1 //===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the debug information generation while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/DeclFriend.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/Expr.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/AST/RecursiveASTVisitor.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/FileManager.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/Version.h" 33 #include "clang/Frontend/FrontendOptions.h" 34 #include "clang/Lex/HeaderSearchOptions.h" 35 #include "clang/Lex/ModuleMap.h" 36 #include "clang/Lex/PreprocessorOptions.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/StringExtras.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/MD5.h" 49 #include "llvm/Support/Path.h" 50 #include "llvm/Support/TimeProfiler.h" 51 using namespace clang; 52 using namespace clang::CodeGen; 53 54 static uint32_t getTypeAlignIfRequired(const Type *Ty, const ASTContext &Ctx) { 55 auto TI = Ctx.getTypeInfo(Ty); 56 return TI.isAlignRequired() ? TI.Align : 0; 57 } 58 59 static uint32_t getTypeAlignIfRequired(QualType Ty, const ASTContext &Ctx) { 60 return getTypeAlignIfRequired(Ty.getTypePtr(), Ctx); 61 } 62 63 static uint32_t getDeclAlignIfRequired(const Decl *D, const ASTContext &Ctx) { 64 return D->hasAttr<AlignedAttr>() ? D->getMaxAlignment() : 0; 65 } 66 67 CGDebugInfo::CGDebugInfo(CodeGenModule &CGM) 68 : CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()), 69 DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs), 70 DBuilder(CGM.getModule()) { 71 for (const auto &KV : CGM.getCodeGenOpts().DebugPrefixMap) 72 DebugPrefixMap[KV.first] = KV.second; 73 CreateCompileUnit(); 74 } 75 76 CGDebugInfo::~CGDebugInfo() { 77 assert(LexicalBlockStack.empty() && 78 "Region stack mismatch, stack not empty!"); 79 } 80 81 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, 82 SourceLocation TemporaryLocation) 83 : CGF(&CGF) { 84 init(TemporaryLocation); 85 } 86 87 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, 88 bool DefaultToEmpty, 89 SourceLocation TemporaryLocation) 90 : CGF(&CGF) { 91 init(TemporaryLocation, DefaultToEmpty); 92 } 93 94 void ApplyDebugLocation::init(SourceLocation TemporaryLocation, 95 bool DefaultToEmpty) { 96 auto *DI = CGF->getDebugInfo(); 97 if (!DI) { 98 CGF = nullptr; 99 return; 100 } 101 102 OriginalLocation = CGF->Builder.getCurrentDebugLocation(); 103 104 if (OriginalLocation && !DI->CGM.getExpressionLocationsEnabled()) 105 return; 106 107 if (TemporaryLocation.isValid()) { 108 DI->EmitLocation(CGF->Builder, TemporaryLocation); 109 return; 110 } 111 112 if (DefaultToEmpty) { 113 CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 114 return; 115 } 116 117 // Construct a location that has a valid scope, but no line info. 118 assert(!DI->LexicalBlockStack.empty()); 119 CGF->Builder.SetCurrentDebugLocation( 120 llvm::DILocation::get(DI->LexicalBlockStack.back()->getContext(), 0, 0, 121 DI->LexicalBlockStack.back(), DI->getInlinedAt())); 122 } 123 124 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E) 125 : CGF(&CGF) { 126 init(E->getExprLoc()); 127 } 128 129 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc) 130 : CGF(&CGF) { 131 if (!CGF.getDebugInfo()) { 132 this->CGF = nullptr; 133 return; 134 } 135 OriginalLocation = CGF.Builder.getCurrentDebugLocation(); 136 if (Loc) 137 CGF.Builder.SetCurrentDebugLocation(std::move(Loc)); 138 } 139 140 ApplyDebugLocation::~ApplyDebugLocation() { 141 // Query CGF so the location isn't overwritten when location updates are 142 // temporarily disabled (for C++ default function arguments) 143 if (CGF) 144 CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation)); 145 } 146 147 ApplyInlineDebugLocation::ApplyInlineDebugLocation(CodeGenFunction &CGF, 148 GlobalDecl InlinedFn) 149 : CGF(&CGF) { 150 if (!CGF.getDebugInfo()) { 151 this->CGF = nullptr; 152 return; 153 } 154 auto &DI = *CGF.getDebugInfo(); 155 SavedLocation = DI.getLocation(); 156 assert((DI.getInlinedAt() == 157 CGF.Builder.getCurrentDebugLocation()->getInlinedAt()) && 158 "CGDebugInfo and IRBuilder are out of sync"); 159 160 DI.EmitInlineFunctionStart(CGF.Builder, InlinedFn); 161 } 162 163 ApplyInlineDebugLocation::~ApplyInlineDebugLocation() { 164 if (!CGF) 165 return; 166 auto &DI = *CGF->getDebugInfo(); 167 DI.EmitInlineFunctionEnd(CGF->Builder); 168 DI.EmitLocation(CGF->Builder, SavedLocation); 169 } 170 171 void CGDebugInfo::setLocation(SourceLocation Loc) { 172 // If the new location isn't valid return. 173 if (Loc.isInvalid()) 174 return; 175 176 CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc); 177 178 // If we've changed files in the middle of a lexical scope go ahead 179 // and create a new lexical scope with file node if it's different 180 // from the one in the scope. 181 if (LexicalBlockStack.empty()) 182 return; 183 184 SourceManager &SM = CGM.getContext().getSourceManager(); 185 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 186 PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc); 187 if (PCLoc.isInvalid() || Scope->getFile() == getOrCreateFile(CurLoc)) 188 return; 189 190 if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) { 191 LexicalBlockStack.pop_back(); 192 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile( 193 LBF->getScope(), getOrCreateFile(CurLoc))); 194 } else if (isa<llvm::DILexicalBlock>(Scope) || 195 isa<llvm::DISubprogram>(Scope)) { 196 LexicalBlockStack.pop_back(); 197 LexicalBlockStack.emplace_back( 198 DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc))); 199 } 200 } 201 202 llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) { 203 llvm::DIScope *Mod = getParentModuleOrNull(D); 204 return getContextDescriptor(cast<Decl>(D->getDeclContext()), 205 Mod ? Mod : TheCU); 206 } 207 208 llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context, 209 llvm::DIScope *Default) { 210 if (!Context) 211 return Default; 212 213 auto I = RegionMap.find(Context); 214 if (I != RegionMap.end()) { 215 llvm::Metadata *V = I->second; 216 return dyn_cast_or_null<llvm::DIScope>(V); 217 } 218 219 // Check namespace. 220 if (const auto *NSDecl = dyn_cast<NamespaceDecl>(Context)) 221 return getOrCreateNamespace(NSDecl); 222 223 if (const auto *RDecl = dyn_cast<RecordDecl>(Context)) 224 if (!RDecl->isDependentType()) 225 return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl), 226 TheCU->getFile()); 227 return Default; 228 } 229 230 PrintingPolicy CGDebugInfo::getPrintingPolicy() const { 231 PrintingPolicy PP = CGM.getContext().getPrintingPolicy(); 232 233 // If we're emitting codeview, it's important to try to match MSVC's naming so 234 // that visualizers written for MSVC will trigger for our class names. In 235 // particular, we can't have spaces between arguments of standard templates 236 // like basic_string and vector, but we must have spaces between consecutive 237 // angle brackets that close nested template argument lists. 238 if (CGM.getCodeGenOpts().EmitCodeView) { 239 PP.MSVCFormatting = true; 240 PP.SplitTemplateClosers = true; 241 } else { 242 // For DWARF, printing rules are underspecified. 243 // SplitTemplateClosers yields better interop with GCC and GDB (PR46052). 244 PP.SplitTemplateClosers = true; 245 } 246 247 PP.SuppressInlineNamespace = false; 248 PP.PrintCanonicalTypes = true; 249 PP.UsePreferredNames = false; 250 PP.AlwaysIncludeTypeForTemplateArgument = true; 251 252 // Apply -fdebug-prefix-map. 253 PP.Callbacks = &PrintCB; 254 return PP; 255 } 256 257 StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) { 258 return internString(GetName(FD)); 259 } 260 261 StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) { 262 SmallString<256> MethodName; 263 llvm::raw_svector_ostream OS(MethodName); 264 OS << (OMD->isInstanceMethod() ? '-' : '+') << '['; 265 const DeclContext *DC = OMD->getDeclContext(); 266 if (const auto *OID = dyn_cast<ObjCImplementationDecl>(DC)) { 267 OS << OID->getName(); 268 } else if (const auto *OID = dyn_cast<ObjCInterfaceDecl>(DC)) { 269 OS << OID->getName(); 270 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(DC)) { 271 if (OC->IsClassExtension()) { 272 OS << OC->getClassInterface()->getName(); 273 } else { 274 OS << OC->getIdentifier()->getNameStart() << '(' 275 << OC->getIdentifier()->getNameStart() << ')'; 276 } 277 } else if (const auto *OCD = dyn_cast<ObjCCategoryImplDecl>(DC)) { 278 OS << OCD->getClassInterface()->getName() << '(' << OCD->getName() << ')'; 279 } 280 OS << ' ' << OMD->getSelector().getAsString() << ']'; 281 282 return internString(OS.str()); 283 } 284 285 StringRef CGDebugInfo::getSelectorName(Selector S) { 286 return internString(S.getAsString()); 287 } 288 289 StringRef CGDebugInfo::getClassName(const RecordDecl *RD) { 290 if (isa<ClassTemplateSpecializationDecl>(RD)) { 291 // Copy this name on the side and use its reference. 292 return internString(GetName(RD)); 293 } 294 295 // quick optimization to avoid having to intern strings that are already 296 // stored reliably elsewhere 297 if (const IdentifierInfo *II = RD->getIdentifier()) 298 return II->getName(); 299 300 // The CodeView printer in LLVM wants to see the names of unnamed types 301 // because they need to have a unique identifier. 302 // These names are used to reconstruct the fully qualified type names. 303 if (CGM.getCodeGenOpts().EmitCodeView) { 304 if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) { 305 assert(RD->getDeclContext() == D->getDeclContext() && 306 "Typedef should not be in another decl context!"); 307 assert(D->getDeclName().getAsIdentifierInfo() && 308 "Typedef was not named!"); 309 return D->getDeclName().getAsIdentifierInfo()->getName(); 310 } 311 312 if (CGM.getLangOpts().CPlusPlus) { 313 StringRef Name; 314 315 ASTContext &Context = CGM.getContext(); 316 if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD)) 317 // Anonymous types without a name for linkage purposes have their 318 // declarator mangled in if they have one. 319 Name = DD->getName(); 320 else if (const TypedefNameDecl *TND = 321 Context.getTypedefNameForUnnamedTagDecl(RD)) 322 // Anonymous types without a name for linkage purposes have their 323 // associate typedef mangled in if they have one. 324 Name = TND->getName(); 325 326 // Give lambdas a display name based on their name mangling. 327 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 328 if (CXXRD->isLambda()) 329 return internString( 330 CGM.getCXXABI().getMangleContext().getLambdaString(CXXRD)); 331 332 if (!Name.empty()) { 333 SmallString<256> UnnamedType("<unnamed-type-"); 334 UnnamedType += Name; 335 UnnamedType += '>'; 336 return internString(UnnamedType); 337 } 338 } 339 } 340 341 return StringRef(); 342 } 343 344 Optional<llvm::DIFile::ChecksumKind> 345 CGDebugInfo::computeChecksum(FileID FID, SmallString<32> &Checksum) const { 346 Checksum.clear(); 347 348 if (!CGM.getCodeGenOpts().EmitCodeView && 349 CGM.getCodeGenOpts().DwarfVersion < 5) 350 return None; 351 352 SourceManager &SM = CGM.getContext().getSourceManager(); 353 Optional<llvm::MemoryBufferRef> MemBuffer = SM.getBufferOrNone(FID); 354 if (!MemBuffer) 355 return None; 356 357 llvm::MD5 Hash; 358 llvm::MD5::MD5Result Result; 359 360 Hash.update(MemBuffer->getBuffer()); 361 Hash.final(Result); 362 363 Hash.stringifyResult(Result, Checksum); 364 return llvm::DIFile::CSK_MD5; 365 } 366 367 Optional<StringRef> CGDebugInfo::getSource(const SourceManager &SM, 368 FileID FID) { 369 if (!CGM.getCodeGenOpts().EmbedSource) 370 return None; 371 372 bool SourceInvalid = false; 373 StringRef Source = SM.getBufferData(FID, &SourceInvalid); 374 375 if (SourceInvalid) 376 return None; 377 378 return Source; 379 } 380 381 llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) { 382 SourceManager &SM = CGM.getContext().getSourceManager(); 383 StringRef FileName; 384 FileID FID; 385 386 if (Loc.isInvalid()) { 387 // The DIFile used by the CU is distinct from the main source file. Call 388 // createFile() below for canonicalization if the source file was specified 389 // with an absolute path. 390 FileName = TheCU->getFile()->getFilename(); 391 } else { 392 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 393 FileName = PLoc.getFilename(); 394 395 if (FileName.empty()) { 396 FileName = TheCU->getFile()->getFilename(); 397 } else { 398 FileName = PLoc.getFilename(); 399 } 400 FID = PLoc.getFileID(); 401 } 402 403 // Cache the results. 404 auto It = DIFileCache.find(FileName.data()); 405 if (It != DIFileCache.end()) { 406 // Verify that the information still exists. 407 if (llvm::Metadata *V = It->second) 408 return cast<llvm::DIFile>(V); 409 } 410 411 SmallString<32> Checksum; 412 413 Optional<llvm::DIFile::ChecksumKind> CSKind = computeChecksum(FID, Checksum); 414 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo; 415 if (CSKind) 416 CSInfo.emplace(*CSKind, Checksum); 417 return createFile(FileName, CSInfo, getSource(SM, SM.getFileID(Loc))); 418 } 419 420 llvm::DIFile * 421 CGDebugInfo::createFile(StringRef FileName, 422 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo, 423 Optional<StringRef> Source) { 424 StringRef Dir; 425 StringRef File; 426 std::string RemappedFile = remapDIPath(FileName); 427 std::string CurDir = remapDIPath(getCurrentDirname()); 428 SmallString<128> DirBuf; 429 SmallString<128> FileBuf; 430 if (llvm::sys::path::is_absolute(RemappedFile)) { 431 // Strip the common prefix (if it is more than just "/") from current 432 // directory and FileName for a more space-efficient encoding. 433 auto FileIt = llvm::sys::path::begin(RemappedFile); 434 auto FileE = llvm::sys::path::end(RemappedFile); 435 auto CurDirIt = llvm::sys::path::begin(CurDir); 436 auto CurDirE = llvm::sys::path::end(CurDir); 437 for (; CurDirIt != CurDirE && *CurDirIt == *FileIt; ++CurDirIt, ++FileIt) 438 llvm::sys::path::append(DirBuf, *CurDirIt); 439 if (std::distance(llvm::sys::path::begin(CurDir), CurDirIt) == 1) { 440 // Don't strip the common prefix if it is only the root "/" 441 // since that would make LLVM diagnostic locations confusing. 442 Dir = {}; 443 File = RemappedFile; 444 } else { 445 for (; FileIt != FileE; ++FileIt) 446 llvm::sys::path::append(FileBuf, *FileIt); 447 Dir = DirBuf; 448 File = FileBuf; 449 } 450 } else { 451 Dir = CurDir; 452 File = RemappedFile; 453 } 454 llvm::DIFile *F = DBuilder.createFile(File, Dir, CSInfo, Source); 455 DIFileCache[FileName.data()].reset(F); 456 return F; 457 } 458 459 std::string CGDebugInfo::remapDIPath(StringRef Path) const { 460 if (DebugPrefixMap.empty()) 461 return Path.str(); 462 463 SmallString<256> P = Path; 464 for (const auto &Entry : DebugPrefixMap) 465 if (llvm::sys::path::replace_path_prefix(P, Entry.first, Entry.second)) 466 break; 467 return P.str().str(); 468 } 469 470 unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) { 471 if (Loc.isInvalid()) 472 return 0; 473 SourceManager &SM = CGM.getContext().getSourceManager(); 474 return SM.getPresumedLoc(Loc).getLine(); 475 } 476 477 unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) { 478 // We may not want column information at all. 479 if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo) 480 return 0; 481 482 // If the location is invalid then use the current column. 483 if (Loc.isInvalid() && CurLoc.isInvalid()) 484 return 0; 485 SourceManager &SM = CGM.getContext().getSourceManager(); 486 PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc); 487 return PLoc.isValid() ? PLoc.getColumn() : 0; 488 } 489 490 StringRef CGDebugInfo::getCurrentDirname() { 491 if (!CGM.getCodeGenOpts().DebugCompilationDir.empty()) 492 return CGM.getCodeGenOpts().DebugCompilationDir; 493 494 if (!CWDName.empty()) 495 return CWDName; 496 SmallString<256> CWD; 497 llvm::sys::fs::current_path(CWD); 498 return CWDName = internString(CWD); 499 } 500 501 void CGDebugInfo::CreateCompileUnit() { 502 SmallString<32> Checksum; 503 Optional<llvm::DIFile::ChecksumKind> CSKind; 504 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo; 505 506 // Should we be asking the SourceManager for the main file name, instead of 507 // accepting it as an argument? This just causes the main file name to 508 // mismatch with source locations and create extra lexical scopes or 509 // mismatched debug info (a CU with a DW_AT_file of "-", because that's what 510 // the driver passed, but functions/other things have DW_AT_file of "<stdin>" 511 // because that's what the SourceManager says) 512 513 // Get absolute path name. 514 SourceManager &SM = CGM.getContext().getSourceManager(); 515 std::string MainFileName = CGM.getCodeGenOpts().MainFileName; 516 if (MainFileName.empty()) 517 MainFileName = "<stdin>"; 518 519 // The main file name provided via the "-main-file-name" option contains just 520 // the file name itself with no path information. This file name may have had 521 // a relative path, so we look into the actual file entry for the main 522 // file to determine the real absolute path for the file. 523 std::string MainFileDir; 524 if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 525 MainFileDir = std::string(MainFile->getDir()->getName()); 526 if (!llvm::sys::path::is_absolute(MainFileName)) { 527 llvm::SmallString<1024> MainFileDirSS(MainFileDir); 528 llvm::sys::path::append(MainFileDirSS, MainFileName); 529 MainFileName = 530 std::string(llvm::sys::path::remove_leading_dotslash(MainFileDirSS)); 531 } 532 // If the main file name provided is identical to the input file name, and 533 // if the input file is a preprocessed source, use the module name for 534 // debug info. The module name comes from the name specified in the first 535 // linemarker if the input is a preprocessed source. 536 if (MainFile->getName() == MainFileName && 537 FrontendOptions::getInputKindForExtension( 538 MainFile->getName().rsplit('.').second) 539 .isPreprocessed()) 540 MainFileName = CGM.getModule().getName().str(); 541 542 CSKind = computeChecksum(SM.getMainFileID(), Checksum); 543 } 544 545 llvm::dwarf::SourceLanguage LangTag; 546 const LangOptions &LO = CGM.getLangOpts(); 547 if (LO.CPlusPlus) { 548 if (LO.ObjC) 549 LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus; 550 else if (LO.CPlusPlus14 && (!CGM.getCodeGenOpts().DebugStrictDwarf || 551 CGM.getCodeGenOpts().DwarfVersion >= 5)) 552 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_14; 553 else if (LO.CPlusPlus11 && (!CGM.getCodeGenOpts().DebugStrictDwarf || 554 CGM.getCodeGenOpts().DwarfVersion >= 5)) 555 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_11; 556 else 557 LangTag = llvm::dwarf::DW_LANG_C_plus_plus; 558 } else if (LO.ObjC) { 559 LangTag = llvm::dwarf::DW_LANG_ObjC; 560 } else if (LO.OpenCL && (!CGM.getCodeGenOpts().DebugStrictDwarf || 561 CGM.getCodeGenOpts().DwarfVersion >= 5)) { 562 LangTag = llvm::dwarf::DW_LANG_OpenCL; 563 } else if (LO.RenderScript) { 564 LangTag = llvm::dwarf::DW_LANG_GOOGLE_RenderScript; 565 } else if (LO.C99) { 566 LangTag = llvm::dwarf::DW_LANG_C99; 567 } else { 568 LangTag = llvm::dwarf::DW_LANG_C89; 569 } 570 571 std::string Producer = getClangFullVersion(); 572 573 // Figure out which version of the ObjC runtime we have. 574 unsigned RuntimeVers = 0; 575 if (LO.ObjC) 576 RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1; 577 578 llvm::DICompileUnit::DebugEmissionKind EmissionKind; 579 switch (DebugKind) { 580 case codegenoptions::NoDebugInfo: 581 case codegenoptions::LocTrackingOnly: 582 EmissionKind = llvm::DICompileUnit::NoDebug; 583 break; 584 case codegenoptions::DebugLineTablesOnly: 585 EmissionKind = llvm::DICompileUnit::LineTablesOnly; 586 break; 587 case codegenoptions::DebugDirectivesOnly: 588 EmissionKind = llvm::DICompileUnit::DebugDirectivesOnly; 589 break; 590 case codegenoptions::DebugInfoConstructor: 591 case codegenoptions::LimitedDebugInfo: 592 case codegenoptions::FullDebugInfo: 593 case codegenoptions::UnusedTypeInfo: 594 EmissionKind = llvm::DICompileUnit::FullDebug; 595 break; 596 } 597 598 uint64_t DwoId = 0; 599 auto &CGOpts = CGM.getCodeGenOpts(); 600 // The DIFile used by the CU is distinct from the main source 601 // file. Its directory part specifies what becomes the 602 // DW_AT_comp_dir (the compilation directory), even if the source 603 // file was specified with an absolute path. 604 if (CSKind) 605 CSInfo.emplace(*CSKind, Checksum); 606 llvm::DIFile *CUFile = DBuilder.createFile( 607 remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), CSInfo, 608 getSource(SM, SM.getMainFileID())); 609 610 StringRef Sysroot, SDK; 611 if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB) { 612 Sysroot = CGM.getHeaderSearchOpts().Sysroot; 613 auto B = llvm::sys::path::rbegin(Sysroot); 614 auto E = llvm::sys::path::rend(Sysroot); 615 auto It = std::find_if(B, E, [](auto SDK) { return SDK.endswith(".sdk"); }); 616 if (It != E) 617 SDK = *It; 618 } 619 620 // Create new compile unit. 621 TheCU = DBuilder.createCompileUnit( 622 LangTag, CUFile, CGOpts.EmitVersionIdentMetadata ? Producer : "", 623 LO.Optimize || CGOpts.PrepareForLTO || CGOpts.PrepareForThinLTO, 624 CGOpts.DwarfDebugFlags, RuntimeVers, CGOpts.SplitDwarfFile, EmissionKind, 625 DwoId, CGOpts.SplitDwarfInlining, CGOpts.DebugInfoForProfiling, 626 CGM.getTarget().getTriple().isNVPTX() 627 ? llvm::DICompileUnit::DebugNameTableKind::None 628 : static_cast<llvm::DICompileUnit::DebugNameTableKind>( 629 CGOpts.DebugNameTable), 630 CGOpts.DebugRangesBaseAddress, remapDIPath(Sysroot), SDK); 631 } 632 633 llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) { 634 llvm::dwarf::TypeKind Encoding; 635 StringRef BTName; 636 switch (BT->getKind()) { 637 #define BUILTIN_TYPE(Id, SingletonId) 638 #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: 639 #include "clang/AST/BuiltinTypes.def" 640 case BuiltinType::Dependent: 641 llvm_unreachable("Unexpected builtin type"); 642 case BuiltinType::NullPtr: 643 return DBuilder.createNullPtrType(); 644 case BuiltinType::Void: 645 return nullptr; 646 case BuiltinType::ObjCClass: 647 if (!ClassTy) 648 ClassTy = 649 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 650 "objc_class", TheCU, TheCU->getFile(), 0); 651 return ClassTy; 652 case BuiltinType::ObjCId: { 653 // typedef struct objc_class *Class; 654 // typedef struct objc_object { 655 // Class isa; 656 // } *id; 657 658 if (ObjTy) 659 return ObjTy; 660 661 if (!ClassTy) 662 ClassTy = 663 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 664 "objc_class", TheCU, TheCU->getFile(), 0); 665 666 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 667 668 auto *ISATy = DBuilder.createPointerType(ClassTy, Size); 669 670 ObjTy = DBuilder.createStructType(TheCU, "objc_object", TheCU->getFile(), 0, 671 0, 0, llvm::DINode::FlagZero, nullptr, 672 llvm::DINodeArray()); 673 674 DBuilder.replaceArrays( 675 ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType( 676 ObjTy, "isa", TheCU->getFile(), 0, Size, 0, 0, 677 llvm::DINode::FlagZero, ISATy))); 678 return ObjTy; 679 } 680 case BuiltinType::ObjCSel: { 681 if (!SelTy) 682 SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 683 "objc_selector", TheCU, 684 TheCU->getFile(), 0); 685 return SelTy; 686 } 687 688 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 689 case BuiltinType::Id: \ 690 return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \ 691 SingletonId); 692 #include "clang/Basic/OpenCLImageTypes.def" 693 case BuiltinType::OCLSampler: 694 return getOrCreateStructPtrType("opencl_sampler_t", OCLSamplerDITy); 695 case BuiltinType::OCLEvent: 696 return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy); 697 case BuiltinType::OCLClkEvent: 698 return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy); 699 case BuiltinType::OCLQueue: 700 return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy); 701 case BuiltinType::OCLReserveID: 702 return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy); 703 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 704 case BuiltinType::Id: \ 705 return getOrCreateStructPtrType("opencl_" #ExtType, Id##Ty); 706 #include "clang/Basic/OpenCLExtensionTypes.def" 707 708 #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 709 #include "clang/Basic/AArch64SVEACLETypes.def" 710 { 711 ASTContext::BuiltinVectorTypeInfo Info = 712 CGM.getContext().getBuiltinVectorTypeInfo(BT); 713 unsigned NumElemsPerVG = (Info.EC.getKnownMinValue() * Info.NumVectors) / 2; 714 715 // Debuggers can't extract 1bit from a vector, so will display a 716 // bitpattern for svbool_t instead. 717 if (Info.ElementType == CGM.getContext().BoolTy) { 718 NumElemsPerVG /= 8; 719 Info.ElementType = CGM.getContext().UnsignedCharTy; 720 } 721 722 auto *LowerBound = 723 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 724 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); 725 SmallVector<int64_t, 9> Expr( 726 {llvm::dwarf::DW_OP_constu, NumElemsPerVG, llvm::dwarf::DW_OP_bregx, 727 /* AArch64::VG */ 46, 0, llvm::dwarf::DW_OP_mul, 728 llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus}); 729 auto *UpperBound = DBuilder.createExpression(Expr); 730 731 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( 732 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); 733 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 734 llvm::DIType *ElemTy = 735 getOrCreateType(Info.ElementType, TheCU->getFile()); 736 auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); 737 return DBuilder.createVectorType(/*Size*/ 0, Align, ElemTy, 738 SubscriptArray); 739 } 740 // It doesn't make sense to generate debug info for PowerPC MMA vector types. 741 // So we return a safe type here to avoid generating an error. 742 #define PPC_VECTOR_TYPE(Name, Id, size) \ 743 case BuiltinType::Id: 744 #include "clang/Basic/PPCTypes.def" 745 return CreateType(cast<const BuiltinType>(CGM.getContext().IntTy)); 746 747 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 748 #include "clang/Basic/RISCVVTypes.def" 749 { 750 ASTContext::BuiltinVectorTypeInfo Info = 751 CGM.getContext().getBuiltinVectorTypeInfo(BT); 752 753 unsigned ElementCount = Info.EC.getKnownMinValue(); 754 unsigned SEW = CGM.getContext().getTypeSize(Info.ElementType); 755 756 bool Fractional = false; 757 unsigned LMUL; 758 unsigned FixedSize = ElementCount * SEW; 759 if (Info.ElementType == CGM.getContext().BoolTy) { 760 // Mask type only occupies one vector register. 761 LMUL = 1; 762 } else if (FixedSize < 64) { 763 // In RVV scalable vector types, we encode 64 bits in the fixed part. 764 Fractional = true; 765 LMUL = 64 / FixedSize; 766 } else { 767 LMUL = FixedSize / 64; 768 } 769 770 // Element count = (VLENB / SEW) x LMUL 771 SmallVector<int64_t, 12> Expr( 772 // The DW_OP_bregx operation has two operands: a register which is 773 // specified by an unsigned LEB128 number, followed by a signed LEB128 774 // offset. 775 {llvm::dwarf::DW_OP_bregx, // Read the contents of a register. 776 4096 + 0xC22, // RISC-V VLENB CSR register. 777 0, // Offset for DW_OP_bregx. It is dummy here. 778 llvm::dwarf::DW_OP_constu, 779 SEW / 8, // SEW is in bits. 780 llvm::dwarf::DW_OP_div, llvm::dwarf::DW_OP_constu, LMUL}); 781 if (Fractional) 782 Expr.push_back(llvm::dwarf::DW_OP_div); 783 else 784 Expr.push_back(llvm::dwarf::DW_OP_mul); 785 // Element max index = count - 1 786 Expr.append({llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus}); 787 788 auto *LowerBound = 789 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 790 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); 791 auto *UpperBound = DBuilder.createExpression(Expr); 792 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( 793 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); 794 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 795 llvm::DIType *ElemTy = 796 getOrCreateType(Info.ElementType, TheCU->getFile()); 797 798 auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); 799 return DBuilder.createVectorType(/*Size=*/0, Align, ElemTy, 800 SubscriptArray); 801 } 802 case BuiltinType::UChar: 803 case BuiltinType::Char_U: 804 Encoding = llvm::dwarf::DW_ATE_unsigned_char; 805 break; 806 case BuiltinType::Char_S: 807 case BuiltinType::SChar: 808 Encoding = llvm::dwarf::DW_ATE_signed_char; 809 break; 810 case BuiltinType::Char8: 811 case BuiltinType::Char16: 812 case BuiltinType::Char32: 813 Encoding = llvm::dwarf::DW_ATE_UTF; 814 break; 815 case BuiltinType::UShort: 816 case BuiltinType::UInt: 817 case BuiltinType::UInt128: 818 case BuiltinType::ULong: 819 case BuiltinType::WChar_U: 820 case BuiltinType::ULongLong: 821 Encoding = llvm::dwarf::DW_ATE_unsigned; 822 break; 823 case BuiltinType::Short: 824 case BuiltinType::Int: 825 case BuiltinType::Int128: 826 case BuiltinType::Long: 827 case BuiltinType::WChar_S: 828 case BuiltinType::LongLong: 829 Encoding = llvm::dwarf::DW_ATE_signed; 830 break; 831 case BuiltinType::Bool: 832 Encoding = llvm::dwarf::DW_ATE_boolean; 833 break; 834 case BuiltinType::Half: 835 case BuiltinType::Float: 836 case BuiltinType::LongDouble: 837 case BuiltinType::Float16: 838 case BuiltinType::BFloat16: 839 case BuiltinType::Float128: 840 case BuiltinType::Double: 841 case BuiltinType::Ibm128: 842 // FIXME: For targets where long double, __ibm128 and __float128 have the 843 // same size, they are currently indistinguishable in the debugger without 844 // some special treatment. However, there is currently no consensus on 845 // encoding and this should be updated once a DWARF encoding exists for 846 // distinct floating point types of the same size. 847 Encoding = llvm::dwarf::DW_ATE_float; 848 break; 849 case BuiltinType::ShortAccum: 850 case BuiltinType::Accum: 851 case BuiltinType::LongAccum: 852 case BuiltinType::ShortFract: 853 case BuiltinType::Fract: 854 case BuiltinType::LongFract: 855 case BuiltinType::SatShortFract: 856 case BuiltinType::SatFract: 857 case BuiltinType::SatLongFract: 858 case BuiltinType::SatShortAccum: 859 case BuiltinType::SatAccum: 860 case BuiltinType::SatLongAccum: 861 Encoding = llvm::dwarf::DW_ATE_signed_fixed; 862 break; 863 case BuiltinType::UShortAccum: 864 case BuiltinType::UAccum: 865 case BuiltinType::ULongAccum: 866 case BuiltinType::UShortFract: 867 case BuiltinType::UFract: 868 case BuiltinType::ULongFract: 869 case BuiltinType::SatUShortAccum: 870 case BuiltinType::SatUAccum: 871 case BuiltinType::SatULongAccum: 872 case BuiltinType::SatUShortFract: 873 case BuiltinType::SatUFract: 874 case BuiltinType::SatULongFract: 875 Encoding = llvm::dwarf::DW_ATE_unsigned_fixed; 876 break; 877 } 878 879 BTName = BT->getName(CGM.getLangOpts()); 880 // Bit size and offset of the type. 881 uint64_t Size = CGM.getContext().getTypeSize(BT); 882 return DBuilder.createBasicType(BTName, Size, Encoding); 883 } 884 885 llvm::DIType *CGDebugInfo::CreateType(const AutoType *Ty) { 886 return DBuilder.createUnspecifiedType("auto"); 887 } 888 889 llvm::DIType *CGDebugInfo::CreateType(const BitIntType *Ty) { 890 891 StringRef Name = Ty->isUnsigned() ? "unsigned _BitInt" : "_BitInt"; 892 llvm::dwarf::TypeKind Encoding = Ty->isUnsigned() 893 ? llvm::dwarf::DW_ATE_unsigned 894 : llvm::dwarf::DW_ATE_signed; 895 896 return DBuilder.createBasicType(Name, CGM.getContext().getTypeSize(Ty), 897 Encoding); 898 } 899 900 llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) { 901 // Bit size and offset of the type. 902 llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float; 903 if (Ty->isComplexIntegerType()) 904 Encoding = llvm::dwarf::DW_ATE_lo_user; 905 906 uint64_t Size = CGM.getContext().getTypeSize(Ty); 907 return DBuilder.createBasicType("complex", Size, Encoding); 908 } 909 910 static void stripUnusedQualifiers(Qualifiers &Q) { 911 // Ignore these qualifiers for now. 912 Q.removeObjCGCAttr(); 913 Q.removeAddressSpace(); 914 Q.removeObjCLifetime(); 915 Q.removeUnaligned(); 916 } 917 918 static llvm::dwarf::Tag getNextQualifier(Qualifiers &Q) { 919 if (Q.hasConst()) { 920 Q.removeConst(); 921 return llvm::dwarf::DW_TAG_const_type; 922 } 923 if (Q.hasVolatile()) { 924 Q.removeVolatile(); 925 return llvm::dwarf::DW_TAG_volatile_type; 926 } 927 if (Q.hasRestrict()) { 928 Q.removeRestrict(); 929 return llvm::dwarf::DW_TAG_restrict_type; 930 } 931 return (llvm::dwarf::Tag)0; 932 } 933 934 // Strip MacroQualifiedTypeLoc and AttributedTypeLoc 935 // as their corresponding types will be ignored 936 // during code generation. Stripping them allows 937 // to maintain proper TypeLoc for a given type 938 // during code generation. 939 static TypeLoc StripMacroAttributed(TypeLoc TL) { 940 if (!TL) 941 return TL; 942 943 while (true) { 944 if (auto MTL = TL.getAs<MacroQualifiedTypeLoc>()) 945 TL = MTL.getInnerLoc(); 946 else if (auto ATL = TL.getAs<AttributedTypeLoc>()) 947 TL = ATL.getModifiedLoc(); 948 else 949 break; 950 } 951 return TL; 952 } 953 954 llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty, llvm::DIFile *Unit, 955 TypeLoc TL) { 956 QualifierCollector Qc; 957 const Type *T = Qc.strip(Ty); 958 959 stripUnusedQualifiers(Qc); 960 961 // We will create one Derived type for one qualifier and recurse to handle any 962 // additional ones. 963 llvm::dwarf::Tag Tag = getNextQualifier(Qc); 964 if (!Tag) { 965 assert(Qc.empty() && "Unknown type qualifier for debug info"); 966 return getOrCreateType(QualType(T, 0), Unit); 967 } 968 969 QualType NextTy = Qc.apply(CGM.getContext(), T); 970 TypeLoc NextTL; 971 if (NextTy.hasQualifiers()) 972 NextTL = TL; 973 else if (TL) { 974 if (auto QTL = TL.getAs<QualifiedTypeLoc>()) 975 NextTL = StripMacroAttributed(QTL.getNextTypeLoc()); 976 } 977 auto *FromTy = getOrCreateType(NextTy, Unit, NextTL); 978 979 // No need to fill in the Name, Line, Size, Alignment, Offset in case of 980 // CVR derived types. 981 return DBuilder.createQualifiedType(Tag, FromTy); 982 } 983 984 llvm::DIType *CGDebugInfo::CreateQualifiedType(const FunctionProtoType *F, 985 llvm::DIFile *Unit) { 986 FunctionProtoType::ExtProtoInfo EPI = F->getExtProtoInfo(); 987 Qualifiers &Q = EPI.TypeQuals; 988 stripUnusedQualifiers(Q); 989 990 // We will create one Derived type for one qualifier and recurse to handle any 991 // additional ones. 992 llvm::dwarf::Tag Tag = getNextQualifier(Q); 993 if (!Tag) { 994 assert(Q.empty() && "Unknown type qualifier for debug info"); 995 return nullptr; 996 } 997 998 auto *FromTy = 999 getOrCreateType(CGM.getContext().getFunctionType(F->getReturnType(), 1000 F->getParamTypes(), EPI), 1001 Unit); 1002 1003 // No need to fill in the Name, Line, Size, Alignment, Offset in case of 1004 // CVR derived types. 1005 return DBuilder.createQualifiedType(Tag, FromTy); 1006 } 1007 1008 llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty, 1009 llvm::DIFile *Unit) { 1010 1011 // The frontend treats 'id' as a typedef to an ObjCObjectType, 1012 // whereas 'id<protocol>' is treated as an ObjCPointerType. For the 1013 // debug info, we want to emit 'id' in both cases. 1014 if (Ty->isObjCQualifiedIdType()) 1015 return getOrCreateType(CGM.getContext().getObjCIdType(), Unit); 1016 1017 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, 1018 Ty->getPointeeType(), Unit); 1019 } 1020 1021 llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty, llvm::DIFile *Unit, 1022 TypeLoc TL) { 1023 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, 1024 Ty->getPointeeType(), Unit, TL); 1025 } 1026 1027 /// \return whether a C++ mangling exists for the type defined by TD. 1028 static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) { 1029 switch (TheCU->getSourceLanguage()) { 1030 case llvm::dwarf::DW_LANG_C_plus_plus: 1031 case llvm::dwarf::DW_LANG_C_plus_plus_11: 1032 case llvm::dwarf::DW_LANG_C_plus_plus_14: 1033 return true; 1034 case llvm::dwarf::DW_LANG_ObjC_plus_plus: 1035 return isa<CXXRecordDecl>(TD) || isa<EnumDecl>(TD); 1036 default: 1037 return false; 1038 } 1039 } 1040 1041 // Determines if the debug info for this tag declaration needs a type 1042 // identifier. The purpose of the unique identifier is to deduplicate type 1043 // information for identical types across TUs. Because of the C++ one definition 1044 // rule (ODR), it is valid to assume that the type is defined the same way in 1045 // every TU and its debug info is equivalent. 1046 // 1047 // C does not have the ODR, and it is common for codebases to contain multiple 1048 // different definitions of a struct with the same name in different TUs. 1049 // Therefore, if the type doesn't have a C++ mangling, don't give it an 1050 // identifer. Type information in C is smaller and simpler than C++ type 1051 // information, so the increase in debug info size is negligible. 1052 // 1053 // If the type is not externally visible, it should be unique to the current TU, 1054 // and should not need an identifier to participate in type deduplication. 1055 // However, when emitting CodeView, the format internally uses these 1056 // unique type name identifers for references between debug info. For example, 1057 // the method of a class in an anonymous namespace uses the identifer to refer 1058 // to its parent class. The Microsoft C++ ABI attempts to provide unique names 1059 // for such types, so when emitting CodeView, always use identifiers for C++ 1060 // types. This may create problems when attempting to emit CodeView when the MS 1061 // C++ ABI is not in use. 1062 static bool needsTypeIdentifier(const TagDecl *TD, CodeGenModule &CGM, 1063 llvm::DICompileUnit *TheCU) { 1064 // We only add a type identifier for types with C++ name mangling. 1065 if (!hasCXXMangling(TD, TheCU)) 1066 return false; 1067 1068 // Externally visible types with C++ mangling need a type identifier. 1069 if (TD->isExternallyVisible()) 1070 return true; 1071 1072 // CodeView types with C++ mangling need a type identifier. 1073 if (CGM.getCodeGenOpts().EmitCodeView) 1074 return true; 1075 1076 return false; 1077 } 1078 1079 // Returns a unique type identifier string if one exists, or an empty string. 1080 static SmallString<256> getTypeIdentifier(const TagType *Ty, CodeGenModule &CGM, 1081 llvm::DICompileUnit *TheCU) { 1082 SmallString<256> Identifier; 1083 const TagDecl *TD = Ty->getDecl(); 1084 1085 if (!needsTypeIdentifier(TD, CGM, TheCU)) 1086 return Identifier; 1087 if (const auto *RD = dyn_cast<CXXRecordDecl>(TD)) 1088 if (RD->getDefinition()) 1089 if (RD->isDynamicClass() && 1090 CGM.getVTableLinkage(RD) == llvm::GlobalValue::ExternalLinkage) 1091 return Identifier; 1092 1093 // TODO: This is using the RTTI name. Is there a better way to get 1094 // a unique string for a type? 1095 llvm::raw_svector_ostream Out(Identifier); 1096 CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out); 1097 return Identifier; 1098 } 1099 1100 /// \return the appropriate DWARF tag for a composite type. 1101 static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) { 1102 llvm::dwarf::Tag Tag; 1103 if (RD->isStruct() || RD->isInterface()) 1104 Tag = llvm::dwarf::DW_TAG_structure_type; 1105 else if (RD->isUnion()) 1106 Tag = llvm::dwarf::DW_TAG_union_type; 1107 else { 1108 // FIXME: This could be a struct type giving a default visibility different 1109 // than C++ class type, but needs llvm metadata changes first. 1110 assert(RD->isClass()); 1111 Tag = llvm::dwarf::DW_TAG_class_type; 1112 } 1113 return Tag; 1114 } 1115 1116 llvm::DICompositeType * 1117 CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty, 1118 llvm::DIScope *Ctx) { 1119 const RecordDecl *RD = Ty->getDecl(); 1120 if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD))) 1121 return cast<llvm::DICompositeType>(T); 1122 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); 1123 const unsigned Line = 1124 getLineNumber(RD->getLocation().isValid() ? RD->getLocation() : CurLoc); 1125 StringRef RDName = getClassName(RD); 1126 1127 uint64_t Size = 0; 1128 uint32_t Align = 0; 1129 1130 const RecordDecl *D = RD->getDefinition(); 1131 if (D && D->isCompleteDefinition()) 1132 Size = CGM.getContext().getTypeSize(Ty); 1133 1134 llvm::DINode::DIFlags Flags = llvm::DINode::FlagFwdDecl; 1135 1136 // Add flag to nontrivial forward declarations. To be consistent with MSVC, 1137 // add the flag if a record has no definition because we don't know whether 1138 // it will be trivial or not. 1139 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1140 if (!CXXRD->hasDefinition() || 1141 (CXXRD->hasDefinition() && !CXXRD->isTrivial())) 1142 Flags |= llvm::DINode::FlagNonTrivial; 1143 1144 // Create the type. 1145 SmallString<256> Identifier; 1146 // Don't include a linkage name in line tables only. 1147 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 1148 Identifier = getTypeIdentifier(Ty, CGM, TheCU); 1149 llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType( 1150 getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align, Flags, 1151 Identifier); 1152 if (CGM.getCodeGenOpts().DebugFwdTemplateParams) 1153 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 1154 DBuilder.replaceArrays(RetTy, llvm::DINodeArray(), 1155 CollectCXXTemplateParams(TSpecial, DefUnit)); 1156 ReplaceMap.emplace_back( 1157 std::piecewise_construct, std::make_tuple(Ty), 1158 std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); 1159 return RetTy; 1160 } 1161 1162 llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag, 1163 const Type *Ty, 1164 QualType PointeeTy, 1165 llvm::DIFile *Unit, 1166 TypeLoc TL) { 1167 // Bit size, align and offset of the type. 1168 // Size is always the size of a pointer. We can't use getTypeSize here 1169 // because that does not return the correct value for references. 1170 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(PointeeTy); 1171 uint64_t Size = CGM.getTarget().getPointerWidth(AddressSpace); 1172 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 1173 Optional<unsigned> DWARFAddressSpace = 1174 CGM.getTarget().getDWARFAddressSpace(AddressSpace); 1175 1176 llvm::DINodeArray Annotations = nullptr; 1177 TypeLoc NextTL; 1178 if (TL) { 1179 SmallVector<llvm::Metadata *, 4> Annots; 1180 NextTL = TL.getNextTypeLoc(); 1181 if (NextTL) { 1182 // Traverse all MacroQualifiedTypeLoc, QualifiedTypeLoc and 1183 // AttributedTypeLoc type locations so we can collect 1184 // BTFTypeTag attributes for this pointer. 1185 while (true) { 1186 if (auto MTL = NextTL.getAs<MacroQualifiedTypeLoc>()) { 1187 NextTL = MTL.getInnerLoc(); 1188 } else if (auto QTL = NextTL.getAs<QualifiedTypeLoc>()) { 1189 NextTL = QTL.getNextTypeLoc(); 1190 } else if (auto ATL = NextTL.getAs<AttributedTypeLoc>()) { 1191 if (const auto *A = ATL.getAttrAs<BTFTypeTagAttr>()) { 1192 StringRef BTFTypeTag = A->getBTFTypeTag(); 1193 if (!BTFTypeTag.empty()) { 1194 llvm::Metadata *Ops[2] = { 1195 llvm::MDString::get(CGM.getLLVMContext(), 1196 StringRef("btf_type_tag")), 1197 llvm::MDString::get(CGM.getLLVMContext(), BTFTypeTag)}; 1198 Annots.insert(Annots.begin(), 1199 llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1200 } 1201 } 1202 NextTL = ATL.getModifiedLoc(); 1203 } else { 1204 break; 1205 } 1206 } 1207 } 1208 1209 NextTL = StripMacroAttributed(TL.getNextTypeLoc()); 1210 if (Annots.size() > 0) 1211 Annotations = DBuilder.getOrCreateArray(Annots); 1212 } 1213 1214 if (Tag == llvm::dwarf::DW_TAG_reference_type || 1215 Tag == llvm::dwarf::DW_TAG_rvalue_reference_type) 1216 return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit), 1217 Size, Align, DWARFAddressSpace); 1218 else 1219 return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit, NextTL), 1220 Size, Align, DWARFAddressSpace, 1221 StringRef(), Annotations); 1222 } 1223 1224 llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name, 1225 llvm::DIType *&Cache) { 1226 if (Cache) 1227 return Cache; 1228 Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name, 1229 TheCU, TheCU->getFile(), 0); 1230 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 1231 Cache = DBuilder.createPointerType(Cache, Size); 1232 return Cache; 1233 } 1234 1235 uint64_t CGDebugInfo::collectDefaultElementTypesForBlockPointer( 1236 const BlockPointerType *Ty, llvm::DIFile *Unit, llvm::DIDerivedType *DescTy, 1237 unsigned LineNo, SmallVectorImpl<llvm::Metadata *> &EltTys) { 1238 QualType FType; 1239 1240 // Advanced by calls to CreateMemberType in increments of FType, then 1241 // returned as the overall size of the default elements. 1242 uint64_t FieldOffset = 0; 1243 1244 // Blocks in OpenCL have unique constraints which make the standard fields 1245 // redundant while requiring size and align fields for enqueue_kernel. See 1246 // initializeForBlockHeader in CGBlocks.cpp 1247 if (CGM.getLangOpts().OpenCL) { 1248 FType = CGM.getContext().IntTy; 1249 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); 1250 EltTys.push_back(CreateMemberType(Unit, FType, "__align", &FieldOffset)); 1251 } else { 1252 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 1253 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); 1254 FType = CGM.getContext().IntTy; 1255 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); 1256 EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset)); 1257 FType = CGM.getContext().getPointerType(Ty->getPointeeType()); 1258 EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset)); 1259 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 1260 uint64_t FieldSize = CGM.getContext().getTypeSize(Ty); 1261 uint32_t FieldAlign = CGM.getContext().getTypeAlign(Ty); 1262 EltTys.push_back(DBuilder.createMemberType( 1263 Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign, 1264 FieldOffset, llvm::DINode::FlagZero, DescTy)); 1265 FieldOffset += FieldSize; 1266 } 1267 1268 return FieldOffset; 1269 } 1270 1271 llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty, 1272 llvm::DIFile *Unit) { 1273 SmallVector<llvm::Metadata *, 8> EltTys; 1274 QualType FType; 1275 uint64_t FieldOffset; 1276 llvm::DINodeArray Elements; 1277 1278 FieldOffset = 0; 1279 FType = CGM.getContext().UnsignedLongTy; 1280 EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset)); 1281 EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset)); 1282 1283 Elements = DBuilder.getOrCreateArray(EltTys); 1284 EltTys.clear(); 1285 1286 llvm::DINode::DIFlags Flags = llvm::DINode::FlagAppleBlock; 1287 1288 auto *EltTy = 1289 DBuilder.createStructType(Unit, "__block_descriptor", nullptr, 0, 1290 FieldOffset, 0, Flags, nullptr, Elements); 1291 1292 // Bit size, align and offset of the type. 1293 uint64_t Size = CGM.getContext().getTypeSize(Ty); 1294 1295 auto *DescTy = DBuilder.createPointerType(EltTy, Size); 1296 1297 FieldOffset = collectDefaultElementTypesForBlockPointer(Ty, Unit, DescTy, 1298 0, EltTys); 1299 1300 Elements = DBuilder.getOrCreateArray(EltTys); 1301 1302 // The __block_literal_generic structs are marked with a special 1303 // DW_AT_APPLE_BLOCK attribute and are an implementation detail only 1304 // the debugger needs to know about. To allow type uniquing, emit 1305 // them without a name or a location. 1306 EltTy = DBuilder.createStructType(Unit, "", nullptr, 0, FieldOffset, 0, 1307 Flags, nullptr, Elements); 1308 1309 return DBuilder.createPointerType(EltTy, Size); 1310 } 1311 1312 llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty, 1313 llvm::DIFile *Unit) { 1314 assert(Ty->isTypeAlias()); 1315 llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit); 1316 1317 auto *AliasDecl = 1318 cast<TypeAliasTemplateDecl>(Ty->getTemplateName().getAsTemplateDecl()) 1319 ->getTemplatedDecl(); 1320 1321 if (AliasDecl->hasAttr<NoDebugAttr>()) 1322 return Src; 1323 1324 SmallString<128> NS; 1325 llvm::raw_svector_ostream OS(NS); 1326 Ty->getTemplateName().print(OS, getPrintingPolicy(), 1327 TemplateName::Qualified::None); 1328 printTemplateArgumentList(OS, Ty->template_arguments(), getPrintingPolicy()); 1329 1330 SourceLocation Loc = AliasDecl->getLocation(); 1331 return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc), 1332 getLineNumber(Loc), 1333 getDeclContextDescriptor(AliasDecl)); 1334 } 1335 1336 llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty, 1337 llvm::DIFile *Unit) { 1338 TypeLoc TL; 1339 if (const TypeSourceInfo *TSI = Ty->getDecl()->getTypeSourceInfo()) 1340 TL = TSI->getTypeLoc(); 1341 llvm::DIType *Underlying = 1342 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit, TL); 1343 1344 if (Ty->getDecl()->hasAttr<NoDebugAttr>()) 1345 return Underlying; 1346 1347 // We don't set size information, but do specify where the typedef was 1348 // declared. 1349 SourceLocation Loc = Ty->getDecl()->getLocation(); 1350 1351 uint32_t Align = getDeclAlignIfRequired(Ty->getDecl(), CGM.getContext()); 1352 // Typedefs are derived from some other type. 1353 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(Ty->getDecl()); 1354 return DBuilder.createTypedef(Underlying, Ty->getDecl()->getName(), 1355 getOrCreateFile(Loc), getLineNumber(Loc), 1356 getDeclContextDescriptor(Ty->getDecl()), Align, 1357 Annotations); 1358 } 1359 1360 static unsigned getDwarfCC(CallingConv CC) { 1361 switch (CC) { 1362 case CC_C: 1363 // Avoid emitting DW_AT_calling_convention if the C convention was used. 1364 return 0; 1365 1366 case CC_X86StdCall: 1367 return llvm::dwarf::DW_CC_BORLAND_stdcall; 1368 case CC_X86FastCall: 1369 return llvm::dwarf::DW_CC_BORLAND_msfastcall; 1370 case CC_X86ThisCall: 1371 return llvm::dwarf::DW_CC_BORLAND_thiscall; 1372 case CC_X86VectorCall: 1373 return llvm::dwarf::DW_CC_LLVM_vectorcall; 1374 case CC_X86Pascal: 1375 return llvm::dwarf::DW_CC_BORLAND_pascal; 1376 case CC_Win64: 1377 return llvm::dwarf::DW_CC_LLVM_Win64; 1378 case CC_X86_64SysV: 1379 return llvm::dwarf::DW_CC_LLVM_X86_64SysV; 1380 case CC_AAPCS: 1381 case CC_AArch64VectorCall: 1382 return llvm::dwarf::DW_CC_LLVM_AAPCS; 1383 case CC_AAPCS_VFP: 1384 return llvm::dwarf::DW_CC_LLVM_AAPCS_VFP; 1385 case CC_IntelOclBicc: 1386 return llvm::dwarf::DW_CC_LLVM_IntelOclBicc; 1387 case CC_SpirFunction: 1388 return llvm::dwarf::DW_CC_LLVM_SpirFunction; 1389 case CC_OpenCLKernel: 1390 return llvm::dwarf::DW_CC_LLVM_OpenCLKernel; 1391 case CC_Swift: 1392 return llvm::dwarf::DW_CC_LLVM_Swift; 1393 case CC_SwiftAsync: 1394 // [FIXME: swiftasynccc] Update to SwiftAsync once LLVM support lands. 1395 return llvm::dwarf::DW_CC_LLVM_Swift; 1396 case CC_PreserveMost: 1397 return llvm::dwarf::DW_CC_LLVM_PreserveMost; 1398 case CC_PreserveAll: 1399 return llvm::dwarf::DW_CC_LLVM_PreserveAll; 1400 case CC_X86RegCall: 1401 return llvm::dwarf::DW_CC_LLVM_X86RegCall; 1402 } 1403 return 0; 1404 } 1405 1406 static llvm::DINode::DIFlags getRefFlags(const FunctionProtoType *Func) { 1407 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1408 if (Func->getExtProtoInfo().RefQualifier == RQ_LValue) 1409 Flags |= llvm::DINode::FlagLValueReference; 1410 if (Func->getExtProtoInfo().RefQualifier == RQ_RValue) 1411 Flags |= llvm::DINode::FlagRValueReference; 1412 return Flags; 1413 } 1414 1415 llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty, 1416 llvm::DIFile *Unit, TypeLoc TL) { 1417 const auto *FPT = dyn_cast<FunctionProtoType>(Ty); 1418 if (FPT) { 1419 if (llvm::DIType *QTy = CreateQualifiedType(FPT, Unit)) 1420 return QTy; 1421 } 1422 1423 // Create the type without any qualifiers 1424 1425 SmallVector<llvm::Metadata *, 16> EltTys; 1426 1427 // Add the result type at least. 1428 TypeLoc RetTL; 1429 if (TL) { 1430 if (auto FTL = TL.getAs<FunctionTypeLoc>()) 1431 RetTL = FTL.getReturnLoc(); 1432 } 1433 EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit, RetTL)); 1434 1435 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1436 // Set up remainder of arguments if there is a prototype. 1437 // otherwise emit it as a variadic function. 1438 if (!FPT) { 1439 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 1440 } else { 1441 Flags = getRefFlags(FPT); 1442 bool DoneWithTL = false; 1443 if (TL) { 1444 if (auto FTL = TL.getAs<FunctionTypeLoc>()) { 1445 DoneWithTL = true; 1446 unsigned Idx = 0; 1447 unsigned FTL_NumParams = FTL.getNumParams(); 1448 for (const QualType &ParamType : FPT->param_types()) { 1449 TypeLoc ParamTL; 1450 if (Idx < FTL_NumParams) { 1451 if (ParmVarDecl *Param = FTL.getParam(Idx)) { 1452 if (const TypeSourceInfo *TSI = Param->getTypeSourceInfo()) 1453 ParamTL = TSI->getTypeLoc(); 1454 } 1455 } 1456 EltTys.push_back(getOrCreateType(ParamType, Unit, ParamTL)); 1457 Idx++; 1458 } 1459 } 1460 } 1461 1462 if (!DoneWithTL) { 1463 for (const QualType &ParamType : FPT->param_types()) 1464 EltTys.push_back(getOrCreateType(ParamType, Unit)); 1465 } 1466 if (FPT->isVariadic()) 1467 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 1468 } 1469 1470 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); 1471 llvm::DIType *F = DBuilder.createSubroutineType( 1472 EltTypeArray, Flags, getDwarfCC(Ty->getCallConv())); 1473 return F; 1474 } 1475 1476 /// Convert an AccessSpecifier into the corresponding DINode flag. 1477 /// As an optimization, return 0 if the access specifier equals the 1478 /// default for the containing type. 1479 static llvm::DINode::DIFlags getAccessFlag(AccessSpecifier Access, 1480 const RecordDecl *RD) { 1481 AccessSpecifier Default = clang::AS_none; 1482 if (RD && RD->isClass()) 1483 Default = clang::AS_private; 1484 else if (RD && (RD->isStruct() || RD->isUnion())) 1485 Default = clang::AS_public; 1486 1487 if (Access == Default) 1488 return llvm::DINode::FlagZero; 1489 1490 switch (Access) { 1491 case clang::AS_private: 1492 return llvm::DINode::FlagPrivate; 1493 case clang::AS_protected: 1494 return llvm::DINode::FlagProtected; 1495 case clang::AS_public: 1496 return llvm::DINode::FlagPublic; 1497 case clang::AS_none: 1498 return llvm::DINode::FlagZero; 1499 } 1500 llvm_unreachable("unexpected access enumerator"); 1501 } 1502 1503 llvm::DIType *CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl, 1504 llvm::DIScope *RecordTy, 1505 const RecordDecl *RD) { 1506 StringRef Name = BitFieldDecl->getName(); 1507 QualType Ty = BitFieldDecl->getType(); 1508 SourceLocation Loc = BitFieldDecl->getLocation(); 1509 llvm::DIFile *VUnit = getOrCreateFile(Loc); 1510 llvm::DIType *DebugType = getOrCreateType(Ty, VUnit); 1511 1512 // Get the location for the field. 1513 llvm::DIFile *File = getOrCreateFile(Loc); 1514 unsigned Line = getLineNumber(Loc); 1515 1516 const CGBitFieldInfo &BitFieldInfo = 1517 CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl); 1518 uint64_t SizeInBits = BitFieldInfo.Size; 1519 assert(SizeInBits > 0 && "found named 0-width bitfield"); 1520 uint64_t StorageOffsetInBits = 1521 CGM.getContext().toBits(BitFieldInfo.StorageOffset); 1522 uint64_t Offset = BitFieldInfo.Offset; 1523 // The bit offsets for big endian machines are reversed for big 1524 // endian target, compensate for that as the DIDerivedType requires 1525 // un-reversed offsets. 1526 if (CGM.getDataLayout().isBigEndian()) 1527 Offset = BitFieldInfo.StorageSize - BitFieldInfo.Size - Offset; 1528 uint64_t OffsetInBits = StorageOffsetInBits + Offset; 1529 llvm::DINode::DIFlags Flags = getAccessFlag(BitFieldDecl->getAccess(), RD); 1530 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(BitFieldDecl); 1531 return DBuilder.createBitFieldMemberType( 1532 RecordTy, Name, File, Line, SizeInBits, OffsetInBits, StorageOffsetInBits, 1533 Flags, DebugType, Annotations); 1534 } 1535 1536 llvm::DIType * 1537 CGDebugInfo::createFieldType(StringRef name, QualType type, SourceLocation loc, 1538 AccessSpecifier AS, uint64_t offsetInBits, 1539 uint32_t AlignInBits, llvm::DIFile *tunit, 1540 llvm::DIScope *scope, const RecordDecl *RD, 1541 llvm::DINodeArray Annotations, TypeLoc TL) { 1542 llvm::DIType *debugType = getOrCreateType(type, tunit, TL); 1543 1544 // Get the location for the field. 1545 llvm::DIFile *file = getOrCreateFile(loc); 1546 const unsigned line = getLineNumber(loc.isValid() ? loc : CurLoc); 1547 1548 uint64_t SizeInBits = 0; 1549 auto Align = AlignInBits; 1550 if (!type->isIncompleteArrayType()) { 1551 TypeInfo TI = CGM.getContext().getTypeInfo(type); 1552 SizeInBits = TI.Width; 1553 if (!Align) 1554 Align = getTypeAlignIfRequired(type, CGM.getContext()); 1555 } 1556 1557 llvm::DINode::DIFlags flags = getAccessFlag(AS, RD); 1558 return DBuilder.createMemberType(scope, name, file, line, SizeInBits, Align, 1559 offsetInBits, flags, debugType, Annotations); 1560 } 1561 1562 void CGDebugInfo::CollectRecordLambdaFields( 1563 const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements, 1564 llvm::DIType *RecordTy) { 1565 // For C++11 Lambdas a Field will be the same as a Capture, but the Capture 1566 // has the name and the location of the variable so we should iterate over 1567 // both concurrently. 1568 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl); 1569 RecordDecl::field_iterator Field = CXXDecl->field_begin(); 1570 unsigned fieldno = 0; 1571 for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(), 1572 E = CXXDecl->captures_end(); 1573 I != E; ++I, ++Field, ++fieldno) { 1574 const LambdaCapture &C = *I; 1575 if (C.capturesVariable()) { 1576 SourceLocation Loc = C.getLocation(); 1577 assert(!Field->isBitField() && "lambdas don't have bitfield members!"); 1578 VarDecl *V = C.getCapturedVar(); 1579 StringRef VName = V->getName(); 1580 llvm::DIFile *VUnit = getOrCreateFile(Loc); 1581 auto Align = getDeclAlignIfRequired(V, CGM.getContext()); 1582 llvm::DIType *FieldType = createFieldType( 1583 VName, Field->getType(), Loc, Field->getAccess(), 1584 layout.getFieldOffset(fieldno), Align, VUnit, RecordTy, CXXDecl); 1585 elements.push_back(FieldType); 1586 } else if (C.capturesThis()) { 1587 // TODO: Need to handle 'this' in some way by probably renaming the 1588 // this of the lambda class and having a field member of 'this' or 1589 // by using AT_object_pointer for the function and having that be 1590 // used as 'this' for semantic references. 1591 FieldDecl *f = *Field; 1592 llvm::DIFile *VUnit = getOrCreateFile(f->getLocation()); 1593 QualType type = f->getType(); 1594 llvm::DIType *fieldType = createFieldType( 1595 "this", type, f->getLocation(), f->getAccess(), 1596 layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl); 1597 1598 elements.push_back(fieldType); 1599 } 1600 } 1601 } 1602 1603 llvm::DIDerivedType * 1604 CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy, 1605 const RecordDecl *RD) { 1606 // Create the descriptor for the static variable, with or without 1607 // constant initializers. 1608 Var = Var->getCanonicalDecl(); 1609 llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation()); 1610 llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit); 1611 1612 unsigned LineNumber = getLineNumber(Var->getLocation()); 1613 StringRef VName = Var->getName(); 1614 llvm::Constant *C = nullptr; 1615 if (Var->getInit()) { 1616 const APValue *Value = Var->evaluateValue(); 1617 if (Value) { 1618 if (Value->isInt()) 1619 C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt()); 1620 if (Value->isFloat()) 1621 C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat()); 1622 } 1623 } 1624 1625 llvm::DINode::DIFlags Flags = getAccessFlag(Var->getAccess(), RD); 1626 auto Align = getDeclAlignIfRequired(Var, CGM.getContext()); 1627 llvm::DIDerivedType *GV = DBuilder.createStaticMemberType( 1628 RecordTy, VName, VUnit, LineNumber, VTy, Flags, C, Align); 1629 StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV); 1630 return GV; 1631 } 1632 1633 void CGDebugInfo::CollectRecordNormalField( 1634 const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit, 1635 SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy, 1636 const RecordDecl *RD) { 1637 StringRef name = field->getName(); 1638 QualType type = field->getType(); 1639 1640 // Ignore unnamed fields unless they're anonymous structs/unions. 1641 if (name.empty() && !type->isRecordType()) 1642 return; 1643 1644 llvm::DIType *FieldType; 1645 if (field->isBitField()) { 1646 FieldType = createBitFieldType(field, RecordTy, RD); 1647 } else { 1648 auto Align = getDeclAlignIfRequired(field, CGM.getContext()); 1649 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(field); 1650 TypeLoc TL; 1651 if (const TypeSourceInfo *TSI = field->getTypeSourceInfo()) 1652 TL = TSI->getTypeLoc(); 1653 FieldType = createFieldType(name, type, field->getLocation(), 1654 field->getAccess(), OffsetInBits, Align, tunit, 1655 RecordTy, RD, Annotations, TL); 1656 } 1657 1658 elements.push_back(FieldType); 1659 } 1660 1661 void CGDebugInfo::CollectRecordNestedType( 1662 const TypeDecl *TD, SmallVectorImpl<llvm::Metadata *> &elements) { 1663 QualType Ty = CGM.getContext().getTypeDeclType(TD); 1664 // Injected class names are not considered nested records. 1665 if (isa<InjectedClassNameType>(Ty)) 1666 return; 1667 SourceLocation Loc = TD->getLocation(); 1668 llvm::DIType *nestedType = getOrCreateType(Ty, getOrCreateFile(Loc)); 1669 elements.push_back(nestedType); 1670 } 1671 1672 void CGDebugInfo::CollectRecordFields( 1673 const RecordDecl *record, llvm::DIFile *tunit, 1674 SmallVectorImpl<llvm::Metadata *> &elements, 1675 llvm::DICompositeType *RecordTy) { 1676 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(record); 1677 1678 if (CXXDecl && CXXDecl->isLambda()) 1679 CollectRecordLambdaFields(CXXDecl, elements, RecordTy); 1680 else { 1681 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record); 1682 1683 // Field number for non-static fields. 1684 unsigned fieldNo = 0; 1685 1686 // Static and non-static members should appear in the same order as 1687 // the corresponding declarations in the source program. 1688 for (const auto *I : record->decls()) 1689 if (const auto *V = dyn_cast<VarDecl>(I)) { 1690 if (V->hasAttr<NoDebugAttr>()) 1691 continue; 1692 1693 // Skip variable template specializations when emitting CodeView. MSVC 1694 // doesn't emit them. 1695 if (CGM.getCodeGenOpts().EmitCodeView && 1696 isa<VarTemplateSpecializationDecl>(V)) 1697 continue; 1698 1699 if (isa<VarTemplatePartialSpecializationDecl>(V)) 1700 continue; 1701 1702 // Reuse the existing static member declaration if one exists 1703 auto MI = StaticDataMemberCache.find(V->getCanonicalDecl()); 1704 if (MI != StaticDataMemberCache.end()) { 1705 assert(MI->second && 1706 "Static data member declaration should still exist"); 1707 elements.push_back(MI->second); 1708 } else { 1709 auto Field = CreateRecordStaticField(V, RecordTy, record); 1710 elements.push_back(Field); 1711 } 1712 } else if (const auto *field = dyn_cast<FieldDecl>(I)) { 1713 CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit, 1714 elements, RecordTy, record); 1715 1716 // Bump field number for next field. 1717 ++fieldNo; 1718 } else if (CGM.getCodeGenOpts().EmitCodeView) { 1719 // Debug info for nested types is included in the member list only for 1720 // CodeView. 1721 if (const auto *nestedType = dyn_cast<TypeDecl>(I)) 1722 if (!nestedType->isImplicit() && 1723 nestedType->getDeclContext() == record) 1724 CollectRecordNestedType(nestedType, elements); 1725 } 1726 } 1727 } 1728 1729 llvm::DISubroutineType * 1730 CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method, 1731 llvm::DIFile *Unit, bool decl) { 1732 const FunctionProtoType *Func = Method->getType()->getAs<FunctionProtoType>(); 1733 if (Method->isStatic()) 1734 return cast_or_null<llvm::DISubroutineType>( 1735 getOrCreateType(QualType(Func, 0), Unit)); 1736 return getOrCreateInstanceMethodType(Method->getThisType(), Func, Unit, decl); 1737 } 1738 1739 llvm::DISubroutineType * 1740 CGDebugInfo::getOrCreateInstanceMethodType(QualType ThisPtr, 1741 const FunctionProtoType *Func, 1742 llvm::DIFile *Unit, bool decl) { 1743 FunctionProtoType::ExtProtoInfo EPI = Func->getExtProtoInfo(); 1744 Qualifiers &Qc = EPI.TypeQuals; 1745 Qc.removeConst(); 1746 Qc.removeVolatile(); 1747 Qc.removeRestrict(); 1748 Qc.removeUnaligned(); 1749 // Keep the removed qualifiers in sync with 1750 // CreateQualifiedType(const FunctionPrototype*, DIFile *Unit) 1751 // On a 'real' member function type, these qualifiers are carried on the type 1752 // of the first parameter, not as separate DW_TAG_const_type (etc) decorator 1753 // tags around them. (But, in the raw function types with qualifiers, they have 1754 // to use wrapper types.) 1755 1756 // Add "this" pointer. 1757 const auto *OriginalFunc = cast<llvm::DISubroutineType>( 1758 getOrCreateType(CGM.getContext().getFunctionType( 1759 Func->getReturnType(), Func->getParamTypes(), EPI), 1760 Unit)); 1761 llvm::DITypeRefArray Args = OriginalFunc->getTypeArray(); 1762 assert(Args.size() && "Invalid number of arguments!"); 1763 1764 SmallVector<llvm::Metadata *, 16> Elts; 1765 // First element is always return type. For 'void' functions it is NULL. 1766 QualType temp = Func->getReturnType(); 1767 if (temp->getTypeClass() == Type::Auto && decl) 1768 Elts.push_back(CreateType(cast<AutoType>(temp))); 1769 else 1770 Elts.push_back(Args[0]); 1771 1772 // "this" pointer is always first argument. 1773 const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl(); 1774 if (isa<ClassTemplateSpecializationDecl>(RD)) { 1775 // Create pointer type directly in this case. 1776 const PointerType *ThisPtrTy = cast<PointerType>(ThisPtr); 1777 QualType PointeeTy = ThisPtrTy->getPointeeType(); 1778 unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy); 1779 uint64_t Size = CGM.getTarget().getPointerWidth(AS); 1780 auto Align = getTypeAlignIfRequired(ThisPtrTy, CGM.getContext()); 1781 llvm::DIType *PointeeType = getOrCreateType(PointeeTy, Unit); 1782 llvm::DIType *ThisPtrType = 1783 DBuilder.createPointerType(PointeeType, Size, Align); 1784 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); 1785 // TODO: This and the artificial type below are misleading, the 1786 // types aren't artificial the argument is, but the current 1787 // metadata doesn't represent that. 1788 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); 1789 Elts.push_back(ThisPtrType); 1790 } else { 1791 llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit); 1792 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); 1793 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); 1794 Elts.push_back(ThisPtrType); 1795 } 1796 1797 // Copy rest of the arguments. 1798 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1799 Elts.push_back(Args[i]); 1800 1801 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); 1802 1803 return DBuilder.createSubroutineType(EltTypeArray, OriginalFunc->getFlags(), 1804 getDwarfCC(Func->getCallConv())); 1805 } 1806 1807 /// isFunctionLocalClass - Return true if CXXRecordDecl is defined 1808 /// inside a function. 1809 static bool isFunctionLocalClass(const CXXRecordDecl *RD) { 1810 if (const auto *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext())) 1811 return isFunctionLocalClass(NRD); 1812 if (isa<FunctionDecl>(RD->getDeclContext())) 1813 return true; 1814 return false; 1815 } 1816 1817 llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction( 1818 const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) { 1819 bool IsCtorOrDtor = 1820 isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method); 1821 1822 StringRef MethodName = getFunctionName(Method); 1823 llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit, true); 1824 1825 // Since a single ctor/dtor corresponds to multiple functions, it doesn't 1826 // make sense to give a single ctor/dtor a linkage name. 1827 StringRef MethodLinkageName; 1828 // FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional 1829 // property to use here. It may've been intended to model "is non-external 1830 // type" but misses cases of non-function-local but non-external classes such 1831 // as those in anonymous namespaces as well as the reverse - external types 1832 // that are function local, such as those in (non-local) inline functions. 1833 if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent())) 1834 MethodLinkageName = CGM.getMangledName(Method); 1835 1836 // Get the location for the method. 1837 llvm::DIFile *MethodDefUnit = nullptr; 1838 unsigned MethodLine = 0; 1839 if (!Method->isImplicit()) { 1840 MethodDefUnit = getOrCreateFile(Method->getLocation()); 1841 MethodLine = getLineNumber(Method->getLocation()); 1842 } 1843 1844 // Collect virtual method info. 1845 llvm::DIType *ContainingType = nullptr; 1846 unsigned VIndex = 0; 1847 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1848 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 1849 int ThisAdjustment = 0; 1850 1851 if (Method->isVirtual()) { 1852 if (Method->isPure()) 1853 SPFlags |= llvm::DISubprogram::SPFlagPureVirtual; 1854 else 1855 SPFlags |= llvm::DISubprogram::SPFlagVirtual; 1856 1857 if (CGM.getTarget().getCXXABI().isItaniumFamily()) { 1858 // It doesn't make sense to give a virtual destructor a vtable index, 1859 // since a single destructor has two entries in the vtable. 1860 if (!isa<CXXDestructorDecl>(Method)) 1861 VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method); 1862 } else { 1863 // Emit MS ABI vftable information. There is only one entry for the 1864 // deleting dtor. 1865 const auto *DD = dyn_cast<CXXDestructorDecl>(Method); 1866 GlobalDecl GD = DD ? GlobalDecl(DD, Dtor_Deleting) : GlobalDecl(Method); 1867 MethodVFTableLocation ML = 1868 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1869 VIndex = ML.Index; 1870 1871 // CodeView only records the vftable offset in the class that introduces 1872 // the virtual method. This is possible because, unlike Itanium, the MS 1873 // C++ ABI does not include all virtual methods from non-primary bases in 1874 // the vtable for the most derived class. For example, if C inherits from 1875 // A and B, C's primary vftable will not include B's virtual methods. 1876 if (Method->size_overridden_methods() == 0) 1877 Flags |= llvm::DINode::FlagIntroducedVirtual; 1878 1879 // The 'this' adjustment accounts for both the virtual and non-virtual 1880 // portions of the adjustment. Presumably the debugger only uses it when 1881 // it knows the dynamic type of an object. 1882 ThisAdjustment = CGM.getCXXABI() 1883 .getVirtualFunctionPrologueThisAdjustment(GD) 1884 .getQuantity(); 1885 } 1886 ContainingType = RecordTy; 1887 } 1888 1889 // We're checking for deleted C++ special member functions 1890 // [Ctors,Dtors, Copy/Move] 1891 auto checkAttrDeleted = [&](const auto *Method) { 1892 if (Method->getCanonicalDecl()->isDeleted()) 1893 SPFlags |= llvm::DISubprogram::SPFlagDeleted; 1894 }; 1895 1896 switch (Method->getKind()) { 1897 1898 case Decl::CXXConstructor: 1899 case Decl::CXXDestructor: 1900 checkAttrDeleted(Method); 1901 break; 1902 case Decl::CXXMethod: 1903 if (Method->isCopyAssignmentOperator() || 1904 Method->isMoveAssignmentOperator()) 1905 checkAttrDeleted(Method); 1906 break; 1907 default: 1908 break; 1909 } 1910 1911 if (Method->isNoReturn()) 1912 Flags |= llvm::DINode::FlagNoReturn; 1913 1914 if (Method->isStatic()) 1915 Flags |= llvm::DINode::FlagStaticMember; 1916 if (Method->isImplicit()) 1917 Flags |= llvm::DINode::FlagArtificial; 1918 Flags |= getAccessFlag(Method->getAccess(), Method->getParent()); 1919 if (const auto *CXXC = dyn_cast<CXXConstructorDecl>(Method)) { 1920 if (CXXC->isExplicit()) 1921 Flags |= llvm::DINode::FlagExplicit; 1922 } else if (const auto *CXXC = dyn_cast<CXXConversionDecl>(Method)) { 1923 if (CXXC->isExplicit()) 1924 Flags |= llvm::DINode::FlagExplicit; 1925 } 1926 if (Method->hasPrototype()) 1927 Flags |= llvm::DINode::FlagPrototyped; 1928 if (Method->getRefQualifier() == RQ_LValue) 1929 Flags |= llvm::DINode::FlagLValueReference; 1930 if (Method->getRefQualifier() == RQ_RValue) 1931 Flags |= llvm::DINode::FlagRValueReference; 1932 if (!Method->isExternallyVisible()) 1933 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 1934 if (CGM.getLangOpts().Optimize) 1935 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 1936 1937 // In this debug mode, emit type info for a class when its constructor type 1938 // info is emitted. 1939 if (DebugKind == codegenoptions::DebugInfoConstructor) 1940 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1941 completeUnusedClass(*CD->getParent()); 1942 1943 llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit); 1944 llvm::DISubprogram *SP = DBuilder.createMethod( 1945 RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine, 1946 MethodTy, VIndex, ThisAdjustment, ContainingType, Flags, SPFlags, 1947 TParamsArray.get()); 1948 1949 SPCache[Method->getCanonicalDecl()].reset(SP); 1950 1951 return SP; 1952 } 1953 1954 void CGDebugInfo::CollectCXXMemberFunctions( 1955 const CXXRecordDecl *RD, llvm::DIFile *Unit, 1956 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) { 1957 1958 // Since we want more than just the individual member decls if we 1959 // have templated functions iterate over every declaration to gather 1960 // the functions. 1961 for (const auto *I : RD->decls()) { 1962 const auto *Method = dyn_cast<CXXMethodDecl>(I); 1963 // If the member is implicit, don't add it to the member list. This avoids 1964 // the member being added to type units by LLVM, while still allowing it 1965 // to be emitted into the type declaration/reference inside the compile 1966 // unit. 1967 // Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp. 1968 // FIXME: Handle Using(Shadow?)Decls here to create 1969 // DW_TAG_imported_declarations inside the class for base decls brought into 1970 // derived classes. GDB doesn't seem to notice/leverage these when I tried 1971 // it, so I'm not rushing to fix this. (GCC seems to produce them, if 1972 // referenced) 1973 if (!Method || Method->isImplicit() || Method->hasAttr<NoDebugAttr>()) 1974 continue; 1975 1976 if (Method->getType()->castAs<FunctionProtoType>()->getContainedAutoType()) 1977 continue; 1978 1979 // Reuse the existing member function declaration if it exists. 1980 // It may be associated with the declaration of the type & should be 1981 // reused as we're building the definition. 1982 // 1983 // This situation can arise in the vtable-based debug info reduction where 1984 // implicit members are emitted in a non-vtable TU. 1985 auto MI = SPCache.find(Method->getCanonicalDecl()); 1986 EltTys.push_back(MI == SPCache.end() 1987 ? CreateCXXMemberFunction(Method, Unit, RecordTy) 1988 : static_cast<llvm::Metadata *>(MI->second)); 1989 } 1990 } 1991 1992 void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit, 1993 SmallVectorImpl<llvm::Metadata *> &EltTys, 1994 llvm::DIType *RecordTy) { 1995 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> SeenTypes; 1996 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->bases(), SeenTypes, 1997 llvm::DINode::FlagZero); 1998 1999 // If we are generating CodeView debug info, we also need to emit records for 2000 // indirect virtual base classes. 2001 if (CGM.getCodeGenOpts().EmitCodeView) { 2002 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->vbases(), SeenTypes, 2003 llvm::DINode::FlagIndirectVirtualBase); 2004 } 2005 } 2006 2007 void CGDebugInfo::CollectCXXBasesAux( 2008 const CXXRecordDecl *RD, llvm::DIFile *Unit, 2009 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy, 2010 const CXXRecordDecl::base_class_const_range &Bases, 2011 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> &SeenTypes, 2012 llvm::DINode::DIFlags StartingFlags) { 2013 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2014 for (const auto &BI : Bases) { 2015 const auto *Base = 2016 cast<CXXRecordDecl>(BI.getType()->castAs<RecordType>()->getDecl()); 2017 if (!SeenTypes.insert(Base).second) 2018 continue; 2019 auto *BaseTy = getOrCreateType(BI.getType(), Unit); 2020 llvm::DINode::DIFlags BFlags = StartingFlags; 2021 uint64_t BaseOffset; 2022 uint32_t VBPtrOffset = 0; 2023 2024 if (BI.isVirtual()) { 2025 if (CGM.getTarget().getCXXABI().isItaniumFamily()) { 2026 // virtual base offset offset is -ve. The code generator emits dwarf 2027 // expression where it expects +ve number. 2028 BaseOffset = 0 - CGM.getItaniumVTableContext() 2029 .getVirtualBaseOffsetOffset(RD, Base) 2030 .getQuantity(); 2031 } else { 2032 // In the MS ABI, store the vbtable offset, which is analogous to the 2033 // vbase offset offset in Itanium. 2034 BaseOffset = 2035 4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base); 2036 VBPtrOffset = CGM.getContext() 2037 .getASTRecordLayout(RD) 2038 .getVBPtrOffset() 2039 .getQuantity(); 2040 } 2041 BFlags |= llvm::DINode::FlagVirtual; 2042 } else 2043 BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base)); 2044 // FIXME: Inconsistent units for BaseOffset. It is in bytes when 2045 // BI->isVirtual() and bits when not. 2046 2047 BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD); 2048 llvm::DIType *DTy = DBuilder.createInheritance(RecordTy, BaseTy, BaseOffset, 2049 VBPtrOffset, BFlags); 2050 EltTys.push_back(DTy); 2051 } 2052 } 2053 2054 llvm::DINodeArray 2055 CGDebugInfo::CollectTemplateParams(Optional<TemplateArgs> OArgs, 2056 llvm::DIFile *Unit) { 2057 if (!OArgs) 2058 return llvm::DINodeArray(); 2059 TemplateArgs &Args = *OArgs; 2060 SmallVector<llvm::Metadata *, 16> TemplateParams; 2061 for (unsigned i = 0, e = Args.Args.size(); i != e; ++i) { 2062 const TemplateArgument &TA = Args.Args[i]; 2063 StringRef Name; 2064 bool defaultParameter = false; 2065 if (Args.TList) 2066 Name = Args.TList->getParam(i)->getName(); 2067 switch (TA.getKind()) { 2068 case TemplateArgument::Type: { 2069 llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit); 2070 2071 if (Args.TList) 2072 if (auto *templateType = 2073 dyn_cast_or_null<TemplateTypeParmDecl>(Args.TList->getParam(i))) 2074 if (templateType->hasDefaultArgument()) 2075 defaultParameter = 2076 templateType->getDefaultArgument() == TA.getAsType(); 2077 2078 TemplateParams.push_back(DBuilder.createTemplateTypeParameter( 2079 TheCU, Name, TTy, defaultParameter)); 2080 2081 } break; 2082 case TemplateArgument::Integral: { 2083 llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit); 2084 if (Args.TList && CGM.getCodeGenOpts().DwarfVersion >= 5) 2085 if (auto *templateType = dyn_cast_or_null<NonTypeTemplateParmDecl>( 2086 Args.TList->getParam(i))) 2087 if (templateType->hasDefaultArgument() && 2088 !templateType->getDefaultArgument()->isValueDependent()) 2089 defaultParameter = llvm::APSInt::isSameValue( 2090 templateType->getDefaultArgument()->EvaluateKnownConstInt( 2091 CGM.getContext()), 2092 TA.getAsIntegral()); 2093 2094 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2095 TheCU, Name, TTy, defaultParameter, 2096 llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral()))); 2097 } break; 2098 case TemplateArgument::Declaration: { 2099 const ValueDecl *D = TA.getAsDecl(); 2100 QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext()); 2101 llvm::DIType *TTy = getOrCreateType(T, Unit); 2102 llvm::Constant *V = nullptr; 2103 // Skip retrieve the value if that template parameter has cuda device 2104 // attribute, i.e. that value is not available at the host side. 2105 if (!CGM.getLangOpts().CUDA || CGM.getLangOpts().CUDAIsDevice || 2106 !D->hasAttr<CUDADeviceAttr>()) { 2107 const CXXMethodDecl *MD; 2108 // Variable pointer template parameters have a value that is the address 2109 // of the variable. 2110 if (const auto *VD = dyn_cast<VarDecl>(D)) 2111 V = CGM.GetAddrOfGlobalVar(VD); 2112 // Member function pointers have special support for building them, 2113 // though this is currently unsupported in LLVM CodeGen. 2114 else if ((MD = dyn_cast<CXXMethodDecl>(D)) && MD->isInstance()) 2115 V = CGM.getCXXABI().EmitMemberFunctionPointer(MD); 2116 else if (const auto *FD = dyn_cast<FunctionDecl>(D)) 2117 V = CGM.GetAddrOfFunction(FD); 2118 // Member data pointers have special handling too to compute the fixed 2119 // offset within the object. 2120 else if (const auto *MPT = 2121 dyn_cast<MemberPointerType>(T.getTypePtr())) { 2122 // These five lines (& possibly the above member function pointer 2123 // handling) might be able to be refactored to use similar code in 2124 // CodeGenModule::getMemberPointerConstant 2125 uint64_t fieldOffset = CGM.getContext().getFieldOffset(D); 2126 CharUnits chars = 2127 CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset); 2128 V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars); 2129 } else if (const auto *GD = dyn_cast<MSGuidDecl>(D)) { 2130 V = CGM.GetAddrOfMSGuidDecl(GD).getPointer(); 2131 } else if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 2132 if (T->isRecordType()) 2133 V = ConstantEmitter(CGM).emitAbstract( 2134 SourceLocation(), TPO->getValue(), TPO->getType()); 2135 else 2136 V = CGM.GetAddrOfTemplateParamObject(TPO).getPointer(); 2137 } 2138 assert(V && "Failed to find template parameter pointer"); 2139 V = V->stripPointerCasts(); 2140 } 2141 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2142 TheCU, Name, TTy, defaultParameter, cast_or_null<llvm::Constant>(V))); 2143 } break; 2144 case TemplateArgument::NullPtr: { 2145 QualType T = TA.getNullPtrType(); 2146 llvm::DIType *TTy = getOrCreateType(T, Unit); 2147 llvm::Constant *V = nullptr; 2148 // Special case member data pointer null values since they're actually -1 2149 // instead of zero. 2150 if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr())) 2151 // But treat member function pointers as simple zero integers because 2152 // it's easier than having a special case in LLVM's CodeGen. If LLVM 2153 // CodeGen grows handling for values of non-null member function 2154 // pointers then perhaps we could remove this special case and rely on 2155 // EmitNullMemberPointer for member function pointers. 2156 if (MPT->isMemberDataPointer()) 2157 V = CGM.getCXXABI().EmitNullMemberPointer(MPT); 2158 if (!V) 2159 V = llvm::ConstantInt::get(CGM.Int8Ty, 0); 2160 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2161 TheCU, Name, TTy, defaultParameter, V)); 2162 } break; 2163 case TemplateArgument::Template: { 2164 std::string QualName; 2165 llvm::raw_string_ostream OS(QualName); 2166 TA.getAsTemplate().getAsTemplateDecl()->printQualifiedName( 2167 OS, getPrintingPolicy()); 2168 TemplateParams.push_back(DBuilder.createTemplateTemplateParameter( 2169 TheCU, Name, nullptr, OS.str())); 2170 break; 2171 } 2172 case TemplateArgument::Pack: 2173 TemplateParams.push_back(DBuilder.createTemplateParameterPack( 2174 TheCU, Name, nullptr, 2175 CollectTemplateParams({{nullptr, TA.getPackAsArray()}}, Unit))); 2176 break; 2177 case TemplateArgument::Expression: { 2178 const Expr *E = TA.getAsExpr(); 2179 QualType T = E->getType(); 2180 if (E->isGLValue()) 2181 T = CGM.getContext().getLValueReferenceType(T); 2182 llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(E, T); 2183 assert(V && "Expression in template argument isn't constant"); 2184 llvm::DIType *TTy = getOrCreateType(T, Unit); 2185 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2186 TheCU, Name, TTy, defaultParameter, V->stripPointerCasts())); 2187 } break; 2188 // And the following should never occur: 2189 case TemplateArgument::TemplateExpansion: 2190 case TemplateArgument::Null: 2191 llvm_unreachable( 2192 "These argument types shouldn't exist in concrete types"); 2193 } 2194 } 2195 return DBuilder.getOrCreateArray(TemplateParams); 2196 } 2197 2198 Optional<CGDebugInfo::TemplateArgs> 2199 CGDebugInfo::GetTemplateArgs(const FunctionDecl *FD) const { 2200 if (FD->getTemplatedKind() == 2201 FunctionDecl::TK_FunctionTemplateSpecialization) { 2202 const TemplateParameterList *TList = FD->getTemplateSpecializationInfo() 2203 ->getTemplate() 2204 ->getTemplateParameters(); 2205 return {{TList, FD->getTemplateSpecializationArgs()->asArray()}}; 2206 } 2207 return None; 2208 } 2209 Optional<CGDebugInfo::TemplateArgs> 2210 CGDebugInfo::GetTemplateArgs(const VarDecl *VD) const { 2211 // Always get the full list of parameters, not just the ones from the 2212 // specialization. A partial specialization may have fewer parameters than 2213 // there are arguments. 2214 auto *TS = dyn_cast<VarTemplateSpecializationDecl>(VD); 2215 if (!TS) 2216 return None; 2217 VarTemplateDecl *T = TS->getSpecializedTemplate(); 2218 const TemplateParameterList *TList = T->getTemplateParameters(); 2219 auto TA = TS->getTemplateArgs().asArray(); 2220 return {{TList, TA}}; 2221 } 2222 Optional<CGDebugInfo::TemplateArgs> 2223 CGDebugInfo::GetTemplateArgs(const RecordDecl *RD) const { 2224 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 2225 // Always get the full list of parameters, not just the ones from the 2226 // specialization. A partial specialization may have fewer parameters than 2227 // there are arguments. 2228 TemplateParameterList *TPList = 2229 TSpecial->getSpecializedTemplate()->getTemplateParameters(); 2230 const TemplateArgumentList &TAList = TSpecial->getTemplateArgs(); 2231 return {{TPList, TAList.asArray()}}; 2232 } 2233 return None; 2234 } 2235 2236 llvm::DINodeArray 2237 CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD, 2238 llvm::DIFile *Unit) { 2239 return CollectTemplateParams(GetTemplateArgs(FD), Unit); 2240 } 2241 2242 llvm::DINodeArray CGDebugInfo::CollectVarTemplateParams(const VarDecl *VL, 2243 llvm::DIFile *Unit) { 2244 return CollectTemplateParams(GetTemplateArgs(VL), Unit); 2245 } 2246 2247 llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(const RecordDecl *RD, 2248 llvm::DIFile *Unit) { 2249 return CollectTemplateParams(GetTemplateArgs(RD), Unit); 2250 } 2251 2252 llvm::DINodeArray CGDebugInfo::CollectBTFDeclTagAnnotations(const Decl *D) { 2253 if (!D->hasAttr<BTFDeclTagAttr>()) 2254 return nullptr; 2255 2256 SmallVector<llvm::Metadata *, 4> Annotations; 2257 for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) { 2258 llvm::Metadata *Ops[2] = { 2259 llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_decl_tag")), 2260 llvm::MDString::get(CGM.getLLVMContext(), I->getBTFDeclTag())}; 2261 Annotations.push_back(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2262 } 2263 return DBuilder.getOrCreateArray(Annotations); 2264 } 2265 2266 llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) { 2267 if (VTablePtrType) 2268 return VTablePtrType; 2269 2270 ASTContext &Context = CGM.getContext(); 2271 2272 /* Function type */ 2273 llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit); 2274 llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy); 2275 llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements); 2276 unsigned Size = Context.getTypeSize(Context.VoidPtrTy); 2277 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); 2278 Optional<unsigned> DWARFAddressSpace = 2279 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); 2280 2281 llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType( 2282 SubTy, Size, 0, DWARFAddressSpace, "__vtbl_ptr_type"); 2283 VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size); 2284 return VTablePtrType; 2285 } 2286 2287 StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) { 2288 // Copy the gdb compatible name on the side and use its reference. 2289 return internString("_vptr$", RD->getNameAsString()); 2290 } 2291 2292 StringRef CGDebugInfo::getDynamicInitializerName(const VarDecl *VD, 2293 DynamicInitKind StubKind, 2294 llvm::Function *InitFn) { 2295 // If we're not emitting codeview, use the mangled name. For Itanium, this is 2296 // arbitrary. 2297 if (!CGM.getCodeGenOpts().EmitCodeView || 2298 StubKind == DynamicInitKind::GlobalArrayDestructor) 2299 return InitFn->getName(); 2300 2301 // Print the normal qualified name for the variable, then break off the last 2302 // NNS, and add the appropriate other text. Clang always prints the global 2303 // variable name without template arguments, so we can use rsplit("::") and 2304 // then recombine the pieces. 2305 SmallString<128> QualifiedGV; 2306 StringRef Quals; 2307 StringRef GVName; 2308 { 2309 llvm::raw_svector_ostream OS(QualifiedGV); 2310 VD->printQualifiedName(OS, getPrintingPolicy()); 2311 std::tie(Quals, GVName) = OS.str().rsplit("::"); 2312 if (GVName.empty()) 2313 std::swap(Quals, GVName); 2314 } 2315 2316 SmallString<128> InitName; 2317 llvm::raw_svector_ostream OS(InitName); 2318 if (!Quals.empty()) 2319 OS << Quals << "::"; 2320 2321 switch (StubKind) { 2322 case DynamicInitKind::NoStub: 2323 case DynamicInitKind::GlobalArrayDestructor: 2324 llvm_unreachable("not an initializer"); 2325 case DynamicInitKind::Initializer: 2326 OS << "`dynamic initializer for '"; 2327 break; 2328 case DynamicInitKind::AtExit: 2329 OS << "`dynamic atexit destructor for '"; 2330 break; 2331 } 2332 2333 OS << GVName; 2334 2335 // Add any template specialization args. 2336 if (const auto *VTpl = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2337 printTemplateArgumentList(OS, VTpl->getTemplateArgs().asArray(), 2338 getPrintingPolicy()); 2339 } 2340 2341 OS << '\''; 2342 2343 return internString(OS.str()); 2344 } 2345 2346 void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit, 2347 SmallVectorImpl<llvm::Metadata *> &EltTys) { 2348 // If this class is not dynamic then there is not any vtable info to collect. 2349 if (!RD->isDynamicClass()) 2350 return; 2351 2352 // Don't emit any vtable shape or vptr info if this class doesn't have an 2353 // extendable vfptr. This can happen if the class doesn't have virtual 2354 // methods, or in the MS ABI if those virtual methods only come from virtually 2355 // inherited bases. 2356 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2357 if (!RL.hasExtendableVFPtr()) 2358 return; 2359 2360 // CodeView needs to know how large the vtable of every dynamic class is, so 2361 // emit a special named pointer type into the element list. The vptr type 2362 // points to this type as well. 2363 llvm::DIType *VPtrTy = nullptr; 2364 bool NeedVTableShape = CGM.getCodeGenOpts().EmitCodeView && 2365 CGM.getTarget().getCXXABI().isMicrosoft(); 2366 if (NeedVTableShape) { 2367 uint64_t PtrWidth = 2368 CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 2369 const VTableLayout &VFTLayout = 2370 CGM.getMicrosoftVTableContext().getVFTableLayout(RD, CharUnits::Zero()); 2371 unsigned VSlotCount = 2372 VFTLayout.vtable_components().size() - CGM.getLangOpts().RTTIData; 2373 unsigned VTableWidth = PtrWidth * VSlotCount; 2374 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); 2375 Optional<unsigned> DWARFAddressSpace = 2376 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); 2377 2378 // Create a very wide void* type and insert it directly in the element list. 2379 llvm::DIType *VTableType = DBuilder.createPointerType( 2380 nullptr, VTableWidth, 0, DWARFAddressSpace, "__vtbl_ptr_type"); 2381 EltTys.push_back(VTableType); 2382 2383 // The vptr is a pointer to this special vtable type. 2384 VPtrTy = DBuilder.createPointerType(VTableType, PtrWidth); 2385 } 2386 2387 // If there is a primary base then the artificial vptr member lives there. 2388 if (RL.getPrimaryBase()) 2389 return; 2390 2391 if (!VPtrTy) 2392 VPtrTy = getOrCreateVTablePtrType(Unit); 2393 2394 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 2395 llvm::DIType *VPtrMember = 2396 DBuilder.createMemberType(Unit, getVTableName(RD), Unit, 0, Size, 0, 0, 2397 llvm::DINode::FlagArtificial, VPtrTy); 2398 EltTys.push_back(VPtrMember); 2399 } 2400 2401 llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy, 2402 SourceLocation Loc) { 2403 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 2404 llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc)); 2405 return T; 2406 } 2407 2408 llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D, 2409 SourceLocation Loc) { 2410 return getOrCreateStandaloneType(D, Loc); 2411 } 2412 2413 llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D, 2414 SourceLocation Loc) { 2415 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 2416 assert(!D.isNull() && "null type"); 2417 llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc)); 2418 assert(T && "could not create debug info for type"); 2419 2420 RetainedTypes.push_back(D.getAsOpaquePtr()); 2421 return T; 2422 } 2423 2424 void CGDebugInfo::addHeapAllocSiteMetadata(llvm::CallBase *CI, 2425 QualType AllocatedTy, 2426 SourceLocation Loc) { 2427 if (CGM.getCodeGenOpts().getDebugInfo() <= 2428 codegenoptions::DebugLineTablesOnly) 2429 return; 2430 llvm::MDNode *node; 2431 if (AllocatedTy->isVoidType()) 2432 node = llvm::MDNode::get(CGM.getLLVMContext(), None); 2433 else 2434 node = getOrCreateType(AllocatedTy, getOrCreateFile(Loc)); 2435 2436 CI->setMetadata("heapallocsite", node); 2437 } 2438 2439 void CGDebugInfo::completeType(const EnumDecl *ED) { 2440 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 2441 return; 2442 QualType Ty = CGM.getContext().getEnumType(ED); 2443 void *TyPtr = Ty.getAsOpaquePtr(); 2444 auto I = TypeCache.find(TyPtr); 2445 if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl()) 2446 return; 2447 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>()); 2448 assert(!Res->isForwardDecl()); 2449 TypeCache[TyPtr].reset(Res); 2450 } 2451 2452 void CGDebugInfo::completeType(const RecordDecl *RD) { 2453 if (DebugKind > codegenoptions::LimitedDebugInfo || 2454 !CGM.getLangOpts().CPlusPlus) 2455 completeRequiredType(RD); 2456 } 2457 2458 /// Return true if the class or any of its methods are marked dllimport. 2459 static bool isClassOrMethodDLLImport(const CXXRecordDecl *RD) { 2460 if (RD->hasAttr<DLLImportAttr>()) 2461 return true; 2462 for (const CXXMethodDecl *MD : RD->methods()) 2463 if (MD->hasAttr<DLLImportAttr>()) 2464 return true; 2465 return false; 2466 } 2467 2468 /// Does a type definition exist in an imported clang module? 2469 static bool isDefinedInClangModule(const RecordDecl *RD) { 2470 // Only definitions that where imported from an AST file come from a module. 2471 if (!RD || !RD->isFromASTFile()) 2472 return false; 2473 // Anonymous entities cannot be addressed. Treat them as not from module. 2474 if (!RD->isExternallyVisible() && RD->getName().empty()) 2475 return false; 2476 if (auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) { 2477 if (!CXXDecl->isCompleteDefinition()) 2478 return false; 2479 // Check wether RD is a template. 2480 auto TemplateKind = CXXDecl->getTemplateSpecializationKind(); 2481 if (TemplateKind != TSK_Undeclared) { 2482 // Unfortunately getOwningModule() isn't accurate enough to find the 2483 // owning module of a ClassTemplateSpecializationDecl that is inside a 2484 // namespace spanning multiple modules. 2485 bool Explicit = false; 2486 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(CXXDecl)) 2487 Explicit = TD->isExplicitInstantiationOrSpecialization(); 2488 if (!Explicit && CXXDecl->getEnclosingNamespaceContext()) 2489 return false; 2490 // This is a template, check the origin of the first member. 2491 if (CXXDecl->field_begin() == CXXDecl->field_end()) 2492 return TemplateKind == TSK_ExplicitInstantiationDeclaration; 2493 if (!CXXDecl->field_begin()->isFromASTFile()) 2494 return false; 2495 } 2496 } 2497 return true; 2498 } 2499 2500 void CGDebugInfo::completeClassData(const RecordDecl *RD) { 2501 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 2502 if (CXXRD->isDynamicClass() && 2503 CGM.getVTableLinkage(CXXRD) == 2504 llvm::GlobalValue::AvailableExternallyLinkage && 2505 !isClassOrMethodDLLImport(CXXRD)) 2506 return; 2507 2508 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) 2509 return; 2510 2511 completeClass(RD); 2512 } 2513 2514 void CGDebugInfo::completeClass(const RecordDecl *RD) { 2515 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 2516 return; 2517 QualType Ty = CGM.getContext().getRecordType(RD); 2518 void *TyPtr = Ty.getAsOpaquePtr(); 2519 auto I = TypeCache.find(TyPtr); 2520 if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl()) 2521 return; 2522 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<RecordType>()); 2523 assert(!Res->isForwardDecl()); 2524 TypeCache[TyPtr].reset(Res); 2525 } 2526 2527 static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I, 2528 CXXRecordDecl::method_iterator End) { 2529 for (CXXMethodDecl *MD : llvm::make_range(I, End)) 2530 if (FunctionDecl *Tmpl = MD->getInstantiatedFromMemberFunction()) 2531 if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() && 2532 !MD->getMemberSpecializationInfo()->isExplicitSpecialization()) 2533 return true; 2534 return false; 2535 } 2536 2537 static bool canUseCtorHoming(const CXXRecordDecl *RD) { 2538 // Constructor homing can be used for classes that cannnot be constructed 2539 // without emitting code for one of their constructors. This is classes that 2540 // don't have trivial or constexpr constructors, or can be created from 2541 // aggregate initialization. Also skip lambda objects because they don't call 2542 // constructors. 2543 2544 // Skip this optimization if the class or any of its methods are marked 2545 // dllimport. 2546 if (isClassOrMethodDLLImport(RD)) 2547 return false; 2548 2549 return !RD->isLambda() && !RD->isAggregate() && 2550 !RD->hasTrivialDefaultConstructor() && 2551 !RD->hasConstexprNonCopyMoveConstructor(); 2552 } 2553 2554 static bool shouldOmitDefinition(codegenoptions::DebugInfoKind DebugKind, 2555 bool DebugTypeExtRefs, const RecordDecl *RD, 2556 const LangOptions &LangOpts) { 2557 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) 2558 return true; 2559 2560 if (auto *ES = RD->getASTContext().getExternalSource()) 2561 if (ES->hasExternalDefinitions(RD) == ExternalASTSource::EK_Always) 2562 return true; 2563 2564 // Only emit forward declarations in line tables only to keep debug info size 2565 // small. This only applies to CodeView, since we don't emit types in DWARF 2566 // line tables only. 2567 if (DebugKind == codegenoptions::DebugLineTablesOnly) 2568 return true; 2569 2570 if (DebugKind > codegenoptions::LimitedDebugInfo || 2571 RD->hasAttr<StandaloneDebugAttr>()) 2572 return false; 2573 2574 if (!LangOpts.CPlusPlus) 2575 return false; 2576 2577 if (!RD->isCompleteDefinitionRequired()) 2578 return true; 2579 2580 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD); 2581 2582 if (!CXXDecl) 2583 return false; 2584 2585 // Only emit complete debug info for a dynamic class when its vtable is 2586 // emitted. However, Microsoft debuggers don't resolve type information 2587 // across DLL boundaries, so skip this optimization if the class or any of its 2588 // methods are marked dllimport. This isn't a complete solution, since objects 2589 // without any dllimport methods can be used in one DLL and constructed in 2590 // another, but it is the current behavior of LimitedDebugInfo. 2591 if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass() && 2592 !isClassOrMethodDLLImport(CXXDecl)) 2593 return true; 2594 2595 TemplateSpecializationKind Spec = TSK_Undeclared; 2596 if (const auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 2597 Spec = SD->getSpecializationKind(); 2598 2599 if (Spec == TSK_ExplicitInstantiationDeclaration && 2600 hasExplicitMemberDefinition(CXXDecl->method_begin(), 2601 CXXDecl->method_end())) 2602 return true; 2603 2604 // In constructor homing mode, only emit complete debug info for a class 2605 // when its constructor is emitted. 2606 if ((DebugKind == codegenoptions::DebugInfoConstructor) && 2607 canUseCtorHoming(CXXDecl)) 2608 return true; 2609 2610 return false; 2611 } 2612 2613 void CGDebugInfo::completeRequiredType(const RecordDecl *RD) { 2614 if (shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts())) 2615 return; 2616 2617 QualType Ty = CGM.getContext().getRecordType(RD); 2618 llvm::DIType *T = getTypeOrNull(Ty); 2619 if (T && T->isForwardDecl()) 2620 completeClassData(RD); 2621 } 2622 2623 llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) { 2624 RecordDecl *RD = Ty->getDecl(); 2625 llvm::DIType *T = cast_or_null<llvm::DIType>(getTypeOrNull(QualType(Ty, 0))); 2626 if (T || shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, 2627 CGM.getLangOpts())) { 2628 if (!T) 2629 T = getOrCreateRecordFwdDecl(Ty, getDeclContextDescriptor(RD)); 2630 return T; 2631 } 2632 2633 return CreateTypeDefinition(Ty); 2634 } 2635 2636 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) { 2637 RecordDecl *RD = Ty->getDecl(); 2638 2639 // Get overall information about the record type for the debug info. 2640 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); 2641 2642 // Records and classes and unions can all be recursive. To handle them, we 2643 // first generate a debug descriptor for the struct as a forward declaration. 2644 // Then (if it is a definition) we go through and get debug info for all of 2645 // its members. Finally, we create a descriptor for the complete type (which 2646 // may refer to the forward decl if the struct is recursive) and replace all 2647 // uses of the forward declaration with the final definition. 2648 llvm::DICompositeType *FwdDecl = getOrCreateLimitedType(Ty); 2649 2650 const RecordDecl *D = RD->getDefinition(); 2651 if (!D || !D->isCompleteDefinition()) 2652 return FwdDecl; 2653 2654 if (const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) 2655 CollectContainingType(CXXDecl, FwdDecl); 2656 2657 // Push the struct on region stack. 2658 LexicalBlockStack.emplace_back(&*FwdDecl); 2659 RegionMap[Ty->getDecl()].reset(FwdDecl); 2660 2661 // Convert all the elements. 2662 SmallVector<llvm::Metadata *, 16> EltTys; 2663 // what about nested types? 2664 2665 // Note: The split of CXXDecl information here is intentional, the 2666 // gdb tests will depend on a certain ordering at printout. The debug 2667 // information offsets are still correct if we merge them all together 2668 // though. 2669 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD); 2670 if (CXXDecl) { 2671 CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl); 2672 CollectVTableInfo(CXXDecl, DefUnit, EltTys); 2673 } 2674 2675 // Collect data fields (including static variables and any initializers). 2676 CollectRecordFields(RD, DefUnit, EltTys, FwdDecl); 2677 if (CXXDecl) 2678 CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl); 2679 2680 LexicalBlockStack.pop_back(); 2681 RegionMap.erase(Ty->getDecl()); 2682 2683 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 2684 DBuilder.replaceArrays(FwdDecl, Elements); 2685 2686 if (FwdDecl->isTemporary()) 2687 FwdDecl = 2688 llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl)); 2689 2690 RegionMap[Ty->getDecl()].reset(FwdDecl); 2691 return FwdDecl; 2692 } 2693 2694 llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty, 2695 llvm::DIFile *Unit) { 2696 // Ignore protocols. 2697 return getOrCreateType(Ty->getBaseType(), Unit); 2698 } 2699 2700 llvm::DIType *CGDebugInfo::CreateType(const ObjCTypeParamType *Ty, 2701 llvm::DIFile *Unit) { 2702 // Ignore protocols. 2703 SourceLocation Loc = Ty->getDecl()->getLocation(); 2704 2705 // Use Typedefs to represent ObjCTypeParamType. 2706 return DBuilder.createTypedef( 2707 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit), 2708 Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc), 2709 getDeclContextDescriptor(Ty->getDecl())); 2710 } 2711 2712 /// \return true if Getter has the default name for the property PD. 2713 static bool hasDefaultGetterName(const ObjCPropertyDecl *PD, 2714 const ObjCMethodDecl *Getter) { 2715 assert(PD); 2716 if (!Getter) 2717 return true; 2718 2719 assert(Getter->getDeclName().isObjCZeroArgSelector()); 2720 return PD->getName() == 2721 Getter->getDeclName().getObjCSelector().getNameForSlot(0); 2722 } 2723 2724 /// \return true if Setter has the default name for the property PD. 2725 static bool hasDefaultSetterName(const ObjCPropertyDecl *PD, 2726 const ObjCMethodDecl *Setter) { 2727 assert(PD); 2728 if (!Setter) 2729 return true; 2730 2731 assert(Setter->getDeclName().isObjCOneArgSelector()); 2732 return SelectorTable::constructSetterName(PD->getName()) == 2733 Setter->getDeclName().getObjCSelector().getNameForSlot(0); 2734 } 2735 2736 llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty, 2737 llvm::DIFile *Unit) { 2738 ObjCInterfaceDecl *ID = Ty->getDecl(); 2739 if (!ID) 2740 return nullptr; 2741 2742 // Return a forward declaration if this type was imported from a clang module, 2743 // and this is not the compile unit with the implementation of the type (which 2744 // may contain hidden ivars). 2745 if (DebugTypeExtRefs && ID->isFromASTFile() && ID->getDefinition() && 2746 !ID->getImplementation()) 2747 return DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 2748 ID->getName(), 2749 getDeclContextDescriptor(ID), Unit, 0); 2750 2751 // Get overall information about the record type for the debug info. 2752 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); 2753 unsigned Line = getLineNumber(ID->getLocation()); 2754 auto RuntimeLang = 2755 static_cast<llvm::dwarf::SourceLanguage>(TheCU->getSourceLanguage()); 2756 2757 // If this is just a forward declaration return a special forward-declaration 2758 // debug type since we won't be able to lay out the entire type. 2759 ObjCInterfaceDecl *Def = ID->getDefinition(); 2760 if (!Def || !Def->getImplementation()) { 2761 llvm::DIScope *Mod = getParentModuleOrNull(ID); 2762 llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType( 2763 llvm::dwarf::DW_TAG_structure_type, ID->getName(), Mod ? Mod : TheCU, 2764 DefUnit, Line, RuntimeLang); 2765 ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit)); 2766 return FwdDecl; 2767 } 2768 2769 return CreateTypeDefinition(Ty, Unit); 2770 } 2771 2772 llvm::DIModule *CGDebugInfo::getOrCreateModuleRef(ASTSourceDescriptor Mod, 2773 bool CreateSkeletonCU) { 2774 // Use the Module pointer as the key into the cache. This is a 2775 // nullptr if the "Module" is a PCH, which is safe because we don't 2776 // support chained PCH debug info, so there can only be a single PCH. 2777 const Module *M = Mod.getModuleOrNull(); 2778 auto ModRef = ModuleCache.find(M); 2779 if (ModRef != ModuleCache.end()) 2780 return cast<llvm::DIModule>(ModRef->second); 2781 2782 // Macro definitions that were defined with "-D" on the command line. 2783 SmallString<128> ConfigMacros; 2784 { 2785 llvm::raw_svector_ostream OS(ConfigMacros); 2786 const auto &PPOpts = CGM.getPreprocessorOpts(); 2787 unsigned I = 0; 2788 // Translate the macro definitions back into a command line. 2789 for (auto &M : PPOpts.Macros) { 2790 if (++I > 1) 2791 OS << " "; 2792 const std::string &Macro = M.first; 2793 bool Undef = M.second; 2794 OS << "\"-" << (Undef ? 'U' : 'D'); 2795 for (char c : Macro) 2796 switch (c) { 2797 case '\\': 2798 OS << "\\\\"; 2799 break; 2800 case '"': 2801 OS << "\\\""; 2802 break; 2803 default: 2804 OS << c; 2805 } 2806 OS << '\"'; 2807 } 2808 } 2809 2810 bool IsRootModule = M ? !M->Parent : true; 2811 // When a module name is specified as -fmodule-name, that module gets a 2812 // clang::Module object, but it won't actually be built or imported; it will 2813 // be textual. 2814 if (CreateSkeletonCU && IsRootModule && Mod.getASTFile().empty() && M) 2815 assert(StringRef(M->Name).startswith(CGM.getLangOpts().ModuleName) && 2816 "clang module without ASTFile must be specified by -fmodule-name"); 2817 2818 // Return a StringRef to the remapped Path. 2819 auto RemapPath = [this](StringRef Path) -> std::string { 2820 std::string Remapped = remapDIPath(Path); 2821 StringRef Relative(Remapped); 2822 StringRef CompDir = TheCU->getDirectory(); 2823 if (Relative.consume_front(CompDir)) 2824 Relative.consume_front(llvm::sys::path::get_separator()); 2825 2826 return Relative.str(); 2827 }; 2828 2829 if (CreateSkeletonCU && IsRootModule && !Mod.getASTFile().empty()) { 2830 // PCH files don't have a signature field in the control block, 2831 // but LLVM detects skeleton CUs by looking for a non-zero DWO id. 2832 // We use the lower 64 bits for debug info. 2833 2834 uint64_t Signature = 0; 2835 if (const auto &ModSig = Mod.getSignature()) 2836 Signature = ModSig.truncatedValue(); 2837 else 2838 Signature = ~1ULL; 2839 2840 llvm::DIBuilder DIB(CGM.getModule()); 2841 SmallString<0> PCM; 2842 if (!llvm::sys::path::is_absolute(Mod.getASTFile())) 2843 PCM = Mod.getPath(); 2844 llvm::sys::path::append(PCM, Mod.getASTFile()); 2845 DIB.createCompileUnit( 2846 TheCU->getSourceLanguage(), 2847 // TODO: Support "Source" from external AST providers? 2848 DIB.createFile(Mod.getModuleName(), TheCU->getDirectory()), 2849 TheCU->getProducer(), false, StringRef(), 0, RemapPath(PCM), 2850 llvm::DICompileUnit::FullDebug, Signature); 2851 DIB.finalize(); 2852 } 2853 2854 llvm::DIModule *Parent = 2855 IsRootModule ? nullptr 2856 : getOrCreateModuleRef(ASTSourceDescriptor(*M->Parent), 2857 CreateSkeletonCU); 2858 std::string IncludePath = Mod.getPath().str(); 2859 llvm::DIModule *DIMod = 2860 DBuilder.createModule(Parent, Mod.getModuleName(), ConfigMacros, 2861 RemapPath(IncludePath)); 2862 ModuleCache[M].reset(DIMod); 2863 return DIMod; 2864 } 2865 2866 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty, 2867 llvm::DIFile *Unit) { 2868 ObjCInterfaceDecl *ID = Ty->getDecl(); 2869 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); 2870 unsigned Line = getLineNumber(ID->getLocation()); 2871 unsigned RuntimeLang = TheCU->getSourceLanguage(); 2872 2873 // Bit size, align and offset of the type. 2874 uint64_t Size = CGM.getContext().getTypeSize(Ty); 2875 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 2876 2877 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 2878 if (ID->getImplementation()) 2879 Flags |= llvm::DINode::FlagObjcClassComplete; 2880 2881 llvm::DIScope *Mod = getParentModuleOrNull(ID); 2882 llvm::DICompositeType *RealDecl = DBuilder.createStructType( 2883 Mod ? Mod : Unit, ID->getName(), DefUnit, Line, Size, Align, Flags, 2884 nullptr, llvm::DINodeArray(), RuntimeLang); 2885 2886 QualType QTy(Ty, 0); 2887 TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl); 2888 2889 // Push the struct on region stack. 2890 LexicalBlockStack.emplace_back(RealDecl); 2891 RegionMap[Ty->getDecl()].reset(RealDecl); 2892 2893 // Convert all the elements. 2894 SmallVector<llvm::Metadata *, 16> EltTys; 2895 2896 ObjCInterfaceDecl *SClass = ID->getSuperClass(); 2897 if (SClass) { 2898 llvm::DIType *SClassTy = 2899 getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit); 2900 if (!SClassTy) 2901 return nullptr; 2902 2903 llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0, 2904 llvm::DINode::FlagZero); 2905 EltTys.push_back(InhTag); 2906 } 2907 2908 // Create entries for all of the properties. 2909 auto AddProperty = [&](const ObjCPropertyDecl *PD) { 2910 SourceLocation Loc = PD->getLocation(); 2911 llvm::DIFile *PUnit = getOrCreateFile(Loc); 2912 unsigned PLine = getLineNumber(Loc); 2913 ObjCMethodDecl *Getter = PD->getGetterMethodDecl(); 2914 ObjCMethodDecl *Setter = PD->getSetterMethodDecl(); 2915 llvm::MDNode *PropertyNode = DBuilder.createObjCProperty( 2916 PD->getName(), PUnit, PLine, 2917 hasDefaultGetterName(PD, Getter) ? "" 2918 : getSelectorName(PD->getGetterName()), 2919 hasDefaultSetterName(PD, Setter) ? "" 2920 : getSelectorName(PD->getSetterName()), 2921 PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit)); 2922 EltTys.push_back(PropertyNode); 2923 }; 2924 { 2925 // Use 'char' for the isClassProperty bit as DenseSet requires space for 2926 // empty/tombstone keys in the data type (and bool is too small for that). 2927 typedef std::pair<char, const IdentifierInfo *> IsClassAndIdent; 2928 /// List of already emitted properties. Two distinct class and instance 2929 /// properties can share the same identifier (but not two instance 2930 /// properties or two class properties). 2931 llvm::DenseSet<IsClassAndIdent> PropertySet; 2932 /// Returns the IsClassAndIdent key for the given property. 2933 auto GetIsClassAndIdent = [](const ObjCPropertyDecl *PD) { 2934 return std::make_pair(PD->isClassProperty(), PD->getIdentifier()); 2935 }; 2936 for (const ObjCCategoryDecl *ClassExt : ID->known_extensions()) 2937 for (auto *PD : ClassExt->properties()) { 2938 PropertySet.insert(GetIsClassAndIdent(PD)); 2939 AddProperty(PD); 2940 } 2941 for (const auto *PD : ID->properties()) { 2942 // Don't emit duplicate metadata for properties that were already in a 2943 // class extension. 2944 if (!PropertySet.insert(GetIsClassAndIdent(PD)).second) 2945 continue; 2946 AddProperty(PD); 2947 } 2948 } 2949 2950 const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID); 2951 unsigned FieldNo = 0; 2952 for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field; 2953 Field = Field->getNextIvar(), ++FieldNo) { 2954 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 2955 if (!FieldTy) 2956 return nullptr; 2957 2958 StringRef FieldName = Field->getName(); 2959 2960 // Ignore unnamed fields. 2961 if (FieldName.empty()) 2962 continue; 2963 2964 // Get the location for the field. 2965 llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation()); 2966 unsigned FieldLine = getLineNumber(Field->getLocation()); 2967 QualType FType = Field->getType(); 2968 uint64_t FieldSize = 0; 2969 uint32_t FieldAlign = 0; 2970 2971 if (!FType->isIncompleteArrayType()) { 2972 2973 // Bit size, align and offset of the type. 2974 FieldSize = Field->isBitField() 2975 ? Field->getBitWidthValue(CGM.getContext()) 2976 : CGM.getContext().getTypeSize(FType); 2977 FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); 2978 } 2979 2980 uint64_t FieldOffset; 2981 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2982 // We don't know the runtime offset of an ivar if we're using the 2983 // non-fragile ABI. For bitfields, use the bit offset into the first 2984 // byte of storage of the bitfield. For other fields, use zero. 2985 if (Field->isBitField()) { 2986 FieldOffset = 2987 CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field); 2988 FieldOffset %= CGM.getContext().getCharWidth(); 2989 } else { 2990 FieldOffset = 0; 2991 } 2992 } else { 2993 FieldOffset = RL.getFieldOffset(FieldNo); 2994 } 2995 2996 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 2997 if (Field->getAccessControl() == ObjCIvarDecl::Protected) 2998 Flags = llvm::DINode::FlagProtected; 2999 else if (Field->getAccessControl() == ObjCIvarDecl::Private) 3000 Flags = llvm::DINode::FlagPrivate; 3001 else if (Field->getAccessControl() == ObjCIvarDecl::Public) 3002 Flags = llvm::DINode::FlagPublic; 3003 3004 llvm::MDNode *PropertyNode = nullptr; 3005 if (ObjCImplementationDecl *ImpD = ID->getImplementation()) { 3006 if (ObjCPropertyImplDecl *PImpD = 3007 ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) { 3008 if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) { 3009 SourceLocation Loc = PD->getLocation(); 3010 llvm::DIFile *PUnit = getOrCreateFile(Loc); 3011 unsigned PLine = getLineNumber(Loc); 3012 ObjCMethodDecl *Getter = PImpD->getGetterMethodDecl(); 3013 ObjCMethodDecl *Setter = PImpD->getSetterMethodDecl(); 3014 PropertyNode = DBuilder.createObjCProperty( 3015 PD->getName(), PUnit, PLine, 3016 hasDefaultGetterName(PD, Getter) 3017 ? "" 3018 : getSelectorName(PD->getGetterName()), 3019 hasDefaultSetterName(PD, Setter) 3020 ? "" 3021 : getSelectorName(PD->getSetterName()), 3022 PD->getPropertyAttributes(), 3023 getOrCreateType(PD->getType(), PUnit)); 3024 } 3025 } 3026 } 3027 FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine, 3028 FieldSize, FieldAlign, FieldOffset, Flags, 3029 FieldTy, PropertyNode); 3030 EltTys.push_back(FieldTy); 3031 } 3032 3033 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 3034 DBuilder.replaceArrays(RealDecl, Elements); 3035 3036 LexicalBlockStack.pop_back(); 3037 return RealDecl; 3038 } 3039 3040 llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty, 3041 llvm::DIFile *Unit) { 3042 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); 3043 int64_t Count = Ty->getNumElements(); 3044 3045 llvm::Metadata *Subscript; 3046 QualType QTy(Ty, 0); 3047 auto SizeExpr = SizeExprCache.find(QTy); 3048 if (SizeExpr != SizeExprCache.end()) 3049 Subscript = DBuilder.getOrCreateSubrange( 3050 SizeExpr->getSecond() /*count*/, nullptr /*lowerBound*/, 3051 nullptr /*upperBound*/, nullptr /*stride*/); 3052 else { 3053 auto *CountNode = 3054 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3055 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count ? Count : -1)); 3056 Subscript = DBuilder.getOrCreateSubrange( 3057 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3058 nullptr /*stride*/); 3059 } 3060 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 3061 3062 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3063 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3064 3065 return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray); 3066 } 3067 3068 llvm::DIType *CGDebugInfo::CreateType(const ConstantMatrixType *Ty, 3069 llvm::DIFile *Unit) { 3070 // FIXME: Create another debug type for matrices 3071 // For the time being, it treats it like a nested ArrayType. 3072 3073 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); 3074 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3075 uint32_t Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3076 3077 // Create ranges for both dimensions. 3078 llvm::SmallVector<llvm::Metadata *, 2> Subscripts; 3079 auto *ColumnCountNode = 3080 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3081 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumColumns())); 3082 auto *RowCountNode = 3083 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3084 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumRows())); 3085 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3086 ColumnCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3087 nullptr /*stride*/)); 3088 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3089 RowCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3090 nullptr /*stride*/)); 3091 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); 3092 return DBuilder.createArrayType(Size, Align, ElementTy, SubscriptArray); 3093 } 3094 3095 llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) { 3096 uint64_t Size; 3097 uint32_t Align; 3098 3099 // FIXME: make getTypeAlign() aware of VLAs and incomplete array types 3100 if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) { 3101 Size = 0; 3102 Align = getTypeAlignIfRequired(CGM.getContext().getBaseElementType(VAT), 3103 CGM.getContext()); 3104 } else if (Ty->isIncompleteArrayType()) { 3105 Size = 0; 3106 if (Ty->getElementType()->isIncompleteType()) 3107 Align = 0; 3108 else 3109 Align = getTypeAlignIfRequired(Ty->getElementType(), CGM.getContext()); 3110 } else if (Ty->isIncompleteType()) { 3111 Size = 0; 3112 Align = 0; 3113 } else { 3114 // Size and align of the whole array, not the element type. 3115 Size = CGM.getContext().getTypeSize(Ty); 3116 Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3117 } 3118 3119 // Add the dimensions of the array. FIXME: This loses CV qualifiers from 3120 // interior arrays, do we care? Why aren't nested arrays represented the 3121 // obvious/recursive way? 3122 SmallVector<llvm::Metadata *, 8> Subscripts; 3123 QualType EltTy(Ty, 0); 3124 while ((Ty = dyn_cast<ArrayType>(EltTy))) { 3125 // If the number of elements is known, then count is that number. Otherwise, 3126 // it's -1. This allows us to represent a subrange with an array of 0 3127 // elements, like this: 3128 // 3129 // struct foo { 3130 // int x[0]; 3131 // }; 3132 int64_t Count = -1; // Count == -1 is an unbounded array. 3133 if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty)) 3134 Count = CAT->getSize().getZExtValue(); 3135 else if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) { 3136 if (Expr *Size = VAT->getSizeExpr()) { 3137 Expr::EvalResult Result; 3138 if (Size->EvaluateAsInt(Result, CGM.getContext())) 3139 Count = Result.Val.getInt().getExtValue(); 3140 } 3141 } 3142 3143 auto SizeNode = SizeExprCache.find(EltTy); 3144 if (SizeNode != SizeExprCache.end()) 3145 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3146 SizeNode->getSecond() /*count*/, nullptr /*lowerBound*/, 3147 nullptr /*upperBound*/, nullptr /*stride*/)); 3148 else { 3149 auto *CountNode = 3150 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3151 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count)); 3152 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3153 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3154 nullptr /*stride*/)); 3155 } 3156 EltTy = Ty->getElementType(); 3157 } 3158 3159 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); 3160 3161 return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit), 3162 SubscriptArray); 3163 } 3164 3165 llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty, 3166 llvm::DIFile *Unit) { 3167 return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty, 3168 Ty->getPointeeType(), Unit); 3169 } 3170 3171 llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty, 3172 llvm::DIFile *Unit) { 3173 llvm::dwarf::Tag Tag = llvm::dwarf::DW_TAG_rvalue_reference_type; 3174 // DW_TAG_rvalue_reference_type was introduced in DWARF 4. 3175 if (CGM.getCodeGenOpts().DebugStrictDwarf && 3176 CGM.getCodeGenOpts().DwarfVersion < 4) 3177 Tag = llvm::dwarf::DW_TAG_reference_type; 3178 3179 return CreatePointerLikeType(Tag, Ty, Ty->getPointeeType(), Unit); 3180 } 3181 3182 llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty, 3183 llvm::DIFile *U) { 3184 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 3185 uint64_t Size = 0; 3186 3187 if (!Ty->isIncompleteType()) { 3188 Size = CGM.getContext().getTypeSize(Ty); 3189 3190 // Set the MS inheritance model. There is no flag for the unspecified model. 3191 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3192 switch (Ty->getMostRecentCXXRecordDecl()->getMSInheritanceModel()) { 3193 case MSInheritanceModel::Single: 3194 Flags |= llvm::DINode::FlagSingleInheritance; 3195 break; 3196 case MSInheritanceModel::Multiple: 3197 Flags |= llvm::DINode::FlagMultipleInheritance; 3198 break; 3199 case MSInheritanceModel::Virtual: 3200 Flags |= llvm::DINode::FlagVirtualInheritance; 3201 break; 3202 case MSInheritanceModel::Unspecified: 3203 break; 3204 } 3205 } 3206 } 3207 3208 llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U); 3209 if (Ty->isMemberDataPointerType()) 3210 return DBuilder.createMemberPointerType( 3211 getOrCreateType(Ty->getPointeeType(), U), ClassType, Size, /*Align=*/0, 3212 Flags); 3213 3214 const FunctionProtoType *FPT = 3215 Ty->getPointeeType()->getAs<FunctionProtoType>(); 3216 return DBuilder.createMemberPointerType( 3217 getOrCreateInstanceMethodType( 3218 CXXMethodDecl::getThisType(FPT, Ty->getMostRecentCXXRecordDecl()), 3219 FPT, U, false), 3220 ClassType, Size, /*Align=*/0, Flags); 3221 } 3222 3223 llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) { 3224 auto *FromTy = getOrCreateType(Ty->getValueType(), U); 3225 return DBuilder.createQualifiedType(llvm::dwarf::DW_TAG_atomic_type, FromTy); 3226 } 3227 3228 llvm::DIType *CGDebugInfo::CreateType(const PipeType *Ty, llvm::DIFile *U) { 3229 return getOrCreateType(Ty->getElementType(), U); 3230 } 3231 3232 llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) { 3233 const EnumDecl *ED = Ty->getDecl(); 3234 3235 uint64_t Size = 0; 3236 uint32_t Align = 0; 3237 if (!ED->getTypeForDecl()->isIncompleteType()) { 3238 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); 3239 Align = getDeclAlignIfRequired(ED, CGM.getContext()); 3240 } 3241 3242 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3243 3244 bool isImportedFromModule = 3245 DebugTypeExtRefs && ED->isFromASTFile() && ED->getDefinition(); 3246 3247 // If this is just a forward declaration, construct an appropriately 3248 // marked node and just return it. 3249 if (isImportedFromModule || !ED->getDefinition()) { 3250 // Note that it is possible for enums to be created as part of 3251 // their own declcontext. In this case a FwdDecl will be created 3252 // twice. This doesn't cause a problem because both FwdDecls are 3253 // entered into the ReplaceMap: finalize() will replace the first 3254 // FwdDecl with the second and then replace the second with 3255 // complete type. 3256 llvm::DIScope *EDContext = getDeclContextDescriptor(ED); 3257 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); 3258 llvm::TempDIScope TmpContext(DBuilder.createReplaceableCompositeType( 3259 llvm::dwarf::DW_TAG_enumeration_type, "", TheCU, DefUnit, 0)); 3260 3261 unsigned Line = getLineNumber(ED->getLocation()); 3262 StringRef EDName = ED->getName(); 3263 llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType( 3264 llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line, 3265 0, Size, Align, llvm::DINode::FlagFwdDecl, Identifier); 3266 3267 ReplaceMap.emplace_back( 3268 std::piecewise_construct, std::make_tuple(Ty), 3269 std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); 3270 return RetTy; 3271 } 3272 3273 return CreateTypeDefinition(Ty); 3274 } 3275 3276 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) { 3277 const EnumDecl *ED = Ty->getDecl(); 3278 uint64_t Size = 0; 3279 uint32_t Align = 0; 3280 if (!ED->getTypeForDecl()->isIncompleteType()) { 3281 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); 3282 Align = getDeclAlignIfRequired(ED, CGM.getContext()); 3283 } 3284 3285 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3286 3287 SmallVector<llvm::Metadata *, 16> Enumerators; 3288 ED = ED->getDefinition(); 3289 for (const auto *Enum : ED->enumerators()) { 3290 Enumerators.push_back( 3291 DBuilder.createEnumerator(Enum->getName(), Enum->getInitVal())); 3292 } 3293 3294 // Return a CompositeType for the enum itself. 3295 llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators); 3296 3297 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); 3298 unsigned Line = getLineNumber(ED->getLocation()); 3299 llvm::DIScope *EnumContext = getDeclContextDescriptor(ED); 3300 llvm::DIType *ClassTy = getOrCreateType(ED->getIntegerType(), DefUnit); 3301 return DBuilder.createEnumerationType(EnumContext, ED->getName(), DefUnit, 3302 Line, Size, Align, EltArray, ClassTy, 3303 Identifier, ED->isScoped()); 3304 } 3305 3306 llvm::DIMacro *CGDebugInfo::CreateMacro(llvm::DIMacroFile *Parent, 3307 unsigned MType, SourceLocation LineLoc, 3308 StringRef Name, StringRef Value) { 3309 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); 3310 return DBuilder.createMacro(Parent, Line, MType, Name, Value); 3311 } 3312 3313 llvm::DIMacroFile *CGDebugInfo::CreateTempMacroFile(llvm::DIMacroFile *Parent, 3314 SourceLocation LineLoc, 3315 SourceLocation FileLoc) { 3316 llvm::DIFile *FName = getOrCreateFile(FileLoc); 3317 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); 3318 return DBuilder.createTempMacroFile(Parent, Line, FName); 3319 } 3320 3321 static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) { 3322 Qualifiers Quals; 3323 do { 3324 Qualifiers InnerQuals = T.getLocalQualifiers(); 3325 // Qualifiers::operator+() doesn't like it if you add a Qualifier 3326 // that is already there. 3327 Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals); 3328 Quals += InnerQuals; 3329 QualType LastT = T; 3330 switch (T->getTypeClass()) { 3331 default: 3332 return C.getQualifiedType(T.getTypePtr(), Quals); 3333 case Type::TemplateSpecialization: { 3334 const auto *Spec = cast<TemplateSpecializationType>(T); 3335 if (Spec->isTypeAlias()) 3336 return C.getQualifiedType(T.getTypePtr(), Quals); 3337 T = Spec->desugar(); 3338 break; 3339 } 3340 case Type::TypeOfExpr: 3341 T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType(); 3342 break; 3343 case Type::TypeOf: 3344 T = cast<TypeOfType>(T)->getUnderlyingType(); 3345 break; 3346 case Type::Decltype: 3347 T = cast<DecltypeType>(T)->getUnderlyingType(); 3348 break; 3349 case Type::UnaryTransform: 3350 T = cast<UnaryTransformType>(T)->getUnderlyingType(); 3351 break; 3352 case Type::Attributed: 3353 T = cast<AttributedType>(T)->getEquivalentType(); 3354 break; 3355 case Type::Elaborated: 3356 T = cast<ElaboratedType>(T)->getNamedType(); 3357 break; 3358 case Type::Using: 3359 T = cast<UsingType>(T)->getUnderlyingType(); 3360 break; 3361 case Type::Paren: 3362 T = cast<ParenType>(T)->getInnerType(); 3363 break; 3364 case Type::MacroQualified: 3365 T = cast<MacroQualifiedType>(T)->getUnderlyingType(); 3366 break; 3367 case Type::SubstTemplateTypeParm: 3368 T = cast<SubstTemplateTypeParmType>(T)->getReplacementType(); 3369 break; 3370 case Type::Auto: 3371 case Type::DeducedTemplateSpecialization: { 3372 QualType DT = cast<DeducedType>(T)->getDeducedType(); 3373 assert(!DT.isNull() && "Undeduced types shouldn't reach here."); 3374 T = DT; 3375 break; 3376 } 3377 case Type::Adjusted: 3378 case Type::Decayed: 3379 // Decayed and adjusted types use the adjusted type in LLVM and DWARF. 3380 T = cast<AdjustedType>(T)->getAdjustedType(); 3381 break; 3382 } 3383 3384 assert(T != LastT && "Type unwrapping failed to unwrap!"); 3385 (void)LastT; 3386 } while (true); 3387 } 3388 3389 llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) { 3390 assert(Ty == UnwrapTypeForDebugInfo(Ty, CGM.getContext())); 3391 auto It = TypeCache.find(Ty.getAsOpaquePtr()); 3392 if (It != TypeCache.end()) { 3393 // Verify that the debug info still exists. 3394 if (llvm::Metadata *V = It->second) 3395 return cast<llvm::DIType>(V); 3396 } 3397 3398 return nullptr; 3399 } 3400 3401 void CGDebugInfo::completeTemplateDefinition( 3402 const ClassTemplateSpecializationDecl &SD) { 3403 completeUnusedClass(SD); 3404 } 3405 3406 void CGDebugInfo::completeUnusedClass(const CXXRecordDecl &D) { 3407 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 3408 return; 3409 3410 completeClassData(&D); 3411 // In case this type has no member function definitions being emitted, ensure 3412 // it is retained 3413 RetainedTypes.push_back(CGM.getContext().getRecordType(&D).getAsOpaquePtr()); 3414 } 3415 3416 llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit, 3417 TypeLoc TL) { 3418 if (Ty.isNull()) 3419 return nullptr; 3420 3421 llvm::TimeTraceScope TimeScope("DebugType", [&]() { 3422 std::string Name; 3423 llvm::raw_string_ostream OS(Name); 3424 Ty.print(OS, getPrintingPolicy()); 3425 return Name; 3426 }); 3427 3428 // Unwrap the type as needed for debug information. 3429 Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext()); 3430 3431 if (auto *T = getTypeOrNull(Ty)) 3432 return T; 3433 3434 llvm::DIType *Res = CreateTypeNode(Ty, Unit, TL); 3435 void *TyPtr = Ty.getAsOpaquePtr(); 3436 3437 // And update the type cache. 3438 TypeCache[TyPtr].reset(Res); 3439 3440 return Res; 3441 } 3442 3443 llvm::DIModule *CGDebugInfo::getParentModuleOrNull(const Decl *D) { 3444 // A forward declaration inside a module header does not belong to the module. 3445 if (isa<RecordDecl>(D) && !cast<RecordDecl>(D)->getDefinition()) 3446 return nullptr; 3447 if (DebugTypeExtRefs && D->isFromASTFile()) { 3448 // Record a reference to an imported clang module or precompiled header. 3449 auto *Reader = CGM.getContext().getExternalSource(); 3450 auto Idx = D->getOwningModuleID(); 3451 auto Info = Reader->getSourceDescriptor(Idx); 3452 if (Info) 3453 return getOrCreateModuleRef(*Info, /*SkeletonCU=*/true); 3454 } else if (ClangModuleMap) { 3455 // We are building a clang module or a precompiled header. 3456 // 3457 // TODO: When D is a CXXRecordDecl or a C++ Enum, the ODR applies 3458 // and it wouldn't be necessary to specify the parent scope 3459 // because the type is already unique by definition (it would look 3460 // like the output of -fno-standalone-debug). On the other hand, 3461 // the parent scope helps a consumer to quickly locate the object 3462 // file where the type's definition is located, so it might be 3463 // best to make this behavior a command line or debugger tuning 3464 // option. 3465 if (Module *M = D->getOwningModule()) { 3466 // This is a (sub-)module. 3467 auto Info = ASTSourceDescriptor(*M); 3468 return getOrCreateModuleRef(Info, /*SkeletonCU=*/false); 3469 } else { 3470 // This the precompiled header being built. 3471 return getOrCreateModuleRef(PCHDescriptor, /*SkeletonCU=*/false); 3472 } 3473 } 3474 3475 return nullptr; 3476 } 3477 3478 llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit, 3479 TypeLoc TL) { 3480 // Handle qualifiers, which recursively handles what they refer to. 3481 if (Ty.hasLocalQualifiers()) 3482 return CreateQualifiedType(Ty, Unit, TL); 3483 3484 // Work out details of type. 3485 switch (Ty->getTypeClass()) { 3486 #define TYPE(Class, Base) 3487 #define ABSTRACT_TYPE(Class, Base) 3488 #define NON_CANONICAL_TYPE(Class, Base) 3489 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3490 #include "clang/AST/TypeNodes.inc" 3491 llvm_unreachable("Dependent types cannot show up in debug information"); 3492 3493 case Type::ExtVector: 3494 case Type::Vector: 3495 return CreateType(cast<VectorType>(Ty), Unit); 3496 case Type::ConstantMatrix: 3497 return CreateType(cast<ConstantMatrixType>(Ty), Unit); 3498 case Type::ObjCObjectPointer: 3499 return CreateType(cast<ObjCObjectPointerType>(Ty), Unit); 3500 case Type::ObjCObject: 3501 return CreateType(cast<ObjCObjectType>(Ty), Unit); 3502 case Type::ObjCTypeParam: 3503 return CreateType(cast<ObjCTypeParamType>(Ty), Unit); 3504 case Type::ObjCInterface: 3505 return CreateType(cast<ObjCInterfaceType>(Ty), Unit); 3506 case Type::Builtin: 3507 return CreateType(cast<BuiltinType>(Ty)); 3508 case Type::Complex: 3509 return CreateType(cast<ComplexType>(Ty)); 3510 case Type::Pointer: 3511 return CreateType(cast<PointerType>(Ty), Unit, TL); 3512 case Type::BlockPointer: 3513 return CreateType(cast<BlockPointerType>(Ty), Unit); 3514 case Type::Typedef: 3515 return CreateType(cast<TypedefType>(Ty), Unit); 3516 case Type::Record: 3517 return CreateType(cast<RecordType>(Ty)); 3518 case Type::Enum: 3519 return CreateEnumType(cast<EnumType>(Ty)); 3520 case Type::FunctionProto: 3521 case Type::FunctionNoProto: 3522 return CreateType(cast<FunctionType>(Ty), Unit, TL); 3523 case Type::ConstantArray: 3524 case Type::VariableArray: 3525 case Type::IncompleteArray: 3526 return CreateType(cast<ArrayType>(Ty), Unit); 3527 3528 case Type::LValueReference: 3529 return CreateType(cast<LValueReferenceType>(Ty), Unit); 3530 case Type::RValueReference: 3531 return CreateType(cast<RValueReferenceType>(Ty), Unit); 3532 3533 case Type::MemberPointer: 3534 return CreateType(cast<MemberPointerType>(Ty), Unit); 3535 3536 case Type::Atomic: 3537 return CreateType(cast<AtomicType>(Ty), Unit); 3538 3539 case Type::BitInt: 3540 return CreateType(cast<BitIntType>(Ty)); 3541 case Type::Pipe: 3542 return CreateType(cast<PipeType>(Ty), Unit); 3543 3544 case Type::TemplateSpecialization: 3545 return CreateType(cast<TemplateSpecializationType>(Ty), Unit); 3546 3547 case Type::Auto: 3548 case Type::Attributed: 3549 case Type::Adjusted: 3550 case Type::Decayed: 3551 case Type::DeducedTemplateSpecialization: 3552 case Type::Elaborated: 3553 case Type::Using: 3554 case Type::Paren: 3555 case Type::MacroQualified: 3556 case Type::SubstTemplateTypeParm: 3557 case Type::TypeOfExpr: 3558 case Type::TypeOf: 3559 case Type::Decltype: 3560 case Type::UnaryTransform: 3561 break; 3562 } 3563 3564 llvm_unreachable("type should have been unwrapped!"); 3565 } 3566 3567 llvm::DICompositeType * 3568 CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty) { 3569 QualType QTy(Ty, 0); 3570 3571 auto *T = cast_or_null<llvm::DICompositeType>(getTypeOrNull(QTy)); 3572 3573 // We may have cached a forward decl when we could have created 3574 // a non-forward decl. Go ahead and create a non-forward decl 3575 // now. 3576 if (T && !T->isForwardDecl()) 3577 return T; 3578 3579 // Otherwise create the type. 3580 llvm::DICompositeType *Res = CreateLimitedType(Ty); 3581 3582 // Propagate members from the declaration to the definition 3583 // CreateType(const RecordType*) will overwrite this with the members in the 3584 // correct order if the full type is needed. 3585 DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray()); 3586 3587 // And update the type cache. 3588 TypeCache[QTy.getAsOpaquePtr()].reset(Res); 3589 return Res; 3590 } 3591 3592 // TODO: Currently used for context chains when limiting debug info. 3593 llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) { 3594 RecordDecl *RD = Ty->getDecl(); 3595 3596 // Get overall information about the record type for the debug info. 3597 StringRef RDName = getClassName(RD); 3598 const SourceLocation Loc = RD->getLocation(); 3599 llvm::DIFile *DefUnit = nullptr; 3600 unsigned Line = 0; 3601 if (Loc.isValid()) { 3602 DefUnit = getOrCreateFile(Loc); 3603 Line = getLineNumber(Loc); 3604 } 3605 3606 llvm::DIScope *RDContext = getDeclContextDescriptor(RD); 3607 3608 // If we ended up creating the type during the context chain construction, 3609 // just return that. 3610 auto *T = cast_or_null<llvm::DICompositeType>( 3611 getTypeOrNull(CGM.getContext().getRecordType(RD))); 3612 if (T && (!T->isForwardDecl() || !RD->getDefinition())) 3613 return T; 3614 3615 // If this is just a forward or incomplete declaration, construct an 3616 // appropriately marked node and just return it. 3617 const RecordDecl *D = RD->getDefinition(); 3618 if (!D || !D->isCompleteDefinition()) 3619 return getOrCreateRecordFwdDecl(Ty, RDContext); 3620 3621 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3622 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 3623 3624 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3625 3626 // Explicitly record the calling convention and export symbols for C++ 3627 // records. 3628 auto Flags = llvm::DINode::FlagZero; 3629 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3630 if (CGM.getCXXABI().getRecordArgABI(CXXRD) == CGCXXABI::RAA_Indirect) 3631 Flags |= llvm::DINode::FlagTypePassByReference; 3632 else 3633 Flags |= llvm::DINode::FlagTypePassByValue; 3634 3635 // Record if a C++ record is non-trivial type. 3636 if (!CXXRD->isTrivial()) 3637 Flags |= llvm::DINode::FlagNonTrivial; 3638 3639 // Record exports it symbols to the containing structure. 3640 if (CXXRD->isAnonymousStructOrUnion()) 3641 Flags |= llvm::DINode::FlagExportSymbols; 3642 3643 Flags |= getAccessFlag(CXXRD->getAccess(), 3644 dyn_cast<CXXRecordDecl>(CXXRD->getDeclContext())); 3645 } 3646 3647 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 3648 llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType( 3649 getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align, 3650 Flags, Identifier, Annotations); 3651 3652 // Elements of composite types usually have back to the type, creating 3653 // uniquing cycles. Distinct nodes are more efficient. 3654 switch (RealDecl->getTag()) { 3655 default: 3656 llvm_unreachable("invalid composite type tag"); 3657 3658 case llvm::dwarf::DW_TAG_array_type: 3659 case llvm::dwarf::DW_TAG_enumeration_type: 3660 // Array elements and most enumeration elements don't have back references, 3661 // so they don't tend to be involved in uniquing cycles and there is some 3662 // chance of merging them when linking together two modules. Only make 3663 // them distinct if they are ODR-uniqued. 3664 if (Identifier.empty()) 3665 break; 3666 LLVM_FALLTHROUGH; 3667 3668 case llvm::dwarf::DW_TAG_structure_type: 3669 case llvm::dwarf::DW_TAG_union_type: 3670 case llvm::dwarf::DW_TAG_class_type: 3671 // Immediately resolve to a distinct node. 3672 RealDecl = 3673 llvm::MDNode::replaceWithDistinct(llvm::TempDICompositeType(RealDecl)); 3674 break; 3675 } 3676 3677 RegionMap[Ty->getDecl()].reset(RealDecl); 3678 TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl); 3679 3680 if (const auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 3681 DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(), 3682 CollectCXXTemplateParams(TSpecial, DefUnit)); 3683 return RealDecl; 3684 } 3685 3686 void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD, 3687 llvm::DICompositeType *RealDecl) { 3688 // A class's primary base or the class itself contains the vtable. 3689 llvm::DICompositeType *ContainingType = nullptr; 3690 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 3691 if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) { 3692 // Seek non-virtual primary base root. 3693 while (1) { 3694 const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase); 3695 const CXXRecordDecl *PBT = BRL.getPrimaryBase(); 3696 if (PBT && !BRL.isPrimaryBaseVirtual()) 3697 PBase = PBT; 3698 else 3699 break; 3700 } 3701 ContainingType = cast<llvm::DICompositeType>( 3702 getOrCreateType(QualType(PBase->getTypeForDecl(), 0), 3703 getOrCreateFile(RD->getLocation()))); 3704 } else if (RD->isDynamicClass()) 3705 ContainingType = RealDecl; 3706 3707 DBuilder.replaceVTableHolder(RealDecl, ContainingType); 3708 } 3709 3710 llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType, 3711 StringRef Name, uint64_t *Offset) { 3712 llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit); 3713 uint64_t FieldSize = CGM.getContext().getTypeSize(FType); 3714 auto FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); 3715 llvm::DIType *Ty = 3716 DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize, FieldAlign, 3717 *Offset, llvm::DINode::FlagZero, FieldTy); 3718 *Offset += FieldSize; 3719 return Ty; 3720 } 3721 3722 void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit, 3723 StringRef &Name, 3724 StringRef &LinkageName, 3725 llvm::DIScope *&FDContext, 3726 llvm::DINodeArray &TParamsArray, 3727 llvm::DINode::DIFlags &Flags) { 3728 const auto *FD = cast<FunctionDecl>(GD.getCanonicalDecl().getDecl()); 3729 Name = getFunctionName(FD); 3730 // Use mangled name as linkage name for C/C++ functions. 3731 if (FD->getType()->getAs<FunctionProtoType>()) 3732 LinkageName = CGM.getMangledName(GD); 3733 if (FD->hasPrototype()) 3734 Flags |= llvm::DINode::FlagPrototyped; 3735 // No need to replicate the linkage name if it isn't different from the 3736 // subprogram name, no need to have it at all unless coverage is enabled or 3737 // debug is set to more than just line tables or extra debug info is needed. 3738 if (LinkageName == Name || (!CGM.getCodeGenOpts().EmitGcovArcs && 3739 !CGM.getCodeGenOpts().EmitGcovNotes && 3740 !CGM.getCodeGenOpts().DebugInfoForProfiling && 3741 !CGM.getCodeGenOpts().PseudoProbeForProfiling && 3742 DebugKind <= codegenoptions::DebugLineTablesOnly)) 3743 LinkageName = StringRef(); 3744 3745 // Emit the function scope in line tables only mode (if CodeView) to 3746 // differentiate between function names. 3747 if (CGM.getCodeGenOpts().hasReducedDebugInfo() || 3748 (DebugKind == codegenoptions::DebugLineTablesOnly && 3749 CGM.getCodeGenOpts().EmitCodeView)) { 3750 if (const NamespaceDecl *NSDecl = 3751 dyn_cast_or_null<NamespaceDecl>(FD->getDeclContext())) 3752 FDContext = getOrCreateNamespace(NSDecl); 3753 else if (const RecordDecl *RDecl = 3754 dyn_cast_or_null<RecordDecl>(FD->getDeclContext())) { 3755 llvm::DIScope *Mod = getParentModuleOrNull(RDecl); 3756 FDContext = getContextDescriptor(RDecl, Mod ? Mod : TheCU); 3757 } 3758 } 3759 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 3760 // Check if it is a noreturn-marked function 3761 if (FD->isNoReturn()) 3762 Flags |= llvm::DINode::FlagNoReturn; 3763 // Collect template parameters. 3764 TParamsArray = CollectFunctionTemplateParams(FD, Unit); 3765 } 3766 } 3767 3768 void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit, 3769 unsigned &LineNo, QualType &T, 3770 StringRef &Name, StringRef &LinkageName, 3771 llvm::MDTuple *&TemplateParameters, 3772 llvm::DIScope *&VDContext) { 3773 Unit = getOrCreateFile(VD->getLocation()); 3774 LineNo = getLineNumber(VD->getLocation()); 3775 3776 setLocation(VD->getLocation()); 3777 3778 T = VD->getType(); 3779 if (T->isIncompleteArrayType()) { 3780 // CodeGen turns int[] into int[1] so we'll do the same here. 3781 llvm::APInt ConstVal(32, 1); 3782 QualType ET = CGM.getContext().getAsArrayType(T)->getElementType(); 3783 3784 T = CGM.getContext().getConstantArrayType(ET, ConstVal, nullptr, 3785 ArrayType::Normal, 0); 3786 } 3787 3788 Name = VD->getName(); 3789 if (VD->getDeclContext() && !isa<FunctionDecl>(VD->getDeclContext()) && 3790 !isa<ObjCMethodDecl>(VD->getDeclContext())) 3791 LinkageName = CGM.getMangledName(VD); 3792 if (LinkageName == Name) 3793 LinkageName = StringRef(); 3794 3795 if (isa<VarTemplateSpecializationDecl>(VD)) { 3796 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VD, &*Unit); 3797 TemplateParameters = parameterNodes.get(); 3798 } else { 3799 TemplateParameters = nullptr; 3800 } 3801 3802 // Since we emit declarations (DW_AT_members) for static members, place the 3803 // definition of those static members in the namespace they were declared in 3804 // in the source code (the lexical decl context). 3805 // FIXME: Generalize this for even non-member global variables where the 3806 // declaration and definition may have different lexical decl contexts, once 3807 // we have support for emitting declarations of (non-member) global variables. 3808 const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext() 3809 : VD->getDeclContext(); 3810 // When a record type contains an in-line initialization of a static data 3811 // member, and the record type is marked as __declspec(dllexport), an implicit 3812 // definition of the member will be created in the record context. DWARF 3813 // doesn't seem to have a nice way to describe this in a form that consumers 3814 // are likely to understand, so fake the "normal" situation of a definition 3815 // outside the class by putting it in the global scope. 3816 if (DC->isRecord()) 3817 DC = CGM.getContext().getTranslationUnitDecl(); 3818 3819 llvm::DIScope *Mod = getParentModuleOrNull(VD); 3820 VDContext = getContextDescriptor(cast<Decl>(DC), Mod ? Mod : TheCU); 3821 } 3822 3823 llvm::DISubprogram *CGDebugInfo::getFunctionFwdDeclOrStub(GlobalDecl GD, 3824 bool Stub) { 3825 llvm::DINodeArray TParamsArray; 3826 StringRef Name, LinkageName; 3827 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 3828 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 3829 SourceLocation Loc = GD.getDecl()->getLocation(); 3830 llvm::DIFile *Unit = getOrCreateFile(Loc); 3831 llvm::DIScope *DContext = Unit; 3832 unsigned Line = getLineNumber(Loc); 3833 collectFunctionDeclProps(GD, Unit, Name, LinkageName, DContext, TParamsArray, 3834 Flags); 3835 auto *FD = cast<FunctionDecl>(GD.getDecl()); 3836 3837 // Build function type. 3838 SmallVector<QualType, 16> ArgTypes; 3839 for (const ParmVarDecl *Parm : FD->parameters()) 3840 ArgTypes.push_back(Parm->getType()); 3841 3842 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 3843 QualType FnType = CGM.getContext().getFunctionType( 3844 FD->getReturnType(), ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 3845 if (!FD->isExternallyVisible()) 3846 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 3847 if (CGM.getLangOpts().Optimize) 3848 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 3849 3850 if (Stub) { 3851 Flags |= getCallSiteRelatedAttrs(); 3852 SPFlags |= llvm::DISubprogram::SPFlagDefinition; 3853 return DBuilder.createFunction( 3854 DContext, Name, LinkageName, Unit, Line, 3855 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, 3856 TParamsArray.get(), getFunctionDeclaration(FD)); 3857 } 3858 3859 llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl( 3860 DContext, Name, LinkageName, Unit, Line, 3861 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, 3862 TParamsArray.get(), getFunctionDeclaration(FD)); 3863 const FunctionDecl *CanonDecl = FD->getCanonicalDecl(); 3864 FwdDeclReplaceMap.emplace_back(std::piecewise_construct, 3865 std::make_tuple(CanonDecl), 3866 std::make_tuple(SP)); 3867 return SP; 3868 } 3869 3870 llvm::DISubprogram *CGDebugInfo::getFunctionForwardDeclaration(GlobalDecl GD) { 3871 return getFunctionFwdDeclOrStub(GD, /* Stub = */ false); 3872 } 3873 3874 llvm::DISubprogram *CGDebugInfo::getFunctionStub(GlobalDecl GD) { 3875 return getFunctionFwdDeclOrStub(GD, /* Stub = */ true); 3876 } 3877 3878 llvm::DIGlobalVariable * 3879 CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) { 3880 QualType T; 3881 StringRef Name, LinkageName; 3882 SourceLocation Loc = VD->getLocation(); 3883 llvm::DIFile *Unit = getOrCreateFile(Loc); 3884 llvm::DIScope *DContext = Unit; 3885 unsigned Line = getLineNumber(Loc); 3886 llvm::MDTuple *TemplateParameters = nullptr; 3887 3888 collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, TemplateParameters, 3889 DContext); 3890 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 3891 auto *GV = DBuilder.createTempGlobalVariableFwdDecl( 3892 DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit), 3893 !VD->isExternallyVisible(), nullptr, TemplateParameters, Align); 3894 FwdDeclReplaceMap.emplace_back( 3895 std::piecewise_construct, 3896 std::make_tuple(cast<VarDecl>(VD->getCanonicalDecl())), 3897 std::make_tuple(static_cast<llvm::Metadata *>(GV))); 3898 return GV; 3899 } 3900 3901 llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) { 3902 // We only need a declaration (not a definition) of the type - so use whatever 3903 // we would otherwise do to get a type for a pointee. (forward declarations in 3904 // limited debug info, full definitions (if the type definition is available) 3905 // in unlimited debug info) 3906 if (const auto *TD = dyn_cast<TypeDecl>(D)) 3907 return getOrCreateType(CGM.getContext().getTypeDeclType(TD), 3908 getOrCreateFile(TD->getLocation())); 3909 auto I = DeclCache.find(D->getCanonicalDecl()); 3910 3911 if (I != DeclCache.end()) { 3912 auto N = I->second; 3913 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(N)) 3914 return GVE->getVariable(); 3915 return dyn_cast_or_null<llvm::DINode>(N); 3916 } 3917 3918 // No definition for now. Emit a forward definition that might be 3919 // merged with a potential upcoming definition. 3920 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 3921 return getFunctionForwardDeclaration(FD); 3922 else if (const auto *VD = dyn_cast<VarDecl>(D)) 3923 return getGlobalVariableForwardDeclaration(VD); 3924 3925 return nullptr; 3926 } 3927 3928 llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) { 3929 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) 3930 return nullptr; 3931 3932 const auto *FD = dyn_cast<FunctionDecl>(D); 3933 if (!FD) 3934 return nullptr; 3935 3936 // Setup context. 3937 auto *S = getDeclContextDescriptor(D); 3938 3939 auto MI = SPCache.find(FD->getCanonicalDecl()); 3940 if (MI == SPCache.end()) { 3941 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD->getCanonicalDecl())) { 3942 return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()), 3943 cast<llvm::DICompositeType>(S)); 3944 } 3945 } 3946 if (MI != SPCache.end()) { 3947 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); 3948 if (SP && !SP->isDefinition()) 3949 return SP; 3950 } 3951 3952 for (auto NextFD : FD->redecls()) { 3953 auto MI = SPCache.find(NextFD->getCanonicalDecl()); 3954 if (MI != SPCache.end()) { 3955 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); 3956 if (SP && !SP->isDefinition()) 3957 return SP; 3958 } 3959 } 3960 return nullptr; 3961 } 3962 3963 llvm::DISubprogram *CGDebugInfo::getObjCMethodDeclaration( 3964 const Decl *D, llvm::DISubroutineType *FnType, unsigned LineNo, 3965 llvm::DINode::DIFlags Flags, llvm::DISubprogram::DISPFlags SPFlags) { 3966 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) 3967 return nullptr; 3968 3969 const auto *OMD = dyn_cast<ObjCMethodDecl>(D); 3970 if (!OMD) 3971 return nullptr; 3972 3973 if (CGM.getCodeGenOpts().DwarfVersion < 5 && !OMD->isDirectMethod()) 3974 return nullptr; 3975 3976 if (OMD->isDirectMethod()) 3977 SPFlags |= llvm::DISubprogram::SPFlagObjCDirect; 3978 3979 // Starting with DWARF V5 method declarations are emitted as children of 3980 // the interface type. 3981 auto *ID = dyn_cast_or_null<ObjCInterfaceDecl>(D->getDeclContext()); 3982 if (!ID) 3983 ID = OMD->getClassInterface(); 3984 if (!ID) 3985 return nullptr; 3986 QualType QTy(ID->getTypeForDecl(), 0); 3987 auto It = TypeCache.find(QTy.getAsOpaquePtr()); 3988 if (It == TypeCache.end()) 3989 return nullptr; 3990 auto *InterfaceType = cast<llvm::DICompositeType>(It->second); 3991 llvm::DISubprogram *FD = DBuilder.createFunction( 3992 InterfaceType, getObjCMethodName(OMD), StringRef(), 3993 InterfaceType->getFile(), LineNo, FnType, LineNo, Flags, SPFlags); 3994 DBuilder.finalizeSubprogram(FD); 3995 ObjCMethodCache[ID].push_back({FD, OMD->isDirectMethod()}); 3996 return FD; 3997 } 3998 3999 // getOrCreateFunctionType - Construct type. If it is a c++ method, include 4000 // implicit parameter "this". 4001 llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D, 4002 QualType FnType, 4003 llvm::DIFile *F) { 4004 // In CodeView, we emit the function types in line tables only because the 4005 // only way to distinguish between functions is by display name and type. 4006 if (!D || (DebugKind <= codegenoptions::DebugLineTablesOnly && 4007 !CGM.getCodeGenOpts().EmitCodeView)) 4008 // Create fake but valid subroutine type. Otherwise -verify would fail, and 4009 // subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields. 4010 return DBuilder.createSubroutineType(DBuilder.getOrCreateTypeArray(None)); 4011 4012 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) 4013 return getOrCreateMethodType(Method, F, false); 4014 4015 const auto *FTy = FnType->getAs<FunctionType>(); 4016 CallingConv CC = FTy ? FTy->getCallConv() : CallingConv::CC_C; 4017 4018 if (const auto *OMethod = dyn_cast<ObjCMethodDecl>(D)) { 4019 // Add "self" and "_cmd" 4020 SmallVector<llvm::Metadata *, 16> Elts; 4021 4022 // First element is always return type. For 'void' functions it is NULL. 4023 QualType ResultTy = OMethod->getReturnType(); 4024 4025 // Replace the instancetype keyword with the actual type. 4026 if (ResultTy == CGM.getContext().getObjCInstanceType()) 4027 ResultTy = CGM.getContext().getPointerType( 4028 QualType(OMethod->getClassInterface()->getTypeForDecl(), 0)); 4029 4030 Elts.push_back(getOrCreateType(ResultTy, F)); 4031 // "self" pointer is always first argument. 4032 QualType SelfDeclTy; 4033 if (auto *SelfDecl = OMethod->getSelfDecl()) 4034 SelfDeclTy = SelfDecl->getType(); 4035 else if (auto *FPT = dyn_cast<FunctionProtoType>(FnType)) 4036 if (FPT->getNumParams() > 1) 4037 SelfDeclTy = FPT->getParamType(0); 4038 if (!SelfDeclTy.isNull()) 4039 Elts.push_back( 4040 CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F))); 4041 // "_cmd" pointer is always second argument. 4042 Elts.push_back(DBuilder.createArtificialType( 4043 getOrCreateType(CGM.getContext().getObjCSelType(), F))); 4044 // Get rest of the arguments. 4045 for (const auto *PI : OMethod->parameters()) 4046 Elts.push_back(getOrCreateType(PI->getType(), F)); 4047 // Variadic methods need a special marker at the end of the type list. 4048 if (OMethod->isVariadic()) 4049 Elts.push_back(DBuilder.createUnspecifiedParameter()); 4050 4051 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); 4052 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, 4053 getDwarfCC(CC)); 4054 } 4055 4056 // Handle variadic function types; they need an additional 4057 // unspecified parameter. 4058 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 4059 if (FD->isVariadic()) { 4060 SmallVector<llvm::Metadata *, 16> EltTys; 4061 EltTys.push_back(getOrCreateType(FD->getReturnType(), F)); 4062 if (const auto *FPT = dyn_cast<FunctionProtoType>(FnType)) 4063 for (QualType ParamType : FPT->param_types()) 4064 EltTys.push_back(getOrCreateType(ParamType, F)); 4065 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 4066 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); 4067 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, 4068 getDwarfCC(CC)); 4069 } 4070 4071 TypeLoc TL; 4072 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4073 if (const TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 4074 TL = TSI->getTypeLoc(); 4075 } 4076 return cast<llvm::DISubroutineType>(getOrCreateType(FnType, F, TL)); 4077 } 4078 4079 QualType 4080 CGDebugInfo::getFunctionType(const FunctionDecl *FD, QualType RetTy, 4081 const SmallVectorImpl<const VarDecl *> &Args) { 4082 CallingConv CC = CallingConv::CC_C; 4083 if (FD) 4084 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 4085 CC = SrcFnTy->getCallConv(); 4086 SmallVector<QualType, 16> ArgTypes; 4087 for (const VarDecl *VD : Args) 4088 ArgTypes.push_back(VD->getType()); 4089 return CGM.getContext().getFunctionType(RetTy, ArgTypes, 4090 FunctionProtoType::ExtProtoInfo(CC)); 4091 } 4092 4093 void CGDebugInfo::emitFunctionStart(GlobalDecl GD, SourceLocation Loc, 4094 SourceLocation ScopeLoc, QualType FnType, 4095 llvm::Function *Fn, bool CurFuncIsThunk) { 4096 StringRef Name; 4097 StringRef LinkageName; 4098 4099 FnBeginRegionCount.push_back(LexicalBlockStack.size()); 4100 4101 const Decl *D = GD.getDecl(); 4102 bool HasDecl = (D != nullptr); 4103 4104 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4105 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 4106 llvm::DIFile *Unit = getOrCreateFile(Loc); 4107 llvm::DIScope *FDContext = Unit; 4108 llvm::DINodeArray TParamsArray; 4109 if (!HasDecl) { 4110 // Use llvm function name. 4111 LinkageName = Fn->getName(); 4112 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4113 // If there is a subprogram for this function available then use it. 4114 auto FI = SPCache.find(FD->getCanonicalDecl()); 4115 if (FI != SPCache.end()) { 4116 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second); 4117 if (SP && SP->isDefinition()) { 4118 LexicalBlockStack.emplace_back(SP); 4119 RegionMap[D].reset(SP); 4120 return; 4121 } 4122 } 4123 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, 4124 TParamsArray, Flags); 4125 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) { 4126 Name = getObjCMethodName(OMD); 4127 Flags |= llvm::DINode::FlagPrototyped; 4128 } else if (isa<VarDecl>(D) && 4129 GD.getDynamicInitKind() != DynamicInitKind::NoStub) { 4130 // This is a global initializer or atexit destructor for a global variable. 4131 Name = getDynamicInitializerName(cast<VarDecl>(D), GD.getDynamicInitKind(), 4132 Fn); 4133 } else { 4134 Name = Fn->getName(); 4135 4136 if (isa<BlockDecl>(D)) 4137 LinkageName = Name; 4138 4139 Flags |= llvm::DINode::FlagPrototyped; 4140 } 4141 if (Name.startswith("\01")) 4142 Name = Name.substr(1); 4143 4144 if (!HasDecl || D->isImplicit() || D->hasAttr<ArtificialAttr>() || 4145 (isa<VarDecl>(D) && GD.getDynamicInitKind() != DynamicInitKind::NoStub)) { 4146 Flags |= llvm::DINode::FlagArtificial; 4147 // Artificial functions should not silently reuse CurLoc. 4148 CurLoc = SourceLocation(); 4149 } 4150 4151 if (CurFuncIsThunk) 4152 Flags |= llvm::DINode::FlagThunk; 4153 4154 if (Fn->hasLocalLinkage()) 4155 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 4156 if (CGM.getLangOpts().Optimize) 4157 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 4158 4159 llvm::DINode::DIFlags FlagsForDef = Flags | getCallSiteRelatedAttrs(); 4160 llvm::DISubprogram::DISPFlags SPFlagsForDef = 4161 SPFlags | llvm::DISubprogram::SPFlagDefinition; 4162 4163 const unsigned LineNo = getLineNumber(Loc.isValid() ? Loc : CurLoc); 4164 unsigned ScopeLine = getLineNumber(ScopeLoc); 4165 llvm::DISubroutineType *DIFnType = getOrCreateFunctionType(D, FnType, Unit); 4166 llvm::DISubprogram *Decl = nullptr; 4167 llvm::DINodeArray Annotations = nullptr; 4168 if (D) { 4169 Decl = isa<ObjCMethodDecl>(D) 4170 ? getObjCMethodDeclaration(D, DIFnType, LineNo, Flags, SPFlags) 4171 : getFunctionDeclaration(D); 4172 Annotations = CollectBTFDeclTagAnnotations(D); 4173 } 4174 4175 // FIXME: The function declaration we're constructing here is mostly reusing 4176 // declarations from CXXMethodDecl and not constructing new ones for arbitrary 4177 // FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for 4178 // all subprograms instead of the actual context since subprogram definitions 4179 // are emitted as CU level entities by the backend. 4180 llvm::DISubprogram *SP = DBuilder.createFunction( 4181 FDContext, Name, LinkageName, Unit, LineNo, DIFnType, ScopeLine, 4182 FlagsForDef, SPFlagsForDef, TParamsArray.get(), Decl, nullptr, 4183 Annotations); 4184 Fn->setSubprogram(SP); 4185 // We might get here with a VarDecl in the case we're generating 4186 // code for the initialization of globals. Do not record these decls 4187 // as they will overwrite the actual VarDecl Decl in the cache. 4188 if (HasDecl && isa<FunctionDecl>(D)) 4189 DeclCache[D->getCanonicalDecl()].reset(SP); 4190 4191 // Push the function onto the lexical block stack. 4192 LexicalBlockStack.emplace_back(SP); 4193 4194 if (HasDecl) 4195 RegionMap[D].reset(SP); 4196 } 4197 4198 void CGDebugInfo::EmitFunctionDecl(GlobalDecl GD, SourceLocation Loc, 4199 QualType FnType, llvm::Function *Fn) { 4200 StringRef Name; 4201 StringRef LinkageName; 4202 4203 const Decl *D = GD.getDecl(); 4204 if (!D) 4205 return; 4206 4207 llvm::TimeTraceScope TimeScope("DebugFunction", [&]() { 4208 return GetName(D, true); 4209 }); 4210 4211 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4212 llvm::DIFile *Unit = getOrCreateFile(Loc); 4213 bool IsDeclForCallSite = Fn ? true : false; 4214 llvm::DIScope *FDContext = 4215 IsDeclForCallSite ? Unit : getDeclContextDescriptor(D); 4216 llvm::DINodeArray TParamsArray; 4217 if (isa<FunctionDecl>(D)) { 4218 // If there is a DISubprogram for this function available then use it. 4219 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, 4220 TParamsArray, Flags); 4221 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) { 4222 Name = getObjCMethodName(OMD); 4223 Flags |= llvm::DINode::FlagPrototyped; 4224 } else { 4225 llvm_unreachable("not a function or ObjC method"); 4226 } 4227 if (!Name.empty() && Name[0] == '\01') 4228 Name = Name.substr(1); 4229 4230 if (D->isImplicit()) { 4231 Flags |= llvm::DINode::FlagArtificial; 4232 // Artificial functions without a location should not silently reuse CurLoc. 4233 if (Loc.isInvalid()) 4234 CurLoc = SourceLocation(); 4235 } 4236 unsigned LineNo = getLineNumber(Loc); 4237 unsigned ScopeLine = 0; 4238 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 4239 if (CGM.getLangOpts().Optimize) 4240 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 4241 4242 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 4243 llvm::DISubprogram *SP = DBuilder.createFunction( 4244 FDContext, Name, LinkageName, Unit, LineNo, 4245 getOrCreateFunctionType(D, FnType, Unit), ScopeLine, Flags, SPFlags, 4246 TParamsArray.get(), getFunctionDeclaration(D), nullptr, Annotations); 4247 4248 if (IsDeclForCallSite) 4249 Fn->setSubprogram(SP); 4250 4251 DBuilder.finalizeSubprogram(SP); 4252 } 4253 4254 void CGDebugInfo::EmitFuncDeclForCallSite(llvm::CallBase *CallOrInvoke, 4255 QualType CalleeType, 4256 const FunctionDecl *CalleeDecl) { 4257 if (!CallOrInvoke) 4258 return; 4259 auto *Func = CallOrInvoke->getCalledFunction(); 4260 if (!Func) 4261 return; 4262 if (Func->getSubprogram()) 4263 return; 4264 4265 // Do not emit a declaration subprogram for a builtin, a function with nodebug 4266 // attribute, or if call site info isn't required. Also, elide declarations 4267 // for functions with reserved names, as call site-related features aren't 4268 // interesting in this case (& also, the compiler may emit calls to these 4269 // functions without debug locations, which makes the verifier complain). 4270 if (CalleeDecl->getBuiltinID() != 0 || CalleeDecl->hasAttr<NoDebugAttr>() || 4271 getCallSiteRelatedAttrs() == llvm::DINode::FlagZero) 4272 return; 4273 if (CalleeDecl->isReserved(CGM.getLangOpts()) != 4274 ReservedIdentifierStatus::NotReserved) 4275 return; 4276 4277 // If there is no DISubprogram attached to the function being called, 4278 // create the one describing the function in order to have complete 4279 // call site debug info. 4280 if (!CalleeDecl->isStatic() && !CalleeDecl->isInlined()) 4281 EmitFunctionDecl(CalleeDecl, CalleeDecl->getLocation(), CalleeType, Func); 4282 } 4283 4284 void CGDebugInfo::EmitInlineFunctionStart(CGBuilderTy &Builder, GlobalDecl GD) { 4285 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4286 // If there is a subprogram for this function available then use it. 4287 auto FI = SPCache.find(FD->getCanonicalDecl()); 4288 llvm::DISubprogram *SP = nullptr; 4289 if (FI != SPCache.end()) 4290 SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second); 4291 if (!SP || !SP->isDefinition()) 4292 SP = getFunctionStub(GD); 4293 FnBeginRegionCount.push_back(LexicalBlockStack.size()); 4294 LexicalBlockStack.emplace_back(SP); 4295 setInlinedAt(Builder.getCurrentDebugLocation()); 4296 EmitLocation(Builder, FD->getLocation()); 4297 } 4298 4299 void CGDebugInfo::EmitInlineFunctionEnd(CGBuilderTy &Builder) { 4300 assert(CurInlinedAt && "unbalanced inline scope stack"); 4301 EmitFunctionEnd(Builder, nullptr); 4302 setInlinedAt(llvm::DebugLoc(CurInlinedAt).getInlinedAt()); 4303 } 4304 4305 void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) { 4306 // Update our current location 4307 setLocation(Loc); 4308 4309 if (CurLoc.isInvalid() || CurLoc.isMacroID() || LexicalBlockStack.empty()) 4310 return; 4311 4312 llvm::MDNode *Scope = LexicalBlockStack.back(); 4313 Builder.SetCurrentDebugLocation( 4314 llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(CurLoc), 4315 getColumnNumber(CurLoc), Scope, CurInlinedAt)); 4316 } 4317 4318 void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) { 4319 llvm::MDNode *Back = nullptr; 4320 if (!LexicalBlockStack.empty()) 4321 Back = LexicalBlockStack.back().get(); 4322 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock( 4323 cast<llvm::DIScope>(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc), 4324 getColumnNumber(CurLoc))); 4325 } 4326 4327 void CGDebugInfo::AppendAddressSpaceXDeref( 4328 unsigned AddressSpace, SmallVectorImpl<int64_t> &Expr) const { 4329 Optional<unsigned> DWARFAddressSpace = 4330 CGM.getTarget().getDWARFAddressSpace(AddressSpace); 4331 if (!DWARFAddressSpace) 4332 return; 4333 4334 Expr.push_back(llvm::dwarf::DW_OP_constu); 4335 Expr.push_back(DWARFAddressSpace.getValue()); 4336 Expr.push_back(llvm::dwarf::DW_OP_swap); 4337 Expr.push_back(llvm::dwarf::DW_OP_xderef); 4338 } 4339 4340 void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder, 4341 SourceLocation Loc) { 4342 // Set our current location. 4343 setLocation(Loc); 4344 4345 // Emit a line table change for the current location inside the new scope. 4346 Builder.SetCurrentDebugLocation(llvm::DILocation::get( 4347 CGM.getLLVMContext(), getLineNumber(Loc), getColumnNumber(Loc), 4348 LexicalBlockStack.back(), CurInlinedAt)); 4349 4350 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 4351 return; 4352 4353 // Create a new lexical block and push it on the stack. 4354 CreateLexicalBlock(Loc); 4355 } 4356 4357 void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder, 4358 SourceLocation Loc) { 4359 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4360 4361 // Provide an entry in the line table for the end of the block. 4362 EmitLocation(Builder, Loc); 4363 4364 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 4365 return; 4366 4367 LexicalBlockStack.pop_back(); 4368 } 4369 4370 void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder, llvm::Function *Fn) { 4371 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4372 unsigned RCount = FnBeginRegionCount.back(); 4373 assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch"); 4374 4375 // Pop all regions for this function. 4376 while (LexicalBlockStack.size() != RCount) { 4377 // Provide an entry in the line table for the end of the block. 4378 EmitLocation(Builder, CurLoc); 4379 LexicalBlockStack.pop_back(); 4380 } 4381 FnBeginRegionCount.pop_back(); 4382 4383 if (Fn && Fn->getSubprogram()) 4384 DBuilder.finalizeSubprogram(Fn->getSubprogram()); 4385 } 4386 4387 CGDebugInfo::BlockByRefType 4388 CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD, 4389 uint64_t *XOffset) { 4390 SmallVector<llvm::Metadata *, 5> EltTys; 4391 QualType FType; 4392 uint64_t FieldSize, FieldOffset; 4393 uint32_t FieldAlign; 4394 4395 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 4396 QualType Type = VD->getType(); 4397 4398 FieldOffset = 0; 4399 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4400 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); 4401 EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset)); 4402 FType = CGM.getContext().IntTy; 4403 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); 4404 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); 4405 4406 bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD); 4407 if (HasCopyAndDispose) { 4408 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4409 EltTys.push_back( 4410 CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset)); 4411 EltTys.push_back( 4412 CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset)); 4413 } 4414 bool HasByrefExtendedLayout; 4415 Qualifiers::ObjCLifetime Lifetime; 4416 if (CGM.getContext().getByrefLifetime(Type, Lifetime, 4417 HasByrefExtendedLayout) && 4418 HasByrefExtendedLayout) { 4419 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4420 EltTys.push_back( 4421 CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset)); 4422 } 4423 4424 CharUnits Align = CGM.getContext().getDeclAlign(VD); 4425 if (Align > CGM.getContext().toCharUnitsFromBits( 4426 CGM.getTarget().getPointerAlign(0))) { 4427 CharUnits FieldOffsetInBytes = 4428 CGM.getContext().toCharUnitsFromBits(FieldOffset); 4429 CharUnits AlignedOffsetInBytes = FieldOffsetInBytes.alignTo(Align); 4430 CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes; 4431 4432 if (NumPaddingBytes.isPositive()) { 4433 llvm::APInt pad(32, NumPaddingBytes.getQuantity()); 4434 FType = CGM.getContext().getConstantArrayType( 4435 CGM.getContext().CharTy, pad, nullptr, ArrayType::Normal, 0); 4436 EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset)); 4437 } 4438 } 4439 4440 FType = Type; 4441 llvm::DIType *WrappedTy = getOrCreateType(FType, Unit); 4442 FieldSize = CGM.getContext().getTypeSize(FType); 4443 FieldAlign = CGM.getContext().toBits(Align); 4444 4445 *XOffset = FieldOffset; 4446 llvm::DIType *FieldTy = DBuilder.createMemberType( 4447 Unit, VD->getName(), Unit, 0, FieldSize, FieldAlign, FieldOffset, 4448 llvm::DINode::FlagZero, WrappedTy); 4449 EltTys.push_back(FieldTy); 4450 FieldOffset += FieldSize; 4451 4452 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 4453 return {DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0, 4454 llvm::DINode::FlagZero, nullptr, Elements), 4455 WrappedTy}; 4456 } 4457 4458 llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const VarDecl *VD, 4459 llvm::Value *Storage, 4460 llvm::Optional<unsigned> ArgNo, 4461 CGBuilderTy &Builder, 4462 const bool UsePointerValue) { 4463 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4464 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4465 if (VD->hasAttr<NoDebugAttr>()) 4466 return nullptr; 4467 4468 bool Unwritten = 4469 VD->isImplicit() || (isa<Decl>(VD->getDeclContext()) && 4470 cast<Decl>(VD->getDeclContext())->isImplicit()); 4471 llvm::DIFile *Unit = nullptr; 4472 if (!Unwritten) 4473 Unit = getOrCreateFile(VD->getLocation()); 4474 llvm::DIType *Ty; 4475 uint64_t XOffset = 0; 4476 if (VD->hasAttr<BlocksAttr>()) 4477 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; 4478 else { 4479 TypeLoc TL; 4480 if (const TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 4481 TL = TSI->getTypeLoc(); 4482 Ty = getOrCreateType(VD->getType(), Unit, TL); 4483 } 4484 4485 // If there is no debug info for this type then do not emit debug info 4486 // for this variable. 4487 if (!Ty) 4488 return nullptr; 4489 4490 // Get location information. 4491 unsigned Line = 0; 4492 unsigned Column = 0; 4493 if (!Unwritten) { 4494 Line = getLineNumber(VD->getLocation()); 4495 Column = getColumnNumber(VD->getLocation()); 4496 } 4497 SmallVector<int64_t, 13> Expr; 4498 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4499 if (VD->isImplicit()) 4500 Flags |= llvm::DINode::FlagArtificial; 4501 4502 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 4503 4504 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(VD->getType()); 4505 AppendAddressSpaceXDeref(AddressSpace, Expr); 4506 4507 // If this is implicit parameter of CXXThis or ObjCSelf kind, then give it an 4508 // object pointer flag. 4509 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) { 4510 if (IPD->getParameterKind() == ImplicitParamDecl::CXXThis || 4511 IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf) 4512 Flags |= llvm::DINode::FlagObjectPointer; 4513 } 4514 4515 // Note: Older versions of clang used to emit byval references with an extra 4516 // DW_OP_deref, because they referenced the IR arg directly instead of 4517 // referencing an alloca. Newer versions of LLVM don't treat allocas 4518 // differently from other function arguments when used in a dbg.declare. 4519 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4520 StringRef Name = VD->getName(); 4521 if (!Name.empty()) { 4522 // __block vars are stored on the heap if they are captured by a block that 4523 // can escape the local scope. 4524 if (VD->isEscapingByref()) { 4525 // Here, we need an offset *into* the alloca. 4526 CharUnits offset = CharUnits::fromQuantity(32); 4527 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4528 // offset of __forwarding field 4529 offset = CGM.getContext().toCharUnitsFromBits( 4530 CGM.getTarget().getPointerWidth(0)); 4531 Expr.push_back(offset.getQuantity()); 4532 Expr.push_back(llvm::dwarf::DW_OP_deref); 4533 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4534 // offset of x field 4535 offset = CGM.getContext().toCharUnitsFromBits(XOffset); 4536 Expr.push_back(offset.getQuantity()); 4537 } 4538 } else if (const auto *RT = dyn_cast<RecordType>(VD->getType())) { 4539 // If VD is an anonymous union then Storage represents value for 4540 // all union fields. 4541 const RecordDecl *RD = RT->getDecl(); 4542 if (RD->isUnion() && RD->isAnonymousStructOrUnion()) { 4543 // GDB has trouble finding local variables in anonymous unions, so we emit 4544 // artificial local variables for each of the members. 4545 // 4546 // FIXME: Remove this code as soon as GDB supports this. 4547 // The debug info verifier in LLVM operates based on the assumption that a 4548 // variable has the same size as its storage and we had to disable the 4549 // check for artificial variables. 4550 for (const auto *Field : RD->fields()) { 4551 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 4552 StringRef FieldName = Field->getName(); 4553 4554 // Ignore unnamed fields. Do not ignore unnamed records. 4555 if (FieldName.empty() && !isa<RecordType>(Field->getType())) 4556 continue; 4557 4558 // Use VarDecl's Tag, Scope and Line number. 4559 auto FieldAlign = getDeclAlignIfRequired(Field, CGM.getContext()); 4560 auto *D = DBuilder.createAutoVariable( 4561 Scope, FieldName, Unit, Line, FieldTy, CGM.getLangOpts().Optimize, 4562 Flags | llvm::DINode::FlagArtificial, FieldAlign); 4563 4564 // Insert an llvm.dbg.declare into the current block. 4565 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4566 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4567 Column, Scope, 4568 CurInlinedAt), 4569 Builder.GetInsertBlock()); 4570 } 4571 } 4572 } 4573 4574 // Clang stores the sret pointer provided by the caller in a static alloca. 4575 // Use DW_OP_deref to tell the debugger to load the pointer and treat it as 4576 // the address of the variable. 4577 if (UsePointerValue) { 4578 assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) && 4579 "Debug info already contains DW_OP_deref."); 4580 Expr.push_back(llvm::dwarf::DW_OP_deref); 4581 } 4582 4583 // Create the descriptor for the variable. 4584 llvm::DILocalVariable *D = nullptr; 4585 if (ArgNo) { 4586 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(VD); 4587 D = DBuilder.createParameterVariable(Scope, Name, *ArgNo, Unit, Line, Ty, 4588 CGM.getLangOpts().Optimize, Flags, 4589 Annotations); 4590 } else { 4591 // For normal local variable, we will try to find out whether 'VD' is the 4592 // copy parameter of coroutine. 4593 // If yes, we are going to use DIVariable of the origin parameter instead 4594 // of creating the new one. 4595 // If no, it might be a normal alloc, we just create a new one for it. 4596 4597 // Check whether the VD is move parameters. 4598 auto RemapCoroArgToLocalVar = [&]() -> llvm::DILocalVariable * { 4599 // The scope of parameter and move-parameter should be distinct 4600 // DISubprogram. 4601 if (!isa<llvm::DISubprogram>(Scope) || !Scope->isDistinct()) 4602 return nullptr; 4603 4604 auto Iter = llvm::find_if(CoroutineParameterMappings, [&](auto &Pair) { 4605 Stmt *StmtPtr = const_cast<Stmt *>(Pair.second); 4606 if (DeclStmt *DeclStmtPtr = dyn_cast<DeclStmt>(StmtPtr)) { 4607 DeclGroupRef DeclGroup = DeclStmtPtr->getDeclGroup(); 4608 Decl *Decl = DeclGroup.getSingleDecl(); 4609 if (VD == dyn_cast_or_null<VarDecl>(Decl)) 4610 return true; 4611 } 4612 return false; 4613 }); 4614 4615 if (Iter != CoroutineParameterMappings.end()) { 4616 ParmVarDecl *PD = const_cast<ParmVarDecl *>(Iter->first); 4617 auto Iter2 = llvm::find_if(ParamDbgMappings, [&](auto &DbgPair) { 4618 return DbgPair.first == PD && DbgPair.second->getScope() == Scope; 4619 }); 4620 if (Iter2 != ParamDbgMappings.end()) 4621 return const_cast<llvm::DILocalVariable *>(Iter2->second); 4622 } 4623 return nullptr; 4624 }; 4625 4626 // If we couldn't find a move param DIVariable, create a new one. 4627 D = RemapCoroArgToLocalVar(); 4628 // Or we will create a new DIVariable for this Decl if D dose not exists. 4629 if (!D) 4630 D = DBuilder.createAutoVariable(Scope, Name, Unit, Line, Ty, 4631 CGM.getLangOpts().Optimize, Flags, Align); 4632 } 4633 // Insert an llvm.dbg.declare into the current block. 4634 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4635 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4636 Column, Scope, CurInlinedAt), 4637 Builder.GetInsertBlock()); 4638 4639 return D; 4640 } 4641 4642 llvm::DILocalVariable * 4643 CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD, llvm::Value *Storage, 4644 CGBuilderTy &Builder, 4645 const bool UsePointerValue) { 4646 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4647 return EmitDeclare(VD, Storage, llvm::None, Builder, UsePointerValue); 4648 } 4649 4650 void CGDebugInfo::EmitLabel(const LabelDecl *D, CGBuilderTy &Builder) { 4651 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4652 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4653 4654 if (D->hasAttr<NoDebugAttr>()) 4655 return; 4656 4657 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4658 llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); 4659 4660 // Get location information. 4661 unsigned Line = getLineNumber(D->getLocation()); 4662 unsigned Column = getColumnNumber(D->getLocation()); 4663 4664 StringRef Name = D->getName(); 4665 4666 // Create the descriptor for the label. 4667 auto *L = 4668 DBuilder.createLabel(Scope, Name, Unit, Line, CGM.getLangOpts().Optimize); 4669 4670 // Insert an llvm.dbg.label into the current block. 4671 DBuilder.insertLabel(L, 4672 llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, 4673 Scope, CurInlinedAt), 4674 Builder.GetInsertBlock()); 4675 } 4676 4677 llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy, 4678 llvm::DIType *Ty) { 4679 llvm::DIType *CachedTy = getTypeOrNull(QualTy); 4680 if (CachedTy) 4681 Ty = CachedTy; 4682 return DBuilder.createObjectPointerType(Ty); 4683 } 4684 4685 void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable( 4686 const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder, 4687 const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) { 4688 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4689 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4690 4691 if (Builder.GetInsertBlock() == nullptr) 4692 return; 4693 if (VD->hasAttr<NoDebugAttr>()) 4694 return; 4695 4696 bool isByRef = VD->hasAttr<BlocksAttr>(); 4697 4698 uint64_t XOffset = 0; 4699 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 4700 llvm::DIType *Ty; 4701 if (isByRef) 4702 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; 4703 else 4704 Ty = getOrCreateType(VD->getType(), Unit); 4705 4706 // Self is passed along as an implicit non-arg variable in a 4707 // block. Mark it as the object pointer. 4708 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) 4709 if (IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf) 4710 Ty = CreateSelfType(VD->getType(), Ty); 4711 4712 // Get location information. 4713 const unsigned Line = 4714 getLineNumber(VD->getLocation().isValid() ? VD->getLocation() : CurLoc); 4715 unsigned Column = getColumnNumber(VD->getLocation()); 4716 4717 const llvm::DataLayout &target = CGM.getDataLayout(); 4718 4719 CharUnits offset = CharUnits::fromQuantity( 4720 target.getStructLayout(blockInfo.StructureType) 4721 ->getElementOffset(blockInfo.getCapture(VD).getIndex())); 4722 4723 SmallVector<int64_t, 9> addr; 4724 addr.push_back(llvm::dwarf::DW_OP_deref); 4725 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4726 addr.push_back(offset.getQuantity()); 4727 if (isByRef) { 4728 addr.push_back(llvm::dwarf::DW_OP_deref); 4729 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4730 // offset of __forwarding field 4731 offset = 4732 CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0)); 4733 addr.push_back(offset.getQuantity()); 4734 addr.push_back(llvm::dwarf::DW_OP_deref); 4735 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4736 // offset of x field 4737 offset = CGM.getContext().toCharUnitsFromBits(XOffset); 4738 addr.push_back(offset.getQuantity()); 4739 } 4740 4741 // Create the descriptor for the variable. 4742 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 4743 auto *D = DBuilder.createAutoVariable( 4744 cast<llvm::DILocalScope>(LexicalBlockStack.back()), VD->getName(), Unit, 4745 Line, Ty, false, llvm::DINode::FlagZero, Align); 4746 4747 // Insert an llvm.dbg.declare into the current block. 4748 auto DL = llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, 4749 LexicalBlockStack.back(), CurInlinedAt); 4750 auto *Expr = DBuilder.createExpression(addr); 4751 if (InsertPoint) 4752 DBuilder.insertDeclare(Storage, D, Expr, DL, InsertPoint); 4753 else 4754 DBuilder.insertDeclare(Storage, D, Expr, DL, Builder.GetInsertBlock()); 4755 } 4756 4757 llvm::DILocalVariable * 4758 CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI, 4759 unsigned ArgNo, CGBuilderTy &Builder) { 4760 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4761 return EmitDeclare(VD, AI, ArgNo, Builder); 4762 } 4763 4764 namespace { 4765 struct BlockLayoutChunk { 4766 uint64_t OffsetInBits; 4767 const BlockDecl::Capture *Capture; 4768 }; 4769 bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) { 4770 return l.OffsetInBits < r.OffsetInBits; 4771 } 4772 } // namespace 4773 4774 void CGDebugInfo::collectDefaultFieldsForBlockLiteralDeclare( 4775 const CGBlockInfo &Block, const ASTContext &Context, SourceLocation Loc, 4776 const llvm::StructLayout &BlockLayout, llvm::DIFile *Unit, 4777 SmallVectorImpl<llvm::Metadata *> &Fields) { 4778 // Blocks in OpenCL have unique constraints which make the standard fields 4779 // redundant while requiring size and align fields for enqueue_kernel. See 4780 // initializeForBlockHeader in CGBlocks.cpp 4781 if (CGM.getLangOpts().OpenCL) { 4782 Fields.push_back(createFieldType("__size", Context.IntTy, Loc, AS_public, 4783 BlockLayout.getElementOffsetInBits(0), 4784 Unit, Unit)); 4785 Fields.push_back(createFieldType("__align", Context.IntTy, Loc, AS_public, 4786 BlockLayout.getElementOffsetInBits(1), 4787 Unit, Unit)); 4788 } else { 4789 Fields.push_back(createFieldType("__isa", Context.VoidPtrTy, Loc, AS_public, 4790 BlockLayout.getElementOffsetInBits(0), 4791 Unit, Unit)); 4792 Fields.push_back(createFieldType("__flags", Context.IntTy, Loc, AS_public, 4793 BlockLayout.getElementOffsetInBits(1), 4794 Unit, Unit)); 4795 Fields.push_back( 4796 createFieldType("__reserved", Context.IntTy, Loc, AS_public, 4797 BlockLayout.getElementOffsetInBits(2), Unit, Unit)); 4798 auto *FnTy = Block.getBlockExpr()->getFunctionType(); 4799 auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar()); 4800 Fields.push_back(createFieldType("__FuncPtr", FnPtrType, Loc, AS_public, 4801 BlockLayout.getElementOffsetInBits(3), 4802 Unit, Unit)); 4803 Fields.push_back(createFieldType( 4804 "__descriptor", 4805 Context.getPointerType(Block.NeedsCopyDispose 4806 ? Context.getBlockDescriptorExtendedType() 4807 : Context.getBlockDescriptorType()), 4808 Loc, AS_public, BlockLayout.getElementOffsetInBits(4), Unit, Unit)); 4809 } 4810 } 4811 4812 void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block, 4813 StringRef Name, 4814 unsigned ArgNo, 4815 llvm::AllocaInst *Alloca, 4816 CGBuilderTy &Builder) { 4817 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4818 ASTContext &C = CGM.getContext(); 4819 const BlockDecl *blockDecl = block.getBlockDecl(); 4820 4821 // Collect some general information about the block's location. 4822 SourceLocation loc = blockDecl->getCaretLocation(); 4823 llvm::DIFile *tunit = getOrCreateFile(loc); 4824 unsigned line = getLineNumber(loc); 4825 unsigned column = getColumnNumber(loc); 4826 4827 // Build the debug-info type for the block literal. 4828 getDeclContextDescriptor(blockDecl); 4829 4830 const llvm::StructLayout *blockLayout = 4831 CGM.getDataLayout().getStructLayout(block.StructureType); 4832 4833 SmallVector<llvm::Metadata *, 16> fields; 4834 collectDefaultFieldsForBlockLiteralDeclare(block, C, loc, *blockLayout, tunit, 4835 fields); 4836 4837 // We want to sort the captures by offset, not because DWARF 4838 // requires this, but because we're paranoid about debuggers. 4839 SmallVector<BlockLayoutChunk, 8> chunks; 4840 4841 // 'this' capture. 4842 if (blockDecl->capturesCXXThis()) { 4843 BlockLayoutChunk chunk; 4844 chunk.OffsetInBits = 4845 blockLayout->getElementOffsetInBits(block.CXXThisIndex); 4846 chunk.Capture = nullptr; 4847 chunks.push_back(chunk); 4848 } 4849 4850 // Variable captures. 4851 for (const auto &capture : blockDecl->captures()) { 4852 const VarDecl *variable = capture.getVariable(); 4853 const CGBlockInfo::Capture &captureInfo = block.getCapture(variable); 4854 4855 // Ignore constant captures. 4856 if (captureInfo.isConstant()) 4857 continue; 4858 4859 BlockLayoutChunk chunk; 4860 chunk.OffsetInBits = 4861 blockLayout->getElementOffsetInBits(captureInfo.getIndex()); 4862 chunk.Capture = &capture; 4863 chunks.push_back(chunk); 4864 } 4865 4866 // Sort by offset. 4867 llvm::array_pod_sort(chunks.begin(), chunks.end()); 4868 4869 for (const BlockLayoutChunk &Chunk : chunks) { 4870 uint64_t offsetInBits = Chunk.OffsetInBits; 4871 const BlockDecl::Capture *capture = Chunk.Capture; 4872 4873 // If we have a null capture, this must be the C++ 'this' capture. 4874 if (!capture) { 4875 QualType type; 4876 if (auto *Method = 4877 cast_or_null<CXXMethodDecl>(blockDecl->getNonClosureContext())) 4878 type = Method->getThisType(); 4879 else if (auto *RDecl = dyn_cast<CXXRecordDecl>(blockDecl->getParent())) 4880 type = QualType(RDecl->getTypeForDecl(), 0); 4881 else 4882 llvm_unreachable("unexpected block declcontext"); 4883 4884 fields.push_back(createFieldType("this", type, loc, AS_public, 4885 offsetInBits, tunit, tunit)); 4886 continue; 4887 } 4888 4889 const VarDecl *variable = capture->getVariable(); 4890 StringRef name = variable->getName(); 4891 4892 llvm::DIType *fieldType; 4893 if (capture->isByRef()) { 4894 TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy); 4895 auto Align = PtrInfo.isAlignRequired() ? PtrInfo.Align : 0; 4896 // FIXME: This recomputes the layout of the BlockByRefWrapper. 4897 uint64_t xoffset; 4898 fieldType = 4899 EmitTypeForVarWithBlocksAttr(variable, &xoffset).BlockByRefWrapper; 4900 fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width); 4901 fieldType = DBuilder.createMemberType(tunit, name, tunit, line, 4902 PtrInfo.Width, Align, offsetInBits, 4903 llvm::DINode::FlagZero, fieldType); 4904 } else { 4905 auto Align = getDeclAlignIfRequired(variable, CGM.getContext()); 4906 fieldType = createFieldType(name, variable->getType(), loc, AS_public, 4907 offsetInBits, Align, tunit, tunit); 4908 } 4909 fields.push_back(fieldType); 4910 } 4911 4912 SmallString<36> typeName; 4913 llvm::raw_svector_ostream(typeName) 4914 << "__block_literal_" << CGM.getUniqueBlockCount(); 4915 4916 llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields); 4917 4918 llvm::DIType *type = 4919 DBuilder.createStructType(tunit, typeName.str(), tunit, line, 4920 CGM.getContext().toBits(block.BlockSize), 0, 4921 llvm::DINode::FlagZero, nullptr, fieldsArray); 4922 type = DBuilder.createPointerType(type, CGM.PointerWidthInBits); 4923 4924 // Get overall information about the block. 4925 llvm::DINode::DIFlags flags = llvm::DINode::FlagArtificial; 4926 auto *scope = cast<llvm::DILocalScope>(LexicalBlockStack.back()); 4927 4928 // Create the descriptor for the parameter. 4929 auto *debugVar = DBuilder.createParameterVariable( 4930 scope, Name, ArgNo, tunit, line, type, CGM.getLangOpts().Optimize, flags); 4931 4932 // Insert an llvm.dbg.declare into the current block. 4933 DBuilder.insertDeclare(Alloca, debugVar, DBuilder.createExpression(), 4934 llvm::DILocation::get(CGM.getLLVMContext(), line, 4935 column, scope, CurInlinedAt), 4936 Builder.GetInsertBlock()); 4937 } 4938 4939 llvm::DIDerivedType * 4940 CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) { 4941 if (!D || !D->isStaticDataMember()) 4942 return nullptr; 4943 4944 auto MI = StaticDataMemberCache.find(D->getCanonicalDecl()); 4945 if (MI != StaticDataMemberCache.end()) { 4946 assert(MI->second && "Static data member declaration should still exist"); 4947 return MI->second; 4948 } 4949 4950 // If the member wasn't found in the cache, lazily construct and add it to the 4951 // type (used when a limited form of the type is emitted). 4952 auto DC = D->getDeclContext(); 4953 auto *Ctxt = cast<llvm::DICompositeType>(getDeclContextDescriptor(D)); 4954 return CreateRecordStaticField(D, Ctxt, cast<RecordDecl>(DC)); 4955 } 4956 4957 llvm::DIGlobalVariableExpression *CGDebugInfo::CollectAnonRecordDecls( 4958 const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo, 4959 StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) { 4960 llvm::DIGlobalVariableExpression *GVE = nullptr; 4961 4962 for (const auto *Field : RD->fields()) { 4963 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 4964 StringRef FieldName = Field->getName(); 4965 4966 // Ignore unnamed fields, but recurse into anonymous records. 4967 if (FieldName.empty()) { 4968 if (const auto *RT = dyn_cast<RecordType>(Field->getType())) 4969 GVE = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName, 4970 Var, DContext); 4971 continue; 4972 } 4973 // Use VarDecl's Tag, Scope and Line number. 4974 GVE = DBuilder.createGlobalVariableExpression( 4975 DContext, FieldName, LinkageName, Unit, LineNo, FieldTy, 4976 Var->hasLocalLinkage()); 4977 Var->addDebugInfo(GVE); 4978 } 4979 return GVE; 4980 } 4981 4982 namespace { 4983 struct ReconstitutableType : public RecursiveASTVisitor<ReconstitutableType> { 4984 bool Reconstitutable = true; 4985 bool VisitVectorType(VectorType *FT) { 4986 Reconstitutable = false; 4987 return false; 4988 } 4989 bool VisitAtomicType(AtomicType *FT) { 4990 Reconstitutable = false; 4991 return false; 4992 } 4993 bool TraverseEnumType(EnumType *ET) { 4994 // Unnamed enums can't be reconstituted due to a lack of column info we 4995 // produce in the DWARF, so we can't get Clang's full name back. 4996 if (const auto *ED = dyn_cast<EnumDecl>(ET->getDecl())) { 4997 if (!ED->getIdentifier()) { 4998 Reconstitutable = false; 4999 return false; 5000 } 5001 } 5002 return true; 5003 } 5004 bool VisitFunctionProtoType(FunctionProtoType *FT) { 5005 // noexcept is not encoded in DWARF, so the reversi 5006 Reconstitutable &= !isNoexceptExceptionSpec(FT->getExceptionSpecType()); 5007 return Reconstitutable; 5008 } 5009 bool TraverseRecordType(RecordType *RT) { 5010 // Unnamed classes/lambdas can't be reconstituted due to a lack of column 5011 // info we produce in the DWARF, so we can't get Clang's full name back. 5012 // But so long as it's not one of those, it doesn't matter if some sub-type 5013 // of the record (a template parameter) can't be reconstituted - because the 5014 // un-reconstitutable type itself will carry its own name. 5015 const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 5016 if (!RD) 5017 return true; 5018 if (RD->isLambda() || !RD->getIdentifier()) { 5019 Reconstitutable = false; 5020 return false; 5021 } 5022 return true; 5023 } 5024 }; 5025 } // anonymous namespace 5026 5027 // Test whether a type name could be rebuilt from emitted debug info. 5028 static bool IsReconstitutableType(QualType QT) { 5029 ReconstitutableType T; 5030 T.TraverseType(QT); 5031 return T.Reconstitutable; 5032 } 5033 5034 std::string CGDebugInfo::GetName(const Decl *D, bool Qualified) const { 5035 std::string Name; 5036 llvm::raw_string_ostream OS(Name); 5037 const NamedDecl *ND = dyn_cast<NamedDecl>(D); 5038 if (!ND) 5039 return Name; 5040 codegenoptions::DebugTemplateNamesKind TemplateNamesKind = 5041 CGM.getCodeGenOpts().getDebugSimpleTemplateNames(); 5042 Optional<TemplateArgs> Args; 5043 5044 bool IsOperatorOverload = false; // isa<CXXConversionDecl>(ND); 5045 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 5046 Args = GetTemplateArgs(RD); 5047 } else if (auto *FD = dyn_cast<FunctionDecl>(ND)) { 5048 Args = GetTemplateArgs(FD); 5049 auto NameKind = ND->getDeclName().getNameKind(); 5050 IsOperatorOverload |= 5051 NameKind == DeclarationName::CXXOperatorName || 5052 NameKind == DeclarationName::CXXConversionFunctionName; 5053 } else if (auto *VD = dyn_cast<VarDecl>(ND)) { 5054 Args = GetTemplateArgs(VD); 5055 } 5056 std::function<bool(ArrayRef<TemplateArgument>)> HasReconstitutableArgs = 5057 [&](ArrayRef<TemplateArgument> Args) { 5058 return llvm::all_of(Args, [&](const TemplateArgument &TA) { 5059 switch (TA.getKind()) { 5060 case TemplateArgument::Template: 5061 // Easy to reconstitute - the value of the parameter in the debug 5062 // info is the string name of the template. (so the template name 5063 // itself won't benefit from any name rebuilding, but that's a 5064 // representational limitation - maybe DWARF could be 5065 // changed/improved to use some more structural representation) 5066 return true; 5067 case TemplateArgument::Declaration: 5068 // Reference and pointer non-type template parameters point to 5069 // variables, functions, etc and their value is, at best (for 5070 // variables) represented as an address - not a reference to the 5071 // DWARF describing the variable/function/etc. This makes it hard, 5072 // possibly impossible to rebuild the original name - looking up the 5073 // address in the executable file's symbol table would be needed. 5074 return false; 5075 case TemplateArgument::NullPtr: 5076 // These could be rebuilt, but figured they're close enough to the 5077 // declaration case, and not worth rebuilding. 5078 return false; 5079 case TemplateArgument::Pack: 5080 // A pack is invalid if any of the elements of the pack are invalid. 5081 return HasReconstitutableArgs(TA.getPackAsArray()); 5082 case TemplateArgument::Integral: 5083 // Larger integers get encoded as DWARF blocks which are a bit 5084 // harder to parse back into a large integer, etc - so punting on 5085 // this for now. Re-parsing the integers back into APInt is probably 5086 // feasible some day. 5087 return TA.getAsIntegral().getBitWidth() <= 64; 5088 case TemplateArgument::Type: 5089 return IsReconstitutableType(TA.getAsType()); 5090 default: 5091 llvm_unreachable("Other, unresolved, template arguments should " 5092 "not be seen here"); 5093 } 5094 }); 5095 }; 5096 // A conversion operator presents complications/ambiguity if there's a 5097 // conversion to class template that is itself a template, eg: 5098 // template<typename T> 5099 // operator ns::t1<T, int>(); 5100 // This should be named, eg: "operator ns::t1<float, int><float>" 5101 // (ignoring clang bug that means this is currently "operator t1<float>") 5102 // but if the arguments were stripped, the consumer couldn't differentiate 5103 // whether the template argument list for the conversion type was the 5104 // function's argument list (& no reconstitution was needed) or not. 5105 // This could be handled if reconstitutable names had a separate attribute 5106 // annotating them as such - this would remove the ambiguity. 5107 // 5108 // Alternatively the template argument list could be parsed enough to check 5109 // whether there's one list or two, then compare that with the DWARF 5110 // description of the return type and the template argument lists to determine 5111 // how many lists there should be and if one is missing it could be assumed(?) 5112 // to be the function's template argument list & then be rebuilt. 5113 // 5114 // Other operator overloads that aren't conversion operators could be 5115 // reconstituted but would require a bit more nuance about detecting the 5116 // difference between these different operators during that rebuilding. 5117 bool Reconstitutable = 5118 Args && HasReconstitutableArgs(Args->Args) && !IsOperatorOverload; 5119 5120 PrintingPolicy PP = getPrintingPolicy(); 5121 5122 if (TemplateNamesKind == codegenoptions::DebugTemplateNamesKind::Full || 5123 !Reconstitutable) { 5124 ND->getNameForDiagnostic(OS, PP, Qualified); 5125 } else { 5126 bool Mangled = 5127 TemplateNamesKind == codegenoptions::DebugTemplateNamesKind::Mangled; 5128 // check if it's a template 5129 if (Mangled) 5130 OS << "_STN"; 5131 5132 OS << ND->getDeclName(); 5133 std::string EncodedOriginalName; 5134 llvm::raw_string_ostream EncodedOriginalNameOS(EncodedOriginalName); 5135 EncodedOriginalNameOS << ND->getDeclName(); 5136 5137 if (Mangled) { 5138 OS << "|"; 5139 printTemplateArgumentList(OS, Args->Args, PP); 5140 printTemplateArgumentList(EncodedOriginalNameOS, Args->Args, PP); 5141 #ifndef NDEBUG 5142 std::string CanonicalOriginalName; 5143 llvm::raw_string_ostream OriginalOS(CanonicalOriginalName); 5144 ND->getNameForDiagnostic(OriginalOS, PP, Qualified); 5145 assert(EncodedOriginalNameOS.str() == OriginalOS.str()); 5146 #endif 5147 } 5148 } 5149 return Name; 5150 } 5151 5152 void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var, 5153 const VarDecl *D) { 5154 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5155 if (D->hasAttr<NoDebugAttr>()) 5156 return; 5157 5158 llvm::TimeTraceScope TimeScope("DebugGlobalVariable", [&]() { 5159 return GetName(D, true); 5160 }); 5161 5162 // If we already created a DIGlobalVariable for this declaration, just attach 5163 // it to the llvm::GlobalVariable. 5164 auto Cached = DeclCache.find(D->getCanonicalDecl()); 5165 if (Cached != DeclCache.end()) 5166 return Var->addDebugInfo( 5167 cast<llvm::DIGlobalVariableExpression>(Cached->second)); 5168 5169 // Create global variable debug descriptor. 5170 llvm::DIFile *Unit = nullptr; 5171 llvm::DIScope *DContext = nullptr; 5172 unsigned LineNo; 5173 StringRef DeclName, LinkageName; 5174 QualType T; 5175 llvm::MDTuple *TemplateParameters = nullptr; 5176 collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName, 5177 TemplateParameters, DContext); 5178 5179 // Attempt to store one global variable for the declaration - even if we 5180 // emit a lot of fields. 5181 llvm::DIGlobalVariableExpression *GVE = nullptr; 5182 5183 // If this is an anonymous union then we'll want to emit a global 5184 // variable for each member of the anonymous union so that it's possible 5185 // to find the name of any field in the union. 5186 if (T->isUnionType() && DeclName.empty()) { 5187 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 5188 assert(RD->isAnonymousStructOrUnion() && 5189 "unnamed non-anonymous struct or union?"); 5190 GVE = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext); 5191 } else { 5192 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 5193 5194 SmallVector<int64_t, 4> Expr; 5195 unsigned AddressSpace = 5196 CGM.getContext().getTargetAddressSpace(D->getType()); 5197 if (CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) { 5198 if (D->hasAttr<CUDASharedAttr>()) 5199 AddressSpace = 5200 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared); 5201 else if (D->hasAttr<CUDAConstantAttr>()) 5202 AddressSpace = 5203 CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant); 5204 } 5205 AppendAddressSpaceXDeref(AddressSpace, Expr); 5206 5207 TypeLoc TL; 5208 if (const TypeSourceInfo *TSI = D->getTypeSourceInfo()) 5209 TL = TSI->getTypeLoc(); 5210 5211 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 5212 GVE = DBuilder.createGlobalVariableExpression( 5213 DContext, DeclName, LinkageName, Unit, LineNo, 5214 getOrCreateType(T, Unit, TL), Var->hasLocalLinkage(), true, 5215 Expr.empty() ? nullptr : DBuilder.createExpression(Expr), 5216 getOrCreateStaticDataMemberDeclarationOrNull(D), TemplateParameters, 5217 Align, Annotations); 5218 Var->addDebugInfo(GVE); 5219 } 5220 DeclCache[D->getCanonicalDecl()].reset(GVE); 5221 } 5222 5223 void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD, const APValue &Init) { 5224 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5225 if (VD->hasAttr<NoDebugAttr>()) 5226 return; 5227 llvm::TimeTraceScope TimeScope("DebugConstGlobalVariable", [&]() { 5228 return GetName(VD, true); 5229 }); 5230 5231 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 5232 // Create the descriptor for the variable. 5233 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 5234 StringRef Name = VD->getName(); 5235 llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit); 5236 5237 if (const auto *ECD = dyn_cast<EnumConstantDecl>(VD)) { 5238 const auto *ED = cast<EnumDecl>(ECD->getDeclContext()); 5239 assert(isa<EnumType>(ED->getTypeForDecl()) && "Enum without EnumType?"); 5240 5241 if (CGM.getCodeGenOpts().EmitCodeView) { 5242 // If CodeView, emit enums as global variables, unless they are defined 5243 // inside a class. We do this because MSVC doesn't emit S_CONSTANTs for 5244 // enums in classes, and because it is difficult to attach this scope 5245 // information to the global variable. 5246 if (isa<RecordDecl>(ED->getDeclContext())) 5247 return; 5248 } else { 5249 // If not CodeView, emit DW_TAG_enumeration_type if necessary. For 5250 // example: for "enum { ZERO };", a DW_TAG_enumeration_type is created the 5251 // first time `ZERO` is referenced in a function. 5252 llvm::DIType *EDTy = 5253 getOrCreateType(QualType(ED->getTypeForDecl(), 0), Unit); 5254 assert (EDTy->getTag() == llvm::dwarf::DW_TAG_enumeration_type); 5255 (void)EDTy; 5256 return; 5257 } 5258 } 5259 5260 // Do not emit separate definitions for function local consts. 5261 if (isa<FunctionDecl>(VD->getDeclContext())) 5262 return; 5263 5264 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 5265 auto *VarD = dyn_cast<VarDecl>(VD); 5266 if (VarD && VarD->isStaticDataMember()) { 5267 auto *RD = cast<RecordDecl>(VarD->getDeclContext()); 5268 getDeclContextDescriptor(VarD); 5269 // Ensure that the type is retained even though it's otherwise unreferenced. 5270 // 5271 // FIXME: This is probably unnecessary, since Ty should reference RD 5272 // through its scope. 5273 RetainedTypes.push_back( 5274 CGM.getContext().getRecordType(RD).getAsOpaquePtr()); 5275 5276 return; 5277 } 5278 llvm::DIScope *DContext = getDeclContextDescriptor(VD); 5279 5280 auto &GV = DeclCache[VD]; 5281 if (GV) 5282 return; 5283 llvm::DIExpression *InitExpr = nullptr; 5284 if (CGM.getContext().getTypeSize(VD->getType()) <= 64) { 5285 // FIXME: Add a representation for integer constants wider than 64 bits. 5286 if (Init.isInt()) 5287 InitExpr = 5288 DBuilder.createConstantValueExpression(Init.getInt().getExtValue()); 5289 else if (Init.isFloat()) 5290 InitExpr = DBuilder.createConstantValueExpression( 5291 Init.getFloat().bitcastToAPInt().getZExtValue()); 5292 } 5293 5294 llvm::MDTuple *TemplateParameters = nullptr; 5295 5296 if (isa<VarTemplateSpecializationDecl>(VD)) 5297 if (VarD) { 5298 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VarD, &*Unit); 5299 TemplateParameters = parameterNodes.get(); 5300 } 5301 5302 GV.reset(DBuilder.createGlobalVariableExpression( 5303 DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty, 5304 true, true, InitExpr, getOrCreateStaticDataMemberDeclarationOrNull(VarD), 5305 TemplateParameters, Align)); 5306 } 5307 5308 void CGDebugInfo::EmitExternalVariable(llvm::GlobalVariable *Var, 5309 const VarDecl *D) { 5310 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5311 if (D->hasAttr<NoDebugAttr>()) 5312 return; 5313 5314 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 5315 llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); 5316 StringRef Name = D->getName(); 5317 llvm::DIType *Ty = getOrCreateType(D->getType(), Unit); 5318 5319 llvm::DIScope *DContext = getDeclContextDescriptor(D); 5320 llvm::DIGlobalVariableExpression *GVE = 5321 DBuilder.createGlobalVariableExpression( 5322 DContext, Name, StringRef(), Unit, getLineNumber(D->getLocation()), 5323 Ty, false, false, nullptr, nullptr, nullptr, Align); 5324 Var->addDebugInfo(GVE); 5325 } 5326 5327 llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) { 5328 if (!LexicalBlockStack.empty()) 5329 return LexicalBlockStack.back(); 5330 llvm::DIScope *Mod = getParentModuleOrNull(D); 5331 return getContextDescriptor(D, Mod ? Mod : TheCU); 5332 } 5333 5334 void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) { 5335 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5336 return; 5337 const NamespaceDecl *NSDecl = UD.getNominatedNamespace(); 5338 if (!NSDecl->isAnonymousNamespace() || 5339 CGM.getCodeGenOpts().DebugExplicitImport) { 5340 auto Loc = UD.getLocation(); 5341 if (!Loc.isValid()) 5342 Loc = CurLoc; 5343 DBuilder.createImportedModule( 5344 getCurrentContextDescriptor(cast<Decl>(UD.getDeclContext())), 5345 getOrCreateNamespace(NSDecl), getOrCreateFile(Loc), getLineNumber(Loc)); 5346 } 5347 } 5348 5349 void CGDebugInfo::EmitUsingShadowDecl(const UsingShadowDecl &USD) { 5350 if (llvm::DINode *Target = 5351 getDeclarationOrDefinition(USD.getUnderlyingDecl())) { 5352 auto Loc = USD.getLocation(); 5353 DBuilder.createImportedDeclaration( 5354 getCurrentContextDescriptor(cast<Decl>(USD.getDeclContext())), Target, 5355 getOrCreateFile(Loc), getLineNumber(Loc)); 5356 } 5357 } 5358 5359 void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) { 5360 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5361 return; 5362 assert(UD.shadow_size() && 5363 "We shouldn't be codegening an invalid UsingDecl containing no decls"); 5364 5365 for (const auto *USD : UD.shadows()) { 5366 // FIXME: Skip functions with undeduced auto return type for now since we 5367 // don't currently have the plumbing for separate declarations & definitions 5368 // of free functions and mismatched types (auto in the declaration, concrete 5369 // return type in the definition) 5370 if (const auto *FD = dyn_cast<FunctionDecl>(USD->getUnderlyingDecl())) 5371 if (const auto *AT = FD->getType() 5372 ->castAs<FunctionProtoType>() 5373 ->getContainedAutoType()) 5374 if (AT->getDeducedType().isNull()) 5375 continue; 5376 5377 EmitUsingShadowDecl(*USD); 5378 // Emitting one decl is sufficient - debuggers can detect that this is an 5379 // overloaded name & provide lookup for all the overloads. 5380 break; 5381 } 5382 } 5383 5384 void CGDebugInfo::EmitUsingEnumDecl(const UsingEnumDecl &UD) { 5385 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5386 return; 5387 assert(UD.shadow_size() && 5388 "We shouldn't be codegening an invalid UsingEnumDecl" 5389 " containing no decls"); 5390 5391 for (const auto *USD : UD.shadows()) 5392 EmitUsingShadowDecl(*USD); 5393 } 5394 5395 void CGDebugInfo::EmitImportDecl(const ImportDecl &ID) { 5396 if (CGM.getCodeGenOpts().getDebuggerTuning() != llvm::DebuggerKind::LLDB) 5397 return; 5398 if (Module *M = ID.getImportedModule()) { 5399 auto Info = ASTSourceDescriptor(*M); 5400 auto Loc = ID.getLocation(); 5401 DBuilder.createImportedDeclaration( 5402 getCurrentContextDescriptor(cast<Decl>(ID.getDeclContext())), 5403 getOrCreateModuleRef(Info, DebugTypeExtRefs), getOrCreateFile(Loc), 5404 getLineNumber(Loc)); 5405 } 5406 } 5407 5408 llvm::DIImportedEntity * 5409 CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) { 5410 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5411 return nullptr; 5412 auto &VH = NamespaceAliasCache[&NA]; 5413 if (VH) 5414 return cast<llvm::DIImportedEntity>(VH); 5415 llvm::DIImportedEntity *R; 5416 auto Loc = NA.getLocation(); 5417 if (const auto *Underlying = 5418 dyn_cast<NamespaceAliasDecl>(NA.getAliasedNamespace())) 5419 // This could cache & dedup here rather than relying on metadata deduping. 5420 R = DBuilder.createImportedDeclaration( 5421 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), 5422 EmitNamespaceAlias(*Underlying), getOrCreateFile(Loc), 5423 getLineNumber(Loc), NA.getName()); 5424 else 5425 R = DBuilder.createImportedDeclaration( 5426 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), 5427 getOrCreateNamespace(cast<NamespaceDecl>(NA.getAliasedNamespace())), 5428 getOrCreateFile(Loc), getLineNumber(Loc), NA.getName()); 5429 VH.reset(R); 5430 return R; 5431 } 5432 5433 llvm::DINamespace * 5434 CGDebugInfo::getOrCreateNamespace(const NamespaceDecl *NSDecl) { 5435 // Don't canonicalize the NamespaceDecl here: The DINamespace will be uniqued 5436 // if necessary, and this way multiple declarations of the same namespace in 5437 // different parent modules stay distinct. 5438 auto I = NamespaceCache.find(NSDecl); 5439 if (I != NamespaceCache.end()) 5440 return cast<llvm::DINamespace>(I->second); 5441 5442 llvm::DIScope *Context = getDeclContextDescriptor(NSDecl); 5443 // Don't trust the context if it is a DIModule (see comment above). 5444 llvm::DINamespace *NS = 5445 DBuilder.createNameSpace(Context, NSDecl->getName(), NSDecl->isInline()); 5446 NamespaceCache[NSDecl].reset(NS); 5447 return NS; 5448 } 5449 5450 void CGDebugInfo::setDwoId(uint64_t Signature) { 5451 assert(TheCU && "no main compile unit"); 5452 TheCU->setDWOId(Signature); 5453 } 5454 5455 void CGDebugInfo::finalize() { 5456 // Creating types might create further types - invalidating the current 5457 // element and the size(), so don't cache/reference them. 5458 for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) { 5459 ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i]; 5460 llvm::DIType *Ty = E.Type->getDecl()->getDefinition() 5461 ? CreateTypeDefinition(E.Type, E.Unit) 5462 : E.Decl; 5463 DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty); 5464 } 5465 5466 // Add methods to interface. 5467 for (const auto &P : ObjCMethodCache) { 5468 if (P.second.empty()) 5469 continue; 5470 5471 QualType QTy(P.first->getTypeForDecl(), 0); 5472 auto It = TypeCache.find(QTy.getAsOpaquePtr()); 5473 assert(It != TypeCache.end()); 5474 5475 llvm::DICompositeType *InterfaceDecl = 5476 cast<llvm::DICompositeType>(It->second); 5477 5478 auto CurElts = InterfaceDecl->getElements(); 5479 SmallVector<llvm::Metadata *, 16> EltTys(CurElts.begin(), CurElts.end()); 5480 5481 // For DWARF v4 or earlier, only add objc_direct methods. 5482 for (auto &SubprogramDirect : P.second) 5483 if (CGM.getCodeGenOpts().DwarfVersion >= 5 || SubprogramDirect.getInt()) 5484 EltTys.push_back(SubprogramDirect.getPointer()); 5485 5486 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 5487 DBuilder.replaceArrays(InterfaceDecl, Elements); 5488 } 5489 5490 for (const auto &P : ReplaceMap) { 5491 assert(P.second); 5492 auto *Ty = cast<llvm::DIType>(P.second); 5493 assert(Ty->isForwardDecl()); 5494 5495 auto It = TypeCache.find(P.first); 5496 assert(It != TypeCache.end()); 5497 assert(It->second); 5498 5499 DBuilder.replaceTemporary(llvm::TempDIType(Ty), 5500 cast<llvm::DIType>(It->second)); 5501 } 5502 5503 for (const auto &P : FwdDeclReplaceMap) { 5504 assert(P.second); 5505 llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(P.second)); 5506 llvm::Metadata *Repl; 5507 5508 auto It = DeclCache.find(P.first); 5509 // If there has been no definition for the declaration, call RAUW 5510 // with ourselves, that will destroy the temporary MDNode and 5511 // replace it with a standard one, avoiding leaking memory. 5512 if (It == DeclCache.end()) 5513 Repl = P.second; 5514 else 5515 Repl = It->second; 5516 5517 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(Repl)) 5518 Repl = GVE->getVariable(); 5519 DBuilder.replaceTemporary(std::move(FwdDecl), cast<llvm::MDNode>(Repl)); 5520 } 5521 5522 // We keep our own list of retained types, because we need to look 5523 // up the final type in the type cache. 5524 for (auto &RT : RetainedTypes) 5525 if (auto MD = TypeCache[RT]) 5526 DBuilder.retainType(cast<llvm::DIType>(MD)); 5527 5528 DBuilder.finalize(); 5529 } 5530 5531 // Don't ignore in case of explicit cast where it is referenced indirectly. 5532 void CGDebugInfo::EmitExplicitCastType(QualType Ty) { 5533 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 5534 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) 5535 DBuilder.retainType(DieTy); 5536 } 5537 5538 void CGDebugInfo::EmitAndRetainType(QualType Ty) { 5539 if (CGM.getCodeGenOpts().hasMaybeUnusedDebugInfo()) 5540 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) 5541 DBuilder.retainType(DieTy); 5542 } 5543 5544 llvm::DebugLoc CGDebugInfo::SourceLocToDebugLoc(SourceLocation Loc) { 5545 if (LexicalBlockStack.empty()) 5546 return llvm::DebugLoc(); 5547 5548 llvm::MDNode *Scope = LexicalBlockStack.back(); 5549 return llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(Loc), 5550 getColumnNumber(Loc), Scope); 5551 } 5552 5553 llvm::DINode::DIFlags CGDebugInfo::getCallSiteRelatedAttrs() const { 5554 // Call site-related attributes are only useful in optimized programs, and 5555 // when there's a possibility of debugging backtraces. 5556 if (!CGM.getLangOpts().Optimize || DebugKind == codegenoptions::NoDebugInfo || 5557 DebugKind == codegenoptions::LocTrackingOnly) 5558 return llvm::DINode::FlagZero; 5559 5560 // Call site-related attributes are available in DWARF v5. Some debuggers, 5561 // while not fully DWARF v5-compliant, may accept these attributes as if they 5562 // were part of DWARF v4. 5563 bool SupportsDWARFv4Ext = 5564 CGM.getCodeGenOpts().DwarfVersion == 4 && 5565 (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB || 5566 CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::GDB); 5567 5568 if (!SupportsDWARFv4Ext && CGM.getCodeGenOpts().DwarfVersion < 5) 5569 return llvm::DINode::FlagZero; 5570 5571 return llvm::DINode::FlagAllCallsDescribed; 5572 } 5573