1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/SaveAndRestore.h" 32 #include "llvm/Transforms/Utils/SanitizerStats.h" 33 #include <optional> 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 /// Return the best known alignment for an unknown pointer to a 39 /// particular class. 40 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 41 if (!RD->hasDefinition()) 42 return CharUnits::One(); // Hopefully won't be used anywhere. 43 44 auto &layout = getContext().getASTRecordLayout(RD); 45 46 // If the class is final, then we know that the pointer points to an 47 // object of that type and can use the full alignment. 48 if (RD->isEffectivelyFinal()) 49 return layout.getAlignment(); 50 51 // Otherwise, we have to assume it could be a subclass. 52 return layout.getNonVirtualAlignment(); 53 } 54 55 /// Return the smallest possible amount of storage that might be allocated 56 /// starting from the beginning of an object of a particular class. 57 /// 58 /// This may be smaller than sizeof(RD) if RD has virtual base classes. 59 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { 60 if (!RD->hasDefinition()) 61 return CharUnits::One(); 62 63 auto &layout = getContext().getASTRecordLayout(RD); 64 65 // If the class is final, then we know that the pointer points to an 66 // object of that type and can use the full alignment. 67 if (RD->isEffectivelyFinal()) 68 return layout.getSize(); 69 70 // Otherwise, we have to assume it could be a subclass. 71 return std::max(layout.getNonVirtualSize(), CharUnits::One()); 72 } 73 74 /// Return the best known alignment for a pointer to a virtual base, 75 /// given the alignment of a pointer to the derived class. 76 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 77 const CXXRecordDecl *derivedClass, 78 const CXXRecordDecl *vbaseClass) { 79 // The basic idea here is that an underaligned derived pointer might 80 // indicate an underaligned base pointer. 81 82 assert(vbaseClass->isCompleteDefinition()); 83 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 84 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 85 86 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 87 expectedVBaseAlign); 88 } 89 90 CharUnits 91 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 92 const CXXRecordDecl *baseDecl, 93 CharUnits expectedTargetAlign) { 94 // If the base is an incomplete type (which is, alas, possible with 95 // member pointers), be pessimistic. 96 if (!baseDecl->isCompleteDefinition()) 97 return std::min(actualBaseAlign, expectedTargetAlign); 98 99 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 100 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 101 102 // If the class is properly aligned, assume the target offset is, too. 103 // 104 // This actually isn't necessarily the right thing to do --- if the 105 // class is a complete object, but it's only properly aligned for a 106 // base subobject, then the alignments of things relative to it are 107 // probably off as well. (Note that this requires the alignment of 108 // the target to be greater than the NV alignment of the derived 109 // class.) 110 // 111 // However, our approach to this kind of under-alignment can only 112 // ever be best effort; after all, we're never going to propagate 113 // alignments through variables or parameters. Note, in particular, 114 // that constructing a polymorphic type in an address that's less 115 // than pointer-aligned will generally trap in the constructor, 116 // unless we someday add some sort of attribute to change the 117 // assumed alignment of 'this'. So our goal here is pretty much 118 // just to allow the user to explicitly say that a pointer is 119 // under-aligned and then safely access its fields and vtables. 120 if (actualBaseAlign >= expectedBaseAlign) { 121 return expectedTargetAlign; 122 } 123 124 // Otherwise, we might be offset by an arbitrary multiple of the 125 // actual alignment. The correct adjustment is to take the min of 126 // the two alignments. 127 return std::min(actualBaseAlign, expectedTargetAlign); 128 } 129 130 Address CodeGenFunction::LoadCXXThisAddress() { 131 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 132 auto *MD = cast<CXXMethodDecl>(CurFuncDecl); 133 134 // Lazily compute CXXThisAlignment. 135 if (CXXThisAlignment.isZero()) { 136 // Just use the best known alignment for the parent. 137 // TODO: if we're currently emitting a complete-object ctor/dtor, 138 // we can always use the complete-object alignment. 139 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent()); 140 } 141 142 llvm::Type *Ty = ConvertType(MD->getFunctionObjectParameterType()); 143 return Address(LoadCXXThis(), Ty, CXXThisAlignment, KnownNonNull); 144 } 145 146 /// Emit the address of a field using a member data pointer. 147 /// 148 /// \param E Only used for emergency diagnostics 149 Address 150 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 151 llvm::Value *memberPtr, 152 const MemberPointerType *memberPtrType, 153 LValueBaseInfo *BaseInfo, 154 TBAAAccessInfo *TBAAInfo) { 155 // Ask the ABI to compute the actual address. 156 llvm::Value *ptr = 157 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 158 memberPtr, memberPtrType); 159 160 QualType memberType = memberPtrType->getPointeeType(); 161 CharUnits memberAlign = 162 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo); 163 memberAlign = 164 CGM.getDynamicOffsetAlignment(base.getAlignment(), 165 memberPtrType->getClass()->getAsCXXRecordDecl(), 166 memberAlign); 167 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()), 168 memberAlign); 169 } 170 171 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 172 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 173 CastExpr::path_const_iterator End) { 174 CharUnits Offset = CharUnits::Zero(); 175 176 const ASTContext &Context = getContext(); 177 const CXXRecordDecl *RD = DerivedClass; 178 179 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 180 const CXXBaseSpecifier *Base = *I; 181 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 182 183 // Get the layout. 184 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 185 186 const auto *BaseDecl = 187 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 188 189 // Add the offset. 190 Offset += Layout.getBaseClassOffset(BaseDecl); 191 192 RD = BaseDecl; 193 } 194 195 return Offset; 196 } 197 198 llvm::Constant * 199 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 200 CastExpr::path_const_iterator PathBegin, 201 CastExpr::path_const_iterator PathEnd) { 202 assert(PathBegin != PathEnd && "Base path should not be empty!"); 203 204 CharUnits Offset = 205 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 206 if (Offset.isZero()) 207 return nullptr; 208 209 llvm::Type *PtrDiffTy = 210 Types.ConvertType(getContext().getPointerDiffType()); 211 212 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 213 } 214 215 /// Gets the address of a direct base class within a complete object. 216 /// This should only be used for (1) non-virtual bases or (2) virtual bases 217 /// when the type is known to be complete (e.g. in complete destructors). 218 /// 219 /// The object pointed to by 'This' is assumed to be non-null. 220 Address 221 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 222 const CXXRecordDecl *Derived, 223 const CXXRecordDecl *Base, 224 bool BaseIsVirtual) { 225 // 'this' must be a pointer (in some address space) to Derived. 226 assert(This.getElementType() == ConvertType(Derived)); 227 228 // Compute the offset of the virtual base. 229 CharUnits Offset; 230 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 231 if (BaseIsVirtual) 232 Offset = Layout.getVBaseClassOffset(Base); 233 else 234 Offset = Layout.getBaseClassOffset(Base); 235 236 // Shift and cast down to the base type. 237 // TODO: for complete types, this should be possible with a GEP. 238 Address V = This; 239 if (!Offset.isZero()) { 240 V = V.withElementType(Int8Ty); 241 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 242 } 243 return V.withElementType(ConvertType(Base)); 244 } 245 246 static Address 247 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 248 CharUnits nonVirtualOffset, 249 llvm::Value *virtualOffset, 250 const CXXRecordDecl *derivedClass, 251 const CXXRecordDecl *nearestVBase) { 252 // Assert that we have something to do. 253 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 254 255 // Compute the offset from the static and dynamic components. 256 llvm::Value *baseOffset; 257 if (!nonVirtualOffset.isZero()) { 258 llvm::Type *OffsetType = 259 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() && 260 CGF.CGM.getItaniumVTableContext().isRelativeLayout()) 261 ? CGF.Int32Ty 262 : CGF.PtrDiffTy; 263 baseOffset = 264 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity()); 265 if (virtualOffset) { 266 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 267 } 268 } else { 269 baseOffset = virtualOffset; 270 } 271 272 // Apply the base offset. 273 llvm::Value *ptr = addr.getPointer(); 274 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr"); 275 276 // If we have a virtual component, the alignment of the result will 277 // be relative only to the known alignment of that vbase. 278 CharUnits alignment; 279 if (virtualOffset) { 280 assert(nearestVBase && "virtual offset without vbase?"); 281 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 282 derivedClass, nearestVBase); 283 } else { 284 alignment = addr.getAlignment(); 285 } 286 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 287 288 return Address(ptr, CGF.Int8Ty, alignment); 289 } 290 291 Address CodeGenFunction::GetAddressOfBaseClass( 292 Address Value, const CXXRecordDecl *Derived, 293 CastExpr::path_const_iterator PathBegin, 294 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 295 SourceLocation Loc) { 296 assert(PathBegin != PathEnd && "Base path should not be empty!"); 297 298 CastExpr::path_const_iterator Start = PathBegin; 299 const CXXRecordDecl *VBase = nullptr; 300 301 // Sema has done some convenient canonicalization here: if the 302 // access path involved any virtual steps, the conversion path will 303 // *start* with a step down to the correct virtual base subobject, 304 // and hence will not require any further steps. 305 if ((*Start)->isVirtual()) { 306 VBase = cast<CXXRecordDecl>( 307 (*Start)->getType()->castAs<RecordType>()->getDecl()); 308 ++Start; 309 } 310 311 // Compute the static offset of the ultimate destination within its 312 // allocating subobject (the virtual base, if there is one, or else 313 // the "complete" object that we see). 314 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 315 VBase ? VBase : Derived, Start, PathEnd); 316 317 // If there's a virtual step, we can sometimes "devirtualize" it. 318 // For now, that's limited to when the derived type is final. 319 // TODO: "devirtualize" this for accesses to known-complete objects. 320 if (VBase && Derived->hasAttr<FinalAttr>()) { 321 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 322 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 323 NonVirtualOffset += vBaseOffset; 324 VBase = nullptr; // we no longer have a virtual step 325 } 326 327 // Get the base pointer type. 328 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType()); 329 llvm::Type *PtrTy = llvm::PointerType::get( 330 CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace()); 331 332 QualType DerivedTy = getContext().getRecordType(Derived); 333 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 334 335 // If the static offset is zero and we don't have a virtual step, 336 // just do a bitcast; null checks are unnecessary. 337 if (NonVirtualOffset.isZero() && !VBase) { 338 if (sanitizePerformTypeCheck()) { 339 SanitizerSet SkippedChecks; 340 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 341 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 342 DerivedTy, DerivedAlign, SkippedChecks); 343 } 344 return Value.withElementType(BaseValueTy); 345 } 346 347 llvm::BasicBlock *origBB = nullptr; 348 llvm::BasicBlock *endBB = nullptr; 349 350 // Skip over the offset (and the vtable load) if we're supposed to 351 // null-check the pointer. 352 if (NullCheckValue) { 353 origBB = Builder.GetInsertBlock(); 354 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 355 endBB = createBasicBlock("cast.end"); 356 357 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 358 Builder.CreateCondBr(isNull, endBB, notNullBB); 359 EmitBlock(notNullBB); 360 } 361 362 if (sanitizePerformTypeCheck()) { 363 SanitizerSet SkippedChecks; 364 SkippedChecks.set(SanitizerKind::Null, true); 365 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 366 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 367 } 368 369 // Compute the virtual offset. 370 llvm::Value *VirtualOffset = nullptr; 371 if (VBase) { 372 VirtualOffset = 373 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 374 } 375 376 // Apply both offsets. 377 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 378 VirtualOffset, Derived, VBase); 379 380 // Cast to the destination type. 381 Value = Value.withElementType(BaseValueTy); 382 383 // Build a phi if we needed a null check. 384 if (NullCheckValue) { 385 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 386 Builder.CreateBr(endBB); 387 EmitBlock(endBB); 388 389 llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result"); 390 PHI->addIncoming(Value.getPointer(), notNullBB); 391 PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB); 392 Value = Value.withPointer(PHI, NotKnownNonNull); 393 } 394 395 return Value; 396 } 397 398 Address 399 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 400 const CXXRecordDecl *Derived, 401 CastExpr::path_const_iterator PathBegin, 402 CastExpr::path_const_iterator PathEnd, 403 bool NullCheckValue) { 404 assert(PathBegin != PathEnd && "Base path should not be empty!"); 405 406 QualType DerivedTy = 407 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 408 llvm::Type *DerivedValueTy = ConvertType(DerivedTy); 409 410 llvm::Value *NonVirtualOffset = 411 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 412 413 if (!NonVirtualOffset) { 414 // No offset, we can just cast back. 415 return BaseAddr.withElementType(DerivedValueTy); 416 } 417 418 llvm::BasicBlock *CastNull = nullptr; 419 llvm::BasicBlock *CastNotNull = nullptr; 420 llvm::BasicBlock *CastEnd = nullptr; 421 422 if (NullCheckValue) { 423 CastNull = createBasicBlock("cast.null"); 424 CastNotNull = createBasicBlock("cast.notnull"); 425 CastEnd = createBasicBlock("cast.end"); 426 427 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 428 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 429 EmitBlock(CastNotNull); 430 } 431 432 // Apply the offset. 433 llvm::Value *Value = BaseAddr.getPointer(); 434 Value = Builder.CreateInBoundsGEP( 435 Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr"); 436 437 // Produce a PHI if we had a null-check. 438 if (NullCheckValue) { 439 Builder.CreateBr(CastEnd); 440 EmitBlock(CastNull); 441 Builder.CreateBr(CastEnd); 442 EmitBlock(CastEnd); 443 444 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 445 PHI->addIncoming(Value, CastNotNull); 446 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 447 Value = PHI; 448 } 449 450 return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived)); 451 } 452 453 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 454 bool ForVirtualBase, 455 bool Delegating) { 456 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 457 // This constructor/destructor does not need a VTT parameter. 458 return nullptr; 459 } 460 461 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 462 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 463 464 uint64_t SubVTTIndex; 465 466 if (Delegating) { 467 // If this is a delegating constructor call, just load the VTT. 468 return LoadCXXVTT(); 469 } else if (RD == Base) { 470 // If the record matches the base, this is the complete ctor/dtor 471 // variant calling the base variant in a class with virtual bases. 472 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 473 "doing no-op VTT offset in base dtor/ctor?"); 474 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 475 SubVTTIndex = 0; 476 } else { 477 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 478 CharUnits BaseOffset = ForVirtualBase ? 479 Layout.getVBaseClassOffset(Base) : 480 Layout.getBaseClassOffset(Base); 481 482 SubVTTIndex = 483 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 484 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 485 } 486 487 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 488 // A VTT parameter was passed to the constructor, use it. 489 llvm::Value *VTT = LoadCXXVTT(); 490 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex); 491 } else { 492 // We're the complete constructor, so get the VTT by name. 493 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD); 494 return Builder.CreateConstInBoundsGEP2_64( 495 VTT->getValueType(), VTT, 0, SubVTTIndex); 496 } 497 } 498 499 namespace { 500 /// Call the destructor for a direct base class. 501 struct CallBaseDtor final : EHScopeStack::Cleanup { 502 const CXXRecordDecl *BaseClass; 503 bool BaseIsVirtual; 504 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 505 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 506 507 void Emit(CodeGenFunction &CGF, Flags flags) override { 508 const CXXRecordDecl *DerivedClass = 509 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 510 511 const CXXDestructorDecl *D = BaseClass->getDestructor(); 512 // We are already inside a destructor, so presumably the object being 513 // destroyed should have the expected type. 514 QualType ThisTy = D->getFunctionObjectParameterType(); 515 Address Addr = 516 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 517 DerivedClass, BaseClass, 518 BaseIsVirtual); 519 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 520 /*Delegating=*/false, Addr, ThisTy); 521 } 522 }; 523 524 /// A visitor which checks whether an initializer uses 'this' in a 525 /// way which requires the vtable to be properly set. 526 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 527 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 528 529 bool UsesThis; 530 531 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 532 533 // Black-list all explicit and implicit references to 'this'. 534 // 535 // Do we need to worry about external references to 'this' derived 536 // from arbitrary code? If so, then anything which runs arbitrary 537 // external code might potentially access the vtable. 538 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 539 }; 540 } // end anonymous namespace 541 542 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 543 DynamicThisUseChecker Checker(C); 544 Checker.Visit(Init); 545 return Checker.UsesThis; 546 } 547 548 static void EmitBaseInitializer(CodeGenFunction &CGF, 549 const CXXRecordDecl *ClassDecl, 550 CXXCtorInitializer *BaseInit) { 551 assert(BaseInit->isBaseInitializer() && 552 "Must have base initializer!"); 553 554 Address ThisPtr = CGF.LoadCXXThisAddress(); 555 556 const Type *BaseType = BaseInit->getBaseClass(); 557 const auto *BaseClassDecl = 558 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 559 560 bool isBaseVirtual = BaseInit->isBaseVirtual(); 561 562 // If the initializer for the base (other than the constructor 563 // itself) accesses 'this' in any way, we need to initialize the 564 // vtables. 565 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 566 CGF.InitializeVTablePointers(ClassDecl); 567 568 // We can pretend to be a complete class because it only matters for 569 // virtual bases, and we only do virtual bases for complete ctors. 570 Address V = 571 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 572 BaseClassDecl, 573 isBaseVirtual); 574 AggValueSlot AggSlot = 575 AggValueSlot::forAddr( 576 V, Qualifiers(), 577 AggValueSlot::IsDestructed, 578 AggValueSlot::DoesNotNeedGCBarriers, 579 AggValueSlot::IsNotAliased, 580 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 581 582 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 583 584 if (CGF.CGM.getLangOpts().Exceptions && 585 !BaseClassDecl->hasTrivialDestructor()) 586 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 587 isBaseVirtual); 588 } 589 590 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 591 auto *CD = dyn_cast<CXXConstructorDecl>(D); 592 if (!(CD && CD->isCopyOrMoveConstructor()) && 593 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 594 return false; 595 596 // We can emit a memcpy for a trivial copy or move constructor/assignment. 597 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 598 return true; 599 600 // We *must* emit a memcpy for a defaulted union copy or move op. 601 if (D->getParent()->isUnion() && D->isDefaulted()) 602 return true; 603 604 return false; 605 } 606 607 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 608 CXXCtorInitializer *MemberInit, 609 LValue &LHS) { 610 FieldDecl *Field = MemberInit->getAnyMember(); 611 if (MemberInit->isIndirectMemberInitializer()) { 612 // If we are initializing an anonymous union field, drill down to the field. 613 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 614 for (const auto *I : IndirectField->chain()) 615 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 616 } else { 617 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 618 } 619 } 620 621 static void EmitMemberInitializer(CodeGenFunction &CGF, 622 const CXXRecordDecl *ClassDecl, 623 CXXCtorInitializer *MemberInit, 624 const CXXConstructorDecl *Constructor, 625 FunctionArgList &Args) { 626 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 627 assert(MemberInit->isAnyMemberInitializer() && 628 "Must have member initializer!"); 629 assert(MemberInit->getInit() && "Must have initializer!"); 630 631 // non-static data member initializers. 632 FieldDecl *Field = MemberInit->getAnyMember(); 633 QualType FieldType = Field->getType(); 634 635 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 636 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 637 LValue LHS; 638 639 // If a base constructor is being emitted, create an LValue that has the 640 // non-virtual alignment. 641 if (CGF.CurGD.getCtorType() == Ctor_Base) 642 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 643 else 644 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 645 646 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 647 648 // Special case: if we are in a copy or move constructor, and we are copying 649 // an array of PODs or classes with trivial copy constructors, ignore the 650 // AST and perform the copy we know is equivalent. 651 // FIXME: This is hacky at best... if we had a bit more explicit information 652 // in the AST, we could generalize it more easily. 653 const ConstantArrayType *Array 654 = CGF.getContext().getAsConstantArrayType(FieldType); 655 if (Array && Constructor->isDefaulted() && 656 Constructor->isCopyOrMoveConstructor()) { 657 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 658 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 659 if (BaseElementTy.isPODType(CGF.getContext()) || 660 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 661 unsigned SrcArgIndex = 662 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 663 llvm::Value *SrcPtr 664 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 665 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 666 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 667 668 // Copy the aggregate. 669 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 670 LHS.isVolatileQualified()); 671 // Ensure that we destroy the objects if an exception is thrown later in 672 // the constructor. 673 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 674 if (CGF.needsEHCleanup(dtorKind)) 675 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType); 676 return; 677 } 678 } 679 680 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 681 } 682 683 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 684 Expr *Init) { 685 QualType FieldType = Field->getType(); 686 switch (getEvaluationKind(FieldType)) { 687 case TEK_Scalar: 688 if (LHS.isSimple()) { 689 EmitExprAsInit(Init, Field, LHS, false); 690 } else { 691 RValue RHS = RValue::get(EmitScalarExpr(Init)); 692 EmitStoreThroughLValue(RHS, LHS); 693 } 694 break; 695 case TEK_Complex: 696 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 697 break; 698 case TEK_Aggregate: { 699 AggValueSlot Slot = AggValueSlot::forLValue( 700 LHS, *this, AggValueSlot::IsDestructed, 701 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 702 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed, 703 // Checks are made by the code that calls constructor. 704 AggValueSlot::IsSanitizerChecked); 705 EmitAggExpr(Init, Slot); 706 break; 707 } 708 } 709 710 // Ensure that we destroy this object if an exception is thrown 711 // later in the constructor. 712 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 713 if (needsEHCleanup(dtorKind)) 714 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType); 715 } 716 717 /// Checks whether the given constructor is a valid subject for the 718 /// complete-to-base constructor delegation optimization, i.e. 719 /// emitting the complete constructor as a simple call to the base 720 /// constructor. 721 bool CodeGenFunction::IsConstructorDelegationValid( 722 const CXXConstructorDecl *Ctor) { 723 724 // Currently we disable the optimization for classes with virtual 725 // bases because (1) the addresses of parameter variables need to be 726 // consistent across all initializers but (2) the delegate function 727 // call necessarily creates a second copy of the parameter variable. 728 // 729 // The limiting example (purely theoretical AFAIK): 730 // struct A { A(int &c) { c++; } }; 731 // struct B : virtual A { 732 // B(int count) : A(count) { printf("%d\n", count); } 733 // }; 734 // ...although even this example could in principle be emitted as a 735 // delegation since the address of the parameter doesn't escape. 736 if (Ctor->getParent()->getNumVBases()) { 737 // TODO: white-list trivial vbase initializers. This case wouldn't 738 // be subject to the restrictions below. 739 740 // TODO: white-list cases where: 741 // - there are no non-reference parameters to the constructor 742 // - the initializers don't access any non-reference parameters 743 // - the initializers don't take the address of non-reference 744 // parameters 745 // - etc. 746 // If we ever add any of the above cases, remember that: 747 // - function-try-blocks will always exclude this optimization 748 // - we need to perform the constructor prologue and cleanup in 749 // EmitConstructorBody. 750 751 return false; 752 } 753 754 // We also disable the optimization for variadic functions because 755 // it's impossible to "re-pass" varargs. 756 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 757 return false; 758 759 // FIXME: Decide if we can do a delegation of a delegating constructor. 760 if (Ctor->isDelegatingConstructor()) 761 return false; 762 763 return true; 764 } 765 766 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 767 // to poison the extra field paddings inserted under 768 // -fsanitize-address-field-padding=1|2. 769 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 770 ASTContext &Context = getContext(); 771 const CXXRecordDecl *ClassDecl = 772 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 773 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 774 if (!ClassDecl->mayInsertExtraPadding()) return; 775 776 struct SizeAndOffset { 777 uint64_t Size; 778 uint64_t Offset; 779 }; 780 781 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 782 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 783 784 // Populate sizes and offsets of fields. 785 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 786 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 787 SSV[i].Offset = 788 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 789 790 size_t NumFields = 0; 791 for (const auto *Field : ClassDecl->fields()) { 792 const FieldDecl *D = Field; 793 auto FieldInfo = Context.getTypeInfoInChars(D->getType()); 794 CharUnits FieldSize = FieldInfo.Width; 795 assert(NumFields < SSV.size()); 796 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 797 NumFields++; 798 } 799 assert(NumFields == SSV.size()); 800 if (SSV.size() <= 1) return; 801 802 // We will insert calls to __asan_* run-time functions. 803 // LLVM AddressSanitizer pass may decide to inline them later. 804 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 805 llvm::FunctionType *FTy = 806 llvm::FunctionType::get(CGM.VoidTy, Args, false); 807 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 808 FTy, Prologue ? "__asan_poison_intra_object_redzone" 809 : "__asan_unpoison_intra_object_redzone"); 810 811 llvm::Value *ThisPtr = LoadCXXThis(); 812 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 813 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 814 // For each field check if it has sufficient padding, 815 // if so (un)poison it with a call. 816 for (size_t i = 0; i < SSV.size(); i++) { 817 uint64_t AsanAlignment = 8; 818 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 819 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 820 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 821 if (PoisonSize < AsanAlignment || !SSV[i].Size || 822 (NextField % AsanAlignment) != 0) 823 continue; 824 Builder.CreateCall( 825 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 826 Builder.getIntN(PtrSize, PoisonSize)}); 827 } 828 } 829 830 /// EmitConstructorBody - Emits the body of the current constructor. 831 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 832 EmitAsanPrologueOrEpilogue(true); 833 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 834 CXXCtorType CtorType = CurGD.getCtorType(); 835 836 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 837 CtorType == Ctor_Complete) && 838 "can only generate complete ctor for this ABI"); 839 840 // Before we go any further, try the complete->base constructor 841 // delegation optimization. 842 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 843 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 844 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 845 return; 846 } 847 848 const FunctionDecl *Definition = nullptr; 849 Stmt *Body = Ctor->getBody(Definition); 850 assert(Definition == Ctor && "emitting wrong constructor body"); 851 852 // Enter the function-try-block before the constructor prologue if 853 // applicable. 854 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 855 if (IsTryBody) 856 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 857 858 incrementProfileCounter(Body); 859 860 RunCleanupsScope RunCleanups(*this); 861 862 // TODO: in restricted cases, we can emit the vbase initializers of 863 // a complete ctor and then delegate to the base ctor. 864 865 // Emit the constructor prologue, i.e. the base and member 866 // initializers. 867 EmitCtorPrologue(Ctor, CtorType, Args); 868 869 // Emit the body of the statement. 870 if (IsTryBody) 871 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 872 else if (Body) 873 EmitStmt(Body); 874 875 // Emit any cleanup blocks associated with the member or base 876 // initializers, which includes (along the exceptional path) the 877 // destructors for those members and bases that were fully 878 // constructed. 879 RunCleanups.ForceCleanup(); 880 881 if (IsTryBody) 882 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 883 } 884 885 namespace { 886 /// RAII object to indicate that codegen is copying the value representation 887 /// instead of the object representation. Useful when copying a struct or 888 /// class which has uninitialized members and we're only performing 889 /// lvalue-to-rvalue conversion on the object but not its members. 890 class CopyingValueRepresentation { 891 public: 892 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 893 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 894 CGF.SanOpts.set(SanitizerKind::Bool, false); 895 CGF.SanOpts.set(SanitizerKind::Enum, false); 896 } 897 ~CopyingValueRepresentation() { 898 CGF.SanOpts = OldSanOpts; 899 } 900 private: 901 CodeGenFunction &CGF; 902 SanitizerSet OldSanOpts; 903 }; 904 } // end anonymous namespace 905 906 namespace { 907 class FieldMemcpyizer { 908 public: 909 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 910 const VarDecl *SrcRec) 911 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 912 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 913 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 914 LastFieldOffset(0), LastAddedFieldIndex(0) {} 915 916 bool isMemcpyableField(FieldDecl *F) const { 917 // Never memcpy fields when we are adding poisoned paddings. 918 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 919 return false; 920 Qualifiers Qual = F->getType().getQualifiers(); 921 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 922 return false; 923 return true; 924 } 925 926 void addMemcpyableField(FieldDecl *F) { 927 if (F->isZeroSize(CGF.getContext())) 928 return; 929 if (!FirstField) 930 addInitialField(F); 931 else 932 addNextField(F); 933 } 934 935 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 936 ASTContext &Ctx = CGF.getContext(); 937 unsigned LastFieldSize = 938 LastField->isBitField() 939 ? LastField->getBitWidthValue(Ctx) 940 : Ctx.toBits( 941 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width); 942 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 943 FirstByteOffset + Ctx.getCharWidth() - 1; 944 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 945 return MemcpySize; 946 } 947 948 void emitMemcpy() { 949 // Give the subclass a chance to bail out if it feels the memcpy isn't 950 // worth it (e.g. Hasn't aggregated enough data). 951 if (!FirstField) { 952 return; 953 } 954 955 uint64_t FirstByteOffset; 956 if (FirstField->isBitField()) { 957 const CGRecordLayout &RL = 958 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 959 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 960 // FirstFieldOffset is not appropriate for bitfields, 961 // we need to use the storage offset instead. 962 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 963 } else { 964 FirstByteOffset = FirstFieldOffset; 965 } 966 967 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 968 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 969 Address ThisPtr = CGF.LoadCXXThisAddress(); 970 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 971 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 972 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 973 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 974 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 975 976 emitMemcpyIR( 977 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF), 978 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF), 979 MemcpySize); 980 reset(); 981 } 982 983 void reset() { 984 FirstField = nullptr; 985 } 986 987 protected: 988 CodeGenFunction &CGF; 989 const CXXRecordDecl *ClassDecl; 990 991 private: 992 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 993 DestPtr = DestPtr.withElementType(CGF.Int8Ty); 994 SrcPtr = SrcPtr.withElementType(CGF.Int8Ty); 995 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 996 } 997 998 void addInitialField(FieldDecl *F) { 999 FirstField = F; 1000 LastField = F; 1001 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1002 LastFieldOffset = FirstFieldOffset; 1003 LastAddedFieldIndex = F->getFieldIndex(); 1004 } 1005 1006 void addNextField(FieldDecl *F) { 1007 // For the most part, the following invariant will hold: 1008 // F->getFieldIndex() == LastAddedFieldIndex + 1 1009 // The one exception is that Sema won't add a copy-initializer for an 1010 // unnamed bitfield, which will show up here as a gap in the sequence. 1011 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1012 "Cannot aggregate fields out of order."); 1013 LastAddedFieldIndex = F->getFieldIndex(); 1014 1015 // The 'first' and 'last' fields are chosen by offset, rather than field 1016 // index. This allows the code to support bitfields, as well as regular 1017 // fields. 1018 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1019 if (FOffset < FirstFieldOffset) { 1020 FirstField = F; 1021 FirstFieldOffset = FOffset; 1022 } else if (FOffset >= LastFieldOffset) { 1023 LastField = F; 1024 LastFieldOffset = FOffset; 1025 } 1026 } 1027 1028 const VarDecl *SrcRec; 1029 const ASTRecordLayout &RecLayout; 1030 FieldDecl *FirstField; 1031 FieldDecl *LastField; 1032 uint64_t FirstFieldOffset, LastFieldOffset; 1033 unsigned LastAddedFieldIndex; 1034 }; 1035 1036 class ConstructorMemcpyizer : public FieldMemcpyizer { 1037 private: 1038 /// Get source argument for copy constructor. Returns null if not a copy 1039 /// constructor. 1040 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1041 const CXXConstructorDecl *CD, 1042 FunctionArgList &Args) { 1043 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1044 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1045 return nullptr; 1046 } 1047 1048 // Returns true if a CXXCtorInitializer represents a member initialization 1049 // that can be rolled into a memcpy. 1050 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1051 if (!MemcpyableCtor) 1052 return false; 1053 FieldDecl *Field = MemberInit->getMember(); 1054 assert(Field && "No field for member init."); 1055 QualType FieldType = Field->getType(); 1056 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1057 1058 // Bail out on non-memcpyable, not-trivially-copyable members. 1059 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1060 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1061 FieldType->isReferenceType())) 1062 return false; 1063 1064 // Bail out on volatile fields. 1065 if (!isMemcpyableField(Field)) 1066 return false; 1067 1068 // Otherwise we're good. 1069 return true; 1070 } 1071 1072 public: 1073 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1074 FunctionArgList &Args) 1075 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1076 ConstructorDecl(CD), 1077 MemcpyableCtor(CD->isDefaulted() && 1078 CD->isCopyOrMoveConstructor() && 1079 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1080 Args(Args) { } 1081 1082 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1083 if (isMemberInitMemcpyable(MemberInit)) { 1084 AggregatedInits.push_back(MemberInit); 1085 addMemcpyableField(MemberInit->getMember()); 1086 } else { 1087 emitAggregatedInits(); 1088 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1089 ConstructorDecl, Args); 1090 } 1091 } 1092 1093 void emitAggregatedInits() { 1094 if (AggregatedInits.size() <= 1) { 1095 // This memcpy is too small to be worthwhile. Fall back on default 1096 // codegen. 1097 if (!AggregatedInits.empty()) { 1098 CopyingValueRepresentation CVR(CGF); 1099 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1100 AggregatedInits[0], ConstructorDecl, Args); 1101 AggregatedInits.clear(); 1102 } 1103 reset(); 1104 return; 1105 } 1106 1107 pushEHDestructors(); 1108 emitMemcpy(); 1109 AggregatedInits.clear(); 1110 } 1111 1112 void pushEHDestructors() { 1113 Address ThisPtr = CGF.LoadCXXThisAddress(); 1114 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1115 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1116 1117 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1118 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1119 QualType FieldType = MemberInit->getAnyMember()->getType(); 1120 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1121 if (!CGF.needsEHCleanup(dtorKind)) 1122 continue; 1123 LValue FieldLHS = LHS; 1124 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1125 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType); 1126 } 1127 } 1128 1129 void finish() { 1130 emitAggregatedInits(); 1131 } 1132 1133 private: 1134 const CXXConstructorDecl *ConstructorDecl; 1135 bool MemcpyableCtor; 1136 FunctionArgList &Args; 1137 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1138 }; 1139 1140 class AssignmentMemcpyizer : public FieldMemcpyizer { 1141 private: 1142 // Returns the memcpyable field copied by the given statement, if one 1143 // exists. Otherwise returns null. 1144 FieldDecl *getMemcpyableField(Stmt *S) { 1145 if (!AssignmentsMemcpyable) 1146 return nullptr; 1147 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1148 // Recognise trivial assignments. 1149 if (BO->getOpcode() != BO_Assign) 1150 return nullptr; 1151 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1152 if (!ME) 1153 return nullptr; 1154 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1155 if (!Field || !isMemcpyableField(Field)) 1156 return nullptr; 1157 Stmt *RHS = BO->getRHS(); 1158 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1159 RHS = EC->getSubExpr(); 1160 if (!RHS) 1161 return nullptr; 1162 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1163 if (ME2->getMemberDecl() == Field) 1164 return Field; 1165 } 1166 return nullptr; 1167 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1168 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1169 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1170 return nullptr; 1171 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1172 if (!IOA) 1173 return nullptr; 1174 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1175 if (!Field || !isMemcpyableField(Field)) 1176 return nullptr; 1177 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1178 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1179 return nullptr; 1180 return Field; 1181 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1182 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1183 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1184 return nullptr; 1185 Expr *DstPtr = CE->getArg(0); 1186 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1187 DstPtr = DC->getSubExpr(); 1188 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1189 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1190 return nullptr; 1191 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1192 if (!ME) 1193 return nullptr; 1194 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1195 if (!Field || !isMemcpyableField(Field)) 1196 return nullptr; 1197 Expr *SrcPtr = CE->getArg(1); 1198 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1199 SrcPtr = SC->getSubExpr(); 1200 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1201 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1202 return nullptr; 1203 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1204 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1205 return nullptr; 1206 return Field; 1207 } 1208 1209 return nullptr; 1210 } 1211 1212 bool AssignmentsMemcpyable; 1213 SmallVector<Stmt*, 16> AggregatedStmts; 1214 1215 public: 1216 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1217 FunctionArgList &Args) 1218 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1219 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1220 assert(Args.size() == 2); 1221 } 1222 1223 void emitAssignment(Stmt *S) { 1224 FieldDecl *F = getMemcpyableField(S); 1225 if (F) { 1226 addMemcpyableField(F); 1227 AggregatedStmts.push_back(S); 1228 } else { 1229 emitAggregatedStmts(); 1230 CGF.EmitStmt(S); 1231 } 1232 } 1233 1234 void emitAggregatedStmts() { 1235 if (AggregatedStmts.size() <= 1) { 1236 if (!AggregatedStmts.empty()) { 1237 CopyingValueRepresentation CVR(CGF); 1238 CGF.EmitStmt(AggregatedStmts[0]); 1239 } 1240 reset(); 1241 } 1242 1243 emitMemcpy(); 1244 AggregatedStmts.clear(); 1245 } 1246 1247 void finish() { 1248 emitAggregatedStmts(); 1249 } 1250 }; 1251 } // end anonymous namespace 1252 1253 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1254 const Type *BaseType = BaseInit->getBaseClass(); 1255 const auto *BaseClassDecl = 1256 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1257 return BaseClassDecl->isDynamicClass(); 1258 } 1259 1260 /// EmitCtorPrologue - This routine generates necessary code to initialize 1261 /// base classes and non-static data members belonging to this constructor. 1262 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1263 CXXCtorType CtorType, 1264 FunctionArgList &Args) { 1265 if (CD->isDelegatingConstructor()) 1266 return EmitDelegatingCXXConstructorCall(CD, Args); 1267 1268 const CXXRecordDecl *ClassDecl = CD->getParent(); 1269 1270 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1271 E = CD->init_end(); 1272 1273 // Virtual base initializers first, if any. They aren't needed if: 1274 // - This is a base ctor variant 1275 // - There are no vbases 1276 // - The class is abstract, so a complete object of it cannot be constructed 1277 // 1278 // The check for an abstract class is necessary because sema may not have 1279 // marked virtual base destructors referenced. 1280 bool ConstructVBases = CtorType != Ctor_Base && 1281 ClassDecl->getNumVBases() != 0 && 1282 !ClassDecl->isAbstract(); 1283 1284 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1285 // constructor of a class with virtual bases takes an additional parameter to 1286 // conditionally construct the virtual bases. Emit that check here. 1287 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1288 if (ConstructVBases && 1289 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1290 BaseCtorContinueBB = 1291 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1292 assert(BaseCtorContinueBB); 1293 } 1294 1295 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1296 if (!ConstructVBases) 1297 continue; 1298 SaveAndRestore ThisRAII(CXXThisValue); 1299 if (CGM.getCodeGenOpts().StrictVTablePointers && 1300 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1301 isInitializerOfDynamicClass(*B)) 1302 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1303 EmitBaseInitializer(*this, ClassDecl, *B); 1304 } 1305 1306 if (BaseCtorContinueBB) { 1307 // Complete object handler should continue to the remaining initializers. 1308 Builder.CreateBr(BaseCtorContinueBB); 1309 EmitBlock(BaseCtorContinueBB); 1310 } 1311 1312 // Then, non-virtual base initializers. 1313 for (; B != E && (*B)->isBaseInitializer(); B++) { 1314 assert(!(*B)->isBaseVirtual()); 1315 SaveAndRestore ThisRAII(CXXThisValue); 1316 if (CGM.getCodeGenOpts().StrictVTablePointers && 1317 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1318 isInitializerOfDynamicClass(*B)) 1319 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1320 EmitBaseInitializer(*this, ClassDecl, *B); 1321 } 1322 1323 InitializeVTablePointers(ClassDecl); 1324 1325 // And finally, initialize class members. 1326 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1327 ConstructorMemcpyizer CM(*this, CD, Args); 1328 for (; B != E; B++) { 1329 CXXCtorInitializer *Member = (*B); 1330 assert(!Member->isBaseInitializer()); 1331 assert(Member->isAnyMemberInitializer() && 1332 "Delegating initializer on non-delegating constructor"); 1333 CM.addMemberInitializer(Member); 1334 } 1335 CM.finish(); 1336 } 1337 1338 static bool 1339 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1340 1341 static bool 1342 HasTrivialDestructorBody(ASTContext &Context, 1343 const CXXRecordDecl *BaseClassDecl, 1344 const CXXRecordDecl *MostDerivedClassDecl) 1345 { 1346 // If the destructor is trivial we don't have to check anything else. 1347 if (BaseClassDecl->hasTrivialDestructor()) 1348 return true; 1349 1350 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1351 return false; 1352 1353 // Check fields. 1354 for (const auto *Field : BaseClassDecl->fields()) 1355 if (!FieldHasTrivialDestructorBody(Context, Field)) 1356 return false; 1357 1358 // Check non-virtual bases. 1359 for (const auto &I : BaseClassDecl->bases()) { 1360 if (I.isVirtual()) 1361 continue; 1362 1363 const CXXRecordDecl *NonVirtualBase = 1364 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1365 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1366 MostDerivedClassDecl)) 1367 return false; 1368 } 1369 1370 if (BaseClassDecl == MostDerivedClassDecl) { 1371 // Check virtual bases. 1372 for (const auto &I : BaseClassDecl->vbases()) { 1373 const CXXRecordDecl *VirtualBase = 1374 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1375 if (!HasTrivialDestructorBody(Context, VirtualBase, 1376 MostDerivedClassDecl)) 1377 return false; 1378 } 1379 } 1380 1381 return true; 1382 } 1383 1384 static bool 1385 FieldHasTrivialDestructorBody(ASTContext &Context, 1386 const FieldDecl *Field) 1387 { 1388 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1389 1390 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1391 if (!RT) 1392 return true; 1393 1394 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1395 1396 // The destructor for an implicit anonymous union member is never invoked. 1397 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1398 return false; 1399 1400 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1401 } 1402 1403 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1404 /// any vtable pointers before calling this destructor. 1405 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1406 const CXXDestructorDecl *Dtor) { 1407 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1408 if (!ClassDecl->isDynamicClass()) 1409 return true; 1410 1411 // For a final class, the vtable pointer is known to already point to the 1412 // class's vtable. 1413 if (ClassDecl->isEffectivelyFinal()) 1414 return true; 1415 1416 if (!Dtor->hasTrivialBody()) 1417 return false; 1418 1419 // Check the fields. 1420 for (const auto *Field : ClassDecl->fields()) 1421 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1422 return false; 1423 1424 return true; 1425 } 1426 1427 /// EmitDestructorBody - Emits the body of the current destructor. 1428 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1429 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1430 CXXDtorType DtorType = CurGD.getDtorType(); 1431 1432 // For an abstract class, non-base destructors are never used (and can't 1433 // be emitted in general, because vbase dtors may not have been validated 1434 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1435 // in fact emit references to them from other compilations, so emit them 1436 // as functions containing a trap instruction. 1437 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1438 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1439 TrapCall->setDoesNotReturn(); 1440 TrapCall->setDoesNotThrow(); 1441 Builder.CreateUnreachable(); 1442 Builder.ClearInsertionPoint(); 1443 return; 1444 } 1445 1446 Stmt *Body = Dtor->getBody(); 1447 if (Body) 1448 incrementProfileCounter(Body); 1449 1450 // The call to operator delete in a deleting destructor happens 1451 // outside of the function-try-block, which means it's always 1452 // possible to delegate the destructor body to the complete 1453 // destructor. Do so. 1454 if (DtorType == Dtor_Deleting) { 1455 RunCleanupsScope DtorEpilogue(*this); 1456 EnterDtorCleanups(Dtor, Dtor_Deleting); 1457 if (HaveInsertPoint()) { 1458 QualType ThisTy = Dtor->getFunctionObjectParameterType(); 1459 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1460 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1461 } 1462 return; 1463 } 1464 1465 // If the body is a function-try-block, enter the try before 1466 // anything else. 1467 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1468 if (isTryBody) 1469 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1470 EmitAsanPrologueOrEpilogue(false); 1471 1472 // Enter the epilogue cleanups. 1473 RunCleanupsScope DtorEpilogue(*this); 1474 1475 // If this is the complete variant, just invoke the base variant; 1476 // the epilogue will destruct the virtual bases. But we can't do 1477 // this optimization if the body is a function-try-block, because 1478 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1479 // always delegate because we might not have a definition in this TU. 1480 switch (DtorType) { 1481 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1482 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1483 1484 case Dtor_Complete: 1485 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1486 "can't emit a dtor without a body for non-Microsoft ABIs"); 1487 1488 // Enter the cleanup scopes for virtual bases. 1489 EnterDtorCleanups(Dtor, Dtor_Complete); 1490 1491 if (!isTryBody) { 1492 QualType ThisTy = Dtor->getFunctionObjectParameterType(); 1493 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1494 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1495 break; 1496 } 1497 1498 // Fallthrough: act like we're in the base variant. 1499 [[fallthrough]]; 1500 1501 case Dtor_Base: 1502 assert(Body); 1503 1504 // Enter the cleanup scopes for fields and non-virtual bases. 1505 EnterDtorCleanups(Dtor, Dtor_Base); 1506 1507 // Initialize the vtable pointers before entering the body. 1508 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1509 // Insert the llvm.launder.invariant.group intrinsic before initializing 1510 // the vptrs to cancel any previous assumptions we might have made. 1511 if (CGM.getCodeGenOpts().StrictVTablePointers && 1512 CGM.getCodeGenOpts().OptimizationLevel > 0) 1513 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1514 InitializeVTablePointers(Dtor->getParent()); 1515 } 1516 1517 if (isTryBody) 1518 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1519 else if (Body) 1520 EmitStmt(Body); 1521 else { 1522 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1523 // nothing to do besides what's in the epilogue 1524 } 1525 // -fapple-kext must inline any call to this dtor into 1526 // the caller's body. 1527 if (getLangOpts().AppleKext) 1528 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1529 1530 break; 1531 } 1532 1533 // Jump out through the epilogue cleanups. 1534 DtorEpilogue.ForceCleanup(); 1535 1536 // Exit the try if applicable. 1537 if (isTryBody) 1538 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1539 } 1540 1541 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1542 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1543 const Stmt *RootS = AssignOp->getBody(); 1544 assert(isa<CompoundStmt>(RootS) && 1545 "Body of an implicit assignment operator should be compound stmt."); 1546 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1547 1548 LexicalScope Scope(*this, RootCS->getSourceRange()); 1549 1550 incrementProfileCounter(RootCS); 1551 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1552 for (auto *I : RootCS->body()) 1553 AM.emitAssignment(I); 1554 AM.finish(); 1555 } 1556 1557 namespace { 1558 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1559 const CXXDestructorDecl *DD) { 1560 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1561 return CGF.EmitScalarExpr(ThisArg); 1562 return CGF.LoadCXXThis(); 1563 } 1564 1565 /// Call the operator delete associated with the current destructor. 1566 struct CallDtorDelete final : EHScopeStack::Cleanup { 1567 CallDtorDelete() {} 1568 1569 void Emit(CodeGenFunction &CGF, Flags flags) override { 1570 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1571 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1572 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1573 LoadThisForDtorDelete(CGF, Dtor), 1574 CGF.getContext().getTagDeclType(ClassDecl)); 1575 } 1576 }; 1577 1578 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1579 llvm::Value *ShouldDeleteCondition, 1580 bool ReturnAfterDelete) { 1581 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1582 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1583 llvm::Value *ShouldCallDelete 1584 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1585 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1586 1587 CGF.EmitBlock(callDeleteBB); 1588 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1589 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1590 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1591 LoadThisForDtorDelete(CGF, Dtor), 1592 CGF.getContext().getTagDeclType(ClassDecl)); 1593 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1594 ReturnAfterDelete && 1595 "unexpected value for ReturnAfterDelete"); 1596 if (ReturnAfterDelete) 1597 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1598 else 1599 CGF.Builder.CreateBr(continueBB); 1600 1601 CGF.EmitBlock(continueBB); 1602 } 1603 1604 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1605 llvm::Value *ShouldDeleteCondition; 1606 1607 public: 1608 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1609 : ShouldDeleteCondition(ShouldDeleteCondition) { 1610 assert(ShouldDeleteCondition != nullptr); 1611 } 1612 1613 void Emit(CodeGenFunction &CGF, Flags flags) override { 1614 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1615 /*ReturnAfterDelete*/false); 1616 } 1617 }; 1618 1619 class DestroyField final : public EHScopeStack::Cleanup { 1620 const FieldDecl *field; 1621 CodeGenFunction::Destroyer *destroyer; 1622 bool useEHCleanupForArray; 1623 1624 public: 1625 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1626 bool useEHCleanupForArray) 1627 : field(field), destroyer(destroyer), 1628 useEHCleanupForArray(useEHCleanupForArray) {} 1629 1630 void Emit(CodeGenFunction &CGF, Flags flags) override { 1631 // Find the address of the field. 1632 Address thisValue = CGF.LoadCXXThisAddress(); 1633 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1634 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1635 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1636 assert(LV.isSimple()); 1637 1638 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer, 1639 flags.isForNormalCleanup() && useEHCleanupForArray); 1640 } 1641 }; 1642 1643 class DeclAsInlineDebugLocation { 1644 CGDebugInfo *DI; 1645 llvm::MDNode *InlinedAt; 1646 std::optional<ApplyDebugLocation> Location; 1647 1648 public: 1649 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl) 1650 : DI(CGF.getDebugInfo()) { 1651 if (!DI) 1652 return; 1653 InlinedAt = DI->getInlinedAt(); 1654 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation()); 1655 Location.emplace(CGF, Decl.getLocation()); 1656 } 1657 1658 ~DeclAsInlineDebugLocation() { 1659 if (!DI) 1660 return; 1661 Location.reset(); 1662 DI->setInlinedAt(InlinedAt); 1663 } 1664 }; 1665 1666 static void EmitSanitizerDtorCallback( 1667 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr, 1668 std::optional<CharUnits::QuantityType> PoisonSize = {}) { 1669 CodeGenFunction::SanitizerScope SanScope(&CGF); 1670 // Pass in void pointer and size of region as arguments to runtime 1671 // function 1672 SmallVector<llvm::Value *, 2> Args = {Ptr}; 1673 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy}; 1674 1675 if (PoisonSize.has_value()) { 1676 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize)); 1677 ArgTypes.emplace_back(CGF.SizeTy); 1678 } 1679 1680 llvm::FunctionType *FnType = 1681 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1682 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name); 1683 1684 CGF.EmitNounwindRuntimeCall(Fn, Args); 1685 } 1686 1687 static void 1688 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1689 CharUnits::QuantityType PoisonSize) { 1690 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr, 1691 PoisonSize); 1692 } 1693 1694 /// Poison base class with a trivial destructor. 1695 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup { 1696 const CXXRecordDecl *BaseClass; 1697 bool BaseIsVirtual; 1698 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual) 1699 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 1700 1701 void Emit(CodeGenFunction &CGF, Flags flags) override { 1702 const CXXRecordDecl *DerivedClass = 1703 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 1704 1705 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass( 1706 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual); 1707 1708 const ASTRecordLayout &BaseLayout = 1709 CGF.getContext().getASTRecordLayout(BaseClass); 1710 CharUnits BaseSize = BaseLayout.getSize(); 1711 1712 if (!BaseSize.isPositive()) 1713 return; 1714 1715 // Use the base class declaration location as inline DebugLocation. All 1716 // fields of the class are destroyed. 1717 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass); 1718 EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(), 1719 BaseSize.getQuantity()); 1720 1721 // Prevent the current stack frame from disappearing from the stack trace. 1722 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1723 } 1724 }; 1725 1726 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup { 1727 const CXXDestructorDecl *Dtor; 1728 unsigned StartIndex; 1729 unsigned EndIndex; 1730 1731 public: 1732 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex, 1733 unsigned EndIndex) 1734 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {} 1735 1736 // Generate function call for handling object poisoning. 1737 // Disables tail call elimination, to prevent the current stack frame 1738 // from disappearing from the stack trace. 1739 void Emit(CodeGenFunction &CGF, Flags flags) override { 1740 const ASTContext &Context = CGF.getContext(); 1741 const ASTRecordLayout &Layout = 1742 Context.getASTRecordLayout(Dtor->getParent()); 1743 1744 // It's a first trivial field so it should be at the begining of a char, 1745 // still round up start offset just in case. 1746 CharUnits PoisonStart = Context.toCharUnitsFromBits( 1747 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1); 1748 llvm::ConstantInt *OffsetSizePtr = 1749 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity()); 1750 1751 llvm::Value *OffsetPtr = 1752 CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr); 1753 1754 CharUnits PoisonEnd; 1755 if (EndIndex >= Layout.getFieldCount()) { 1756 PoisonEnd = Layout.getNonVirtualSize(); 1757 } else { 1758 PoisonEnd = 1759 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex)); 1760 } 1761 CharUnits PoisonSize = PoisonEnd - PoisonStart; 1762 if (!PoisonSize.isPositive()) 1763 return; 1764 1765 // Use the top field declaration location as inline DebugLocation. 1766 DeclAsInlineDebugLocation InlineHere( 1767 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex)); 1768 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity()); 1769 1770 // Prevent the current stack frame from disappearing from the stack trace. 1771 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1772 } 1773 }; 1774 1775 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1776 const CXXDestructorDecl *Dtor; 1777 1778 public: 1779 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1780 1781 // Generate function call for handling vtable pointer poisoning. 1782 void Emit(CodeGenFunction &CGF, Flags flags) override { 1783 assert(Dtor->getParent()->isDynamicClass()); 1784 (void)Dtor; 1785 // Poison vtable and vtable ptr if they exist for this class. 1786 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1787 1788 // Pass in void pointer and size of region as arguments to runtime 1789 // function 1790 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr", 1791 VTablePtr); 1792 } 1793 }; 1794 1795 class SanitizeDtorCleanupBuilder { 1796 ASTContext &Context; 1797 EHScopeStack &EHStack; 1798 const CXXDestructorDecl *DD; 1799 std::optional<unsigned> StartIndex; 1800 1801 public: 1802 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack, 1803 const CXXDestructorDecl *DD) 1804 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {} 1805 void PushCleanupForField(const FieldDecl *Field) { 1806 if (Field->isZeroSize(Context)) 1807 return; 1808 unsigned FieldIndex = Field->getFieldIndex(); 1809 if (FieldHasTrivialDestructorBody(Context, Field)) { 1810 if (!StartIndex) 1811 StartIndex = FieldIndex; 1812 } else if (StartIndex) { 1813 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1814 *StartIndex, FieldIndex); 1815 StartIndex = std::nullopt; 1816 } 1817 } 1818 void End() { 1819 if (StartIndex) 1820 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1821 *StartIndex, -1); 1822 } 1823 }; 1824 } // end anonymous namespace 1825 1826 /// Emit all code that comes at the end of class's 1827 /// destructor. This is to call destructors on members and base classes 1828 /// in reverse order of their construction. 1829 /// 1830 /// For a deleting destructor, this also handles the case where a destroying 1831 /// operator delete completely overrides the definition. 1832 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1833 CXXDtorType DtorType) { 1834 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1835 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1836 1837 // The deleting-destructor phase just needs to call the appropriate 1838 // operator delete that Sema picked up. 1839 if (DtorType == Dtor_Deleting) { 1840 assert(DD->getOperatorDelete() && 1841 "operator delete missing - EnterDtorCleanups"); 1842 if (CXXStructorImplicitParamValue) { 1843 // If there is an implicit param to the deleting dtor, it's a boolean 1844 // telling whether this is a deleting destructor. 1845 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1846 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1847 /*ReturnAfterDelete*/true); 1848 else 1849 EHStack.pushCleanup<CallDtorDeleteConditional>( 1850 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1851 } else { 1852 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1853 const CXXRecordDecl *ClassDecl = DD->getParent(); 1854 EmitDeleteCall(DD->getOperatorDelete(), 1855 LoadThisForDtorDelete(*this, DD), 1856 getContext().getTagDeclType(ClassDecl)); 1857 EmitBranchThroughCleanup(ReturnBlock); 1858 } else { 1859 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1860 } 1861 } 1862 return; 1863 } 1864 1865 const CXXRecordDecl *ClassDecl = DD->getParent(); 1866 1867 // Unions have no bases and do not call field destructors. 1868 if (ClassDecl->isUnion()) 1869 return; 1870 1871 // The complete-destructor phase just destructs all the virtual bases. 1872 if (DtorType == Dtor_Complete) { 1873 // Poison the vtable pointer such that access after the base 1874 // and member destructors are invoked is invalid. 1875 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1876 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1877 ClassDecl->isPolymorphic()) 1878 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1879 1880 // We push them in the forward order so that they'll be popped in 1881 // the reverse order. 1882 for (const auto &Base : ClassDecl->vbases()) { 1883 auto *BaseClassDecl = 1884 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1885 1886 if (BaseClassDecl->hasTrivialDestructor()) { 1887 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class 1888 // memory. For non-trival base classes the same is done in the class 1889 // destructor. 1890 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1891 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1892 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1893 BaseClassDecl, 1894 /*BaseIsVirtual*/ true); 1895 } else { 1896 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1897 /*BaseIsVirtual*/ true); 1898 } 1899 } 1900 1901 return; 1902 } 1903 1904 assert(DtorType == Dtor_Base); 1905 // Poison the vtable pointer if it has no virtual bases, but inherits 1906 // virtual functions. 1907 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1908 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1909 ClassDecl->isPolymorphic()) 1910 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1911 1912 // Destroy non-virtual bases. 1913 for (const auto &Base : ClassDecl->bases()) { 1914 // Ignore virtual bases. 1915 if (Base.isVirtual()) 1916 continue; 1917 1918 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1919 1920 if (BaseClassDecl->hasTrivialDestructor()) { 1921 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1922 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1923 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1924 BaseClassDecl, 1925 /*BaseIsVirtual*/ false); 1926 } else { 1927 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1928 /*BaseIsVirtual*/ false); 1929 } 1930 } 1931 1932 // Poison fields such that access after their destructors are 1933 // invoked, and before the base class destructor runs, is invalid. 1934 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1935 SanOpts.has(SanitizerKind::Memory); 1936 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD); 1937 1938 // Destroy direct fields. 1939 for (const auto *Field : ClassDecl->fields()) { 1940 if (SanitizeFields) 1941 SanitizeBuilder.PushCleanupForField(Field); 1942 1943 QualType type = Field->getType(); 1944 QualType::DestructionKind dtorKind = type.isDestructedType(); 1945 if (!dtorKind) 1946 continue; 1947 1948 // Anonymous union members do not have their destructors called. 1949 const RecordType *RT = type->getAsUnionType(); 1950 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) 1951 continue; 1952 1953 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1954 EHStack.pushCleanup<DestroyField>( 1955 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup); 1956 } 1957 1958 if (SanitizeFields) 1959 SanitizeBuilder.End(); 1960 } 1961 1962 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1963 /// constructor for each of several members of an array. 1964 /// 1965 /// \param ctor the constructor to call for each element 1966 /// \param arrayType the type of the array to initialize 1967 /// \param arrayBegin an arrayType* 1968 /// \param zeroInitialize true if each element should be 1969 /// zero-initialized before it is constructed 1970 void CodeGenFunction::EmitCXXAggrConstructorCall( 1971 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1972 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1973 bool zeroInitialize) { 1974 QualType elementType; 1975 llvm::Value *numElements = 1976 emitArrayLength(arrayType, elementType, arrayBegin); 1977 1978 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1979 NewPointerIsChecked, zeroInitialize); 1980 } 1981 1982 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1983 /// constructor for each of several members of an array. 1984 /// 1985 /// \param ctor the constructor to call for each element 1986 /// \param numElements the number of elements in the array; 1987 /// may be zero 1988 /// \param arrayBase a T*, where T is the type constructed by ctor 1989 /// \param zeroInitialize true if each element should be 1990 /// zero-initialized before it is constructed 1991 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1992 llvm::Value *numElements, 1993 Address arrayBase, 1994 const CXXConstructExpr *E, 1995 bool NewPointerIsChecked, 1996 bool zeroInitialize) { 1997 // It's legal for numElements to be zero. This can happen both 1998 // dynamically, because x can be zero in 'new A[x]', and statically, 1999 // because of GCC extensions that permit zero-length arrays. There 2000 // are probably legitimate places where we could assume that this 2001 // doesn't happen, but it's not clear that it's worth it. 2002 llvm::BranchInst *zeroCheckBranch = nullptr; 2003 2004 // Optimize for a constant count. 2005 llvm::ConstantInt *constantCount 2006 = dyn_cast<llvm::ConstantInt>(numElements); 2007 if (constantCount) { 2008 // Just skip out if the constant count is zero. 2009 if (constantCount->isZero()) return; 2010 2011 // Otherwise, emit the check. 2012 } else { 2013 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 2014 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 2015 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 2016 EmitBlock(loopBB); 2017 } 2018 2019 // Find the end of the array. 2020 llvm::Type *elementType = arrayBase.getElementType(); 2021 llvm::Value *arrayBegin = arrayBase.getPointer(); 2022 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP( 2023 elementType, arrayBegin, numElements, "arrayctor.end"); 2024 2025 // Enter the loop, setting up a phi for the current location to initialize. 2026 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2027 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 2028 EmitBlock(loopBB); 2029 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 2030 "arrayctor.cur"); 2031 cur->addIncoming(arrayBegin, entryBB); 2032 2033 // Inside the loop body, emit the constructor call on the array element. 2034 2035 // The alignment of the base, adjusted by the size of a single element, 2036 // provides a conservative estimate of the alignment of every element. 2037 // (This assumes we never start tracking offsetted alignments.) 2038 // 2039 // Note that these are complete objects and so we don't need to 2040 // use the non-virtual size or alignment. 2041 QualType type = getContext().getTypeDeclType(ctor->getParent()); 2042 CharUnits eltAlignment = 2043 arrayBase.getAlignment() 2044 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2045 Address curAddr = Address(cur, elementType, eltAlignment); 2046 2047 // Zero initialize the storage, if requested. 2048 if (zeroInitialize) 2049 EmitNullInitialization(curAddr, type); 2050 2051 // C++ [class.temporary]p4: 2052 // There are two contexts in which temporaries are destroyed at a different 2053 // point than the end of the full-expression. The first context is when a 2054 // default constructor is called to initialize an element of an array. 2055 // If the constructor has one or more default arguments, the destruction of 2056 // every temporary created in a default argument expression is sequenced 2057 // before the construction of the next array element, if any. 2058 2059 { 2060 RunCleanupsScope Scope(*this); 2061 2062 // Evaluate the constructor and its arguments in a regular 2063 // partial-destroy cleanup. 2064 if (getLangOpts().Exceptions && 2065 !ctor->getParent()->hasTrivialDestructor()) { 2066 Destroyer *destroyer = destroyCXXObject; 2067 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2068 *destroyer); 2069 } 2070 auto currAVS = AggValueSlot::forAddr( 2071 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 2072 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 2073 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 2074 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 2075 : AggValueSlot::IsNotSanitizerChecked); 2076 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2077 /*Delegating=*/false, currAVS, E); 2078 } 2079 2080 // Go to the next element. 2081 llvm::Value *next = Builder.CreateInBoundsGEP( 2082 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next"); 2083 cur->addIncoming(next, Builder.GetInsertBlock()); 2084 2085 // Check whether that's the end of the loop. 2086 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2087 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2088 Builder.CreateCondBr(done, contBB, loopBB); 2089 2090 // Patch the earlier check to skip over the loop. 2091 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2092 2093 EmitBlock(contBB); 2094 } 2095 2096 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2097 Address addr, 2098 QualType type) { 2099 const RecordType *rtype = type->castAs<RecordType>(); 2100 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2101 const CXXDestructorDecl *dtor = record->getDestructor(); 2102 assert(!dtor->isTrivial()); 2103 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2104 /*Delegating=*/false, addr, type); 2105 } 2106 2107 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2108 CXXCtorType Type, 2109 bool ForVirtualBase, 2110 bool Delegating, 2111 AggValueSlot ThisAVS, 2112 const CXXConstructExpr *E) { 2113 CallArgList Args; 2114 Address This = ThisAVS.getAddress(); 2115 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2116 LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace(); 2117 llvm::Value *ThisPtr = This.getPointer(); 2118 2119 if (SlotAS != ThisAS) { 2120 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2121 llvm::Type *NewType = 2122 llvm::PointerType::get(getLLVMContext(), TargetThisAS); 2123 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2124 ThisAS, SlotAS, NewType); 2125 } 2126 2127 // Push the this ptr. 2128 Args.add(RValue::get(ThisPtr), D->getThisType()); 2129 2130 // If this is a trivial constructor, emit a memcpy now before we lose 2131 // the alignment information on the argument. 2132 // FIXME: It would be better to preserve alignment information into CallArg. 2133 if (isMemcpyEquivalentSpecialMember(D)) { 2134 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2135 2136 const Expr *Arg = E->getArg(0); 2137 LValue Src = EmitLValue(Arg); 2138 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2139 LValue Dest = MakeAddrLValue(This, DestTy); 2140 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2141 return; 2142 } 2143 2144 // Add the rest of the user-supplied arguments. 2145 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2146 EvaluationOrder Order = E->isListInitialization() 2147 ? EvaluationOrder::ForceLeftToRight 2148 : EvaluationOrder::Default; 2149 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2150 /*ParamsToSkip*/ 0, Order); 2151 2152 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2153 ThisAVS.mayOverlap(), E->getExprLoc(), 2154 ThisAVS.isSanitizerChecked()); 2155 } 2156 2157 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2158 const CXXConstructorDecl *Ctor, 2159 CXXCtorType Type, CallArgList &Args) { 2160 // We can't forward a variadic call. 2161 if (Ctor->isVariadic()) 2162 return false; 2163 2164 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2165 // If the parameters are callee-cleanup, it's not safe to forward. 2166 for (auto *P : Ctor->parameters()) 2167 if (P->needsDestruction(CGF.getContext())) 2168 return false; 2169 2170 // Likewise if they're inalloca. 2171 const CGFunctionInfo &Info = 2172 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2173 if (Info.usesInAlloca()) 2174 return false; 2175 } 2176 2177 // Anything else should be OK. 2178 return true; 2179 } 2180 2181 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2182 CXXCtorType Type, 2183 bool ForVirtualBase, 2184 bool Delegating, 2185 Address This, 2186 CallArgList &Args, 2187 AggValueSlot::Overlap_t Overlap, 2188 SourceLocation Loc, 2189 bool NewPointerIsChecked) { 2190 const CXXRecordDecl *ClassDecl = D->getParent(); 2191 2192 if (!NewPointerIsChecked) 2193 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2194 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2195 2196 if (D->isTrivial() && D->isDefaultConstructor()) { 2197 assert(Args.size() == 1 && "trivial default ctor with args"); 2198 return; 2199 } 2200 2201 // If this is a trivial constructor, just emit what's needed. If this is a 2202 // union copy constructor, we must emit a memcpy, because the AST does not 2203 // model that copy. 2204 if (isMemcpyEquivalentSpecialMember(D)) { 2205 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2206 2207 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2208 Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy), 2209 CGM.getNaturalTypeAlignment(SrcTy)); 2210 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2211 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2212 LValue DestLVal = MakeAddrLValue(This, DestTy); 2213 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2214 return; 2215 } 2216 2217 bool PassPrototypeArgs = true; 2218 // Check whether we can actually emit the constructor before trying to do so. 2219 if (auto Inherited = D->getInheritedConstructor()) { 2220 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2221 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2222 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2223 Delegating, Args); 2224 return; 2225 } 2226 } 2227 2228 // Insert any ABI-specific implicit constructor arguments. 2229 CGCXXABI::AddedStructorArgCounts ExtraArgs = 2230 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2231 Delegating, Args); 2232 2233 // Emit the call. 2234 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2235 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2236 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2237 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2238 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc); 2239 2240 // Generate vtable assumptions if we're constructing a complete object 2241 // with a vtable. We don't do this for base subobjects for two reasons: 2242 // first, it's incorrect for classes with virtual bases, and second, we're 2243 // about to overwrite the vptrs anyway. 2244 // We also have to make sure if we can refer to vtable: 2245 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2246 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2247 // sure that definition of vtable is not hidden, 2248 // then we are always safe to refer to it. 2249 // FIXME: It looks like InstCombine is very inefficient on dealing with 2250 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2251 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2252 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2253 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2254 CGM.getCodeGenOpts().StrictVTablePointers) 2255 EmitVTableAssumptionLoads(ClassDecl, This); 2256 } 2257 2258 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2259 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2260 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2261 CallArgList Args; 2262 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2263 2264 // Forward the parameters. 2265 if (InheritedFromVBase && 2266 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2267 // Nothing to do; this construction is not responsible for constructing 2268 // the base class containing the inherited constructor. 2269 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2270 // have constructor variants? 2271 Args.push_back(ThisArg); 2272 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2273 // The inheriting constructor was inlined; just inject its arguments. 2274 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2275 "wrong number of parameters for inherited constructor call"); 2276 Args = CXXInheritedCtorInitExprArgs; 2277 Args[0] = ThisArg; 2278 } else { 2279 // The inheriting constructor was not inlined. Emit delegating arguments. 2280 Args.push_back(ThisArg); 2281 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2282 assert(OuterCtor->getNumParams() == D->getNumParams()); 2283 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2284 2285 for (const auto *Param : OuterCtor->parameters()) { 2286 assert(getContext().hasSameUnqualifiedType( 2287 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2288 Param->getType())); 2289 EmitDelegateCallArg(Args, Param, E->getLocation()); 2290 2291 // Forward __attribute__(pass_object_size). 2292 if (Param->hasAttr<PassObjectSizeAttr>()) { 2293 auto *POSParam = SizeArguments[Param]; 2294 assert(POSParam && "missing pass_object_size value for forwarding"); 2295 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2296 } 2297 } 2298 } 2299 2300 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2301 This, Args, AggValueSlot::MayOverlap, 2302 E->getLocation(), /*NewPointerIsChecked*/true); 2303 } 2304 2305 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2306 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2307 bool Delegating, CallArgList &Args) { 2308 GlobalDecl GD(Ctor, CtorType); 2309 InlinedInheritingConstructorScope Scope(*this, GD); 2310 ApplyInlineDebugLocation DebugScope(*this, GD); 2311 RunCleanupsScope RunCleanups(*this); 2312 2313 // Save the arguments to be passed to the inherited constructor. 2314 CXXInheritedCtorInitExprArgs = Args; 2315 2316 FunctionArgList Params; 2317 QualType RetType = BuildFunctionArgList(CurGD, Params); 2318 FnRetTy = RetType; 2319 2320 // Insert any ABI-specific implicit constructor arguments. 2321 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2322 ForVirtualBase, Delegating, Args); 2323 2324 // Emit a simplified prolog. We only need to emit the implicit params. 2325 assert(Args.size() >= Params.size() && "too few arguments for call"); 2326 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2327 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2328 const RValue &RV = Args[I].getRValue(*this); 2329 assert(!RV.isComplex() && "complex indirect params not supported"); 2330 ParamValue Val = RV.isScalar() 2331 ? ParamValue::forDirect(RV.getScalarVal()) 2332 : ParamValue::forIndirect(RV.getAggregateAddress()); 2333 EmitParmDecl(*Params[I], Val, I + 1); 2334 } 2335 } 2336 2337 // Create a return value slot if the ABI implementation wants one. 2338 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2339 // value instead. 2340 if (!RetType->isVoidType()) 2341 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2342 2343 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2344 CXXThisValue = CXXABIThisValue; 2345 2346 // Directly emit the constructor initializers. 2347 EmitCtorPrologue(Ctor, CtorType, Params); 2348 } 2349 2350 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2351 llvm::Value *VTableGlobal = 2352 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2353 if (!VTableGlobal) 2354 return; 2355 2356 // We can just use the base offset in the complete class. 2357 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2358 2359 if (!NonVirtualOffset.isZero()) 2360 This = 2361 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2362 Vptr.VTableClass, Vptr.NearestVBase); 2363 2364 llvm::Value *VPtrValue = 2365 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2366 llvm::Value *Cmp = 2367 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2368 Builder.CreateAssumption(Cmp); 2369 } 2370 2371 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2372 Address This) { 2373 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2374 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2375 EmitVTableAssumptionLoad(Vptr, This); 2376 } 2377 2378 void 2379 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2380 Address This, Address Src, 2381 const CXXConstructExpr *E) { 2382 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2383 2384 CallArgList Args; 2385 2386 // Push the this ptr. 2387 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2388 2389 // Push the src ptr. 2390 QualType QT = *(FPT->param_type_begin()); 2391 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2392 llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t); 2393 Args.add(RValue::get(SrcVal), QT); 2394 2395 // Skip over first argument (Src). 2396 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2397 /*ParamsToSkip*/ 1); 2398 2399 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2400 /*Delegating*/false, This, Args, 2401 AggValueSlot::MayOverlap, E->getExprLoc(), 2402 /*NewPointerIsChecked*/false); 2403 } 2404 2405 void 2406 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2407 CXXCtorType CtorType, 2408 const FunctionArgList &Args, 2409 SourceLocation Loc) { 2410 CallArgList DelegateArgs; 2411 2412 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2413 assert(I != E && "no parameters to constructor"); 2414 2415 // this 2416 Address This = LoadCXXThisAddress(); 2417 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2418 ++I; 2419 2420 // FIXME: The location of the VTT parameter in the parameter list is 2421 // specific to the Itanium ABI and shouldn't be hardcoded here. 2422 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2423 assert(I != E && "cannot skip vtt parameter, already done with args"); 2424 assert((*I)->getType()->isPointerType() && 2425 "skipping parameter not of vtt type"); 2426 ++I; 2427 } 2428 2429 // Explicit arguments. 2430 for (; I != E; ++I) { 2431 const VarDecl *param = *I; 2432 // FIXME: per-argument source location 2433 EmitDelegateCallArg(DelegateArgs, param, Loc); 2434 } 2435 2436 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2437 /*Delegating=*/true, This, DelegateArgs, 2438 AggValueSlot::MayOverlap, Loc, 2439 /*NewPointerIsChecked=*/true); 2440 } 2441 2442 namespace { 2443 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2444 const CXXDestructorDecl *Dtor; 2445 Address Addr; 2446 CXXDtorType Type; 2447 2448 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2449 CXXDtorType Type) 2450 : Dtor(D), Addr(Addr), Type(Type) {} 2451 2452 void Emit(CodeGenFunction &CGF, Flags flags) override { 2453 // We are calling the destructor from within the constructor. 2454 // Therefore, "this" should have the expected type. 2455 QualType ThisTy = Dtor->getFunctionObjectParameterType(); 2456 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2457 /*Delegating=*/true, Addr, ThisTy); 2458 } 2459 }; 2460 } // end anonymous namespace 2461 2462 void 2463 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2464 const FunctionArgList &Args) { 2465 assert(Ctor->isDelegatingConstructor()); 2466 2467 Address ThisPtr = LoadCXXThisAddress(); 2468 2469 AggValueSlot AggSlot = 2470 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2471 AggValueSlot::IsDestructed, 2472 AggValueSlot::DoesNotNeedGCBarriers, 2473 AggValueSlot::IsNotAliased, 2474 AggValueSlot::MayOverlap, 2475 AggValueSlot::IsNotZeroed, 2476 // Checks are made by the code that calls constructor. 2477 AggValueSlot::IsSanitizerChecked); 2478 2479 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2480 2481 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2482 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2483 CXXDtorType Type = 2484 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2485 2486 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2487 ClassDecl->getDestructor(), 2488 ThisPtr, Type); 2489 } 2490 } 2491 2492 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2493 CXXDtorType Type, 2494 bool ForVirtualBase, 2495 bool Delegating, Address This, 2496 QualType ThisTy) { 2497 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2498 Delegating, This, ThisTy); 2499 } 2500 2501 namespace { 2502 struct CallLocalDtor final : EHScopeStack::Cleanup { 2503 const CXXDestructorDecl *Dtor; 2504 Address Addr; 2505 QualType Ty; 2506 2507 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2508 : Dtor(D), Addr(Addr), Ty(Ty) {} 2509 2510 void Emit(CodeGenFunction &CGF, Flags flags) override { 2511 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2512 /*ForVirtualBase=*/false, 2513 /*Delegating=*/false, Addr, Ty); 2514 } 2515 }; 2516 } // end anonymous namespace 2517 2518 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2519 QualType T, Address Addr) { 2520 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2521 } 2522 2523 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2524 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2525 if (!ClassDecl) return; 2526 if (ClassDecl->hasTrivialDestructor()) return; 2527 2528 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2529 assert(D && D->isUsed() && "destructor not marked as used!"); 2530 PushDestructorCleanup(D, T, Addr); 2531 } 2532 2533 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2534 // Compute the address point. 2535 llvm::Value *VTableAddressPoint = 2536 CGM.getCXXABI().getVTableAddressPointInStructor( 2537 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2538 2539 if (!VTableAddressPoint) 2540 return; 2541 2542 // Compute where to store the address point. 2543 llvm::Value *VirtualOffset = nullptr; 2544 CharUnits NonVirtualOffset = CharUnits::Zero(); 2545 2546 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2547 // We need to use the virtual base offset offset because the virtual base 2548 // might have a different offset in the most derived class. 2549 2550 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2551 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2552 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2553 } else { 2554 // We can just use the base offset in the complete class. 2555 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2556 } 2557 2558 // Apply the offsets. 2559 Address VTableField = LoadCXXThisAddress(); 2560 if (!NonVirtualOffset.isZero() || VirtualOffset) 2561 VTableField = ApplyNonVirtualAndVirtualOffset( 2562 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2563 Vptr.NearestVBase); 2564 2565 // Finally, store the address point. Use the same LLVM types as the field to 2566 // support optimization. 2567 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace(); 2568 llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS); 2569 // vtable field is derived from `this` pointer, therefore they should be in 2570 // the same addr space. Note that this might not be LLVM address space 0. 2571 VTableField = VTableField.withElementType(PtrTy); 2572 2573 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2574 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy); 2575 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2576 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2577 CGM.getCodeGenOpts().StrictVTablePointers) 2578 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2579 } 2580 2581 CodeGenFunction::VPtrsVector 2582 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2583 CodeGenFunction::VPtrsVector VPtrsResult; 2584 VisitedVirtualBasesSetTy VBases; 2585 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2586 /*NearestVBase=*/nullptr, 2587 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2588 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2589 VPtrsResult); 2590 return VPtrsResult; 2591 } 2592 2593 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2594 const CXXRecordDecl *NearestVBase, 2595 CharUnits OffsetFromNearestVBase, 2596 bool BaseIsNonVirtualPrimaryBase, 2597 const CXXRecordDecl *VTableClass, 2598 VisitedVirtualBasesSetTy &VBases, 2599 VPtrsVector &Vptrs) { 2600 // If this base is a non-virtual primary base the address point has already 2601 // been set. 2602 if (!BaseIsNonVirtualPrimaryBase) { 2603 // Initialize the vtable pointer for this base. 2604 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2605 Vptrs.push_back(Vptr); 2606 } 2607 2608 const CXXRecordDecl *RD = Base.getBase(); 2609 2610 // Traverse bases. 2611 for (const auto &I : RD->bases()) { 2612 auto *BaseDecl = 2613 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2614 2615 // Ignore classes without a vtable. 2616 if (!BaseDecl->isDynamicClass()) 2617 continue; 2618 2619 CharUnits BaseOffset; 2620 CharUnits BaseOffsetFromNearestVBase; 2621 bool BaseDeclIsNonVirtualPrimaryBase; 2622 2623 if (I.isVirtual()) { 2624 // Check if we've visited this virtual base before. 2625 if (!VBases.insert(BaseDecl).second) 2626 continue; 2627 2628 const ASTRecordLayout &Layout = 2629 getContext().getASTRecordLayout(VTableClass); 2630 2631 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2632 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2633 BaseDeclIsNonVirtualPrimaryBase = false; 2634 } else { 2635 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2636 2637 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2638 BaseOffsetFromNearestVBase = 2639 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2640 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2641 } 2642 2643 getVTablePointers( 2644 BaseSubobject(BaseDecl, BaseOffset), 2645 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2646 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2647 } 2648 } 2649 2650 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2651 // Ignore classes without a vtable. 2652 if (!RD->isDynamicClass()) 2653 return; 2654 2655 // Initialize the vtable pointers for this class and all of its bases. 2656 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2657 for (const VPtr &Vptr : getVTablePointers(RD)) 2658 InitializeVTablePointer(Vptr); 2659 2660 if (RD->getNumVBases()) 2661 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2662 } 2663 2664 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2665 llvm::Type *VTableTy, 2666 const CXXRecordDecl *RD) { 2667 Address VTablePtrSrc = This.withElementType(VTableTy); 2668 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2669 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2670 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2671 2672 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2673 CGM.getCodeGenOpts().StrictVTablePointers) 2674 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2675 2676 return VTable; 2677 } 2678 2679 // If a class has a single non-virtual base and does not introduce or override 2680 // virtual member functions or fields, it will have the same layout as its base. 2681 // This function returns the least derived such class. 2682 // 2683 // Casting an instance of a base class to such a derived class is technically 2684 // undefined behavior, but it is a relatively common hack for introducing member 2685 // functions on class instances with specific properties (e.g. llvm::Operator) 2686 // that works under most compilers and should not have security implications, so 2687 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2688 static const CXXRecordDecl * 2689 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2690 if (!RD->field_empty()) 2691 return RD; 2692 2693 if (RD->getNumVBases() != 0) 2694 return RD; 2695 2696 if (RD->getNumBases() != 1) 2697 return RD; 2698 2699 for (const CXXMethodDecl *MD : RD->methods()) { 2700 if (MD->isVirtual()) { 2701 // Virtual member functions are only ok if they are implicit destructors 2702 // because the implicit destructor will have the same semantics as the 2703 // base class's destructor if no fields are added. 2704 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2705 continue; 2706 return RD; 2707 } 2708 } 2709 2710 return LeastDerivedClassWithSameLayout( 2711 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2712 } 2713 2714 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2715 llvm::Value *VTable, 2716 SourceLocation Loc) { 2717 if (SanOpts.has(SanitizerKind::CFIVCall)) 2718 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2719 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2720 // Don't insert type test assumes if we are forcing public 2721 // visibility. 2722 !CGM.AlwaysHasLTOVisibilityPublic(RD)) { 2723 QualType Ty = QualType(RD->getTypeForDecl(), 0); 2724 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty); 2725 llvm::Value *TypeId = 2726 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2727 2728 // If we already know that the call has hidden LTO visibility, emit 2729 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD 2730 // will convert to @llvm.type.test() if we assert at link time that we have 2731 // whole program visibility. 2732 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) 2733 ? llvm::Intrinsic::type_test 2734 : llvm::Intrinsic::public_type_test; 2735 llvm::Value *TypeTest = 2736 Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId}); 2737 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2738 } 2739 } 2740 2741 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2742 llvm::Value *VTable, 2743 CFITypeCheckKind TCK, 2744 SourceLocation Loc) { 2745 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2746 RD = LeastDerivedClassWithSameLayout(RD); 2747 2748 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2749 } 2750 2751 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived, 2752 bool MayBeNull, 2753 CFITypeCheckKind TCK, 2754 SourceLocation Loc) { 2755 if (!getLangOpts().CPlusPlus) 2756 return; 2757 2758 auto *ClassTy = T->getAs<RecordType>(); 2759 if (!ClassTy) 2760 return; 2761 2762 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2763 2764 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2765 return; 2766 2767 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2768 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2769 2770 llvm::BasicBlock *ContBlock = nullptr; 2771 2772 if (MayBeNull) { 2773 llvm::Value *DerivedNotNull = 2774 Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull"); 2775 2776 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2777 ContBlock = createBasicBlock("cast.cont"); 2778 2779 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2780 2781 EmitBlock(CheckBlock); 2782 } 2783 2784 llvm::Value *VTable; 2785 std::tie(VTable, ClassDecl) = 2786 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl); 2787 2788 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2789 2790 if (MayBeNull) { 2791 Builder.CreateBr(ContBlock); 2792 EmitBlock(ContBlock); 2793 } 2794 } 2795 2796 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2797 llvm::Value *VTable, 2798 CFITypeCheckKind TCK, 2799 SourceLocation Loc) { 2800 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2801 !CGM.HasHiddenLTOVisibility(RD)) 2802 return; 2803 2804 SanitizerMask M; 2805 llvm::SanitizerStatKind SSK; 2806 switch (TCK) { 2807 case CFITCK_VCall: 2808 M = SanitizerKind::CFIVCall; 2809 SSK = llvm::SanStat_CFI_VCall; 2810 break; 2811 case CFITCK_NVCall: 2812 M = SanitizerKind::CFINVCall; 2813 SSK = llvm::SanStat_CFI_NVCall; 2814 break; 2815 case CFITCK_DerivedCast: 2816 M = SanitizerKind::CFIDerivedCast; 2817 SSK = llvm::SanStat_CFI_DerivedCast; 2818 break; 2819 case CFITCK_UnrelatedCast: 2820 M = SanitizerKind::CFIUnrelatedCast; 2821 SSK = llvm::SanStat_CFI_UnrelatedCast; 2822 break; 2823 case CFITCK_ICall: 2824 case CFITCK_NVMFCall: 2825 case CFITCK_VMFCall: 2826 llvm_unreachable("unexpected sanitizer kind"); 2827 } 2828 2829 std::string TypeName = RD->getQualifiedNameAsString(); 2830 if (getContext().getNoSanitizeList().containsType(M, TypeName)) 2831 return; 2832 2833 SanitizerScope SanScope(this); 2834 EmitSanitizerStatReport(SSK); 2835 2836 llvm::Metadata *MD = 2837 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2838 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2839 2840 llvm::Value *TypeTest = Builder.CreateCall( 2841 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId}); 2842 2843 llvm::Constant *StaticData[] = { 2844 llvm::ConstantInt::get(Int8Ty, TCK), 2845 EmitCheckSourceLocation(Loc), 2846 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2847 }; 2848 2849 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2850 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2851 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData); 2852 return; 2853 } 2854 2855 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2856 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail); 2857 return; 2858 } 2859 2860 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2861 CGM.getLLVMContext(), 2862 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2863 llvm::Value *ValidVtable = Builder.CreateCall( 2864 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables}); 2865 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2866 StaticData, {VTable, ValidVtable}); 2867 } 2868 2869 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2870 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2871 !CGM.HasHiddenLTOVisibility(RD)) 2872 return false; 2873 2874 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2875 return true; 2876 2877 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2878 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2879 return false; 2880 2881 std::string TypeName = RD->getQualifiedNameAsString(); 2882 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2883 TypeName); 2884 } 2885 2886 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2887 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy, 2888 uint64_t VTableByteOffset) { 2889 SanitizerScope SanScope(this); 2890 2891 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2892 2893 llvm::Metadata *MD = 2894 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2895 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2896 2897 llvm::Value *CheckedLoad = Builder.CreateCall( 2898 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2899 {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId}); 2900 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2901 2902 std::string TypeName = RD->getQualifiedNameAsString(); 2903 if (SanOpts.has(SanitizerKind::CFIVCall) && 2904 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2905 TypeName)) { 2906 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2907 SanitizerHandler::CFICheckFail, {}, {}); 2908 } 2909 2910 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0), 2911 VTableTy); 2912 } 2913 2914 void CodeGenFunction::EmitForwardingCallToLambda( 2915 const CXXMethodDecl *callOperator, CallArgList &callArgs, 2916 const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) { 2917 // Get the address of the call operator. 2918 if (!calleeFnInfo) 2919 calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2920 2921 if (!calleePtr) 2922 calleePtr = 2923 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2924 CGM.getTypes().GetFunctionType(*calleeFnInfo)); 2925 2926 // Prepare the return slot. 2927 const FunctionProtoType *FPT = 2928 callOperator->getType()->castAs<FunctionProtoType>(); 2929 QualType resultType = FPT->getReturnType(); 2930 ReturnValueSlot returnSlot; 2931 if (!resultType->isVoidType() && 2932 calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 2933 !hasScalarEvaluationKind(calleeFnInfo->getReturnType())) 2934 returnSlot = 2935 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), 2936 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 2937 2938 // We don't need to separately arrange the call arguments because 2939 // the call can't be variadic anyway --- it's impossible to forward 2940 // variadic arguments. 2941 2942 // Now emit our call. 2943 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2944 RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs); 2945 2946 // If necessary, copy the returned value into the slot. 2947 if (!resultType->isVoidType() && returnSlot.isNull()) { 2948 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2949 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2950 } 2951 EmitReturnOfRValue(RV, resultType); 2952 } else 2953 EmitBranchThroughCleanup(ReturnBlock); 2954 } 2955 2956 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2957 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2958 const VarDecl *variable = BD->capture_begin()->getVariable(); 2959 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2960 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2961 2962 if (CallOp->isVariadic()) { 2963 // FIXME: Making this work correctly is nasty because it requires either 2964 // cloning the body of the call operator or making the call operator 2965 // forward. 2966 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2967 return; 2968 } 2969 2970 // Start building arguments for forwarding call 2971 CallArgList CallArgs; 2972 2973 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2974 Address ThisPtr = GetAddrOfBlockDecl(variable); 2975 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2976 2977 // Add the rest of the parameters. 2978 for (auto *param : BD->parameters()) 2979 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2980 2981 assert(!Lambda->isGenericLambda() && 2982 "generic lambda interconversion to block not implemented"); 2983 EmitForwardingCallToLambda(CallOp, CallArgs); 2984 } 2985 2986 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2987 if (MD->isVariadic()) { 2988 // FIXME: Making this work correctly is nasty because it requires either 2989 // cloning the body of the call operator or making the call operator 2990 // forward. 2991 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2992 return; 2993 } 2994 2995 const CXXRecordDecl *Lambda = MD->getParent(); 2996 2997 // Start building arguments for forwarding call 2998 CallArgList CallArgs; 2999 3000 QualType LambdaType = getContext().getRecordType(Lambda); 3001 QualType ThisType = getContext().getPointerType(LambdaType); 3002 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture"); 3003 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 3004 3005 EmitLambdaDelegatingInvokeBody(MD, CallArgs); 3006 } 3007 3008 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 3009 CallArgList &CallArgs) { 3010 // Add the rest of the forwarded parameters. 3011 for (auto *Param : MD->parameters()) 3012 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 3013 3014 const CXXRecordDecl *Lambda = MD->getParent(); 3015 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 3016 // For a generic lambda, find the corresponding call operator specialization 3017 // to which the call to the static-invoker shall be forwarded. 3018 if (Lambda->isGenericLambda()) { 3019 assert(MD->isFunctionTemplateSpecialization()); 3020 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 3021 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 3022 void *InsertPos = nullptr; 3023 FunctionDecl *CorrespondingCallOpSpecialization = 3024 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 3025 assert(CorrespondingCallOpSpecialization); 3026 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 3027 } 3028 3029 // Special lambda forwarding when there are inalloca parameters. 3030 if (hasInAllocaArg(MD)) { 3031 const CGFunctionInfo *ImplFnInfo = nullptr; 3032 llvm::Function *ImplFn = nullptr; 3033 EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn); 3034 3035 EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn); 3036 return; 3037 } 3038 3039 EmitForwardingCallToLambda(CallOp, CallArgs); 3040 } 3041 3042 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) { 3043 if (MD->isVariadic()) { 3044 // FIXME: Making this work correctly is nasty because it requires either 3045 // cloning the body of the call operator or making the call operator forward. 3046 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3047 return; 3048 } 3049 3050 // Forward %this argument. 3051 CallArgList CallArgs; 3052 QualType LambdaType = getContext().getRecordType(MD->getParent()); 3053 QualType ThisType = getContext().getPointerType(LambdaType); 3054 llvm::Value *ThisArg = CurFn->getArg(0); 3055 CallArgs.add(RValue::get(ThisArg), ThisType); 3056 3057 EmitLambdaDelegatingInvokeBody(MD, CallArgs); 3058 } 3059 3060 void CodeGenFunction::EmitLambdaInAllocaImplFn( 3061 const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo, 3062 llvm::Function **ImplFn) { 3063 const CGFunctionInfo &FnInfo = 3064 CGM.getTypes().arrangeCXXMethodDeclaration(CallOp); 3065 llvm::Function *CallOpFn = 3066 cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp))); 3067 3068 // Emit function containing the original call op body. __invoke will delegate 3069 // to this function. 3070 SmallVector<CanQualType, 4> ArgTypes; 3071 for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I) 3072 ArgTypes.push_back(I->type); 3073 *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo( 3074 FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes, 3075 FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs()); 3076 3077 // Create mangled name as if this was a method named __impl. If for some 3078 // reason the name doesn't look as expected then just tack __impl to the 3079 // front. 3080 // TODO: Use the name mangler to produce the right name instead of using 3081 // string replacement. 3082 StringRef CallOpName = CallOpFn->getName(); 3083 std::string ImplName; 3084 if (size_t Pos = CallOpName.find_first_of("<lambda")) 3085 ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str(); 3086 else 3087 ImplName = ("__impl" + CallOpName).str(); 3088 3089 llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName); 3090 if (!Fn) { 3091 Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo), 3092 llvm::GlobalValue::InternalLinkage, ImplName, 3093 CGM.getModule()); 3094 CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo); 3095 3096 const GlobalDecl &GD = GlobalDecl(CallOp); 3097 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3098 CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo); 3099 CGM.SetLLVMFunctionAttributesForDefinition(D, Fn); 3100 } 3101 *ImplFn = Fn; 3102 } 3103