1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "ABIInfoImpl.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/AttributeMask.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <optional> 45 using namespace clang; 46 using namespace CodeGen; 47 48 /***/ 49 50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 51 switch (CC) { 52 default: return llvm::CallingConv::C; 53 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 54 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 55 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 56 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 57 case CC_Win64: return llvm::CallingConv::Win64; 58 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 59 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 60 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 61 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 62 // TODO: Add support for __pascal to LLVM. 63 case CC_X86Pascal: return llvm::CallingConv::C; 64 // TODO: Add support for __vectorcall to LLVM. 65 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 66 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 67 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 68 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 69 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 70 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 71 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 72 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 73 case CC_Swift: return llvm::CallingConv::Swift; 74 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 75 case CC_M68kRTD: return llvm::CallingConv::M68k_RTD; 76 case CC_PreserveNone: return llvm::CallingConv::PreserveNone; 77 // clang-format off 78 case CC_RISCVVectorCall: return llvm::CallingConv::RISCV_VectorCall; 79 // clang-format on 80 } 81 } 82 83 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 84 /// qualification. Either or both of RD and MD may be null. A null RD indicates 85 /// that there is no meaningful 'this' type, and a null MD can occur when 86 /// calling a method pointer. 87 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 88 const CXXMethodDecl *MD) { 89 QualType RecTy; 90 if (RD) 91 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 92 else 93 RecTy = Context.VoidTy; 94 95 if (MD) 96 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 97 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 98 } 99 100 /// Returns the canonical formal type of the given C++ method. 101 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 102 return MD->getType()->getCanonicalTypeUnqualified() 103 .getAs<FunctionProtoType>(); 104 } 105 106 /// Returns the "extra-canonicalized" return type, which discards 107 /// qualifiers on the return type. Codegen doesn't care about them, 108 /// and it makes ABI code a little easier to be able to assume that 109 /// all parameter and return types are top-level unqualified. 110 static CanQualType GetReturnType(QualType RetTy) { 111 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 112 } 113 114 /// Arrange the argument and result information for a value of the given 115 /// unprototyped freestanding function type. 116 const CGFunctionInfo & 117 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 118 // When translating an unprototyped function type, always use a 119 // variadic type. 120 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 121 FnInfoOpts::None, std::nullopt, 122 FTNP->getExtInfo(), {}, RequiredArgs(0)); 123 } 124 125 static void addExtParameterInfosForCall( 126 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 127 const FunctionProtoType *proto, 128 unsigned prefixArgs, 129 unsigned totalArgs) { 130 assert(proto->hasExtParameterInfos()); 131 assert(paramInfos.size() <= prefixArgs); 132 assert(proto->getNumParams() + prefixArgs <= totalArgs); 133 134 paramInfos.reserve(totalArgs); 135 136 // Add default infos for any prefix args that don't already have infos. 137 paramInfos.resize(prefixArgs); 138 139 // Add infos for the prototype. 140 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 141 paramInfos.push_back(ParamInfo); 142 // pass_object_size params have no parameter info. 143 if (ParamInfo.hasPassObjectSize()) 144 paramInfos.emplace_back(); 145 } 146 147 assert(paramInfos.size() <= totalArgs && 148 "Did we forget to insert pass_object_size args?"); 149 // Add default infos for the variadic and/or suffix arguments. 150 paramInfos.resize(totalArgs); 151 } 152 153 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 154 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 155 static void appendParameterTypes(const CodeGenTypes &CGT, 156 SmallVectorImpl<CanQualType> &prefix, 157 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 158 CanQual<FunctionProtoType> FPT) { 159 // Fast path: don't touch param info if we don't need to. 160 if (!FPT->hasExtParameterInfos()) { 161 assert(paramInfos.empty() && 162 "We have paramInfos, but the prototype doesn't?"); 163 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 164 return; 165 } 166 167 unsigned PrefixSize = prefix.size(); 168 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 169 // parameters; the only thing that can change this is the presence of 170 // pass_object_size. So, we preallocate for the common case. 171 prefix.reserve(prefix.size() + FPT->getNumParams()); 172 173 auto ExtInfos = FPT->getExtParameterInfos(); 174 assert(ExtInfos.size() == FPT->getNumParams()); 175 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 176 prefix.push_back(FPT->getParamType(I)); 177 if (ExtInfos[I].hasPassObjectSize()) 178 prefix.push_back(CGT.getContext().getSizeType()); 179 } 180 181 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 182 prefix.size()); 183 } 184 185 /// Arrange the LLVM function layout for a value of the given function 186 /// type, on top of any implicit parameters already stored. 187 static const CGFunctionInfo & 188 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 189 SmallVectorImpl<CanQualType> &prefix, 190 CanQual<FunctionProtoType> FTP) { 191 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 192 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 193 // FIXME: Kill copy. 194 appendParameterTypes(CGT, prefix, paramInfos, FTP); 195 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 196 197 FnInfoOpts opts = 198 instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None; 199 return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix, 200 FTP->getExtInfo(), paramInfos, Required); 201 } 202 203 /// Arrange the argument and result information for a value of the 204 /// given freestanding function type. 205 const CGFunctionInfo & 206 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 207 SmallVector<CanQualType, 16> argTypes; 208 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 209 FTP); 210 } 211 212 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 213 bool IsWindows) { 214 // Set the appropriate calling convention for the Function. 215 if (D->hasAttr<StdCallAttr>()) 216 return CC_X86StdCall; 217 218 if (D->hasAttr<FastCallAttr>()) 219 return CC_X86FastCall; 220 221 if (D->hasAttr<RegCallAttr>()) 222 return CC_X86RegCall; 223 224 if (D->hasAttr<ThisCallAttr>()) 225 return CC_X86ThisCall; 226 227 if (D->hasAttr<VectorCallAttr>()) 228 return CC_X86VectorCall; 229 230 if (D->hasAttr<PascalAttr>()) 231 return CC_X86Pascal; 232 233 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 234 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 235 236 if (D->hasAttr<AArch64VectorPcsAttr>()) 237 return CC_AArch64VectorCall; 238 239 if (D->hasAttr<AArch64SVEPcsAttr>()) 240 return CC_AArch64SVEPCS; 241 242 if (D->hasAttr<AMDGPUKernelCallAttr>()) 243 return CC_AMDGPUKernelCall; 244 245 if (D->hasAttr<IntelOclBiccAttr>()) 246 return CC_IntelOclBicc; 247 248 if (D->hasAttr<MSABIAttr>()) 249 return IsWindows ? CC_C : CC_Win64; 250 251 if (D->hasAttr<SysVABIAttr>()) 252 return IsWindows ? CC_X86_64SysV : CC_C; 253 254 if (D->hasAttr<PreserveMostAttr>()) 255 return CC_PreserveMost; 256 257 if (D->hasAttr<PreserveAllAttr>()) 258 return CC_PreserveAll; 259 260 if (D->hasAttr<M68kRTDAttr>()) 261 return CC_M68kRTD; 262 263 if (D->hasAttr<PreserveNoneAttr>()) 264 return CC_PreserveNone; 265 266 if (D->hasAttr<RISCVVectorCCAttr>()) 267 return CC_RISCVVectorCall; 268 269 return CC_C; 270 } 271 272 /// Arrange the argument and result information for a call to an 273 /// unknown C++ non-static member function of the given abstract type. 274 /// (A null RD means we don't have any meaningful "this" argument type, 275 /// so fall back to a generic pointer type). 276 /// The member function must be an ordinary function, i.e. not a 277 /// constructor or destructor. 278 const CGFunctionInfo & 279 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 280 const FunctionProtoType *FTP, 281 const CXXMethodDecl *MD) { 282 SmallVector<CanQualType, 16> argTypes; 283 284 // Add the 'this' pointer. 285 argTypes.push_back(DeriveThisType(RD, MD)); 286 287 return ::arrangeLLVMFunctionInfo( 288 *this, /*instanceMethod=*/true, argTypes, 289 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 290 } 291 292 /// Set calling convention for CUDA/HIP kernel. 293 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 294 const FunctionDecl *FD) { 295 if (FD->hasAttr<CUDAGlobalAttr>()) { 296 const FunctionType *FT = FTy->getAs<FunctionType>(); 297 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 298 FTy = FT->getCanonicalTypeUnqualified(); 299 } 300 } 301 302 /// Arrange the argument and result information for a declaration or 303 /// definition of the given C++ non-static member function. The 304 /// member function must be an ordinary function, i.e. not a 305 /// constructor or destructor. 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 308 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 309 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 310 311 CanQualType FT = GetFormalType(MD).getAs<Type>(); 312 setCUDAKernelCallingConvention(FT, CGM, MD); 313 auto prototype = FT.getAs<FunctionProtoType>(); 314 315 if (MD->isImplicitObjectMemberFunction()) { 316 // The abstract case is perfectly fine. 317 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 318 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 319 } 320 321 return arrangeFreeFunctionType(prototype); 322 } 323 324 bool CodeGenTypes::inheritingCtorHasParams( 325 const InheritedConstructor &Inherited, CXXCtorType Type) { 326 // Parameters are unnecessary if we're constructing a base class subobject 327 // and the inherited constructor lives in a virtual base. 328 return Type == Ctor_Complete || 329 !Inherited.getShadowDecl()->constructsVirtualBase() || 330 !Target.getCXXABI().hasConstructorVariants(); 331 } 332 333 const CGFunctionInfo & 334 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 335 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 336 337 SmallVector<CanQualType, 16> argTypes; 338 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 339 340 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD); 341 argTypes.push_back(DeriveThisType(ThisType, MD)); 342 343 bool PassParams = true; 344 345 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 346 // A base class inheriting constructor doesn't get forwarded arguments 347 // needed to construct a virtual base (or base class thereof). 348 if (auto Inherited = CD->getInheritedConstructor()) 349 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 350 } 351 352 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 353 354 // Add the formal parameters. 355 if (PassParams) 356 appendParameterTypes(*this, argTypes, paramInfos, FTP); 357 358 CGCXXABI::AddedStructorArgCounts AddedArgs = 359 TheCXXABI.buildStructorSignature(GD, argTypes); 360 if (!paramInfos.empty()) { 361 // Note: prefix implies after the first param. 362 if (AddedArgs.Prefix) 363 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 364 FunctionProtoType::ExtParameterInfo{}); 365 if (AddedArgs.Suffix) 366 paramInfos.append(AddedArgs.Suffix, 367 FunctionProtoType::ExtParameterInfo{}); 368 } 369 370 RequiredArgs required = 371 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 372 : RequiredArgs::All); 373 374 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 375 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 376 ? argTypes.front() 377 : TheCXXABI.hasMostDerivedReturn(GD) 378 ? CGM.getContext().VoidPtrTy 379 : Context.VoidTy; 380 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod, 381 argTypes, extInfo, paramInfos, required); 382 } 383 384 static SmallVector<CanQualType, 16> 385 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 386 SmallVector<CanQualType, 16> argTypes; 387 for (auto &arg : args) 388 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 389 return argTypes; 390 } 391 392 static SmallVector<CanQualType, 16> 393 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 394 SmallVector<CanQualType, 16> argTypes; 395 for (auto &arg : args) 396 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 397 return argTypes; 398 } 399 400 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 401 getExtParameterInfosForCall(const FunctionProtoType *proto, 402 unsigned prefixArgs, unsigned totalArgs) { 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 404 if (proto->hasExtParameterInfos()) { 405 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 406 } 407 return result; 408 } 409 410 /// Arrange a call to a C++ method, passing the given arguments. 411 /// 412 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 413 /// parameter. 414 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 415 /// args. 416 /// PassProtoArgs indicates whether `args` has args for the parameters in the 417 /// given CXXConstructorDecl. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 420 const CXXConstructorDecl *D, 421 CXXCtorType CtorKind, 422 unsigned ExtraPrefixArgs, 423 unsigned ExtraSuffixArgs, 424 bool PassProtoArgs) { 425 // FIXME: Kill copy. 426 SmallVector<CanQualType, 16> ArgTypes; 427 for (const auto &Arg : args) 428 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 429 430 // +1 for implicit this, which should always be args[0]. 431 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 432 433 CanQual<FunctionProtoType> FPT = GetFormalType(D); 434 RequiredArgs Required = PassProtoArgs 435 ? RequiredArgs::forPrototypePlus( 436 FPT, TotalPrefixArgs + ExtraSuffixArgs) 437 : RequiredArgs::All; 438 439 GlobalDecl GD(D, CtorKind); 440 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 441 ? ArgTypes.front() 442 : TheCXXABI.hasMostDerivedReturn(GD) 443 ? CGM.getContext().VoidPtrTy 444 : Context.VoidTy; 445 446 FunctionType::ExtInfo Info = FPT->getExtInfo(); 447 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 448 // If the prototype args are elided, we should only have ABI-specific args, 449 // which never have param info. 450 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 451 // ABI-specific suffix arguments are treated the same as variadic arguments. 452 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 453 ArgTypes.size()); 454 } 455 456 return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod, 457 ArgTypes, Info, ParamInfos, Required); 458 } 459 460 /// Arrange the argument and result information for the declaration or 461 /// definition of the given function. 462 const CGFunctionInfo & 463 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 464 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 465 if (MD->isImplicitObjectMemberFunction()) 466 return arrangeCXXMethodDeclaration(MD); 467 468 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 469 470 assert(isa<FunctionType>(FTy)); 471 setCUDAKernelCallingConvention(FTy, CGM, FD); 472 473 // When declaring a function without a prototype, always use a 474 // non-variadic type. 475 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 476 return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None, 477 std::nullopt, noProto->getExtInfo(), {}, 478 RequiredArgs::All); 479 } 480 481 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 482 } 483 484 /// Arrange the argument and result information for the declaration or 485 /// definition of an Objective-C method. 486 const CGFunctionInfo & 487 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 488 // It happens that this is the same as a call with no optional 489 // arguments, except also using the formal 'self' type. 490 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 491 } 492 493 /// Arrange the argument and result information for the function type 494 /// through which to perform a send to the given Objective-C method, 495 /// using the given receiver type. The receiver type is not always 496 /// the 'self' type of the method or even an Objective-C pointer type. 497 /// This is *not* the right method for actually performing such a 498 /// message send, due to the possibility of optional arguments. 499 const CGFunctionInfo & 500 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 501 QualType receiverType) { 502 SmallVector<CanQualType, 16> argTys; 503 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos( 504 MD->isDirectMethod() ? 1 : 2); 505 argTys.push_back(Context.getCanonicalParamType(receiverType)); 506 if (!MD->isDirectMethod()) 507 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 508 // FIXME: Kill copy? 509 for (const auto *I : MD->parameters()) { 510 argTys.push_back(Context.getCanonicalParamType(I->getType())); 511 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 512 I->hasAttr<NoEscapeAttr>()); 513 extParamInfos.push_back(extParamInfo); 514 } 515 516 FunctionType::ExtInfo einfo; 517 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 518 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 519 520 if (getContext().getLangOpts().ObjCAutoRefCount && 521 MD->hasAttr<NSReturnsRetainedAttr>()) 522 einfo = einfo.withProducesResult(true); 523 524 RequiredArgs required = 525 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 526 527 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), 528 FnInfoOpts::None, argTys, einfo, extParamInfos, 529 required); 530 } 531 532 const CGFunctionInfo & 533 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 534 const CallArgList &args) { 535 auto argTypes = getArgTypesForCall(Context, args); 536 FunctionType::ExtInfo einfo; 537 538 return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None, 539 argTypes, einfo, {}, RequiredArgs::All); 540 } 541 542 const CGFunctionInfo & 543 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 544 // FIXME: Do we need to handle ObjCMethodDecl? 545 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 546 547 if (isa<CXXConstructorDecl>(GD.getDecl()) || 548 isa<CXXDestructorDecl>(GD.getDecl())) 549 return arrangeCXXStructorDeclaration(GD); 550 551 return arrangeFunctionDeclaration(FD); 552 } 553 554 /// Arrange a thunk that takes 'this' as the first parameter followed by 555 /// varargs. Return a void pointer, regardless of the actual return type. 556 /// The body of the thunk will end in a musttail call to a function of the 557 /// correct type, and the caller will bitcast the function to the correct 558 /// prototype. 559 const CGFunctionInfo & 560 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 561 assert(MD->isVirtual() && "only methods have thunks"); 562 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 563 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 564 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys, 565 FTP->getExtInfo(), {}, RequiredArgs(1)); 566 } 567 568 const CGFunctionInfo & 569 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 570 CXXCtorType CT) { 571 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 572 573 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 574 SmallVector<CanQualType, 2> ArgTys; 575 const CXXRecordDecl *RD = CD->getParent(); 576 ArgTys.push_back(DeriveThisType(RD, CD)); 577 if (CT == Ctor_CopyingClosure) 578 ArgTys.push_back(*FTP->param_type_begin()); 579 if (RD->getNumVBases() > 0) 580 ArgTys.push_back(Context.IntTy); 581 CallingConv CC = Context.getDefaultCallingConvention( 582 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 583 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod, 584 ArgTys, FunctionType::ExtInfo(CC), {}, 585 RequiredArgs::All); 586 } 587 588 /// Arrange a call as unto a free function, except possibly with an 589 /// additional number of formal parameters considered required. 590 static const CGFunctionInfo & 591 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 592 CodeGenModule &CGM, 593 const CallArgList &args, 594 const FunctionType *fnType, 595 unsigned numExtraRequiredArgs, 596 bool chainCall) { 597 assert(args.size() >= numExtraRequiredArgs); 598 599 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 600 601 // In most cases, there are no optional arguments. 602 RequiredArgs required = RequiredArgs::All; 603 604 // If we have a variadic prototype, the required arguments are the 605 // extra prefix plus the arguments in the prototype. 606 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 607 if (proto->isVariadic()) 608 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 609 610 if (proto->hasExtParameterInfos()) 611 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 612 args.size()); 613 614 // If we don't have a prototype at all, but we're supposed to 615 // explicitly use the variadic convention for unprototyped calls, 616 // treat all of the arguments as required but preserve the nominal 617 // possibility of variadics. 618 } else if (CGM.getTargetCodeGenInfo() 619 .isNoProtoCallVariadic(args, 620 cast<FunctionNoProtoType>(fnType))) { 621 required = RequiredArgs(args.size()); 622 } 623 624 // FIXME: Kill copy. 625 SmallVector<CanQualType, 16> argTypes; 626 for (const auto &arg : args) 627 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 628 FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None; 629 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 630 opts, argTypes, fnType->getExtInfo(), 631 paramInfos, required); 632 } 633 634 /// Figure out the rules for calling a function with the given formal 635 /// type using the given arguments. The arguments are necessary 636 /// because the function might be unprototyped, in which case it's 637 /// target-dependent in crazy ways. 638 const CGFunctionInfo & 639 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 640 const FunctionType *fnType, 641 bool chainCall) { 642 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 643 chainCall ? 1 : 0, chainCall); 644 } 645 646 /// A block function is essentially a free function with an 647 /// extra implicit argument. 648 const CGFunctionInfo & 649 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 650 const FunctionType *fnType) { 651 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 652 /*chainCall=*/false); 653 } 654 655 const CGFunctionInfo & 656 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 657 const FunctionArgList ¶ms) { 658 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 659 auto argTypes = getArgTypesForDeclaration(Context, params); 660 661 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 662 FnInfoOpts::None, argTypes, 663 proto->getExtInfo(), paramInfos, 664 RequiredArgs::forPrototypePlus(proto, 1)); 665 } 666 667 const CGFunctionInfo & 668 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 669 const CallArgList &args) { 670 // FIXME: Kill copy. 671 SmallVector<CanQualType, 16> argTypes; 672 for (const auto &Arg : args) 673 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 674 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 675 argTypes, FunctionType::ExtInfo(), 676 /*paramInfos=*/{}, RequiredArgs::All); 677 } 678 679 const CGFunctionInfo & 680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 681 const FunctionArgList &args) { 682 auto argTypes = getArgTypesForDeclaration(Context, args); 683 684 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 685 argTypes, FunctionType::ExtInfo(), {}, 686 RequiredArgs::All); 687 } 688 689 const CGFunctionInfo & 690 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 691 ArrayRef<CanQualType> argTypes) { 692 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes, 693 FunctionType::ExtInfo(), {}, 694 RequiredArgs::All); 695 } 696 697 /// Arrange a call to a C++ method, passing the given arguments. 698 /// 699 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 700 /// does not count `this`. 701 const CGFunctionInfo & 702 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 703 const FunctionProtoType *proto, 704 RequiredArgs required, 705 unsigned numPrefixArgs) { 706 assert(numPrefixArgs + 1 <= args.size() && 707 "Emitting a call with less args than the required prefix?"); 708 // Add one to account for `this`. It's a bit awkward here, but we don't count 709 // `this` in similar places elsewhere. 710 auto paramInfos = 711 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 712 713 // FIXME: Kill copy. 714 auto argTypes = getArgTypesForCall(Context, args); 715 716 FunctionType::ExtInfo info = proto->getExtInfo(); 717 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 718 FnInfoOpts::IsInstanceMethod, argTypes, info, 719 paramInfos, required); 720 } 721 722 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 723 return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None, 724 std::nullopt, FunctionType::ExtInfo(), {}, 725 RequiredArgs::All); 726 } 727 728 const CGFunctionInfo & 729 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 730 const CallArgList &args) { 731 assert(signature.arg_size() <= args.size()); 732 if (signature.arg_size() == args.size()) 733 return signature; 734 735 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 736 auto sigParamInfos = signature.getExtParameterInfos(); 737 if (!sigParamInfos.empty()) { 738 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 739 paramInfos.resize(args.size()); 740 } 741 742 auto argTypes = getArgTypesForCall(Context, args); 743 744 assert(signature.getRequiredArgs().allowsOptionalArgs()); 745 FnInfoOpts opts = FnInfoOpts::None; 746 if (signature.isInstanceMethod()) 747 opts |= FnInfoOpts::IsInstanceMethod; 748 if (signature.isChainCall()) 749 opts |= FnInfoOpts::IsChainCall; 750 if (signature.isDelegateCall()) 751 opts |= FnInfoOpts::IsDelegateCall; 752 return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes, 753 signature.getExtInfo(), paramInfos, 754 signature.getRequiredArgs()); 755 } 756 757 namespace clang { 758 namespace CodeGen { 759 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 760 } 761 } 762 763 /// Arrange the argument and result information for an abstract value 764 /// of a given function type. This is the method which all of the 765 /// above functions ultimately defer to. 766 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo( 767 CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, 768 FunctionType::ExtInfo info, 769 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 770 RequiredArgs required) { 771 assert(llvm::all_of(argTypes, 772 [](CanQualType T) { return T.isCanonicalAsParam(); })); 773 774 // Lookup or create unique function info. 775 llvm::FoldingSetNodeID ID; 776 bool isInstanceMethod = 777 (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod; 778 bool isChainCall = 779 (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall; 780 bool isDelegateCall = 781 (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall; 782 CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall, 783 info, paramInfos, required, resultType, argTypes); 784 785 void *insertPos = nullptr; 786 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 787 if (FI) 788 return *FI; 789 790 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 791 792 // Construct the function info. We co-allocate the ArgInfos. 793 FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall, 794 info, paramInfos, resultType, argTypes, required); 795 FunctionInfos.InsertNode(FI, insertPos); 796 797 bool inserted = FunctionsBeingProcessed.insert(FI).second; 798 (void)inserted; 799 assert(inserted && "Recursively being processed?"); 800 801 // Compute ABI information. 802 if (CC == llvm::CallingConv::SPIR_KERNEL) { 803 // Force target independent argument handling for the host visible 804 // kernel functions. 805 computeSPIRKernelABIInfo(CGM, *FI); 806 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 807 swiftcall::computeABIInfo(CGM, *FI); 808 } else { 809 getABIInfo().computeInfo(*FI); 810 } 811 812 // Loop over all of the computed argument and return value info. If any of 813 // them are direct or extend without a specified coerce type, specify the 814 // default now. 815 ABIArgInfo &retInfo = FI->getReturnInfo(); 816 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 817 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 818 819 for (auto &I : FI->arguments()) 820 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 821 I.info.setCoerceToType(ConvertType(I.type)); 822 823 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 824 assert(erased && "Not in set?"); 825 826 return *FI; 827 } 828 829 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod, 830 bool chainCall, bool delegateCall, 831 const FunctionType::ExtInfo &info, 832 ArrayRef<ExtParameterInfo> paramInfos, 833 CanQualType resultType, 834 ArrayRef<CanQualType> argTypes, 835 RequiredArgs required) { 836 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 837 assert(!required.allowsOptionalArgs() || 838 required.getNumRequiredArgs() <= argTypes.size()); 839 840 void *buffer = 841 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 842 argTypes.size() + 1, paramInfos.size())); 843 844 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 845 FI->CallingConvention = llvmCC; 846 FI->EffectiveCallingConvention = llvmCC; 847 FI->ASTCallingConvention = info.getCC(); 848 FI->InstanceMethod = instanceMethod; 849 FI->ChainCall = chainCall; 850 FI->DelegateCall = delegateCall; 851 FI->CmseNSCall = info.getCmseNSCall(); 852 FI->NoReturn = info.getNoReturn(); 853 FI->ReturnsRetained = info.getProducesResult(); 854 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 855 FI->NoCfCheck = info.getNoCfCheck(); 856 FI->Required = required; 857 FI->HasRegParm = info.getHasRegParm(); 858 FI->RegParm = info.getRegParm(); 859 FI->ArgStruct = nullptr; 860 FI->ArgStructAlign = 0; 861 FI->NumArgs = argTypes.size(); 862 FI->HasExtParameterInfos = !paramInfos.empty(); 863 FI->getArgsBuffer()[0].type = resultType; 864 FI->MaxVectorWidth = 0; 865 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 866 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 867 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 868 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 869 return FI; 870 } 871 872 /***/ 873 874 namespace { 875 // ABIArgInfo::Expand implementation. 876 877 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 878 struct TypeExpansion { 879 enum TypeExpansionKind { 880 // Elements of constant arrays are expanded recursively. 881 TEK_ConstantArray, 882 // Record fields are expanded recursively (but if record is a union, only 883 // the field with the largest size is expanded). 884 TEK_Record, 885 // For complex types, real and imaginary parts are expanded recursively. 886 TEK_Complex, 887 // All other types are not expandable. 888 TEK_None 889 }; 890 891 const TypeExpansionKind Kind; 892 893 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 894 virtual ~TypeExpansion() {} 895 }; 896 897 struct ConstantArrayExpansion : TypeExpansion { 898 QualType EltTy; 899 uint64_t NumElts; 900 901 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 902 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 903 static bool classof(const TypeExpansion *TE) { 904 return TE->Kind == TEK_ConstantArray; 905 } 906 }; 907 908 struct RecordExpansion : TypeExpansion { 909 SmallVector<const CXXBaseSpecifier *, 1> Bases; 910 911 SmallVector<const FieldDecl *, 1> Fields; 912 913 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 914 SmallVector<const FieldDecl *, 1> &&Fields) 915 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 916 Fields(std::move(Fields)) {} 917 static bool classof(const TypeExpansion *TE) { 918 return TE->Kind == TEK_Record; 919 } 920 }; 921 922 struct ComplexExpansion : TypeExpansion { 923 QualType EltTy; 924 925 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 926 static bool classof(const TypeExpansion *TE) { 927 return TE->Kind == TEK_Complex; 928 } 929 }; 930 931 struct NoExpansion : TypeExpansion { 932 NoExpansion() : TypeExpansion(TEK_None) {} 933 static bool classof(const TypeExpansion *TE) { 934 return TE->Kind == TEK_None; 935 } 936 }; 937 } // namespace 938 939 static std::unique_ptr<TypeExpansion> 940 getTypeExpansion(QualType Ty, const ASTContext &Context) { 941 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 942 return std::make_unique<ConstantArrayExpansion>(AT->getElementType(), 943 AT->getZExtSize()); 944 } 945 if (const RecordType *RT = Ty->getAs<RecordType>()) { 946 SmallVector<const CXXBaseSpecifier *, 1> Bases; 947 SmallVector<const FieldDecl *, 1> Fields; 948 const RecordDecl *RD = RT->getDecl(); 949 assert(!RD->hasFlexibleArrayMember() && 950 "Cannot expand structure with flexible array."); 951 if (RD->isUnion()) { 952 // Unions can be here only in degenerative cases - all the fields are same 953 // after flattening. Thus we have to use the "largest" field. 954 const FieldDecl *LargestFD = nullptr; 955 CharUnits UnionSize = CharUnits::Zero(); 956 957 for (const auto *FD : RD->fields()) { 958 if (FD->isZeroLengthBitField(Context)) 959 continue; 960 assert(!FD->isBitField() && 961 "Cannot expand structure with bit-field members."); 962 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 963 if (UnionSize < FieldSize) { 964 UnionSize = FieldSize; 965 LargestFD = FD; 966 } 967 } 968 if (LargestFD) 969 Fields.push_back(LargestFD); 970 } else { 971 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 972 assert(!CXXRD->isDynamicClass() && 973 "cannot expand vtable pointers in dynamic classes"); 974 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 975 } 976 977 for (const auto *FD : RD->fields()) { 978 if (FD->isZeroLengthBitField(Context)) 979 continue; 980 assert(!FD->isBitField() && 981 "Cannot expand structure with bit-field members."); 982 Fields.push_back(FD); 983 } 984 } 985 return std::make_unique<RecordExpansion>(std::move(Bases), 986 std::move(Fields)); 987 } 988 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 989 return std::make_unique<ComplexExpansion>(CT->getElementType()); 990 } 991 return std::make_unique<NoExpansion>(); 992 } 993 994 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 995 auto Exp = getTypeExpansion(Ty, Context); 996 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 997 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 998 } 999 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1000 int Res = 0; 1001 for (auto BS : RExp->Bases) 1002 Res += getExpansionSize(BS->getType(), Context); 1003 for (auto FD : RExp->Fields) 1004 Res += getExpansionSize(FD->getType(), Context); 1005 return Res; 1006 } 1007 if (isa<ComplexExpansion>(Exp.get())) 1008 return 2; 1009 assert(isa<NoExpansion>(Exp.get())); 1010 return 1; 1011 } 1012 1013 void 1014 CodeGenTypes::getExpandedTypes(QualType Ty, 1015 SmallVectorImpl<llvm::Type *>::iterator &TI) { 1016 auto Exp = getTypeExpansion(Ty, Context); 1017 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1018 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 1019 getExpandedTypes(CAExp->EltTy, TI); 1020 } 1021 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1022 for (auto BS : RExp->Bases) 1023 getExpandedTypes(BS->getType(), TI); 1024 for (auto FD : RExp->Fields) 1025 getExpandedTypes(FD->getType(), TI); 1026 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1027 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1028 *TI++ = EltTy; 1029 *TI++ = EltTy; 1030 } else { 1031 assert(isa<NoExpansion>(Exp.get())); 1032 *TI++ = ConvertType(Ty); 1033 } 1034 } 1035 1036 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1037 ConstantArrayExpansion *CAE, 1038 Address BaseAddr, 1039 llvm::function_ref<void(Address)> Fn) { 1040 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1041 Address EltAddr = CGF.Builder.CreateConstGEP2_32(BaseAddr, 0, i); 1042 Fn(EltAddr); 1043 } 1044 } 1045 1046 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1047 llvm::Function::arg_iterator &AI) { 1048 assert(LV.isSimple() && 1049 "Unexpected non-simple lvalue during struct expansion."); 1050 1051 auto Exp = getTypeExpansion(Ty, getContext()); 1052 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1053 forConstantArrayExpansion( 1054 *this, CAExp, LV.getAddress(), [&](Address EltAddr) { 1055 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1056 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1057 }); 1058 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1059 Address This = LV.getAddress(); 1060 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1061 // Perform a single step derived-to-base conversion. 1062 Address Base = 1063 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1064 /*NullCheckValue=*/false, SourceLocation()); 1065 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1066 1067 // Recurse onto bases. 1068 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1069 } 1070 for (auto FD : RExp->Fields) { 1071 // FIXME: What are the right qualifiers here? 1072 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1073 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1074 } 1075 } else if (isa<ComplexExpansion>(Exp.get())) { 1076 auto realValue = &*AI++; 1077 auto imagValue = &*AI++; 1078 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1079 } else { 1080 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1081 // primitive store. 1082 assert(isa<NoExpansion>(Exp.get())); 1083 llvm::Value *Arg = &*AI++; 1084 if (LV.isBitField()) { 1085 EmitStoreThroughLValue(RValue::get(Arg), LV); 1086 } else { 1087 // TODO: currently there are some places are inconsistent in what LLVM 1088 // pointer type they use (see D118744). Once clang uses opaque pointers 1089 // all LLVM pointer types will be the same and we can remove this check. 1090 if (Arg->getType()->isPointerTy()) { 1091 Address Addr = LV.getAddress(); 1092 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1093 } 1094 EmitStoreOfScalar(Arg, LV); 1095 } 1096 } 1097 } 1098 1099 void CodeGenFunction::ExpandTypeToArgs( 1100 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1101 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1102 auto Exp = getTypeExpansion(Ty, getContext()); 1103 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1104 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1105 : Arg.getKnownRValue().getAggregateAddress(); 1106 forConstantArrayExpansion( 1107 *this, CAExp, Addr, [&](Address EltAddr) { 1108 CallArg EltArg = CallArg( 1109 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1110 CAExp->EltTy); 1111 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1112 IRCallArgPos); 1113 }); 1114 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1115 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1116 : Arg.getKnownRValue().getAggregateAddress(); 1117 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1118 // Perform a single step derived-to-base conversion. 1119 Address Base = 1120 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1121 /*NullCheckValue=*/false, SourceLocation()); 1122 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1123 1124 // Recurse onto bases. 1125 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1126 IRCallArgPos); 1127 } 1128 1129 LValue LV = MakeAddrLValue(This, Ty); 1130 for (auto FD : RExp->Fields) { 1131 CallArg FldArg = 1132 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1133 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1134 IRCallArgPos); 1135 } 1136 } else if (isa<ComplexExpansion>(Exp.get())) { 1137 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1138 IRCallArgs[IRCallArgPos++] = CV.first; 1139 IRCallArgs[IRCallArgPos++] = CV.second; 1140 } else { 1141 assert(isa<NoExpansion>(Exp.get())); 1142 auto RV = Arg.getKnownRValue(); 1143 assert(RV.isScalar() && 1144 "Unexpected non-scalar rvalue during struct expansion."); 1145 1146 // Insert a bitcast as needed. 1147 llvm::Value *V = RV.getScalarVal(); 1148 if (IRCallArgPos < IRFuncTy->getNumParams() && 1149 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1150 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1151 1152 IRCallArgs[IRCallArgPos++] = V; 1153 } 1154 } 1155 1156 /// Create a temporary allocation for the purposes of coercion. 1157 static RawAddress CreateTempAllocaForCoercion(CodeGenFunction &CGF, 1158 llvm::Type *Ty, 1159 CharUnits MinAlign, 1160 const Twine &Name = "tmp") { 1161 // Don't use an alignment that's worse than what LLVM would prefer. 1162 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty); 1163 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1164 1165 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1166 } 1167 1168 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1169 /// accessing some number of bytes out of it, try to gep into the struct to get 1170 /// at its inner goodness. Dive as deep as possible without entering an element 1171 /// with an in-memory size smaller than DstSize. 1172 static Address 1173 EnterStructPointerForCoercedAccess(Address SrcPtr, 1174 llvm::StructType *SrcSTy, 1175 uint64_t DstSize, CodeGenFunction &CGF) { 1176 // We can't dive into a zero-element struct. 1177 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1178 1179 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1180 1181 // If the first elt is at least as large as what we're looking for, or if the 1182 // first element is the same size as the whole struct, we can enter it. The 1183 // comparison must be made on the store size and not the alloca size. Using 1184 // the alloca size may overstate the size of the load. 1185 uint64_t FirstEltSize = 1186 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1187 if (FirstEltSize < DstSize && 1188 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1189 return SrcPtr; 1190 1191 // GEP into the first element. 1192 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1193 1194 // If the first element is a struct, recurse. 1195 llvm::Type *SrcTy = SrcPtr.getElementType(); 1196 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1197 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1198 1199 return SrcPtr; 1200 } 1201 1202 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1203 /// are either integers or pointers. This does a truncation of the value if it 1204 /// is too large or a zero extension if it is too small. 1205 /// 1206 /// This behaves as if the value were coerced through memory, so on big-endian 1207 /// targets the high bits are preserved in a truncation, while little-endian 1208 /// targets preserve the low bits. 1209 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1210 llvm::Type *Ty, 1211 CodeGenFunction &CGF) { 1212 if (Val->getType() == Ty) 1213 return Val; 1214 1215 if (isa<llvm::PointerType>(Val->getType())) { 1216 // If this is Pointer->Pointer avoid conversion to and from int. 1217 if (isa<llvm::PointerType>(Ty)) 1218 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1219 1220 // Convert the pointer to an integer so we can play with its width. 1221 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1222 } 1223 1224 llvm::Type *DestIntTy = Ty; 1225 if (isa<llvm::PointerType>(DestIntTy)) 1226 DestIntTy = CGF.IntPtrTy; 1227 1228 if (Val->getType() != DestIntTy) { 1229 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1230 if (DL.isBigEndian()) { 1231 // Preserve the high bits on big-endian targets. 1232 // That is what memory coercion does. 1233 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1234 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1235 1236 if (SrcSize > DstSize) { 1237 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1238 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1239 } else { 1240 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1241 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1242 } 1243 } else { 1244 // Little-endian targets preserve the low bits. No shifts required. 1245 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1246 } 1247 } 1248 1249 if (isa<llvm::PointerType>(Ty)) 1250 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1251 return Val; 1252 } 1253 1254 1255 1256 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1257 /// a pointer to an object of type \arg Ty, known to be aligned to 1258 /// \arg SrcAlign bytes. 1259 /// 1260 /// This safely handles the case when the src type is smaller than the 1261 /// destination type; in this situation the values of bits which not 1262 /// present in the src are undefined. 1263 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1264 CodeGenFunction &CGF) { 1265 llvm::Type *SrcTy = Src.getElementType(); 1266 1267 // If SrcTy and Ty are the same, just do a load. 1268 if (SrcTy == Ty) 1269 return CGF.Builder.CreateLoad(Src); 1270 1271 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1272 1273 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1274 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1275 DstSize.getFixedValue(), CGF); 1276 SrcTy = Src.getElementType(); 1277 } 1278 1279 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1280 1281 // If the source and destination are integer or pointer types, just do an 1282 // extension or truncation to the desired type. 1283 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1284 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1285 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1286 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1287 } 1288 1289 // If load is legal, just bitcast the src pointer. 1290 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1291 SrcSize.getFixedValue() >= DstSize.getFixedValue()) { 1292 // Generally SrcSize is never greater than DstSize, since this means we are 1293 // losing bits. However, this can happen in cases where the structure has 1294 // additional padding, for example due to a user specified alignment. 1295 // 1296 // FIXME: Assert that we aren't truncating non-padding bits when have access 1297 // to that information. 1298 Src = Src.withElementType(Ty); 1299 return CGF.Builder.CreateLoad(Src); 1300 } 1301 1302 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1303 // the types match, use the llvm.vector.insert intrinsic to perform the 1304 // conversion. 1305 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1306 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1307 // If we are casting a fixed i8 vector to a scalable i1 predicate 1308 // vector, use a vector insert and bitcast the result. 1309 if (ScalableDstTy->getElementType()->isIntegerTy(1) && 1310 ScalableDstTy->getElementCount().isKnownMultipleOf(8) && 1311 FixedSrcTy->getElementType()->isIntegerTy(8)) { 1312 ScalableDstTy = llvm::ScalableVectorType::get( 1313 FixedSrcTy->getElementType(), 1314 ScalableDstTy->getElementCount().getKnownMinValue() / 8); 1315 } 1316 if (ScalableDstTy->getElementType() == FixedSrcTy->getElementType()) { 1317 auto *Load = CGF.Builder.CreateLoad(Src); 1318 auto *UndefVec = llvm::UndefValue::get(ScalableDstTy); 1319 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1320 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1321 ScalableDstTy, UndefVec, Load, Zero, "cast.scalable"); 1322 if (ScalableDstTy != Ty) 1323 Result = CGF.Builder.CreateBitCast(Result, Ty); 1324 return Result; 1325 } 1326 } 1327 } 1328 1329 // Otherwise do coercion through memory. This is stupid, but simple. 1330 RawAddress Tmp = 1331 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1332 CGF.Builder.CreateMemCpy( 1333 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1334 Src.emitRawPointer(CGF), Src.getAlignment().getAsAlign(), 1335 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue())); 1336 return CGF.Builder.CreateLoad(Tmp); 1337 } 1338 1339 void CodeGenFunction::CreateCoercedStore(llvm::Value *Src, Address Dst, 1340 llvm::TypeSize DstSize, 1341 bool DstIsVolatile) { 1342 if (!DstSize) 1343 return; 1344 1345 llvm::Type *SrcTy = Src->getType(); 1346 llvm::TypeSize SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 1347 1348 // GEP into structs to try to make types match. 1349 // FIXME: This isn't really that useful with opaque types, but it impacts a 1350 // lot of regression tests. 1351 if (SrcTy != Dst.getElementType()) { 1352 if (llvm::StructType *DstSTy = 1353 dyn_cast<llvm::StructType>(Dst.getElementType())) { 1354 assert(!SrcSize.isScalable()); 1355 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1356 SrcSize.getFixedValue(), *this); 1357 } 1358 } 1359 1360 if (SrcSize.isScalable() || SrcSize <= DstSize) { 1361 if (SrcTy->isIntegerTy() && Dst.getElementType()->isPointerTy() && 1362 SrcSize == CGM.getDataLayout().getTypeAllocSize(Dst.getElementType())) { 1363 // If the value is supposed to be a pointer, convert it before storing it. 1364 Src = CoerceIntOrPtrToIntOrPtr(Src, Dst.getElementType(), *this); 1365 Builder.CreateStore(Src, Dst, DstIsVolatile); 1366 } else if (llvm::StructType *STy = 1367 dyn_cast<llvm::StructType>(Src->getType())) { 1368 // Prefer scalar stores to first-class aggregate stores. 1369 Dst = Dst.withElementType(SrcTy); 1370 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1371 Address EltPtr = Builder.CreateStructGEP(Dst, i); 1372 llvm::Value *Elt = Builder.CreateExtractValue(Src, i); 1373 Builder.CreateStore(Elt, EltPtr, DstIsVolatile); 1374 } 1375 } else { 1376 Builder.CreateStore(Src, Dst.withElementType(SrcTy), DstIsVolatile); 1377 } 1378 } else if (SrcTy->isIntegerTy()) { 1379 // If the source is a simple integer, coerce it directly. 1380 llvm::Type *DstIntTy = Builder.getIntNTy(DstSize.getFixedValue() * 8); 1381 Src = CoerceIntOrPtrToIntOrPtr(Src, DstIntTy, *this); 1382 Builder.CreateStore(Src, Dst.withElementType(DstIntTy), DstIsVolatile); 1383 } else { 1384 // Otherwise do coercion through memory. This is stupid, but 1385 // simple. 1386 1387 // Generally SrcSize is never greater than DstSize, since this means we are 1388 // losing bits. However, this can happen in cases where the structure has 1389 // additional padding, for example due to a user specified alignment. 1390 // 1391 // FIXME: Assert that we aren't truncating non-padding bits when have access 1392 // to that information. 1393 RawAddress Tmp = 1394 CreateTempAllocaForCoercion(*this, SrcTy, Dst.getAlignment()); 1395 Builder.CreateStore(Src, Tmp); 1396 Builder.CreateMemCpy(Dst.emitRawPointer(*this), 1397 Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1398 Tmp.getAlignment().getAsAlign(), 1399 Builder.CreateTypeSize(IntPtrTy, DstSize)); 1400 } 1401 } 1402 1403 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1404 const ABIArgInfo &info) { 1405 if (unsigned offset = info.getDirectOffset()) { 1406 addr = addr.withElementType(CGF.Int8Ty); 1407 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1408 CharUnits::fromQuantity(offset)); 1409 addr = addr.withElementType(info.getCoerceToType()); 1410 } 1411 return addr; 1412 } 1413 1414 namespace { 1415 1416 /// Encapsulates information about the way function arguments from 1417 /// CGFunctionInfo should be passed to actual LLVM IR function. 1418 class ClangToLLVMArgMapping { 1419 static const unsigned InvalidIndex = ~0U; 1420 unsigned InallocaArgNo; 1421 unsigned SRetArgNo; 1422 unsigned TotalIRArgs; 1423 1424 /// Arguments of LLVM IR function corresponding to single Clang argument. 1425 struct IRArgs { 1426 unsigned PaddingArgIndex; 1427 // Argument is expanded to IR arguments at positions 1428 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1429 unsigned FirstArgIndex; 1430 unsigned NumberOfArgs; 1431 1432 IRArgs() 1433 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1434 NumberOfArgs(0) {} 1435 }; 1436 1437 SmallVector<IRArgs, 8> ArgInfo; 1438 1439 public: 1440 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1441 bool OnlyRequiredArgs = false) 1442 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1443 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1444 construct(Context, FI, OnlyRequiredArgs); 1445 } 1446 1447 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1448 unsigned getInallocaArgNo() const { 1449 assert(hasInallocaArg()); 1450 return InallocaArgNo; 1451 } 1452 1453 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1454 unsigned getSRetArgNo() const { 1455 assert(hasSRetArg()); 1456 return SRetArgNo; 1457 } 1458 1459 unsigned totalIRArgs() const { return TotalIRArgs; } 1460 1461 bool hasPaddingArg(unsigned ArgNo) const { 1462 assert(ArgNo < ArgInfo.size()); 1463 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1464 } 1465 unsigned getPaddingArgNo(unsigned ArgNo) const { 1466 assert(hasPaddingArg(ArgNo)); 1467 return ArgInfo[ArgNo].PaddingArgIndex; 1468 } 1469 1470 /// Returns index of first IR argument corresponding to ArgNo, and their 1471 /// quantity. 1472 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1473 assert(ArgNo < ArgInfo.size()); 1474 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1475 ArgInfo[ArgNo].NumberOfArgs); 1476 } 1477 1478 private: 1479 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1480 bool OnlyRequiredArgs); 1481 }; 1482 1483 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1484 const CGFunctionInfo &FI, 1485 bool OnlyRequiredArgs) { 1486 unsigned IRArgNo = 0; 1487 bool SwapThisWithSRet = false; 1488 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1489 1490 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1491 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1492 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1493 } 1494 1495 unsigned ArgNo = 0; 1496 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1497 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1498 ++I, ++ArgNo) { 1499 assert(I != FI.arg_end()); 1500 QualType ArgType = I->type; 1501 const ABIArgInfo &AI = I->info; 1502 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1503 auto &IRArgs = ArgInfo[ArgNo]; 1504 1505 if (AI.getPaddingType()) 1506 IRArgs.PaddingArgIndex = IRArgNo++; 1507 1508 switch (AI.getKind()) { 1509 case ABIArgInfo::Extend: 1510 case ABIArgInfo::Direct: { 1511 // FIXME: handle sseregparm someday... 1512 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1513 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1514 IRArgs.NumberOfArgs = STy->getNumElements(); 1515 } else { 1516 IRArgs.NumberOfArgs = 1; 1517 } 1518 break; 1519 } 1520 case ABIArgInfo::Indirect: 1521 case ABIArgInfo::IndirectAliased: 1522 IRArgs.NumberOfArgs = 1; 1523 break; 1524 case ABIArgInfo::Ignore: 1525 case ABIArgInfo::InAlloca: 1526 // ignore and inalloca doesn't have matching LLVM parameters. 1527 IRArgs.NumberOfArgs = 0; 1528 break; 1529 case ABIArgInfo::CoerceAndExpand: 1530 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1531 break; 1532 case ABIArgInfo::Expand: 1533 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1534 break; 1535 } 1536 1537 if (IRArgs.NumberOfArgs > 0) { 1538 IRArgs.FirstArgIndex = IRArgNo; 1539 IRArgNo += IRArgs.NumberOfArgs; 1540 } 1541 1542 // Skip over the sret parameter when it comes second. We already handled it 1543 // above. 1544 if (IRArgNo == 1 && SwapThisWithSRet) 1545 IRArgNo++; 1546 } 1547 assert(ArgNo == ArgInfo.size()); 1548 1549 if (FI.usesInAlloca()) 1550 InallocaArgNo = IRArgNo++; 1551 1552 TotalIRArgs = IRArgNo; 1553 } 1554 } // namespace 1555 1556 /***/ 1557 1558 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1559 const auto &RI = FI.getReturnInfo(); 1560 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1561 } 1562 1563 bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) { 1564 const auto &RI = FI.getReturnInfo(); 1565 return RI.getInReg(); 1566 } 1567 1568 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1569 return ReturnTypeUsesSRet(FI) && 1570 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1571 } 1572 1573 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1574 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1575 switch (BT->getKind()) { 1576 default: 1577 return false; 1578 case BuiltinType::Float: 1579 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1580 case BuiltinType::Double: 1581 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1582 case BuiltinType::LongDouble: 1583 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1584 } 1585 } 1586 1587 return false; 1588 } 1589 1590 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1591 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1592 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1593 if (BT->getKind() == BuiltinType::LongDouble) 1594 return getTarget().useObjCFP2RetForComplexLongDouble(); 1595 } 1596 } 1597 1598 return false; 1599 } 1600 1601 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1602 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1603 return GetFunctionType(FI); 1604 } 1605 1606 llvm::FunctionType * 1607 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1608 1609 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1610 (void)Inserted; 1611 assert(Inserted && "Recursively being processed?"); 1612 1613 llvm::Type *resultType = nullptr; 1614 const ABIArgInfo &retAI = FI.getReturnInfo(); 1615 switch (retAI.getKind()) { 1616 case ABIArgInfo::Expand: 1617 case ABIArgInfo::IndirectAliased: 1618 llvm_unreachable("Invalid ABI kind for return argument"); 1619 1620 case ABIArgInfo::Extend: 1621 case ABIArgInfo::Direct: 1622 resultType = retAI.getCoerceToType(); 1623 break; 1624 1625 case ABIArgInfo::InAlloca: 1626 if (retAI.getInAllocaSRet()) { 1627 // sret things on win32 aren't void, they return the sret pointer. 1628 QualType ret = FI.getReturnType(); 1629 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret); 1630 resultType = llvm::PointerType::get(getLLVMContext(), addressSpace); 1631 } else { 1632 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1633 } 1634 break; 1635 1636 case ABIArgInfo::Indirect: 1637 case ABIArgInfo::Ignore: 1638 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1639 break; 1640 1641 case ABIArgInfo::CoerceAndExpand: 1642 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1643 break; 1644 } 1645 1646 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1647 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1648 1649 // Add type for sret argument. 1650 if (IRFunctionArgs.hasSRetArg()) { 1651 QualType Ret = FI.getReturnType(); 1652 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret); 1653 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1654 llvm::PointerType::get(getLLVMContext(), AddressSpace); 1655 } 1656 1657 // Add type for inalloca argument. 1658 if (IRFunctionArgs.hasInallocaArg()) 1659 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = 1660 llvm::PointerType::getUnqual(getLLVMContext()); 1661 1662 // Add in all of the required arguments. 1663 unsigned ArgNo = 0; 1664 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1665 ie = it + FI.getNumRequiredArgs(); 1666 for (; it != ie; ++it, ++ArgNo) { 1667 const ABIArgInfo &ArgInfo = it->info; 1668 1669 // Insert a padding type to ensure proper alignment. 1670 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1671 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1672 ArgInfo.getPaddingType(); 1673 1674 unsigned FirstIRArg, NumIRArgs; 1675 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1676 1677 switch (ArgInfo.getKind()) { 1678 case ABIArgInfo::Ignore: 1679 case ABIArgInfo::InAlloca: 1680 assert(NumIRArgs == 0); 1681 break; 1682 1683 case ABIArgInfo::Indirect: 1684 assert(NumIRArgs == 1); 1685 // indirect arguments are always on the stack, which is alloca addr space. 1686 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1687 getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 1688 break; 1689 case ABIArgInfo::IndirectAliased: 1690 assert(NumIRArgs == 1); 1691 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1692 getLLVMContext(), ArgInfo.getIndirectAddrSpace()); 1693 break; 1694 case ABIArgInfo::Extend: 1695 case ABIArgInfo::Direct: { 1696 // Fast-isel and the optimizer generally like scalar values better than 1697 // FCAs, so we flatten them if this is safe to do for this argument. 1698 llvm::Type *argType = ArgInfo.getCoerceToType(); 1699 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1700 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1701 assert(NumIRArgs == st->getNumElements()); 1702 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1703 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1704 } else { 1705 assert(NumIRArgs == 1); 1706 ArgTypes[FirstIRArg] = argType; 1707 } 1708 break; 1709 } 1710 1711 case ABIArgInfo::CoerceAndExpand: { 1712 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1713 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1714 *ArgTypesIter++ = EltTy; 1715 } 1716 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1717 break; 1718 } 1719 1720 case ABIArgInfo::Expand: 1721 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1722 getExpandedTypes(it->type, ArgTypesIter); 1723 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1724 break; 1725 } 1726 } 1727 1728 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1729 assert(Erased && "Not in set?"); 1730 1731 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1732 } 1733 1734 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1735 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1736 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1737 1738 if (!isFuncTypeConvertible(FPT)) 1739 return llvm::StructType::get(getLLVMContext()); 1740 1741 return GetFunctionType(GD); 1742 } 1743 1744 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1745 llvm::AttrBuilder &FuncAttrs, 1746 const FunctionProtoType *FPT) { 1747 if (!FPT) 1748 return; 1749 1750 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1751 FPT->isNothrow()) 1752 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1753 1754 unsigned SMEBits = FPT->getAArch64SMEAttributes(); 1755 if (SMEBits & FunctionType::SME_PStateSMEnabledMask) 1756 FuncAttrs.addAttribute("aarch64_pstate_sm_enabled"); 1757 if (SMEBits & FunctionType::SME_PStateSMCompatibleMask) 1758 FuncAttrs.addAttribute("aarch64_pstate_sm_compatible"); 1759 1760 // ZA 1761 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves) 1762 FuncAttrs.addAttribute("aarch64_preserves_za"); 1763 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In) 1764 FuncAttrs.addAttribute("aarch64_in_za"); 1765 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out) 1766 FuncAttrs.addAttribute("aarch64_out_za"); 1767 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut) 1768 FuncAttrs.addAttribute("aarch64_inout_za"); 1769 1770 // ZT0 1771 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves) 1772 FuncAttrs.addAttribute("aarch64_preserves_zt0"); 1773 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In) 1774 FuncAttrs.addAttribute("aarch64_in_zt0"); 1775 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out) 1776 FuncAttrs.addAttribute("aarch64_out_zt0"); 1777 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut) 1778 FuncAttrs.addAttribute("aarch64_inout_zt0"); 1779 } 1780 1781 static void AddAttributesFromOMPAssumes(llvm::AttrBuilder &FuncAttrs, 1782 const Decl *Callee) { 1783 if (!Callee) 1784 return; 1785 1786 SmallVector<StringRef, 4> Attrs; 1787 1788 for (const OMPAssumeAttr *AA : Callee->specific_attrs<OMPAssumeAttr>()) 1789 AA->getAssumption().split(Attrs, ","); 1790 1791 if (!Attrs.empty()) 1792 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1793 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1794 } 1795 1796 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1797 QualType ReturnType) const { 1798 // We can't just discard the return value for a record type with a 1799 // complex destructor or a non-trivially copyable type. 1800 if (const RecordType *RT = 1801 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1802 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1803 return ClassDecl->hasTrivialDestructor(); 1804 } 1805 return ReturnType.isTriviallyCopyableType(Context); 1806 } 1807 1808 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy, 1809 const Decl *TargetDecl) { 1810 // As-is msan can not tolerate noundef mismatch between caller and 1811 // implementation. Mismatch is possible for e.g. indirect calls from C-caller 1812 // into C++. Such mismatches lead to confusing false reports. To avoid 1813 // expensive workaround on msan we enforce initialization event in uncommon 1814 // cases where it's allowed. 1815 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory)) 1816 return true; 1817 // C++ explicitly makes returning undefined values UB. C's rule only applies 1818 // to used values, so we never mark them noundef for now. 1819 if (!Module.getLangOpts().CPlusPlus) 1820 return false; 1821 if (TargetDecl) { 1822 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) { 1823 if (FDecl->isExternC()) 1824 return false; 1825 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) { 1826 // Function pointer. 1827 if (VDecl->isExternC()) 1828 return false; 1829 } 1830 } 1831 1832 // We don't want to be too aggressive with the return checking, unless 1833 // it's explicit in the code opts or we're using an appropriate sanitizer. 1834 // Try to respect what the programmer intended. 1835 return Module.getCodeGenOpts().StrictReturn || 1836 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) || 1837 Module.getLangOpts().Sanitize.has(SanitizerKind::Return); 1838 } 1839 1840 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the 1841 /// requested denormal behavior, accounting for the overriding behavior of the 1842 /// -f32 case. 1843 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode, 1844 llvm::DenormalMode FP32DenormalMode, 1845 llvm::AttrBuilder &FuncAttrs) { 1846 if (FPDenormalMode != llvm::DenormalMode::getDefault()) 1847 FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str()); 1848 1849 if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid()) 1850 FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str()); 1851 } 1852 1853 /// Add default attributes to a function, which have merge semantics under 1854 /// -mlink-builtin-bitcode and should not simply overwrite any existing 1855 /// attributes in the linked library. 1856 static void 1857 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts, 1858 llvm::AttrBuilder &FuncAttrs) { 1859 addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode, 1860 FuncAttrs); 1861 } 1862 1863 static void getTrivialDefaultFunctionAttributes( 1864 StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts, 1865 const LangOptions &LangOpts, bool AttrOnCallSite, 1866 llvm::AttrBuilder &FuncAttrs) { 1867 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1868 if (!HasOptnone) { 1869 if (CodeGenOpts.OptimizeSize) 1870 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1871 if (CodeGenOpts.OptimizeSize == 2) 1872 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1873 } 1874 1875 if (CodeGenOpts.DisableRedZone) 1876 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1877 if (CodeGenOpts.IndirectTlsSegRefs) 1878 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1879 if (CodeGenOpts.NoImplicitFloat) 1880 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1881 1882 if (AttrOnCallSite) { 1883 // Attributes that should go on the call site only. 1884 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1885 // the -fno-builtin-foo list. 1886 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1887 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1888 if (!CodeGenOpts.TrapFuncName.empty()) 1889 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1890 } else { 1891 switch (CodeGenOpts.getFramePointer()) { 1892 case CodeGenOptions::FramePointerKind::None: 1893 // This is the default behavior. 1894 break; 1895 case CodeGenOptions::FramePointerKind::Reserved: 1896 case CodeGenOptions::FramePointerKind::NonLeaf: 1897 case CodeGenOptions::FramePointerKind::All: 1898 FuncAttrs.addAttribute("frame-pointer", 1899 CodeGenOptions::getFramePointerKindName( 1900 CodeGenOpts.getFramePointer())); 1901 } 1902 1903 if (CodeGenOpts.LessPreciseFPMAD) 1904 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1905 1906 if (CodeGenOpts.NullPointerIsValid) 1907 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1908 1909 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) 1910 FuncAttrs.addAttribute("no-trapping-math", "true"); 1911 1912 // TODO: Are these all needed? 1913 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1914 if (LangOpts.NoHonorInfs) 1915 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1916 if (LangOpts.NoHonorNaNs) 1917 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1918 if (LangOpts.ApproxFunc) 1919 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1920 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 1921 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 1922 (LangOpts.getDefaultFPContractMode() == 1923 LangOptions::FPModeKind::FPM_Fast || 1924 LangOpts.getDefaultFPContractMode() == 1925 LangOptions::FPModeKind::FPM_FastHonorPragmas)) 1926 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1927 if (CodeGenOpts.SoftFloat) 1928 FuncAttrs.addAttribute("use-soft-float", "true"); 1929 FuncAttrs.addAttribute("stack-protector-buffer-size", 1930 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1931 if (LangOpts.NoSignedZero) 1932 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1933 1934 // TODO: Reciprocal estimate codegen options should apply to instructions? 1935 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1936 if (!Recips.empty()) 1937 FuncAttrs.addAttribute("reciprocal-estimates", 1938 llvm::join(Recips, ",")); 1939 1940 if (!CodeGenOpts.PreferVectorWidth.empty() && 1941 CodeGenOpts.PreferVectorWidth != "none") 1942 FuncAttrs.addAttribute("prefer-vector-width", 1943 CodeGenOpts.PreferVectorWidth); 1944 1945 if (CodeGenOpts.StackRealignment) 1946 FuncAttrs.addAttribute("stackrealign"); 1947 if (CodeGenOpts.Backchain) 1948 FuncAttrs.addAttribute("backchain"); 1949 if (CodeGenOpts.EnableSegmentedStacks) 1950 FuncAttrs.addAttribute("split-stack"); 1951 1952 if (CodeGenOpts.SpeculativeLoadHardening) 1953 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1954 1955 // Add zero-call-used-regs attribute. 1956 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1957 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1958 FuncAttrs.removeAttribute("zero-call-used-regs"); 1959 break; 1960 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1961 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1962 break; 1963 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1964 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1965 break; 1966 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1967 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1968 break; 1969 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1970 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1971 break; 1972 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1973 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1974 break; 1975 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 1976 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 1977 break; 1978 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 1979 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 1980 break; 1981 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 1982 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 1983 break; 1984 } 1985 } 1986 1987 if (LangOpts.assumeFunctionsAreConvergent()) { 1988 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1989 // convergent (meaning, they may call an intrinsically convergent op, such 1990 // as __syncthreads() / barrier(), and so can't have certain optimizations 1991 // applied around them). LLVM will remove this attribute where it safely 1992 // can. 1993 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1994 } 1995 1996 // TODO: NoUnwind attribute should be added for other GPU modes HIP, 1997 // OpenMP offload. AFAIK, neither of them support exceptions in device code. 1998 if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL || 1999 LangOpts.SYCLIsDevice) { 2000 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2001 } 2002 2003 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 2004 StringRef Var, Value; 2005 std::tie(Var, Value) = Attr.split('='); 2006 FuncAttrs.addAttribute(Var, Value); 2007 } 2008 2009 TargetInfo::BranchProtectionInfo BPI(LangOpts); 2010 TargetCodeGenInfo::initBranchProtectionFnAttributes(BPI, FuncAttrs); 2011 } 2012 2013 /// Merges `target-features` from \TargetOpts and \F, and sets the result in 2014 /// \FuncAttr 2015 /// * features from \F are always kept 2016 /// * a feature from \TargetOpts is kept if itself and its opposite are absent 2017 /// from \F 2018 static void 2019 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr, 2020 const llvm::Function &F, 2021 const TargetOptions &TargetOpts) { 2022 auto FFeatures = F.getFnAttribute("target-features"); 2023 2024 llvm::StringSet<> MergedNames; 2025 SmallVector<StringRef> MergedFeatures; 2026 MergedFeatures.reserve(TargetOpts.Features.size()); 2027 2028 auto AddUnmergedFeatures = [&](auto &&FeatureRange) { 2029 for (StringRef Feature : FeatureRange) { 2030 if (Feature.empty()) 2031 continue; 2032 assert(Feature[0] == '+' || Feature[0] == '-'); 2033 StringRef Name = Feature.drop_front(1); 2034 bool Merged = !MergedNames.insert(Name).second; 2035 if (!Merged) 2036 MergedFeatures.push_back(Feature); 2037 } 2038 }; 2039 2040 if (FFeatures.isValid()) 2041 AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ',')); 2042 AddUnmergedFeatures(TargetOpts.Features); 2043 2044 if (!MergedFeatures.empty()) { 2045 llvm::sort(MergedFeatures); 2046 FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ",")); 2047 } 2048 } 2049 2050 void CodeGen::mergeDefaultFunctionDefinitionAttributes( 2051 llvm::Function &F, const CodeGenOptions &CodeGenOpts, 2052 const LangOptions &LangOpts, const TargetOptions &TargetOpts, 2053 bool WillInternalize) { 2054 2055 llvm::AttrBuilder FuncAttrs(F.getContext()); 2056 // Here we only extract the options that are relevant compared to the version 2057 // from GetCPUAndFeaturesAttributes. 2058 if (!TargetOpts.CPU.empty()) 2059 FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU); 2060 if (!TargetOpts.TuneCPU.empty()) 2061 FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU); 2062 2063 ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 2064 CodeGenOpts, LangOpts, 2065 /*AttrOnCallSite=*/false, FuncAttrs); 2066 2067 if (!WillInternalize && F.isInterposable()) { 2068 // Do not promote "dynamic" denormal-fp-math to this translation unit's 2069 // setting for weak functions that won't be internalized. The user has no 2070 // real control for how builtin bitcode is linked, so we shouldn't assume 2071 // later copies will use a consistent mode. 2072 F.addFnAttrs(FuncAttrs); 2073 return; 2074 } 2075 2076 llvm::AttributeMask AttrsToRemove; 2077 2078 llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw(); 2079 llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw(); 2080 llvm::DenormalMode Merged = 2081 CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge); 2082 llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode; 2083 2084 if (DenormModeToMergeF32.isValid()) { 2085 MergedF32 = 2086 CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32); 2087 } 2088 2089 if (Merged == llvm::DenormalMode::getDefault()) { 2090 AttrsToRemove.addAttribute("denormal-fp-math"); 2091 } else if (Merged != DenormModeToMerge) { 2092 // Overwrite existing attribute 2093 FuncAttrs.addAttribute("denormal-fp-math", 2094 CodeGenOpts.FPDenormalMode.str()); 2095 } 2096 2097 if (MergedF32 == llvm::DenormalMode::getDefault()) { 2098 AttrsToRemove.addAttribute("denormal-fp-math-f32"); 2099 } else if (MergedF32 != DenormModeToMergeF32) { 2100 // Overwrite existing attribute 2101 FuncAttrs.addAttribute("denormal-fp-math-f32", 2102 CodeGenOpts.FP32DenormalMode.str()); 2103 } 2104 2105 F.removeFnAttrs(AttrsToRemove); 2106 addDenormalModeAttrs(Merged, MergedF32, FuncAttrs); 2107 2108 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts); 2109 2110 F.addFnAttrs(FuncAttrs); 2111 } 2112 2113 void CodeGenModule::getTrivialDefaultFunctionAttributes( 2114 StringRef Name, bool HasOptnone, bool AttrOnCallSite, 2115 llvm::AttrBuilder &FuncAttrs) { 2116 ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(), 2117 getLangOpts(), AttrOnCallSite, 2118 FuncAttrs); 2119 } 2120 2121 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 2122 bool HasOptnone, 2123 bool AttrOnCallSite, 2124 llvm::AttrBuilder &FuncAttrs) { 2125 getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, 2126 FuncAttrs); 2127 // If we're just getting the default, get the default values for mergeable 2128 // attributes. 2129 if (!AttrOnCallSite) 2130 addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs); 2131 } 2132 2133 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 2134 llvm::AttrBuilder &attrs) { 2135 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 2136 /*for call*/ false, attrs); 2137 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 2138 } 2139 2140 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 2141 const LangOptions &LangOpts, 2142 const NoBuiltinAttr *NBA = nullptr) { 2143 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 2144 SmallString<32> AttributeName; 2145 AttributeName += "no-builtin-"; 2146 AttributeName += BuiltinName; 2147 FuncAttrs.addAttribute(AttributeName); 2148 }; 2149 2150 // First, handle the language options passed through -fno-builtin. 2151 if (LangOpts.NoBuiltin) { 2152 // -fno-builtin disables them all. 2153 FuncAttrs.addAttribute("no-builtins"); 2154 return; 2155 } 2156 2157 // Then, add attributes for builtins specified through -fno-builtin-<name>. 2158 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 2159 2160 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 2161 // the source. 2162 if (!NBA) 2163 return; 2164 2165 // If there is a wildcard in the builtin names specified through the 2166 // attribute, disable them all. 2167 if (llvm::is_contained(NBA->builtinNames(), "*")) { 2168 FuncAttrs.addAttribute("no-builtins"); 2169 return; 2170 } 2171 2172 // And last, add the rest of the builtin names. 2173 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 2174 } 2175 2176 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 2177 const llvm::DataLayout &DL, const ABIArgInfo &AI, 2178 bool CheckCoerce = true) { 2179 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 2180 if (AI.getKind() == ABIArgInfo::Indirect || 2181 AI.getKind() == ABIArgInfo::IndirectAliased) 2182 return true; 2183 if (AI.getKind() == ABIArgInfo::Extend) 2184 return true; 2185 if (!DL.typeSizeEqualsStoreSize(Ty)) 2186 // TODO: This will result in a modest amount of values not marked noundef 2187 // when they could be. We care about values that *invisibly* contain undef 2188 // bits from the perspective of LLVM IR. 2189 return false; 2190 if (CheckCoerce && AI.canHaveCoerceToType()) { 2191 llvm::Type *CoerceTy = AI.getCoerceToType(); 2192 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2193 DL.getTypeSizeInBits(Ty))) 2194 // If we're coercing to a type with a greater size than the canonical one, 2195 // we're introducing new undef bits. 2196 // Coercing to a type of smaller or equal size is ok, as we know that 2197 // there's no internal padding (typeSizeEqualsStoreSize). 2198 return false; 2199 } 2200 if (QTy->isBitIntType()) 2201 return true; 2202 if (QTy->isReferenceType()) 2203 return true; 2204 if (QTy->isNullPtrType()) 2205 return false; 2206 if (QTy->isMemberPointerType()) 2207 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2208 // now, never mark them. 2209 return false; 2210 if (QTy->isScalarType()) { 2211 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2212 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2213 return true; 2214 } 2215 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2216 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2217 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2218 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2219 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2220 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2221 2222 // TODO: Some structs may be `noundef`, in specific situations. 2223 return false; 2224 } 2225 2226 /// Check if the argument of a function has maybe_undef attribute. 2227 static bool IsArgumentMaybeUndef(const Decl *TargetDecl, 2228 unsigned NumRequiredArgs, unsigned ArgNo) { 2229 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 2230 if (!FD) 2231 return false; 2232 2233 // Assume variadic arguments do not have maybe_undef attribute. 2234 if (ArgNo >= NumRequiredArgs) 2235 return false; 2236 2237 // Check if argument has maybe_undef attribute. 2238 if (ArgNo < FD->getNumParams()) { 2239 const ParmVarDecl *Param = FD->getParamDecl(ArgNo); 2240 if (Param && Param->hasAttr<MaybeUndefAttr>()) 2241 return true; 2242 } 2243 2244 return false; 2245 } 2246 2247 /// Test if it's legal to apply nofpclass for the given parameter type and it's 2248 /// lowered IR type. 2249 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType, 2250 bool IsReturn) { 2251 // Should only apply to FP types in the source, not ABI promoted. 2252 if (!ParamType->hasFloatingRepresentation()) 2253 return false; 2254 2255 // The promoted-to IR type also needs to support nofpclass. 2256 llvm::Type *IRTy = AI.getCoerceToType(); 2257 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy)) 2258 return true; 2259 2260 if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) { 2261 return !IsReturn && AI.getCanBeFlattened() && 2262 llvm::all_of(ST->elements(), [](llvm::Type *Ty) { 2263 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty); 2264 }); 2265 } 2266 2267 return false; 2268 } 2269 2270 /// Return the nofpclass mask that can be applied to floating-point parameters. 2271 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) { 2272 llvm::FPClassTest Mask = llvm::fcNone; 2273 if (LangOpts.NoHonorInfs) 2274 Mask |= llvm::fcInf; 2275 if (LangOpts.NoHonorNaNs) 2276 Mask |= llvm::fcNan; 2277 return Mask; 2278 } 2279 2280 void CodeGenModule::AdjustMemoryAttribute(StringRef Name, 2281 CGCalleeInfo CalleeInfo, 2282 llvm::AttributeList &Attrs) { 2283 if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) { 2284 Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory); 2285 llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects( 2286 getLLVMContext(), llvm::MemoryEffects::writeOnly()); 2287 Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr); 2288 } 2289 } 2290 2291 /// Construct the IR attribute list of a function or call. 2292 /// 2293 /// When adding an attribute, please consider where it should be handled: 2294 /// 2295 /// - getDefaultFunctionAttributes is for attributes that are essentially 2296 /// part of the global target configuration (but perhaps can be 2297 /// overridden on a per-function basis). Adding attributes there 2298 /// will cause them to also be set in frontends that build on Clang's 2299 /// target-configuration logic, as well as for code defined in library 2300 /// modules such as CUDA's libdevice. 2301 /// 2302 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2303 /// and adds declaration-specific, convention-specific, and 2304 /// frontend-specific logic. The last is of particular importance: 2305 /// attributes that restrict how the frontend generates code must be 2306 /// added here rather than getDefaultFunctionAttributes. 2307 /// 2308 void CodeGenModule::ConstructAttributeList(StringRef Name, 2309 const CGFunctionInfo &FI, 2310 CGCalleeInfo CalleeInfo, 2311 llvm::AttributeList &AttrList, 2312 unsigned &CallingConv, 2313 bool AttrOnCallSite, bool IsThunk) { 2314 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2315 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2316 2317 // Collect function IR attributes from the CC lowering. 2318 // We'll collect the paramete and result attributes later. 2319 CallingConv = FI.getEffectiveCallingConvention(); 2320 if (FI.isNoReturn()) 2321 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2322 if (FI.isCmseNSCall()) 2323 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2324 2325 // Collect function IR attributes from the callee prototype if we have one. 2326 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2327 CalleeInfo.getCalleeFunctionProtoType()); 2328 2329 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2330 2331 // Attach assumption attributes to the declaration. If this is a call 2332 // site, attach assumptions from the caller to the call as well. 2333 AddAttributesFromOMPAssumes(FuncAttrs, TargetDecl); 2334 2335 bool HasOptnone = false; 2336 // The NoBuiltinAttr attached to the target FunctionDecl. 2337 const NoBuiltinAttr *NBA = nullptr; 2338 2339 // Some ABIs may result in additional accesses to arguments that may 2340 // otherwise not be present. 2341 auto AddPotentialArgAccess = [&]() { 2342 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory); 2343 if (A.isValid()) 2344 FuncAttrs.addMemoryAttr(A.getMemoryEffects() | 2345 llvm::MemoryEffects::argMemOnly()); 2346 }; 2347 2348 // Collect function IR attributes based on declaration-specific 2349 // information. 2350 // FIXME: handle sseregparm someday... 2351 if (TargetDecl) { 2352 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2353 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2354 if (TargetDecl->hasAttr<NoThrowAttr>()) 2355 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2356 if (TargetDecl->hasAttr<NoReturnAttr>()) 2357 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2358 if (TargetDecl->hasAttr<ColdAttr>()) 2359 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2360 if (TargetDecl->hasAttr<HotAttr>()) 2361 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2362 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2363 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2364 if (TargetDecl->hasAttr<ConvergentAttr>()) 2365 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2366 2367 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2368 AddAttributesFromFunctionProtoType( 2369 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2370 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2371 // A sane operator new returns a non-aliasing pointer. 2372 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2373 if (getCodeGenOpts().AssumeSaneOperatorNew && 2374 (Kind == OO_New || Kind == OO_Array_New)) 2375 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2376 } 2377 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2378 const bool IsVirtualCall = MD && MD->isVirtual(); 2379 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2380 // virtual function. These attributes are not inherited by overloads. 2381 if (!(AttrOnCallSite && IsVirtualCall)) { 2382 if (Fn->isNoReturn()) 2383 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2384 NBA = Fn->getAttr<NoBuiltinAttr>(); 2385 } 2386 } 2387 2388 if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) { 2389 // Only place nomerge attribute on call sites, never functions. This 2390 // allows it to work on indirect virtual function calls. 2391 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2392 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2393 } 2394 2395 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2396 if (TargetDecl->hasAttr<ConstAttr>()) { 2397 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none()); 2398 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2399 // gcc specifies that 'const' functions have greater restrictions than 2400 // 'pure' functions, so they also cannot have infinite loops. 2401 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2402 } else if (TargetDecl->hasAttr<PureAttr>()) { 2403 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); 2404 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2405 // gcc specifies that 'pure' functions cannot have infinite loops. 2406 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2407 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2408 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly()); 2409 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2410 } 2411 if (TargetDecl->hasAttr<RestrictAttr>()) 2412 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2413 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2414 !CodeGenOpts.NullPointerIsValid) 2415 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2416 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2417 FuncAttrs.addAttribute("no_caller_saved_registers"); 2418 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2419 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2420 if (TargetDecl->hasAttr<LeafAttr>()) 2421 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2422 2423 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2424 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2425 std::optional<unsigned> NumElemsParam; 2426 if (AllocSize->getNumElemsParam().isValid()) 2427 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2428 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2429 NumElemsParam); 2430 } 2431 2432 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2433 if (getLangOpts().OpenCLVersion <= 120) { 2434 // OpenCL v1.2 Work groups are always uniform 2435 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2436 } else { 2437 // OpenCL v2.0 Work groups may be whether uniform or not. 2438 // '-cl-uniform-work-group-size' compile option gets a hint 2439 // to the compiler that the global work-size be a multiple of 2440 // the work-group size specified to clEnqueueNDRangeKernel 2441 // (i.e. work groups are uniform). 2442 FuncAttrs.addAttribute( 2443 "uniform-work-group-size", 2444 llvm::toStringRef(getLangOpts().OffloadUniformBlock)); 2445 } 2446 } 2447 2448 if (TargetDecl->hasAttr<CUDAGlobalAttr>() && 2449 getLangOpts().OffloadUniformBlock) 2450 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2451 2452 if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>()) 2453 FuncAttrs.addAttribute("aarch64_pstate_sm_body"); 2454 } 2455 2456 // Attach "no-builtins" attributes to: 2457 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2458 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2459 // The attributes can come from: 2460 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2461 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2462 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2463 2464 // Collect function IR attributes based on global settiings. 2465 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2466 2467 // Override some default IR attributes based on declaration-specific 2468 // information. 2469 if (TargetDecl) { 2470 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2471 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2472 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2473 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2474 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2475 FuncAttrs.removeAttribute("split-stack"); 2476 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2477 // A function "__attribute__((...))" overrides the command-line flag. 2478 auto Kind = 2479 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2480 FuncAttrs.removeAttribute("zero-call-used-regs"); 2481 FuncAttrs.addAttribute( 2482 "zero-call-used-regs", 2483 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2484 } 2485 2486 // Add NonLazyBind attribute to function declarations when -fno-plt 2487 // is used. 2488 // FIXME: what if we just haven't processed the function definition 2489 // yet, or if it's an external definition like C99 inline? 2490 if (CodeGenOpts.NoPLT) { 2491 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2492 if (!Fn->isDefined() && !AttrOnCallSite) { 2493 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2494 } 2495 } 2496 } 2497 } 2498 2499 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2500 // functions with -funique-internal-linkage-names. 2501 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2502 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2503 if (!FD->isExternallyVisible()) 2504 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2505 "selected"); 2506 } 2507 } 2508 2509 // Collect non-call-site function IR attributes from declaration-specific 2510 // information. 2511 if (!AttrOnCallSite) { 2512 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2513 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2514 2515 // Whether tail calls are enabled. 2516 auto shouldDisableTailCalls = [&] { 2517 // Should this be honored in getDefaultFunctionAttributes? 2518 if (CodeGenOpts.DisableTailCalls) 2519 return true; 2520 2521 if (!TargetDecl) 2522 return false; 2523 2524 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2525 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2526 return true; 2527 2528 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2529 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2530 if (!BD->doesNotEscape()) 2531 return true; 2532 } 2533 2534 return false; 2535 }; 2536 if (shouldDisableTailCalls()) 2537 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2538 2539 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2540 // handles these separately to set them based on the global defaults. 2541 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2542 } 2543 2544 // Collect attributes from arguments and return values. 2545 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2546 2547 QualType RetTy = FI.getReturnType(); 2548 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2549 const llvm::DataLayout &DL = getDataLayout(); 2550 2551 // Determine if the return type could be partially undef 2552 if (CodeGenOpts.EnableNoundefAttrs && 2553 HasStrictReturn(*this, RetTy, TargetDecl)) { 2554 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2555 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2556 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2557 } 2558 2559 switch (RetAI.getKind()) { 2560 case ABIArgInfo::Extend: 2561 if (RetAI.isSignExt()) 2562 RetAttrs.addAttribute(llvm::Attribute::SExt); 2563 else 2564 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2565 [[fallthrough]]; 2566 case ABIArgInfo::Direct: 2567 if (RetAI.getInReg()) 2568 RetAttrs.addAttribute(llvm::Attribute::InReg); 2569 2570 if (canApplyNoFPClass(RetAI, RetTy, true)) 2571 RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2572 2573 break; 2574 case ABIArgInfo::Ignore: 2575 break; 2576 2577 case ABIArgInfo::InAlloca: 2578 case ABIArgInfo::Indirect: { 2579 // inalloca and sret disable readnone and readonly 2580 AddPotentialArgAccess(); 2581 break; 2582 } 2583 2584 case ABIArgInfo::CoerceAndExpand: 2585 break; 2586 2587 case ABIArgInfo::Expand: 2588 case ABIArgInfo::IndirectAliased: 2589 llvm_unreachable("Invalid ABI kind for return argument"); 2590 } 2591 2592 if (!IsThunk) { 2593 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2594 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2595 QualType PTy = RefTy->getPointeeType(); 2596 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2597 RetAttrs.addDereferenceableAttr( 2598 getMinimumObjectSize(PTy).getQuantity()); 2599 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2600 !CodeGenOpts.NullPointerIsValid) 2601 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2602 if (PTy->isObjectType()) { 2603 llvm::Align Alignment = 2604 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2605 RetAttrs.addAlignmentAttr(Alignment); 2606 } 2607 } 2608 } 2609 2610 bool hasUsedSRet = false; 2611 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2612 2613 // Attach attributes to sret. 2614 if (IRFunctionArgs.hasSRetArg()) { 2615 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2616 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2617 SRETAttrs.addAttribute(llvm::Attribute::Writable); 2618 SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind); 2619 hasUsedSRet = true; 2620 if (RetAI.getInReg()) 2621 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2622 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2623 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2624 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2625 } 2626 2627 // Attach attributes to inalloca argument. 2628 if (IRFunctionArgs.hasInallocaArg()) { 2629 llvm::AttrBuilder Attrs(getLLVMContext()); 2630 Attrs.addInAllocaAttr(FI.getArgStruct()); 2631 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2632 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2633 } 2634 2635 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2636 // unless this is a thunk function. 2637 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2638 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2639 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2640 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2641 2642 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2643 2644 llvm::AttrBuilder Attrs(getLLVMContext()); 2645 2646 QualType ThisTy = 2647 FI.arg_begin()->type.getTypePtr()->getPointeeType(); 2648 2649 if (!CodeGenOpts.NullPointerIsValid && 2650 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2651 Attrs.addAttribute(llvm::Attribute::NonNull); 2652 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2653 } else { 2654 // FIXME dereferenceable should be correct here, regardless of 2655 // NullPointerIsValid. However, dereferenceable currently does not always 2656 // respect NullPointerIsValid and may imply nonnull and break the program. 2657 // See https://reviews.llvm.org/D66618 for discussions. 2658 Attrs.addDereferenceableOrNullAttr( 2659 getMinimumObjectSize( 2660 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2661 .getQuantity()); 2662 } 2663 2664 llvm::Align Alignment = 2665 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2666 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2667 .getAsAlign(); 2668 Attrs.addAlignmentAttr(Alignment); 2669 2670 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2671 } 2672 2673 unsigned ArgNo = 0; 2674 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2675 E = FI.arg_end(); 2676 I != E; ++I, ++ArgNo) { 2677 QualType ParamType = I->type; 2678 const ABIArgInfo &AI = I->info; 2679 llvm::AttrBuilder Attrs(getLLVMContext()); 2680 2681 // Add attribute for padding argument, if necessary. 2682 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2683 if (AI.getPaddingInReg()) { 2684 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2685 llvm::AttributeSet::get( 2686 getLLVMContext(), 2687 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2688 } 2689 } 2690 2691 // Decide whether the argument we're handling could be partially undef 2692 if (CodeGenOpts.EnableNoundefAttrs && 2693 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2694 Attrs.addAttribute(llvm::Attribute::NoUndef); 2695 } 2696 2697 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2698 // have the corresponding parameter variable. It doesn't make 2699 // sense to do it here because parameters are so messed up. 2700 switch (AI.getKind()) { 2701 case ABIArgInfo::Extend: 2702 if (AI.isSignExt()) 2703 Attrs.addAttribute(llvm::Attribute::SExt); 2704 else 2705 Attrs.addAttribute(llvm::Attribute::ZExt); 2706 [[fallthrough]]; 2707 case ABIArgInfo::Direct: 2708 if (ArgNo == 0 && FI.isChainCall()) 2709 Attrs.addAttribute(llvm::Attribute::Nest); 2710 else if (AI.getInReg()) 2711 Attrs.addAttribute(llvm::Attribute::InReg); 2712 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2713 2714 if (canApplyNoFPClass(AI, ParamType, false)) 2715 Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2716 break; 2717 case ABIArgInfo::Indirect: { 2718 if (AI.getInReg()) 2719 Attrs.addAttribute(llvm::Attribute::InReg); 2720 2721 if (AI.getIndirectByVal()) 2722 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2723 2724 auto *Decl = ParamType->getAsRecordDecl(); 2725 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2726 Decl->getArgPassingRestrictions() == 2727 RecordArgPassingKind::CanPassInRegs) 2728 // When calling the function, the pointer passed in will be the only 2729 // reference to the underlying object. Mark it accordingly. 2730 Attrs.addAttribute(llvm::Attribute::NoAlias); 2731 2732 // TODO: We could add the byref attribute if not byval, but it would 2733 // require updating many testcases. 2734 2735 CharUnits Align = AI.getIndirectAlign(); 2736 2737 // In a byval argument, it is important that the required 2738 // alignment of the type is honored, as LLVM might be creating a 2739 // *new* stack object, and needs to know what alignment to give 2740 // it. (Sometimes it can deduce a sensible alignment on its own, 2741 // but not if clang decides it must emit a packed struct, or the 2742 // user specifies increased alignment requirements.) 2743 // 2744 // This is different from indirect *not* byval, where the object 2745 // exists already, and the align attribute is purely 2746 // informative. 2747 assert(!Align.isZero()); 2748 2749 // For now, only add this when we have a byval argument. 2750 // TODO: be less lazy about updating test cases. 2751 if (AI.getIndirectByVal()) 2752 Attrs.addAlignmentAttr(Align.getQuantity()); 2753 2754 // byval disables readnone and readonly. 2755 AddPotentialArgAccess(); 2756 break; 2757 } 2758 case ABIArgInfo::IndirectAliased: { 2759 CharUnits Align = AI.getIndirectAlign(); 2760 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2761 Attrs.addAlignmentAttr(Align.getQuantity()); 2762 break; 2763 } 2764 case ABIArgInfo::Ignore: 2765 case ABIArgInfo::Expand: 2766 case ABIArgInfo::CoerceAndExpand: 2767 break; 2768 2769 case ABIArgInfo::InAlloca: 2770 // inalloca disables readnone and readonly. 2771 AddPotentialArgAccess(); 2772 continue; 2773 } 2774 2775 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2776 QualType PTy = RefTy->getPointeeType(); 2777 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2778 Attrs.addDereferenceableAttr( 2779 getMinimumObjectSize(PTy).getQuantity()); 2780 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2781 !CodeGenOpts.NullPointerIsValid) 2782 Attrs.addAttribute(llvm::Attribute::NonNull); 2783 if (PTy->isObjectType()) { 2784 llvm::Align Alignment = 2785 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2786 Attrs.addAlignmentAttr(Alignment); 2787 } 2788 } 2789 2790 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2791 // > For arguments to a __kernel function declared to be a pointer to a 2792 // > data type, the OpenCL compiler can assume that the pointee is always 2793 // > appropriately aligned as required by the data type. 2794 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2795 ParamType->isPointerType()) { 2796 QualType PTy = ParamType->getPointeeType(); 2797 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2798 llvm::Align Alignment = 2799 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2800 Attrs.addAlignmentAttr(Alignment); 2801 } 2802 } 2803 2804 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2805 case ParameterABI::Ordinary: 2806 break; 2807 2808 case ParameterABI::SwiftIndirectResult: { 2809 // Add 'sret' if we haven't already used it for something, but 2810 // only if the result is void. 2811 if (!hasUsedSRet && RetTy->isVoidType()) { 2812 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2813 hasUsedSRet = true; 2814 } 2815 2816 // Add 'noalias' in either case. 2817 Attrs.addAttribute(llvm::Attribute::NoAlias); 2818 2819 // Add 'dereferenceable' and 'alignment'. 2820 auto PTy = ParamType->getPointeeType(); 2821 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2822 auto info = getContext().getTypeInfoInChars(PTy); 2823 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2824 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2825 } 2826 break; 2827 } 2828 2829 case ParameterABI::SwiftErrorResult: 2830 Attrs.addAttribute(llvm::Attribute::SwiftError); 2831 break; 2832 2833 case ParameterABI::SwiftContext: 2834 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2835 break; 2836 2837 case ParameterABI::SwiftAsyncContext: 2838 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2839 break; 2840 } 2841 2842 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2843 Attrs.addAttribute(llvm::Attribute::NoCapture); 2844 2845 if (Attrs.hasAttributes()) { 2846 unsigned FirstIRArg, NumIRArgs; 2847 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2848 for (unsigned i = 0; i < NumIRArgs; i++) 2849 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2850 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2851 } 2852 } 2853 assert(ArgNo == FI.arg_size()); 2854 2855 AttrList = llvm::AttributeList::get( 2856 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2857 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2858 } 2859 2860 /// An argument came in as a promoted argument; demote it back to its 2861 /// declared type. 2862 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2863 const VarDecl *var, 2864 llvm::Value *value) { 2865 llvm::Type *varType = CGF.ConvertType(var->getType()); 2866 2867 // This can happen with promotions that actually don't change the 2868 // underlying type, like the enum promotions. 2869 if (value->getType() == varType) return value; 2870 2871 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2872 && "unexpected promotion type"); 2873 2874 if (isa<llvm::IntegerType>(varType)) 2875 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2876 2877 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2878 } 2879 2880 /// Returns the attribute (either parameter attribute, or function 2881 /// attribute), which declares argument ArgNo to be non-null. 2882 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2883 QualType ArgType, unsigned ArgNo) { 2884 // FIXME: __attribute__((nonnull)) can also be applied to: 2885 // - references to pointers, where the pointee is known to be 2886 // nonnull (apparently a Clang extension) 2887 // - transparent unions containing pointers 2888 // In the former case, LLVM IR cannot represent the constraint. In 2889 // the latter case, we have no guarantee that the transparent union 2890 // is in fact passed as a pointer. 2891 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2892 return nullptr; 2893 // First, check attribute on parameter itself. 2894 if (PVD) { 2895 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2896 return ParmNNAttr; 2897 } 2898 // Check function attributes. 2899 if (!FD) 2900 return nullptr; 2901 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2902 if (NNAttr->isNonNull(ArgNo)) 2903 return NNAttr; 2904 } 2905 return nullptr; 2906 } 2907 2908 namespace { 2909 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2910 Address Temp; 2911 Address Arg; 2912 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2913 void Emit(CodeGenFunction &CGF, Flags flags) override { 2914 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2915 CGF.Builder.CreateStore(errorValue, Arg); 2916 } 2917 }; 2918 } 2919 2920 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2921 llvm::Function *Fn, 2922 const FunctionArgList &Args) { 2923 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2924 // Naked functions don't have prologues. 2925 return; 2926 2927 // If this is an implicit-return-zero function, go ahead and 2928 // initialize the return value. TODO: it might be nice to have 2929 // a more general mechanism for this that didn't require synthesized 2930 // return statements. 2931 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2932 if (FD->hasImplicitReturnZero()) { 2933 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2934 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2935 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2936 Builder.CreateStore(Zero, ReturnValue); 2937 } 2938 } 2939 2940 // FIXME: We no longer need the types from FunctionArgList; lift up and 2941 // simplify. 2942 2943 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2944 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2945 2946 // If we're using inalloca, all the memory arguments are GEPs off of the last 2947 // parameter, which is a pointer to the complete memory area. 2948 Address ArgStruct = Address::invalid(); 2949 if (IRFunctionArgs.hasInallocaArg()) 2950 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2951 FI.getArgStruct(), FI.getArgStructAlignment()); 2952 2953 // Name the struct return parameter. 2954 if (IRFunctionArgs.hasSRetArg()) { 2955 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2956 AI->setName("agg.result"); 2957 AI->addAttr(llvm::Attribute::NoAlias); 2958 } 2959 2960 // Track if we received the parameter as a pointer (indirect, byval, or 2961 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2962 // into a local alloca for us. 2963 SmallVector<ParamValue, 16> ArgVals; 2964 ArgVals.reserve(Args.size()); 2965 2966 // Create a pointer value for every parameter declaration. This usually 2967 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2968 // any cleanups or do anything that might unwind. We do that separately, so 2969 // we can push the cleanups in the correct order for the ABI. 2970 assert(FI.arg_size() == Args.size() && 2971 "Mismatch between function signature & arguments."); 2972 unsigned ArgNo = 0; 2973 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2974 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2975 i != e; ++i, ++info_it, ++ArgNo) { 2976 const VarDecl *Arg = *i; 2977 const ABIArgInfo &ArgI = info_it->info; 2978 2979 bool isPromoted = 2980 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2981 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2982 // the parameter is promoted. In this case we convert to 2983 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2984 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2985 assert(hasScalarEvaluationKind(Ty) == 2986 hasScalarEvaluationKind(Arg->getType())); 2987 2988 unsigned FirstIRArg, NumIRArgs; 2989 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2990 2991 switch (ArgI.getKind()) { 2992 case ABIArgInfo::InAlloca: { 2993 assert(NumIRArgs == 0); 2994 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2995 Address V = 2996 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2997 if (ArgI.getInAllocaIndirect()) 2998 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 2999 getContext().getTypeAlignInChars(Ty)); 3000 ArgVals.push_back(ParamValue::forIndirect(V)); 3001 break; 3002 } 3003 3004 case ABIArgInfo::Indirect: 3005 case ABIArgInfo::IndirectAliased: { 3006 assert(NumIRArgs == 1); 3007 Address ParamAddr = makeNaturalAddressForPointer( 3008 Fn->getArg(FirstIRArg), Ty, ArgI.getIndirectAlign(), false, nullptr, 3009 nullptr, KnownNonNull); 3010 3011 if (!hasScalarEvaluationKind(Ty)) { 3012 // Aggregates and complex variables are accessed by reference. All we 3013 // need to do is realign the value, if requested. Also, if the address 3014 // may be aliased, copy it to ensure that the parameter variable is 3015 // mutable and has a unique adress, as C requires. 3016 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 3017 RawAddress AlignedTemp = CreateMemTemp(Ty, "coerce"); 3018 3019 // Copy from the incoming argument pointer to the temporary with the 3020 // appropriate alignment. 3021 // 3022 // FIXME: We should have a common utility for generating an aggregate 3023 // copy. 3024 CharUnits Size = getContext().getTypeSizeInChars(Ty); 3025 Builder.CreateMemCpy( 3026 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 3027 ParamAddr.emitRawPointer(*this), 3028 ParamAddr.getAlignment().getAsAlign(), 3029 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 3030 ParamAddr = AlignedTemp; 3031 } 3032 ArgVals.push_back(ParamValue::forIndirect(ParamAddr)); 3033 } else { 3034 // Load scalar value from indirect argument. 3035 llvm::Value *V = 3036 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 3037 3038 if (isPromoted) 3039 V = emitArgumentDemotion(*this, Arg, V); 3040 ArgVals.push_back(ParamValue::forDirect(V)); 3041 } 3042 break; 3043 } 3044 3045 case ABIArgInfo::Extend: 3046 case ABIArgInfo::Direct: { 3047 auto AI = Fn->getArg(FirstIRArg); 3048 llvm::Type *LTy = ConvertType(Arg->getType()); 3049 3050 // Prepare parameter attributes. So far, only attributes for pointer 3051 // parameters are prepared. See 3052 // http://llvm.org/docs/LangRef.html#paramattrs. 3053 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 3054 ArgI.getCoerceToType()->isPointerTy()) { 3055 assert(NumIRArgs == 1); 3056 3057 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 3058 // Set `nonnull` attribute if any. 3059 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 3060 PVD->getFunctionScopeIndex()) && 3061 !CGM.getCodeGenOpts().NullPointerIsValid) 3062 AI->addAttr(llvm::Attribute::NonNull); 3063 3064 QualType OTy = PVD->getOriginalType(); 3065 if (const auto *ArrTy = 3066 getContext().getAsConstantArrayType(OTy)) { 3067 // A C99 array parameter declaration with the static keyword also 3068 // indicates dereferenceability, and if the size is constant we can 3069 // use the dereferenceable attribute (which requires the size in 3070 // bytes). 3071 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3072 QualType ETy = ArrTy->getElementType(); 3073 llvm::Align Alignment = 3074 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3075 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3076 uint64_t ArrSize = ArrTy->getZExtSize(); 3077 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 3078 ArrSize) { 3079 llvm::AttrBuilder Attrs(getLLVMContext()); 3080 Attrs.addDereferenceableAttr( 3081 getContext().getTypeSizeInChars(ETy).getQuantity() * 3082 ArrSize); 3083 AI->addAttrs(Attrs); 3084 } else if (getContext().getTargetInfo().getNullPointerValue( 3085 ETy.getAddressSpace()) == 0 && 3086 !CGM.getCodeGenOpts().NullPointerIsValid) { 3087 AI->addAttr(llvm::Attribute::NonNull); 3088 } 3089 } 3090 } else if (const auto *ArrTy = 3091 getContext().getAsVariableArrayType(OTy)) { 3092 // For C99 VLAs with the static keyword, we don't know the size so 3093 // we can't use the dereferenceable attribute, but in addrspace(0) 3094 // we know that it must be nonnull. 3095 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3096 QualType ETy = ArrTy->getElementType(); 3097 llvm::Align Alignment = 3098 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3099 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3100 if (!getTypes().getTargetAddressSpace(ETy) && 3101 !CGM.getCodeGenOpts().NullPointerIsValid) 3102 AI->addAttr(llvm::Attribute::NonNull); 3103 } 3104 } 3105 3106 // Set `align` attribute if any. 3107 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 3108 if (!AVAttr) 3109 if (const auto *TOTy = OTy->getAs<TypedefType>()) 3110 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 3111 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 3112 // If alignment-assumption sanitizer is enabled, we do *not* add 3113 // alignment attribute here, but emit normal alignment assumption, 3114 // so the UBSAN check could function. 3115 llvm::ConstantInt *AlignmentCI = 3116 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 3117 uint64_t AlignmentInt = 3118 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 3119 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 3120 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 3121 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 3122 llvm::Align(AlignmentInt))); 3123 } 3124 } 3125 } 3126 3127 // Set 'noalias' if an argument type has the `restrict` qualifier. 3128 if (Arg->getType().isRestrictQualified()) 3129 AI->addAttr(llvm::Attribute::NoAlias); 3130 } 3131 3132 // Prepare the argument value. If we have the trivial case, handle it 3133 // with no muss and fuss. 3134 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 3135 ArgI.getCoerceToType() == ConvertType(Ty) && 3136 ArgI.getDirectOffset() == 0) { 3137 assert(NumIRArgs == 1); 3138 3139 // LLVM expects swifterror parameters to be used in very restricted 3140 // ways. Copy the value into a less-restricted temporary. 3141 llvm::Value *V = AI; 3142 if (FI.getExtParameterInfo(ArgNo).getABI() 3143 == ParameterABI::SwiftErrorResult) { 3144 QualType pointeeTy = Ty->getPointeeType(); 3145 assert(pointeeTy->isPointerType()); 3146 RawAddress temp = 3147 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3148 Address arg = makeNaturalAddressForPointer( 3149 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 3150 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 3151 Builder.CreateStore(incomingErrorValue, temp); 3152 V = temp.getPointer(); 3153 3154 // Push a cleanup to copy the value back at the end of the function. 3155 // The convention does not guarantee that the value will be written 3156 // back if the function exits with an unwind exception. 3157 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 3158 } 3159 3160 // Ensure the argument is the correct type. 3161 if (V->getType() != ArgI.getCoerceToType()) 3162 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 3163 3164 if (isPromoted) 3165 V = emitArgumentDemotion(*this, Arg, V); 3166 3167 // Because of merging of function types from multiple decls it is 3168 // possible for the type of an argument to not match the corresponding 3169 // type in the function type. Since we are codegening the callee 3170 // in here, add a cast to the argument type. 3171 llvm::Type *LTy = ConvertType(Arg->getType()); 3172 if (V->getType() != LTy) 3173 V = Builder.CreateBitCast(V, LTy); 3174 3175 ArgVals.push_back(ParamValue::forDirect(V)); 3176 break; 3177 } 3178 3179 // VLST arguments are coerced to VLATs at the function boundary for 3180 // ABI consistency. If this is a VLST that was coerced to 3181 // a VLAT at the function boundary and the types match up, use 3182 // llvm.vector.extract to convert back to the original VLST. 3183 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 3184 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 3185 if (auto *VecTyFrom = 3186 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 3187 // If we are casting a scalable i1 predicate vector to a fixed i8 3188 // vector, bitcast the source and use a vector extract. 3189 if (VecTyFrom->getElementType()->isIntegerTy(1) && 3190 VecTyFrom->getElementCount().isKnownMultipleOf(8) && 3191 VecTyTo->getElementType() == Builder.getInt8Ty()) { 3192 VecTyFrom = llvm::ScalableVectorType::get( 3193 VecTyTo->getElementType(), 3194 VecTyFrom->getElementCount().getKnownMinValue() / 8); 3195 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 3196 } 3197 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 3198 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 3199 3200 assert(NumIRArgs == 1); 3201 Coerced->setName(Arg->getName() + ".coerce"); 3202 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 3203 VecTyTo, Coerced, Zero, "cast.fixed"))); 3204 break; 3205 } 3206 } 3207 } 3208 3209 llvm::StructType *STy = 3210 dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 3211 if (ArgI.isDirect() && !ArgI.getCanBeFlattened() && STy && 3212 STy->getNumElements() > 1) { 3213 [[maybe_unused]] llvm::TypeSize StructSize = 3214 CGM.getDataLayout().getTypeAllocSize(STy); 3215 [[maybe_unused]] llvm::TypeSize PtrElementSize = 3216 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(Ty)); 3217 if (STy->containsHomogeneousScalableVectorTypes()) { 3218 assert(StructSize == PtrElementSize && 3219 "Only allow non-fractional movement of structure with" 3220 "homogeneous scalable vector type"); 3221 3222 ArgVals.push_back(ParamValue::forDirect(AI)); 3223 break; 3224 } 3225 } 3226 3227 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 3228 Arg->getName()); 3229 3230 // Pointer to store into. 3231 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 3232 3233 // Fast-isel and the optimizer generally like scalar values better than 3234 // FCAs, so we flatten them if this is safe to do for this argument. 3235 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 3236 STy->getNumElements() > 1) { 3237 llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy); 3238 llvm::TypeSize PtrElementSize = 3239 CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType()); 3240 if (StructSize.isScalable()) { 3241 assert(STy->containsHomogeneousScalableVectorTypes() && 3242 "ABI only supports structure with homogeneous scalable vector " 3243 "type"); 3244 assert(StructSize == PtrElementSize && 3245 "Only allow non-fractional movement of structure with" 3246 "homogeneous scalable vector type"); 3247 assert(STy->getNumElements() == NumIRArgs); 3248 3249 llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy); 3250 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3251 auto *AI = Fn->getArg(FirstIRArg + i); 3252 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3253 LoadedStructValue = 3254 Builder.CreateInsertValue(LoadedStructValue, AI, i); 3255 } 3256 3257 Builder.CreateStore(LoadedStructValue, Ptr); 3258 } else { 3259 uint64_t SrcSize = StructSize.getFixedValue(); 3260 uint64_t DstSize = PtrElementSize.getFixedValue(); 3261 3262 Address AddrToStoreInto = Address::invalid(); 3263 if (SrcSize <= DstSize) { 3264 AddrToStoreInto = Ptr.withElementType(STy); 3265 } else { 3266 AddrToStoreInto = 3267 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 3268 } 3269 3270 assert(STy->getNumElements() == NumIRArgs); 3271 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3272 auto AI = Fn->getArg(FirstIRArg + i); 3273 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3274 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 3275 Builder.CreateStore(AI, EltPtr); 3276 } 3277 3278 if (SrcSize > DstSize) { 3279 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 3280 } 3281 } 3282 } else { 3283 // Simple case, just do a coerced store of the argument into the alloca. 3284 assert(NumIRArgs == 1); 3285 auto AI = Fn->getArg(FirstIRArg); 3286 AI->setName(Arg->getName() + ".coerce"); 3287 CreateCoercedStore( 3288 AI, Ptr, 3289 llvm::TypeSize::getFixed( 3290 getContext().getTypeSizeInChars(Ty).getQuantity() - 3291 ArgI.getDirectOffset()), 3292 /*DstIsVolatile=*/false); 3293 } 3294 3295 // Match to what EmitParmDecl is expecting for this type. 3296 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3297 llvm::Value *V = 3298 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3299 if (isPromoted) 3300 V = emitArgumentDemotion(*this, Arg, V); 3301 ArgVals.push_back(ParamValue::forDirect(V)); 3302 } else { 3303 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3304 } 3305 break; 3306 } 3307 3308 case ABIArgInfo::CoerceAndExpand: { 3309 // Reconstruct into a temporary. 3310 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3311 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3312 3313 auto coercionType = ArgI.getCoerceAndExpandType(); 3314 alloca = alloca.withElementType(coercionType); 3315 3316 unsigned argIndex = FirstIRArg; 3317 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3318 llvm::Type *eltType = coercionType->getElementType(i); 3319 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3320 continue; 3321 3322 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3323 auto elt = Fn->getArg(argIndex++); 3324 Builder.CreateStore(elt, eltAddr); 3325 } 3326 assert(argIndex == FirstIRArg + NumIRArgs); 3327 break; 3328 } 3329 3330 case ABIArgInfo::Expand: { 3331 // If this structure was expanded into multiple arguments then 3332 // we need to create a temporary and reconstruct it from the 3333 // arguments. 3334 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3335 LValue LV = MakeAddrLValue(Alloca, Ty); 3336 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3337 3338 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3339 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3340 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3341 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3342 auto AI = Fn->getArg(FirstIRArg + i); 3343 AI->setName(Arg->getName() + "." + Twine(i)); 3344 } 3345 break; 3346 } 3347 3348 case ABIArgInfo::Ignore: 3349 assert(NumIRArgs == 0); 3350 // Initialize the local variable appropriately. 3351 if (!hasScalarEvaluationKind(Ty)) { 3352 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3353 } else { 3354 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3355 ArgVals.push_back(ParamValue::forDirect(U)); 3356 } 3357 break; 3358 } 3359 } 3360 3361 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3362 for (int I = Args.size() - 1; I >= 0; --I) 3363 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3364 } else { 3365 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3366 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3367 } 3368 } 3369 3370 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3371 while (insn->use_empty()) { 3372 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3373 if (!bitcast) return; 3374 3375 // This is "safe" because we would have used a ConstantExpr otherwise. 3376 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3377 bitcast->eraseFromParent(); 3378 } 3379 } 3380 3381 /// Try to emit a fused autorelease of a return result. 3382 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3383 llvm::Value *result) { 3384 // We must be immediately followed the cast. 3385 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3386 if (BB->empty()) return nullptr; 3387 if (&BB->back() != result) return nullptr; 3388 3389 llvm::Type *resultType = result->getType(); 3390 3391 // result is in a BasicBlock and is therefore an Instruction. 3392 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3393 3394 SmallVector<llvm::Instruction *, 4> InstsToKill; 3395 3396 // Look for: 3397 // %generator = bitcast %type1* %generator2 to %type2* 3398 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3399 // We would have emitted this as a constant if the operand weren't 3400 // an Instruction. 3401 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3402 3403 // Require the generator to be immediately followed by the cast. 3404 if (generator->getNextNode() != bitcast) 3405 return nullptr; 3406 3407 InstsToKill.push_back(bitcast); 3408 } 3409 3410 // Look for: 3411 // %generator = call i8* @objc_retain(i8* %originalResult) 3412 // or 3413 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3414 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3415 if (!call) return nullptr; 3416 3417 bool doRetainAutorelease; 3418 3419 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3420 doRetainAutorelease = true; 3421 } else if (call->getCalledOperand() == 3422 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3423 doRetainAutorelease = false; 3424 3425 // If we emitted an assembly marker for this call (and the 3426 // ARCEntrypoints field should have been set if so), go looking 3427 // for that call. If we can't find it, we can't do this 3428 // optimization. But it should always be the immediately previous 3429 // instruction, unless we needed bitcasts around the call. 3430 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3431 llvm::Instruction *prev = call->getPrevNode(); 3432 assert(prev); 3433 if (isa<llvm::BitCastInst>(prev)) { 3434 prev = prev->getPrevNode(); 3435 assert(prev); 3436 } 3437 assert(isa<llvm::CallInst>(prev)); 3438 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3439 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3440 InstsToKill.push_back(prev); 3441 } 3442 } else { 3443 return nullptr; 3444 } 3445 3446 result = call->getArgOperand(0); 3447 InstsToKill.push_back(call); 3448 3449 // Keep killing bitcasts, for sanity. Note that we no longer care 3450 // about precise ordering as long as there's exactly one use. 3451 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3452 if (!bitcast->hasOneUse()) break; 3453 InstsToKill.push_back(bitcast); 3454 result = bitcast->getOperand(0); 3455 } 3456 3457 // Delete all the unnecessary instructions, from latest to earliest. 3458 for (auto *I : InstsToKill) 3459 I->eraseFromParent(); 3460 3461 // Do the fused retain/autorelease if we were asked to. 3462 if (doRetainAutorelease) 3463 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3464 3465 // Cast back to the result type. 3466 return CGF.Builder.CreateBitCast(result, resultType); 3467 } 3468 3469 /// If this is a +1 of the value of an immutable 'self', remove it. 3470 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3471 llvm::Value *result) { 3472 // This is only applicable to a method with an immutable 'self'. 3473 const ObjCMethodDecl *method = 3474 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3475 if (!method) return nullptr; 3476 const VarDecl *self = method->getSelfDecl(); 3477 if (!self->getType().isConstQualified()) return nullptr; 3478 3479 // Look for a retain call. Note: stripPointerCasts looks through returned arg 3480 // functions, which would cause us to miss the retain. 3481 llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result); 3482 if (!retainCall || retainCall->getCalledOperand() != 3483 CGF.CGM.getObjCEntrypoints().objc_retain) 3484 return nullptr; 3485 3486 // Look for an ordinary load of 'self'. 3487 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3488 llvm::LoadInst *load = 3489 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3490 if (!load || load->isAtomic() || load->isVolatile() || 3491 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getBasePointer()) 3492 return nullptr; 3493 3494 // Okay! Burn it all down. This relies for correctness on the 3495 // assumption that the retain is emitted as part of the return and 3496 // that thereafter everything is used "linearly". 3497 llvm::Type *resultType = result->getType(); 3498 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3499 assert(retainCall->use_empty()); 3500 retainCall->eraseFromParent(); 3501 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3502 3503 return CGF.Builder.CreateBitCast(load, resultType); 3504 } 3505 3506 /// Emit an ARC autorelease of the result of a function. 3507 /// 3508 /// \return the value to actually return from the function 3509 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3510 llvm::Value *result) { 3511 // If we're returning 'self', kill the initial retain. This is a 3512 // heuristic attempt to "encourage correctness" in the really unfortunate 3513 // case where we have a return of self during a dealloc and we desperately 3514 // need to avoid the possible autorelease. 3515 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3516 return self; 3517 3518 // At -O0, try to emit a fused retain/autorelease. 3519 if (CGF.shouldUseFusedARCCalls()) 3520 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3521 return fused; 3522 3523 return CGF.EmitARCAutoreleaseReturnValue(result); 3524 } 3525 3526 /// Heuristically search for a dominating store to the return-value slot. 3527 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3528 llvm::Value *ReturnValuePtr = CGF.ReturnValue.getBasePointer(); 3529 3530 // Check if a User is a store which pointerOperand is the ReturnValue. 3531 // We are looking for stores to the ReturnValue, not for stores of the 3532 // ReturnValue to some other location. 3533 auto GetStoreIfValid = [&CGF, 3534 ReturnValuePtr](llvm::User *U) -> llvm::StoreInst * { 3535 auto *SI = dyn_cast<llvm::StoreInst>(U); 3536 if (!SI || SI->getPointerOperand() != ReturnValuePtr || 3537 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3538 return nullptr; 3539 // These aren't actually possible for non-coerced returns, and we 3540 // only care about non-coerced returns on this code path. 3541 // All memory instructions inside __try block are volatile. 3542 assert(!SI->isAtomic() && 3543 (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry())); 3544 return SI; 3545 }; 3546 // If there are multiple uses of the return-value slot, just check 3547 // for something immediately preceding the IP. Sometimes this can 3548 // happen with how we generate implicit-returns; it can also happen 3549 // with noreturn cleanups. 3550 if (!ReturnValuePtr->hasOneUse()) { 3551 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3552 if (IP->empty()) return nullptr; 3553 3554 // Look at directly preceding instruction, skipping bitcasts and lifetime 3555 // markers. 3556 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3557 if (isa<llvm::BitCastInst>(&I)) 3558 continue; 3559 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 3560 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3561 continue; 3562 3563 return GetStoreIfValid(&I); 3564 } 3565 return nullptr; 3566 } 3567 3568 llvm::StoreInst *store = GetStoreIfValid(ReturnValuePtr->user_back()); 3569 if (!store) return nullptr; 3570 3571 // Now do a first-and-dirty dominance check: just walk up the 3572 // single-predecessors chain from the current insertion point. 3573 llvm::BasicBlock *StoreBB = store->getParent(); 3574 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3575 llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs; 3576 while (IP != StoreBB) { 3577 if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor())) 3578 return nullptr; 3579 } 3580 3581 // Okay, the store's basic block dominates the insertion point; we 3582 // can do our thing. 3583 return store; 3584 } 3585 3586 // Helper functions for EmitCMSEClearRecord 3587 3588 // Set the bits corresponding to a field having width `BitWidth` and located at 3589 // offset `BitOffset` (from the least significant bit) within a storage unit of 3590 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3591 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3592 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3593 int BitWidth, int CharWidth) { 3594 assert(CharWidth <= 64); 3595 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3596 3597 int Pos = 0; 3598 if (BitOffset >= CharWidth) { 3599 Pos += BitOffset / CharWidth; 3600 BitOffset = BitOffset % CharWidth; 3601 } 3602 3603 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3604 if (BitOffset + BitWidth >= CharWidth) { 3605 Bits[Pos++] |= (Used << BitOffset) & Used; 3606 BitWidth -= CharWidth - BitOffset; 3607 BitOffset = 0; 3608 } 3609 3610 while (BitWidth >= CharWidth) { 3611 Bits[Pos++] = Used; 3612 BitWidth -= CharWidth; 3613 } 3614 3615 if (BitWidth > 0) 3616 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3617 } 3618 3619 // Set the bits corresponding to a field having width `BitWidth` and located at 3620 // offset `BitOffset` (from the least significant bit) within a storage unit of 3621 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3622 // `Bits` corresponds to one target byte. Use target endian layout. 3623 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3624 int StorageSize, int BitOffset, int BitWidth, 3625 int CharWidth, bool BigEndian) { 3626 3627 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3628 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3629 3630 if (BigEndian) 3631 std::reverse(TmpBits.begin(), TmpBits.end()); 3632 3633 for (uint64_t V : TmpBits) 3634 Bits[StorageOffset++] |= V; 3635 } 3636 3637 static void setUsedBits(CodeGenModule &, QualType, int, 3638 SmallVectorImpl<uint64_t> &); 3639 3640 // Set the bits in `Bits`, which correspond to the value representations of 3641 // the actual members of the record type `RTy`. Note that this function does 3642 // not handle base classes, virtual tables, etc, since they cannot happen in 3643 // CMSE function arguments or return. The bit mask corresponds to the target 3644 // memory layout, i.e. it's endian dependent. 3645 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3646 SmallVectorImpl<uint64_t> &Bits) { 3647 ASTContext &Context = CGM.getContext(); 3648 int CharWidth = Context.getCharWidth(); 3649 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3650 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3651 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3652 3653 int Idx = 0; 3654 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3655 const FieldDecl *F = *I; 3656 3657 if (F->isUnnamedBitField() || F->isZeroLengthBitField(Context) || 3658 F->getType()->isIncompleteArrayType()) 3659 continue; 3660 3661 if (F->isBitField()) { 3662 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3663 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3664 BFI.StorageSize / CharWidth, BFI.Offset, 3665 BFI.Size, CharWidth, 3666 CGM.getDataLayout().isBigEndian()); 3667 continue; 3668 } 3669 3670 setUsedBits(CGM, F->getType(), 3671 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3672 } 3673 } 3674 3675 // Set the bits in `Bits`, which correspond to the value representations of 3676 // the elements of an array type `ATy`. 3677 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3678 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3679 const ASTContext &Context = CGM.getContext(); 3680 3681 QualType ETy = Context.getBaseElementType(ATy); 3682 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3683 SmallVector<uint64_t, 4> TmpBits(Size); 3684 setUsedBits(CGM, ETy, 0, TmpBits); 3685 3686 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3687 auto Src = TmpBits.begin(); 3688 auto Dst = Bits.begin() + Offset + I * Size; 3689 for (int J = 0; J < Size; ++J) 3690 *Dst++ |= *Src++; 3691 } 3692 } 3693 3694 // Set the bits in `Bits`, which correspond to the value representations of 3695 // the type `QTy`. 3696 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3697 SmallVectorImpl<uint64_t> &Bits) { 3698 if (const auto *RTy = QTy->getAs<RecordType>()) 3699 return setUsedBits(CGM, RTy, Offset, Bits); 3700 3701 ASTContext &Context = CGM.getContext(); 3702 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3703 return setUsedBits(CGM, ATy, Offset, Bits); 3704 3705 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3706 if (Size <= 0) 3707 return; 3708 3709 std::fill_n(Bits.begin() + Offset, Size, 3710 (uint64_t(1) << Context.getCharWidth()) - 1); 3711 } 3712 3713 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3714 int Pos, int Size, int CharWidth, 3715 bool BigEndian) { 3716 assert(Size > 0); 3717 uint64_t Mask = 0; 3718 if (BigEndian) { 3719 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3720 ++P) 3721 Mask = (Mask << CharWidth) | *P; 3722 } else { 3723 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3724 do 3725 Mask = (Mask << CharWidth) | *--P; 3726 while (P != End); 3727 } 3728 return Mask; 3729 } 3730 3731 // Emit code to clear the bits in a record, which aren't a part of any user 3732 // declared member, when the record is a function return. 3733 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3734 llvm::IntegerType *ITy, 3735 QualType QTy) { 3736 assert(Src->getType() == ITy); 3737 assert(ITy->getScalarSizeInBits() <= 64); 3738 3739 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3740 int Size = DataLayout.getTypeStoreSize(ITy); 3741 SmallVector<uint64_t, 4> Bits(Size); 3742 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3743 3744 int CharWidth = CGM.getContext().getCharWidth(); 3745 uint64_t Mask = 3746 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3747 3748 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3749 } 3750 3751 // Emit code to clear the bits in a record, which aren't a part of any user 3752 // declared member, when the record is a function argument. 3753 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3754 llvm::ArrayType *ATy, 3755 QualType QTy) { 3756 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3757 int Size = DataLayout.getTypeStoreSize(ATy); 3758 SmallVector<uint64_t, 16> Bits(Size); 3759 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3760 3761 // Clear each element of the LLVM array. 3762 int CharWidth = CGM.getContext().getCharWidth(); 3763 int CharsPerElt = 3764 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3765 int MaskIndex = 0; 3766 llvm::Value *R = llvm::PoisonValue::get(ATy); 3767 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3768 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3769 DataLayout.isBigEndian()); 3770 MaskIndex += CharsPerElt; 3771 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3772 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3773 R = Builder.CreateInsertValue(R, T1, I); 3774 } 3775 3776 return R; 3777 } 3778 3779 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3780 bool EmitRetDbgLoc, 3781 SourceLocation EndLoc) { 3782 if (FI.isNoReturn()) { 3783 // Noreturn functions don't return. 3784 EmitUnreachable(EndLoc); 3785 return; 3786 } 3787 3788 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3789 // Naked functions don't have epilogues. 3790 Builder.CreateUnreachable(); 3791 return; 3792 } 3793 3794 // Functions with no result always return void. 3795 if (!ReturnValue.isValid()) { 3796 Builder.CreateRetVoid(); 3797 return; 3798 } 3799 3800 llvm::DebugLoc RetDbgLoc; 3801 llvm::Value *RV = nullptr; 3802 QualType RetTy = FI.getReturnType(); 3803 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3804 3805 switch (RetAI.getKind()) { 3806 case ABIArgInfo::InAlloca: 3807 // Aggregates get evaluated directly into the destination. Sometimes we 3808 // need to return the sret value in a register, though. 3809 assert(hasAggregateEvaluationKind(RetTy)); 3810 if (RetAI.getInAllocaSRet()) { 3811 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3812 --EI; 3813 llvm::Value *ArgStruct = &*EI; 3814 llvm::Value *SRet = Builder.CreateStructGEP( 3815 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3816 llvm::Type *Ty = 3817 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3818 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3819 } 3820 break; 3821 3822 case ABIArgInfo::Indirect: { 3823 auto AI = CurFn->arg_begin(); 3824 if (RetAI.isSRetAfterThis()) 3825 ++AI; 3826 switch (getEvaluationKind(RetTy)) { 3827 case TEK_Complex: { 3828 ComplexPairTy RT = 3829 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3830 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3831 /*isInit*/ true); 3832 break; 3833 } 3834 case TEK_Aggregate: 3835 // Do nothing; aggregates get evaluated directly into the destination. 3836 break; 3837 case TEK_Scalar: { 3838 LValueBaseInfo BaseInfo; 3839 TBAAAccessInfo TBAAInfo; 3840 CharUnits Alignment = 3841 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3842 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3843 LValue ArgVal = 3844 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3845 EmitStoreOfScalar( 3846 EmitLoadOfScalar(MakeAddrLValue(ReturnValue, RetTy), EndLoc), ArgVal, 3847 /*isInit*/ true); 3848 break; 3849 } 3850 } 3851 break; 3852 } 3853 3854 case ABIArgInfo::Extend: 3855 case ABIArgInfo::Direct: 3856 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3857 RetAI.getDirectOffset() == 0) { 3858 // The internal return value temp always will have pointer-to-return-type 3859 // type, just do a load. 3860 3861 // If there is a dominating store to ReturnValue, we can elide 3862 // the load, zap the store, and usually zap the alloca. 3863 if (llvm::StoreInst *SI = 3864 findDominatingStoreToReturnValue(*this)) { 3865 // Reuse the debug location from the store unless there is 3866 // cleanup code to be emitted between the store and return 3867 // instruction. 3868 if (EmitRetDbgLoc && !AutoreleaseResult) 3869 RetDbgLoc = SI->getDebugLoc(); 3870 // Get the stored value and nuke the now-dead store. 3871 RV = SI->getValueOperand(); 3872 SI->eraseFromParent(); 3873 3874 // Otherwise, we have to do a simple load. 3875 } else { 3876 RV = Builder.CreateLoad(ReturnValue); 3877 } 3878 } else { 3879 // If the value is offset in memory, apply the offset now. 3880 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3881 3882 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3883 } 3884 3885 // In ARC, end functions that return a retainable type with a call 3886 // to objc_autoreleaseReturnValue. 3887 if (AutoreleaseResult) { 3888 #ifndef NDEBUG 3889 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3890 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3891 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3892 // CurCodeDecl or BlockInfo. 3893 QualType RT; 3894 3895 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3896 RT = FD->getReturnType(); 3897 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3898 RT = MD->getReturnType(); 3899 else if (isa<BlockDecl>(CurCodeDecl)) 3900 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3901 else 3902 llvm_unreachable("Unexpected function/method type"); 3903 3904 assert(getLangOpts().ObjCAutoRefCount && 3905 !FI.isReturnsRetained() && 3906 RT->isObjCRetainableType()); 3907 #endif 3908 RV = emitAutoreleaseOfResult(*this, RV); 3909 } 3910 3911 break; 3912 3913 case ABIArgInfo::Ignore: 3914 break; 3915 3916 case ABIArgInfo::CoerceAndExpand: { 3917 auto coercionType = RetAI.getCoerceAndExpandType(); 3918 3919 // Load all of the coerced elements out into results. 3920 llvm::SmallVector<llvm::Value*, 4> results; 3921 Address addr = ReturnValue.withElementType(coercionType); 3922 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3923 auto coercedEltType = coercionType->getElementType(i); 3924 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3925 continue; 3926 3927 auto eltAddr = Builder.CreateStructGEP(addr, i); 3928 auto elt = Builder.CreateLoad(eltAddr); 3929 results.push_back(elt); 3930 } 3931 3932 // If we have one result, it's the single direct result type. 3933 if (results.size() == 1) { 3934 RV = results[0]; 3935 3936 // Otherwise, we need to make a first-class aggregate. 3937 } else { 3938 // Construct a return type that lacks padding elements. 3939 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3940 3941 RV = llvm::PoisonValue::get(returnType); 3942 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3943 RV = Builder.CreateInsertValue(RV, results[i], i); 3944 } 3945 } 3946 break; 3947 } 3948 case ABIArgInfo::Expand: 3949 case ABIArgInfo::IndirectAliased: 3950 llvm_unreachable("Invalid ABI kind for return argument"); 3951 } 3952 3953 llvm::Instruction *Ret; 3954 if (RV) { 3955 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3956 // For certain return types, clear padding bits, as they may reveal 3957 // sensitive information. 3958 // Small struct/union types are passed as integers. 3959 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3960 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3961 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3962 } 3963 EmitReturnValueCheck(RV); 3964 Ret = Builder.CreateRet(RV); 3965 } else { 3966 Ret = Builder.CreateRetVoid(); 3967 } 3968 3969 if (RetDbgLoc) 3970 Ret->setDebugLoc(std::move(RetDbgLoc)); 3971 } 3972 3973 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3974 // A current decl may not be available when emitting vtable thunks. 3975 if (!CurCodeDecl) 3976 return; 3977 3978 // If the return block isn't reachable, neither is this check, so don't emit 3979 // it. 3980 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3981 return; 3982 3983 ReturnsNonNullAttr *RetNNAttr = nullptr; 3984 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3985 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3986 3987 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3988 return; 3989 3990 // Prefer the returns_nonnull attribute if it's present. 3991 SourceLocation AttrLoc; 3992 SanitizerMask CheckKind; 3993 SanitizerHandler Handler; 3994 if (RetNNAttr) { 3995 assert(!requiresReturnValueNullabilityCheck() && 3996 "Cannot check nullability and the nonnull attribute"); 3997 AttrLoc = RetNNAttr->getLocation(); 3998 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3999 Handler = SanitizerHandler::NonnullReturn; 4000 } else { 4001 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 4002 if (auto *TSI = DD->getTypeSourceInfo()) 4003 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 4004 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 4005 CheckKind = SanitizerKind::NullabilityReturn; 4006 Handler = SanitizerHandler::NullabilityReturn; 4007 } 4008 4009 SanitizerScope SanScope(this); 4010 4011 // Make sure the "return" source location is valid. If we're checking a 4012 // nullability annotation, make sure the preconditions for the check are met. 4013 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 4014 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 4015 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 4016 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 4017 if (requiresReturnValueNullabilityCheck()) 4018 CanNullCheck = 4019 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 4020 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 4021 EmitBlock(Check); 4022 4023 // Now do the null check. 4024 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 4025 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 4026 llvm::Value *DynamicData[] = {SLocPtr}; 4027 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 4028 4029 EmitBlock(NoCheck); 4030 4031 #ifndef NDEBUG 4032 // The return location should not be used after the check has been emitted. 4033 ReturnLocation = Address::invalid(); 4034 #endif 4035 } 4036 4037 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 4038 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 4039 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 4040 } 4041 4042 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 4043 QualType Ty) { 4044 // FIXME: Generate IR in one pass, rather than going back and fixing up these 4045 // placeholders. 4046 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 4047 llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext()); 4048 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy); 4049 4050 // FIXME: When we generate this IR in one pass, we shouldn't need 4051 // this win32-specific alignment hack. 4052 CharUnits Align = CharUnits::fromQuantity(4); 4053 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 4054 4055 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 4056 Ty.getQualifiers(), 4057 AggValueSlot::IsNotDestructed, 4058 AggValueSlot::DoesNotNeedGCBarriers, 4059 AggValueSlot::IsNotAliased, 4060 AggValueSlot::DoesNotOverlap); 4061 } 4062 4063 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 4064 const VarDecl *param, 4065 SourceLocation loc) { 4066 // StartFunction converted the ABI-lowered parameter(s) into a 4067 // local alloca. We need to turn that into an r-value suitable 4068 // for EmitCall. 4069 Address local = GetAddrOfLocalVar(param); 4070 4071 QualType type = param->getType(); 4072 4073 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 4074 // but the argument needs to be the original pointer. 4075 if (type->isReferenceType()) { 4076 args.add(RValue::get(Builder.CreateLoad(local)), type); 4077 4078 // In ARC, move out of consumed arguments so that the release cleanup 4079 // entered by StartFunction doesn't cause an over-release. This isn't 4080 // optimal -O0 code generation, but it should get cleaned up when 4081 // optimization is enabled. This also assumes that delegate calls are 4082 // performed exactly once for a set of arguments, but that should be safe. 4083 } else if (getLangOpts().ObjCAutoRefCount && 4084 param->hasAttr<NSConsumedAttr>() && 4085 type->isObjCRetainableType()) { 4086 llvm::Value *ptr = Builder.CreateLoad(local); 4087 auto null = 4088 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 4089 Builder.CreateStore(null, local); 4090 args.add(RValue::get(ptr), type); 4091 4092 // For the most part, we just need to load the alloca, except that 4093 // aggregate r-values are actually pointers to temporaries. 4094 } else { 4095 args.add(convertTempToRValue(local, type, loc), type); 4096 } 4097 4098 // Deactivate the cleanup for the callee-destructed param that was pushed. 4099 if (type->isRecordType() && !CurFuncIsThunk && 4100 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 4101 param->needsDestruction(getContext())) { 4102 EHScopeStack::stable_iterator cleanup = 4103 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 4104 assert(cleanup.isValid() && 4105 "cleanup for callee-destructed param not recorded"); 4106 // This unreachable is a temporary marker which will be removed later. 4107 llvm::Instruction *isActive = Builder.CreateUnreachable(); 4108 args.addArgCleanupDeactivation(cleanup, isActive); 4109 } 4110 } 4111 4112 static bool isProvablyNull(llvm::Value *addr) { 4113 return llvm::isa_and_nonnull<llvm::ConstantPointerNull>(addr); 4114 } 4115 4116 static bool isProvablyNonNull(Address Addr, CodeGenFunction &CGF) { 4117 return llvm::isKnownNonZero(Addr.getBasePointer(), CGF.CGM.getDataLayout()); 4118 } 4119 4120 /// Emit the actual writing-back of a writeback. 4121 static void emitWriteback(CodeGenFunction &CGF, 4122 const CallArgList::Writeback &writeback) { 4123 const LValue &srcLV = writeback.Source; 4124 Address srcAddr = srcLV.getAddress(); 4125 assert(!isProvablyNull(srcAddr.getBasePointer()) && 4126 "shouldn't have writeback for provably null argument"); 4127 4128 llvm::BasicBlock *contBB = nullptr; 4129 4130 // If the argument wasn't provably non-null, we need to null check 4131 // before doing the store. 4132 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 4133 4134 if (!provablyNonNull) { 4135 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 4136 contBB = CGF.createBasicBlock("icr.done"); 4137 4138 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 4139 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 4140 CGF.EmitBlock(writebackBB); 4141 } 4142 4143 // Load the value to writeback. 4144 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 4145 4146 // Cast it back, in case we're writing an id to a Foo* or something. 4147 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 4148 "icr.writeback-cast"); 4149 4150 // Perform the writeback. 4151 4152 // If we have a "to use" value, it's something we need to emit a use 4153 // of. This has to be carefully threaded in: if it's done after the 4154 // release it's potentially undefined behavior (and the optimizer 4155 // will ignore it), and if it happens before the retain then the 4156 // optimizer could move the release there. 4157 if (writeback.ToUse) { 4158 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 4159 4160 // Retain the new value. No need to block-copy here: the block's 4161 // being passed up the stack. 4162 value = CGF.EmitARCRetainNonBlock(value); 4163 4164 // Emit the intrinsic use here. 4165 CGF.EmitARCIntrinsicUse(writeback.ToUse); 4166 4167 // Load the old value (primitively). 4168 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 4169 4170 // Put the new value in place (primitively). 4171 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 4172 4173 // Release the old value. 4174 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 4175 4176 // Otherwise, we can just do a normal lvalue store. 4177 } else { 4178 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 4179 } 4180 4181 // Jump to the continuation block. 4182 if (!provablyNonNull) 4183 CGF.EmitBlock(contBB); 4184 } 4185 4186 static void emitWritebacks(CodeGenFunction &CGF, 4187 const CallArgList &args) { 4188 for (const auto &I : args.writebacks()) 4189 emitWriteback(CGF, I); 4190 } 4191 4192 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 4193 const CallArgList &CallArgs) { 4194 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 4195 CallArgs.getCleanupsToDeactivate(); 4196 // Iterate in reverse to increase the likelihood of popping the cleanup. 4197 for (const auto &I : llvm::reverse(Cleanups)) { 4198 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 4199 I.IsActiveIP->eraseFromParent(); 4200 } 4201 } 4202 4203 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 4204 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 4205 if (uop->getOpcode() == UO_AddrOf) 4206 return uop->getSubExpr(); 4207 return nullptr; 4208 } 4209 4210 /// Emit an argument that's being passed call-by-writeback. That is, 4211 /// we are passing the address of an __autoreleased temporary; it 4212 /// might be copy-initialized with the current value of the given 4213 /// address, but it will definitely be copied out of after the call. 4214 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 4215 const ObjCIndirectCopyRestoreExpr *CRE) { 4216 LValue srcLV; 4217 4218 // Make an optimistic effort to emit the address as an l-value. 4219 // This can fail if the argument expression is more complicated. 4220 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 4221 srcLV = CGF.EmitLValue(lvExpr); 4222 4223 // Otherwise, just emit it as a scalar. 4224 } else { 4225 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 4226 4227 QualType srcAddrType = 4228 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 4229 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 4230 } 4231 Address srcAddr = srcLV.getAddress(); 4232 4233 // The dest and src types don't necessarily match in LLVM terms 4234 // because of the crazy ObjC compatibility rules. 4235 4236 llvm::PointerType *destType = 4237 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 4238 llvm::Type *destElemType = 4239 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 4240 4241 // If the address is a constant null, just pass the appropriate null. 4242 if (isProvablyNull(srcAddr.getBasePointer())) { 4243 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 4244 CRE->getType()); 4245 return; 4246 } 4247 4248 // Create the temporary. 4249 Address temp = 4250 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 4251 // Loading an l-value can introduce a cleanup if the l-value is __weak, 4252 // and that cleanup will be conditional if we can't prove that the l-value 4253 // isn't null, so we need to register a dominating point so that the cleanups 4254 // system will make valid IR. 4255 CodeGenFunction::ConditionalEvaluation condEval(CGF); 4256 4257 // Zero-initialize it if we're not doing a copy-initialization. 4258 bool shouldCopy = CRE->shouldCopy(); 4259 if (!shouldCopy) { 4260 llvm::Value *null = 4261 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 4262 CGF.Builder.CreateStore(null, temp); 4263 } 4264 4265 llvm::BasicBlock *contBB = nullptr; 4266 llvm::BasicBlock *originBB = nullptr; 4267 4268 // If the address is *not* known to be non-null, we need to switch. 4269 llvm::Value *finalArgument; 4270 4271 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 4272 4273 if (provablyNonNull) { 4274 finalArgument = temp.emitRawPointer(CGF); 4275 } else { 4276 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 4277 4278 finalArgument = CGF.Builder.CreateSelect( 4279 isNull, llvm::ConstantPointerNull::get(destType), 4280 temp.emitRawPointer(CGF), "icr.argument"); 4281 4282 // If we need to copy, then the load has to be conditional, which 4283 // means we need control flow. 4284 if (shouldCopy) { 4285 originBB = CGF.Builder.GetInsertBlock(); 4286 contBB = CGF.createBasicBlock("icr.cont"); 4287 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 4288 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 4289 CGF.EmitBlock(copyBB); 4290 condEval.begin(CGF); 4291 } 4292 } 4293 4294 llvm::Value *valueToUse = nullptr; 4295 4296 // Perform a copy if necessary. 4297 if (shouldCopy) { 4298 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 4299 assert(srcRV.isScalar()); 4300 4301 llvm::Value *src = srcRV.getScalarVal(); 4302 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4303 4304 // Use an ordinary store, not a store-to-lvalue. 4305 CGF.Builder.CreateStore(src, temp); 4306 4307 // If optimization is enabled, and the value was held in a 4308 // __strong variable, we need to tell the optimizer that this 4309 // value has to stay alive until we're doing the store back. 4310 // This is because the temporary is effectively unretained, 4311 // and so otherwise we can violate the high-level semantics. 4312 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4313 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4314 valueToUse = src; 4315 } 4316 } 4317 4318 // Finish the control flow if we needed it. 4319 if (shouldCopy && !provablyNonNull) { 4320 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4321 CGF.EmitBlock(contBB); 4322 4323 // Make a phi for the value to intrinsically use. 4324 if (valueToUse) { 4325 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4326 "icr.to-use"); 4327 phiToUse->addIncoming(valueToUse, copyBB); 4328 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4329 originBB); 4330 valueToUse = phiToUse; 4331 } 4332 4333 condEval.end(CGF); 4334 } 4335 4336 args.addWriteback(srcLV, temp, valueToUse); 4337 args.add(RValue::get(finalArgument), CRE->getType()); 4338 } 4339 4340 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4341 assert(!StackBase); 4342 4343 // Save the stack. 4344 StackBase = CGF.Builder.CreateStackSave("inalloca.save"); 4345 } 4346 4347 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4348 if (StackBase) { 4349 // Restore the stack after the call. 4350 CGF.Builder.CreateStackRestore(StackBase); 4351 } 4352 } 4353 4354 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4355 SourceLocation ArgLoc, 4356 AbstractCallee AC, 4357 unsigned ParmNum) { 4358 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4359 SanOpts.has(SanitizerKind::NullabilityArg))) 4360 return; 4361 4362 // The param decl may be missing in a variadic function. 4363 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4364 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4365 4366 // Prefer the nonnull attribute if it's present. 4367 const NonNullAttr *NNAttr = nullptr; 4368 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4369 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4370 4371 bool CanCheckNullability = false; 4372 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD && 4373 !PVD->getType()->isRecordType()) { 4374 auto Nullability = PVD->getType()->getNullability(); 4375 CanCheckNullability = Nullability && 4376 *Nullability == NullabilityKind::NonNull && 4377 PVD->getTypeSourceInfo(); 4378 } 4379 4380 if (!NNAttr && !CanCheckNullability) 4381 return; 4382 4383 SourceLocation AttrLoc; 4384 SanitizerMask CheckKind; 4385 SanitizerHandler Handler; 4386 if (NNAttr) { 4387 AttrLoc = NNAttr->getLocation(); 4388 CheckKind = SanitizerKind::NonnullAttribute; 4389 Handler = SanitizerHandler::NonnullArg; 4390 } else { 4391 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4392 CheckKind = SanitizerKind::NullabilityArg; 4393 Handler = SanitizerHandler::NullabilityArg; 4394 } 4395 4396 SanitizerScope SanScope(this); 4397 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4398 llvm::Constant *StaticData[] = { 4399 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4400 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4401 }; 4402 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt); 4403 } 4404 4405 void CodeGenFunction::EmitNonNullArgCheck(Address Addr, QualType ArgType, 4406 SourceLocation ArgLoc, 4407 AbstractCallee AC, unsigned ParmNum) { 4408 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4409 SanOpts.has(SanitizerKind::NullabilityArg))) 4410 return; 4411 4412 EmitNonNullArgCheck(RValue::get(Addr, *this), ArgType, ArgLoc, AC, ParmNum); 4413 } 4414 4415 // Check if the call is going to use the inalloca convention. This needs to 4416 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4417 // later, so we can't check it directly. 4418 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4419 ArrayRef<QualType> ArgTypes) { 4420 // The Swift calling conventions don't go through the target-specific 4421 // argument classification, they never use inalloca. 4422 // TODO: Consider limiting inalloca use to only calling conventions supported 4423 // by MSVC. 4424 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4425 return false; 4426 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4427 return false; 4428 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4429 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4430 }); 4431 } 4432 4433 #ifndef NDEBUG 4434 // Determine whether the given argument is an Objective-C method 4435 // that may have type parameters in its signature. 4436 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4437 const DeclContext *dc = method->getDeclContext(); 4438 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4439 return classDecl->getTypeParamListAsWritten(); 4440 } 4441 4442 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4443 return catDecl->getTypeParamList(); 4444 } 4445 4446 return false; 4447 } 4448 #endif 4449 4450 /// EmitCallArgs - Emit call arguments for a function. 4451 void CodeGenFunction::EmitCallArgs( 4452 CallArgList &Args, PrototypeWrapper Prototype, 4453 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4454 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4455 SmallVector<QualType, 16> ArgTypes; 4456 4457 assert((ParamsToSkip == 0 || Prototype.P) && 4458 "Can't skip parameters if type info is not provided"); 4459 4460 // This variable only captures *explicitly* written conventions, not those 4461 // applied by default via command line flags or target defaults, such as 4462 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4463 // require knowing if this is a C++ instance method or being able to see 4464 // unprototyped FunctionTypes. 4465 CallingConv ExplicitCC = CC_C; 4466 4467 // First, if a prototype was provided, use those argument types. 4468 bool IsVariadic = false; 4469 if (Prototype.P) { 4470 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4471 if (MD) { 4472 IsVariadic = MD->isVariadic(); 4473 ExplicitCC = getCallingConventionForDecl( 4474 MD, CGM.getTarget().getTriple().isOSWindows()); 4475 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4476 MD->param_type_end()); 4477 } else { 4478 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4479 IsVariadic = FPT->isVariadic(); 4480 ExplicitCC = FPT->getExtInfo().getCC(); 4481 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4482 FPT->param_type_end()); 4483 } 4484 4485 #ifndef NDEBUG 4486 // Check that the prototyped types match the argument expression types. 4487 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4488 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4489 for (QualType Ty : ArgTypes) { 4490 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4491 assert( 4492 (isGenericMethod || Ty->isVariablyModifiedType() || 4493 Ty.getNonReferenceType()->isObjCRetainableType() || 4494 getContext() 4495 .getCanonicalType(Ty.getNonReferenceType()) 4496 .getTypePtr() == 4497 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4498 "type mismatch in call argument!"); 4499 ++Arg; 4500 } 4501 4502 // Either we've emitted all the call args, or we have a call to variadic 4503 // function. 4504 assert((Arg == ArgRange.end() || IsVariadic) && 4505 "Extra arguments in non-variadic function!"); 4506 #endif 4507 } 4508 4509 // If we still have any arguments, emit them using the type of the argument. 4510 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4511 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4512 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4513 4514 // We must evaluate arguments from right to left in the MS C++ ABI, 4515 // because arguments are destroyed left to right in the callee. As a special 4516 // case, there are certain language constructs that require left-to-right 4517 // evaluation, and in those cases we consider the evaluation order requirement 4518 // to trump the "destruction order is reverse construction order" guarantee. 4519 bool LeftToRight = 4520 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4521 ? Order == EvaluationOrder::ForceLeftToRight 4522 : Order != EvaluationOrder::ForceRightToLeft; 4523 4524 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4525 RValue EmittedArg) { 4526 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4527 return; 4528 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4529 if (PS == nullptr) 4530 return; 4531 4532 const auto &Context = getContext(); 4533 auto SizeTy = Context.getSizeType(); 4534 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4535 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4536 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4537 EmittedArg.getScalarVal(), 4538 PS->isDynamic()); 4539 Args.add(RValue::get(V), SizeTy); 4540 // If we're emitting args in reverse, be sure to do so with 4541 // pass_object_size, as well. 4542 if (!LeftToRight) 4543 std::swap(Args.back(), *(&Args.back() - 1)); 4544 }; 4545 4546 // Insert a stack save if we're going to need any inalloca args. 4547 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4548 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4549 "inalloca only supported on x86"); 4550 Args.allocateArgumentMemory(*this); 4551 } 4552 4553 // Evaluate each argument in the appropriate order. 4554 size_t CallArgsStart = Args.size(); 4555 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4556 unsigned Idx = LeftToRight ? I : E - I - 1; 4557 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4558 unsigned InitialArgSize = Args.size(); 4559 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4560 // the argument and parameter match or the objc method is parameterized. 4561 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4562 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4563 ArgTypes[Idx]) || 4564 (isa<ObjCMethodDecl>(AC.getDecl()) && 4565 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4566 "Argument and parameter types don't match"); 4567 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4568 // In particular, we depend on it being the last arg in Args, and the 4569 // objectsize bits depend on there only being one arg if !LeftToRight. 4570 assert(InitialArgSize + 1 == Args.size() && 4571 "The code below depends on only adding one arg per EmitCallArg"); 4572 (void)InitialArgSize; 4573 // Since pointer argument are never emitted as LValue, it is safe to emit 4574 // non-null argument check for r-value only. 4575 if (!Args.back().hasLValue()) { 4576 RValue RVArg = Args.back().getKnownRValue(); 4577 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4578 ParamsToSkip + Idx); 4579 // @llvm.objectsize should never have side-effects and shouldn't need 4580 // destruction/cleanups, so we can safely "emit" it after its arg, 4581 // regardless of right-to-leftness 4582 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4583 } 4584 } 4585 4586 if (!LeftToRight) { 4587 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4588 // IR function. 4589 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4590 } 4591 } 4592 4593 namespace { 4594 4595 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4596 DestroyUnpassedArg(Address Addr, QualType Ty) 4597 : Addr(Addr), Ty(Ty) {} 4598 4599 Address Addr; 4600 QualType Ty; 4601 4602 void Emit(CodeGenFunction &CGF, Flags flags) override { 4603 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4604 if (DtorKind == QualType::DK_cxx_destructor) { 4605 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4606 assert(!Dtor->isTrivial()); 4607 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4608 /*Delegating=*/false, Addr, Ty); 4609 } else { 4610 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4611 } 4612 } 4613 }; 4614 4615 struct DisableDebugLocationUpdates { 4616 CodeGenFunction &CGF; 4617 bool disabledDebugInfo; 4618 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4619 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4620 CGF.disableDebugInfo(); 4621 } 4622 ~DisableDebugLocationUpdates() { 4623 if (disabledDebugInfo) 4624 CGF.enableDebugInfo(); 4625 } 4626 }; 4627 4628 } // end anonymous namespace 4629 4630 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4631 if (!HasLV) 4632 return RV; 4633 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4634 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4635 LV.isVolatile()); 4636 IsUsed = true; 4637 return RValue::getAggregate(Copy.getAddress()); 4638 } 4639 4640 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4641 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4642 if (!HasLV && RV.isScalar()) 4643 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4644 else if (!HasLV && RV.isComplex()) 4645 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4646 else { 4647 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 4648 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4649 // We assume that call args are never copied into subobjects. 4650 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4651 HasLV ? LV.isVolatileQualified() 4652 : RV.isVolatileQualified()); 4653 } 4654 IsUsed = true; 4655 } 4656 4657 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4658 QualType type) { 4659 DisableDebugLocationUpdates Dis(*this, E); 4660 if (const ObjCIndirectCopyRestoreExpr *CRE 4661 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4662 assert(getLangOpts().ObjCAutoRefCount); 4663 return emitWritebackArg(*this, args, CRE); 4664 } 4665 4666 assert(type->isReferenceType() == E->isGLValue() && 4667 "reference binding to unmaterialized r-value!"); 4668 4669 if (E->isGLValue()) { 4670 assert(E->getObjectKind() == OK_Ordinary); 4671 return args.add(EmitReferenceBindingToExpr(E), type); 4672 } 4673 4674 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4675 4676 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4677 // However, we still have to push an EH-only cleanup in case we unwind before 4678 // we make it to the call. 4679 if (type->isRecordType() && 4680 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4681 // If we're using inalloca, use the argument memory. Otherwise, use a 4682 // temporary. 4683 AggValueSlot Slot = args.isUsingInAlloca() 4684 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4685 4686 bool DestroyedInCallee = true, NeedsCleanup = true; 4687 if (const auto *RD = type->getAsCXXRecordDecl()) 4688 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4689 else 4690 NeedsCleanup = type.isDestructedType(); 4691 4692 if (DestroyedInCallee) 4693 Slot.setExternallyDestructed(); 4694 4695 EmitAggExpr(E, Slot); 4696 RValue RV = Slot.asRValue(); 4697 args.add(RV, type); 4698 4699 if (DestroyedInCallee && NeedsCleanup) { 4700 // Create a no-op GEP between the placeholder and the cleanup so we can 4701 // RAUW it successfully. It also serves as a marker of the first 4702 // instruction where the cleanup is active. 4703 pushFullExprCleanup<DestroyUnpassedArg>(NormalAndEHCleanup, 4704 Slot.getAddress(), type); 4705 // This unreachable is a temporary marker which will be removed later. 4706 llvm::Instruction *IsActive = 4707 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 4708 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4709 } 4710 return; 4711 } 4712 4713 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4714 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue && 4715 !type->isArrayParameterType()) { 4716 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4717 assert(L.isSimple()); 4718 args.addUncopiedAggregate(L, type); 4719 return; 4720 } 4721 4722 args.add(EmitAnyExprToTemp(E), type); 4723 } 4724 4725 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4726 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4727 // implicitly widens null pointer constants that are arguments to varargs 4728 // functions to pointer-sized ints. 4729 if (!getTarget().getTriple().isOSWindows()) 4730 return Arg->getType(); 4731 4732 if (Arg->getType()->isIntegerType() && 4733 getContext().getTypeSize(Arg->getType()) < 4734 getContext().getTargetInfo().getPointerWidth(LangAS::Default) && 4735 Arg->isNullPointerConstant(getContext(), 4736 Expr::NPC_ValueDependentIsNotNull)) { 4737 return getContext().getIntPtrType(); 4738 } 4739 4740 return Arg->getType(); 4741 } 4742 4743 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4744 // optimizer it can aggressively ignore unwind edges. 4745 void 4746 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4747 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4748 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4749 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4750 CGM.getNoObjCARCExceptionsMetadata()); 4751 } 4752 4753 /// Emits a call to the given no-arguments nounwind runtime function. 4754 llvm::CallInst * 4755 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4756 const llvm::Twine &name) { 4757 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value *>(), name); 4758 } 4759 4760 /// Emits a call to the given nounwind runtime function. 4761 llvm::CallInst * 4762 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4763 ArrayRef<Address> args, 4764 const llvm::Twine &name) { 4765 SmallVector<llvm::Value *, 3> values; 4766 for (auto arg : args) 4767 values.push_back(arg.emitRawPointer(*this)); 4768 return EmitNounwindRuntimeCall(callee, values, name); 4769 } 4770 4771 llvm::CallInst * 4772 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4773 ArrayRef<llvm::Value *> args, 4774 const llvm::Twine &name) { 4775 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4776 call->setDoesNotThrow(); 4777 return call; 4778 } 4779 4780 /// Emits a simple call (never an invoke) to the given no-arguments 4781 /// runtime function. 4782 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4783 const llvm::Twine &name) { 4784 return EmitRuntimeCall(callee, std::nullopt, name); 4785 } 4786 4787 // Calls which may throw must have operand bundles indicating which funclet 4788 // they are nested within. 4789 SmallVector<llvm::OperandBundleDef, 1> 4790 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4791 // There is no need for a funclet operand bundle if we aren't inside a 4792 // funclet. 4793 if (!CurrentFuncletPad) 4794 return (SmallVector<llvm::OperandBundleDef, 1>()); 4795 4796 // Skip intrinsics which cannot throw (as long as they don't lower into 4797 // regular function calls in the course of IR transformations). 4798 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) { 4799 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { 4800 auto IID = CalleeFn->getIntrinsicID(); 4801 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) 4802 return (SmallVector<llvm::OperandBundleDef, 1>()); 4803 } 4804 } 4805 4806 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4807 BundleList.emplace_back("funclet", CurrentFuncletPad); 4808 return BundleList; 4809 } 4810 4811 /// Emits a simple call (never an invoke) to the given runtime function. 4812 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4813 ArrayRef<llvm::Value *> args, 4814 const llvm::Twine &name) { 4815 llvm::CallInst *call = Builder.CreateCall( 4816 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4817 call->setCallingConv(getRuntimeCC()); 4818 4819 if (CGM.shouldEmitConvergenceTokens() && call->isConvergent()) 4820 return addControlledConvergenceToken(call); 4821 return call; 4822 } 4823 4824 /// Emits a call or invoke to the given noreturn runtime function. 4825 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4826 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4827 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4828 getBundlesForFunclet(callee.getCallee()); 4829 4830 if (getInvokeDest()) { 4831 llvm::InvokeInst *invoke = 4832 Builder.CreateInvoke(callee, 4833 getUnreachableBlock(), 4834 getInvokeDest(), 4835 args, 4836 BundleList); 4837 invoke->setDoesNotReturn(); 4838 invoke->setCallingConv(getRuntimeCC()); 4839 } else { 4840 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4841 call->setDoesNotReturn(); 4842 call->setCallingConv(getRuntimeCC()); 4843 Builder.CreateUnreachable(); 4844 } 4845 } 4846 4847 /// Emits a call or invoke instruction to the given nullary runtime function. 4848 llvm::CallBase * 4849 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4850 const Twine &name) { 4851 return EmitRuntimeCallOrInvoke(callee, std::nullopt, name); 4852 } 4853 4854 /// Emits a call or invoke instruction to the given runtime function. 4855 llvm::CallBase * 4856 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4857 ArrayRef<llvm::Value *> args, 4858 const Twine &name) { 4859 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4860 call->setCallingConv(getRuntimeCC()); 4861 return call; 4862 } 4863 4864 /// Emits a call or invoke instruction to the given function, depending 4865 /// on the current state of the EH stack. 4866 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4867 ArrayRef<llvm::Value *> Args, 4868 const Twine &Name) { 4869 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4870 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4871 getBundlesForFunclet(Callee.getCallee()); 4872 4873 llvm::CallBase *Inst; 4874 if (!InvokeDest) 4875 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4876 else { 4877 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4878 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4879 Name); 4880 EmitBlock(ContBB); 4881 } 4882 4883 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4884 // optimizer it can aggressively ignore unwind edges. 4885 if (CGM.getLangOpts().ObjCAutoRefCount) 4886 AddObjCARCExceptionMetadata(Inst); 4887 4888 return Inst; 4889 } 4890 4891 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4892 llvm::Value *New) { 4893 DeferredReplacements.push_back( 4894 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4895 } 4896 4897 namespace { 4898 4899 /// Specify given \p NewAlign as the alignment of return value attribute. If 4900 /// such attribute already exists, re-set it to the maximal one of two options. 4901 [[nodiscard]] llvm::AttributeList 4902 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4903 const llvm::AttributeList &Attrs, 4904 llvm::Align NewAlign) { 4905 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4906 if (CurAlign >= NewAlign) 4907 return Attrs; 4908 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4909 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4910 .addRetAttribute(Ctx, AlignAttr); 4911 } 4912 4913 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4914 protected: 4915 CodeGenFunction &CGF; 4916 4917 /// We do nothing if this is, or becomes, nullptr. 4918 const AlignedAttrTy *AA = nullptr; 4919 4920 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4921 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4922 4923 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4924 : CGF(CGF_) { 4925 if (!FuncDecl) 4926 return; 4927 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4928 } 4929 4930 public: 4931 /// If we can, materialize the alignment as an attribute on return value. 4932 [[nodiscard]] llvm::AttributeList 4933 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4934 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4935 return Attrs; 4936 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4937 if (!AlignmentCI) 4938 return Attrs; 4939 // We may legitimately have non-power-of-2 alignment here. 4940 // If so, this is UB land, emit it via `@llvm.assume` instead. 4941 if (!AlignmentCI->getValue().isPowerOf2()) 4942 return Attrs; 4943 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4944 CGF.getLLVMContext(), Attrs, 4945 llvm::Align( 4946 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4947 AA = nullptr; // We're done. Disallow doing anything else. 4948 return NewAttrs; 4949 } 4950 4951 /// Emit alignment assumption. 4952 /// This is a general fallback that we take if either there is an offset, 4953 /// or the alignment is variable or we are sanitizing for alignment. 4954 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4955 if (!AA) 4956 return; 4957 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4958 AA->getLocation(), Alignment, OffsetCI); 4959 AA = nullptr; // We're done. Disallow doing anything else. 4960 } 4961 }; 4962 4963 /// Helper data structure to emit `AssumeAlignedAttr`. 4964 class AssumeAlignedAttrEmitter final 4965 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4966 public: 4967 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4968 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4969 if (!AA) 4970 return; 4971 // It is guaranteed that the alignment/offset are constants. 4972 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4973 if (Expr *Offset = AA->getOffset()) { 4974 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4975 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4976 OffsetCI = nullptr; 4977 } 4978 } 4979 }; 4980 4981 /// Helper data structure to emit `AllocAlignAttr`. 4982 class AllocAlignAttrEmitter final 4983 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4984 public: 4985 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4986 const CallArgList &CallArgs) 4987 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4988 if (!AA) 4989 return; 4990 // Alignment may or may not be a constant, and that is okay. 4991 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4992 .getRValue(CGF) 4993 .getScalarVal(); 4994 } 4995 }; 4996 4997 } // namespace 4998 4999 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 5000 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 5001 return VT->getPrimitiveSizeInBits().getKnownMinValue(); 5002 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 5003 return getMaxVectorWidth(AT->getElementType()); 5004 5005 unsigned MaxVectorWidth = 0; 5006 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 5007 for (auto *I : ST->elements()) 5008 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 5009 return MaxVectorWidth; 5010 } 5011 5012 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 5013 const CGCallee &Callee, 5014 ReturnValueSlot ReturnValue, 5015 const CallArgList &CallArgs, 5016 llvm::CallBase **callOrInvoke, bool IsMustTail, 5017 SourceLocation Loc, 5018 bool IsVirtualFunctionPointerThunk) { 5019 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 5020 5021 assert(Callee.isOrdinary() || Callee.isVirtual()); 5022 5023 // Handle struct-return functions by passing a pointer to the 5024 // location that we would like to return into. 5025 QualType RetTy = CallInfo.getReturnType(); 5026 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 5027 5028 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 5029 5030 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 5031 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5032 // We can only guarantee that a function is called from the correct 5033 // context/function based on the appropriate target attributes, 5034 // so only check in the case where we have both always_inline and target 5035 // since otherwise we could be making a conditional call after a check for 5036 // the proper cpu features (and it won't cause code generation issues due to 5037 // function based code generation). 5038 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 5039 (TargetDecl->hasAttr<TargetAttr>() || 5040 (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>()))) 5041 checkTargetFeatures(Loc, FD); 5042 } 5043 5044 // Some architectures (such as x86-64) have the ABI changed based on 5045 // attribute-target/features. Give them a chance to diagnose. 5046 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 5047 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), 5048 dyn_cast_or_null<FunctionDecl>(TargetDecl), CallArgs, RetTy); 5049 5050 // 1. Set up the arguments. 5051 5052 // If we're using inalloca, insert the allocation after the stack save. 5053 // FIXME: Do this earlier rather than hacking it in here! 5054 RawAddress ArgMemory = RawAddress::invalid(); 5055 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 5056 const llvm::DataLayout &DL = CGM.getDataLayout(); 5057 llvm::Instruction *IP = CallArgs.getStackBase(); 5058 llvm::AllocaInst *AI; 5059 if (IP) { 5060 IP = IP->getNextNode(); 5061 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 5062 "argmem", IP); 5063 } else { 5064 AI = CreateTempAlloca(ArgStruct, "argmem"); 5065 } 5066 auto Align = CallInfo.getArgStructAlignment(); 5067 AI->setAlignment(Align.getAsAlign()); 5068 AI->setUsedWithInAlloca(true); 5069 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 5070 ArgMemory = RawAddress(AI, ArgStruct, Align); 5071 } 5072 5073 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 5074 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 5075 5076 // If the call returns a temporary with struct return, create a temporary 5077 // alloca to hold the result, unless one is given to us. 5078 Address SRetPtr = Address::invalid(); 5079 RawAddress SRetAlloca = RawAddress::invalid(); 5080 llvm::Value *UnusedReturnSizePtr = nullptr; 5081 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 5082 if (IsVirtualFunctionPointerThunk && RetAI.isIndirect()) { 5083 SRetPtr = makeNaturalAddressForPointer(CurFn->arg_begin() + 5084 IRFunctionArgs.getSRetArgNo(), 5085 RetTy, CharUnits::fromQuantity(1)); 5086 } else if (!ReturnValue.isNull()) { 5087 SRetPtr = ReturnValue.getAddress(); 5088 } else { 5089 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 5090 if (HaveInsertPoint() && ReturnValue.isUnused()) { 5091 llvm::TypeSize size = 5092 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 5093 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 5094 } 5095 } 5096 if (IRFunctionArgs.hasSRetArg()) { 5097 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = 5098 getAsNaturalPointerTo(SRetPtr, RetTy); 5099 } else if (RetAI.isInAlloca()) { 5100 Address Addr = 5101 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 5102 Builder.CreateStore(getAsNaturalPointerTo(SRetPtr, RetTy), Addr); 5103 } 5104 } 5105 5106 RawAddress swiftErrorTemp = RawAddress::invalid(); 5107 Address swiftErrorArg = Address::invalid(); 5108 5109 // When passing arguments using temporary allocas, we need to add the 5110 // appropriate lifetime markers. This vector keeps track of all the lifetime 5111 // markers that need to be ended right after the call. 5112 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 5113 5114 // Translate all of the arguments as necessary to match the IR lowering. 5115 assert(CallInfo.arg_size() == CallArgs.size() && 5116 "Mismatch between function signature & arguments."); 5117 unsigned ArgNo = 0; 5118 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 5119 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 5120 I != E; ++I, ++info_it, ++ArgNo) { 5121 const ABIArgInfo &ArgInfo = info_it->info; 5122 5123 // Insert a padding argument to ensure proper alignment. 5124 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 5125 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 5126 llvm::UndefValue::get(ArgInfo.getPaddingType()); 5127 5128 unsigned FirstIRArg, NumIRArgs; 5129 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 5130 5131 bool ArgHasMaybeUndefAttr = 5132 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo); 5133 5134 switch (ArgInfo.getKind()) { 5135 case ABIArgInfo::InAlloca: { 5136 assert(NumIRArgs == 0); 5137 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 5138 if (I->isAggregate()) { 5139 RawAddress Addr = I->hasLValue() 5140 ? I->getKnownLValue().getAddress() 5141 : I->getKnownRValue().getAggregateAddress(); 5142 llvm::Instruction *Placeholder = 5143 cast<llvm::Instruction>(Addr.getPointer()); 5144 5145 if (!ArgInfo.getInAllocaIndirect()) { 5146 // Replace the placeholder with the appropriate argument slot GEP. 5147 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 5148 Builder.SetInsertPoint(Placeholder); 5149 Addr = Builder.CreateStructGEP(ArgMemory, 5150 ArgInfo.getInAllocaFieldIndex()); 5151 Builder.restoreIP(IP); 5152 } else { 5153 // For indirect things such as overaligned structs, replace the 5154 // placeholder with a regular aggregate temporary alloca. Store the 5155 // address of this alloca into the struct. 5156 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 5157 Address ArgSlot = Builder.CreateStructGEP( 5158 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5159 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5160 } 5161 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 5162 } else if (ArgInfo.getInAllocaIndirect()) { 5163 // Make a temporary alloca and store the address of it into the argument 5164 // struct. 5165 RawAddress Addr = CreateMemTempWithoutCast( 5166 I->Ty, getContext().getTypeAlignInChars(I->Ty), 5167 "indirect-arg-temp"); 5168 I->copyInto(*this, Addr); 5169 Address ArgSlot = 5170 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5171 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5172 } else { 5173 // Store the RValue into the argument struct. 5174 Address Addr = 5175 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5176 Addr = Addr.withElementType(ConvertTypeForMem(I->Ty)); 5177 I->copyInto(*this, Addr); 5178 } 5179 break; 5180 } 5181 5182 case ABIArgInfo::Indirect: 5183 case ABIArgInfo::IndirectAliased: { 5184 assert(NumIRArgs == 1); 5185 if (I->isAggregate()) { 5186 // We want to avoid creating an unnecessary temporary+copy here; 5187 // however, we need one in three cases: 5188 // 1. If the argument is not byval, and we are required to copy the 5189 // source. (This case doesn't occur on any common architecture.) 5190 // 2. If the argument is byval, RV is not sufficiently aligned, and 5191 // we cannot force it to be sufficiently aligned. 5192 // 3. If the argument is byval, but RV is not located in default 5193 // or alloca address space. 5194 Address Addr = I->hasLValue() 5195 ? I->getKnownLValue().getAddress() 5196 : I->getKnownRValue().getAggregateAddress(); 5197 CharUnits Align = ArgInfo.getIndirectAlign(); 5198 const llvm::DataLayout *TD = &CGM.getDataLayout(); 5199 5200 assert((FirstIRArg >= IRFuncTy->getNumParams() || 5201 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 5202 TD->getAllocaAddrSpace()) && 5203 "indirect argument must be in alloca address space"); 5204 5205 bool NeedCopy = false; 5206 if (Addr.getAlignment() < Align && 5207 llvm::getOrEnforceKnownAlignment(Addr.emitRawPointer(*this), 5208 Align.getAsAlign(), 5209 *TD) < Align.getAsAlign()) { 5210 NeedCopy = true; 5211 } else if (I->hasLValue()) { 5212 auto LV = I->getKnownLValue(); 5213 auto AS = LV.getAddressSpace(); 5214 5215 bool isByValOrRef = 5216 ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal(); 5217 5218 if (!isByValOrRef || 5219 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 5220 NeedCopy = true; 5221 } 5222 if (!getLangOpts().OpenCL) { 5223 if ((isByValOrRef && 5224 (AS != LangAS::Default && 5225 AS != CGM.getASTAllocaAddressSpace()))) { 5226 NeedCopy = true; 5227 } 5228 } 5229 // For OpenCL even if RV is located in default or alloca address space 5230 // we don't want to perform address space cast for it. 5231 else if ((isByValOrRef && 5232 Addr.getType()->getAddressSpace() != IRFuncTy-> 5233 getParamType(FirstIRArg)->getPointerAddressSpace())) { 5234 NeedCopy = true; 5235 } 5236 } 5237 5238 if (!NeedCopy) { 5239 // Skip the extra memcpy call. 5240 llvm::Value *V = getAsNaturalPointerTo(Addr, I->Ty); 5241 auto *T = llvm::PointerType::get( 5242 CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 5243 5244 llvm::Value *Val = getTargetHooks().performAddrSpaceCast( 5245 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 5246 true); 5247 if (ArgHasMaybeUndefAttr) 5248 Val = Builder.CreateFreeze(Val); 5249 IRCallArgs[FirstIRArg] = Val; 5250 break; 5251 } 5252 } 5253 5254 // For non-aggregate args and aggregate args meeting conditions above 5255 // we need to create an aligned temporary, and copy to it. 5256 RawAddress AI = CreateMemTempWithoutCast( 5257 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 5258 llvm::Value *Val = getAsNaturalPointerTo(AI, I->Ty); 5259 if (ArgHasMaybeUndefAttr) 5260 Val = Builder.CreateFreeze(Val); 5261 IRCallArgs[FirstIRArg] = Val; 5262 5263 // Emit lifetime markers for the temporary alloca. 5264 llvm::TypeSize ByvalTempElementSize = 5265 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 5266 llvm::Value *LifetimeSize = 5267 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 5268 5269 // Add cleanup code to emit the end lifetime marker after the call. 5270 if (LifetimeSize) // In case we disabled lifetime markers. 5271 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 5272 5273 // Generate the copy. 5274 I->copyInto(*this, AI); 5275 break; 5276 } 5277 5278 case ABIArgInfo::Ignore: 5279 assert(NumIRArgs == 0); 5280 break; 5281 5282 case ABIArgInfo::Extend: 5283 case ABIArgInfo::Direct: { 5284 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 5285 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 5286 ArgInfo.getDirectOffset() == 0) { 5287 assert(NumIRArgs == 1); 5288 llvm::Value *V; 5289 if (!I->isAggregate()) 5290 V = I->getKnownRValue().getScalarVal(); 5291 else 5292 V = Builder.CreateLoad( 5293 I->hasLValue() ? I->getKnownLValue().getAddress() 5294 : I->getKnownRValue().getAggregateAddress()); 5295 5296 // Implement swifterror by copying into a new swifterror argument. 5297 // We'll write back in the normal path out of the call. 5298 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 5299 == ParameterABI::SwiftErrorResult) { 5300 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 5301 5302 QualType pointeeTy = I->Ty->getPointeeType(); 5303 swiftErrorArg = makeNaturalAddressForPointer( 5304 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 5305 5306 swiftErrorTemp = 5307 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 5308 V = swiftErrorTemp.getPointer(); 5309 cast<llvm::AllocaInst>(V)->setSwiftError(true); 5310 5311 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 5312 Builder.CreateStore(errorValue, swiftErrorTemp); 5313 } 5314 5315 // We might have to widen integers, but we should never truncate. 5316 if (ArgInfo.getCoerceToType() != V->getType() && 5317 V->getType()->isIntegerTy()) 5318 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 5319 5320 // If the argument doesn't match, perform a bitcast to coerce it. This 5321 // can happen due to trivial type mismatches. 5322 if (FirstIRArg < IRFuncTy->getNumParams() && 5323 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5324 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5325 5326 if (ArgHasMaybeUndefAttr) 5327 V = Builder.CreateFreeze(V); 5328 IRCallArgs[FirstIRArg] = V; 5329 break; 5330 } 5331 5332 llvm::StructType *STy = 5333 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5334 if (STy && ArgInfo.isDirect() && !ArgInfo.getCanBeFlattened()) { 5335 llvm::Type *SrcTy = ConvertTypeForMem(I->Ty); 5336 [[maybe_unused]] llvm::TypeSize SrcTypeSize = 5337 CGM.getDataLayout().getTypeAllocSize(SrcTy); 5338 [[maybe_unused]] llvm::TypeSize DstTypeSize = 5339 CGM.getDataLayout().getTypeAllocSize(STy); 5340 if (STy->containsHomogeneousScalableVectorTypes()) { 5341 assert(SrcTypeSize == DstTypeSize && 5342 "Only allow non-fractional movement of structure with " 5343 "homogeneous scalable vector type"); 5344 5345 IRCallArgs[FirstIRArg] = I->getKnownRValue().getScalarVal(); 5346 break; 5347 } 5348 } 5349 5350 // FIXME: Avoid the conversion through memory if possible. 5351 Address Src = Address::invalid(); 5352 if (!I->isAggregate()) { 5353 Src = CreateMemTemp(I->Ty, "coerce"); 5354 I->copyInto(*this, Src); 5355 } else { 5356 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 5357 : I->getKnownRValue().getAggregateAddress(); 5358 } 5359 5360 // If the value is offset in memory, apply the offset now. 5361 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5362 5363 // Fast-isel and the optimizer generally like scalar values better than 5364 // FCAs, so we flatten them if this is safe to do for this argument. 5365 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5366 llvm::Type *SrcTy = Src.getElementType(); 5367 llvm::TypeSize SrcTypeSize = 5368 CGM.getDataLayout().getTypeAllocSize(SrcTy); 5369 llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy); 5370 if (SrcTypeSize.isScalable()) { 5371 assert(STy->containsHomogeneousScalableVectorTypes() && 5372 "ABI only supports structure with homogeneous scalable vector " 5373 "type"); 5374 assert(SrcTypeSize == DstTypeSize && 5375 "Only allow non-fractional movement of structure with " 5376 "homogeneous scalable vector type"); 5377 assert(NumIRArgs == STy->getNumElements()); 5378 5379 llvm::Value *StoredStructValue = 5380 Builder.CreateLoad(Src, Src.getName() + ".tuple"); 5381 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5382 llvm::Value *Extract = Builder.CreateExtractValue( 5383 StoredStructValue, i, Src.getName() + ".extract" + Twine(i)); 5384 IRCallArgs[FirstIRArg + i] = Extract; 5385 } 5386 } else { 5387 uint64_t SrcSize = SrcTypeSize.getFixedValue(); 5388 uint64_t DstSize = DstTypeSize.getFixedValue(); 5389 5390 // If the source type is smaller than the destination type of the 5391 // coerce-to logic, copy the source value into a temp alloca the size 5392 // of the destination type to allow loading all of it. The bits past 5393 // the source value are left undef. 5394 if (SrcSize < DstSize) { 5395 Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(), 5396 Src.getName() + ".coerce"); 5397 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5398 Src = TempAlloca; 5399 } else { 5400 Src = Src.withElementType(STy); 5401 } 5402 5403 assert(NumIRArgs == STy->getNumElements()); 5404 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5405 Address EltPtr = Builder.CreateStructGEP(Src, i); 5406 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5407 if (ArgHasMaybeUndefAttr) 5408 LI = Builder.CreateFreeze(LI); 5409 IRCallArgs[FirstIRArg + i] = LI; 5410 } 5411 } 5412 } else { 5413 // In the simple case, just pass the coerced loaded value. 5414 assert(NumIRArgs == 1); 5415 llvm::Value *Load = 5416 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5417 5418 if (CallInfo.isCmseNSCall()) { 5419 // For certain parameter types, clear padding bits, as they may reveal 5420 // sensitive information. 5421 // Small struct/union types are passed as integer arrays. 5422 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5423 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5424 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5425 } 5426 5427 if (ArgHasMaybeUndefAttr) 5428 Load = Builder.CreateFreeze(Load); 5429 IRCallArgs[FirstIRArg] = Load; 5430 } 5431 5432 break; 5433 } 5434 5435 case ABIArgInfo::CoerceAndExpand: { 5436 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5437 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5438 5439 llvm::Value *tempSize = nullptr; 5440 Address addr = Address::invalid(); 5441 RawAddress AllocaAddr = RawAddress::invalid(); 5442 if (I->isAggregate()) { 5443 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 5444 : I->getKnownRValue().getAggregateAddress(); 5445 5446 } else { 5447 RValue RV = I->getKnownRValue(); 5448 assert(RV.isScalar()); // complex should always just be direct 5449 5450 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5451 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5452 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType); 5453 5454 // Materialize to a temporary. 5455 addr = CreateTempAlloca( 5456 RV.getScalarVal()->getType(), 5457 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)), 5458 "tmp", 5459 /*ArraySize=*/nullptr, &AllocaAddr); 5460 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5461 5462 Builder.CreateStore(RV.getScalarVal(), addr); 5463 } 5464 5465 addr = addr.withElementType(coercionType); 5466 5467 unsigned IRArgPos = FirstIRArg; 5468 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5469 llvm::Type *eltType = coercionType->getElementType(i); 5470 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5471 Address eltAddr = Builder.CreateStructGEP(addr, i); 5472 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5473 if (ArgHasMaybeUndefAttr) 5474 elt = Builder.CreateFreeze(elt); 5475 IRCallArgs[IRArgPos++] = elt; 5476 } 5477 assert(IRArgPos == FirstIRArg + NumIRArgs); 5478 5479 if (tempSize) { 5480 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5481 } 5482 5483 break; 5484 } 5485 5486 case ABIArgInfo::Expand: { 5487 unsigned IRArgPos = FirstIRArg; 5488 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5489 assert(IRArgPos == FirstIRArg + NumIRArgs); 5490 break; 5491 } 5492 } 5493 } 5494 5495 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5496 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5497 5498 // If we're using inalloca, set up that argument. 5499 if (ArgMemory.isValid()) { 5500 llvm::Value *Arg = ArgMemory.getPointer(); 5501 assert(IRFunctionArgs.hasInallocaArg()); 5502 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5503 } 5504 5505 // 2. Prepare the function pointer. 5506 5507 // If the callee is a bitcast of a non-variadic function to have a 5508 // variadic function pointer type, check to see if we can remove the 5509 // bitcast. This comes up with unprototyped functions. 5510 // 5511 // This makes the IR nicer, but more importantly it ensures that we 5512 // can inline the function at -O0 if it is marked always_inline. 5513 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5514 llvm::Value *Ptr) -> llvm::Function * { 5515 if (!CalleeFT->isVarArg()) 5516 return nullptr; 5517 5518 // Get underlying value if it's a bitcast 5519 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5520 if (CE->getOpcode() == llvm::Instruction::BitCast) 5521 Ptr = CE->getOperand(0); 5522 } 5523 5524 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5525 if (!OrigFn) 5526 return nullptr; 5527 5528 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5529 5530 // If the original type is variadic, or if any of the component types 5531 // disagree, we cannot remove the cast. 5532 if (OrigFT->isVarArg() || 5533 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5534 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5535 return nullptr; 5536 5537 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5538 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5539 return nullptr; 5540 5541 return OrigFn; 5542 }; 5543 5544 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5545 CalleePtr = OrigFn; 5546 IRFuncTy = OrigFn->getFunctionType(); 5547 } 5548 5549 // 3. Perform the actual call. 5550 5551 // Deactivate any cleanups that we're supposed to do immediately before 5552 // the call. 5553 if (!CallArgs.getCleanupsToDeactivate().empty()) 5554 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5555 5556 // Assert that the arguments we computed match up. The IR verifier 5557 // will catch this, but this is a common enough source of problems 5558 // during IRGen changes that it's way better for debugging to catch 5559 // it ourselves here. 5560 #ifndef NDEBUG 5561 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5562 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5563 // Inalloca argument can have different type. 5564 if (IRFunctionArgs.hasInallocaArg() && 5565 i == IRFunctionArgs.getInallocaArgNo()) 5566 continue; 5567 if (i < IRFuncTy->getNumParams()) 5568 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5569 } 5570 #endif 5571 5572 // Update the largest vector width if any arguments have vector types. 5573 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5574 LargestVectorWidth = std::max(LargestVectorWidth, 5575 getMaxVectorWidth(IRCallArgs[i]->getType())); 5576 5577 // Compute the calling convention and attributes. 5578 unsigned CallingConv; 5579 llvm::AttributeList Attrs; 5580 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5581 Callee.getAbstractInfo(), Attrs, CallingConv, 5582 /*AttrOnCallSite=*/true, 5583 /*IsThunk=*/false); 5584 5585 if (CallingConv == llvm::CallingConv::X86_VectorCall && 5586 getTarget().getTriple().isWindowsArm64EC()) { 5587 CGM.Error(Loc, "__vectorcall calling convention is not currently " 5588 "supported"); 5589 } 5590 5591 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5592 if (FD->hasAttr<StrictFPAttr>()) 5593 // All calls within a strictfp function are marked strictfp 5594 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5595 5596 // If -ffast-math is enabled and the function is guarded by an 5597 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the 5598 // library call instead of the intrinsic. 5599 if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath) 5600 CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(), 5601 Attrs); 5602 } 5603 // Add call-site nomerge attribute if exists. 5604 if (InNoMergeAttributedStmt) 5605 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5606 5607 // Add call-site noinline attribute if exists. 5608 if (InNoInlineAttributedStmt) 5609 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5610 5611 // Add call-site always_inline attribute if exists. 5612 if (InAlwaysInlineAttributedStmt) 5613 Attrs = 5614 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5615 5616 // Apply some call-site-specific attributes. 5617 // TODO: work this into building the attribute set. 5618 5619 // Apply always_inline to all calls within flatten functions. 5620 // FIXME: should this really take priority over __try, below? 5621 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5622 !InNoInlineAttributedStmt && 5623 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5624 Attrs = 5625 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5626 } 5627 5628 // Disable inlining inside SEH __try blocks. 5629 if (isSEHTryScope()) { 5630 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5631 } 5632 5633 // Decide whether to use a call or an invoke. 5634 bool CannotThrow; 5635 if (currentFunctionUsesSEHTry()) { 5636 // SEH cares about asynchronous exceptions, so everything can "throw." 5637 CannotThrow = false; 5638 } else if (isCleanupPadScope() && 5639 EHPersonality::get(*this).isMSVCXXPersonality()) { 5640 // The MSVC++ personality will implicitly terminate the program if an 5641 // exception is thrown during a cleanup outside of a try/catch. 5642 // We don't need to model anything in IR to get this behavior. 5643 CannotThrow = true; 5644 } else { 5645 // Otherwise, nounwind call sites will never throw. 5646 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5647 5648 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5649 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5650 CannotThrow = true; 5651 } 5652 5653 // If we made a temporary, be sure to clean up after ourselves. Note that we 5654 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5655 // pop this cleanup later on. Being eager about this is OK, since this 5656 // temporary is 'invisible' outside of the callee. 5657 if (UnusedReturnSizePtr) 5658 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5659 UnusedReturnSizePtr); 5660 5661 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5662 5663 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5664 getBundlesForFunclet(CalleePtr); 5665 5666 if (SanOpts.has(SanitizerKind::KCFI) && 5667 !isa_and_nonnull<FunctionDecl>(TargetDecl)) 5668 EmitKCFIOperandBundle(ConcreteCallee, BundleList); 5669 5670 // Add the pointer-authentication bundle. 5671 EmitPointerAuthOperandBundle(ConcreteCallee.getPointerAuthInfo(), BundleList); 5672 5673 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5674 if (FD->hasAttr<StrictFPAttr>()) 5675 // All calls within a strictfp function are marked strictfp 5676 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5677 5678 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5679 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5680 5681 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5682 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5683 5684 // Emit the actual call/invoke instruction. 5685 llvm::CallBase *CI; 5686 if (!InvokeDest) { 5687 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5688 } else { 5689 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5690 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5691 BundleList); 5692 EmitBlock(Cont); 5693 } 5694 if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() && 5695 CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) { 5696 SetSqrtFPAccuracy(CI); 5697 } 5698 if (callOrInvoke) 5699 *callOrInvoke = CI; 5700 5701 // If this is within a function that has the guard(nocf) attribute and is an 5702 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5703 // Control Flow Guard checks should not be added, even if the call is inlined. 5704 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5705 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5706 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5707 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5708 } 5709 } 5710 5711 // Apply the attributes and calling convention. 5712 CI->setAttributes(Attrs); 5713 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5714 5715 // Apply various metadata. 5716 5717 if (!CI->getType()->isVoidTy()) 5718 CI->setName("call"); 5719 5720 if (CGM.shouldEmitConvergenceTokens() && CI->isConvergent()) 5721 CI = addControlledConvergenceToken(CI); 5722 5723 // Update largest vector width from the return type. 5724 LargestVectorWidth = 5725 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5726 5727 // Insert instrumentation or attach profile metadata at indirect call sites. 5728 // For more details, see the comment before the definition of 5729 // IPVK_IndirectCallTarget in InstrProfData.inc. 5730 if (!CI->getCalledFunction()) 5731 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5732 CI, CalleePtr); 5733 5734 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5735 // optimizer it can aggressively ignore unwind edges. 5736 if (CGM.getLangOpts().ObjCAutoRefCount) 5737 AddObjCARCExceptionMetadata(CI); 5738 5739 // Set tail call kind if necessary. 5740 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5741 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5742 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5743 else if (IsMustTail) { 5744 if (getTarget().getTriple().isPPC()) { 5745 if (getTarget().getTriple().isOSAIX()) 5746 CGM.getDiags().Report(Loc, diag::err_aix_musttail_unsupported); 5747 else if (!getTarget().hasFeature("pcrelative-memops")) { 5748 if (getTarget().hasFeature("longcall")) 5749 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 0; 5750 else if (Call->isIndirectCall()) 5751 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 1; 5752 else if (isa_and_nonnull<FunctionDecl>(TargetDecl)) { 5753 if (!cast<FunctionDecl>(TargetDecl)->isDefined()) 5754 // The undefined callee may be a forward declaration. Without 5755 // knowning all symbols in the module, we won't know the symbol is 5756 // defined or not. Collect all these symbols for later diagnosing. 5757 CGM.addUndefinedGlobalForTailCall( 5758 {cast<FunctionDecl>(TargetDecl), Loc}); 5759 else { 5760 llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage( 5761 GlobalDecl(cast<FunctionDecl>(TargetDecl))); 5762 if (llvm::GlobalValue::isWeakForLinker(Linkage) || 5763 llvm::GlobalValue::isDiscardableIfUnused(Linkage)) 5764 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) 5765 << 2; 5766 } 5767 } 5768 } 5769 } 5770 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5771 } 5772 } 5773 5774 // Add metadata for calls to MSAllocator functions 5775 if (getDebugInfo() && TargetDecl && 5776 TargetDecl->hasAttr<MSAllocatorAttr>()) 5777 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5778 5779 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5780 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5781 llvm::ConstantInt *Line = 5782 llvm::ConstantInt::get(Int64Ty, Loc.getRawEncoding()); 5783 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5784 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5785 CI->setMetadata("srcloc", MDT); 5786 } 5787 5788 // 4. Finish the call. 5789 5790 // If the call doesn't return, finish the basic block and clear the 5791 // insertion point; this allows the rest of IRGen to discard 5792 // unreachable code. 5793 if (CI->doesNotReturn()) { 5794 if (UnusedReturnSizePtr) 5795 PopCleanupBlock(); 5796 5797 // Strip away the noreturn attribute to better diagnose unreachable UB. 5798 if (SanOpts.has(SanitizerKind::Unreachable)) { 5799 // Also remove from function since CallBase::hasFnAttr additionally checks 5800 // attributes of the called function. 5801 if (auto *F = CI->getCalledFunction()) 5802 F->removeFnAttr(llvm::Attribute::NoReturn); 5803 CI->removeFnAttr(llvm::Attribute::NoReturn); 5804 5805 // Avoid incompatibility with ASan which relies on the `noreturn` 5806 // attribute to insert handler calls. 5807 if (SanOpts.hasOneOf(SanitizerKind::Address | 5808 SanitizerKind::KernelAddress)) { 5809 SanitizerScope SanScope(this); 5810 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5811 Builder.SetInsertPoint(CI); 5812 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5813 llvm::FunctionCallee Fn = 5814 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5815 EmitNounwindRuntimeCall(Fn); 5816 } 5817 } 5818 5819 EmitUnreachable(Loc); 5820 Builder.ClearInsertionPoint(); 5821 5822 // FIXME: For now, emit a dummy basic block because expr emitters in 5823 // generally are not ready to handle emitting expressions at unreachable 5824 // points. 5825 EnsureInsertPoint(); 5826 5827 // Return a reasonable RValue. 5828 return GetUndefRValue(RetTy); 5829 } 5830 5831 // If this is a musttail call, return immediately. We do not branch to the 5832 // epilogue in this case. 5833 if (IsMustTail) { 5834 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5835 ++it) { 5836 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5837 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5838 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5839 } 5840 if (CI->getType()->isVoidTy()) 5841 Builder.CreateRetVoid(); 5842 else 5843 Builder.CreateRet(CI); 5844 Builder.ClearInsertionPoint(); 5845 EnsureInsertPoint(); 5846 return GetUndefRValue(RetTy); 5847 } 5848 5849 // Perform the swifterror writeback. 5850 if (swiftErrorTemp.isValid()) { 5851 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5852 Builder.CreateStore(errorResult, swiftErrorArg); 5853 } 5854 5855 // Emit any call-associated writebacks immediately. Arguably this 5856 // should happen after any return-value munging. 5857 if (CallArgs.hasWritebacks()) 5858 emitWritebacks(*this, CallArgs); 5859 5860 // The stack cleanup for inalloca arguments has to run out of the normal 5861 // lexical order, so deactivate it and run it manually here. 5862 CallArgs.freeArgumentMemory(*this); 5863 5864 // Extract the return value. 5865 RValue Ret; 5866 5867 // If the current function is a virtual function pointer thunk, avoid copying 5868 // the return value of the musttail call to a temporary. 5869 if (IsVirtualFunctionPointerThunk) { 5870 Ret = RValue::get(CI); 5871 } else { 5872 Ret = [&] { 5873 switch (RetAI.getKind()) { 5874 case ABIArgInfo::CoerceAndExpand: { 5875 auto coercionType = RetAI.getCoerceAndExpandType(); 5876 5877 Address addr = SRetPtr.withElementType(coercionType); 5878 5879 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5880 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5881 5882 unsigned unpaddedIndex = 0; 5883 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5884 llvm::Type *eltType = coercionType->getElementType(i); 5885 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 5886 continue; 5887 Address eltAddr = Builder.CreateStructGEP(addr, i); 5888 llvm::Value *elt = CI; 5889 if (requiresExtract) 5890 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5891 else 5892 assert(unpaddedIndex == 0); 5893 Builder.CreateStore(elt, eltAddr); 5894 } 5895 [[fallthrough]]; 5896 } 5897 5898 case ABIArgInfo::InAlloca: 5899 case ABIArgInfo::Indirect: { 5900 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5901 if (UnusedReturnSizePtr) 5902 PopCleanupBlock(); 5903 return ret; 5904 } 5905 5906 case ABIArgInfo::Ignore: 5907 // If we are ignoring an argument that had a result, make sure to 5908 // construct the appropriate return value for our caller. 5909 return GetUndefRValue(RetTy); 5910 5911 case ABIArgInfo::Extend: 5912 case ABIArgInfo::Direct: { 5913 llvm::Type *RetIRTy = ConvertType(RetTy); 5914 if (RetAI.getCoerceToType() == RetIRTy && 5915 RetAI.getDirectOffset() == 0) { 5916 switch (getEvaluationKind(RetTy)) { 5917 case TEK_Complex: { 5918 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5919 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5920 return RValue::getComplex(std::make_pair(Real, Imag)); 5921 } 5922 case TEK_Aggregate: 5923 break; 5924 case TEK_Scalar: { 5925 // If the argument doesn't match, perform a bitcast to coerce it. 5926 // This can happen due to trivial type mismatches. 5927 llvm::Value *V = CI; 5928 if (V->getType() != RetIRTy) 5929 V = Builder.CreateBitCast(V, RetIRTy); 5930 return RValue::get(V); 5931 } 5932 } 5933 } 5934 5935 // If coercing a fixed vector from a scalable vector for ABI 5936 // compatibility, and the types match, use the llvm.vector.extract 5937 // intrinsic to perform the conversion. 5938 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(RetIRTy)) { 5939 llvm::Value *V = CI; 5940 if (auto *ScalableSrcTy = 5941 dyn_cast<llvm::ScalableVectorType>(V->getType())) { 5942 if (FixedDstTy->getElementType() == 5943 ScalableSrcTy->getElementType()) { 5944 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 5945 V = Builder.CreateExtractVector(FixedDstTy, V, Zero, 5946 "cast.fixed"); 5947 return RValue::get(V); 5948 } 5949 } 5950 } 5951 5952 Address DestPtr = ReturnValue.getValue(); 5953 bool DestIsVolatile = ReturnValue.isVolatile(); 5954 uint64_t DestSize = 5955 getContext().getTypeInfoDataSizeInChars(RetTy).Width.getQuantity(); 5956 5957 if (!DestPtr.isValid()) { 5958 DestPtr = CreateMemTemp(RetTy, "coerce"); 5959 DestIsVolatile = false; 5960 DestSize = getContext().getTypeSizeInChars(RetTy).getQuantity(); 5961 } 5962 5963 // An empty record can overlap other data (if declared with 5964 // no_unique_address); omit the store for such types - as there is no 5965 // actual data to store. 5966 if (!isEmptyRecord(getContext(), RetTy, true)) { 5967 // If the value is offset in memory, apply the offset now. 5968 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5969 CreateCoercedStore( 5970 CI, StorePtr, 5971 llvm::TypeSize::getFixed(DestSize - RetAI.getDirectOffset()), 5972 DestIsVolatile); 5973 } 5974 5975 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5976 } 5977 5978 case ABIArgInfo::Expand: 5979 case ABIArgInfo::IndirectAliased: 5980 llvm_unreachable("Invalid ABI kind for return argument"); 5981 } 5982 5983 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5984 }(); 5985 } 5986 5987 // Emit the assume_aligned check on the return value. 5988 if (Ret.isScalar() && TargetDecl) { 5989 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5990 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5991 } 5992 5993 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5994 // we can't use the full cleanup mechanism. 5995 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5996 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5997 5998 if (!ReturnValue.isExternallyDestructed() && 5999 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 6000 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 6001 RetTy); 6002 6003 return Ret; 6004 } 6005 6006 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 6007 if (isVirtual()) { 6008 const CallExpr *CE = getVirtualCallExpr(); 6009 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 6010 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 6011 CE ? CE->getBeginLoc() : SourceLocation()); 6012 } 6013 6014 return *this; 6015 } 6016 6017 /* VarArg handling */ 6018 6019 RValue CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 6020 AggValueSlot Slot) { 6021 VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(VE->getSubExpr()) 6022 : EmitVAListRef(VE->getSubExpr()); 6023 QualType Ty = VE->getType(); 6024 if (VE->isMicrosoftABI()) 6025 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty, Slot); 6026 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty, Slot); 6027 } 6028