddress(&D, Addr); 273 274 // Ensure that the static local gets initialized by making sure the parent 275 // function gets emitted eventually. 276 const Decl *DC = cast<Decl>(D.getDeclContext()); 277 278 // We can't name blocks or captured statements directly, so try to emit their 279 // parents. 280 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 281 DC = DC->getNonClosureContext(); 282 // FIXME: Ensure that global blocks get emitted. 283 if (!DC) 284 return Addr; 285 } 286 287 GlobalDecl GD; 288 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 289 GD = GlobalDecl(CD, Ctor_Base); 290 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 291 GD = GlobalDecl(DD, Dtor_Base); 292 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 293 GD = GlobalDecl(FD); 294 else { 295 // Don't do anything for Obj-C method decls or global closures. We should 296 // never defer them. 297 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 298 } 299 if (GD.getDecl()) { 300 // Disable emission of the parent function for the OpenMP device codegen. 301 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 302 (void)GetAddrOfGlobal(GD); 303 } 304 305 return Addr; 306 } 307 308 /// hasNontrivialDestruction - Determine whether a type's destruction is 309 /// non-trivial. If so, and the variable uses static initialization, we must 310 /// register its destructor to run on exit. 311 static bool hasNontrivialDestruction(QualType T) { 312 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 313 return RD && !RD->hasTrivialDestructor(); 314 } 315 316 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 317 /// global variable that has already been created for it. If the initializer 318 /// has a different type than GV does, this may free GV and return a different 319 /// one. Otherwise it just returns GV. 320 llvm::GlobalVariable * 321 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 322 llvm::GlobalVariable *GV) { 323 ConstantEmitter emitter(*this); 324 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 325 326 // If constant emission failed, then this should be a C++ static 327 // initializer. 328 if (!Init) { 329 if (!getLangOpts().CPlusPlus) 330 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 331 else if (HaveInsertPoint()) { 332 // Since we have a static initializer, this global variable can't 333 // be constant. 334 GV->setConstant(false); 335 336 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 337 } 338 return GV; 339 } 340 341 // The initializer may differ in type from the global. Rewrite 342 // the global to match the initializer. (We have to do this 343 // because some types, like unions, can't be completely represented 344 // in the LLVM type system.) 345 if (GV->getType()->getElementType() != Init->getType()) { 346 llvm::GlobalVariable *OldGV = GV; 347 348 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 349 OldGV->isConstant(), 350 OldGV->getLinkage(), Init, "", 351 /*InsertBefore*/ OldGV, 352 OldGV->getThreadLocalMode(), 353 CGM.getContext().getTargetAddressSpace(D.getType())); 354 GV->setVisibility(OldGV->getVisibility()); 355 GV->setDSOLocal(OldGV->isDSOLocal()); 356 GV->setComdat(OldGV->getComdat()); 357 358 // Steal the name of the old global 359 GV->takeName(OldGV); 360 361 // Replace all uses of the old global with the new global 362 llvm::Constant *NewPtrForOldDecl = 363 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 364 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 365 366 // Erase the old global, since it is no longer used. 367 OldGV->eraseFromParent(); 368 } 369 370 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 371 GV->setInitializer(Init); 372 373 emitter.finalize(GV); 374 375 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 376 // We have a constant initializer, but a nontrivial destructor. We still 377 // need to perform a guarded "initialization" in order to register the 378 // destructor. 379 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 380 } 381 382 return GV; 383 } 384 385 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 386 llvm::GlobalValue::LinkageTypes Linkage) { 387 // Check to see if we already have a global variable for this 388 // declaration. This can happen when double-emitting function 389 // bodies, e.g. with complete and base constructors. 390 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 391 CharUnits alignment = getContext().getDeclAlign(&D); 392 393 // Store into LocalDeclMap before generating initializer to handle 394 // circular references. 395 setAddrOfLocalVar(&D, Address(addr, alignment)); 396 397 // We can't have a VLA here, but we can have a pointer to a VLA, 398 // even though that doesn't really make any sense. 399 // Make sure to evaluate VLA bounds now so that we have them for later. 400 if (D.getType()->isVariablyModifiedType()) 401 EmitVariablyModifiedType(D.getType()); 402 403 // Save the type in case adding the initializer forces a type change. 404 llvm::Type *expectedType = addr->getType(); 405 406 llvm::GlobalVariable *var = 407 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 408 409 // CUDA's local and local static __shared__ variables should not 410 // have any non-empty initializers. This is ensured by Sema. 411 // Whatever initializer such variable may have when it gets here is 412 // a no-op and should not be emitted. 413 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 414 D.hasAttr<CUDASharedAttr>(); 415 // If this value has an initializer, emit it. 416 if (D.getInit() && !isCudaSharedVar) 417 var = AddInitializerToStaticVarDecl(D, var); 418 419 var->setAlignment(alignment.getQuantity()); 420 421 if (D.hasAttr<AnnotateAttr>()) 422 CGM.AddGlobalAnnotations(&D, var); 423 424 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 425 var->addAttribute("bss-section", SA->getName()); 426 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 427 var->addAttribute("data-section", SA->getName()); 428 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 429 var->addAttribute("rodata-section", SA->getName()); 430 431 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 432 var->setSection(SA->getName()); 433 434 if (D.hasAttr<UsedAttr>()) 435 CGM.addUsedGlobal(var); 436 437 // We may have to cast the constant because of the initializer 438 // mismatch above. 439 // 440 // FIXME: It is really dangerous to store this in the map; if anyone 441 // RAUW's the GV uses of this constant will be invalid. 442 llvm::Constant *castedAddr = 443 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 444 if (var != castedAddr) 445 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 446 CGM.setStaticLocalDeclAddress(&D, castedAddr); 447 448 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 449 450 // Emit global variable debug descriptor for static vars. 451 CGDebugInfo *DI = getDebugInfo(); 452 if (DI && 453 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 454 DI->setLocation(D.getLocation()); 455 DI->EmitGlobalVariable(var, &D); 456 } 457 } 458 459 namespace { 460 struct DestroyObject final : EHScopeStack::Cleanup { 461 DestroyObject(Address addr, QualType type, 462 CodeGenFunction::Destroyer *destroyer, 463 bool useEHCleanupForArray) 464 : addr(addr), type(type), destroyer(destroyer), 465 useEHCleanupForArray(useEHCleanupForArray) {} 466 467 Address addr; 468 QualType type; 469 CodeGenFunction::Destroyer *destroyer; 470 bool useEHCleanupForArray; 471 472 void Emit(CodeGenFunction &CGF, Flags flags) override { 473 // Don't use an EH cleanup recursively from an EH cleanup. 474 bool useEHCleanupForArray = 475 flags.isForNormalCleanup() && this->useEHCleanupForArray; 476 477 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 478 } 479 }; 480 481 template <class Derived> 482 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 483 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 484 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 485 486 llvm::Value *NRVOFlag; 487 Address Loc; 488 QualType Ty; 489 490 void Emit(CodeGenFunction &CGF, Flags flags) override { 491 // Along the exceptions path we always execute the dtor. 492 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 493 494 llvm::BasicBlock *SkipDtorBB = nullptr; 495 if (NRVO) { 496 // If we exited via NRVO, we skip the destructor call. 497 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 498 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 499 llvm::Value *DidNRVO = 500 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 501 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 502 CGF.EmitBlock(RunDtorBB); 503 } 504 505 static_cast<Derived *>(this)->emitDestructorCall(CGF); 506 507 if (NRVO) CGF.EmitBlock(SkipDtorBB); 508 } 509 510 virtual ~DestroyNRVOVariable() = default; 511 }; 512 513 struct DestroyNRVOVariableCXX final 514 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 515 DestroyNRVOVariableCXX(Address addr, QualType type, 516 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 517 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 518 Dtor(Dtor) {} 519 520 const CXXDestructorDecl *Dtor; 521 522 void emitDestructorCall(CodeGenFunction &CGF) { 523 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 524 /*ForVirtualBase=*/false, 525 /*Delegating=*/false, Loc, Ty); 526 } 527 }; 528 529 struct DestroyNRVOVariableC final 530 : DestroyNRVOVariable<DestroyNRVOVariableC> { 531 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 532 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 533 534 void emitDestructorCall(CodeGenFunction &CGF) { 535 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 536 } 537 }; 538 539 struct CallStackRestore final : EHScopeStack::Cleanup { 540 Address Stack; 541 CallStackRestore(Address Stack) : Stack(Stack) {} 542 void Emit(CodeGenFunction &CGF, Flags flags) override { 543 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 544 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 545 CGF.Builder.CreateCall(F, V); 546 } 547 }; 548 549 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 550 const VarDecl &Var; 551 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 552 553 void Emit(CodeGenFunction &CGF, Flags flags) override { 554 // Compute the address of the local variable, in case it's a 555 // byref or something. 556 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 557 Var.getType(), VK_LValue, SourceLocation()); 558 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 559 SourceLocation()); 560 CGF.EmitExtendGCLifetime(value); 561 } 562 }; 563 564 struct CallCleanupFunction final : EHScopeStack::Cleanup { 565 llvm::Constant *CleanupFn; 566 const CGFunctionInfo &FnInfo; 567 const VarDecl &Var; 568 569 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 570 const VarDecl *Var) 571 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 572 573 void Emit(CodeGenFunction &CGF, Flags flags) override { 574 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 575 Var.getType(), VK_LValue, SourceLocation()); 576 // Compute the address of the local variable, in case it's a byref 577 // or something. 578 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 579 580 // In some cases, the type of the function argument will be different from 581 // the type of the pointer. An example of this is 582 // void f(void* arg); 583 // __attribute__((cleanup(f))) void *g; 584 // 585 // To fix this we insert a bitcast here. 586 QualType ArgTy = FnInfo.arg_begin()->type; 587 llvm::Value *Arg = 588 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 589 590 CallArgList Args; 591 Args.add(RValue::get(Arg), 592 CGF.getContext().getPointerType(Var.getType())); 593 auto Callee = CGCallee::forDirect(CleanupFn); 594 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 595 } 596 }; 597 } // end anonymous namespace 598 599 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 600 /// variable with lifetime. 601 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 602 Address addr, 603 Qualifiers::ObjCLifetime lifetime) { 604 switch (lifetime) { 605 case Qualifiers::OCL_None: 606 llvm_unreachable("present but none"); 607 608 case Qualifiers::OCL_ExplicitNone: 609 // nothing to do 610 break; 611 612 case Qualifiers::OCL_Strong: { 613 CodeGenFunction::Destroyer *destroyer = 614 (var.hasAttr<ObjCPreciseLifetimeAttr>() 615 ? CodeGenFunction::destroyARCStrongPrecise 616 : CodeGenFunction::destroyARCStrongImprecise); 617 618 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 619 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 620 cleanupKind & EHCleanup); 621 break; 622 } 623 case Qualifiers::OCL_Autoreleasing: 624 // nothing to do 625 break; 626 627 case Qualifiers::OCL_Weak: 628 // __weak objects always get EH cleanups; otherwise, exceptions 629 // could cause really nasty crashes instead of mere leaks. 630 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 631 CodeGenFunction::destroyARCWeak, 632 /*useEHCleanup*/ true); 633 break; 634 } 635 } 636 637 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 638 if (const Expr *e = dyn_cast<Expr>(s)) { 639 // Skip the most common kinds of expressions that make 640 // hierarchy-walking expensive. 641 s = e = e->IgnoreParenCasts(); 642 643 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 644 return (ref->getDecl() == &var); 645 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 646 const BlockDecl *block = be->getBlockDecl(); 647 for (const auto &I : block->captures()) { 648 if (I.getVariable() == &var) 649 return true; 650 } 651 } 652 } 653 654 for (const Stmt *SubStmt : s->children()) 655 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 656 if (SubStmt && isAccessedBy(var, SubStmt)) 657 return true; 658 659 return false; 660 } 661 662 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 663 if (!decl) return false; 664 if (!isa<VarDecl>(decl)) return false; 665 const VarDecl *var = cast<VarDecl>(decl); 666 return isAccessedBy(*var, e); 667 } 668 669 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 670 const LValue &destLV, const Expr *init) { 671 bool needsCast = false; 672 673 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 674 switch (castExpr->getCastKind()) { 675 // Look through casts that don't require representation changes. 676 case CK_NoOp: 677 case CK_BitCast: 678 case CK_BlockPointerToObjCPointerCast: 679 needsCast = true; 680 break; 681 682 // If we find an l-value to r-value cast from a __weak variable, 683 // emit this operation as a copy or move. 684 case CK_LValueToRValue: { 685 const Expr *srcExpr = castExpr->getSubExpr(); 686 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 687 return false; 688 689 // Emit the source l-value. 690 LValue srcLV = CGF.EmitLValue(srcExpr); 691 692 // Handle a formal type change to avoid asserting. 693 auto srcAddr = srcLV.getAddress(); 694 if (needsCast) { 695 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 696 destLV.getAddress().getElementType()); 697 } 698 699 // If it was an l-value, use objc_copyWeak. 700 if (srcExpr->getValueKind() == VK_LValue) { 701 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 702 } else { 703 assert(srcExpr->getValueKind() == VK_XValue); 704 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 705 } 706 return true; 707 } 708 709 // Stop at anything else. 710 default: 711 return false; 712 } 713 714 init = castExpr->getSubExpr(); 715 } 716 return false; 717 } 718 719 static void drillIntoBlockVariable(CodeGenFunction &CGF, 720 LValue &lvalue, 721 const VarDecl *var) { 722 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 723 } 724 725 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 726 SourceLocation Loc) { 727 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 728 return; 729 730 auto Nullability = LHS.getType()->getNullability(getContext()); 731 if (!Nullability || *Nullability != NullabilityKind::NonNull) 732 return; 733 734 // Check if the right hand side of the assignment is nonnull, if the left 735 // hand side must be nonnull. 736 SanitizerScope SanScope(this); 737 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 738 llvm::Constant *StaticData[] = { 739 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 740 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 741 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 742 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 743 SanitizerHandler::TypeMismatch, StaticData, RHS); 744 } 745 746 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 747 LValue lvalue, bool capturedByInit) { 748 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 749 if (!lifetime) { 750 llvm::Value *value = EmitScalarExpr(init); 751 if (capturedByInit) 752 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 753 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 754 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 755 return; 756 } 757 758 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 759 init = DIE->getExpr(); 760 761 // If we're emitting a value with lifetime, we have to do the 762 // initialization *before* we leave the cleanup scopes. 763 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 764 enterFullExpression(fe); 765 init = fe->getSubExpr(); 766 } 767 CodeGenFunction::RunCleanupsScope Scope(*this); 768 769 // We have to maintain the illusion that the variable is 770 // zero-initialized. If the variable might be accessed in its 771 // initializer, zero-initialize before running the initializer, then 772 // actually perform the initialization with an assign. 773 bool accessedByInit = false; 774 if (lifetime != Qualifiers::OCL_ExplicitNone) 775 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 776 if (accessedByInit) { 777 LValue tempLV = lvalue; 778 // Drill down to the __block object if necessary. 779 if (capturedByInit) { 780 // We can use a simple GEP for this because it can't have been 781 // moved yet. 782 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 783 cast<VarDecl>(D), 784 /*follow*/ false)); 785 } 786 787 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 788 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 789 790 // If __weak, we want to use a barrier under certain conditions. 791 if (lifetime == Qualifiers::OCL_Weak) 792 EmitARCInitWeak(tempLV.getAddress(), zero); 793 794 // Otherwise just do a simple store. 795 else 796 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 797 } 798 799 // Emit the initializer. 800 llvm::Value *value = nullptr; 801 802 switch (lifetime) { 803 case Qualifiers::OCL_None: 804 llvm_unreachable("present but none"); 805 806 case Qualifiers::OCL_Strong: { 807 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 808 value = EmitARCRetainScalarExpr(init); 809 break; 810 } 811 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 812 // that we omit the retain, and causes non-autoreleased return values to be 813 // immediately released. 814 LLVM_FALLTHROUGH; 815 } 816 817 case Qualifiers::OCL_ExplicitNone: 818 value = EmitARCUnsafeUnretainedScalarExpr(init); 819 break; 820 821 case Qualifiers::OCL_Weak: { 822 // If it's not accessed by the initializer, try to emit the 823 // initialization with a copy or move. 824 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 825 return; 826 } 827 828 // No way to optimize a producing initializer into this. It's not 829 // worth optimizing for, because the value will immediately 830 // disappear in the common case. 831 value = EmitScalarExpr(init); 832 833 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 834 if (accessedByInit) 835 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 836 else 837 EmitARCInitWeak(lvalue.getAddress(), value); 838 return; 839 } 840 841 case Qualifiers::OCL_Autoreleasing: 842 value = EmitARCRetainAutoreleaseScalarExpr(init); 843 break; 844 } 845 846 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 847 848 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 849 850 // If the variable might have been accessed by its initializer, we 851 // might have to initialize with a barrier. We have to do this for 852 // both __weak and __strong, but __weak got filtered out above. 853 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 854 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 855 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 856 EmitARCRelease(oldValue, ARCImpreciseLifetime); 857 return; 858 } 859 860 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 861 } 862 863 /// Decide whether we can emit the non-zero parts of the specified initializer 864 /// with equal or fewer than NumStores scalar stores. 865 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 866 unsigned &NumStores) { 867 // Zero and Undef never requires any extra stores. 868 if (isa<llvm::ConstantAggregateZero>(Init) || 869 isa<llvm::ConstantPointerNull>(Init) || 870 isa<llvm::UndefValue>(Init)) 871 return true; 872 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 873 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 874 isa<llvm::ConstantExpr>(Init)) 875 return Init->isNullValue() || NumStores--; 876 877 // See if we can emit each element. 878 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 879 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 880 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 881 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 882 return false; 883 } 884 return true; 885 } 886 887 if (llvm::ConstantDataSequential *CDS = 888 dyn_cast<llvm::ConstantDataSequential>(Init)) { 889 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 890 llvm::Constant *Elt = CDS->getElementAsConstant(i); 891 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 892 return false; 893 } 894 return true; 895 } 896 897 // Anything else is hard and scary. 898 return false; 899 } 900 901 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 902 /// the scalar stores that would be required. 903 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 904 llvm::Constant *Init, Address Loc, 905 bool isVolatile, CGBuilderTy &Builder) { 906 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 907 "called emitStoresForInitAfterBZero for zero or undef value."); 908 909 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 910 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 911 isa<llvm::ConstantExpr>(Init)) { 912 Builder.CreateStore(Init, Loc, isVolatile); 913 return; 914 } 915 916 if (llvm::ConstantDataSequential *CDS = 917 dyn_cast<llvm::ConstantDataSequential>(Init)) { 918 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 919 llvm::Constant *Elt = CDS->getElementAsConstant(i); 920 921 // If necessary, get a pointer to the element and emit it. 922 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 923 emitStoresForInitAfterBZero( 924 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 925 Builder); 926 } 927 return; 928 } 929 930 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 931 "Unknown value type!"); 932 933 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 934 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 935 936 // If necessary, get a pointer to the element and emit it. 937 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 938 emitStoresForInitAfterBZero(CGM, Elt, 939 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 940 isVolatile, Builder); 941 } 942 } 943 944 /// Decide whether we should use bzero plus some stores to initialize a local 945 /// variable instead of using a memcpy from a constant global. It is beneficial 946 /// to use bzero if the global is all zeros, or mostly zeros and large. 947 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 948 uint64_t GlobalSize) { 949 // If a global is all zeros, always use a bzero. 950 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 951 952 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 953 // do it if it will require 6 or fewer scalar stores. 954 // TODO: Should budget depends on the size? Avoiding a large global warrants 955 // plopping in more stores. 956 unsigned StoreBudget = 6; 957 uint64_t SizeLimit = 32; 958 959 return GlobalSize > SizeLimit && 960 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 961 } 962 963 /// Decide whether we should use memset to initialize a local variable instead 964 /// of using a memcpy from a constant global. Assumes we've already decided to 965 /// not user bzero. 966 /// FIXME We could be more clever, as we are for bzero above, and generate 967 /// memset followed by stores. It's unclear that's worth the effort. 968 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 969 uint64_t GlobalSize, 970 const llvm::DataLayout &DL) { 971 uint64_t SizeLimit = 32; 972 if (GlobalSize <= SizeLimit) 973 return nullptr; 974 return llvm::isBytewiseValue(Init, DL); 975 } 976 977 /// Decide whether we want to split a constant structure or array store into a 978 /// sequence of its fields' stores. This may cost us code size and compilation 979 /// speed, but plays better with store optimizations. 980 static bool shouldSplitConstantStore(CodeGenModule &CGM, 981 uint64_t GlobalByteSize) { 982 // Don't break things that occupy more than one cacheline. 983 uint64_t ByteSizeLimit = 64; 984 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 985 return false; 986 if (GlobalByteSize <= ByteSizeLimit) 987 return true; 988 return false; 989 } 990 991 enum class IsPattern { No, Yes }; 992 993 /// Generate a constant filled with either a pattern or zeroes. 994 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 995 llvm::Type *Ty) { 996 if (isPattern == IsPattern::Yes) 997 return initializationPatternFor(CGM, Ty); 998 else 999 return llvm::Constant::getNullValue(Ty); 1000 } 1001 1002 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1003 llvm::Constant *constant); 1004 1005 /// Helper function for constWithPadding() to deal with padding in structures. 1006 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1007 IsPattern isPattern, 1008 llvm::StructType *STy, 1009 llvm::Constant *constant) { 1010 const llvm::DataLayout &DL = CGM.getDataLayout(); 1011 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1012 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1013 unsigned SizeSoFar = 0; 1014 SmallVector<llvm::Constant *, 8> Values; 1015 bool NestedIntact = true; 1016 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1017 unsigned CurOff = Layout->getElementOffset(i); 1018 if (SizeSoFar < CurOff) { 1019 assert(!STy->isPacked()); 1020 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1021 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1022 } 1023 llvm::Constant *CurOp; 1024 if (constant->isZeroValue()) 1025 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1026 else 1027 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1028 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1029 if (CurOp != NewOp) 1030 NestedIntact = false; 1031 Values.push_back(NewOp); 1032 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1033 } 1034 unsigned TotalSize = Layout->getSizeInBytes(); 1035 if (SizeSoFar < TotalSize) { 1036 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1037 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1038 } 1039 if (NestedIntact && Values.size() == STy->getNumElements()) 1040 return constant; 1041 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1042 } 1043 1044 /// Replace all padding bytes in a given constant with either a pattern byte or 1045 /// 0x00. 1046 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1047 llvm::Constant *constant) { 1048 llvm::Type *OrigTy = constant->getType(); 1049 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1050 return constStructWithPadding(CGM, isPattern, STy, constant); 1051 if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) { 1052 llvm::SmallVector<llvm::Constant *, 8> Values; 1053 unsigned Size = STy->getNumElements(); 1054 if (!Size) 1055 return constant; 1056 llvm::Type *ElemTy = STy->getElementType(); 1057 bool ZeroInitializer = constant->isZeroValue(); 1058 llvm::Constant *OpValue, *PaddedOp; 1059 if (ZeroInitializer) { 1060 OpValue = llvm::Constant::getNullValue(ElemTy); 1061 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1062 } 1063 for (unsigned Op = 0; Op != Size; ++Op) { 1064 if (!ZeroInitializer) { 1065 OpValue = constant->getAggregateElement(Op); 1066 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1067 } 1068 Values.push_back(PaddedOp); 1069 } 1070 auto *NewElemTy = Values[0]->getType(); 1071 if (NewElemTy == ElemTy) 1072 return constant; 1073 if (OrigTy->isArrayTy()) { 1074 auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1075 return llvm::ConstantArray::get(ArrayTy, Values); 1076 } else { 1077 return llvm::ConstantVector::get(Values); 1078 } 1079 } 1080 return constant; 1081 } 1082 1083 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1084 llvm::Constant *Constant, 1085 CharUnits Align) { 1086 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1087 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1088 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1089 return CC->getNameAsString(); 1090 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1091 return CD->getNameAsString(); 1092 return getMangledName(FD); 1093 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1094 return OM->getNameAsString(); 1095 } else if (isa<BlockDecl>(DC)) { 1096 return "<block>"; 1097 } else if (isa<CapturedDecl>(DC)) { 1098 return "<captured>"; 1099 } else { 1100 llvm_unreachable("expected a function or method"); 1101 } 1102 }; 1103 1104 // Form a simple per-variable cache of these values in case we find we 1105 // want to reuse them. 1106 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1107 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1108 auto *Ty = Constant->getType(); 1109 bool isConstant = true; 1110 llvm::GlobalVariable *InsertBefore = nullptr; 1111 unsigned AS = 1112 getContext().getTargetAddressSpace(getStringLiteralAddressSpace()); 1113 std::string Name; 1114 if (D.hasGlobalStorage()) 1115 Name = getMangledName(&D).str() + ".const"; 1116 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1117 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1118 else 1119 llvm_unreachable("local variable has no parent function or method"); 1120 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1121 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1122 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1123 GV->setAlignment(Align.getQuantity()); 1124 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1125 CacheEntry = GV; 1126 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1127 CacheEntry->setAlignment(Align.getQuantity()); 1128 } 1129 1130 return Address(CacheEntry, Align); 1131 } 1132 1133 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1134 const VarDecl &D, 1135 CGBuilderTy &Builder, 1136 llvm::Constant *Constant, 1137 CharUnits Align) { 1138 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1139 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1140 SrcPtr.getAddressSpace()); 1141 if (SrcPtr.getType() != BP) 1142 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1143 return SrcPtr; 1144 } 1145 1146 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1147 Address Loc, bool isVolatile, 1148 CGBuilderTy &Builder, 1149 llvm::Constant *constant) { 1150 auto *Ty = constant->getType(); 1151 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1152 if (!ConstantSize) 1153 return; 1154 1155 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1156 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1157 if (canDoSingleStore) { 1158 Builder.CreateStore(constant, Loc, isVolatile); 1159 return; 1160 } 1161 1162 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1163 1164 // If the initializer is all or mostly the same, codegen with bzero / memset 1165 // then do a few stores afterward. 1166 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1167 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal, 1168 isVolatile); 1169 1170 bool valueAlreadyCorrect = 1171 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1172 if (!valueAlreadyCorrect) { 1173 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1174 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1175 } 1176 return; 1177 } 1178 1179 // If the initializer is a repeated byte pattern, use memset. 1180 llvm::Value *Pattern = 1181 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1182 if (Pattern) { 1183 uint64_t Value = 0x00; 1184 if (!isa<llvm::UndefValue>(Pattern)) { 1185 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1186 assert(AP.getBitWidth() <= 8); 1187 Value = AP.getLimitedValue(); 1188 } 1189 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, 1190 isVolatile); 1191 return; 1192 } 1193 1194 // If the initializer is small, use a handful of stores. 1195 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1196 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1197 // FIXME: handle the case when STy != Loc.getElementType(). 1198 if (STy == Loc.getElementType()) { 1199 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1200 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1201 emitStoresForConstant( 1202 CGM, D, EltPtr, isVolatile, Builder, 1203 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1204 } 1205 return; 1206 } 1207 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1208 // FIXME: handle the case when ATy != Loc.getElementType(). 1209 if (ATy == Loc.getElementType()) { 1210 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1211 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1212 emitStoresForConstant( 1213 CGM, D, EltPtr, isVolatile, Builder, 1214 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1215 } 1216 return; 1217 } 1218 } 1219 } 1220 1221 // Copy from a global. 1222 Builder.CreateMemCpy(Loc, 1223 createUnnamedGlobalForMemcpyFrom( 1224 CGM, D, Builder, constant, Loc.getAlignment()), 1225 SizeVal, isVolatile); 1226 } 1227 1228 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1229 Address Loc, bool isVolatile, 1230 CGBuilderTy &Builder) { 1231 llvm::Type *ElTy = Loc.getElementType(); 1232 llvm::Constant *constant = 1233 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1234 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1235 } 1236 1237 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1238 Address Loc, bool isVolatile, 1239 CGBuilderTy &Builder) { 1240 llvm::Type *ElTy = Loc.getElementType(); 1241 llvm::Constant *constant = constWithPadding( 1242 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1243 assert(!isa<llvm::UndefValue>(constant)); 1244 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1245 } 1246 1247 static bool containsUndef(llvm::Constant *constant) { 1248 auto *Ty = constant->getType(); 1249 if (isa<llvm::UndefValue>(constant)) 1250 return true; 1251 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1252 for (llvm::Use &Op : constant->operands()) 1253 if (containsUndef(cast<llvm::Constant>(Op))) 1254 return true; 1255 return false; 1256 } 1257 1258 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1259 llvm::Constant *constant) { 1260 auto *Ty = constant->getType(); 1261 if (isa<llvm::UndefValue>(constant)) 1262 return patternOrZeroFor(CGM, isPattern, Ty); 1263 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1264 return constant; 1265 if (!containsUndef(constant)) 1266 return constant; 1267 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1268 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1269 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1270 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1271 } 1272 if (Ty->isStructTy()) 1273 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1274 if (Ty->isArrayTy()) 1275 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1276 assert(Ty->isVectorTy()); 1277 return llvm::ConstantVector::get(Values); 1278 } 1279 1280 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1281 /// variable declaration with auto, register, or no storage class specifier. 1282 /// These turn into simple stack objects, or GlobalValues depending on target. 1283 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1284 AutoVarEmission emission = EmitAutoVarAlloca(D); 1285 EmitAutoVarInit(emission); 1286 EmitAutoVarCleanups(emission); 1287 } 1288 1289 /// Emit a lifetime.begin marker if some criteria are satisfied. 1290 /// \return a pointer to the temporary size Value if a marker was emitted, null 1291 /// otherwise 1292 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1293 llvm::Value *Addr) { 1294 if (!ShouldEmitLifetimeMarkers) 1295 return nullptr; 1296 1297 assert(Addr->getType()->getPointerAddressSpace() == 1298 CGM.getDataLayout().getAllocaAddrSpace() && 1299 "Pointer should be in alloca address space"); 1300 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1301 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1302 llvm::CallInst *C = 1303 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1304 C->setDoesNotThrow(); 1305 return SizeV; 1306 } 1307 1308 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1309 assert(Addr->getType()->getPointerAddressSpace() == 1310 CGM.getDataLayout().getAllocaAddrSpace() && 1311 "Pointer should be in alloca address space"); 1312 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1313 llvm::CallInst *C = 1314 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1315 C->setDoesNotThrow(); 1316 } 1317 1318 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1319 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1320 // For each dimension stores its QualType and corresponding 1321 // size-expression Value. 1322 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1323 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1324 1325 // Break down the array into individual dimensions. 1326 QualType Type1D = D.getType(); 1327 while (getContext().getAsVariableArrayType(Type1D)) { 1328 auto VlaSize = getVLAElements1D(Type1D); 1329 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1330 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1331 else { 1332 // Generate a locally unique name for the size expression. 1333 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1334 SmallString<12> Buffer; 1335 StringRef NameRef = Name.toStringRef(Buffer); 1336 auto &Ident = getContext().Idents.getOwn(NameRef); 1337 VLAExprNames.push_back(&Ident); 1338 auto SizeExprAddr = 1339 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1340 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1341 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1342 Type1D.getUnqualifiedType()); 1343 } 1344 Type1D = VlaSize.Type; 1345 } 1346 1347 if (!EmitDebugInfo) 1348 return; 1349 1350 // Register each dimension's size-expression with a DILocalVariable, 1351 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1352 // to describe this array. 1353 unsigned NameIdx = 0; 1354 for (auto &VlaSize : Dimensions) { 1355 llvm::Metadata *MD; 1356 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1357 MD = llvm::ConstantAsMetadata::get(C); 1358 else { 1359 // Create an artificial VarDecl to generate debug info for. 1360 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1361 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1362 auto QT = getContext().getIntTypeForBitwidth( 1363 VlaExprTy->getScalarSizeInBits(), false); 1364 auto *ArtificialDecl = VarDecl::Create( 1365 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1366 D.getLocation(), D.getLocation(), NameIdent, QT, 1367 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1368 ArtificialDecl->setImplicit(); 1369 1370 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1371 Builder); 1372 } 1373 assert(MD && "No Size expression debug node created"); 1374 DI->registerVLASizeExpression(VlaSize.Type, MD); 1375 } 1376 } 1377 1378 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1379 /// local variable. Does not emit initialization or destruction. 1380 CodeGenFunction::AutoVarEmission 1381 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1382 QualType Ty = D.getType(); 1383 assert( 1384 Ty.getAddressSpace() == LangAS::Default || 1385 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1386 1387 AutoVarEmission emission(D); 1388 1389 bool isEscapingByRef = D.isEscapingByref(); 1390 emission.IsEscapingByRef = isEscapingByRef; 1391 1392 CharUnits alignment = getContext().getDeclAlign(&D); 1393 1394 // If the type is variably-modified, emit all the VLA sizes for it. 1395 if (Ty->isVariablyModifiedType()) 1396 EmitVariablyModifiedType(Ty); 1397 1398 auto *DI = getDebugInfo(); 1399 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1400 codegenoptions::LimitedDebugInfo; 1401 1402 Address address = Address::invalid(); 1403 Address AllocaAddr = Address::invalid(); 1404 Address OpenMPLocalAddr = 1405 getLangOpts().OpenMP 1406 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1407 : Address::invalid(); 1408 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1409 1410 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1411 address = OpenMPLocalAddr; 1412 } else if (Ty->isConstantSizeType()) { 1413 // If this value is an array or struct with a statically determinable 1414 // constant initializer, there are optimizations we can do. 1415 // 1416 // TODO: We should constant-evaluate the initializer of any variable, 1417 // as long as it is initialized by a constant expression. Currently, 1418 // isConstantInitializer produces wrong answers for structs with 1419 // reference or bitfield members, and a few other cases, and checking 1420 // for POD-ness protects us from some of these. 1421 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1422 (D.isConstexpr() || 1423 ((Ty.isPODType(getContext()) || 1424 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1425 D.getInit()->isConstantInitializer(getContext(), false)))) { 1426 1427 // If the variable's a const type, and it's neither an NRVO 1428 // candidate nor a __block variable and has no mutable members, 1429 // emit it as a global instead. 1430 // Exception is if a variable is located in non-constant address space 1431 // in OpenCL. 1432 if ((!getLangOpts().OpenCL || 1433 Ty.getAddressSpace() == LangAS::opencl_constant) && 1434 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1435 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1436 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1437 1438 // Signal this condition to later callbacks. 1439 emission.Addr = Address::invalid(); 1440 assert(emission.wasEmittedAsGlobal()); 1441 return emission; 1442 } 1443 1444 // Otherwise, tell the initialization code that we're in this case. 1445 emission.IsConstantAggregate = true; 1446 } 1447 1448 // A normal fixed sized variable becomes an alloca in the entry block, 1449 // unless: 1450 // - it's an NRVO variable. 1451 // - we are compiling OpenMP and it's an OpenMP local variable. 1452 if (NRVO) { 1453 // The named return value optimization: allocate this variable in the 1454 // return slot, so that we can elide the copy when returning this 1455 // variable (C++0x [class.copy]p34). 1456 address = ReturnValue; 1457 1458 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1459 const auto *RD = RecordTy->getDecl(); 1460 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1461 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1462 RD->isNonTrivialToPrimitiveDestroy()) { 1463 // Create a flag that is used to indicate when the NRVO was applied 1464 // to this variable. Set it to zero to indicate that NRVO was not 1465 // applied. 1466 llvm::Value *Zero = Builder.getFalse(); 1467 Address NRVOFlag = 1468 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1469 EnsureInsertPoint(); 1470 Builder.CreateStore(Zero, NRVOFlag); 1471 1472 // Record the NRVO flag for this variable. 1473 NRVOFlags[&D] = NRVOFlag.getPointer(); 1474 emission.NRVOFlag = NRVOFlag.getPointer(); 1475 } 1476 } 1477 } else { 1478 CharUnits allocaAlignment; 1479 llvm::Type *allocaTy; 1480 if (isEscapingByRef) { 1481 auto &byrefInfo = getBlockByrefInfo(&D); 1482 allocaTy = byrefInfo.Type; 1483 allocaAlignment = byrefInfo.ByrefAlignment; 1484 } else { 1485 allocaTy = ConvertTypeForMem(Ty); 1486 allocaAlignment = alignment; 1487 } 1488 1489 // Create the alloca. Note that we set the name separately from 1490 // building the instruction so that it's there even in no-asserts 1491 // builds. 1492 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1493 /*ArraySize=*/nullptr, &AllocaAddr); 1494 1495 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1496 // the catch parameter starts in the catchpad instruction, and we can't 1497 // insert code in those basic blocks. 1498 bool IsMSCatchParam = 1499 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1500 1501 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1502 // if we don't have a valid insertion point (?). 1503 if (HaveInsertPoint() && !IsMSCatchParam) { 1504 // If there's a jump into the lifetime of this variable, its lifetime 1505 // gets broken up into several regions in IR, which requires more work 1506 // to handle correctly. For now, just omit the intrinsics; this is a 1507 // rare case, and it's better to just be conservatively correct. 1508 // PR28267. 1509 // 1510 // We have to do this in all language modes if there's a jump past the 1511 // declaration. We also have to do it in C if there's a jump to an 1512 // earlier point in the current block because non-VLA lifetimes begin as 1513 // soon as the containing block is entered, not when its variables 1514 // actually come into scope; suppressing the lifetime annotations 1515 // completely in this case is unnecessarily pessimistic, but again, this 1516 // is rare. 1517 if (!Bypasses.IsBypassed(&D) && 1518 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1519 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1520 emission.SizeForLifetimeMarkers = 1521 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1522 } 1523 } else { 1524 assert(!emission.useLifetimeMarkers()); 1525 } 1526 } 1527 } else { 1528 EnsureInsertPoint(); 1529 1530 if (!DidCallStackSave) { 1531 // Save the stack. 1532 Address Stack = 1533 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1534 1535 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1536 llvm::Value *V = Builder.CreateCall(F); 1537 Builder.CreateStore(V, Stack); 1538 1539 DidCallStackSave = true; 1540 1541 // Push a cleanup block and restore the stack there. 1542 // FIXME: in general circumstances, this should be an EH cleanup. 1543 pushStackRestore(NormalCleanup, Stack); 1544 } 1545 1546 auto VlaSize = getVLASize(Ty); 1547 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1548 1549 // Allocate memory for the array. 1550 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1551 &AllocaAddr); 1552 1553 // If we have debug info enabled, properly describe the VLA dimensions for 1554 // this type by registering the vla size expression for each of the 1555 // dimensions. 1556 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1557 } 1558 1559 setAddrOfLocalVar(&D, address); 1560 emission.Addr = address; 1561 emission.AllocaAddr = AllocaAddr; 1562 1563 // Emit debug info for local var declaration. 1564 if (EmitDebugInfo && HaveInsertPoint()) { 1565 Address DebugAddr = address; 1566 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1567 DI->setLocation(D.getLocation()); 1568 1569 // If NRVO, use a pointer to the return address. 1570 if (UsePointerValue) 1571 DebugAddr = ReturnValuePointer; 1572 1573 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1574 UsePointerValue); 1575 } 1576 1577 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1578 EmitVarAnnotations(&D, address.getPointer()); 1579 1580 // Make sure we call @llvm.lifetime.end. 1581 if (emission.useLifetimeMarkers()) 1582 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1583 emission.getOriginalAllocatedAddress(), 1584 emission.getSizeForLifetimeMarkers()); 1585 1586 return emission; 1587 } 1588 1589 static bool isCapturedBy(const VarDecl &, const Expr *); 1590 1591 /// Determines whether the given __block variable is potentially 1592 /// captured by the given statement. 1593 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1594 if (const Expr *E = dyn_cast<Expr>(S)) 1595 return isCapturedBy(Var, E); 1596 for (const Stmt *SubStmt : S->children()) 1597 if (isCapturedBy(Var, SubStmt)) 1598 return true; 1599 return false; 1600 } 1601 1602 /// Determines whether the given __block variable is potentially 1603 /// captured by the given expression. 1604 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1605 // Skip the most common kinds of expressions that make 1606 // hierarchy-walking expensive. 1607 E = E->IgnoreParenCasts(); 1608 1609 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1610 const BlockDecl *Block = BE->getBlockDecl(); 1611 for (const auto &I : Block->captures()) { 1612 if (I.getVariable() == &Var) 1613 return true; 1614 } 1615 1616 // No need to walk into the subexpressions. 1617 return false; 1618 } 1619 1620 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1621 const CompoundStmt *CS = SE->getSubStmt(); 1622 for (const auto *BI : CS->body()) 1623 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1624 if (isCapturedBy(Var, BIE)) 1625 return true; 1626 } 1627 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1628 // special case declarations 1629 for (const auto *I : DS->decls()) { 1630 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1631 const Expr *Init = VD->getInit(); 1632 if (Init && isCapturedBy(Var, Init)) 1633 return true; 1634 } 1635 } 1636 } 1637 else 1638 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1639 // Later, provide code to poke into statements for capture analysis. 1640 return true; 1641 return false; 1642 } 1643 1644 for (const Stmt *SubStmt : E->children()) 1645 if (isCapturedBy(Var, SubStmt)) 1646 return true; 1647 1648 return false; 1649 } 1650 1651 /// Determine whether the given initializer is trivial in the sense 1652 /// that it requires no code to be generated. 1653 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1654 if (!Init) 1655 return true; 1656 1657 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1658 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1659 if (Constructor->isTrivial() && 1660 Constructor->isDefaultConstructor() && 1661 !Construct->requiresZeroInitialization()) 1662 return true; 1663 1664 return false; 1665 } 1666 1667 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1668 const VarDecl &D, 1669 Address Loc) { 1670 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1671 CharUnits Size = getContext().getTypeSizeInChars(type); 1672 bool isVolatile = type.isVolatileQualified(); 1673 if (!Size.isZero()) { 1674 switch (trivialAutoVarInit) { 1675 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1676 llvm_unreachable("Uninitialized handled by caller"); 1677 case LangOptions::TrivialAutoVarInitKind::Zero: 1678 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1679 break; 1680 case LangOptions::TrivialAutoVarInitKind::Pattern: 1681 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1682 break; 1683 } 1684 return; 1685 } 1686 1687 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1688 // them, so emit a memcpy with the VLA size to initialize each element. 1689 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1690 // will catch that code, but there exists code which generates zero-sized 1691 // VLAs. Be nice and initialize whatever they requested. 1692 const auto *VlaType = getContext().getAsVariableArrayType(type); 1693 if (!VlaType) 1694 return; 1695 auto VlaSize = getVLASize(VlaType); 1696 auto SizeVal = VlaSize.NumElts; 1697 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1698 switch (trivialAutoVarInit) { 1699 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1700 llvm_unreachable("Uninitialized handled by caller"); 1701 1702 case LangOptions::TrivialAutoVarInitKind::Zero: 1703 if (!EltSize.isOne()) 1704 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1705 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1706 isVolatile); 1707 break; 1708 1709 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1710 llvm::Type *ElTy = Loc.getElementType(); 1711 llvm::Constant *Constant = constWithPadding( 1712 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1713 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1714 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1715 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1716 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1717 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1718 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1719 "vla.iszerosized"); 1720 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1721 EmitBlock(SetupBB); 1722 if (!EltSize.isOne()) 1723 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1724 llvm::Value *BaseSizeInChars = 1725 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1726 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1727 llvm::Value *End = 1728 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1729 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1730 EmitBlock(LoopBB); 1731 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1732 Cur->addIncoming(Begin.getPointer(), OriginBB); 1733 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1734 Builder.CreateMemCpy(Address(Cur, CurAlign), 1735 createUnnamedGlobalForMemcpyFrom( 1736 CGM, D, Builder, Constant, ConstantAlign), 1737 BaseSizeInChars, isVolatile); 1738 llvm::Value *Next = 1739 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1740 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1741 Builder.CreateCondBr(Done, ContBB, LoopBB); 1742 Cur->addIncoming(Next, LoopBB); 1743 EmitBlock(ContBB); 1744 } break; 1745 } 1746 } 1747 1748 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1749 assert(emission.Variable && "emission was not valid!"); 1750 1751 // If this was emitted as a global constant, we're done. 1752 if (emission.wasEmittedAsGlobal()) return; 1753 1754 const VarDecl &D = *emission.Variable; 1755 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1756 QualType type = D.getType(); 1757 1758 // If this local has an initializer, emit it now. 1759 const Expr *Init = D.getInit(); 1760 1761 // If we are at an unreachable point, we don't need to emit the initializer 1762 // unless it contains a label. 1763 if (!HaveInsertPoint()) { 1764 if (!Init || !ContainsLabel(Init)) return; 1765 EnsureInsertPoint(); 1766 } 1767 1768 // Initialize the structure of a __block variable. 1769 if (emission.IsEscapingByRef) 1770 emitByrefStructureInit(emission); 1771 1772 // Initialize the variable here if it doesn't have a initializer and it is a 1773 // C struct that is non-trivial to initialize or an array containing such a 1774 // struct. 1775 if (!Init && 1776 type.isNonTrivialToPrimitiveDefaultInitialize() == 1777 QualType::PDIK_Struct) { 1778 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1779 if (emission.IsEscapingByRef) 1780 drillIntoBlockVariable(*this, Dst, &D); 1781 defaultInitNonTrivialCStructVar(Dst); 1782 return; 1783 } 1784 1785 // Check whether this is a byref variable that's potentially 1786 // captured and moved by its own initializer. If so, we'll need to 1787 // emit the initializer first, then copy into the variable. 1788 bool capturedByInit = 1789 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1790 1791 bool locIsByrefHeader = !capturedByInit; 1792 const Address Loc = 1793 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1794 1795 // Note: constexpr already initializes everything correctly. 1796 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1797 (D.isConstexpr() 1798 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1799 : (D.getAttr<UninitializedAttr>() 1800 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1801 : getContext().getLangOpts().getTrivialAutoVarInit())); 1802 1803 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1804 if (trivialAutoVarInit == 1805 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1806 return; 1807 1808 // Only initialize a __block's storage: we always initialize the header. 1809 if (emission.IsEscapingByRef && !locIsByrefHeader) 1810 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1811 1812 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1813 }; 1814 1815 if (isTrivialInitializer(Init)) 1816 return initializeWhatIsTechnicallyUninitialized(Loc); 1817 1818 llvm::Constant *constant = nullptr; 1819 if (emission.IsConstantAggregate || 1820 D.mightBeUsableInConstantExpressions(getContext())) { 1821 assert(!capturedByInit && "constant init contains a capturing block?"); 1822 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1823 if (constant && !constant->isZeroValue() && 1824 (trivialAutoVarInit != 1825 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1826 IsPattern isPattern = 1827 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1828 ? IsPattern::Yes 1829 : IsPattern::No; 1830 // C guarantees that brace-init with fewer initializers than members in 1831 // the aggregate will initialize the rest of the aggregate as-if it were 1832 // static initialization. In turn static initialization guarantees that 1833 // padding is initialized to zero bits. We could instead pattern-init if D 1834 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1835 // behavior. 1836 constant = constWithPadding(CGM, IsPattern::No, 1837 replaceUndef(CGM, isPattern, constant)); 1838 } 1839 } 1840 1841 if (!constant) { 1842 initializeWhatIsTechnicallyUninitialized(Loc); 1843 LValue lv = MakeAddrLValue(Loc, type); 1844 lv.setNonGC(true); 1845 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1846 } 1847 1848 if (!emission.IsConstantAggregate) { 1849 // For simple scalar/complex initialization, store the value directly. 1850 LValue lv = MakeAddrLValue(Loc, type); 1851 lv.setNonGC(true); 1852 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1853 } 1854 1855 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1856 emitStoresForConstant( 1857 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1858 type.isVolatileQualified(), Builder, constant); 1859 } 1860 1861 /// Emit an expression as an initializer for an object (variable, field, etc.) 1862 /// at the given location. The expression is not necessarily the normal 1863 /// initializer for the object, and the address is not necessarily 1864 /// its normal location. 1865 /// 1866 /// \param init the initializing expression 1867 /// \param D the object to act as if we're initializing 1868 /// \param loc the address to initialize; its type is a pointer 1869 /// to the LLVM mapping of the object's type 1870 /// \param alignment the alignment of the address 1871 /// \param capturedByInit true if \p D is a __block variable 1872 /// whose address is potentially changed by the initializer 1873 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1874 LValue lvalue, bool capturedByInit) { 1875 QualType type = D->getType(); 1876 1877 if (type->isReferenceType()) { 1878 RValue rvalue = EmitReferenceBindingToExpr(init); 1879 if (capturedByInit) 1880 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1881 EmitStoreThroughLValue(rvalue, lvalue, true); 1882 return; 1883 } 1884 switch (getEvaluationKind(type)) { 1885 case TEK_Scalar: 1886 EmitScalarInit(init, D, lvalue, capturedByInit); 1887 return; 1888 case TEK_Complex: { 1889 ComplexPairTy complex = EmitComplexExpr(init); 1890 if (capturedByInit) 1891 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1892 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1893 return; 1894 } 1895 case TEK_Aggregate: 1896 if (type->isAtomicType()) { 1897 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1898 } else { 1899 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1900 if (isa<VarDecl>(D)) 1901 Overlap = AggValueSlot::DoesNotOverlap; 1902 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1903 Overlap = getOverlapForFieldInit(FD); 1904 // TODO: how can we delay here if D is captured by its initializer? 1905 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1906 AggValueSlot::IsDestructed, 1907 AggValueSlot::DoesNotNeedGCBarriers, 1908 AggValueSlot::IsNotAliased, 1909 Overlap)); 1910 } 1911 return; 1912 } 1913 llvm_unreachable("bad evaluation kind"); 1914 } 1915 1916 /// Enter a destroy cleanup for the given local variable. 1917 void CodeGenFunction::emitAutoVarTypeCleanup( 1918 const CodeGenFunction::AutoVarEmission &emission, 1919 QualType::DestructionKind dtorKind) { 1920 assert(dtorKind != QualType::DK_none); 1921 1922 // Note that for __block variables, we want to destroy the 1923 // original stack object, not the possibly forwarded object. 1924 Address addr = emission.getObjectAddress(*this); 1925 1926 const VarDecl *var = emission.Variable; 1927 QualType type = var->getType(); 1928 1929 CleanupKind cleanupKind = NormalAndEHCleanup; 1930 CodeGenFunction::Destroyer *destroyer = nullptr; 1931 1932 switch (dtorKind) { 1933 case QualType::DK_none: 1934 llvm_unreachable("no cleanup for trivially-destructible variable"); 1935 1936 case QualType::DK_cxx_destructor: 1937 // If there's an NRVO flag on the emission, we need a different 1938 // cleanup. 1939 if (emission.NRVOFlag) { 1940 assert(!type->isArrayType()); 1941 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1942 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1943 emission.NRVOFlag); 1944 return; 1945 } 1946 break; 1947 1948 case QualType::DK_objc_strong_lifetime: 1949 // Suppress cleanups for pseudo-strong variables. 1950 if (var->isARCPseudoStrong()) return; 1951 1952 // Otherwise, consider whether to use an EH cleanup or not. 1953 cleanupKind = getARCCleanupKind(); 1954 1955 // Use the imprecise destroyer by default. 1956 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1957 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1958 break; 1959 1960 case QualType::DK_objc_weak_lifetime: 1961 break; 1962 1963 case QualType::DK_nontrivial_c_struct: 1964 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1965 if (emission.NRVOFlag) { 1966 assert(!type->isArrayType()); 1967 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1968 emission.NRVOFlag, type); 1969 return; 1970 } 1971 break; 1972 } 1973 1974 // If we haven't chosen a more specific destroyer, use the default. 1975 if (!destroyer) destroyer = getDestroyer(dtorKind); 1976 1977 // Use an EH cleanup in array destructors iff the destructor itself 1978 // is being pushed as an EH cleanup. 1979 bool useEHCleanup = (cleanupKind & EHCleanup); 1980 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1981 useEHCleanup); 1982 } 1983 1984 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1985 assert(emission.Variable && "emission was not valid!"); 1986 1987 // If this was emitted as a global constant, we're done. 1988 if (emission.wasEmittedAsGlobal()) return; 1989 1990 // If we don't have an insertion point, we're done. Sema prevents 1991 // us from jumping into any of these scopes anyway. 1992 if (!HaveInsertPoint()) return; 1993 1994 const VarDecl &D = *emission.Variable; 1995 1996 // Check the type for a cleanup. 1997 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1998 emitAutoVarTypeCleanup(emission, dtorKind); 1999 2000 // In GC mode, honor objc_precise_lifetime. 2001 if (getLangOpts().getGC() != LangOptions::NonGC && 2002 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2003 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2004 } 2005 2006 // Handle the cleanup attribute. 2007 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2008 const FunctionDecl *FD = CA->getFunctionDecl(); 2009 2010 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2011 assert(F && "Could not find function!"); 2012 2013 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2014 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2015 } 2016 2017 // If this is a block variable, call _Block_object_destroy 2018 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2019 // mode. 2020 if (emission.IsEscapingByRef && 2021 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2022 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2023 if (emission.Variable->getType().isObjCGCWeak()) 2024 Flags |= BLOCK_FIELD_IS_WEAK; 2025 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2026 /*LoadBlockVarAddr*/ false, 2027 cxxDestructorCanThrow(emission.Variable->getType())); 2028 } 2029 } 2030 2031 CodeGenFunction::Destroyer * 2032 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2033 switch (kind) { 2034 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2035 case QualType::DK_cxx_destructor: 2036 return destroyCXXObject; 2037 case QualType::DK_objc_strong_lifetime: 2038 return destroyARCStrongPrecise; 2039 case QualType::DK_objc_weak_lifetime: 2040 return destroyARCWeak; 2041 case QualType::DK_nontrivial_c_struct: 2042 return destroyNonTrivialCStruct; 2043 } 2044 llvm_unreachable("Unknown DestructionKind"); 2045 } 2046 2047 /// pushEHDestroy - Push the standard destructor for the given type as 2048 /// an EH-only cleanup. 2049 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2050 Address addr, QualType type) { 2051 assert(dtorKind && "cannot push destructor for trivial type"); 2052 assert(needsEHCleanup(dtorKind)); 2053 2054 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2055 } 2056 2057 /// pushDestroy - Push the standard destructor for the given type as 2058 /// at least a normal cleanup. 2059 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2060 Address addr, QualType type) { 2061 assert(dtorKind && "cannot push destructor for trivial type"); 2062 2063 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2064 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2065 cleanupKind & EHCleanup); 2066 } 2067 2068 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2069 QualType type, Destroyer *destroyer, 2070 bool useEHCleanupForArray) { 2071 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2072 destroyer, useEHCleanupForArray); 2073 } 2074 2075 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2076 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2077 } 2078 2079 void CodeGenFunction::pushLifetimeExtendedDestroy( 2080 CleanupKind cleanupKind, Address addr, QualType type, 2081 Destroyer *destroyer, bool useEHCleanupForArray) { 2082 // Push an EH-only cleanup for the object now. 2083 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2084 // around in case a temporary's destructor throws an exception. 2085 if (cleanupKind & EHCleanup) 2086 EHStack.pushCleanup<DestroyObject>( 2087 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2088 destroyer, useEHCleanupForArray); 2089 2090 // Remember that we need to push a full cleanup for the object at the 2091 // end of the full-expression. 2092 pushCleanupAfterFullExpr<DestroyObject>( 2093 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2094 } 2095 2096 /// emitDestroy - Immediately perform the destruction of the given 2097 /// object. 2098 /// 2099 /// \param addr - the address of the object; a type* 2100 /// \param type - the type of the object; if an array type, all 2101 /// objects are destroyed in reverse order 2102 /// \param destroyer - the function to call to destroy individual 2103 /// elements 2104 /// \param useEHCleanupForArray - whether an EH cleanup should be 2105 /// used when destroying array elements, in case one of the 2106 /// destructions throws an exception 2107 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2108 Destroyer *destroyer, 2109 bool useEHCleanupForArray) { 2110 const ArrayType *arrayType = getContext().getAsArrayType(type); 2111 if (!arrayType) 2112 return destroyer(*this, addr, type); 2113 2114 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2115 2116 CharUnits elementAlign = 2117 addr.getAlignment() 2118 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2119 2120 // Normally we have to check whether the array is zero-length. 2121 bool checkZeroLength = true; 2122 2123 // But if the array length is constant, we can suppress that. 2124 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2125 // ...and if it's constant zero, we can just skip the entire thing. 2126 if (constLength->isZero()) return; 2127 checkZeroLength = false; 2128 } 2129 2130 llvm::Value *begin = addr.getPointer(); 2131 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2132 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2133 checkZeroLength, useEHCleanupForArray); 2134 } 2135 2136 /// emitArrayDestroy - Destroys all the elements of the given array, 2137 /// beginning from last to first. The array cannot be zero-length. 2138 /// 2139 /// \param begin - a type* denoting the first element of the array 2140 /// \param end - a type* denoting one past the end of the array 2141 /// \param elementType - the element type of the array 2142 /// \param destroyer - the function to call to destroy elements 2143 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2144 /// the remaining elements in case the destruction of a single 2145 /// element throws 2146 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2147 llvm::Value *end, 2148 QualType elementType, 2149 CharUnits elementAlign, 2150 Destroyer *destroyer, 2151 bool checkZeroLength, 2152 bool useEHCleanup) { 2153 assert(!elementType->isArrayType()); 2154 2155 // The basic structure here is a do-while loop, because we don't 2156 // need to check for the zero-element case. 2157 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2158 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2159 2160 if (checkZeroLength) { 2161 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2162 "arraydestroy.isempty"); 2163 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2164 } 2165 2166 // Enter the loop body, making that address the current address. 2167 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2168 EmitBlock(bodyBB); 2169 llvm::PHINode *elementPast = 2170 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2171 elementPast->addIncoming(end, entryBB); 2172 2173 // Shift the address back by one element. 2174 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2175 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2176 "arraydestroy.element"); 2177 2178 if (useEHCleanup) 2179 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2180 destroyer); 2181 2182 // Perform the actual destruction there. 2183 destroyer(*this, Address(element, elementAlign), elementType); 2184 2185 if (useEHCleanup) 2186 PopCleanupBlock(); 2187 2188 // Check whether we've reached the end. 2189 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2190 Builder.CreateCondBr(done, doneBB, bodyBB); 2191 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2192 2193 // Done. 2194 EmitBlock(doneBB); 2195 } 2196 2197 /// Perform partial array destruction as if in an EH cleanup. Unlike 2198 /// emitArrayDestroy, the element type here may still be an array type. 2199 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2200 llvm::Value *begin, llvm::Value *end, 2201 QualType type, CharUnits elementAlign, 2202 CodeGenFunction::Destroyer *destroyer) { 2203 // If the element type is itself an array, drill down. 2204 unsigned arrayDepth = 0; 2205 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2206 // VLAs don't require a GEP index to walk into. 2207 if (!isa<VariableArrayType>(arrayType)) 2208 arrayDepth++; 2209 type = arrayType->getElementType(); 2210 } 2211 2212 if (arrayDepth) { 2213 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2214 2215 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2216 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2217 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2218 } 2219 2220 // Destroy the array. We don't ever need an EH cleanup because we 2221 // assume that we're in an EH cleanup ourselves, so a throwing 2222 // destructor causes an immediate terminate. 2223 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2224 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2225 } 2226 2227 namespace { 2228 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2229 /// array destroy where the end pointer is regularly determined and 2230 /// does not need to be loaded from a local. 2231 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2232 llvm::Value *ArrayBegin; 2233 llvm::Value *ArrayEnd; 2234 QualType ElementType; 2235 CodeGenFunction::Destroyer *Destroyer; 2236 CharUnits ElementAlign; 2237 public: 2238 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2239 QualType elementType, CharUnits elementAlign, 2240 CodeGenFunction::Destroyer *destroyer) 2241 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2242 ElementType(elementType), Destroyer(destroyer), 2243 ElementAlign(elementAlign) {} 2244 2245 void Emit(CodeGenFunction &CGF, Flags flags) override { 2246 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2247 ElementType, ElementAlign, Destroyer); 2248 } 2249 }; 2250 2251 /// IrregularPartialArrayDestroy - a cleanup which performs a 2252 /// partial array destroy where the end pointer is irregularly 2253 /// determined and must be loaded from a local. 2254 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2255 llvm::Value *ArrayBegin; 2256 Address ArrayEndPointer; 2257 QualType ElementType; 2258 CodeGenFunction::Destroyer *Destroyer; 2259 CharUnits ElementAlign; 2260 public: 2261 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2262 Address arrayEndPointer, 2263 QualType elementType, 2264 CharUnits elementAlign, 2265 CodeGenFunction::Destroyer *destroyer) 2266 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2267 ElementType(elementType), Destroyer(destroyer), 2268 ElementAlign(elementAlign) {} 2269 2270 void Emit(CodeGenFunction &CGF, Flags flags) override { 2271 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2272 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2273 ElementType, ElementAlign, Destroyer); 2274 } 2275 }; 2276 } // end anonymous namespace 2277 2278 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2279 /// already-constructed elements of the given array. The cleanup 2280 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2281 /// 2282 /// \param elementType - the immediate element type of the array; 2283 /// possibly still an array type 2284 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2285 Address arrayEndPointer, 2286 QualType elementType, 2287 CharUnits elementAlign, 2288 Destroyer *destroyer) { 2289 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2290 arrayBegin, arrayEndPointer, 2291 elementType, elementAlign, 2292 destroyer); 2293 } 2294 2295 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2296 /// already-constructed elements of the given array. The cleanup 2297 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2298 /// 2299 /// \param elementType - the immediate element type of the array; 2300 /// possibly still an array type 2301 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2302 llvm::Value *arrayEnd, 2303 QualType elementType, 2304 CharUnits elementAlign, 2305 Destroyer *destroyer) { 2306 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2307 arrayBegin, arrayEnd, 2308 elementType, elementAlign, 2309 destroyer); 2310 } 2311 2312 /// Lazily declare the @llvm.lifetime.start intrinsic. 2313 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2314 if (LifetimeStartFn) 2315 return LifetimeStartFn; 2316 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2317 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2318 return LifetimeStartFn; 2319 } 2320 2321 /// Lazily declare the @llvm.lifetime.end intrinsic. 2322 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2323 if (LifetimeEndFn) 2324 return LifetimeEndFn; 2325 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2326 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2327 return LifetimeEndFn; 2328 } 2329 2330 namespace { 2331 /// A cleanup to perform a release of an object at the end of a 2332 /// function. This is used to balance out the incoming +1 of a 2333 /// ns_consumed argument when we can't reasonably do that just by 2334 /// not doing the initial retain for a __block argument. 2335 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2336 ConsumeARCParameter(llvm::Value *param, 2337 ARCPreciseLifetime_t precise) 2338 : Param(param), Precise(precise) {} 2339 2340 llvm::Value *Param; 2341 ARCPreciseLifetime_t Precise; 2342 2343 void Emit(CodeGenFunction &CGF, Flags flags) override { 2344 CGF.EmitARCRelease(Param, Precise); 2345 } 2346 }; 2347 } // end anonymous namespace 2348 2349 /// Emit an alloca (or GlobalValue depending on target) 2350 /// for the specified parameter and set up LocalDeclMap. 2351 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2352 unsigned ArgNo) { 2353 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2354 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2355 "Invalid argument to EmitParmDecl"); 2356 2357 Arg.getAnyValue()->setName(D.getName()); 2358 2359 QualType Ty = D.getType(); 2360 2361 // Use better IR generation for certain implicit parameters. 2362 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2363 // The only implicit argument a block has is its literal. 2364 // This may be passed as an inalloca'ed value on Windows x86. 2365 if (BlockInfo) { 2366 llvm::Value *V = Arg.isIndirect() 2367 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2368 : Arg.getDirectValue(); 2369 setBlockContextParameter(IPD, ArgNo, V); 2370 return; 2371 } 2372 } 2373 2374 Address DeclPtr = Address::invalid(); 2375 bool DoStore = false; 2376 bool IsScalar = hasScalarEvaluationKind(Ty); 2377 // If we already have a pointer to the argument, reuse the input pointer. 2378 if (Arg.isIndirect()) { 2379 DeclPtr = Arg.getIndirectAddress(); 2380 // If we have a prettier pointer type at this point, bitcast to that. 2381 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2382 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2383 if (DeclPtr.getType() != IRTy) 2384 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2385 // Indirect argument is in alloca address space, which may be different 2386 // from the default address space. 2387 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2388 auto *V = DeclPtr.getPointer(); 2389 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2390 auto DestLangAS = 2391 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2392 if (SrcLangAS != DestLangAS) { 2393 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2394 CGM.getDataLayout().getAllocaAddrSpace()); 2395 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2396 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2397 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2398 *this, V, SrcLangAS, DestLangAS, T, true), 2399 DeclPtr.getAlignment()); 2400 } 2401 2402 // Push a destructor cleanup for this parameter if the ABI requires it. 2403 // Don't push a cleanup in a thunk for a method that will also emit a 2404 // cleanup. 2405 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2406 Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2407 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 2408 assert((DtorKind == QualType::DK_cxx_destructor || 2409 DtorKind == QualType::DK_nontrivial_c_struct) && 2410 "unexpected destructor type"); 2411 pushDestroy(DtorKind, DeclPtr, Ty); 2412 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2413 EHStack.stable_begin(); 2414 } 2415 } 2416 } else { 2417 // Check if the parameter address is controlled by OpenMP runtime. 2418 Address OpenMPLocalAddr = 2419 getLangOpts().OpenMP 2420 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2421 : Address::invalid(); 2422 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2423 DeclPtr = OpenMPLocalAddr; 2424 } else { 2425 // Otherwise, create a temporary to hold the value. 2426 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2427 D.getName() + ".addr"); 2428 } 2429 DoStore = true; 2430 } 2431 2432 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2433 2434 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2435 if (IsScalar) { 2436 Qualifiers qs = Ty.getQualifiers(); 2437 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2438 // We honor __attribute__((ns_consumed)) for types with lifetime. 2439 // For __strong, it's handled by just skipping the initial retain; 2440 // otherwise we have to balance out the initial +1 with an extra 2441 // cleanup to do the release at the end of the function. 2442 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2443 2444 // If a parameter is pseudo-strong then we can omit the implicit retain. 2445 if (D.isARCPseudoStrong()) { 2446 assert(lt == Qualifiers::OCL_Strong && 2447 "pseudo-strong variable isn't strong?"); 2448 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2449 lt = Qualifiers::OCL_ExplicitNone; 2450 } 2451 2452 // Load objects passed indirectly. 2453 if (Arg.isIndirect() && !ArgVal) 2454 ArgVal = Builder.CreateLoad(DeclPtr); 2455 2456 if (lt == Qualifiers::OCL_Strong) { 2457 if (!isConsumed) { 2458 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2459 // use objc_storeStrong(&dest, value) for retaining the 2460 // object. But first, store a null into 'dest' because 2461 // objc_storeStrong attempts to release its old value. 2462 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2463 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2464 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2465 DoStore = false; 2466 } 2467 else 2468 // Don't use objc_retainBlock for block pointers, because we 2469 // don't want to Block_copy something just because we got it 2470 // as a parameter. 2471 ArgVal = EmitARCRetainNonBlock(ArgVal); 2472 } 2473 } else { 2474 // Push the cleanup for a consumed parameter. 2475 if (isConsumed) { 2476 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2477 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2478 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2479 precise); 2480 } 2481 2482 if (lt == Qualifiers::OCL_Weak) { 2483 EmitARCInitWeak(DeclPtr, ArgVal); 2484 DoStore = false; // The weak init is a store, no need to do two. 2485 } 2486 } 2487 2488 // Enter the cleanup scope. 2489 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2490 } 2491 } 2492 2493 // Store the initial value into the alloca. 2494 if (DoStore) 2495 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2496 2497 setAddrOfLocalVar(&D, DeclPtr); 2498 2499 // Emit debug info for param declaration. 2500 if (CGDebugInfo *DI = getDebugInfo()) { 2501 if (CGM.getCodeGenOpts().getDebugInfo() >= 2502 codegenoptions::LimitedDebugInfo) { 2503 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2504 } 2505 } 2506 2507 if (D.hasAttr<AnnotateAttr>()) 2508 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2509 2510 // We can only check return value nullability if all arguments to the 2511 // function satisfy their nullability preconditions. This makes it necessary 2512 // to emit null checks for args in the function body itself. 2513 if (requiresReturnValueNullabilityCheck()) { 2514 auto Nullability = Ty->getNullability(getContext()); 2515 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2516 SanitizerScope SanScope(this); 2517 RetValNullabilityPrecondition = 2518 Builder.CreateAnd(RetValNullabilityPrecondition, 2519 Builder.CreateIsNotNull(Arg.getAnyValue())); 2520 } 2521 } 2522 } 2523 2524 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2525 CodeGenFunction *CGF) { 2526 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2527 return; 2528 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2529 } 2530 2531 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2532 CodeGenFunction *CGF) { 2533 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2534 return; 2535 // FIXME: need to implement mapper code generation 2536 } 2537 2538 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2539 getOpenMPRuntime().checkArchForUnifiedAddressing(D); 2540 } 2541