xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CGClass.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 #include "llvm/Transforms/Utils/SanitizerStats.h"
33 #include <optional>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 
38 /// Return the best known alignment for an unknown pointer to a
39 /// particular class.
40 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
41   if (!RD->hasDefinition())
42     return CharUnits::One(); // Hopefully won't be used anywhere.
43 
44   auto &layout = getContext().getASTRecordLayout(RD);
45 
46   // If the class is final, then we know that the pointer points to an
47   // object of that type and can use the full alignment.
48   if (RD->isEffectivelyFinal())
49     return layout.getAlignment();
50 
51   // Otherwise, we have to assume it could be a subclass.
52   return layout.getNonVirtualAlignment();
53 }
54 
55 /// Return the smallest possible amount of storage that might be allocated
56 /// starting from the beginning of an object of a particular class.
57 ///
58 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
59 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
60   if (!RD->hasDefinition())
61     return CharUnits::One();
62 
63   auto &layout = getContext().getASTRecordLayout(RD);
64 
65   // If the class is final, then we know that the pointer points to an
66   // object of that type and can use the full alignment.
67   if (RD->isEffectivelyFinal())
68     return layout.getSize();
69 
70   // Otherwise, we have to assume it could be a subclass.
71   return std::max(layout.getNonVirtualSize(), CharUnits::One());
72 }
73 
74 /// Return the best known alignment for a pointer to a virtual base,
75 /// given the alignment of a pointer to the derived class.
76 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
77                                            const CXXRecordDecl *derivedClass,
78                                            const CXXRecordDecl *vbaseClass) {
79   // The basic idea here is that an underaligned derived pointer might
80   // indicate an underaligned base pointer.
81 
82   assert(vbaseClass->isCompleteDefinition());
83   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
84   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
85 
86   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
87                                    expectedVBaseAlign);
88 }
89 
90 CharUnits
91 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
92                                          const CXXRecordDecl *baseDecl,
93                                          CharUnits expectedTargetAlign) {
94   // If the base is an incomplete type (which is, alas, possible with
95   // member pointers), be pessimistic.
96   if (!baseDecl->isCompleteDefinition())
97     return std::min(actualBaseAlign, expectedTargetAlign);
98 
99   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
100   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
101 
102   // If the class is properly aligned, assume the target offset is, too.
103   //
104   // This actually isn't necessarily the right thing to do --- if the
105   // class is a complete object, but it's only properly aligned for a
106   // base subobject, then the alignments of things relative to it are
107   // probably off as well.  (Note that this requires the alignment of
108   // the target to be greater than the NV alignment of the derived
109   // class.)
110   //
111   // However, our approach to this kind of under-alignment can only
112   // ever be best effort; after all, we're never going to propagate
113   // alignments through variables or parameters.  Note, in particular,
114   // that constructing a polymorphic type in an address that's less
115   // than pointer-aligned will generally trap in the constructor,
116   // unless we someday add some sort of attribute to change the
117   // assumed alignment of 'this'.  So our goal here is pretty much
118   // just to allow the user to explicitly say that a pointer is
119   // under-aligned and then safely access its fields and vtables.
120   if (actualBaseAlign >= expectedBaseAlign) {
121     return expectedTargetAlign;
122   }
123 
124   // Otherwise, we might be offset by an arbitrary multiple of the
125   // actual alignment.  The correct adjustment is to take the min of
126   // the two alignments.
127   return std::min(actualBaseAlign, expectedTargetAlign);
128 }
129 
130 Address CodeGenFunction::LoadCXXThisAddress() {
131   assert(CurFuncDecl && "loading 'this' without a func declaration?");
132   auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
133 
134   // Lazily compute CXXThisAlignment.
135   if (CXXThisAlignment.isZero()) {
136     // Just use the best known alignment for the parent.
137     // TODO: if we're currently emitting a complete-object ctor/dtor,
138     // we can always use the complete-object alignment.
139     CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
140   }
141 
142   llvm::Type *Ty = ConvertType(MD->getFunctionObjectParameterType());
143   return Address(LoadCXXThis(), Ty, CXXThisAlignment, KnownNonNull);
144 }
145 
146 /// Emit the address of a field using a member data pointer.
147 ///
148 /// \param E Only used for emergency diagnostics
149 Address
150 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
151                                                  llvm::Value *memberPtr,
152                                       const MemberPointerType *memberPtrType,
153                                                  LValueBaseInfo *BaseInfo,
154                                                  TBAAAccessInfo *TBAAInfo) {
155   // Ask the ABI to compute the actual address.
156   llvm::Value *ptr =
157     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
158                                                  memberPtr, memberPtrType);
159 
160   QualType memberType = memberPtrType->getPointeeType();
161   CharUnits memberAlign =
162       CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
163   memberAlign =
164     CGM.getDynamicOffsetAlignment(base.getAlignment(),
165                             memberPtrType->getClass()->getAsCXXRecordDecl(),
166                                   memberAlign);
167   return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
168                  memberAlign);
169 }
170 
171 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
172     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
173     CastExpr::path_const_iterator End) {
174   CharUnits Offset = CharUnits::Zero();
175 
176   const ASTContext &Context = getContext();
177   const CXXRecordDecl *RD = DerivedClass;
178 
179   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
180     const CXXBaseSpecifier *Base = *I;
181     assert(!Base->isVirtual() && "Should not see virtual bases here!");
182 
183     // Get the layout.
184     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
185 
186     const auto *BaseDecl =
187         cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
188 
189     // Add the offset.
190     Offset += Layout.getBaseClassOffset(BaseDecl);
191 
192     RD = BaseDecl;
193   }
194 
195   return Offset;
196 }
197 
198 llvm::Constant *
199 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
200                                    CastExpr::path_const_iterator PathBegin,
201                                    CastExpr::path_const_iterator PathEnd) {
202   assert(PathBegin != PathEnd && "Base path should not be empty!");
203 
204   CharUnits Offset =
205       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
206   if (Offset.isZero())
207     return nullptr;
208 
209   llvm::Type *PtrDiffTy =
210   Types.ConvertType(getContext().getPointerDiffType());
211 
212   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
213 }
214 
215 /// Gets the address of a direct base class within a complete object.
216 /// This should only be used for (1) non-virtual bases or (2) virtual bases
217 /// when the type is known to be complete (e.g. in complete destructors).
218 ///
219 /// The object pointed to by 'This' is assumed to be non-null.
220 Address
221 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
222                                                    const CXXRecordDecl *Derived,
223                                                    const CXXRecordDecl *Base,
224                                                    bool BaseIsVirtual) {
225   // 'this' must be a pointer (in some address space) to Derived.
226   assert(This.getElementType() == ConvertType(Derived));
227 
228   // Compute the offset of the virtual base.
229   CharUnits Offset;
230   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
231   if (BaseIsVirtual)
232     Offset = Layout.getVBaseClassOffset(Base);
233   else
234     Offset = Layout.getBaseClassOffset(Base);
235 
236   // Shift and cast down to the base type.
237   // TODO: for complete types, this should be possible with a GEP.
238   Address V = This;
239   if (!Offset.isZero()) {
240     V = V.withElementType(Int8Ty);
241     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
242   }
243   return V.withElementType(ConvertType(Base));
244 }
245 
246 static Address
247 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
248                                 CharUnits nonVirtualOffset,
249                                 llvm::Value *virtualOffset,
250                                 const CXXRecordDecl *derivedClass,
251                                 const CXXRecordDecl *nearestVBase) {
252   // Assert that we have something to do.
253   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
254 
255   // Compute the offset from the static and dynamic components.
256   llvm::Value *baseOffset;
257   if (!nonVirtualOffset.isZero()) {
258     llvm::Type *OffsetType =
259         (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
260          CGF.CGM.getItaniumVTableContext().isRelativeLayout())
261             ? CGF.Int32Ty
262             : CGF.PtrDiffTy;
263     baseOffset =
264         llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
265     if (virtualOffset) {
266       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
267     }
268   } else {
269     baseOffset = virtualOffset;
270   }
271 
272   // Apply the base offset.
273   llvm::Value *ptr = addr.getPointer();
274   ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
275 
276   // If we have a virtual component, the alignment of the result will
277   // be relative only to the known alignment of that vbase.
278   CharUnits alignment;
279   if (virtualOffset) {
280     assert(nearestVBase && "virtual offset without vbase?");
281     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
282                                           derivedClass, nearestVBase);
283   } else {
284     alignment = addr.getAlignment();
285   }
286   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
287 
288   return Address(ptr, CGF.Int8Ty, alignment);
289 }
290 
291 Address CodeGenFunction::GetAddressOfBaseClass(
292     Address Value, const CXXRecordDecl *Derived,
293     CastExpr::path_const_iterator PathBegin,
294     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
295     SourceLocation Loc) {
296   assert(PathBegin != PathEnd && "Base path should not be empty!");
297 
298   CastExpr::path_const_iterator Start = PathBegin;
299   const CXXRecordDecl *VBase = nullptr;
300 
301   // Sema has done some convenient canonicalization here: if the
302   // access path involved any virtual steps, the conversion path will
303   // *start* with a step down to the correct virtual base subobject,
304   // and hence will not require any further steps.
305   if ((*Start)->isVirtual()) {
306     VBase = cast<CXXRecordDecl>(
307         (*Start)->getType()->castAs<RecordType>()->getDecl());
308     ++Start;
309   }
310 
311   // Compute the static offset of the ultimate destination within its
312   // allocating subobject (the virtual base, if there is one, or else
313   // the "complete" object that we see).
314   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
315       VBase ? VBase : Derived, Start, PathEnd);
316 
317   // If there's a virtual step, we can sometimes "devirtualize" it.
318   // For now, that's limited to when the derived type is final.
319   // TODO: "devirtualize" this for accesses to known-complete objects.
320   if (VBase && Derived->hasAttr<FinalAttr>()) {
321     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
322     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
323     NonVirtualOffset += vBaseOffset;
324     VBase = nullptr; // we no longer have a virtual step
325   }
326 
327   // Get the base pointer type.
328   llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
329   llvm::Type *PtrTy = llvm::PointerType::get(
330       CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace());
331 
332   QualType DerivedTy = getContext().getRecordType(Derived);
333   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
334 
335   // If the static offset is zero and we don't have a virtual step,
336   // just do a bitcast; null checks are unnecessary.
337   if (NonVirtualOffset.isZero() && !VBase) {
338     if (sanitizePerformTypeCheck()) {
339       SanitizerSet SkippedChecks;
340       SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
341       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
342                     DerivedTy, DerivedAlign, SkippedChecks);
343     }
344     return Value.withElementType(BaseValueTy);
345   }
346 
347   llvm::BasicBlock *origBB = nullptr;
348   llvm::BasicBlock *endBB = nullptr;
349 
350   // Skip over the offset (and the vtable load) if we're supposed to
351   // null-check the pointer.
352   if (NullCheckValue) {
353     origBB = Builder.GetInsertBlock();
354     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
355     endBB = createBasicBlock("cast.end");
356 
357     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
358     Builder.CreateCondBr(isNull, endBB, notNullBB);
359     EmitBlock(notNullBB);
360   }
361 
362   if (sanitizePerformTypeCheck()) {
363     SanitizerSet SkippedChecks;
364     SkippedChecks.set(SanitizerKind::Null, true);
365     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
366                   Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
367   }
368 
369   // Compute the virtual offset.
370   llvm::Value *VirtualOffset = nullptr;
371   if (VBase) {
372     VirtualOffset =
373       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
374   }
375 
376   // Apply both offsets.
377   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
378                                           VirtualOffset, Derived, VBase);
379 
380   // Cast to the destination type.
381   Value = Value.withElementType(BaseValueTy);
382 
383   // Build a phi if we needed a null check.
384   if (NullCheckValue) {
385     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
386     Builder.CreateBr(endBB);
387     EmitBlock(endBB);
388 
389     llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result");
390     PHI->addIncoming(Value.getPointer(), notNullBB);
391     PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB);
392     Value = Value.withPointer(PHI, NotKnownNonNull);
393   }
394 
395   return Value;
396 }
397 
398 Address
399 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
400                                           const CXXRecordDecl *Derived,
401                                         CastExpr::path_const_iterator PathBegin,
402                                           CastExpr::path_const_iterator PathEnd,
403                                           bool NullCheckValue) {
404   assert(PathBegin != PathEnd && "Base path should not be empty!");
405 
406   QualType DerivedTy =
407       getContext().getCanonicalType(getContext().getTagDeclType(Derived));
408   llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
409 
410   llvm::Value *NonVirtualOffset =
411     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
412 
413   if (!NonVirtualOffset) {
414     // No offset, we can just cast back.
415     return BaseAddr.withElementType(DerivedValueTy);
416   }
417 
418   llvm::BasicBlock *CastNull = nullptr;
419   llvm::BasicBlock *CastNotNull = nullptr;
420   llvm::BasicBlock *CastEnd = nullptr;
421 
422   if (NullCheckValue) {
423     CastNull = createBasicBlock("cast.null");
424     CastNotNull = createBasicBlock("cast.notnull");
425     CastEnd = createBasicBlock("cast.end");
426 
427     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
428     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
429     EmitBlock(CastNotNull);
430   }
431 
432   // Apply the offset.
433   llvm::Value *Value = BaseAddr.getPointer();
434   Value = Builder.CreateInBoundsGEP(
435       Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr");
436 
437   // Produce a PHI if we had a null-check.
438   if (NullCheckValue) {
439     Builder.CreateBr(CastEnd);
440     EmitBlock(CastNull);
441     Builder.CreateBr(CastEnd);
442     EmitBlock(CastEnd);
443 
444     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
445     PHI->addIncoming(Value, CastNotNull);
446     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
447     Value = PHI;
448   }
449 
450   return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived));
451 }
452 
453 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
454                                               bool ForVirtualBase,
455                                               bool Delegating) {
456   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
457     // This constructor/destructor does not need a VTT parameter.
458     return nullptr;
459   }
460 
461   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
462   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
463 
464   uint64_t SubVTTIndex;
465 
466   if (Delegating) {
467     // If this is a delegating constructor call, just load the VTT.
468     return LoadCXXVTT();
469   } else if (RD == Base) {
470     // If the record matches the base, this is the complete ctor/dtor
471     // variant calling the base variant in a class with virtual bases.
472     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
473            "doing no-op VTT offset in base dtor/ctor?");
474     assert(!ForVirtualBase && "Can't have same class as virtual base!");
475     SubVTTIndex = 0;
476   } else {
477     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
478     CharUnits BaseOffset = ForVirtualBase ?
479       Layout.getVBaseClassOffset(Base) :
480       Layout.getBaseClassOffset(Base);
481 
482     SubVTTIndex =
483       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
484     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
485   }
486 
487   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
488     // A VTT parameter was passed to the constructor, use it.
489     llvm::Value *VTT = LoadCXXVTT();
490     return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
491   } else {
492     // We're the complete constructor, so get the VTT by name.
493     llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
494     return Builder.CreateConstInBoundsGEP2_64(
495         VTT->getValueType(), VTT, 0, SubVTTIndex);
496   }
497 }
498 
499 namespace {
500   /// Call the destructor for a direct base class.
501   struct CallBaseDtor final : EHScopeStack::Cleanup {
502     const CXXRecordDecl *BaseClass;
503     bool BaseIsVirtual;
504     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
505       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
506 
507     void Emit(CodeGenFunction &CGF, Flags flags) override {
508       const CXXRecordDecl *DerivedClass =
509         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
510 
511       const CXXDestructorDecl *D = BaseClass->getDestructor();
512       // We are already inside a destructor, so presumably the object being
513       // destroyed should have the expected type.
514       QualType ThisTy = D->getFunctionObjectParameterType();
515       Address Addr =
516         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
517                                                   DerivedClass, BaseClass,
518                                                   BaseIsVirtual);
519       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
520                                 /*Delegating=*/false, Addr, ThisTy);
521     }
522   };
523 
524   /// A visitor which checks whether an initializer uses 'this' in a
525   /// way which requires the vtable to be properly set.
526   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
527     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
528 
529     bool UsesThis;
530 
531     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
532 
533     // Black-list all explicit and implicit references to 'this'.
534     //
535     // Do we need to worry about external references to 'this' derived
536     // from arbitrary code?  If so, then anything which runs arbitrary
537     // external code might potentially access the vtable.
538     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
539   };
540 } // end anonymous namespace
541 
542 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
543   DynamicThisUseChecker Checker(C);
544   Checker.Visit(Init);
545   return Checker.UsesThis;
546 }
547 
548 static void EmitBaseInitializer(CodeGenFunction &CGF,
549                                 const CXXRecordDecl *ClassDecl,
550                                 CXXCtorInitializer *BaseInit) {
551   assert(BaseInit->isBaseInitializer() &&
552          "Must have base initializer!");
553 
554   Address ThisPtr = CGF.LoadCXXThisAddress();
555 
556   const Type *BaseType = BaseInit->getBaseClass();
557   const auto *BaseClassDecl =
558       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
559 
560   bool isBaseVirtual = BaseInit->isBaseVirtual();
561 
562   // If the initializer for the base (other than the constructor
563   // itself) accesses 'this' in any way, we need to initialize the
564   // vtables.
565   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
566     CGF.InitializeVTablePointers(ClassDecl);
567 
568   // We can pretend to be a complete class because it only matters for
569   // virtual bases, and we only do virtual bases for complete ctors.
570   Address V =
571     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
572                                               BaseClassDecl,
573                                               isBaseVirtual);
574   AggValueSlot AggSlot =
575       AggValueSlot::forAddr(
576           V, Qualifiers(),
577           AggValueSlot::IsDestructed,
578           AggValueSlot::DoesNotNeedGCBarriers,
579           AggValueSlot::IsNotAliased,
580           CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
581 
582   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
583 
584   if (CGF.CGM.getLangOpts().Exceptions &&
585       !BaseClassDecl->hasTrivialDestructor())
586     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
587                                           isBaseVirtual);
588 }
589 
590 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
591   auto *CD = dyn_cast<CXXConstructorDecl>(D);
592   if (!(CD && CD->isCopyOrMoveConstructor()) &&
593       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
594     return false;
595 
596   // We can emit a memcpy for a trivial copy or move constructor/assignment.
597   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
598     return true;
599 
600   // We *must* emit a memcpy for a defaulted union copy or move op.
601   if (D->getParent()->isUnion() && D->isDefaulted())
602     return true;
603 
604   return false;
605 }
606 
607 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
608                                                 CXXCtorInitializer *MemberInit,
609                                                 LValue &LHS) {
610   FieldDecl *Field = MemberInit->getAnyMember();
611   if (MemberInit->isIndirectMemberInitializer()) {
612     // If we are initializing an anonymous union field, drill down to the field.
613     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
614     for (const auto *I : IndirectField->chain())
615       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
616   } else {
617     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
618   }
619 }
620 
621 static void EmitMemberInitializer(CodeGenFunction &CGF,
622                                   const CXXRecordDecl *ClassDecl,
623                                   CXXCtorInitializer *MemberInit,
624                                   const CXXConstructorDecl *Constructor,
625                                   FunctionArgList &Args) {
626   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
627   assert(MemberInit->isAnyMemberInitializer() &&
628          "Must have member initializer!");
629   assert(MemberInit->getInit() && "Must have initializer!");
630 
631   // non-static data member initializers.
632   FieldDecl *Field = MemberInit->getAnyMember();
633   QualType FieldType = Field->getType();
634 
635   llvm::Value *ThisPtr = CGF.LoadCXXThis();
636   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
637   LValue LHS;
638 
639   // If a base constructor is being emitted, create an LValue that has the
640   // non-virtual alignment.
641   if (CGF.CurGD.getCtorType() == Ctor_Base)
642     LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
643   else
644     LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
645 
646   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
647 
648   // Special case: if we are in a copy or move constructor, and we are copying
649   // an array of PODs or classes with trivial copy constructors, ignore the
650   // AST and perform the copy we know is equivalent.
651   // FIXME: This is hacky at best... if we had a bit more explicit information
652   // in the AST, we could generalize it more easily.
653   const ConstantArrayType *Array
654     = CGF.getContext().getAsConstantArrayType(FieldType);
655   if (Array && Constructor->isDefaulted() &&
656       Constructor->isCopyOrMoveConstructor()) {
657     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
658     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
659     if (BaseElementTy.isPODType(CGF.getContext()) ||
660         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
661       unsigned SrcArgIndex =
662           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
663       llvm::Value *SrcPtr
664         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
665       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
666       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
667 
668       // Copy the aggregate.
669       CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
670                             LHS.isVolatileQualified());
671       // Ensure that we destroy the objects if an exception is thrown later in
672       // the constructor.
673       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
674       if (CGF.needsEHCleanup(dtorKind))
675         CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
676       return;
677     }
678   }
679 
680   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
681 }
682 
683 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
684                                               Expr *Init) {
685   QualType FieldType = Field->getType();
686   switch (getEvaluationKind(FieldType)) {
687   case TEK_Scalar:
688     if (LHS.isSimple()) {
689       EmitExprAsInit(Init, Field, LHS, false);
690     } else {
691       RValue RHS = RValue::get(EmitScalarExpr(Init));
692       EmitStoreThroughLValue(RHS, LHS);
693     }
694     break;
695   case TEK_Complex:
696     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
697     break;
698   case TEK_Aggregate: {
699     AggValueSlot Slot = AggValueSlot::forLValue(
700         LHS, *this, AggValueSlot::IsDestructed,
701         AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
702         getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
703         // Checks are made by the code that calls constructor.
704         AggValueSlot::IsSanitizerChecked);
705     EmitAggExpr(Init, Slot);
706     break;
707   }
708   }
709 
710   // Ensure that we destroy this object if an exception is thrown
711   // later in the constructor.
712   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
713   if (needsEHCleanup(dtorKind))
714     pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
715 }
716 
717 /// Checks whether the given constructor is a valid subject for the
718 /// complete-to-base constructor delegation optimization, i.e.
719 /// emitting the complete constructor as a simple call to the base
720 /// constructor.
721 bool CodeGenFunction::IsConstructorDelegationValid(
722     const CXXConstructorDecl *Ctor) {
723 
724   // Currently we disable the optimization for classes with virtual
725   // bases because (1) the addresses of parameter variables need to be
726   // consistent across all initializers but (2) the delegate function
727   // call necessarily creates a second copy of the parameter variable.
728   //
729   // The limiting example (purely theoretical AFAIK):
730   //   struct A { A(int &c) { c++; } };
731   //   struct B : virtual A {
732   //     B(int count) : A(count) { printf("%d\n", count); }
733   //   };
734   // ...although even this example could in principle be emitted as a
735   // delegation since the address of the parameter doesn't escape.
736   if (Ctor->getParent()->getNumVBases()) {
737     // TODO: white-list trivial vbase initializers.  This case wouldn't
738     // be subject to the restrictions below.
739 
740     // TODO: white-list cases where:
741     //  - there are no non-reference parameters to the constructor
742     //  - the initializers don't access any non-reference parameters
743     //  - the initializers don't take the address of non-reference
744     //    parameters
745     //  - etc.
746     // If we ever add any of the above cases, remember that:
747     //  - function-try-blocks will always exclude this optimization
748     //  - we need to perform the constructor prologue and cleanup in
749     //    EmitConstructorBody.
750 
751     return false;
752   }
753 
754   // We also disable the optimization for variadic functions because
755   // it's impossible to "re-pass" varargs.
756   if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
757     return false;
758 
759   // FIXME: Decide if we can do a delegation of a delegating constructor.
760   if (Ctor->isDelegatingConstructor())
761     return false;
762 
763   return true;
764 }
765 
766 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
767 // to poison the extra field paddings inserted under
768 // -fsanitize-address-field-padding=1|2.
769 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
770   ASTContext &Context = getContext();
771   const CXXRecordDecl *ClassDecl =
772       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
773                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
774   if (!ClassDecl->mayInsertExtraPadding()) return;
775 
776   struct SizeAndOffset {
777     uint64_t Size;
778     uint64_t Offset;
779   };
780 
781   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
782   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
783 
784   // Populate sizes and offsets of fields.
785   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
786   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
787     SSV[i].Offset =
788         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
789 
790   size_t NumFields = 0;
791   for (const auto *Field : ClassDecl->fields()) {
792     const FieldDecl *D = Field;
793     auto FieldInfo = Context.getTypeInfoInChars(D->getType());
794     CharUnits FieldSize = FieldInfo.Width;
795     assert(NumFields < SSV.size());
796     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
797     NumFields++;
798   }
799   assert(NumFields == SSV.size());
800   if (SSV.size() <= 1) return;
801 
802   // We will insert calls to __asan_* run-time functions.
803   // LLVM AddressSanitizer pass may decide to inline them later.
804   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
805   llvm::FunctionType *FTy =
806       llvm::FunctionType::get(CGM.VoidTy, Args, false);
807   llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
808       FTy, Prologue ? "__asan_poison_intra_object_redzone"
809                     : "__asan_unpoison_intra_object_redzone");
810 
811   llvm::Value *ThisPtr = LoadCXXThis();
812   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
813   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
814   // For each field check if it has sufficient padding,
815   // if so (un)poison it with a call.
816   for (size_t i = 0; i < SSV.size(); i++) {
817     uint64_t AsanAlignment = 8;
818     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
819     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
820     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
821     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
822         (NextField % AsanAlignment) != 0)
823       continue;
824     Builder.CreateCall(
825         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
826             Builder.getIntN(PtrSize, PoisonSize)});
827   }
828 }
829 
830 /// EmitConstructorBody - Emits the body of the current constructor.
831 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
832   EmitAsanPrologueOrEpilogue(true);
833   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
834   CXXCtorType CtorType = CurGD.getCtorType();
835 
836   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
837           CtorType == Ctor_Complete) &&
838          "can only generate complete ctor for this ABI");
839 
840   // Before we go any further, try the complete->base constructor
841   // delegation optimization.
842   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
843       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
844     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
845     return;
846   }
847 
848   const FunctionDecl *Definition = nullptr;
849   Stmt *Body = Ctor->getBody(Definition);
850   assert(Definition == Ctor && "emitting wrong constructor body");
851 
852   // Enter the function-try-block before the constructor prologue if
853   // applicable.
854   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
855   if (IsTryBody)
856     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
857 
858   incrementProfileCounter(Body);
859 
860   RunCleanupsScope RunCleanups(*this);
861 
862   // TODO: in restricted cases, we can emit the vbase initializers of
863   // a complete ctor and then delegate to the base ctor.
864 
865   // Emit the constructor prologue, i.e. the base and member
866   // initializers.
867   EmitCtorPrologue(Ctor, CtorType, Args);
868 
869   // Emit the body of the statement.
870   if (IsTryBody)
871     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
872   else if (Body)
873     EmitStmt(Body);
874 
875   // Emit any cleanup blocks associated with the member or base
876   // initializers, which includes (along the exceptional path) the
877   // destructors for those members and bases that were fully
878   // constructed.
879   RunCleanups.ForceCleanup();
880 
881   if (IsTryBody)
882     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
883 }
884 
885 namespace {
886   /// RAII object to indicate that codegen is copying the value representation
887   /// instead of the object representation. Useful when copying a struct or
888   /// class which has uninitialized members and we're only performing
889   /// lvalue-to-rvalue conversion on the object but not its members.
890   class CopyingValueRepresentation {
891   public:
892     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
893         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
894       CGF.SanOpts.set(SanitizerKind::Bool, false);
895       CGF.SanOpts.set(SanitizerKind::Enum, false);
896     }
897     ~CopyingValueRepresentation() {
898       CGF.SanOpts = OldSanOpts;
899     }
900   private:
901     CodeGenFunction &CGF;
902     SanitizerSet OldSanOpts;
903   };
904 } // end anonymous namespace
905 
906 namespace {
907   class FieldMemcpyizer {
908   public:
909     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
910                     const VarDecl *SrcRec)
911       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
912         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
913         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
914         LastFieldOffset(0), LastAddedFieldIndex(0) {}
915 
916     bool isMemcpyableField(FieldDecl *F) const {
917       // Never memcpy fields when we are adding poisoned paddings.
918       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
919         return false;
920       Qualifiers Qual = F->getType().getQualifiers();
921       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
922         return false;
923       return true;
924     }
925 
926     void addMemcpyableField(FieldDecl *F) {
927       if (F->isZeroSize(CGF.getContext()))
928         return;
929       if (!FirstField)
930         addInitialField(F);
931       else
932         addNextField(F);
933     }
934 
935     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
936       ASTContext &Ctx = CGF.getContext();
937       unsigned LastFieldSize =
938           LastField->isBitField()
939               ? LastField->getBitWidthValue(Ctx)
940               : Ctx.toBits(
941                     Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
942       uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
943                                 FirstByteOffset + Ctx.getCharWidth() - 1;
944       CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
945       return MemcpySize;
946     }
947 
948     void emitMemcpy() {
949       // Give the subclass a chance to bail out if it feels the memcpy isn't
950       // worth it (e.g. Hasn't aggregated enough data).
951       if (!FirstField) {
952         return;
953       }
954 
955       uint64_t FirstByteOffset;
956       if (FirstField->isBitField()) {
957         const CGRecordLayout &RL =
958           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
959         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
960         // FirstFieldOffset is not appropriate for bitfields,
961         // we need to use the storage offset instead.
962         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
963       } else {
964         FirstByteOffset = FirstFieldOffset;
965       }
966 
967       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
968       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
969       Address ThisPtr = CGF.LoadCXXThisAddress();
970       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
971       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
972       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
973       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
974       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
975 
976       emitMemcpyIR(
977           Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
978           Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
979           MemcpySize);
980       reset();
981     }
982 
983     void reset() {
984       FirstField = nullptr;
985     }
986 
987   protected:
988     CodeGenFunction &CGF;
989     const CXXRecordDecl *ClassDecl;
990 
991   private:
992     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
993       DestPtr = DestPtr.withElementType(CGF.Int8Ty);
994       SrcPtr = SrcPtr.withElementType(CGF.Int8Ty);
995       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
996     }
997 
998     void addInitialField(FieldDecl *F) {
999       FirstField = F;
1000       LastField = F;
1001       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1002       LastFieldOffset = FirstFieldOffset;
1003       LastAddedFieldIndex = F->getFieldIndex();
1004     }
1005 
1006     void addNextField(FieldDecl *F) {
1007       // For the most part, the following invariant will hold:
1008       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1009       // The one exception is that Sema won't add a copy-initializer for an
1010       // unnamed bitfield, which will show up here as a gap in the sequence.
1011       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1012              "Cannot aggregate fields out of order.");
1013       LastAddedFieldIndex = F->getFieldIndex();
1014 
1015       // The 'first' and 'last' fields are chosen by offset, rather than field
1016       // index. This allows the code to support bitfields, as well as regular
1017       // fields.
1018       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1019       if (FOffset < FirstFieldOffset) {
1020         FirstField = F;
1021         FirstFieldOffset = FOffset;
1022       } else if (FOffset >= LastFieldOffset) {
1023         LastField = F;
1024         LastFieldOffset = FOffset;
1025       }
1026     }
1027 
1028     const VarDecl *SrcRec;
1029     const ASTRecordLayout &RecLayout;
1030     FieldDecl *FirstField;
1031     FieldDecl *LastField;
1032     uint64_t FirstFieldOffset, LastFieldOffset;
1033     unsigned LastAddedFieldIndex;
1034   };
1035 
1036   class ConstructorMemcpyizer : public FieldMemcpyizer {
1037   private:
1038     /// Get source argument for copy constructor. Returns null if not a copy
1039     /// constructor.
1040     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1041                                                const CXXConstructorDecl *CD,
1042                                                FunctionArgList &Args) {
1043       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1044         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1045       return nullptr;
1046     }
1047 
1048     // Returns true if a CXXCtorInitializer represents a member initialization
1049     // that can be rolled into a memcpy.
1050     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1051       if (!MemcpyableCtor)
1052         return false;
1053       FieldDecl *Field = MemberInit->getMember();
1054       assert(Field && "No field for member init.");
1055       QualType FieldType = Field->getType();
1056       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1057 
1058       // Bail out on non-memcpyable, not-trivially-copyable members.
1059       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1060           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1061             FieldType->isReferenceType()))
1062         return false;
1063 
1064       // Bail out on volatile fields.
1065       if (!isMemcpyableField(Field))
1066         return false;
1067 
1068       // Otherwise we're good.
1069       return true;
1070     }
1071 
1072   public:
1073     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1074                           FunctionArgList &Args)
1075       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1076         ConstructorDecl(CD),
1077         MemcpyableCtor(CD->isDefaulted() &&
1078                        CD->isCopyOrMoveConstructor() &&
1079                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1080         Args(Args) { }
1081 
1082     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1083       if (isMemberInitMemcpyable(MemberInit)) {
1084         AggregatedInits.push_back(MemberInit);
1085         addMemcpyableField(MemberInit->getMember());
1086       } else {
1087         emitAggregatedInits();
1088         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1089                               ConstructorDecl, Args);
1090       }
1091     }
1092 
1093     void emitAggregatedInits() {
1094       if (AggregatedInits.size() <= 1) {
1095         // This memcpy is too small to be worthwhile. Fall back on default
1096         // codegen.
1097         if (!AggregatedInits.empty()) {
1098           CopyingValueRepresentation CVR(CGF);
1099           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1100                                 AggregatedInits[0], ConstructorDecl, Args);
1101           AggregatedInits.clear();
1102         }
1103         reset();
1104         return;
1105       }
1106 
1107       pushEHDestructors();
1108       emitMemcpy();
1109       AggregatedInits.clear();
1110     }
1111 
1112     void pushEHDestructors() {
1113       Address ThisPtr = CGF.LoadCXXThisAddress();
1114       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1115       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1116 
1117       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1118         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1119         QualType FieldType = MemberInit->getAnyMember()->getType();
1120         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1121         if (!CGF.needsEHCleanup(dtorKind))
1122           continue;
1123         LValue FieldLHS = LHS;
1124         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1125         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
1126       }
1127     }
1128 
1129     void finish() {
1130       emitAggregatedInits();
1131     }
1132 
1133   private:
1134     const CXXConstructorDecl *ConstructorDecl;
1135     bool MemcpyableCtor;
1136     FunctionArgList &Args;
1137     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1138   };
1139 
1140   class AssignmentMemcpyizer : public FieldMemcpyizer {
1141   private:
1142     // Returns the memcpyable field copied by the given statement, if one
1143     // exists. Otherwise returns null.
1144     FieldDecl *getMemcpyableField(Stmt *S) {
1145       if (!AssignmentsMemcpyable)
1146         return nullptr;
1147       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1148         // Recognise trivial assignments.
1149         if (BO->getOpcode() != BO_Assign)
1150           return nullptr;
1151         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1152         if (!ME)
1153           return nullptr;
1154         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1155         if (!Field || !isMemcpyableField(Field))
1156           return nullptr;
1157         Stmt *RHS = BO->getRHS();
1158         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1159           RHS = EC->getSubExpr();
1160         if (!RHS)
1161           return nullptr;
1162         if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1163           if (ME2->getMemberDecl() == Field)
1164             return Field;
1165         }
1166         return nullptr;
1167       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1168         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1169         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1170           return nullptr;
1171         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1172         if (!IOA)
1173           return nullptr;
1174         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1175         if (!Field || !isMemcpyableField(Field))
1176           return nullptr;
1177         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1178         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1179           return nullptr;
1180         return Field;
1181       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1182         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1183         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1184           return nullptr;
1185         Expr *DstPtr = CE->getArg(0);
1186         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1187           DstPtr = DC->getSubExpr();
1188         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1189         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1190           return nullptr;
1191         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1192         if (!ME)
1193           return nullptr;
1194         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1195         if (!Field || !isMemcpyableField(Field))
1196           return nullptr;
1197         Expr *SrcPtr = CE->getArg(1);
1198         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1199           SrcPtr = SC->getSubExpr();
1200         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1201         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1202           return nullptr;
1203         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1204         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1205           return nullptr;
1206         return Field;
1207       }
1208 
1209       return nullptr;
1210     }
1211 
1212     bool AssignmentsMemcpyable;
1213     SmallVector<Stmt*, 16> AggregatedStmts;
1214 
1215   public:
1216     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1217                          FunctionArgList &Args)
1218       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1219         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1220       assert(Args.size() == 2);
1221     }
1222 
1223     void emitAssignment(Stmt *S) {
1224       FieldDecl *F = getMemcpyableField(S);
1225       if (F) {
1226         addMemcpyableField(F);
1227         AggregatedStmts.push_back(S);
1228       } else {
1229         emitAggregatedStmts();
1230         CGF.EmitStmt(S);
1231       }
1232     }
1233 
1234     void emitAggregatedStmts() {
1235       if (AggregatedStmts.size() <= 1) {
1236         if (!AggregatedStmts.empty()) {
1237           CopyingValueRepresentation CVR(CGF);
1238           CGF.EmitStmt(AggregatedStmts[0]);
1239         }
1240         reset();
1241       }
1242 
1243       emitMemcpy();
1244       AggregatedStmts.clear();
1245     }
1246 
1247     void finish() {
1248       emitAggregatedStmts();
1249     }
1250   };
1251 } // end anonymous namespace
1252 
1253 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1254   const Type *BaseType = BaseInit->getBaseClass();
1255   const auto *BaseClassDecl =
1256       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1257   return BaseClassDecl->isDynamicClass();
1258 }
1259 
1260 /// EmitCtorPrologue - This routine generates necessary code to initialize
1261 /// base classes and non-static data members belonging to this constructor.
1262 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1263                                        CXXCtorType CtorType,
1264                                        FunctionArgList &Args) {
1265   if (CD->isDelegatingConstructor())
1266     return EmitDelegatingCXXConstructorCall(CD, Args);
1267 
1268   const CXXRecordDecl *ClassDecl = CD->getParent();
1269 
1270   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1271                                           E = CD->init_end();
1272 
1273   // Virtual base initializers first, if any. They aren't needed if:
1274   // - This is a base ctor variant
1275   // - There are no vbases
1276   // - The class is abstract, so a complete object of it cannot be constructed
1277   //
1278   // The check for an abstract class is necessary because sema may not have
1279   // marked virtual base destructors referenced.
1280   bool ConstructVBases = CtorType != Ctor_Base &&
1281                          ClassDecl->getNumVBases() != 0 &&
1282                          !ClassDecl->isAbstract();
1283 
1284   // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1285   // constructor of a class with virtual bases takes an additional parameter to
1286   // conditionally construct the virtual bases. Emit that check here.
1287   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1288   if (ConstructVBases &&
1289       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1290     BaseCtorContinueBB =
1291         CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1292     assert(BaseCtorContinueBB);
1293   }
1294 
1295   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1296     if (!ConstructVBases)
1297       continue;
1298     SaveAndRestore ThisRAII(CXXThisValue);
1299     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1300         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1301         isInitializerOfDynamicClass(*B))
1302       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1303     EmitBaseInitializer(*this, ClassDecl, *B);
1304   }
1305 
1306   if (BaseCtorContinueBB) {
1307     // Complete object handler should continue to the remaining initializers.
1308     Builder.CreateBr(BaseCtorContinueBB);
1309     EmitBlock(BaseCtorContinueBB);
1310   }
1311 
1312   // Then, non-virtual base initializers.
1313   for (; B != E && (*B)->isBaseInitializer(); B++) {
1314     assert(!(*B)->isBaseVirtual());
1315     SaveAndRestore ThisRAII(CXXThisValue);
1316     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1317         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1318         isInitializerOfDynamicClass(*B))
1319       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1320     EmitBaseInitializer(*this, ClassDecl, *B);
1321   }
1322 
1323   InitializeVTablePointers(ClassDecl);
1324 
1325   // And finally, initialize class members.
1326   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1327   ConstructorMemcpyizer CM(*this, CD, Args);
1328   for (; B != E; B++) {
1329     CXXCtorInitializer *Member = (*B);
1330     assert(!Member->isBaseInitializer());
1331     assert(Member->isAnyMemberInitializer() &&
1332            "Delegating initializer on non-delegating constructor");
1333     CM.addMemberInitializer(Member);
1334   }
1335   CM.finish();
1336 }
1337 
1338 static bool
1339 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1340 
1341 static bool
1342 HasTrivialDestructorBody(ASTContext &Context,
1343                          const CXXRecordDecl *BaseClassDecl,
1344                          const CXXRecordDecl *MostDerivedClassDecl)
1345 {
1346   // If the destructor is trivial we don't have to check anything else.
1347   if (BaseClassDecl->hasTrivialDestructor())
1348     return true;
1349 
1350   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1351     return false;
1352 
1353   // Check fields.
1354   for (const auto *Field : BaseClassDecl->fields())
1355     if (!FieldHasTrivialDestructorBody(Context, Field))
1356       return false;
1357 
1358   // Check non-virtual bases.
1359   for (const auto &I : BaseClassDecl->bases()) {
1360     if (I.isVirtual())
1361       continue;
1362 
1363     const CXXRecordDecl *NonVirtualBase =
1364       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1365     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1366                                   MostDerivedClassDecl))
1367       return false;
1368   }
1369 
1370   if (BaseClassDecl == MostDerivedClassDecl) {
1371     // Check virtual bases.
1372     for (const auto &I : BaseClassDecl->vbases()) {
1373       const CXXRecordDecl *VirtualBase =
1374         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1375       if (!HasTrivialDestructorBody(Context, VirtualBase,
1376                                     MostDerivedClassDecl))
1377         return false;
1378     }
1379   }
1380 
1381   return true;
1382 }
1383 
1384 static bool
1385 FieldHasTrivialDestructorBody(ASTContext &Context,
1386                                           const FieldDecl *Field)
1387 {
1388   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1389 
1390   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1391   if (!RT)
1392     return true;
1393 
1394   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1395 
1396   // The destructor for an implicit anonymous union member is never invoked.
1397   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1398     return false;
1399 
1400   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1401 }
1402 
1403 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1404 /// any vtable pointers before calling this destructor.
1405 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1406                                                const CXXDestructorDecl *Dtor) {
1407   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1408   if (!ClassDecl->isDynamicClass())
1409     return true;
1410 
1411   // For a final class, the vtable pointer is known to already point to the
1412   // class's vtable.
1413   if (ClassDecl->isEffectivelyFinal())
1414     return true;
1415 
1416   if (!Dtor->hasTrivialBody())
1417     return false;
1418 
1419   // Check the fields.
1420   for (const auto *Field : ClassDecl->fields())
1421     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1422       return false;
1423 
1424   return true;
1425 }
1426 
1427 /// EmitDestructorBody - Emits the body of the current destructor.
1428 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1429   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1430   CXXDtorType DtorType = CurGD.getDtorType();
1431 
1432   // For an abstract class, non-base destructors are never used (and can't
1433   // be emitted in general, because vbase dtors may not have been validated
1434   // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1435   // in fact emit references to them from other compilations, so emit them
1436   // as functions containing a trap instruction.
1437   if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1438     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1439     TrapCall->setDoesNotReturn();
1440     TrapCall->setDoesNotThrow();
1441     Builder.CreateUnreachable();
1442     Builder.ClearInsertionPoint();
1443     return;
1444   }
1445 
1446   Stmt *Body = Dtor->getBody();
1447   if (Body)
1448     incrementProfileCounter(Body);
1449 
1450   // The call to operator delete in a deleting destructor happens
1451   // outside of the function-try-block, which means it's always
1452   // possible to delegate the destructor body to the complete
1453   // destructor.  Do so.
1454   if (DtorType == Dtor_Deleting) {
1455     RunCleanupsScope DtorEpilogue(*this);
1456     EnterDtorCleanups(Dtor, Dtor_Deleting);
1457     if (HaveInsertPoint()) {
1458       QualType ThisTy = Dtor->getFunctionObjectParameterType();
1459       EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1460                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1461     }
1462     return;
1463   }
1464 
1465   // If the body is a function-try-block, enter the try before
1466   // anything else.
1467   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1468   if (isTryBody)
1469     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1470   EmitAsanPrologueOrEpilogue(false);
1471 
1472   // Enter the epilogue cleanups.
1473   RunCleanupsScope DtorEpilogue(*this);
1474 
1475   // If this is the complete variant, just invoke the base variant;
1476   // the epilogue will destruct the virtual bases.  But we can't do
1477   // this optimization if the body is a function-try-block, because
1478   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1479   // always delegate because we might not have a definition in this TU.
1480   switch (DtorType) {
1481   case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1482   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1483 
1484   case Dtor_Complete:
1485     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1486            "can't emit a dtor without a body for non-Microsoft ABIs");
1487 
1488     // Enter the cleanup scopes for virtual bases.
1489     EnterDtorCleanups(Dtor, Dtor_Complete);
1490 
1491     if (!isTryBody) {
1492       QualType ThisTy = Dtor->getFunctionObjectParameterType();
1493       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1494                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1495       break;
1496     }
1497 
1498     // Fallthrough: act like we're in the base variant.
1499     [[fallthrough]];
1500 
1501   case Dtor_Base:
1502     assert(Body);
1503 
1504     // Enter the cleanup scopes for fields and non-virtual bases.
1505     EnterDtorCleanups(Dtor, Dtor_Base);
1506 
1507     // Initialize the vtable pointers before entering the body.
1508     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1509       // Insert the llvm.launder.invariant.group intrinsic before initializing
1510       // the vptrs to cancel any previous assumptions we might have made.
1511       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1512           CGM.getCodeGenOpts().OptimizationLevel > 0)
1513         CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1514       InitializeVTablePointers(Dtor->getParent());
1515     }
1516 
1517     if (isTryBody)
1518       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1519     else if (Body)
1520       EmitStmt(Body);
1521     else {
1522       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1523       // nothing to do besides what's in the epilogue
1524     }
1525     // -fapple-kext must inline any call to this dtor into
1526     // the caller's body.
1527     if (getLangOpts().AppleKext)
1528       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1529 
1530     break;
1531   }
1532 
1533   // Jump out through the epilogue cleanups.
1534   DtorEpilogue.ForceCleanup();
1535 
1536   // Exit the try if applicable.
1537   if (isTryBody)
1538     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1539 }
1540 
1541 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1542   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1543   const Stmt *RootS = AssignOp->getBody();
1544   assert(isa<CompoundStmt>(RootS) &&
1545          "Body of an implicit assignment operator should be compound stmt.");
1546   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1547 
1548   LexicalScope Scope(*this, RootCS->getSourceRange());
1549 
1550   incrementProfileCounter(RootCS);
1551   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1552   for (auto *I : RootCS->body())
1553     AM.emitAssignment(I);
1554   AM.finish();
1555 }
1556 
1557 namespace {
1558   llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1559                                      const CXXDestructorDecl *DD) {
1560     if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1561       return CGF.EmitScalarExpr(ThisArg);
1562     return CGF.LoadCXXThis();
1563   }
1564 
1565   /// Call the operator delete associated with the current destructor.
1566   struct CallDtorDelete final : EHScopeStack::Cleanup {
1567     CallDtorDelete() {}
1568 
1569     void Emit(CodeGenFunction &CGF, Flags flags) override {
1570       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1571       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1572       CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1573                          LoadThisForDtorDelete(CGF, Dtor),
1574                          CGF.getContext().getTagDeclType(ClassDecl));
1575     }
1576   };
1577 
1578   void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1579                                      llvm::Value *ShouldDeleteCondition,
1580                                      bool ReturnAfterDelete) {
1581     llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1582     llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1583     llvm::Value *ShouldCallDelete
1584       = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1585     CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1586 
1587     CGF.EmitBlock(callDeleteBB);
1588     const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1589     const CXXRecordDecl *ClassDecl = Dtor->getParent();
1590     CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1591                        LoadThisForDtorDelete(CGF, Dtor),
1592                        CGF.getContext().getTagDeclType(ClassDecl));
1593     assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1594                ReturnAfterDelete &&
1595            "unexpected value for ReturnAfterDelete");
1596     if (ReturnAfterDelete)
1597       CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1598     else
1599       CGF.Builder.CreateBr(continueBB);
1600 
1601     CGF.EmitBlock(continueBB);
1602   }
1603 
1604   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1605     llvm::Value *ShouldDeleteCondition;
1606 
1607   public:
1608     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1609         : ShouldDeleteCondition(ShouldDeleteCondition) {
1610       assert(ShouldDeleteCondition != nullptr);
1611     }
1612 
1613     void Emit(CodeGenFunction &CGF, Flags flags) override {
1614       EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1615                                     /*ReturnAfterDelete*/false);
1616     }
1617   };
1618 
1619   class DestroyField  final : public EHScopeStack::Cleanup {
1620     const FieldDecl *field;
1621     CodeGenFunction::Destroyer *destroyer;
1622     bool useEHCleanupForArray;
1623 
1624   public:
1625     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1626                  bool useEHCleanupForArray)
1627         : field(field), destroyer(destroyer),
1628           useEHCleanupForArray(useEHCleanupForArray) {}
1629 
1630     void Emit(CodeGenFunction &CGF, Flags flags) override {
1631       // Find the address of the field.
1632       Address thisValue = CGF.LoadCXXThisAddress();
1633       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1634       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1635       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1636       assert(LV.isSimple());
1637 
1638       CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
1639                       flags.isForNormalCleanup() && useEHCleanupForArray);
1640     }
1641   };
1642 
1643   class DeclAsInlineDebugLocation {
1644     CGDebugInfo *DI;
1645     llvm::MDNode *InlinedAt;
1646     std::optional<ApplyDebugLocation> Location;
1647 
1648   public:
1649     DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1650         : DI(CGF.getDebugInfo()) {
1651       if (!DI)
1652         return;
1653       InlinedAt = DI->getInlinedAt();
1654       DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1655       Location.emplace(CGF, Decl.getLocation());
1656     }
1657 
1658     ~DeclAsInlineDebugLocation() {
1659       if (!DI)
1660         return;
1661       Location.reset();
1662       DI->setInlinedAt(InlinedAt);
1663     }
1664   };
1665 
1666   static void EmitSanitizerDtorCallback(
1667       CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1668       std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1669     CodeGenFunction::SanitizerScope SanScope(&CGF);
1670     // Pass in void pointer and size of region as arguments to runtime
1671     // function
1672     SmallVector<llvm::Value *, 2> Args = {Ptr};
1673     SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1674 
1675     if (PoisonSize.has_value()) {
1676       Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1677       ArgTypes.emplace_back(CGF.SizeTy);
1678     }
1679 
1680     llvm::FunctionType *FnType =
1681         llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1682     llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1683 
1684     CGF.EmitNounwindRuntimeCall(Fn, Args);
1685   }
1686 
1687   static void
1688   EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1689                                   CharUnits::QuantityType PoisonSize) {
1690     EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1691                               PoisonSize);
1692   }
1693 
1694   /// Poison base class with a trivial destructor.
1695   struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1696     const CXXRecordDecl *BaseClass;
1697     bool BaseIsVirtual;
1698     SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1699         : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1700 
1701     void Emit(CodeGenFunction &CGF, Flags flags) override {
1702       const CXXRecordDecl *DerivedClass =
1703           cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1704 
1705       Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1706           CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1707 
1708       const ASTRecordLayout &BaseLayout =
1709           CGF.getContext().getASTRecordLayout(BaseClass);
1710       CharUnits BaseSize = BaseLayout.getSize();
1711 
1712       if (!BaseSize.isPositive())
1713         return;
1714 
1715       // Use the base class declaration location as inline DebugLocation. All
1716       // fields of the class are destroyed.
1717       DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1718       EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(),
1719                                       BaseSize.getQuantity());
1720 
1721       // Prevent the current stack frame from disappearing from the stack trace.
1722       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1723     }
1724   };
1725 
1726   class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1727     const CXXDestructorDecl *Dtor;
1728     unsigned StartIndex;
1729     unsigned EndIndex;
1730 
1731   public:
1732     SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1733                            unsigned EndIndex)
1734         : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1735 
1736     // Generate function call for handling object poisoning.
1737     // Disables tail call elimination, to prevent the current stack frame
1738     // from disappearing from the stack trace.
1739     void Emit(CodeGenFunction &CGF, Flags flags) override {
1740       const ASTContext &Context = CGF.getContext();
1741       const ASTRecordLayout &Layout =
1742           Context.getASTRecordLayout(Dtor->getParent());
1743 
1744       // It's a first trivial field so it should be at the begining of a char,
1745       // still round up start offset just in case.
1746       CharUnits PoisonStart = Context.toCharUnitsFromBits(
1747           Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1748       llvm::ConstantInt *OffsetSizePtr =
1749           llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1750 
1751       llvm::Value *OffsetPtr =
1752           CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr);
1753 
1754       CharUnits PoisonEnd;
1755       if (EndIndex >= Layout.getFieldCount()) {
1756         PoisonEnd = Layout.getNonVirtualSize();
1757       } else {
1758         PoisonEnd =
1759             Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1760       }
1761       CharUnits PoisonSize = PoisonEnd - PoisonStart;
1762       if (!PoisonSize.isPositive())
1763         return;
1764 
1765       // Use the top field declaration location as inline DebugLocation.
1766       DeclAsInlineDebugLocation InlineHere(
1767           CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1768       EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1769 
1770       // Prevent the current stack frame from disappearing from the stack trace.
1771       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1772     }
1773   };
1774 
1775  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1776     const CXXDestructorDecl *Dtor;
1777 
1778   public:
1779     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1780 
1781     // Generate function call for handling vtable pointer poisoning.
1782     void Emit(CodeGenFunction &CGF, Flags flags) override {
1783       assert(Dtor->getParent()->isDynamicClass());
1784       (void)Dtor;
1785       // Poison vtable and vtable ptr if they exist for this class.
1786       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1787 
1788       // Pass in void pointer and size of region as arguments to runtime
1789       // function
1790       EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr",
1791                                 VTablePtr);
1792     }
1793  };
1794 
1795  class SanitizeDtorCleanupBuilder {
1796    ASTContext &Context;
1797    EHScopeStack &EHStack;
1798    const CXXDestructorDecl *DD;
1799    std::optional<unsigned> StartIndex;
1800 
1801  public:
1802    SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1803                               const CXXDestructorDecl *DD)
1804        : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1805    void PushCleanupForField(const FieldDecl *Field) {
1806      if (Field->isZeroSize(Context))
1807        return;
1808      unsigned FieldIndex = Field->getFieldIndex();
1809      if (FieldHasTrivialDestructorBody(Context, Field)) {
1810        if (!StartIndex)
1811          StartIndex = FieldIndex;
1812      } else if (StartIndex) {
1813        EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1814                                                    *StartIndex, FieldIndex);
1815        StartIndex = std::nullopt;
1816      }
1817    }
1818    void End() {
1819      if (StartIndex)
1820        EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1821                                                    *StartIndex, -1);
1822    }
1823  };
1824 } // end anonymous namespace
1825 
1826 /// Emit all code that comes at the end of class's
1827 /// destructor. This is to call destructors on members and base classes
1828 /// in reverse order of their construction.
1829 ///
1830 /// For a deleting destructor, this also handles the case where a destroying
1831 /// operator delete completely overrides the definition.
1832 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1833                                         CXXDtorType DtorType) {
1834   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1835          "Should not emit dtor epilogue for non-exported trivial dtor!");
1836 
1837   // The deleting-destructor phase just needs to call the appropriate
1838   // operator delete that Sema picked up.
1839   if (DtorType == Dtor_Deleting) {
1840     assert(DD->getOperatorDelete() &&
1841            "operator delete missing - EnterDtorCleanups");
1842     if (CXXStructorImplicitParamValue) {
1843       // If there is an implicit param to the deleting dtor, it's a boolean
1844       // telling whether this is a deleting destructor.
1845       if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1846         EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1847                                       /*ReturnAfterDelete*/true);
1848       else
1849         EHStack.pushCleanup<CallDtorDeleteConditional>(
1850             NormalAndEHCleanup, CXXStructorImplicitParamValue);
1851     } else {
1852       if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1853         const CXXRecordDecl *ClassDecl = DD->getParent();
1854         EmitDeleteCall(DD->getOperatorDelete(),
1855                        LoadThisForDtorDelete(*this, DD),
1856                        getContext().getTagDeclType(ClassDecl));
1857         EmitBranchThroughCleanup(ReturnBlock);
1858       } else {
1859         EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1860       }
1861     }
1862     return;
1863   }
1864 
1865   const CXXRecordDecl *ClassDecl = DD->getParent();
1866 
1867   // Unions have no bases and do not call field destructors.
1868   if (ClassDecl->isUnion())
1869     return;
1870 
1871   // The complete-destructor phase just destructs all the virtual bases.
1872   if (DtorType == Dtor_Complete) {
1873     // Poison the vtable pointer such that access after the base
1874     // and member destructors are invoked is invalid.
1875     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1876         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1877         ClassDecl->isPolymorphic())
1878       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1879 
1880     // We push them in the forward order so that they'll be popped in
1881     // the reverse order.
1882     for (const auto &Base : ClassDecl->vbases()) {
1883       auto *BaseClassDecl =
1884           cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1885 
1886       if (BaseClassDecl->hasTrivialDestructor()) {
1887         // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1888         // memory. For non-trival base classes the same is done in the class
1889         // destructor.
1890         if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1891             SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1892           EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1893                                                        BaseClassDecl,
1894                                                        /*BaseIsVirtual*/ true);
1895       } else {
1896         EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1897                                           /*BaseIsVirtual*/ true);
1898       }
1899     }
1900 
1901     return;
1902   }
1903 
1904   assert(DtorType == Dtor_Base);
1905   // Poison the vtable pointer if it has no virtual bases, but inherits
1906   // virtual functions.
1907   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1908       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1909       ClassDecl->isPolymorphic())
1910     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1911 
1912   // Destroy non-virtual bases.
1913   for (const auto &Base : ClassDecl->bases()) {
1914     // Ignore virtual bases.
1915     if (Base.isVirtual())
1916       continue;
1917 
1918     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1919 
1920     if (BaseClassDecl->hasTrivialDestructor()) {
1921       if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1922           SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1923         EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1924                                                      BaseClassDecl,
1925                                                      /*BaseIsVirtual*/ false);
1926     } else {
1927       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1928                                         /*BaseIsVirtual*/ false);
1929     }
1930   }
1931 
1932   // Poison fields such that access after their destructors are
1933   // invoked, and before the base class destructor runs, is invalid.
1934   bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1935                         SanOpts.has(SanitizerKind::Memory);
1936   SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1937 
1938   // Destroy direct fields.
1939   for (const auto *Field : ClassDecl->fields()) {
1940     if (SanitizeFields)
1941       SanitizeBuilder.PushCleanupForField(Field);
1942 
1943     QualType type = Field->getType();
1944     QualType::DestructionKind dtorKind = type.isDestructedType();
1945     if (!dtorKind)
1946       continue;
1947 
1948     // Anonymous union members do not have their destructors called.
1949     const RecordType *RT = type->getAsUnionType();
1950     if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1951       continue;
1952 
1953     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1954     EHStack.pushCleanup<DestroyField>(
1955         cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1956   }
1957 
1958   if (SanitizeFields)
1959     SanitizeBuilder.End();
1960 }
1961 
1962 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1963 /// constructor for each of several members of an array.
1964 ///
1965 /// \param ctor the constructor to call for each element
1966 /// \param arrayType the type of the array to initialize
1967 /// \param arrayBegin an arrayType*
1968 /// \param zeroInitialize true if each element should be
1969 ///   zero-initialized before it is constructed
1970 void CodeGenFunction::EmitCXXAggrConstructorCall(
1971     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1972     Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1973     bool zeroInitialize) {
1974   QualType elementType;
1975   llvm::Value *numElements =
1976     emitArrayLength(arrayType, elementType, arrayBegin);
1977 
1978   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1979                              NewPointerIsChecked, zeroInitialize);
1980 }
1981 
1982 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1983 /// constructor for each of several members of an array.
1984 ///
1985 /// \param ctor the constructor to call for each element
1986 /// \param numElements the number of elements in the array;
1987 ///   may be zero
1988 /// \param arrayBase a T*, where T is the type constructed by ctor
1989 /// \param zeroInitialize true if each element should be
1990 ///   zero-initialized before it is constructed
1991 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1992                                                  llvm::Value *numElements,
1993                                                  Address arrayBase,
1994                                                  const CXXConstructExpr *E,
1995                                                  bool NewPointerIsChecked,
1996                                                  bool zeroInitialize) {
1997   // It's legal for numElements to be zero.  This can happen both
1998   // dynamically, because x can be zero in 'new A[x]', and statically,
1999   // because of GCC extensions that permit zero-length arrays.  There
2000   // are probably legitimate places where we could assume that this
2001   // doesn't happen, but it's not clear that it's worth it.
2002   llvm::BranchInst *zeroCheckBranch = nullptr;
2003 
2004   // Optimize for a constant count.
2005   llvm::ConstantInt *constantCount
2006     = dyn_cast<llvm::ConstantInt>(numElements);
2007   if (constantCount) {
2008     // Just skip out if the constant count is zero.
2009     if (constantCount->isZero()) return;
2010 
2011   // Otherwise, emit the check.
2012   } else {
2013     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2014     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2015     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2016     EmitBlock(loopBB);
2017   }
2018 
2019   // Find the end of the array.
2020   llvm::Type *elementType = arrayBase.getElementType();
2021   llvm::Value *arrayBegin = arrayBase.getPointer();
2022   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2023       elementType, arrayBegin, numElements, "arrayctor.end");
2024 
2025   // Enter the loop, setting up a phi for the current location to initialize.
2026   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2027   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2028   EmitBlock(loopBB);
2029   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2030                                          "arrayctor.cur");
2031   cur->addIncoming(arrayBegin, entryBB);
2032 
2033   // Inside the loop body, emit the constructor call on the array element.
2034 
2035   // The alignment of the base, adjusted by the size of a single element,
2036   // provides a conservative estimate of the alignment of every element.
2037   // (This assumes we never start tracking offsetted alignments.)
2038   //
2039   // Note that these are complete objects and so we don't need to
2040   // use the non-virtual size or alignment.
2041   QualType type = getContext().getTypeDeclType(ctor->getParent());
2042   CharUnits eltAlignment =
2043     arrayBase.getAlignment()
2044              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2045   Address curAddr = Address(cur, elementType, eltAlignment);
2046 
2047   // Zero initialize the storage, if requested.
2048   if (zeroInitialize)
2049     EmitNullInitialization(curAddr, type);
2050 
2051   // C++ [class.temporary]p4:
2052   // There are two contexts in which temporaries are destroyed at a different
2053   // point than the end of the full-expression. The first context is when a
2054   // default constructor is called to initialize an element of an array.
2055   // If the constructor has one or more default arguments, the destruction of
2056   // every temporary created in a default argument expression is sequenced
2057   // before the construction of the next array element, if any.
2058 
2059   {
2060     RunCleanupsScope Scope(*this);
2061 
2062     // Evaluate the constructor and its arguments in a regular
2063     // partial-destroy cleanup.
2064     if (getLangOpts().Exceptions &&
2065         !ctor->getParent()->hasTrivialDestructor()) {
2066       Destroyer *destroyer = destroyCXXObject;
2067       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2068                                      *destroyer);
2069     }
2070     auto currAVS = AggValueSlot::forAddr(
2071         curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2072         AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2073         AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2074         NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2075                             : AggValueSlot::IsNotSanitizerChecked);
2076     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2077                            /*Delegating=*/false, currAVS, E);
2078   }
2079 
2080   // Go to the next element.
2081   llvm::Value *next = Builder.CreateInBoundsGEP(
2082       elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2083   cur->addIncoming(next, Builder.GetInsertBlock());
2084 
2085   // Check whether that's the end of the loop.
2086   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2087   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2088   Builder.CreateCondBr(done, contBB, loopBB);
2089 
2090   // Patch the earlier check to skip over the loop.
2091   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2092 
2093   EmitBlock(contBB);
2094 }
2095 
2096 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2097                                        Address addr,
2098                                        QualType type) {
2099   const RecordType *rtype = type->castAs<RecordType>();
2100   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2101   const CXXDestructorDecl *dtor = record->getDestructor();
2102   assert(!dtor->isTrivial());
2103   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2104                             /*Delegating=*/false, addr, type);
2105 }
2106 
2107 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2108                                              CXXCtorType Type,
2109                                              bool ForVirtualBase,
2110                                              bool Delegating,
2111                                              AggValueSlot ThisAVS,
2112                                              const CXXConstructExpr *E) {
2113   CallArgList Args;
2114   Address This = ThisAVS.getAddress();
2115   LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2116   LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace();
2117   llvm::Value *ThisPtr = This.getPointer();
2118 
2119   if (SlotAS != ThisAS) {
2120     unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2121     llvm::Type *NewType =
2122         llvm::PointerType::get(getLLVMContext(), TargetThisAS);
2123     ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
2124                                                     ThisAS, SlotAS, NewType);
2125   }
2126 
2127   // Push the this ptr.
2128   Args.add(RValue::get(ThisPtr), D->getThisType());
2129 
2130   // If this is a trivial constructor, emit a memcpy now before we lose
2131   // the alignment information on the argument.
2132   // FIXME: It would be better to preserve alignment information into CallArg.
2133   if (isMemcpyEquivalentSpecialMember(D)) {
2134     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2135 
2136     const Expr *Arg = E->getArg(0);
2137     LValue Src = EmitLValue(Arg);
2138     QualType DestTy = getContext().getTypeDeclType(D->getParent());
2139     LValue Dest = MakeAddrLValue(This, DestTy);
2140     EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2141     return;
2142   }
2143 
2144   // Add the rest of the user-supplied arguments.
2145   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2146   EvaluationOrder Order = E->isListInitialization()
2147                               ? EvaluationOrder::ForceLeftToRight
2148                               : EvaluationOrder::Default;
2149   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2150                /*ParamsToSkip*/ 0, Order);
2151 
2152   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2153                          ThisAVS.mayOverlap(), E->getExprLoc(),
2154                          ThisAVS.isSanitizerChecked());
2155 }
2156 
2157 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2158                                     const CXXConstructorDecl *Ctor,
2159                                     CXXCtorType Type, CallArgList &Args) {
2160   // We can't forward a variadic call.
2161   if (Ctor->isVariadic())
2162     return false;
2163 
2164   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2165     // If the parameters are callee-cleanup, it's not safe to forward.
2166     for (auto *P : Ctor->parameters())
2167       if (P->needsDestruction(CGF.getContext()))
2168         return false;
2169 
2170     // Likewise if they're inalloca.
2171     const CGFunctionInfo &Info =
2172         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2173     if (Info.usesInAlloca())
2174       return false;
2175   }
2176 
2177   // Anything else should be OK.
2178   return true;
2179 }
2180 
2181 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2182                                              CXXCtorType Type,
2183                                              bool ForVirtualBase,
2184                                              bool Delegating,
2185                                              Address This,
2186                                              CallArgList &Args,
2187                                              AggValueSlot::Overlap_t Overlap,
2188                                              SourceLocation Loc,
2189                                              bool NewPointerIsChecked) {
2190   const CXXRecordDecl *ClassDecl = D->getParent();
2191 
2192   if (!NewPointerIsChecked)
2193     EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
2194                   getContext().getRecordType(ClassDecl), CharUnits::Zero());
2195 
2196   if (D->isTrivial() && D->isDefaultConstructor()) {
2197     assert(Args.size() == 1 && "trivial default ctor with args");
2198     return;
2199   }
2200 
2201   // If this is a trivial constructor, just emit what's needed. If this is a
2202   // union copy constructor, we must emit a memcpy, because the AST does not
2203   // model that copy.
2204   if (isMemcpyEquivalentSpecialMember(D)) {
2205     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2206 
2207     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2208     Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy),
2209                                       CGM.getNaturalTypeAlignment(SrcTy));
2210     LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2211     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2212     LValue DestLVal = MakeAddrLValue(This, DestTy);
2213     EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2214     return;
2215   }
2216 
2217   bool PassPrototypeArgs = true;
2218   // Check whether we can actually emit the constructor before trying to do so.
2219   if (auto Inherited = D->getInheritedConstructor()) {
2220     PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2221     if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2222       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2223                                               Delegating, Args);
2224       return;
2225     }
2226   }
2227 
2228   // Insert any ABI-specific implicit constructor arguments.
2229   CGCXXABI::AddedStructorArgCounts ExtraArgs =
2230       CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2231                                                  Delegating, Args);
2232 
2233   // Emit the call.
2234   llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2235   const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2236       Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2237   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2238   EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
2239 
2240   // Generate vtable assumptions if we're constructing a complete object
2241   // with a vtable.  We don't do this for base subobjects for two reasons:
2242   // first, it's incorrect for classes with virtual bases, and second, we're
2243   // about to overwrite the vptrs anyway.
2244   // We also have to make sure if we can refer to vtable:
2245   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2246   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2247   // sure that definition of vtable is not hidden,
2248   // then we are always safe to refer to it.
2249   // FIXME: It looks like InstCombine is very inefficient on dealing with
2250   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2251   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2252       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2253       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2254       CGM.getCodeGenOpts().StrictVTablePointers)
2255     EmitVTableAssumptionLoads(ClassDecl, This);
2256 }
2257 
2258 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2259     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2260     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2261   CallArgList Args;
2262   CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
2263 
2264   // Forward the parameters.
2265   if (InheritedFromVBase &&
2266       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2267     // Nothing to do; this construction is not responsible for constructing
2268     // the base class containing the inherited constructor.
2269     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2270     // have constructor variants?
2271     Args.push_back(ThisArg);
2272   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2273     // The inheriting constructor was inlined; just inject its arguments.
2274     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2275            "wrong number of parameters for inherited constructor call");
2276     Args = CXXInheritedCtorInitExprArgs;
2277     Args[0] = ThisArg;
2278   } else {
2279     // The inheriting constructor was not inlined. Emit delegating arguments.
2280     Args.push_back(ThisArg);
2281     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2282     assert(OuterCtor->getNumParams() == D->getNumParams());
2283     assert(!OuterCtor->isVariadic() && "should have been inlined");
2284 
2285     for (const auto *Param : OuterCtor->parameters()) {
2286       assert(getContext().hasSameUnqualifiedType(
2287           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2288           Param->getType()));
2289       EmitDelegateCallArg(Args, Param, E->getLocation());
2290 
2291       // Forward __attribute__(pass_object_size).
2292       if (Param->hasAttr<PassObjectSizeAttr>()) {
2293         auto *POSParam = SizeArguments[Param];
2294         assert(POSParam && "missing pass_object_size value for forwarding");
2295         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2296       }
2297     }
2298   }
2299 
2300   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2301                          This, Args, AggValueSlot::MayOverlap,
2302                          E->getLocation(), /*NewPointerIsChecked*/true);
2303 }
2304 
2305 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2306     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2307     bool Delegating, CallArgList &Args) {
2308   GlobalDecl GD(Ctor, CtorType);
2309   InlinedInheritingConstructorScope Scope(*this, GD);
2310   ApplyInlineDebugLocation DebugScope(*this, GD);
2311   RunCleanupsScope RunCleanups(*this);
2312 
2313   // Save the arguments to be passed to the inherited constructor.
2314   CXXInheritedCtorInitExprArgs = Args;
2315 
2316   FunctionArgList Params;
2317   QualType RetType = BuildFunctionArgList(CurGD, Params);
2318   FnRetTy = RetType;
2319 
2320   // Insert any ABI-specific implicit constructor arguments.
2321   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2322                                              ForVirtualBase, Delegating, Args);
2323 
2324   // Emit a simplified prolog. We only need to emit the implicit params.
2325   assert(Args.size() >= Params.size() && "too few arguments for call");
2326   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2327     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2328       const RValue &RV = Args[I].getRValue(*this);
2329       assert(!RV.isComplex() && "complex indirect params not supported");
2330       ParamValue Val = RV.isScalar()
2331                            ? ParamValue::forDirect(RV.getScalarVal())
2332                            : ParamValue::forIndirect(RV.getAggregateAddress());
2333       EmitParmDecl(*Params[I], Val, I + 1);
2334     }
2335   }
2336 
2337   // Create a return value slot if the ABI implementation wants one.
2338   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2339   // value instead.
2340   if (!RetType->isVoidType())
2341     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2342 
2343   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2344   CXXThisValue = CXXABIThisValue;
2345 
2346   // Directly emit the constructor initializers.
2347   EmitCtorPrologue(Ctor, CtorType, Params);
2348 }
2349 
2350 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2351   llvm::Value *VTableGlobal =
2352       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2353   if (!VTableGlobal)
2354     return;
2355 
2356   // We can just use the base offset in the complete class.
2357   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2358 
2359   if (!NonVirtualOffset.isZero())
2360     This =
2361         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2362                                         Vptr.VTableClass, Vptr.NearestVBase);
2363 
2364   llvm::Value *VPtrValue =
2365       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2366   llvm::Value *Cmp =
2367       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2368   Builder.CreateAssumption(Cmp);
2369 }
2370 
2371 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2372                                                 Address This) {
2373   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2374     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2375       EmitVTableAssumptionLoad(Vptr, This);
2376 }
2377 
2378 void
2379 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2380                                                 Address This, Address Src,
2381                                                 const CXXConstructExpr *E) {
2382   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2383 
2384   CallArgList Args;
2385 
2386   // Push the this ptr.
2387   Args.add(RValue::get(This.getPointer()), D->getThisType());
2388 
2389   // Push the src ptr.
2390   QualType QT = *(FPT->param_type_begin());
2391   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2392   llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t);
2393   Args.add(RValue::get(SrcVal), QT);
2394 
2395   // Skip over first argument (Src).
2396   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2397                /*ParamsToSkip*/ 1);
2398 
2399   EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2400                          /*Delegating*/false, This, Args,
2401                          AggValueSlot::MayOverlap, E->getExprLoc(),
2402                          /*NewPointerIsChecked*/false);
2403 }
2404 
2405 void
2406 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2407                                                 CXXCtorType CtorType,
2408                                                 const FunctionArgList &Args,
2409                                                 SourceLocation Loc) {
2410   CallArgList DelegateArgs;
2411 
2412   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2413   assert(I != E && "no parameters to constructor");
2414 
2415   // this
2416   Address This = LoadCXXThisAddress();
2417   DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2418   ++I;
2419 
2420   // FIXME: The location of the VTT parameter in the parameter list is
2421   // specific to the Itanium ABI and shouldn't be hardcoded here.
2422   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2423     assert(I != E && "cannot skip vtt parameter, already done with args");
2424     assert((*I)->getType()->isPointerType() &&
2425            "skipping parameter not of vtt type");
2426     ++I;
2427   }
2428 
2429   // Explicit arguments.
2430   for (; I != E; ++I) {
2431     const VarDecl *param = *I;
2432     // FIXME: per-argument source location
2433     EmitDelegateCallArg(DelegateArgs, param, Loc);
2434   }
2435 
2436   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2437                          /*Delegating=*/true, This, DelegateArgs,
2438                          AggValueSlot::MayOverlap, Loc,
2439                          /*NewPointerIsChecked=*/true);
2440 }
2441 
2442 namespace {
2443   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2444     const CXXDestructorDecl *Dtor;
2445     Address Addr;
2446     CXXDtorType Type;
2447 
2448     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2449                            CXXDtorType Type)
2450       : Dtor(D), Addr(Addr), Type(Type) {}
2451 
2452     void Emit(CodeGenFunction &CGF, Flags flags) override {
2453       // We are calling the destructor from within the constructor.
2454       // Therefore, "this" should have the expected type.
2455       QualType ThisTy = Dtor->getFunctionObjectParameterType();
2456       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2457                                 /*Delegating=*/true, Addr, ThisTy);
2458     }
2459   };
2460 } // end anonymous namespace
2461 
2462 void
2463 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2464                                                   const FunctionArgList &Args) {
2465   assert(Ctor->isDelegatingConstructor());
2466 
2467   Address ThisPtr = LoadCXXThisAddress();
2468 
2469   AggValueSlot AggSlot =
2470     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2471                           AggValueSlot::IsDestructed,
2472                           AggValueSlot::DoesNotNeedGCBarriers,
2473                           AggValueSlot::IsNotAliased,
2474                           AggValueSlot::MayOverlap,
2475                           AggValueSlot::IsNotZeroed,
2476                           // Checks are made by the code that calls constructor.
2477                           AggValueSlot::IsSanitizerChecked);
2478 
2479   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2480 
2481   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2482   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2483     CXXDtorType Type =
2484       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2485 
2486     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2487                                                 ClassDecl->getDestructor(),
2488                                                 ThisPtr, Type);
2489   }
2490 }
2491 
2492 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2493                                             CXXDtorType Type,
2494                                             bool ForVirtualBase,
2495                                             bool Delegating, Address This,
2496                                             QualType ThisTy) {
2497   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2498                                      Delegating, This, ThisTy);
2499 }
2500 
2501 namespace {
2502   struct CallLocalDtor final : EHScopeStack::Cleanup {
2503     const CXXDestructorDecl *Dtor;
2504     Address Addr;
2505     QualType Ty;
2506 
2507     CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2508         : Dtor(D), Addr(Addr), Ty(Ty) {}
2509 
2510     void Emit(CodeGenFunction &CGF, Flags flags) override {
2511       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2512                                 /*ForVirtualBase=*/false,
2513                                 /*Delegating=*/false, Addr, Ty);
2514     }
2515   };
2516 } // end anonymous namespace
2517 
2518 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2519                                             QualType T, Address Addr) {
2520   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2521 }
2522 
2523 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2524   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2525   if (!ClassDecl) return;
2526   if (ClassDecl->hasTrivialDestructor()) return;
2527 
2528   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2529   assert(D && D->isUsed() && "destructor not marked as used!");
2530   PushDestructorCleanup(D, T, Addr);
2531 }
2532 
2533 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2534   // Compute the address point.
2535   llvm::Value *VTableAddressPoint =
2536       CGM.getCXXABI().getVTableAddressPointInStructor(
2537           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2538 
2539   if (!VTableAddressPoint)
2540     return;
2541 
2542   // Compute where to store the address point.
2543   llvm::Value *VirtualOffset = nullptr;
2544   CharUnits NonVirtualOffset = CharUnits::Zero();
2545 
2546   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2547     // We need to use the virtual base offset offset because the virtual base
2548     // might have a different offset in the most derived class.
2549 
2550     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2551         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2552     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2553   } else {
2554     // We can just use the base offset in the complete class.
2555     NonVirtualOffset = Vptr.Base.getBaseOffset();
2556   }
2557 
2558   // Apply the offsets.
2559   Address VTableField = LoadCXXThisAddress();
2560   if (!NonVirtualOffset.isZero() || VirtualOffset)
2561     VTableField = ApplyNonVirtualAndVirtualOffset(
2562         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2563         Vptr.NearestVBase);
2564 
2565   // Finally, store the address point. Use the same LLVM types as the field to
2566   // support optimization.
2567   unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2568   llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS);
2569   // vtable field is derived from `this` pointer, therefore they should be in
2570   // the same addr space. Note that this might not be LLVM address space 0.
2571   VTableField = VTableField.withElementType(PtrTy);
2572 
2573   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2574   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy);
2575   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2576   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2577       CGM.getCodeGenOpts().StrictVTablePointers)
2578     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2579 }
2580 
2581 CodeGenFunction::VPtrsVector
2582 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2583   CodeGenFunction::VPtrsVector VPtrsResult;
2584   VisitedVirtualBasesSetTy VBases;
2585   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2586                     /*NearestVBase=*/nullptr,
2587                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2588                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2589                     VPtrsResult);
2590   return VPtrsResult;
2591 }
2592 
2593 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2594                                         const CXXRecordDecl *NearestVBase,
2595                                         CharUnits OffsetFromNearestVBase,
2596                                         bool BaseIsNonVirtualPrimaryBase,
2597                                         const CXXRecordDecl *VTableClass,
2598                                         VisitedVirtualBasesSetTy &VBases,
2599                                         VPtrsVector &Vptrs) {
2600   // If this base is a non-virtual primary base the address point has already
2601   // been set.
2602   if (!BaseIsNonVirtualPrimaryBase) {
2603     // Initialize the vtable pointer for this base.
2604     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2605     Vptrs.push_back(Vptr);
2606   }
2607 
2608   const CXXRecordDecl *RD = Base.getBase();
2609 
2610   // Traverse bases.
2611   for (const auto &I : RD->bases()) {
2612     auto *BaseDecl =
2613         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2614 
2615     // Ignore classes without a vtable.
2616     if (!BaseDecl->isDynamicClass())
2617       continue;
2618 
2619     CharUnits BaseOffset;
2620     CharUnits BaseOffsetFromNearestVBase;
2621     bool BaseDeclIsNonVirtualPrimaryBase;
2622 
2623     if (I.isVirtual()) {
2624       // Check if we've visited this virtual base before.
2625       if (!VBases.insert(BaseDecl).second)
2626         continue;
2627 
2628       const ASTRecordLayout &Layout =
2629         getContext().getASTRecordLayout(VTableClass);
2630 
2631       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2632       BaseOffsetFromNearestVBase = CharUnits::Zero();
2633       BaseDeclIsNonVirtualPrimaryBase = false;
2634     } else {
2635       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2636 
2637       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2638       BaseOffsetFromNearestVBase =
2639         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2640       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2641     }
2642 
2643     getVTablePointers(
2644         BaseSubobject(BaseDecl, BaseOffset),
2645         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2646         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2647   }
2648 }
2649 
2650 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2651   // Ignore classes without a vtable.
2652   if (!RD->isDynamicClass())
2653     return;
2654 
2655   // Initialize the vtable pointers for this class and all of its bases.
2656   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2657     for (const VPtr &Vptr : getVTablePointers(RD))
2658       InitializeVTablePointer(Vptr);
2659 
2660   if (RD->getNumVBases())
2661     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2662 }
2663 
2664 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2665                                            llvm::Type *VTableTy,
2666                                            const CXXRecordDecl *RD) {
2667   Address VTablePtrSrc = This.withElementType(VTableTy);
2668   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2669   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2670   CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2671 
2672   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2673       CGM.getCodeGenOpts().StrictVTablePointers)
2674     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2675 
2676   return VTable;
2677 }
2678 
2679 // If a class has a single non-virtual base and does not introduce or override
2680 // virtual member functions or fields, it will have the same layout as its base.
2681 // This function returns the least derived such class.
2682 //
2683 // Casting an instance of a base class to such a derived class is technically
2684 // undefined behavior, but it is a relatively common hack for introducing member
2685 // functions on class instances with specific properties (e.g. llvm::Operator)
2686 // that works under most compilers and should not have security implications, so
2687 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2688 static const CXXRecordDecl *
2689 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2690   if (!RD->field_empty())
2691     return RD;
2692 
2693   if (RD->getNumVBases() != 0)
2694     return RD;
2695 
2696   if (RD->getNumBases() != 1)
2697     return RD;
2698 
2699   for (const CXXMethodDecl *MD : RD->methods()) {
2700     if (MD->isVirtual()) {
2701       // Virtual member functions are only ok if they are implicit destructors
2702       // because the implicit destructor will have the same semantics as the
2703       // base class's destructor if no fields are added.
2704       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2705         continue;
2706       return RD;
2707     }
2708   }
2709 
2710   return LeastDerivedClassWithSameLayout(
2711       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2712 }
2713 
2714 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2715                                                    llvm::Value *VTable,
2716                                                    SourceLocation Loc) {
2717   if (SanOpts.has(SanitizerKind::CFIVCall))
2718     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2719   else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2720            // Don't insert type test assumes if we are forcing public
2721            // visibility.
2722            !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2723     QualType Ty = QualType(RD->getTypeForDecl(), 0);
2724     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2725     llvm::Value *TypeId =
2726         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2727 
2728     // If we already know that the call has hidden LTO visibility, emit
2729     // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2730     // will convert to @llvm.type.test() if we assert at link time that we have
2731     // whole program visibility.
2732     llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2733                                   ? llvm::Intrinsic::type_test
2734                                   : llvm::Intrinsic::public_type_test;
2735     llvm::Value *TypeTest =
2736         Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId});
2737     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2738   }
2739 }
2740 
2741 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2742                                                 llvm::Value *VTable,
2743                                                 CFITypeCheckKind TCK,
2744                                                 SourceLocation Loc) {
2745   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2746     RD = LeastDerivedClassWithSameLayout(RD);
2747 
2748   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2749 }
2750 
2751 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2752                                                 bool MayBeNull,
2753                                                 CFITypeCheckKind TCK,
2754                                                 SourceLocation Loc) {
2755   if (!getLangOpts().CPlusPlus)
2756     return;
2757 
2758   auto *ClassTy = T->getAs<RecordType>();
2759   if (!ClassTy)
2760     return;
2761 
2762   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2763 
2764   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2765     return;
2766 
2767   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2768     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2769 
2770   llvm::BasicBlock *ContBlock = nullptr;
2771 
2772   if (MayBeNull) {
2773     llvm::Value *DerivedNotNull =
2774         Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull");
2775 
2776     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2777     ContBlock = createBasicBlock("cast.cont");
2778 
2779     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2780 
2781     EmitBlock(CheckBlock);
2782   }
2783 
2784   llvm::Value *VTable;
2785   std::tie(VTable, ClassDecl) =
2786       CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2787 
2788   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2789 
2790   if (MayBeNull) {
2791     Builder.CreateBr(ContBlock);
2792     EmitBlock(ContBlock);
2793   }
2794 }
2795 
2796 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2797                                          llvm::Value *VTable,
2798                                          CFITypeCheckKind TCK,
2799                                          SourceLocation Loc) {
2800   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2801       !CGM.HasHiddenLTOVisibility(RD))
2802     return;
2803 
2804   SanitizerMask M;
2805   llvm::SanitizerStatKind SSK;
2806   switch (TCK) {
2807   case CFITCK_VCall:
2808     M = SanitizerKind::CFIVCall;
2809     SSK = llvm::SanStat_CFI_VCall;
2810     break;
2811   case CFITCK_NVCall:
2812     M = SanitizerKind::CFINVCall;
2813     SSK = llvm::SanStat_CFI_NVCall;
2814     break;
2815   case CFITCK_DerivedCast:
2816     M = SanitizerKind::CFIDerivedCast;
2817     SSK = llvm::SanStat_CFI_DerivedCast;
2818     break;
2819   case CFITCK_UnrelatedCast:
2820     M = SanitizerKind::CFIUnrelatedCast;
2821     SSK = llvm::SanStat_CFI_UnrelatedCast;
2822     break;
2823   case CFITCK_ICall:
2824   case CFITCK_NVMFCall:
2825   case CFITCK_VMFCall:
2826     llvm_unreachable("unexpected sanitizer kind");
2827   }
2828 
2829   std::string TypeName = RD->getQualifiedNameAsString();
2830   if (getContext().getNoSanitizeList().containsType(M, TypeName))
2831     return;
2832 
2833   SanitizerScope SanScope(this);
2834   EmitSanitizerStatReport(SSK);
2835 
2836   llvm::Metadata *MD =
2837       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2838   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2839 
2840   llvm::Value *TypeTest = Builder.CreateCall(
2841       CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
2842 
2843   llvm::Constant *StaticData[] = {
2844       llvm::ConstantInt::get(Int8Ty, TCK),
2845       EmitCheckSourceLocation(Loc),
2846       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2847   };
2848 
2849   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2850   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2851     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData);
2852     return;
2853   }
2854 
2855   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2856     EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2857     return;
2858   }
2859 
2860   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2861       CGM.getLLVMContext(),
2862       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2863   llvm::Value *ValidVtable = Builder.CreateCall(
2864       CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
2865   EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2866             StaticData, {VTable, ValidVtable});
2867 }
2868 
2869 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2870   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2871       !CGM.HasHiddenLTOVisibility(RD))
2872     return false;
2873 
2874   if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2875     return true;
2876 
2877   if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2878       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2879     return false;
2880 
2881   std::string TypeName = RD->getQualifiedNameAsString();
2882   return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2883                                                         TypeName);
2884 }
2885 
2886 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2887     const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2888     uint64_t VTableByteOffset) {
2889   SanitizerScope SanScope(this);
2890 
2891   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2892 
2893   llvm::Metadata *MD =
2894       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2895   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2896 
2897   llvm::Value *CheckedLoad = Builder.CreateCall(
2898       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2899       {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
2900   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2901 
2902   std::string TypeName = RD->getQualifiedNameAsString();
2903   if (SanOpts.has(SanitizerKind::CFIVCall) &&
2904       !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2905                                                      TypeName)) {
2906     EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2907               SanitizerHandler::CFICheckFail, {}, {});
2908   }
2909 
2910   return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2911                                VTableTy);
2912 }
2913 
2914 void CodeGenFunction::EmitForwardingCallToLambda(
2915     const CXXMethodDecl *callOperator, CallArgList &callArgs,
2916     const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
2917   // Get the address of the call operator.
2918   if (!calleeFnInfo)
2919     calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2920 
2921   if (!calleePtr)
2922     calleePtr =
2923         CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2924                               CGM.getTypes().GetFunctionType(*calleeFnInfo));
2925 
2926   // Prepare the return slot.
2927   const FunctionProtoType *FPT =
2928     callOperator->getType()->castAs<FunctionProtoType>();
2929   QualType resultType = FPT->getReturnType();
2930   ReturnValueSlot returnSlot;
2931   if (!resultType->isVoidType() &&
2932       calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2933       !hasScalarEvaluationKind(calleeFnInfo->getReturnType()))
2934     returnSlot =
2935         ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2936                         /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2937 
2938   // We don't need to separately arrange the call arguments because
2939   // the call can't be variadic anyway --- it's impossible to forward
2940   // variadic arguments.
2941 
2942   // Now emit our call.
2943   auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2944   RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
2945 
2946   // If necessary, copy the returned value into the slot.
2947   if (!resultType->isVoidType() && returnSlot.isNull()) {
2948     if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2949       RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2950     }
2951     EmitReturnOfRValue(RV, resultType);
2952   } else
2953     EmitBranchThroughCleanup(ReturnBlock);
2954 }
2955 
2956 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2957   const BlockDecl *BD = BlockInfo->getBlockDecl();
2958   const VarDecl *variable = BD->capture_begin()->getVariable();
2959   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2960   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2961 
2962   if (CallOp->isVariadic()) {
2963     // FIXME: Making this work correctly is nasty because it requires either
2964     // cloning the body of the call operator or making the call operator
2965     // forward.
2966     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2967     return;
2968   }
2969 
2970   // Start building arguments for forwarding call
2971   CallArgList CallArgs;
2972 
2973   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2974   Address ThisPtr = GetAddrOfBlockDecl(variable);
2975   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2976 
2977   // Add the rest of the parameters.
2978   for (auto *param : BD->parameters())
2979     EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
2980 
2981   assert(!Lambda->isGenericLambda() &&
2982             "generic lambda interconversion to block not implemented");
2983   EmitForwardingCallToLambda(CallOp, CallArgs);
2984 }
2985 
2986 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2987   if (MD->isVariadic()) {
2988     // FIXME: Making this work correctly is nasty because it requires either
2989     // cloning the body of the call operator or making the call operator
2990     // forward.
2991     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2992     return;
2993   }
2994 
2995   const CXXRecordDecl *Lambda = MD->getParent();
2996 
2997   // Start building arguments for forwarding call
2998   CallArgList CallArgs;
2999 
3000   QualType LambdaType = getContext().getRecordType(Lambda);
3001   QualType ThisType = getContext().getPointerType(LambdaType);
3002   Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3003   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
3004 
3005   EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3006 }
3007 
3008 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
3009                                                      CallArgList &CallArgs) {
3010   // Add the rest of the forwarded parameters.
3011   for (auto *Param : MD->parameters())
3012     EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3013 
3014   const CXXRecordDecl *Lambda = MD->getParent();
3015   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3016   // For a generic lambda, find the corresponding call operator specialization
3017   // to which the call to the static-invoker shall be forwarded.
3018   if (Lambda->isGenericLambda()) {
3019     assert(MD->isFunctionTemplateSpecialization());
3020     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3021     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3022     void *InsertPos = nullptr;
3023     FunctionDecl *CorrespondingCallOpSpecialization =
3024         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3025     assert(CorrespondingCallOpSpecialization);
3026     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3027   }
3028 
3029   // Special lambda forwarding when there are inalloca parameters.
3030   if (hasInAllocaArg(MD)) {
3031     const CGFunctionInfo *ImplFnInfo = nullptr;
3032     llvm::Function *ImplFn = nullptr;
3033     EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn);
3034 
3035     EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn);
3036     return;
3037   }
3038 
3039   EmitForwardingCallToLambda(CallOp, CallArgs);
3040 }
3041 
3042 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) {
3043   if (MD->isVariadic()) {
3044     // FIXME: Making this work correctly is nasty because it requires either
3045     // cloning the body of the call operator or making the call operator forward.
3046     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3047     return;
3048   }
3049 
3050   // Forward %this argument.
3051   CallArgList CallArgs;
3052   QualType LambdaType = getContext().getRecordType(MD->getParent());
3053   QualType ThisType = getContext().getPointerType(LambdaType);
3054   llvm::Value *ThisArg = CurFn->getArg(0);
3055   CallArgs.add(RValue::get(ThisArg), ThisType);
3056 
3057   EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3058 }
3059 
3060 void CodeGenFunction::EmitLambdaInAllocaImplFn(
3061     const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3062     llvm::Function **ImplFn) {
3063   const CGFunctionInfo &FnInfo =
3064       CGM.getTypes().arrangeCXXMethodDeclaration(CallOp);
3065   llvm::Function *CallOpFn =
3066       cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp)));
3067 
3068   // Emit function containing the original call op body. __invoke will delegate
3069   // to this function.
3070   SmallVector<CanQualType, 4> ArgTypes;
3071   for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3072     ArgTypes.push_back(I->type);
3073   *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3074       FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes,
3075       FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs());
3076 
3077   // Create mangled name as if this was a method named __impl. If for some
3078   // reason the name doesn't look as expected then just tack __impl to the
3079   // front.
3080   // TODO: Use the name mangler to produce the right name instead of using
3081   // string replacement.
3082   StringRef CallOpName = CallOpFn->getName();
3083   std::string ImplName;
3084   if (size_t Pos = CallOpName.find_first_of("<lambda"))
3085     ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str();
3086   else
3087     ImplName = ("__impl" + CallOpName).str();
3088 
3089   llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName);
3090   if (!Fn) {
3091     Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo),
3092                                 llvm::GlobalValue::InternalLinkage, ImplName,
3093                                 CGM.getModule());
3094     CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3095 
3096     const GlobalDecl &GD = GlobalDecl(CallOp);
3097     const auto *D = cast<FunctionDecl>(GD.getDecl());
3098     CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo);
3099     CGM.SetLLVMFunctionAttributesForDefinition(D, Fn);
3100   }
3101   *ImplFn = Fn;
3102 }
3103