1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Transforms/Utils/SanitizerStats.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 /// Return the best known alignment for an unknown pointer to a 37 /// particular class. 38 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 39 if (!RD->hasDefinition()) 40 return CharUnits::One(); // Hopefully won't be used anywhere. 41 42 auto &layout = getContext().getASTRecordLayout(RD); 43 44 // If the class is final, then we know that the pointer points to an 45 // object of that type and can use the full alignment. 46 if (RD->isEffectivelyFinal()) 47 return layout.getAlignment(); 48 49 // Otherwise, we have to assume it could be a subclass. 50 return layout.getNonVirtualAlignment(); 51 } 52 53 /// Return the smallest possible amount of storage that might be allocated 54 /// starting from the beginning of an object of a particular class. 55 /// 56 /// This may be smaller than sizeof(RD) if RD has virtual base classes. 57 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { 58 if (!RD->hasDefinition()) 59 return CharUnits::One(); 60 61 auto &layout = getContext().getASTRecordLayout(RD); 62 63 // If the class is final, then we know that the pointer points to an 64 // object of that type and can use the full alignment. 65 if (RD->isEffectivelyFinal()) 66 return layout.getSize(); 67 68 // Otherwise, we have to assume it could be a subclass. 69 return std::max(layout.getNonVirtualSize(), CharUnits::One()); 70 } 71 72 /// Return the best known alignment for a pointer to a virtual base, 73 /// given the alignment of a pointer to the derived class. 74 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 75 const CXXRecordDecl *derivedClass, 76 const CXXRecordDecl *vbaseClass) { 77 // The basic idea here is that an underaligned derived pointer might 78 // indicate an underaligned base pointer. 79 80 assert(vbaseClass->isCompleteDefinition()); 81 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 82 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 83 84 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 85 expectedVBaseAlign); 86 } 87 88 CharUnits 89 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 90 const CXXRecordDecl *baseDecl, 91 CharUnits expectedTargetAlign) { 92 // If the base is an incomplete type (which is, alas, possible with 93 // member pointers), be pessimistic. 94 if (!baseDecl->isCompleteDefinition()) 95 return std::min(actualBaseAlign, expectedTargetAlign); 96 97 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 98 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 99 100 // If the class is properly aligned, assume the target offset is, too. 101 // 102 // This actually isn't necessarily the right thing to do --- if the 103 // class is a complete object, but it's only properly aligned for a 104 // base subobject, then the alignments of things relative to it are 105 // probably off as well. (Note that this requires the alignment of 106 // the target to be greater than the NV alignment of the derived 107 // class.) 108 // 109 // However, our approach to this kind of under-alignment can only 110 // ever be best effort; after all, we're never going to propagate 111 // alignments through variables or parameters. Note, in particular, 112 // that constructing a polymorphic type in an address that's less 113 // than pointer-aligned will generally trap in the constructor, 114 // unless we someday add some sort of attribute to change the 115 // assumed alignment of 'this'. So our goal here is pretty much 116 // just to allow the user to explicitly say that a pointer is 117 // under-aligned and then safely access its fields and vtables. 118 if (actualBaseAlign >= expectedBaseAlign) { 119 return expectedTargetAlign; 120 } 121 122 // Otherwise, we might be offset by an arbitrary multiple of the 123 // actual alignment. The correct adjustment is to take the min of 124 // the two alignments. 125 return std::min(actualBaseAlign, expectedTargetAlign); 126 } 127 128 Address CodeGenFunction::LoadCXXThisAddress() { 129 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 130 auto *MD = cast<CXXMethodDecl>(CurFuncDecl); 131 132 // Lazily compute CXXThisAlignment. 133 if (CXXThisAlignment.isZero()) { 134 // Just use the best known alignment for the parent. 135 // TODO: if we're currently emitting a complete-object ctor/dtor, 136 // we can always use the complete-object alignment. 137 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent()); 138 } 139 140 llvm::Type *Ty = ConvertType(MD->getThisType()->getPointeeType()); 141 return Address(LoadCXXThis(), Ty, CXXThisAlignment); 142 } 143 144 /// Emit the address of a field using a member data pointer. 145 /// 146 /// \param E Only used for emergency diagnostics 147 Address 148 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 149 llvm::Value *memberPtr, 150 const MemberPointerType *memberPtrType, 151 LValueBaseInfo *BaseInfo, 152 TBAAAccessInfo *TBAAInfo) { 153 // Ask the ABI to compute the actual address. 154 llvm::Value *ptr = 155 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 156 memberPtr, memberPtrType); 157 158 QualType memberType = memberPtrType->getPointeeType(); 159 CharUnits memberAlign = 160 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo); 161 memberAlign = 162 CGM.getDynamicOffsetAlignment(base.getAlignment(), 163 memberPtrType->getClass()->getAsCXXRecordDecl(), 164 memberAlign); 165 return Address(ptr, memberAlign); 166 } 167 168 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 169 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 170 CastExpr::path_const_iterator End) { 171 CharUnits Offset = CharUnits::Zero(); 172 173 const ASTContext &Context = getContext(); 174 const CXXRecordDecl *RD = DerivedClass; 175 176 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 177 const CXXBaseSpecifier *Base = *I; 178 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 179 180 // Get the layout. 181 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 182 183 const auto *BaseDecl = 184 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 185 186 // Add the offset. 187 Offset += Layout.getBaseClassOffset(BaseDecl); 188 189 RD = BaseDecl; 190 } 191 192 return Offset; 193 } 194 195 llvm::Constant * 196 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 197 CastExpr::path_const_iterator PathBegin, 198 CastExpr::path_const_iterator PathEnd) { 199 assert(PathBegin != PathEnd && "Base path should not be empty!"); 200 201 CharUnits Offset = 202 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 203 if (Offset.isZero()) 204 return nullptr; 205 206 llvm::Type *PtrDiffTy = 207 Types.ConvertType(getContext().getPointerDiffType()); 208 209 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 210 } 211 212 /// Gets the address of a direct base class within a complete object. 213 /// This should only be used for (1) non-virtual bases or (2) virtual bases 214 /// when the type is known to be complete (e.g. in complete destructors). 215 /// 216 /// The object pointed to by 'This' is assumed to be non-null. 217 Address 218 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 219 const CXXRecordDecl *Derived, 220 const CXXRecordDecl *Base, 221 bool BaseIsVirtual) { 222 // 'this' must be a pointer (in some address space) to Derived. 223 assert(This.getElementType() == ConvertType(Derived)); 224 225 // Compute the offset of the virtual base. 226 CharUnits Offset; 227 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 228 if (BaseIsVirtual) 229 Offset = Layout.getVBaseClassOffset(Base); 230 else 231 Offset = Layout.getBaseClassOffset(Base); 232 233 // Shift and cast down to the base type. 234 // TODO: for complete types, this should be possible with a GEP. 235 Address V = This; 236 if (!Offset.isZero()) { 237 V = Builder.CreateElementBitCast(V, Int8Ty); 238 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 239 } 240 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 241 242 return V; 243 } 244 245 static Address 246 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 247 CharUnits nonVirtualOffset, 248 llvm::Value *virtualOffset, 249 const CXXRecordDecl *derivedClass, 250 const CXXRecordDecl *nearestVBase) { 251 // Assert that we have something to do. 252 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 253 254 // Compute the offset from the static and dynamic components. 255 llvm::Value *baseOffset; 256 if (!nonVirtualOffset.isZero()) { 257 llvm::Type *OffsetType = 258 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() && 259 CGF.CGM.getItaniumVTableContext().isRelativeLayout()) 260 ? CGF.Int32Ty 261 : CGF.PtrDiffTy; 262 baseOffset = 263 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity()); 264 if (virtualOffset) { 265 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 266 } 267 } else { 268 baseOffset = virtualOffset; 269 } 270 271 // Apply the base offset. 272 llvm::Value *ptr = addr.getPointer(); 273 unsigned AddrSpace = ptr->getType()->getPointerAddressSpace(); 274 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace)); 275 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr"); 276 277 // If we have a virtual component, the alignment of the result will 278 // be relative only to the known alignment of that vbase. 279 CharUnits alignment; 280 if (virtualOffset) { 281 assert(nearestVBase && "virtual offset without vbase?"); 282 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 283 derivedClass, nearestVBase); 284 } else { 285 alignment = addr.getAlignment(); 286 } 287 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 288 289 return Address(ptr, CGF.Int8Ty, alignment); 290 } 291 292 Address CodeGenFunction::GetAddressOfBaseClass( 293 Address Value, const CXXRecordDecl *Derived, 294 CastExpr::path_const_iterator PathBegin, 295 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 296 SourceLocation Loc) { 297 assert(PathBegin != PathEnd && "Base path should not be empty!"); 298 299 CastExpr::path_const_iterator Start = PathBegin; 300 const CXXRecordDecl *VBase = nullptr; 301 302 // Sema has done some convenient canonicalization here: if the 303 // access path involved any virtual steps, the conversion path will 304 // *start* with a step down to the correct virtual base subobject, 305 // and hence will not require any further steps. 306 if ((*Start)->isVirtual()) { 307 VBase = cast<CXXRecordDecl>( 308 (*Start)->getType()->castAs<RecordType>()->getDecl()); 309 ++Start; 310 } 311 312 // Compute the static offset of the ultimate destination within its 313 // allocating subobject (the virtual base, if there is one, or else 314 // the "complete" object that we see). 315 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 316 VBase ? VBase : Derived, Start, PathEnd); 317 318 // If there's a virtual step, we can sometimes "devirtualize" it. 319 // For now, that's limited to when the derived type is final. 320 // TODO: "devirtualize" this for accesses to known-complete objects. 321 if (VBase && Derived->hasAttr<FinalAttr>()) { 322 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 323 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 324 NonVirtualOffset += vBaseOffset; 325 VBase = nullptr; // we no longer have a virtual step 326 } 327 328 // Get the base pointer type. 329 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType()); 330 llvm::Type *BasePtrTy = 331 BaseValueTy->getPointerTo(Value.getType()->getPointerAddressSpace()); 332 333 QualType DerivedTy = getContext().getRecordType(Derived); 334 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 335 336 // If the static offset is zero and we don't have a virtual step, 337 // just do a bitcast; null checks are unnecessary. 338 if (NonVirtualOffset.isZero() && !VBase) { 339 if (sanitizePerformTypeCheck()) { 340 SanitizerSet SkippedChecks; 341 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 342 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 343 DerivedTy, DerivedAlign, SkippedChecks); 344 } 345 return Builder.CreateElementBitCast(Value, BaseValueTy); 346 } 347 348 llvm::BasicBlock *origBB = nullptr; 349 llvm::BasicBlock *endBB = nullptr; 350 351 // Skip over the offset (and the vtable load) if we're supposed to 352 // null-check the pointer. 353 if (NullCheckValue) { 354 origBB = Builder.GetInsertBlock(); 355 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 356 endBB = createBasicBlock("cast.end"); 357 358 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 359 Builder.CreateCondBr(isNull, endBB, notNullBB); 360 EmitBlock(notNullBB); 361 } 362 363 if (sanitizePerformTypeCheck()) { 364 SanitizerSet SkippedChecks; 365 SkippedChecks.set(SanitizerKind::Null, true); 366 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 367 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 368 } 369 370 // Compute the virtual offset. 371 llvm::Value *VirtualOffset = nullptr; 372 if (VBase) { 373 VirtualOffset = 374 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 375 } 376 377 // Apply both offsets. 378 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 379 VirtualOffset, Derived, VBase); 380 381 // Cast to the destination type. 382 Value = Builder.CreateElementBitCast(Value, BaseValueTy); 383 384 // Build a phi if we needed a null check. 385 if (NullCheckValue) { 386 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 387 Builder.CreateBr(endBB); 388 EmitBlock(endBB); 389 390 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 391 PHI->addIncoming(Value.getPointer(), notNullBB); 392 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 393 Value = Address(PHI, Value.getAlignment()); 394 } 395 396 return Value; 397 } 398 399 Address 400 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 401 const CXXRecordDecl *Derived, 402 CastExpr::path_const_iterator PathBegin, 403 CastExpr::path_const_iterator PathEnd, 404 bool NullCheckValue) { 405 assert(PathBegin != PathEnd && "Base path should not be empty!"); 406 407 QualType DerivedTy = 408 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 409 unsigned AddrSpace = BaseAddr.getAddressSpace(); 410 llvm::Type *DerivedValueTy = ConvertType(DerivedTy); 411 llvm::Type *DerivedPtrTy = DerivedValueTy->getPointerTo(AddrSpace); 412 413 llvm::Value *NonVirtualOffset = 414 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 415 416 if (!NonVirtualOffset) { 417 // No offset, we can just cast back. 418 return Builder.CreateElementBitCast(BaseAddr, DerivedValueTy); 419 } 420 421 llvm::BasicBlock *CastNull = nullptr; 422 llvm::BasicBlock *CastNotNull = nullptr; 423 llvm::BasicBlock *CastEnd = nullptr; 424 425 if (NullCheckValue) { 426 CastNull = createBasicBlock("cast.null"); 427 CastNotNull = createBasicBlock("cast.notnull"); 428 CastEnd = createBasicBlock("cast.end"); 429 430 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 431 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 432 EmitBlock(CastNotNull); 433 } 434 435 // Apply the offset. 436 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 437 Value = Builder.CreateInBoundsGEP( 438 Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr"); 439 440 // Just cast. 441 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 442 443 // Produce a PHI if we had a null-check. 444 if (NullCheckValue) { 445 Builder.CreateBr(CastEnd); 446 EmitBlock(CastNull); 447 Builder.CreateBr(CastEnd); 448 EmitBlock(CastEnd); 449 450 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 451 PHI->addIncoming(Value, CastNotNull); 452 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 453 Value = PHI; 454 } 455 456 return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived)); 457 } 458 459 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 460 bool ForVirtualBase, 461 bool Delegating) { 462 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 463 // This constructor/destructor does not need a VTT parameter. 464 return nullptr; 465 } 466 467 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 468 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 469 470 uint64_t SubVTTIndex; 471 472 if (Delegating) { 473 // If this is a delegating constructor call, just load the VTT. 474 return LoadCXXVTT(); 475 } else if (RD == Base) { 476 // If the record matches the base, this is the complete ctor/dtor 477 // variant calling the base variant in a class with virtual bases. 478 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 479 "doing no-op VTT offset in base dtor/ctor?"); 480 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 481 SubVTTIndex = 0; 482 } else { 483 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 484 CharUnits BaseOffset = ForVirtualBase ? 485 Layout.getVBaseClassOffset(Base) : 486 Layout.getBaseClassOffset(Base); 487 488 SubVTTIndex = 489 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 490 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 491 } 492 493 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 494 // A VTT parameter was passed to the constructor, use it. 495 llvm::Value *VTT = LoadCXXVTT(); 496 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex); 497 } else { 498 // We're the complete constructor, so get the VTT by name. 499 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD); 500 return Builder.CreateConstInBoundsGEP2_64( 501 VTT->getValueType(), VTT, 0, SubVTTIndex); 502 } 503 } 504 505 namespace { 506 /// Call the destructor for a direct base class. 507 struct CallBaseDtor final : EHScopeStack::Cleanup { 508 const CXXRecordDecl *BaseClass; 509 bool BaseIsVirtual; 510 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 511 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 512 513 void Emit(CodeGenFunction &CGF, Flags flags) override { 514 const CXXRecordDecl *DerivedClass = 515 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 516 517 const CXXDestructorDecl *D = BaseClass->getDestructor(); 518 // We are already inside a destructor, so presumably the object being 519 // destroyed should have the expected type. 520 QualType ThisTy = D->getThisObjectType(); 521 Address Addr = 522 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 523 DerivedClass, BaseClass, 524 BaseIsVirtual); 525 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 526 /*Delegating=*/false, Addr, ThisTy); 527 } 528 }; 529 530 /// A visitor which checks whether an initializer uses 'this' in a 531 /// way which requires the vtable to be properly set. 532 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 533 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 534 535 bool UsesThis; 536 537 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 538 539 // Black-list all explicit and implicit references to 'this'. 540 // 541 // Do we need to worry about external references to 'this' derived 542 // from arbitrary code? If so, then anything which runs arbitrary 543 // external code might potentially access the vtable. 544 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 545 }; 546 } // end anonymous namespace 547 548 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 549 DynamicThisUseChecker Checker(C); 550 Checker.Visit(Init); 551 return Checker.UsesThis; 552 } 553 554 static void EmitBaseInitializer(CodeGenFunction &CGF, 555 const CXXRecordDecl *ClassDecl, 556 CXXCtorInitializer *BaseInit) { 557 assert(BaseInit->isBaseInitializer() && 558 "Must have base initializer!"); 559 560 Address ThisPtr = CGF.LoadCXXThisAddress(); 561 562 const Type *BaseType = BaseInit->getBaseClass(); 563 const auto *BaseClassDecl = 564 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 565 566 bool isBaseVirtual = BaseInit->isBaseVirtual(); 567 568 // If the initializer for the base (other than the constructor 569 // itself) accesses 'this' in any way, we need to initialize the 570 // vtables. 571 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 572 CGF.InitializeVTablePointers(ClassDecl); 573 574 // We can pretend to be a complete class because it only matters for 575 // virtual bases, and we only do virtual bases for complete ctors. 576 Address V = 577 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 578 BaseClassDecl, 579 isBaseVirtual); 580 AggValueSlot AggSlot = 581 AggValueSlot::forAddr( 582 V, Qualifiers(), 583 AggValueSlot::IsDestructed, 584 AggValueSlot::DoesNotNeedGCBarriers, 585 AggValueSlot::IsNotAliased, 586 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 587 588 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 589 590 if (CGF.CGM.getLangOpts().Exceptions && 591 !BaseClassDecl->hasTrivialDestructor()) 592 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 593 isBaseVirtual); 594 } 595 596 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 597 auto *CD = dyn_cast<CXXConstructorDecl>(D); 598 if (!(CD && CD->isCopyOrMoveConstructor()) && 599 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 600 return false; 601 602 // We can emit a memcpy for a trivial copy or move constructor/assignment. 603 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 604 return true; 605 606 // We *must* emit a memcpy for a defaulted union copy or move op. 607 if (D->getParent()->isUnion() && D->isDefaulted()) 608 return true; 609 610 return false; 611 } 612 613 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 614 CXXCtorInitializer *MemberInit, 615 LValue &LHS) { 616 FieldDecl *Field = MemberInit->getAnyMember(); 617 if (MemberInit->isIndirectMemberInitializer()) { 618 // If we are initializing an anonymous union field, drill down to the field. 619 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 620 for (const auto *I : IndirectField->chain()) 621 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 622 } else { 623 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 624 } 625 } 626 627 static void EmitMemberInitializer(CodeGenFunction &CGF, 628 const CXXRecordDecl *ClassDecl, 629 CXXCtorInitializer *MemberInit, 630 const CXXConstructorDecl *Constructor, 631 FunctionArgList &Args) { 632 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 633 assert(MemberInit->isAnyMemberInitializer() && 634 "Must have member initializer!"); 635 assert(MemberInit->getInit() && "Must have initializer!"); 636 637 // non-static data member initializers. 638 FieldDecl *Field = MemberInit->getAnyMember(); 639 QualType FieldType = Field->getType(); 640 641 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 642 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 643 LValue LHS; 644 645 // If a base constructor is being emitted, create an LValue that has the 646 // non-virtual alignment. 647 if (CGF.CurGD.getCtorType() == Ctor_Base) 648 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 649 else 650 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 651 652 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 653 654 // Special case: if we are in a copy or move constructor, and we are copying 655 // an array of PODs or classes with trivial copy constructors, ignore the 656 // AST and perform the copy we know is equivalent. 657 // FIXME: This is hacky at best... if we had a bit more explicit information 658 // in the AST, we could generalize it more easily. 659 const ConstantArrayType *Array 660 = CGF.getContext().getAsConstantArrayType(FieldType); 661 if (Array && Constructor->isDefaulted() && 662 Constructor->isCopyOrMoveConstructor()) { 663 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 664 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 665 if (BaseElementTy.isPODType(CGF.getContext()) || 666 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 667 unsigned SrcArgIndex = 668 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 669 llvm::Value *SrcPtr 670 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 671 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 672 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 673 674 // Copy the aggregate. 675 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 676 LHS.isVolatileQualified()); 677 // Ensure that we destroy the objects if an exception is thrown later in 678 // the constructor. 679 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 680 if (CGF.needsEHCleanup(dtorKind)) 681 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType); 682 return; 683 } 684 } 685 686 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 687 } 688 689 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 690 Expr *Init) { 691 QualType FieldType = Field->getType(); 692 switch (getEvaluationKind(FieldType)) { 693 case TEK_Scalar: 694 if (LHS.isSimple()) { 695 EmitExprAsInit(Init, Field, LHS, false); 696 } else { 697 RValue RHS = RValue::get(EmitScalarExpr(Init)); 698 EmitStoreThroughLValue(RHS, LHS); 699 } 700 break; 701 case TEK_Complex: 702 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 703 break; 704 case TEK_Aggregate: { 705 AggValueSlot Slot = AggValueSlot::forLValue( 706 LHS, *this, AggValueSlot::IsDestructed, 707 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 708 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed, 709 // Checks are made by the code that calls constructor. 710 AggValueSlot::IsSanitizerChecked); 711 EmitAggExpr(Init, Slot); 712 break; 713 } 714 } 715 716 // Ensure that we destroy this object if an exception is thrown 717 // later in the constructor. 718 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 719 if (needsEHCleanup(dtorKind)) 720 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType); 721 } 722 723 /// Checks whether the given constructor is a valid subject for the 724 /// complete-to-base constructor delegation optimization, i.e. 725 /// emitting the complete constructor as a simple call to the base 726 /// constructor. 727 bool CodeGenFunction::IsConstructorDelegationValid( 728 const CXXConstructorDecl *Ctor) { 729 730 // Currently we disable the optimization for classes with virtual 731 // bases because (1) the addresses of parameter variables need to be 732 // consistent across all initializers but (2) the delegate function 733 // call necessarily creates a second copy of the parameter variable. 734 // 735 // The limiting example (purely theoretical AFAIK): 736 // struct A { A(int &c) { c++; } }; 737 // struct B : virtual A { 738 // B(int count) : A(count) { printf("%d\n", count); } 739 // }; 740 // ...although even this example could in principle be emitted as a 741 // delegation since the address of the parameter doesn't escape. 742 if (Ctor->getParent()->getNumVBases()) { 743 // TODO: white-list trivial vbase initializers. This case wouldn't 744 // be subject to the restrictions below. 745 746 // TODO: white-list cases where: 747 // - there are no non-reference parameters to the constructor 748 // - the initializers don't access any non-reference parameters 749 // - the initializers don't take the address of non-reference 750 // parameters 751 // - etc. 752 // If we ever add any of the above cases, remember that: 753 // - function-try-blocks will always exclude this optimization 754 // - we need to perform the constructor prologue and cleanup in 755 // EmitConstructorBody. 756 757 return false; 758 } 759 760 // We also disable the optimization for variadic functions because 761 // it's impossible to "re-pass" varargs. 762 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 763 return false; 764 765 // FIXME: Decide if we can do a delegation of a delegating constructor. 766 if (Ctor->isDelegatingConstructor()) 767 return false; 768 769 return true; 770 } 771 772 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 773 // to poison the extra field paddings inserted under 774 // -fsanitize-address-field-padding=1|2. 775 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 776 ASTContext &Context = getContext(); 777 const CXXRecordDecl *ClassDecl = 778 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 779 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 780 if (!ClassDecl->mayInsertExtraPadding()) return; 781 782 struct SizeAndOffset { 783 uint64_t Size; 784 uint64_t Offset; 785 }; 786 787 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 788 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 789 790 // Populate sizes and offsets of fields. 791 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 792 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 793 SSV[i].Offset = 794 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 795 796 size_t NumFields = 0; 797 for (const auto *Field : ClassDecl->fields()) { 798 const FieldDecl *D = Field; 799 auto FieldInfo = Context.getTypeInfoInChars(D->getType()); 800 CharUnits FieldSize = FieldInfo.Width; 801 assert(NumFields < SSV.size()); 802 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 803 NumFields++; 804 } 805 assert(NumFields == SSV.size()); 806 if (SSV.size() <= 1) return; 807 808 // We will insert calls to __asan_* run-time functions. 809 // LLVM AddressSanitizer pass may decide to inline them later. 810 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 811 llvm::FunctionType *FTy = 812 llvm::FunctionType::get(CGM.VoidTy, Args, false); 813 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 814 FTy, Prologue ? "__asan_poison_intra_object_redzone" 815 : "__asan_unpoison_intra_object_redzone"); 816 817 llvm::Value *ThisPtr = LoadCXXThis(); 818 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 819 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 820 // For each field check if it has sufficient padding, 821 // if so (un)poison it with a call. 822 for (size_t i = 0; i < SSV.size(); i++) { 823 uint64_t AsanAlignment = 8; 824 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 825 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 826 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 827 if (PoisonSize < AsanAlignment || !SSV[i].Size || 828 (NextField % AsanAlignment) != 0) 829 continue; 830 Builder.CreateCall( 831 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 832 Builder.getIntN(PtrSize, PoisonSize)}); 833 } 834 } 835 836 /// EmitConstructorBody - Emits the body of the current constructor. 837 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 838 EmitAsanPrologueOrEpilogue(true); 839 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 840 CXXCtorType CtorType = CurGD.getCtorType(); 841 842 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 843 CtorType == Ctor_Complete) && 844 "can only generate complete ctor for this ABI"); 845 846 // Before we go any further, try the complete->base constructor 847 // delegation optimization. 848 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 849 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 850 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 851 return; 852 } 853 854 const FunctionDecl *Definition = nullptr; 855 Stmt *Body = Ctor->getBody(Definition); 856 assert(Definition == Ctor && "emitting wrong constructor body"); 857 858 // Enter the function-try-block before the constructor prologue if 859 // applicable. 860 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 861 if (IsTryBody) 862 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 863 864 incrementProfileCounter(Body); 865 866 RunCleanupsScope RunCleanups(*this); 867 868 // TODO: in restricted cases, we can emit the vbase initializers of 869 // a complete ctor and then delegate to the base ctor. 870 871 // Emit the constructor prologue, i.e. the base and member 872 // initializers. 873 EmitCtorPrologue(Ctor, CtorType, Args); 874 875 // Emit the body of the statement. 876 if (IsTryBody) 877 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 878 else if (Body) 879 EmitStmt(Body); 880 881 // Emit any cleanup blocks associated with the member or base 882 // initializers, which includes (along the exceptional path) the 883 // destructors for those members and bases that were fully 884 // constructed. 885 RunCleanups.ForceCleanup(); 886 887 if (IsTryBody) 888 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 889 } 890 891 namespace { 892 /// RAII object to indicate that codegen is copying the value representation 893 /// instead of the object representation. Useful when copying a struct or 894 /// class which has uninitialized members and we're only performing 895 /// lvalue-to-rvalue conversion on the object but not its members. 896 class CopyingValueRepresentation { 897 public: 898 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 899 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 900 CGF.SanOpts.set(SanitizerKind::Bool, false); 901 CGF.SanOpts.set(SanitizerKind::Enum, false); 902 } 903 ~CopyingValueRepresentation() { 904 CGF.SanOpts = OldSanOpts; 905 } 906 private: 907 CodeGenFunction &CGF; 908 SanitizerSet OldSanOpts; 909 }; 910 } // end anonymous namespace 911 912 namespace { 913 class FieldMemcpyizer { 914 public: 915 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 916 const VarDecl *SrcRec) 917 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 918 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 919 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 920 LastFieldOffset(0), LastAddedFieldIndex(0) {} 921 922 bool isMemcpyableField(FieldDecl *F) const { 923 // Never memcpy fields when we are adding poisoned paddings. 924 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 925 return false; 926 Qualifiers Qual = F->getType().getQualifiers(); 927 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 928 return false; 929 return true; 930 } 931 932 void addMemcpyableField(FieldDecl *F) { 933 if (F->isZeroSize(CGF.getContext())) 934 return; 935 if (!FirstField) 936 addInitialField(F); 937 else 938 addNextField(F); 939 } 940 941 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 942 ASTContext &Ctx = CGF.getContext(); 943 unsigned LastFieldSize = 944 LastField->isBitField() 945 ? LastField->getBitWidthValue(Ctx) 946 : Ctx.toBits( 947 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width); 948 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 949 FirstByteOffset + Ctx.getCharWidth() - 1; 950 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 951 return MemcpySize; 952 } 953 954 void emitMemcpy() { 955 // Give the subclass a chance to bail out if it feels the memcpy isn't 956 // worth it (e.g. Hasn't aggregated enough data). 957 if (!FirstField) { 958 return; 959 } 960 961 uint64_t FirstByteOffset; 962 if (FirstField->isBitField()) { 963 const CGRecordLayout &RL = 964 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 965 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 966 // FirstFieldOffset is not appropriate for bitfields, 967 // we need to use the storage offset instead. 968 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 969 } else { 970 FirstByteOffset = FirstFieldOffset; 971 } 972 973 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 974 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 975 Address ThisPtr = CGF.LoadCXXThisAddress(); 976 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 977 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 978 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 979 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 980 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 981 982 emitMemcpyIR( 983 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF), 984 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF), 985 MemcpySize); 986 reset(); 987 } 988 989 void reset() { 990 FirstField = nullptr; 991 } 992 993 protected: 994 CodeGenFunction &CGF; 995 const CXXRecordDecl *ClassDecl; 996 997 private: 998 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 999 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 1000 SrcPtr = CGF.Builder.CreateElementBitCast(SrcPtr, CGF.Int8Ty); 1001 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1002 } 1003 1004 void addInitialField(FieldDecl *F) { 1005 FirstField = F; 1006 LastField = F; 1007 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1008 LastFieldOffset = FirstFieldOffset; 1009 LastAddedFieldIndex = F->getFieldIndex(); 1010 } 1011 1012 void addNextField(FieldDecl *F) { 1013 // For the most part, the following invariant will hold: 1014 // F->getFieldIndex() == LastAddedFieldIndex + 1 1015 // The one exception is that Sema won't add a copy-initializer for an 1016 // unnamed bitfield, which will show up here as a gap in the sequence. 1017 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1018 "Cannot aggregate fields out of order."); 1019 LastAddedFieldIndex = F->getFieldIndex(); 1020 1021 // The 'first' and 'last' fields are chosen by offset, rather than field 1022 // index. This allows the code to support bitfields, as well as regular 1023 // fields. 1024 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1025 if (FOffset < FirstFieldOffset) { 1026 FirstField = F; 1027 FirstFieldOffset = FOffset; 1028 } else if (FOffset >= LastFieldOffset) { 1029 LastField = F; 1030 LastFieldOffset = FOffset; 1031 } 1032 } 1033 1034 const VarDecl *SrcRec; 1035 const ASTRecordLayout &RecLayout; 1036 FieldDecl *FirstField; 1037 FieldDecl *LastField; 1038 uint64_t FirstFieldOffset, LastFieldOffset; 1039 unsigned LastAddedFieldIndex; 1040 }; 1041 1042 class ConstructorMemcpyizer : public FieldMemcpyizer { 1043 private: 1044 /// Get source argument for copy constructor. Returns null if not a copy 1045 /// constructor. 1046 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1047 const CXXConstructorDecl *CD, 1048 FunctionArgList &Args) { 1049 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1050 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1051 return nullptr; 1052 } 1053 1054 // Returns true if a CXXCtorInitializer represents a member initialization 1055 // that can be rolled into a memcpy. 1056 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1057 if (!MemcpyableCtor) 1058 return false; 1059 FieldDecl *Field = MemberInit->getMember(); 1060 assert(Field && "No field for member init."); 1061 QualType FieldType = Field->getType(); 1062 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1063 1064 // Bail out on non-memcpyable, not-trivially-copyable members. 1065 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1066 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1067 FieldType->isReferenceType())) 1068 return false; 1069 1070 // Bail out on volatile fields. 1071 if (!isMemcpyableField(Field)) 1072 return false; 1073 1074 // Otherwise we're good. 1075 return true; 1076 } 1077 1078 public: 1079 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1080 FunctionArgList &Args) 1081 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1082 ConstructorDecl(CD), 1083 MemcpyableCtor(CD->isDefaulted() && 1084 CD->isCopyOrMoveConstructor() && 1085 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1086 Args(Args) { } 1087 1088 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1089 if (isMemberInitMemcpyable(MemberInit)) { 1090 AggregatedInits.push_back(MemberInit); 1091 addMemcpyableField(MemberInit->getMember()); 1092 } else { 1093 emitAggregatedInits(); 1094 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1095 ConstructorDecl, Args); 1096 } 1097 } 1098 1099 void emitAggregatedInits() { 1100 if (AggregatedInits.size() <= 1) { 1101 // This memcpy is too small to be worthwhile. Fall back on default 1102 // codegen. 1103 if (!AggregatedInits.empty()) { 1104 CopyingValueRepresentation CVR(CGF); 1105 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1106 AggregatedInits[0], ConstructorDecl, Args); 1107 AggregatedInits.clear(); 1108 } 1109 reset(); 1110 return; 1111 } 1112 1113 pushEHDestructors(); 1114 emitMemcpy(); 1115 AggregatedInits.clear(); 1116 } 1117 1118 void pushEHDestructors() { 1119 Address ThisPtr = CGF.LoadCXXThisAddress(); 1120 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1121 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1122 1123 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1124 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1125 QualType FieldType = MemberInit->getAnyMember()->getType(); 1126 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1127 if (!CGF.needsEHCleanup(dtorKind)) 1128 continue; 1129 LValue FieldLHS = LHS; 1130 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1131 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType); 1132 } 1133 } 1134 1135 void finish() { 1136 emitAggregatedInits(); 1137 } 1138 1139 private: 1140 const CXXConstructorDecl *ConstructorDecl; 1141 bool MemcpyableCtor; 1142 FunctionArgList &Args; 1143 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1144 }; 1145 1146 class AssignmentMemcpyizer : public FieldMemcpyizer { 1147 private: 1148 // Returns the memcpyable field copied by the given statement, if one 1149 // exists. Otherwise returns null. 1150 FieldDecl *getMemcpyableField(Stmt *S) { 1151 if (!AssignmentsMemcpyable) 1152 return nullptr; 1153 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1154 // Recognise trivial assignments. 1155 if (BO->getOpcode() != BO_Assign) 1156 return nullptr; 1157 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1158 if (!ME) 1159 return nullptr; 1160 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1161 if (!Field || !isMemcpyableField(Field)) 1162 return nullptr; 1163 Stmt *RHS = BO->getRHS(); 1164 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1165 RHS = EC->getSubExpr(); 1166 if (!RHS) 1167 return nullptr; 1168 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1169 if (ME2->getMemberDecl() == Field) 1170 return Field; 1171 } 1172 return nullptr; 1173 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1174 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1175 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1176 return nullptr; 1177 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1178 if (!IOA) 1179 return nullptr; 1180 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1181 if (!Field || !isMemcpyableField(Field)) 1182 return nullptr; 1183 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1184 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1185 return nullptr; 1186 return Field; 1187 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1188 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1189 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1190 return nullptr; 1191 Expr *DstPtr = CE->getArg(0); 1192 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1193 DstPtr = DC->getSubExpr(); 1194 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1195 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1196 return nullptr; 1197 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1198 if (!ME) 1199 return nullptr; 1200 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1201 if (!Field || !isMemcpyableField(Field)) 1202 return nullptr; 1203 Expr *SrcPtr = CE->getArg(1); 1204 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1205 SrcPtr = SC->getSubExpr(); 1206 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1207 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1208 return nullptr; 1209 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1210 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1211 return nullptr; 1212 return Field; 1213 } 1214 1215 return nullptr; 1216 } 1217 1218 bool AssignmentsMemcpyable; 1219 SmallVector<Stmt*, 16> AggregatedStmts; 1220 1221 public: 1222 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1223 FunctionArgList &Args) 1224 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1225 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1226 assert(Args.size() == 2); 1227 } 1228 1229 void emitAssignment(Stmt *S) { 1230 FieldDecl *F = getMemcpyableField(S); 1231 if (F) { 1232 addMemcpyableField(F); 1233 AggregatedStmts.push_back(S); 1234 } else { 1235 emitAggregatedStmts(); 1236 CGF.EmitStmt(S); 1237 } 1238 } 1239 1240 void emitAggregatedStmts() { 1241 if (AggregatedStmts.size() <= 1) { 1242 if (!AggregatedStmts.empty()) { 1243 CopyingValueRepresentation CVR(CGF); 1244 CGF.EmitStmt(AggregatedStmts[0]); 1245 } 1246 reset(); 1247 } 1248 1249 emitMemcpy(); 1250 AggregatedStmts.clear(); 1251 } 1252 1253 void finish() { 1254 emitAggregatedStmts(); 1255 } 1256 }; 1257 } // end anonymous namespace 1258 1259 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1260 const Type *BaseType = BaseInit->getBaseClass(); 1261 const auto *BaseClassDecl = 1262 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1263 return BaseClassDecl->isDynamicClass(); 1264 } 1265 1266 /// EmitCtorPrologue - This routine generates necessary code to initialize 1267 /// base classes and non-static data members belonging to this constructor. 1268 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1269 CXXCtorType CtorType, 1270 FunctionArgList &Args) { 1271 if (CD->isDelegatingConstructor()) 1272 return EmitDelegatingCXXConstructorCall(CD, Args); 1273 1274 const CXXRecordDecl *ClassDecl = CD->getParent(); 1275 1276 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1277 E = CD->init_end(); 1278 1279 // Virtual base initializers first, if any. They aren't needed if: 1280 // - This is a base ctor variant 1281 // - There are no vbases 1282 // - The class is abstract, so a complete object of it cannot be constructed 1283 // 1284 // The check for an abstract class is necessary because sema may not have 1285 // marked virtual base destructors referenced. 1286 bool ConstructVBases = CtorType != Ctor_Base && 1287 ClassDecl->getNumVBases() != 0 && 1288 !ClassDecl->isAbstract(); 1289 1290 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1291 // constructor of a class with virtual bases takes an additional parameter to 1292 // conditionally construct the virtual bases. Emit that check here. 1293 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1294 if (ConstructVBases && 1295 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1296 BaseCtorContinueBB = 1297 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1298 assert(BaseCtorContinueBB); 1299 } 1300 1301 llvm::Value *const OldThis = CXXThisValue; 1302 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1303 if (!ConstructVBases) 1304 continue; 1305 if (CGM.getCodeGenOpts().StrictVTablePointers && 1306 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1307 isInitializerOfDynamicClass(*B)) 1308 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1309 EmitBaseInitializer(*this, ClassDecl, *B); 1310 } 1311 1312 if (BaseCtorContinueBB) { 1313 // Complete object handler should continue to the remaining initializers. 1314 Builder.CreateBr(BaseCtorContinueBB); 1315 EmitBlock(BaseCtorContinueBB); 1316 } 1317 1318 // Then, non-virtual base initializers. 1319 for (; B != E && (*B)->isBaseInitializer(); B++) { 1320 assert(!(*B)->isBaseVirtual()); 1321 1322 if (CGM.getCodeGenOpts().StrictVTablePointers && 1323 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1324 isInitializerOfDynamicClass(*B)) 1325 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1326 EmitBaseInitializer(*this, ClassDecl, *B); 1327 } 1328 1329 CXXThisValue = OldThis; 1330 1331 InitializeVTablePointers(ClassDecl); 1332 1333 // And finally, initialize class members. 1334 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1335 ConstructorMemcpyizer CM(*this, CD, Args); 1336 for (; B != E; B++) { 1337 CXXCtorInitializer *Member = (*B); 1338 assert(!Member->isBaseInitializer()); 1339 assert(Member->isAnyMemberInitializer() && 1340 "Delegating initializer on non-delegating constructor"); 1341 CM.addMemberInitializer(Member); 1342 } 1343 CM.finish(); 1344 } 1345 1346 static bool 1347 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1348 1349 static bool 1350 HasTrivialDestructorBody(ASTContext &Context, 1351 const CXXRecordDecl *BaseClassDecl, 1352 const CXXRecordDecl *MostDerivedClassDecl) 1353 { 1354 // If the destructor is trivial we don't have to check anything else. 1355 if (BaseClassDecl->hasTrivialDestructor()) 1356 return true; 1357 1358 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1359 return false; 1360 1361 // Check fields. 1362 for (const auto *Field : BaseClassDecl->fields()) 1363 if (!FieldHasTrivialDestructorBody(Context, Field)) 1364 return false; 1365 1366 // Check non-virtual bases. 1367 for (const auto &I : BaseClassDecl->bases()) { 1368 if (I.isVirtual()) 1369 continue; 1370 1371 const CXXRecordDecl *NonVirtualBase = 1372 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1373 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1374 MostDerivedClassDecl)) 1375 return false; 1376 } 1377 1378 if (BaseClassDecl == MostDerivedClassDecl) { 1379 // Check virtual bases. 1380 for (const auto &I : BaseClassDecl->vbases()) { 1381 const CXXRecordDecl *VirtualBase = 1382 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1383 if (!HasTrivialDestructorBody(Context, VirtualBase, 1384 MostDerivedClassDecl)) 1385 return false; 1386 } 1387 } 1388 1389 return true; 1390 } 1391 1392 static bool 1393 FieldHasTrivialDestructorBody(ASTContext &Context, 1394 const FieldDecl *Field) 1395 { 1396 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1397 1398 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1399 if (!RT) 1400 return true; 1401 1402 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1403 1404 // The destructor for an implicit anonymous union member is never invoked. 1405 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1406 return false; 1407 1408 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1409 } 1410 1411 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1412 /// any vtable pointers before calling this destructor. 1413 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1414 const CXXDestructorDecl *Dtor) { 1415 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1416 if (!ClassDecl->isDynamicClass()) 1417 return true; 1418 1419 // For a final class, the vtable pointer is known to already point to the 1420 // class's vtable. 1421 if (ClassDecl->isEffectivelyFinal()) 1422 return true; 1423 1424 if (!Dtor->hasTrivialBody()) 1425 return false; 1426 1427 // Check the fields. 1428 for (const auto *Field : ClassDecl->fields()) 1429 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1430 return false; 1431 1432 return true; 1433 } 1434 1435 /// EmitDestructorBody - Emits the body of the current destructor. 1436 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1437 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1438 CXXDtorType DtorType = CurGD.getDtorType(); 1439 1440 // For an abstract class, non-base destructors are never used (and can't 1441 // be emitted in general, because vbase dtors may not have been validated 1442 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1443 // in fact emit references to them from other compilations, so emit them 1444 // as functions containing a trap instruction. 1445 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1446 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1447 TrapCall->setDoesNotReturn(); 1448 TrapCall->setDoesNotThrow(); 1449 Builder.CreateUnreachable(); 1450 Builder.ClearInsertionPoint(); 1451 return; 1452 } 1453 1454 Stmt *Body = Dtor->getBody(); 1455 if (Body) 1456 incrementProfileCounter(Body); 1457 1458 // The call to operator delete in a deleting destructor happens 1459 // outside of the function-try-block, which means it's always 1460 // possible to delegate the destructor body to the complete 1461 // destructor. Do so. 1462 if (DtorType == Dtor_Deleting) { 1463 RunCleanupsScope DtorEpilogue(*this); 1464 EnterDtorCleanups(Dtor, Dtor_Deleting); 1465 if (HaveInsertPoint()) { 1466 QualType ThisTy = Dtor->getThisObjectType(); 1467 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1468 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1469 } 1470 return; 1471 } 1472 1473 // If the body is a function-try-block, enter the try before 1474 // anything else. 1475 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1476 if (isTryBody) 1477 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1478 EmitAsanPrologueOrEpilogue(false); 1479 1480 // Enter the epilogue cleanups. 1481 RunCleanupsScope DtorEpilogue(*this); 1482 1483 // If this is the complete variant, just invoke the base variant; 1484 // the epilogue will destruct the virtual bases. But we can't do 1485 // this optimization if the body is a function-try-block, because 1486 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1487 // always delegate because we might not have a definition in this TU. 1488 switch (DtorType) { 1489 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1490 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1491 1492 case Dtor_Complete: 1493 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1494 "can't emit a dtor without a body for non-Microsoft ABIs"); 1495 1496 // Enter the cleanup scopes for virtual bases. 1497 EnterDtorCleanups(Dtor, Dtor_Complete); 1498 1499 if (!isTryBody) { 1500 QualType ThisTy = Dtor->getThisObjectType(); 1501 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1502 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1503 break; 1504 } 1505 1506 // Fallthrough: act like we're in the base variant. 1507 LLVM_FALLTHROUGH; 1508 1509 case Dtor_Base: 1510 assert(Body); 1511 1512 // Enter the cleanup scopes for fields and non-virtual bases. 1513 EnterDtorCleanups(Dtor, Dtor_Base); 1514 1515 // Initialize the vtable pointers before entering the body. 1516 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1517 // Insert the llvm.launder.invariant.group intrinsic before initializing 1518 // the vptrs to cancel any previous assumptions we might have made. 1519 if (CGM.getCodeGenOpts().StrictVTablePointers && 1520 CGM.getCodeGenOpts().OptimizationLevel > 0) 1521 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1522 InitializeVTablePointers(Dtor->getParent()); 1523 } 1524 1525 if (isTryBody) 1526 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1527 else if (Body) 1528 EmitStmt(Body); 1529 else { 1530 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1531 // nothing to do besides what's in the epilogue 1532 } 1533 // -fapple-kext must inline any call to this dtor into 1534 // the caller's body. 1535 if (getLangOpts().AppleKext) 1536 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1537 1538 break; 1539 } 1540 1541 // Jump out through the epilogue cleanups. 1542 DtorEpilogue.ForceCleanup(); 1543 1544 // Exit the try if applicable. 1545 if (isTryBody) 1546 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1547 } 1548 1549 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1550 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1551 const Stmt *RootS = AssignOp->getBody(); 1552 assert(isa<CompoundStmt>(RootS) && 1553 "Body of an implicit assignment operator should be compound stmt."); 1554 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1555 1556 LexicalScope Scope(*this, RootCS->getSourceRange()); 1557 1558 incrementProfileCounter(RootCS); 1559 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1560 for (auto *I : RootCS->body()) 1561 AM.emitAssignment(I); 1562 AM.finish(); 1563 } 1564 1565 namespace { 1566 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1567 const CXXDestructorDecl *DD) { 1568 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1569 return CGF.EmitScalarExpr(ThisArg); 1570 return CGF.LoadCXXThis(); 1571 } 1572 1573 /// Call the operator delete associated with the current destructor. 1574 struct CallDtorDelete final : EHScopeStack::Cleanup { 1575 CallDtorDelete() {} 1576 1577 void Emit(CodeGenFunction &CGF, Flags flags) override { 1578 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1579 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1580 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1581 LoadThisForDtorDelete(CGF, Dtor), 1582 CGF.getContext().getTagDeclType(ClassDecl)); 1583 } 1584 }; 1585 1586 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1587 llvm::Value *ShouldDeleteCondition, 1588 bool ReturnAfterDelete) { 1589 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1590 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1591 llvm::Value *ShouldCallDelete 1592 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1593 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1594 1595 CGF.EmitBlock(callDeleteBB); 1596 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1597 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1598 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1599 LoadThisForDtorDelete(CGF, Dtor), 1600 CGF.getContext().getTagDeclType(ClassDecl)); 1601 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1602 ReturnAfterDelete && 1603 "unexpected value for ReturnAfterDelete"); 1604 if (ReturnAfterDelete) 1605 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1606 else 1607 CGF.Builder.CreateBr(continueBB); 1608 1609 CGF.EmitBlock(continueBB); 1610 } 1611 1612 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1613 llvm::Value *ShouldDeleteCondition; 1614 1615 public: 1616 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1617 : ShouldDeleteCondition(ShouldDeleteCondition) { 1618 assert(ShouldDeleteCondition != nullptr); 1619 } 1620 1621 void Emit(CodeGenFunction &CGF, Flags flags) override { 1622 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1623 /*ReturnAfterDelete*/false); 1624 } 1625 }; 1626 1627 class DestroyField final : public EHScopeStack::Cleanup { 1628 const FieldDecl *field; 1629 CodeGenFunction::Destroyer *destroyer; 1630 bool useEHCleanupForArray; 1631 1632 public: 1633 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1634 bool useEHCleanupForArray) 1635 : field(field), destroyer(destroyer), 1636 useEHCleanupForArray(useEHCleanupForArray) {} 1637 1638 void Emit(CodeGenFunction &CGF, Flags flags) override { 1639 // Find the address of the field. 1640 Address thisValue = CGF.LoadCXXThisAddress(); 1641 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1642 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1643 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1644 assert(LV.isSimple()); 1645 1646 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer, 1647 flags.isForNormalCleanup() && useEHCleanupForArray); 1648 } 1649 }; 1650 1651 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1652 CharUnits::QuantityType PoisonSize) { 1653 CodeGenFunction::SanitizerScope SanScope(&CGF); 1654 // Pass in void pointer and size of region as arguments to runtime 1655 // function 1656 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1657 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1658 1659 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1660 1661 llvm::FunctionType *FnType = 1662 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1663 llvm::FunctionCallee Fn = 1664 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1665 CGF.EmitNounwindRuntimeCall(Fn, Args); 1666 } 1667 1668 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1669 const CXXDestructorDecl *Dtor; 1670 1671 public: 1672 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1673 1674 // Generate function call for handling object poisoning. 1675 // Disables tail call elimination, to prevent the current stack frame 1676 // from disappearing from the stack trace. 1677 void Emit(CodeGenFunction &CGF, Flags flags) override { 1678 const ASTRecordLayout &Layout = 1679 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1680 1681 // Nothing to poison. 1682 if (Layout.getFieldCount() == 0) 1683 return; 1684 1685 // Prevent the current stack frame from disappearing from the stack trace. 1686 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1687 1688 // Construct pointer to region to begin poisoning, and calculate poison 1689 // size, so that only members declared in this class are poisoned. 1690 ASTContext &Context = CGF.getContext(); 1691 1692 const RecordDecl *Decl = Dtor->getParent(); 1693 auto Fields = Decl->fields(); 1694 auto IsTrivial = [&](const FieldDecl *F) { 1695 return FieldHasTrivialDestructorBody(Context, F); 1696 }; 1697 1698 auto IsZeroSize = [&](const FieldDecl *F) { 1699 return F->isZeroSize(Context); 1700 }; 1701 1702 // Poison blocks of fields with trivial destructors making sure that block 1703 // begin and end do not point to zero-sized fields. They don't have 1704 // correct offsets so can't be used to calculate poisoning range. 1705 for (auto It = Fields.begin(); It != Fields.end();) { 1706 It = std::find_if(It, Fields.end(), [&](const FieldDecl *F) { 1707 return IsTrivial(F) && !IsZeroSize(F); 1708 }); 1709 if (It == Fields.end()) 1710 break; 1711 auto Start = It++; 1712 It = std::find_if(It, Fields.end(), [&](const FieldDecl *F) { 1713 return !IsTrivial(F) && !IsZeroSize(F); 1714 }); 1715 1716 PoisonMembers(CGF, (*Start)->getFieldIndex(), 1717 It == Fields.end() ? -1 : (*It)->getFieldIndex()); 1718 } 1719 } 1720 1721 private: 1722 /// \param layoutStartOffset index of the ASTRecordLayout field to 1723 /// start poisoning (inclusive) 1724 /// \param layoutEndOffset index of the ASTRecordLayout field to 1725 /// end poisoning (exclusive) 1726 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1727 unsigned layoutEndOffset) { 1728 ASTContext &Context = CGF.getContext(); 1729 const ASTRecordLayout &Layout = 1730 Context.getASTRecordLayout(Dtor->getParent()); 1731 1732 // It's a first trivia field so it should be at the begining of char, 1733 // still round up start offset just in case. 1734 CharUnits PoisonStart = 1735 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset) + 1736 Context.getCharWidth() - 1); 1737 llvm::ConstantInt *OffsetSizePtr = 1738 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity()); 1739 1740 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1741 CGF.Int8Ty, 1742 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1743 OffsetSizePtr); 1744 1745 CharUnits PoisonEnd; 1746 if (layoutEndOffset >= Layout.getFieldCount()) { 1747 PoisonEnd = Layout.getNonVirtualSize(); 1748 } else { 1749 PoisonEnd = 1750 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutEndOffset)); 1751 } 1752 CharUnits PoisonSize = PoisonEnd - PoisonStart; 1753 if (!PoisonSize.isPositive()) 1754 return; 1755 1756 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize.getQuantity()); 1757 } 1758 }; 1759 1760 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1761 const CXXDestructorDecl *Dtor; 1762 1763 public: 1764 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1765 1766 // Generate function call for handling vtable pointer poisoning. 1767 void Emit(CodeGenFunction &CGF, Flags flags) override { 1768 assert(Dtor->getParent()->isDynamicClass()); 1769 (void)Dtor; 1770 ASTContext &Context = CGF.getContext(); 1771 // Poison vtable and vtable ptr if they exist for this class. 1772 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1773 1774 CharUnits::QuantityType PoisonSize = 1775 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1776 // Pass in void pointer and size of region as arguments to runtime 1777 // function 1778 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1779 } 1780 }; 1781 } // end anonymous namespace 1782 1783 /// Emit all code that comes at the end of class's 1784 /// destructor. This is to call destructors on members and base classes 1785 /// in reverse order of their construction. 1786 /// 1787 /// For a deleting destructor, this also handles the case where a destroying 1788 /// operator delete completely overrides the definition. 1789 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1790 CXXDtorType DtorType) { 1791 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1792 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1793 1794 // The deleting-destructor phase just needs to call the appropriate 1795 // operator delete that Sema picked up. 1796 if (DtorType == Dtor_Deleting) { 1797 assert(DD->getOperatorDelete() && 1798 "operator delete missing - EnterDtorCleanups"); 1799 if (CXXStructorImplicitParamValue) { 1800 // If there is an implicit param to the deleting dtor, it's a boolean 1801 // telling whether this is a deleting destructor. 1802 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1803 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1804 /*ReturnAfterDelete*/true); 1805 else 1806 EHStack.pushCleanup<CallDtorDeleteConditional>( 1807 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1808 } else { 1809 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1810 const CXXRecordDecl *ClassDecl = DD->getParent(); 1811 EmitDeleteCall(DD->getOperatorDelete(), 1812 LoadThisForDtorDelete(*this, DD), 1813 getContext().getTagDeclType(ClassDecl)); 1814 EmitBranchThroughCleanup(ReturnBlock); 1815 } else { 1816 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1817 } 1818 } 1819 return; 1820 } 1821 1822 const CXXRecordDecl *ClassDecl = DD->getParent(); 1823 1824 // Unions have no bases and do not call field destructors. 1825 if (ClassDecl->isUnion()) 1826 return; 1827 1828 // The complete-destructor phase just destructs all the virtual bases. 1829 if (DtorType == Dtor_Complete) { 1830 // Poison the vtable pointer such that access after the base 1831 // and member destructors are invoked is invalid. 1832 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1833 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1834 ClassDecl->isPolymorphic()) 1835 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1836 1837 // We push them in the forward order so that they'll be popped in 1838 // the reverse order. 1839 for (const auto &Base : ClassDecl->vbases()) { 1840 auto *BaseClassDecl = 1841 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1842 1843 // Ignore trivial destructors. 1844 if (BaseClassDecl->hasTrivialDestructor()) 1845 continue; 1846 1847 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1848 BaseClassDecl, 1849 /*BaseIsVirtual*/ true); 1850 } 1851 1852 return; 1853 } 1854 1855 assert(DtorType == Dtor_Base); 1856 // Poison the vtable pointer if it has no virtual bases, but inherits 1857 // virtual functions. 1858 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1859 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1860 ClassDecl->isPolymorphic()) 1861 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1862 1863 // Destroy non-virtual bases. 1864 for (const auto &Base : ClassDecl->bases()) { 1865 // Ignore virtual bases. 1866 if (Base.isVirtual()) 1867 continue; 1868 1869 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1870 1871 // Ignore trivial destructors. 1872 if (BaseClassDecl->hasTrivialDestructor()) 1873 continue; 1874 1875 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1876 BaseClassDecl, 1877 /*BaseIsVirtual*/ false); 1878 } 1879 1880 // Poison fields such that access after their destructors are 1881 // invoked, and before the base class destructor runs, is invalid. 1882 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1883 SanOpts.has(SanitizerKind::Memory)) 1884 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1885 1886 // Destroy direct fields. 1887 for (const auto *Field : ClassDecl->fields()) { 1888 QualType type = Field->getType(); 1889 QualType::DestructionKind dtorKind = type.isDestructedType(); 1890 if (!dtorKind) continue; 1891 1892 // Anonymous union members do not have their destructors called. 1893 const RecordType *RT = type->getAsUnionType(); 1894 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1895 1896 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1897 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1898 getDestroyer(dtorKind), 1899 cleanupKind & EHCleanup); 1900 } 1901 } 1902 1903 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1904 /// constructor for each of several members of an array. 1905 /// 1906 /// \param ctor the constructor to call for each element 1907 /// \param arrayType the type of the array to initialize 1908 /// \param arrayBegin an arrayType* 1909 /// \param zeroInitialize true if each element should be 1910 /// zero-initialized before it is constructed 1911 void CodeGenFunction::EmitCXXAggrConstructorCall( 1912 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1913 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1914 bool zeroInitialize) { 1915 QualType elementType; 1916 llvm::Value *numElements = 1917 emitArrayLength(arrayType, elementType, arrayBegin); 1918 1919 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1920 NewPointerIsChecked, zeroInitialize); 1921 } 1922 1923 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1924 /// constructor for each of several members of an array. 1925 /// 1926 /// \param ctor the constructor to call for each element 1927 /// \param numElements the number of elements in the array; 1928 /// may be zero 1929 /// \param arrayBase a T*, where T is the type constructed by ctor 1930 /// \param zeroInitialize true if each element should be 1931 /// zero-initialized before it is constructed 1932 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1933 llvm::Value *numElements, 1934 Address arrayBase, 1935 const CXXConstructExpr *E, 1936 bool NewPointerIsChecked, 1937 bool zeroInitialize) { 1938 // It's legal for numElements to be zero. This can happen both 1939 // dynamically, because x can be zero in 'new A[x]', and statically, 1940 // because of GCC extensions that permit zero-length arrays. There 1941 // are probably legitimate places where we could assume that this 1942 // doesn't happen, but it's not clear that it's worth it. 1943 llvm::BranchInst *zeroCheckBranch = nullptr; 1944 1945 // Optimize for a constant count. 1946 llvm::ConstantInt *constantCount 1947 = dyn_cast<llvm::ConstantInt>(numElements); 1948 if (constantCount) { 1949 // Just skip out if the constant count is zero. 1950 if (constantCount->isZero()) return; 1951 1952 // Otherwise, emit the check. 1953 } else { 1954 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1955 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1956 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1957 EmitBlock(loopBB); 1958 } 1959 1960 // Find the end of the array. 1961 llvm::Type *elementType = arrayBase.getElementType(); 1962 llvm::Value *arrayBegin = arrayBase.getPointer(); 1963 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP( 1964 elementType, arrayBegin, numElements, "arrayctor.end"); 1965 1966 // Enter the loop, setting up a phi for the current location to initialize. 1967 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1968 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1969 EmitBlock(loopBB); 1970 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1971 "arrayctor.cur"); 1972 cur->addIncoming(arrayBegin, entryBB); 1973 1974 // Inside the loop body, emit the constructor call on the array element. 1975 1976 // The alignment of the base, adjusted by the size of a single element, 1977 // provides a conservative estimate of the alignment of every element. 1978 // (This assumes we never start tracking offsetted alignments.) 1979 // 1980 // Note that these are complete objects and so we don't need to 1981 // use the non-virtual size or alignment. 1982 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1983 CharUnits eltAlignment = 1984 arrayBase.getAlignment() 1985 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1986 Address curAddr = Address(cur, eltAlignment); 1987 1988 // Zero initialize the storage, if requested. 1989 if (zeroInitialize) 1990 EmitNullInitialization(curAddr, type); 1991 1992 // C++ [class.temporary]p4: 1993 // There are two contexts in which temporaries are destroyed at a different 1994 // point than the end of the full-expression. The first context is when a 1995 // default constructor is called to initialize an element of an array. 1996 // If the constructor has one or more default arguments, the destruction of 1997 // every temporary created in a default argument expression is sequenced 1998 // before the construction of the next array element, if any. 1999 2000 { 2001 RunCleanupsScope Scope(*this); 2002 2003 // Evaluate the constructor and its arguments in a regular 2004 // partial-destroy cleanup. 2005 if (getLangOpts().Exceptions && 2006 !ctor->getParent()->hasTrivialDestructor()) { 2007 Destroyer *destroyer = destroyCXXObject; 2008 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2009 *destroyer); 2010 } 2011 auto currAVS = AggValueSlot::forAddr( 2012 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 2013 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 2014 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 2015 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 2016 : AggValueSlot::IsNotSanitizerChecked); 2017 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2018 /*Delegating=*/false, currAVS, E); 2019 } 2020 2021 // Go to the next element. 2022 llvm::Value *next = Builder.CreateInBoundsGEP( 2023 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next"); 2024 cur->addIncoming(next, Builder.GetInsertBlock()); 2025 2026 // Check whether that's the end of the loop. 2027 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2028 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2029 Builder.CreateCondBr(done, contBB, loopBB); 2030 2031 // Patch the earlier check to skip over the loop. 2032 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2033 2034 EmitBlock(contBB); 2035 } 2036 2037 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2038 Address addr, 2039 QualType type) { 2040 const RecordType *rtype = type->castAs<RecordType>(); 2041 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2042 const CXXDestructorDecl *dtor = record->getDestructor(); 2043 assert(!dtor->isTrivial()); 2044 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2045 /*Delegating=*/false, addr, type); 2046 } 2047 2048 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2049 CXXCtorType Type, 2050 bool ForVirtualBase, 2051 bool Delegating, 2052 AggValueSlot ThisAVS, 2053 const CXXConstructExpr *E) { 2054 CallArgList Args; 2055 Address This = ThisAVS.getAddress(); 2056 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2057 QualType ThisType = D->getThisType(); 2058 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2059 llvm::Value *ThisPtr = This.getPointer(); 2060 2061 if (SlotAS != ThisAS) { 2062 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2063 llvm::Type *NewType = llvm::PointerType::getWithSamePointeeType( 2064 This.getType(), TargetThisAS); 2065 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2066 ThisAS, SlotAS, NewType); 2067 } 2068 2069 // Push the this ptr. 2070 Args.add(RValue::get(ThisPtr), D->getThisType()); 2071 2072 // If this is a trivial constructor, emit a memcpy now before we lose 2073 // the alignment information on the argument. 2074 // FIXME: It would be better to preserve alignment information into CallArg. 2075 if (isMemcpyEquivalentSpecialMember(D)) { 2076 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2077 2078 const Expr *Arg = E->getArg(0); 2079 LValue Src = EmitLValue(Arg); 2080 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2081 LValue Dest = MakeAddrLValue(This, DestTy); 2082 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2083 return; 2084 } 2085 2086 // Add the rest of the user-supplied arguments. 2087 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2088 EvaluationOrder Order = E->isListInitialization() 2089 ? EvaluationOrder::ForceLeftToRight 2090 : EvaluationOrder::Default; 2091 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2092 /*ParamsToSkip*/ 0, Order); 2093 2094 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2095 ThisAVS.mayOverlap(), E->getExprLoc(), 2096 ThisAVS.isSanitizerChecked()); 2097 } 2098 2099 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2100 const CXXConstructorDecl *Ctor, 2101 CXXCtorType Type, CallArgList &Args) { 2102 // We can't forward a variadic call. 2103 if (Ctor->isVariadic()) 2104 return false; 2105 2106 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2107 // If the parameters are callee-cleanup, it's not safe to forward. 2108 for (auto *P : Ctor->parameters()) 2109 if (P->needsDestruction(CGF.getContext())) 2110 return false; 2111 2112 // Likewise if they're inalloca. 2113 const CGFunctionInfo &Info = 2114 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2115 if (Info.usesInAlloca()) 2116 return false; 2117 } 2118 2119 // Anything else should be OK. 2120 return true; 2121 } 2122 2123 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2124 CXXCtorType Type, 2125 bool ForVirtualBase, 2126 bool Delegating, 2127 Address This, 2128 CallArgList &Args, 2129 AggValueSlot::Overlap_t Overlap, 2130 SourceLocation Loc, 2131 bool NewPointerIsChecked) { 2132 const CXXRecordDecl *ClassDecl = D->getParent(); 2133 2134 if (!NewPointerIsChecked) 2135 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2136 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2137 2138 if (D->isTrivial() && D->isDefaultConstructor()) { 2139 assert(Args.size() == 1 && "trivial default ctor with args"); 2140 return; 2141 } 2142 2143 // If this is a trivial constructor, just emit what's needed. If this is a 2144 // union copy constructor, we must emit a memcpy, because the AST does not 2145 // model that copy. 2146 if (isMemcpyEquivalentSpecialMember(D)) { 2147 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2148 2149 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2150 Address Src(Args[1].getRValue(*this).getScalarVal(), 2151 CGM.getNaturalTypeAlignment(SrcTy)); 2152 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2153 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2154 LValue DestLVal = MakeAddrLValue(This, DestTy); 2155 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2156 return; 2157 } 2158 2159 bool PassPrototypeArgs = true; 2160 // Check whether we can actually emit the constructor before trying to do so. 2161 if (auto Inherited = D->getInheritedConstructor()) { 2162 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2163 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2164 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2165 Delegating, Args); 2166 return; 2167 } 2168 } 2169 2170 // Insert any ABI-specific implicit constructor arguments. 2171 CGCXXABI::AddedStructorArgCounts ExtraArgs = 2172 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2173 Delegating, Args); 2174 2175 // Emit the call. 2176 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2177 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2178 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2179 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2180 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc); 2181 2182 // Generate vtable assumptions if we're constructing a complete object 2183 // with a vtable. We don't do this for base subobjects for two reasons: 2184 // first, it's incorrect for classes with virtual bases, and second, we're 2185 // about to overwrite the vptrs anyway. 2186 // We also have to make sure if we can refer to vtable: 2187 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2188 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2189 // sure that definition of vtable is not hidden, 2190 // then we are always safe to refer to it. 2191 // FIXME: It looks like InstCombine is very inefficient on dealing with 2192 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2193 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2194 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2195 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2196 CGM.getCodeGenOpts().StrictVTablePointers) 2197 EmitVTableAssumptionLoads(ClassDecl, This); 2198 } 2199 2200 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2201 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2202 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2203 CallArgList Args; 2204 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2205 2206 // Forward the parameters. 2207 if (InheritedFromVBase && 2208 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2209 // Nothing to do; this construction is not responsible for constructing 2210 // the base class containing the inherited constructor. 2211 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2212 // have constructor variants? 2213 Args.push_back(ThisArg); 2214 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2215 // The inheriting constructor was inlined; just inject its arguments. 2216 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2217 "wrong number of parameters for inherited constructor call"); 2218 Args = CXXInheritedCtorInitExprArgs; 2219 Args[0] = ThisArg; 2220 } else { 2221 // The inheriting constructor was not inlined. Emit delegating arguments. 2222 Args.push_back(ThisArg); 2223 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2224 assert(OuterCtor->getNumParams() == D->getNumParams()); 2225 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2226 2227 for (const auto *Param : OuterCtor->parameters()) { 2228 assert(getContext().hasSameUnqualifiedType( 2229 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2230 Param->getType())); 2231 EmitDelegateCallArg(Args, Param, E->getLocation()); 2232 2233 // Forward __attribute__(pass_object_size). 2234 if (Param->hasAttr<PassObjectSizeAttr>()) { 2235 auto *POSParam = SizeArguments[Param]; 2236 assert(POSParam && "missing pass_object_size value for forwarding"); 2237 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2238 } 2239 } 2240 } 2241 2242 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2243 This, Args, AggValueSlot::MayOverlap, 2244 E->getLocation(), /*NewPointerIsChecked*/true); 2245 } 2246 2247 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2248 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2249 bool Delegating, CallArgList &Args) { 2250 GlobalDecl GD(Ctor, CtorType); 2251 InlinedInheritingConstructorScope Scope(*this, GD); 2252 ApplyInlineDebugLocation DebugScope(*this, GD); 2253 RunCleanupsScope RunCleanups(*this); 2254 2255 // Save the arguments to be passed to the inherited constructor. 2256 CXXInheritedCtorInitExprArgs = Args; 2257 2258 FunctionArgList Params; 2259 QualType RetType = BuildFunctionArgList(CurGD, Params); 2260 FnRetTy = RetType; 2261 2262 // Insert any ABI-specific implicit constructor arguments. 2263 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2264 ForVirtualBase, Delegating, Args); 2265 2266 // Emit a simplified prolog. We only need to emit the implicit params. 2267 assert(Args.size() >= Params.size() && "too few arguments for call"); 2268 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2269 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2270 const RValue &RV = Args[I].getRValue(*this); 2271 assert(!RV.isComplex() && "complex indirect params not supported"); 2272 ParamValue Val = RV.isScalar() 2273 ? ParamValue::forDirect(RV.getScalarVal()) 2274 : ParamValue::forIndirect(RV.getAggregateAddress()); 2275 EmitParmDecl(*Params[I], Val, I + 1); 2276 } 2277 } 2278 2279 // Create a return value slot if the ABI implementation wants one. 2280 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2281 // value instead. 2282 if (!RetType->isVoidType()) 2283 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2284 2285 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2286 CXXThisValue = CXXABIThisValue; 2287 2288 // Directly emit the constructor initializers. 2289 EmitCtorPrologue(Ctor, CtorType, Params); 2290 } 2291 2292 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2293 llvm::Value *VTableGlobal = 2294 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2295 if (!VTableGlobal) 2296 return; 2297 2298 // We can just use the base offset in the complete class. 2299 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2300 2301 if (!NonVirtualOffset.isZero()) 2302 This = 2303 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2304 Vptr.VTableClass, Vptr.NearestVBase); 2305 2306 llvm::Value *VPtrValue = 2307 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2308 llvm::Value *Cmp = 2309 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2310 Builder.CreateAssumption(Cmp); 2311 } 2312 2313 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2314 Address This) { 2315 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2316 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2317 EmitVTableAssumptionLoad(Vptr, This); 2318 } 2319 2320 void 2321 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2322 Address This, Address Src, 2323 const CXXConstructExpr *E) { 2324 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2325 2326 CallArgList Args; 2327 2328 // Push the this ptr. 2329 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2330 2331 // Push the src ptr. 2332 QualType QT = *(FPT->param_type_begin()); 2333 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2334 Src = Builder.CreateBitCast(Src, t); 2335 Args.add(RValue::get(Src.getPointer()), QT); 2336 2337 // Skip over first argument (Src). 2338 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2339 /*ParamsToSkip*/ 1); 2340 2341 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2342 /*Delegating*/false, This, Args, 2343 AggValueSlot::MayOverlap, E->getExprLoc(), 2344 /*NewPointerIsChecked*/false); 2345 } 2346 2347 void 2348 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2349 CXXCtorType CtorType, 2350 const FunctionArgList &Args, 2351 SourceLocation Loc) { 2352 CallArgList DelegateArgs; 2353 2354 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2355 assert(I != E && "no parameters to constructor"); 2356 2357 // this 2358 Address This = LoadCXXThisAddress(); 2359 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2360 ++I; 2361 2362 // FIXME: The location of the VTT parameter in the parameter list is 2363 // specific to the Itanium ABI and shouldn't be hardcoded here. 2364 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2365 assert(I != E && "cannot skip vtt parameter, already done with args"); 2366 assert((*I)->getType()->isPointerType() && 2367 "skipping parameter not of vtt type"); 2368 ++I; 2369 } 2370 2371 // Explicit arguments. 2372 for (; I != E; ++I) { 2373 const VarDecl *param = *I; 2374 // FIXME: per-argument source location 2375 EmitDelegateCallArg(DelegateArgs, param, Loc); 2376 } 2377 2378 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2379 /*Delegating=*/true, This, DelegateArgs, 2380 AggValueSlot::MayOverlap, Loc, 2381 /*NewPointerIsChecked=*/true); 2382 } 2383 2384 namespace { 2385 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2386 const CXXDestructorDecl *Dtor; 2387 Address Addr; 2388 CXXDtorType Type; 2389 2390 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2391 CXXDtorType Type) 2392 : Dtor(D), Addr(Addr), Type(Type) {} 2393 2394 void Emit(CodeGenFunction &CGF, Flags flags) override { 2395 // We are calling the destructor from within the constructor. 2396 // Therefore, "this" should have the expected type. 2397 QualType ThisTy = Dtor->getThisObjectType(); 2398 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2399 /*Delegating=*/true, Addr, ThisTy); 2400 } 2401 }; 2402 } // end anonymous namespace 2403 2404 void 2405 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2406 const FunctionArgList &Args) { 2407 assert(Ctor->isDelegatingConstructor()); 2408 2409 Address ThisPtr = LoadCXXThisAddress(); 2410 2411 AggValueSlot AggSlot = 2412 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2413 AggValueSlot::IsDestructed, 2414 AggValueSlot::DoesNotNeedGCBarriers, 2415 AggValueSlot::IsNotAliased, 2416 AggValueSlot::MayOverlap, 2417 AggValueSlot::IsNotZeroed, 2418 // Checks are made by the code that calls constructor. 2419 AggValueSlot::IsSanitizerChecked); 2420 2421 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2422 2423 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2424 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2425 CXXDtorType Type = 2426 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2427 2428 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2429 ClassDecl->getDestructor(), 2430 ThisPtr, Type); 2431 } 2432 } 2433 2434 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2435 CXXDtorType Type, 2436 bool ForVirtualBase, 2437 bool Delegating, Address This, 2438 QualType ThisTy) { 2439 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2440 Delegating, This, ThisTy); 2441 } 2442 2443 namespace { 2444 struct CallLocalDtor final : EHScopeStack::Cleanup { 2445 const CXXDestructorDecl *Dtor; 2446 Address Addr; 2447 QualType Ty; 2448 2449 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2450 : Dtor(D), Addr(Addr), Ty(Ty) {} 2451 2452 void Emit(CodeGenFunction &CGF, Flags flags) override { 2453 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2454 /*ForVirtualBase=*/false, 2455 /*Delegating=*/false, Addr, Ty); 2456 } 2457 }; 2458 } // end anonymous namespace 2459 2460 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2461 QualType T, Address Addr) { 2462 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2463 } 2464 2465 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2466 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2467 if (!ClassDecl) return; 2468 if (ClassDecl->hasTrivialDestructor()) return; 2469 2470 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2471 assert(D && D->isUsed() && "destructor not marked as used!"); 2472 PushDestructorCleanup(D, T, Addr); 2473 } 2474 2475 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2476 // Compute the address point. 2477 llvm::Value *VTableAddressPoint = 2478 CGM.getCXXABI().getVTableAddressPointInStructor( 2479 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2480 2481 if (!VTableAddressPoint) 2482 return; 2483 2484 // Compute where to store the address point. 2485 llvm::Value *VirtualOffset = nullptr; 2486 CharUnits NonVirtualOffset = CharUnits::Zero(); 2487 2488 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2489 // We need to use the virtual base offset offset because the virtual base 2490 // might have a different offset in the most derived class. 2491 2492 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2493 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2494 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2495 } else { 2496 // We can just use the base offset in the complete class. 2497 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2498 } 2499 2500 // Apply the offsets. 2501 Address VTableField = LoadCXXThisAddress(); 2502 if (!NonVirtualOffset.isZero() || VirtualOffset) 2503 VTableField = ApplyNonVirtualAndVirtualOffset( 2504 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2505 Vptr.NearestVBase); 2506 2507 // Finally, store the address point. Use the same LLVM types as the field to 2508 // support optimization. 2509 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace(); 2510 unsigned ProgAS = CGM.getDataLayout().getProgramAddressSpace(); 2511 llvm::Type *VTablePtrTy = 2512 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2513 ->getPointerTo(ProgAS) 2514 ->getPointerTo(GlobalsAS); 2515 // vtable field is is derived from `this` pointer, therefore they should be in 2516 // the same addr space. Note that this might not be LLVM address space 0. 2517 VTableField = Builder.CreateElementBitCast(VTableField, VTablePtrTy); 2518 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2519 2520 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2521 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2522 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2523 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2524 CGM.getCodeGenOpts().StrictVTablePointers) 2525 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2526 } 2527 2528 CodeGenFunction::VPtrsVector 2529 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2530 CodeGenFunction::VPtrsVector VPtrsResult; 2531 VisitedVirtualBasesSetTy VBases; 2532 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2533 /*NearestVBase=*/nullptr, 2534 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2535 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2536 VPtrsResult); 2537 return VPtrsResult; 2538 } 2539 2540 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2541 const CXXRecordDecl *NearestVBase, 2542 CharUnits OffsetFromNearestVBase, 2543 bool BaseIsNonVirtualPrimaryBase, 2544 const CXXRecordDecl *VTableClass, 2545 VisitedVirtualBasesSetTy &VBases, 2546 VPtrsVector &Vptrs) { 2547 // If this base is a non-virtual primary base the address point has already 2548 // been set. 2549 if (!BaseIsNonVirtualPrimaryBase) { 2550 // Initialize the vtable pointer for this base. 2551 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2552 Vptrs.push_back(Vptr); 2553 } 2554 2555 const CXXRecordDecl *RD = Base.getBase(); 2556 2557 // Traverse bases. 2558 for (const auto &I : RD->bases()) { 2559 auto *BaseDecl = 2560 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2561 2562 // Ignore classes without a vtable. 2563 if (!BaseDecl->isDynamicClass()) 2564 continue; 2565 2566 CharUnits BaseOffset; 2567 CharUnits BaseOffsetFromNearestVBase; 2568 bool BaseDeclIsNonVirtualPrimaryBase; 2569 2570 if (I.isVirtual()) { 2571 // Check if we've visited this virtual base before. 2572 if (!VBases.insert(BaseDecl).second) 2573 continue; 2574 2575 const ASTRecordLayout &Layout = 2576 getContext().getASTRecordLayout(VTableClass); 2577 2578 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2579 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2580 BaseDeclIsNonVirtualPrimaryBase = false; 2581 } else { 2582 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2583 2584 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2585 BaseOffsetFromNearestVBase = 2586 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2587 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2588 } 2589 2590 getVTablePointers( 2591 BaseSubobject(BaseDecl, BaseOffset), 2592 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2593 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2594 } 2595 } 2596 2597 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2598 // Ignore classes without a vtable. 2599 if (!RD->isDynamicClass()) 2600 return; 2601 2602 // Initialize the vtable pointers for this class and all of its bases. 2603 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2604 for (const VPtr &Vptr : getVTablePointers(RD)) 2605 InitializeVTablePointer(Vptr); 2606 2607 if (RD->getNumVBases()) 2608 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2609 } 2610 2611 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2612 llvm::Type *VTableTy, 2613 const CXXRecordDecl *RD) { 2614 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2615 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2616 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2617 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2618 2619 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2620 CGM.getCodeGenOpts().StrictVTablePointers) 2621 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2622 2623 return VTable; 2624 } 2625 2626 // If a class has a single non-virtual base and does not introduce or override 2627 // virtual member functions or fields, it will have the same layout as its base. 2628 // This function returns the least derived such class. 2629 // 2630 // Casting an instance of a base class to such a derived class is technically 2631 // undefined behavior, but it is a relatively common hack for introducing member 2632 // functions on class instances with specific properties (e.g. llvm::Operator) 2633 // that works under most compilers and should not have security implications, so 2634 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2635 static const CXXRecordDecl * 2636 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2637 if (!RD->field_empty()) 2638 return RD; 2639 2640 if (RD->getNumVBases() != 0) 2641 return RD; 2642 2643 if (RD->getNumBases() != 1) 2644 return RD; 2645 2646 for (const CXXMethodDecl *MD : RD->methods()) { 2647 if (MD->isVirtual()) { 2648 // Virtual member functions are only ok if they are implicit destructors 2649 // because the implicit destructor will have the same semantics as the 2650 // base class's destructor if no fields are added. 2651 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2652 continue; 2653 return RD; 2654 } 2655 } 2656 2657 return LeastDerivedClassWithSameLayout( 2658 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2659 } 2660 2661 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2662 llvm::Value *VTable, 2663 SourceLocation Loc) { 2664 if (SanOpts.has(SanitizerKind::CFIVCall)) 2665 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2666 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2667 // Don't insert type test assumes if we are forcing public std 2668 // visibility. 2669 !CGM.HasLTOVisibilityPublicStd(RD)) { 2670 llvm::Metadata *MD = 2671 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2672 llvm::Value *TypeId = 2673 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2674 2675 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2676 llvm::Value *TypeTest = 2677 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2678 {CastedVTable, TypeId}); 2679 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2680 } 2681 } 2682 2683 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2684 llvm::Value *VTable, 2685 CFITypeCheckKind TCK, 2686 SourceLocation Loc) { 2687 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2688 RD = LeastDerivedClassWithSameLayout(RD); 2689 2690 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2691 } 2692 2693 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2694 llvm::Value *Derived, 2695 bool MayBeNull, 2696 CFITypeCheckKind TCK, 2697 SourceLocation Loc) { 2698 if (!getLangOpts().CPlusPlus) 2699 return; 2700 2701 auto *ClassTy = T->getAs<RecordType>(); 2702 if (!ClassTy) 2703 return; 2704 2705 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2706 2707 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2708 return; 2709 2710 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2711 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2712 2713 llvm::BasicBlock *ContBlock = nullptr; 2714 2715 if (MayBeNull) { 2716 llvm::Value *DerivedNotNull = 2717 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2718 2719 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2720 ContBlock = createBasicBlock("cast.cont"); 2721 2722 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2723 2724 EmitBlock(CheckBlock); 2725 } 2726 2727 llvm::Value *VTable; 2728 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2729 *this, Address(Derived, getPointerAlign()), ClassDecl); 2730 2731 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2732 2733 if (MayBeNull) { 2734 Builder.CreateBr(ContBlock); 2735 EmitBlock(ContBlock); 2736 } 2737 } 2738 2739 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2740 llvm::Value *VTable, 2741 CFITypeCheckKind TCK, 2742 SourceLocation Loc) { 2743 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2744 !CGM.HasHiddenLTOVisibility(RD)) 2745 return; 2746 2747 SanitizerMask M; 2748 llvm::SanitizerStatKind SSK; 2749 switch (TCK) { 2750 case CFITCK_VCall: 2751 M = SanitizerKind::CFIVCall; 2752 SSK = llvm::SanStat_CFI_VCall; 2753 break; 2754 case CFITCK_NVCall: 2755 M = SanitizerKind::CFINVCall; 2756 SSK = llvm::SanStat_CFI_NVCall; 2757 break; 2758 case CFITCK_DerivedCast: 2759 M = SanitizerKind::CFIDerivedCast; 2760 SSK = llvm::SanStat_CFI_DerivedCast; 2761 break; 2762 case CFITCK_UnrelatedCast: 2763 M = SanitizerKind::CFIUnrelatedCast; 2764 SSK = llvm::SanStat_CFI_UnrelatedCast; 2765 break; 2766 case CFITCK_ICall: 2767 case CFITCK_NVMFCall: 2768 case CFITCK_VMFCall: 2769 llvm_unreachable("unexpected sanitizer kind"); 2770 } 2771 2772 std::string TypeName = RD->getQualifiedNameAsString(); 2773 if (getContext().getNoSanitizeList().containsType(M, TypeName)) 2774 return; 2775 2776 SanitizerScope SanScope(this); 2777 EmitSanitizerStatReport(SSK); 2778 2779 llvm::Metadata *MD = 2780 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2781 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2782 2783 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2784 llvm::Value *TypeTest = Builder.CreateCall( 2785 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2786 2787 llvm::Constant *StaticData[] = { 2788 llvm::ConstantInt::get(Int8Ty, TCK), 2789 EmitCheckSourceLocation(Loc), 2790 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2791 }; 2792 2793 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2794 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2795 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2796 return; 2797 } 2798 2799 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2800 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail); 2801 return; 2802 } 2803 2804 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2805 CGM.getLLVMContext(), 2806 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2807 llvm::Value *ValidVtable = Builder.CreateCall( 2808 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2809 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2810 StaticData, {CastedVTable, ValidVtable}); 2811 } 2812 2813 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2814 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2815 !CGM.HasHiddenLTOVisibility(RD)) 2816 return false; 2817 2818 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2819 return true; 2820 2821 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2822 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2823 return false; 2824 2825 std::string TypeName = RD->getQualifiedNameAsString(); 2826 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2827 TypeName); 2828 } 2829 2830 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2831 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2832 SanitizerScope SanScope(this); 2833 2834 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2835 2836 llvm::Metadata *MD = 2837 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2838 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2839 2840 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2841 llvm::Value *CheckedLoad = Builder.CreateCall( 2842 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2843 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2844 TypeId}); 2845 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2846 2847 std::string TypeName = RD->getQualifiedNameAsString(); 2848 if (SanOpts.has(SanitizerKind::CFIVCall) && 2849 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2850 TypeName)) { 2851 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2852 SanitizerHandler::CFICheckFail, {}, {}); 2853 } 2854 2855 return Builder.CreateBitCast( 2856 Builder.CreateExtractValue(CheckedLoad, 0), 2857 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2858 } 2859 2860 void CodeGenFunction::EmitForwardingCallToLambda( 2861 const CXXMethodDecl *callOperator, 2862 CallArgList &callArgs) { 2863 // Get the address of the call operator. 2864 const CGFunctionInfo &calleeFnInfo = 2865 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2866 llvm::Constant *calleePtr = 2867 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2868 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2869 2870 // Prepare the return slot. 2871 const FunctionProtoType *FPT = 2872 callOperator->getType()->castAs<FunctionProtoType>(); 2873 QualType resultType = FPT->getReturnType(); 2874 ReturnValueSlot returnSlot; 2875 if (!resultType->isVoidType() && 2876 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2877 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2878 returnSlot = 2879 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), 2880 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 2881 2882 // We don't need to separately arrange the call arguments because 2883 // the call can't be variadic anyway --- it's impossible to forward 2884 // variadic arguments. 2885 2886 // Now emit our call. 2887 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2888 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2889 2890 // If necessary, copy the returned value into the slot. 2891 if (!resultType->isVoidType() && returnSlot.isNull()) { 2892 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2893 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2894 } 2895 EmitReturnOfRValue(RV, resultType); 2896 } else 2897 EmitBranchThroughCleanup(ReturnBlock); 2898 } 2899 2900 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2901 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2902 const VarDecl *variable = BD->capture_begin()->getVariable(); 2903 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2904 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2905 2906 if (CallOp->isVariadic()) { 2907 // FIXME: Making this work correctly is nasty because it requires either 2908 // cloning the body of the call operator or making the call operator 2909 // forward. 2910 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2911 return; 2912 } 2913 2914 // Start building arguments for forwarding call 2915 CallArgList CallArgs; 2916 2917 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2918 Address ThisPtr = GetAddrOfBlockDecl(variable); 2919 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2920 2921 // Add the rest of the parameters. 2922 for (auto param : BD->parameters()) 2923 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2924 2925 assert(!Lambda->isGenericLambda() && 2926 "generic lambda interconversion to block not implemented"); 2927 EmitForwardingCallToLambda(CallOp, CallArgs); 2928 } 2929 2930 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2931 const CXXRecordDecl *Lambda = MD->getParent(); 2932 2933 // Start building arguments for forwarding call 2934 CallArgList CallArgs; 2935 2936 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2937 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2938 CallArgs.add(RValue::get(ThisPtr), ThisType); 2939 2940 // Add the rest of the parameters. 2941 for (auto Param : MD->parameters()) 2942 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2943 2944 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2945 // For a generic lambda, find the corresponding call operator specialization 2946 // to which the call to the static-invoker shall be forwarded. 2947 if (Lambda->isGenericLambda()) { 2948 assert(MD->isFunctionTemplateSpecialization()); 2949 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2950 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2951 void *InsertPos = nullptr; 2952 FunctionDecl *CorrespondingCallOpSpecialization = 2953 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2954 assert(CorrespondingCallOpSpecialization); 2955 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2956 } 2957 EmitForwardingCallToLambda(CallOp, CallArgs); 2958 } 2959 2960 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2961 if (MD->isVariadic()) { 2962 // FIXME: Making this work correctly is nasty because it requires either 2963 // cloning the body of the call operator or making the call operator forward. 2964 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2965 return; 2966 } 2967 2968 EmitLambdaDelegatingInvokeBody(MD); 2969 } 2970