xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CGCall.cpp (revision c80e69b00d976a5a3b3e84527f270fa7e72a8205)
1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "ABIInfoImpl.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/AttributeMask.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <optional>
45 using namespace clang;
46 using namespace CodeGen;
47 
48 /***/
49 
50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
51   switch (CC) {
52   default: return llvm::CallingConv::C;
53   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
54   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
55   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
56   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
57   case CC_Win64: return llvm::CallingConv::Win64;
58   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
59   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
60   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
61   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
62   // TODO: Add support for __pascal to LLVM.
63   case CC_X86Pascal: return llvm::CallingConv::C;
64   // TODO: Add support for __vectorcall to LLVM.
65   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
66   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
67   case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
68   case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
69   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
70   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
71   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
72   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
73   case CC_Swift: return llvm::CallingConv::Swift;
74   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
75   case CC_M68kRTD: return llvm::CallingConv::M68k_RTD;
76   case CC_PreserveNone: return llvm::CallingConv::PreserveNone;
77     // clang-format off
78   case CC_RISCVVectorCall: return llvm::CallingConv::RISCV_VectorCall;
79     // clang-format on
80   }
81 }
82 
83 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
84 /// qualification. Either or both of RD and MD may be null. A null RD indicates
85 /// that there is no meaningful 'this' type, and a null MD can occur when
86 /// calling a method pointer.
87 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
88                                          const CXXMethodDecl *MD) {
89   QualType RecTy;
90   if (RD)
91     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
92   else
93     RecTy = Context.VoidTy;
94 
95   if (MD)
96     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
97   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
98 }
99 
100 /// Returns the canonical formal type of the given C++ method.
101 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
102   return MD->getType()->getCanonicalTypeUnqualified()
103            .getAs<FunctionProtoType>();
104 }
105 
106 /// Returns the "extra-canonicalized" return type, which discards
107 /// qualifiers on the return type.  Codegen doesn't care about them,
108 /// and it makes ABI code a little easier to be able to assume that
109 /// all parameter and return types are top-level unqualified.
110 static CanQualType GetReturnType(QualType RetTy) {
111   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
112 }
113 
114 /// Arrange the argument and result information for a value of the given
115 /// unprototyped freestanding function type.
116 const CGFunctionInfo &
117 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
118   // When translating an unprototyped function type, always use a
119   // variadic type.
120   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
121                                  FnInfoOpts::None, std::nullopt,
122                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
123 }
124 
125 static void addExtParameterInfosForCall(
126          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
127                                         const FunctionProtoType *proto,
128                                         unsigned prefixArgs,
129                                         unsigned totalArgs) {
130   assert(proto->hasExtParameterInfos());
131   assert(paramInfos.size() <= prefixArgs);
132   assert(proto->getNumParams() + prefixArgs <= totalArgs);
133 
134   paramInfos.reserve(totalArgs);
135 
136   // Add default infos for any prefix args that don't already have infos.
137   paramInfos.resize(prefixArgs);
138 
139   // Add infos for the prototype.
140   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
141     paramInfos.push_back(ParamInfo);
142     // pass_object_size params have no parameter info.
143     if (ParamInfo.hasPassObjectSize())
144       paramInfos.emplace_back();
145   }
146 
147   assert(paramInfos.size() <= totalArgs &&
148          "Did we forget to insert pass_object_size args?");
149   // Add default infos for the variadic and/or suffix arguments.
150   paramInfos.resize(totalArgs);
151 }
152 
153 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
154 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
155 static void appendParameterTypes(const CodeGenTypes &CGT,
156                                  SmallVectorImpl<CanQualType> &prefix,
157               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
158                                  CanQual<FunctionProtoType> FPT) {
159   // Fast path: don't touch param info if we don't need to.
160   if (!FPT->hasExtParameterInfos()) {
161     assert(paramInfos.empty() &&
162            "We have paramInfos, but the prototype doesn't?");
163     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
164     return;
165   }
166 
167   unsigned PrefixSize = prefix.size();
168   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
169   // parameters; the only thing that can change this is the presence of
170   // pass_object_size. So, we preallocate for the common case.
171   prefix.reserve(prefix.size() + FPT->getNumParams());
172 
173   auto ExtInfos = FPT->getExtParameterInfos();
174   assert(ExtInfos.size() == FPT->getNumParams());
175   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
176     prefix.push_back(FPT->getParamType(I));
177     if (ExtInfos[I].hasPassObjectSize())
178       prefix.push_back(CGT.getContext().getSizeType());
179   }
180 
181   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
182                               prefix.size());
183 }
184 
185 /// Arrange the LLVM function layout for a value of the given function
186 /// type, on top of any implicit parameters already stored.
187 static const CGFunctionInfo &
188 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
189                         SmallVectorImpl<CanQualType> &prefix,
190                         CanQual<FunctionProtoType> FTP) {
191   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
192   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
193   // FIXME: Kill copy.
194   appendParameterTypes(CGT, prefix, paramInfos, FTP);
195   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
196 
197   FnInfoOpts opts =
198       instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None;
199   return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix,
200                                      FTP->getExtInfo(), paramInfos, Required);
201 }
202 
203 /// Arrange the argument and result information for a value of the
204 /// given freestanding function type.
205 const CGFunctionInfo &
206 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
207   SmallVector<CanQualType, 16> argTypes;
208   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
209                                    FTP);
210 }
211 
212 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
213                                                bool IsWindows) {
214   // Set the appropriate calling convention for the Function.
215   if (D->hasAttr<StdCallAttr>())
216     return CC_X86StdCall;
217 
218   if (D->hasAttr<FastCallAttr>())
219     return CC_X86FastCall;
220 
221   if (D->hasAttr<RegCallAttr>())
222     return CC_X86RegCall;
223 
224   if (D->hasAttr<ThisCallAttr>())
225     return CC_X86ThisCall;
226 
227   if (D->hasAttr<VectorCallAttr>())
228     return CC_X86VectorCall;
229 
230   if (D->hasAttr<PascalAttr>())
231     return CC_X86Pascal;
232 
233   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
234     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
235 
236   if (D->hasAttr<AArch64VectorPcsAttr>())
237     return CC_AArch64VectorCall;
238 
239   if (D->hasAttr<AArch64SVEPcsAttr>())
240     return CC_AArch64SVEPCS;
241 
242   if (D->hasAttr<AMDGPUKernelCallAttr>())
243     return CC_AMDGPUKernelCall;
244 
245   if (D->hasAttr<IntelOclBiccAttr>())
246     return CC_IntelOclBicc;
247 
248   if (D->hasAttr<MSABIAttr>())
249     return IsWindows ? CC_C : CC_Win64;
250 
251   if (D->hasAttr<SysVABIAttr>())
252     return IsWindows ? CC_X86_64SysV : CC_C;
253 
254   if (D->hasAttr<PreserveMostAttr>())
255     return CC_PreserveMost;
256 
257   if (D->hasAttr<PreserveAllAttr>())
258     return CC_PreserveAll;
259 
260   if (D->hasAttr<M68kRTDAttr>())
261     return CC_M68kRTD;
262 
263   if (D->hasAttr<PreserveNoneAttr>())
264     return CC_PreserveNone;
265 
266   if (D->hasAttr<RISCVVectorCCAttr>())
267     return CC_RISCVVectorCall;
268 
269   return CC_C;
270 }
271 
272 /// Arrange the argument and result information for a call to an
273 /// unknown C++ non-static member function of the given abstract type.
274 /// (A null RD means we don't have any meaningful "this" argument type,
275 ///  so fall back to a generic pointer type).
276 /// The member function must be an ordinary function, i.e. not a
277 /// constructor or destructor.
278 const CGFunctionInfo &
279 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
280                                    const FunctionProtoType *FTP,
281                                    const CXXMethodDecl *MD) {
282   SmallVector<CanQualType, 16> argTypes;
283 
284   // Add the 'this' pointer.
285   argTypes.push_back(DeriveThisType(RD, MD));
286 
287   return ::arrangeLLVMFunctionInfo(
288       *this, /*instanceMethod=*/true, argTypes,
289       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
290 }
291 
292 /// Set calling convention for CUDA/HIP kernel.
293 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
294                                            const FunctionDecl *FD) {
295   if (FD->hasAttr<CUDAGlobalAttr>()) {
296     const FunctionType *FT = FTy->getAs<FunctionType>();
297     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
298     FTy = FT->getCanonicalTypeUnqualified();
299   }
300 }
301 
302 /// Arrange the argument and result information for a declaration or
303 /// definition of the given C++ non-static member function.  The
304 /// member function must be an ordinary function, i.e. not a
305 /// constructor or destructor.
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
308   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
309   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
310 
311   CanQualType FT = GetFormalType(MD).getAs<Type>();
312   setCUDAKernelCallingConvention(FT, CGM, MD);
313   auto prototype = FT.getAs<FunctionProtoType>();
314 
315   if (MD->isImplicitObjectMemberFunction()) {
316     // The abstract case is perfectly fine.
317     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
318     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
319   }
320 
321   return arrangeFreeFunctionType(prototype);
322 }
323 
324 bool CodeGenTypes::inheritingCtorHasParams(
325     const InheritedConstructor &Inherited, CXXCtorType Type) {
326   // Parameters are unnecessary if we're constructing a base class subobject
327   // and the inherited constructor lives in a virtual base.
328   return Type == Ctor_Complete ||
329          !Inherited.getShadowDecl()->constructsVirtualBase() ||
330          !Target.getCXXABI().hasConstructorVariants();
331 }
332 
333 const CGFunctionInfo &
334 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
335   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
336 
337   SmallVector<CanQualType, 16> argTypes;
338   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
339 
340   const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD);
341   argTypes.push_back(DeriveThisType(ThisType, MD));
342 
343   bool PassParams = true;
344 
345   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
346     // A base class inheriting constructor doesn't get forwarded arguments
347     // needed to construct a virtual base (or base class thereof).
348     if (auto Inherited = CD->getInheritedConstructor())
349       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
350   }
351 
352   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
353 
354   // Add the formal parameters.
355   if (PassParams)
356     appendParameterTypes(*this, argTypes, paramInfos, FTP);
357 
358   CGCXXABI::AddedStructorArgCounts AddedArgs =
359       TheCXXABI.buildStructorSignature(GD, argTypes);
360   if (!paramInfos.empty()) {
361     // Note: prefix implies after the first param.
362     if (AddedArgs.Prefix)
363       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
364                         FunctionProtoType::ExtParameterInfo{});
365     if (AddedArgs.Suffix)
366       paramInfos.append(AddedArgs.Suffix,
367                         FunctionProtoType::ExtParameterInfo{});
368   }
369 
370   RequiredArgs required =
371       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
372                                       : RequiredArgs::All);
373 
374   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
375   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
376                                ? argTypes.front()
377                                : TheCXXABI.hasMostDerivedReturn(GD)
378                                      ? CGM.getContext().VoidPtrTy
379                                      : Context.VoidTy;
380   return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod,
381                                  argTypes, extInfo, paramInfos, required);
382 }
383 
384 static SmallVector<CanQualType, 16>
385 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
386   SmallVector<CanQualType, 16> argTypes;
387   for (auto &arg : args)
388     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
389   return argTypes;
390 }
391 
392 static SmallVector<CanQualType, 16>
393 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
394   SmallVector<CanQualType, 16> argTypes;
395   for (auto &arg : args)
396     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
397   return argTypes;
398 }
399 
400 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
401 getExtParameterInfosForCall(const FunctionProtoType *proto,
402                             unsigned prefixArgs, unsigned totalArgs) {
403   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
404   if (proto->hasExtParameterInfos()) {
405     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
406   }
407   return result;
408 }
409 
410 /// Arrange a call to a C++ method, passing the given arguments.
411 ///
412 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
413 /// parameter.
414 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
415 /// args.
416 /// PassProtoArgs indicates whether `args` has args for the parameters in the
417 /// given CXXConstructorDecl.
418 const CGFunctionInfo &
419 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
420                                         const CXXConstructorDecl *D,
421                                         CXXCtorType CtorKind,
422                                         unsigned ExtraPrefixArgs,
423                                         unsigned ExtraSuffixArgs,
424                                         bool PassProtoArgs) {
425   // FIXME: Kill copy.
426   SmallVector<CanQualType, 16> ArgTypes;
427   for (const auto &Arg : args)
428     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
429 
430   // +1 for implicit this, which should always be args[0].
431   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
432 
433   CanQual<FunctionProtoType> FPT = GetFormalType(D);
434   RequiredArgs Required = PassProtoArgs
435                               ? RequiredArgs::forPrototypePlus(
436                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
437                               : RequiredArgs::All;
438 
439   GlobalDecl GD(D, CtorKind);
440   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
441                                ? ArgTypes.front()
442                                : TheCXXABI.hasMostDerivedReturn(GD)
443                                      ? CGM.getContext().VoidPtrTy
444                                      : Context.VoidTy;
445 
446   FunctionType::ExtInfo Info = FPT->getExtInfo();
447   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
448   // If the prototype args are elided, we should only have ABI-specific args,
449   // which never have param info.
450   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
451     // ABI-specific suffix arguments are treated the same as variadic arguments.
452     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
453                                 ArgTypes.size());
454   }
455 
456   return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod,
457                                  ArgTypes, Info, ParamInfos, Required);
458 }
459 
460 /// Arrange the argument and result information for the declaration or
461 /// definition of the given function.
462 const CGFunctionInfo &
463 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
464   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
465     if (MD->isImplicitObjectMemberFunction())
466       return arrangeCXXMethodDeclaration(MD);
467 
468   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
469 
470   assert(isa<FunctionType>(FTy));
471   setCUDAKernelCallingConvention(FTy, CGM, FD);
472 
473   // When declaring a function without a prototype, always use a
474   // non-variadic type.
475   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
476     return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None,
477                                    std::nullopt, noProto->getExtInfo(), {},
478                                    RequiredArgs::All);
479   }
480 
481   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
482 }
483 
484 /// Arrange the argument and result information for the declaration or
485 /// definition of an Objective-C method.
486 const CGFunctionInfo &
487 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
488   // It happens that this is the same as a call with no optional
489   // arguments, except also using the formal 'self' type.
490   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
491 }
492 
493 /// Arrange the argument and result information for the function type
494 /// through which to perform a send to the given Objective-C method,
495 /// using the given receiver type.  The receiver type is not always
496 /// the 'self' type of the method or even an Objective-C pointer type.
497 /// This is *not* the right method for actually performing such a
498 /// message send, due to the possibility of optional arguments.
499 const CGFunctionInfo &
500 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
501                                               QualType receiverType) {
502   SmallVector<CanQualType, 16> argTys;
503   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(
504       MD->isDirectMethod() ? 1 : 2);
505   argTys.push_back(Context.getCanonicalParamType(receiverType));
506   if (!MD->isDirectMethod())
507     argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
508   // FIXME: Kill copy?
509   for (const auto *I : MD->parameters()) {
510     argTys.push_back(Context.getCanonicalParamType(I->getType()));
511     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
512         I->hasAttr<NoEscapeAttr>());
513     extParamInfos.push_back(extParamInfo);
514   }
515 
516   FunctionType::ExtInfo einfo;
517   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
518   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
519 
520   if (getContext().getLangOpts().ObjCAutoRefCount &&
521       MD->hasAttr<NSReturnsRetainedAttr>())
522     einfo = einfo.withProducesResult(true);
523 
524   RequiredArgs required =
525     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
526 
527   return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()),
528                                  FnInfoOpts::None, argTys, einfo, extParamInfos,
529                                  required);
530 }
531 
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
534                                                  const CallArgList &args) {
535   auto argTypes = getArgTypesForCall(Context, args);
536   FunctionType::ExtInfo einfo;
537 
538   return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None,
539                                  argTypes, einfo, {}, RequiredArgs::All);
540 }
541 
542 const CGFunctionInfo &
543 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
544   // FIXME: Do we need to handle ObjCMethodDecl?
545   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
546 
547   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
548       isa<CXXDestructorDecl>(GD.getDecl()))
549     return arrangeCXXStructorDeclaration(GD);
550 
551   return arrangeFunctionDeclaration(FD);
552 }
553 
554 /// Arrange a thunk that takes 'this' as the first parameter followed by
555 /// varargs.  Return a void pointer, regardless of the actual return type.
556 /// The body of the thunk will end in a musttail call to a function of the
557 /// correct type, and the caller will bitcast the function to the correct
558 /// prototype.
559 const CGFunctionInfo &
560 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
561   assert(MD->isVirtual() && "only methods have thunks");
562   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
563   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
564   return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys,
565                                  FTP->getExtInfo(), {}, RequiredArgs(1));
566 }
567 
568 const CGFunctionInfo &
569 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
570                                    CXXCtorType CT) {
571   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
572 
573   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
574   SmallVector<CanQualType, 2> ArgTys;
575   const CXXRecordDecl *RD = CD->getParent();
576   ArgTys.push_back(DeriveThisType(RD, CD));
577   if (CT == Ctor_CopyingClosure)
578     ArgTys.push_back(*FTP->param_type_begin());
579   if (RD->getNumVBases() > 0)
580     ArgTys.push_back(Context.IntTy);
581   CallingConv CC = Context.getDefaultCallingConvention(
582       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
583   return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod,
584                                  ArgTys, FunctionType::ExtInfo(CC), {},
585                                  RequiredArgs::All);
586 }
587 
588 /// Arrange a call as unto a free function, except possibly with an
589 /// additional number of formal parameters considered required.
590 static const CGFunctionInfo &
591 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
592                             CodeGenModule &CGM,
593                             const CallArgList &args,
594                             const FunctionType *fnType,
595                             unsigned numExtraRequiredArgs,
596                             bool chainCall) {
597   assert(args.size() >= numExtraRequiredArgs);
598 
599   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
600 
601   // In most cases, there are no optional arguments.
602   RequiredArgs required = RequiredArgs::All;
603 
604   // If we have a variadic prototype, the required arguments are the
605   // extra prefix plus the arguments in the prototype.
606   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
607     if (proto->isVariadic())
608       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
609 
610     if (proto->hasExtParameterInfos())
611       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
612                                   args.size());
613 
614   // If we don't have a prototype at all, but we're supposed to
615   // explicitly use the variadic convention for unprototyped calls,
616   // treat all of the arguments as required but preserve the nominal
617   // possibility of variadics.
618   } else if (CGM.getTargetCodeGenInfo()
619                 .isNoProtoCallVariadic(args,
620                                        cast<FunctionNoProtoType>(fnType))) {
621     required = RequiredArgs(args.size());
622   }
623 
624   // FIXME: Kill copy.
625   SmallVector<CanQualType, 16> argTypes;
626   for (const auto &arg : args)
627     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
628   FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None;
629   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
630                                      opts, argTypes, fnType->getExtInfo(),
631                                      paramInfos, required);
632 }
633 
634 /// Figure out the rules for calling a function with the given formal
635 /// type using the given arguments.  The arguments are necessary
636 /// because the function might be unprototyped, in which case it's
637 /// target-dependent in crazy ways.
638 const CGFunctionInfo &
639 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
640                                       const FunctionType *fnType,
641                                       bool chainCall) {
642   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
643                                      chainCall ? 1 : 0, chainCall);
644 }
645 
646 /// A block function is essentially a free function with an
647 /// extra implicit argument.
648 const CGFunctionInfo &
649 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
650                                        const FunctionType *fnType) {
651   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
652                                      /*chainCall=*/false);
653 }
654 
655 const CGFunctionInfo &
656 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
657                                               const FunctionArgList &params) {
658   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
659   auto argTypes = getArgTypesForDeclaration(Context, params);
660 
661   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
662                                  FnInfoOpts::None, argTypes,
663                                  proto->getExtInfo(), paramInfos,
664                                  RequiredArgs::forPrototypePlus(proto, 1));
665 }
666 
667 const CGFunctionInfo &
668 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
669                                          const CallArgList &args) {
670   // FIXME: Kill copy.
671   SmallVector<CanQualType, 16> argTypes;
672   for (const auto &Arg : args)
673     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
674   return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
675                                  argTypes, FunctionType::ExtInfo(),
676                                  /*paramInfos=*/{}, RequiredArgs::All);
677 }
678 
679 const CGFunctionInfo &
680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
681                                                 const FunctionArgList &args) {
682   auto argTypes = getArgTypesForDeclaration(Context, args);
683 
684   return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
685                                  argTypes, FunctionType::ExtInfo(), {},
686                                  RequiredArgs::All);
687 }
688 
689 const CGFunctionInfo &
690 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
691                                               ArrayRef<CanQualType> argTypes) {
692   return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes,
693                                  FunctionType::ExtInfo(), {},
694                                  RequiredArgs::All);
695 }
696 
697 /// Arrange a call to a C++ method, passing the given arguments.
698 ///
699 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
700 /// does not count `this`.
701 const CGFunctionInfo &
702 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
703                                    const FunctionProtoType *proto,
704                                    RequiredArgs required,
705                                    unsigned numPrefixArgs) {
706   assert(numPrefixArgs + 1 <= args.size() &&
707          "Emitting a call with less args than the required prefix?");
708   // Add one to account for `this`. It's a bit awkward here, but we don't count
709   // `this` in similar places elsewhere.
710   auto paramInfos =
711     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
712 
713   // FIXME: Kill copy.
714   auto argTypes = getArgTypesForCall(Context, args);
715 
716   FunctionType::ExtInfo info = proto->getExtInfo();
717   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
718                                  FnInfoOpts::IsInstanceMethod, argTypes, info,
719                                  paramInfos, required);
720 }
721 
722 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
723   return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None,
724                                  std::nullopt, FunctionType::ExtInfo(), {},
725                                  RequiredArgs::All);
726 }
727 
728 const CGFunctionInfo &
729 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
730                           const CallArgList &args) {
731   assert(signature.arg_size() <= args.size());
732   if (signature.arg_size() == args.size())
733     return signature;
734 
735   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
736   auto sigParamInfos = signature.getExtParameterInfos();
737   if (!sigParamInfos.empty()) {
738     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
739     paramInfos.resize(args.size());
740   }
741 
742   auto argTypes = getArgTypesForCall(Context, args);
743 
744   assert(signature.getRequiredArgs().allowsOptionalArgs());
745   FnInfoOpts opts = FnInfoOpts::None;
746   if (signature.isInstanceMethod())
747     opts |= FnInfoOpts::IsInstanceMethod;
748   if (signature.isChainCall())
749     opts |= FnInfoOpts::IsChainCall;
750   if (signature.isDelegateCall())
751     opts |= FnInfoOpts::IsDelegateCall;
752   return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes,
753                                  signature.getExtInfo(), paramInfos,
754                                  signature.getRequiredArgs());
755 }
756 
757 namespace clang {
758 namespace CodeGen {
759 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
760 }
761 }
762 
763 /// Arrange the argument and result information for an abstract value
764 /// of a given function type.  This is the method which all of the
765 /// above functions ultimately defer to.
766 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo(
767     CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes,
768     FunctionType::ExtInfo info,
769     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
770     RequiredArgs required) {
771   assert(llvm::all_of(argTypes,
772                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
773 
774   // Lookup or create unique function info.
775   llvm::FoldingSetNodeID ID;
776   bool isInstanceMethod =
777       (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod;
778   bool isChainCall =
779       (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall;
780   bool isDelegateCall =
781       (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall;
782   CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall,
783                           info, paramInfos, required, resultType, argTypes);
784 
785   void *insertPos = nullptr;
786   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
787   if (FI)
788     return *FI;
789 
790   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
791 
792   // Construct the function info.  We co-allocate the ArgInfos.
793   FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall,
794                               info, paramInfos, resultType, argTypes, required);
795   FunctionInfos.InsertNode(FI, insertPos);
796 
797   bool inserted = FunctionsBeingProcessed.insert(FI).second;
798   (void)inserted;
799   assert(inserted && "Recursively being processed?");
800 
801   // Compute ABI information.
802   if (CC == llvm::CallingConv::SPIR_KERNEL) {
803     // Force target independent argument handling for the host visible
804     // kernel functions.
805     computeSPIRKernelABIInfo(CGM, *FI);
806   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
807     swiftcall::computeABIInfo(CGM, *FI);
808   } else {
809     getABIInfo().computeInfo(*FI);
810   }
811 
812   // Loop over all of the computed argument and return value info.  If any of
813   // them are direct or extend without a specified coerce type, specify the
814   // default now.
815   ABIArgInfo &retInfo = FI->getReturnInfo();
816   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
817     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
818 
819   for (auto &I : FI->arguments())
820     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
821       I.info.setCoerceToType(ConvertType(I.type));
822 
823   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
824   assert(erased && "Not in set?");
825 
826   return *FI;
827 }
828 
829 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod,
830                                        bool chainCall, bool delegateCall,
831                                        const FunctionType::ExtInfo &info,
832                                        ArrayRef<ExtParameterInfo> paramInfos,
833                                        CanQualType resultType,
834                                        ArrayRef<CanQualType> argTypes,
835                                        RequiredArgs required) {
836   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
837   assert(!required.allowsOptionalArgs() ||
838          required.getNumRequiredArgs() <= argTypes.size());
839 
840   void *buffer =
841     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
842                                   argTypes.size() + 1, paramInfos.size()));
843 
844   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
845   FI->CallingConvention = llvmCC;
846   FI->EffectiveCallingConvention = llvmCC;
847   FI->ASTCallingConvention = info.getCC();
848   FI->InstanceMethod = instanceMethod;
849   FI->ChainCall = chainCall;
850   FI->DelegateCall = delegateCall;
851   FI->CmseNSCall = info.getCmseNSCall();
852   FI->NoReturn = info.getNoReturn();
853   FI->ReturnsRetained = info.getProducesResult();
854   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
855   FI->NoCfCheck = info.getNoCfCheck();
856   FI->Required = required;
857   FI->HasRegParm = info.getHasRegParm();
858   FI->RegParm = info.getRegParm();
859   FI->ArgStruct = nullptr;
860   FI->ArgStructAlign = 0;
861   FI->NumArgs = argTypes.size();
862   FI->HasExtParameterInfos = !paramInfos.empty();
863   FI->getArgsBuffer()[0].type = resultType;
864   FI->MaxVectorWidth = 0;
865   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
866     FI->getArgsBuffer()[i + 1].type = argTypes[i];
867   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
868     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
869   return FI;
870 }
871 
872 /***/
873 
874 namespace {
875 // ABIArgInfo::Expand implementation.
876 
877 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
878 struct TypeExpansion {
879   enum TypeExpansionKind {
880     // Elements of constant arrays are expanded recursively.
881     TEK_ConstantArray,
882     // Record fields are expanded recursively (but if record is a union, only
883     // the field with the largest size is expanded).
884     TEK_Record,
885     // For complex types, real and imaginary parts are expanded recursively.
886     TEK_Complex,
887     // All other types are not expandable.
888     TEK_None
889   };
890 
891   const TypeExpansionKind Kind;
892 
893   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
894   virtual ~TypeExpansion() {}
895 };
896 
897 struct ConstantArrayExpansion : TypeExpansion {
898   QualType EltTy;
899   uint64_t NumElts;
900 
901   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
902       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
903   static bool classof(const TypeExpansion *TE) {
904     return TE->Kind == TEK_ConstantArray;
905   }
906 };
907 
908 struct RecordExpansion : TypeExpansion {
909   SmallVector<const CXXBaseSpecifier *, 1> Bases;
910 
911   SmallVector<const FieldDecl *, 1> Fields;
912 
913   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
914                   SmallVector<const FieldDecl *, 1> &&Fields)
915       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
916         Fields(std::move(Fields)) {}
917   static bool classof(const TypeExpansion *TE) {
918     return TE->Kind == TEK_Record;
919   }
920 };
921 
922 struct ComplexExpansion : TypeExpansion {
923   QualType EltTy;
924 
925   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
926   static bool classof(const TypeExpansion *TE) {
927     return TE->Kind == TEK_Complex;
928   }
929 };
930 
931 struct NoExpansion : TypeExpansion {
932   NoExpansion() : TypeExpansion(TEK_None) {}
933   static bool classof(const TypeExpansion *TE) {
934     return TE->Kind == TEK_None;
935   }
936 };
937 }  // namespace
938 
939 static std::unique_ptr<TypeExpansion>
940 getTypeExpansion(QualType Ty, const ASTContext &Context) {
941   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
942     return std::make_unique<ConstantArrayExpansion>(AT->getElementType(),
943                                                     AT->getZExtSize());
944   }
945   if (const RecordType *RT = Ty->getAs<RecordType>()) {
946     SmallVector<const CXXBaseSpecifier *, 1> Bases;
947     SmallVector<const FieldDecl *, 1> Fields;
948     const RecordDecl *RD = RT->getDecl();
949     assert(!RD->hasFlexibleArrayMember() &&
950            "Cannot expand structure with flexible array.");
951     if (RD->isUnion()) {
952       // Unions can be here only in degenerative cases - all the fields are same
953       // after flattening. Thus we have to use the "largest" field.
954       const FieldDecl *LargestFD = nullptr;
955       CharUnits UnionSize = CharUnits::Zero();
956 
957       for (const auto *FD : RD->fields()) {
958         if (FD->isZeroLengthBitField(Context))
959           continue;
960         assert(!FD->isBitField() &&
961                "Cannot expand structure with bit-field members.");
962         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
963         if (UnionSize < FieldSize) {
964           UnionSize = FieldSize;
965           LargestFD = FD;
966         }
967       }
968       if (LargestFD)
969         Fields.push_back(LargestFD);
970     } else {
971       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
972         assert(!CXXRD->isDynamicClass() &&
973                "cannot expand vtable pointers in dynamic classes");
974         llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
975       }
976 
977       for (const auto *FD : RD->fields()) {
978         if (FD->isZeroLengthBitField(Context))
979           continue;
980         assert(!FD->isBitField() &&
981                "Cannot expand structure with bit-field members.");
982         Fields.push_back(FD);
983       }
984     }
985     return std::make_unique<RecordExpansion>(std::move(Bases),
986                                               std::move(Fields));
987   }
988   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
989     return std::make_unique<ComplexExpansion>(CT->getElementType());
990   }
991   return std::make_unique<NoExpansion>();
992 }
993 
994 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
995   auto Exp = getTypeExpansion(Ty, Context);
996   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
997     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
998   }
999   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1000     int Res = 0;
1001     for (auto BS : RExp->Bases)
1002       Res += getExpansionSize(BS->getType(), Context);
1003     for (auto FD : RExp->Fields)
1004       Res += getExpansionSize(FD->getType(), Context);
1005     return Res;
1006   }
1007   if (isa<ComplexExpansion>(Exp.get()))
1008     return 2;
1009   assert(isa<NoExpansion>(Exp.get()));
1010   return 1;
1011 }
1012 
1013 void
1014 CodeGenTypes::getExpandedTypes(QualType Ty,
1015                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
1016   auto Exp = getTypeExpansion(Ty, Context);
1017   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1018     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
1019       getExpandedTypes(CAExp->EltTy, TI);
1020     }
1021   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1022     for (auto BS : RExp->Bases)
1023       getExpandedTypes(BS->getType(), TI);
1024     for (auto FD : RExp->Fields)
1025       getExpandedTypes(FD->getType(), TI);
1026   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
1027     llvm::Type *EltTy = ConvertType(CExp->EltTy);
1028     *TI++ = EltTy;
1029     *TI++ = EltTy;
1030   } else {
1031     assert(isa<NoExpansion>(Exp.get()));
1032     *TI++ = ConvertType(Ty);
1033   }
1034 }
1035 
1036 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1037                                       ConstantArrayExpansion *CAE,
1038                                       Address BaseAddr,
1039                                       llvm::function_ref<void(Address)> Fn) {
1040   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1041     Address EltAddr = CGF.Builder.CreateConstGEP2_32(BaseAddr, 0, i);
1042     Fn(EltAddr);
1043   }
1044 }
1045 
1046 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1047                                          llvm::Function::arg_iterator &AI) {
1048   assert(LV.isSimple() &&
1049          "Unexpected non-simple lvalue during struct expansion.");
1050 
1051   auto Exp = getTypeExpansion(Ty, getContext());
1052   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1053     forConstantArrayExpansion(
1054         *this, CAExp, LV.getAddress(), [&](Address EltAddr) {
1055           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1056           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1057         });
1058   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1059     Address This = LV.getAddress();
1060     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1061       // Perform a single step derived-to-base conversion.
1062       Address Base =
1063           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1064                                 /*NullCheckValue=*/false, SourceLocation());
1065       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1066 
1067       // Recurse onto bases.
1068       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1069     }
1070     for (auto FD : RExp->Fields) {
1071       // FIXME: What are the right qualifiers here?
1072       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1073       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1074     }
1075   } else if (isa<ComplexExpansion>(Exp.get())) {
1076     auto realValue = &*AI++;
1077     auto imagValue = &*AI++;
1078     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1079   } else {
1080     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1081     // primitive store.
1082     assert(isa<NoExpansion>(Exp.get()));
1083     llvm::Value *Arg = &*AI++;
1084     if (LV.isBitField()) {
1085       EmitStoreThroughLValue(RValue::get(Arg), LV);
1086     } else {
1087       // TODO: currently there are some places are inconsistent in what LLVM
1088       // pointer type they use (see D118744). Once clang uses opaque pointers
1089       // all LLVM pointer types will be the same and we can remove this check.
1090       if (Arg->getType()->isPointerTy()) {
1091         Address Addr = LV.getAddress();
1092         Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1093       }
1094       EmitStoreOfScalar(Arg, LV);
1095     }
1096   }
1097 }
1098 
1099 void CodeGenFunction::ExpandTypeToArgs(
1100     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1101     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1102   auto Exp = getTypeExpansion(Ty, getContext());
1103   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1104     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1105                                    : Arg.getKnownRValue().getAggregateAddress();
1106     forConstantArrayExpansion(
1107         *this, CAExp, Addr, [&](Address EltAddr) {
1108           CallArg EltArg = CallArg(
1109               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1110               CAExp->EltTy);
1111           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1112                            IRCallArgPos);
1113         });
1114   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1115     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1116                                    : Arg.getKnownRValue().getAggregateAddress();
1117     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1118       // Perform a single step derived-to-base conversion.
1119       Address Base =
1120           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1121                                 /*NullCheckValue=*/false, SourceLocation());
1122       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1123 
1124       // Recurse onto bases.
1125       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1126                        IRCallArgPos);
1127     }
1128 
1129     LValue LV = MakeAddrLValue(This, Ty);
1130     for (auto FD : RExp->Fields) {
1131       CallArg FldArg =
1132           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1133       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1134                        IRCallArgPos);
1135     }
1136   } else if (isa<ComplexExpansion>(Exp.get())) {
1137     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1138     IRCallArgs[IRCallArgPos++] = CV.first;
1139     IRCallArgs[IRCallArgPos++] = CV.second;
1140   } else {
1141     assert(isa<NoExpansion>(Exp.get()));
1142     auto RV = Arg.getKnownRValue();
1143     assert(RV.isScalar() &&
1144            "Unexpected non-scalar rvalue during struct expansion.");
1145 
1146     // Insert a bitcast as needed.
1147     llvm::Value *V = RV.getScalarVal();
1148     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1149         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1150       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1151 
1152     IRCallArgs[IRCallArgPos++] = V;
1153   }
1154 }
1155 
1156 /// Create a temporary allocation for the purposes of coercion.
1157 static RawAddress CreateTempAllocaForCoercion(CodeGenFunction &CGF,
1158                                               llvm::Type *Ty,
1159                                               CharUnits MinAlign,
1160                                               const Twine &Name = "tmp") {
1161   // Don't use an alignment that's worse than what LLVM would prefer.
1162   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty);
1163   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1164 
1165   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1166 }
1167 
1168 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1169 /// accessing some number of bytes out of it, try to gep into the struct to get
1170 /// at its inner goodness.  Dive as deep as possible without entering an element
1171 /// with an in-memory size smaller than DstSize.
1172 static Address
1173 EnterStructPointerForCoercedAccess(Address SrcPtr,
1174                                    llvm::StructType *SrcSTy,
1175                                    uint64_t DstSize, CodeGenFunction &CGF) {
1176   // We can't dive into a zero-element struct.
1177   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1178 
1179   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1180 
1181   // If the first elt is at least as large as what we're looking for, or if the
1182   // first element is the same size as the whole struct, we can enter it. The
1183   // comparison must be made on the store size and not the alloca size. Using
1184   // the alloca size may overstate the size of the load.
1185   uint64_t FirstEltSize =
1186     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1187   if (FirstEltSize < DstSize &&
1188       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1189     return SrcPtr;
1190 
1191   // GEP into the first element.
1192   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1193 
1194   // If the first element is a struct, recurse.
1195   llvm::Type *SrcTy = SrcPtr.getElementType();
1196   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1197     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1198 
1199   return SrcPtr;
1200 }
1201 
1202 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1203 /// are either integers or pointers.  This does a truncation of the value if it
1204 /// is too large or a zero extension if it is too small.
1205 ///
1206 /// This behaves as if the value were coerced through memory, so on big-endian
1207 /// targets the high bits are preserved in a truncation, while little-endian
1208 /// targets preserve the low bits.
1209 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1210                                              llvm::Type *Ty,
1211                                              CodeGenFunction &CGF) {
1212   if (Val->getType() == Ty)
1213     return Val;
1214 
1215   if (isa<llvm::PointerType>(Val->getType())) {
1216     // If this is Pointer->Pointer avoid conversion to and from int.
1217     if (isa<llvm::PointerType>(Ty))
1218       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1219 
1220     // Convert the pointer to an integer so we can play with its width.
1221     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1222   }
1223 
1224   llvm::Type *DestIntTy = Ty;
1225   if (isa<llvm::PointerType>(DestIntTy))
1226     DestIntTy = CGF.IntPtrTy;
1227 
1228   if (Val->getType() != DestIntTy) {
1229     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1230     if (DL.isBigEndian()) {
1231       // Preserve the high bits on big-endian targets.
1232       // That is what memory coercion does.
1233       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1234       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1235 
1236       if (SrcSize > DstSize) {
1237         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1238         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1239       } else {
1240         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1241         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1242       }
1243     } else {
1244       // Little-endian targets preserve the low bits. No shifts required.
1245       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1246     }
1247   }
1248 
1249   if (isa<llvm::PointerType>(Ty))
1250     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1251   return Val;
1252 }
1253 
1254 
1255 
1256 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1257 /// a pointer to an object of type \arg Ty, known to be aligned to
1258 /// \arg SrcAlign bytes.
1259 ///
1260 /// This safely handles the case when the src type is smaller than the
1261 /// destination type; in this situation the values of bits which not
1262 /// present in the src are undefined.
1263 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1264                                       CodeGenFunction &CGF) {
1265   llvm::Type *SrcTy = Src.getElementType();
1266 
1267   // If SrcTy and Ty are the same, just do a load.
1268   if (SrcTy == Ty)
1269     return CGF.Builder.CreateLoad(Src);
1270 
1271   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1272 
1273   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1274     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1275                                              DstSize.getFixedValue(), CGF);
1276     SrcTy = Src.getElementType();
1277   }
1278 
1279   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1280 
1281   // If the source and destination are integer or pointer types, just do an
1282   // extension or truncation to the desired type.
1283   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1284       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1285     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1286     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1287   }
1288 
1289   // If load is legal, just bitcast the src pointer.
1290   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1291       SrcSize.getFixedValue() >= DstSize.getFixedValue()) {
1292     // Generally SrcSize is never greater than DstSize, since this means we are
1293     // losing bits. However, this can happen in cases where the structure has
1294     // additional padding, for example due to a user specified alignment.
1295     //
1296     // FIXME: Assert that we aren't truncating non-padding bits when have access
1297     // to that information.
1298     Src = Src.withElementType(Ty);
1299     return CGF.Builder.CreateLoad(Src);
1300   }
1301 
1302   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1303   // the types match, use the llvm.vector.insert intrinsic to perform the
1304   // conversion.
1305   if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1306     if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1307       // If we are casting a fixed i8 vector to a scalable i1 predicate
1308       // vector, use a vector insert and bitcast the result.
1309       if (ScalableDstTy->getElementType()->isIntegerTy(1) &&
1310           ScalableDstTy->getElementCount().isKnownMultipleOf(8) &&
1311           FixedSrcTy->getElementType()->isIntegerTy(8)) {
1312         ScalableDstTy = llvm::ScalableVectorType::get(
1313             FixedSrcTy->getElementType(),
1314             ScalableDstTy->getElementCount().getKnownMinValue() / 8);
1315       }
1316       if (ScalableDstTy->getElementType() == FixedSrcTy->getElementType()) {
1317         auto *Load = CGF.Builder.CreateLoad(Src);
1318         auto *UndefVec = llvm::UndefValue::get(ScalableDstTy);
1319         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1320         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1321             ScalableDstTy, UndefVec, Load, Zero, "cast.scalable");
1322         if (ScalableDstTy != Ty)
1323           Result = CGF.Builder.CreateBitCast(Result, Ty);
1324         return Result;
1325       }
1326     }
1327   }
1328 
1329   // Otherwise do coercion through memory. This is stupid, but simple.
1330   RawAddress Tmp =
1331       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1332   CGF.Builder.CreateMemCpy(
1333       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1334       Src.emitRawPointer(CGF), Src.getAlignment().getAsAlign(),
1335       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue()));
1336   return CGF.Builder.CreateLoad(Tmp);
1337 }
1338 
1339 void CodeGenFunction::CreateCoercedStore(llvm::Value *Src, Address Dst,
1340                                          llvm::TypeSize DstSize,
1341                                          bool DstIsVolatile) {
1342   if (!DstSize)
1343     return;
1344 
1345   llvm::Type *SrcTy = Src->getType();
1346   llvm::TypeSize SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
1347 
1348   // GEP into structs to try to make types match.
1349   // FIXME: This isn't really that useful with opaque types, but it impacts a
1350   // lot of regression tests.
1351   if (SrcTy != Dst.getElementType()) {
1352     if (llvm::StructType *DstSTy =
1353             dyn_cast<llvm::StructType>(Dst.getElementType())) {
1354       assert(!SrcSize.isScalable());
1355       Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1356                                                SrcSize.getFixedValue(), *this);
1357     }
1358   }
1359 
1360   if (SrcSize.isScalable() || SrcSize <= DstSize) {
1361     if (SrcTy->isIntegerTy() && Dst.getElementType()->isPointerTy() &&
1362         SrcSize == CGM.getDataLayout().getTypeAllocSize(Dst.getElementType())) {
1363       // If the value is supposed to be a pointer, convert it before storing it.
1364       Src = CoerceIntOrPtrToIntOrPtr(Src, Dst.getElementType(), *this);
1365       Builder.CreateStore(Src, Dst, DstIsVolatile);
1366     } else if (llvm::StructType *STy =
1367                    dyn_cast<llvm::StructType>(Src->getType())) {
1368       // Prefer scalar stores to first-class aggregate stores.
1369       Dst = Dst.withElementType(SrcTy);
1370       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1371         Address EltPtr = Builder.CreateStructGEP(Dst, i);
1372         llvm::Value *Elt = Builder.CreateExtractValue(Src, i);
1373         Builder.CreateStore(Elt, EltPtr, DstIsVolatile);
1374       }
1375     } else {
1376       Builder.CreateStore(Src, Dst.withElementType(SrcTy), DstIsVolatile);
1377     }
1378   } else if (SrcTy->isIntegerTy()) {
1379     // If the source is a simple integer, coerce it directly.
1380     llvm::Type *DstIntTy = Builder.getIntNTy(DstSize.getFixedValue() * 8);
1381     Src = CoerceIntOrPtrToIntOrPtr(Src, DstIntTy, *this);
1382     Builder.CreateStore(Src, Dst.withElementType(DstIntTy), DstIsVolatile);
1383   } else {
1384     // Otherwise do coercion through memory. This is stupid, but
1385     // simple.
1386 
1387     // Generally SrcSize is never greater than DstSize, since this means we are
1388     // losing bits. However, this can happen in cases where the structure has
1389     // additional padding, for example due to a user specified alignment.
1390     //
1391     // FIXME: Assert that we aren't truncating non-padding bits when have access
1392     // to that information.
1393     RawAddress Tmp =
1394         CreateTempAllocaForCoercion(*this, SrcTy, Dst.getAlignment());
1395     Builder.CreateStore(Src, Tmp);
1396     Builder.CreateMemCpy(Dst.emitRawPointer(*this),
1397                          Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1398                          Tmp.getAlignment().getAsAlign(),
1399                          Builder.CreateTypeSize(IntPtrTy, DstSize));
1400   }
1401 }
1402 
1403 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1404                                    const ABIArgInfo &info) {
1405   if (unsigned offset = info.getDirectOffset()) {
1406     addr = addr.withElementType(CGF.Int8Ty);
1407     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1408                                              CharUnits::fromQuantity(offset));
1409     addr = addr.withElementType(info.getCoerceToType());
1410   }
1411   return addr;
1412 }
1413 
1414 namespace {
1415 
1416 /// Encapsulates information about the way function arguments from
1417 /// CGFunctionInfo should be passed to actual LLVM IR function.
1418 class ClangToLLVMArgMapping {
1419   static const unsigned InvalidIndex = ~0U;
1420   unsigned InallocaArgNo;
1421   unsigned SRetArgNo;
1422   unsigned TotalIRArgs;
1423 
1424   /// Arguments of LLVM IR function corresponding to single Clang argument.
1425   struct IRArgs {
1426     unsigned PaddingArgIndex;
1427     // Argument is expanded to IR arguments at positions
1428     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1429     unsigned FirstArgIndex;
1430     unsigned NumberOfArgs;
1431 
1432     IRArgs()
1433         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1434           NumberOfArgs(0) {}
1435   };
1436 
1437   SmallVector<IRArgs, 8> ArgInfo;
1438 
1439 public:
1440   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1441                         bool OnlyRequiredArgs = false)
1442       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1443         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1444     construct(Context, FI, OnlyRequiredArgs);
1445   }
1446 
1447   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1448   unsigned getInallocaArgNo() const {
1449     assert(hasInallocaArg());
1450     return InallocaArgNo;
1451   }
1452 
1453   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1454   unsigned getSRetArgNo() const {
1455     assert(hasSRetArg());
1456     return SRetArgNo;
1457   }
1458 
1459   unsigned totalIRArgs() const { return TotalIRArgs; }
1460 
1461   bool hasPaddingArg(unsigned ArgNo) const {
1462     assert(ArgNo < ArgInfo.size());
1463     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1464   }
1465   unsigned getPaddingArgNo(unsigned ArgNo) const {
1466     assert(hasPaddingArg(ArgNo));
1467     return ArgInfo[ArgNo].PaddingArgIndex;
1468   }
1469 
1470   /// Returns index of first IR argument corresponding to ArgNo, and their
1471   /// quantity.
1472   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1473     assert(ArgNo < ArgInfo.size());
1474     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1475                           ArgInfo[ArgNo].NumberOfArgs);
1476   }
1477 
1478 private:
1479   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1480                  bool OnlyRequiredArgs);
1481 };
1482 
1483 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1484                                       const CGFunctionInfo &FI,
1485                                       bool OnlyRequiredArgs) {
1486   unsigned IRArgNo = 0;
1487   bool SwapThisWithSRet = false;
1488   const ABIArgInfo &RetAI = FI.getReturnInfo();
1489 
1490   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1491     SwapThisWithSRet = RetAI.isSRetAfterThis();
1492     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1493   }
1494 
1495   unsigned ArgNo = 0;
1496   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1497   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1498        ++I, ++ArgNo) {
1499     assert(I != FI.arg_end());
1500     QualType ArgType = I->type;
1501     const ABIArgInfo &AI = I->info;
1502     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1503     auto &IRArgs = ArgInfo[ArgNo];
1504 
1505     if (AI.getPaddingType())
1506       IRArgs.PaddingArgIndex = IRArgNo++;
1507 
1508     switch (AI.getKind()) {
1509     case ABIArgInfo::Extend:
1510     case ABIArgInfo::Direct: {
1511       // FIXME: handle sseregparm someday...
1512       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1513       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1514         IRArgs.NumberOfArgs = STy->getNumElements();
1515       } else {
1516         IRArgs.NumberOfArgs = 1;
1517       }
1518       break;
1519     }
1520     case ABIArgInfo::Indirect:
1521     case ABIArgInfo::IndirectAliased:
1522       IRArgs.NumberOfArgs = 1;
1523       break;
1524     case ABIArgInfo::Ignore:
1525     case ABIArgInfo::InAlloca:
1526       // ignore and inalloca doesn't have matching LLVM parameters.
1527       IRArgs.NumberOfArgs = 0;
1528       break;
1529     case ABIArgInfo::CoerceAndExpand:
1530       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1531       break;
1532     case ABIArgInfo::Expand:
1533       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1534       break;
1535     }
1536 
1537     if (IRArgs.NumberOfArgs > 0) {
1538       IRArgs.FirstArgIndex = IRArgNo;
1539       IRArgNo += IRArgs.NumberOfArgs;
1540     }
1541 
1542     // Skip over the sret parameter when it comes second.  We already handled it
1543     // above.
1544     if (IRArgNo == 1 && SwapThisWithSRet)
1545       IRArgNo++;
1546   }
1547   assert(ArgNo == ArgInfo.size());
1548 
1549   if (FI.usesInAlloca())
1550     InallocaArgNo = IRArgNo++;
1551 
1552   TotalIRArgs = IRArgNo;
1553 }
1554 }  // namespace
1555 
1556 /***/
1557 
1558 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1559   const auto &RI = FI.getReturnInfo();
1560   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1561 }
1562 
1563 bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) {
1564   const auto &RI = FI.getReturnInfo();
1565   return RI.getInReg();
1566 }
1567 
1568 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1569   return ReturnTypeUsesSRet(FI) &&
1570          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1571 }
1572 
1573 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1574   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1575     switch (BT->getKind()) {
1576     default:
1577       return false;
1578     case BuiltinType::Float:
1579       return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1580     case BuiltinType::Double:
1581       return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1582     case BuiltinType::LongDouble:
1583       return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1584     }
1585   }
1586 
1587   return false;
1588 }
1589 
1590 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1591   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1592     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1593       if (BT->getKind() == BuiltinType::LongDouble)
1594         return getTarget().useObjCFP2RetForComplexLongDouble();
1595     }
1596   }
1597 
1598   return false;
1599 }
1600 
1601 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1602   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1603   return GetFunctionType(FI);
1604 }
1605 
1606 llvm::FunctionType *
1607 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1608 
1609   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1610   (void)Inserted;
1611   assert(Inserted && "Recursively being processed?");
1612 
1613   llvm::Type *resultType = nullptr;
1614   const ABIArgInfo &retAI = FI.getReturnInfo();
1615   switch (retAI.getKind()) {
1616   case ABIArgInfo::Expand:
1617   case ABIArgInfo::IndirectAliased:
1618     llvm_unreachable("Invalid ABI kind for return argument");
1619 
1620   case ABIArgInfo::Extend:
1621   case ABIArgInfo::Direct:
1622     resultType = retAI.getCoerceToType();
1623     break;
1624 
1625   case ABIArgInfo::InAlloca:
1626     if (retAI.getInAllocaSRet()) {
1627       // sret things on win32 aren't void, they return the sret pointer.
1628       QualType ret = FI.getReturnType();
1629       unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret);
1630       resultType = llvm::PointerType::get(getLLVMContext(), addressSpace);
1631     } else {
1632       resultType = llvm::Type::getVoidTy(getLLVMContext());
1633     }
1634     break;
1635 
1636   case ABIArgInfo::Indirect:
1637   case ABIArgInfo::Ignore:
1638     resultType = llvm::Type::getVoidTy(getLLVMContext());
1639     break;
1640 
1641   case ABIArgInfo::CoerceAndExpand:
1642     resultType = retAI.getUnpaddedCoerceAndExpandType();
1643     break;
1644   }
1645 
1646   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1647   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1648 
1649   // Add type for sret argument.
1650   if (IRFunctionArgs.hasSRetArg()) {
1651     QualType Ret = FI.getReturnType();
1652     unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret);
1653     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1654         llvm::PointerType::get(getLLVMContext(), AddressSpace);
1655   }
1656 
1657   // Add type for inalloca argument.
1658   if (IRFunctionArgs.hasInallocaArg())
1659     ArgTypes[IRFunctionArgs.getInallocaArgNo()] =
1660         llvm::PointerType::getUnqual(getLLVMContext());
1661 
1662   // Add in all of the required arguments.
1663   unsigned ArgNo = 0;
1664   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1665                                      ie = it + FI.getNumRequiredArgs();
1666   for (; it != ie; ++it, ++ArgNo) {
1667     const ABIArgInfo &ArgInfo = it->info;
1668 
1669     // Insert a padding type to ensure proper alignment.
1670     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1671       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1672           ArgInfo.getPaddingType();
1673 
1674     unsigned FirstIRArg, NumIRArgs;
1675     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1676 
1677     switch (ArgInfo.getKind()) {
1678     case ABIArgInfo::Ignore:
1679     case ABIArgInfo::InAlloca:
1680       assert(NumIRArgs == 0);
1681       break;
1682 
1683     case ABIArgInfo::Indirect:
1684       assert(NumIRArgs == 1);
1685       // indirect arguments are always on the stack, which is alloca addr space.
1686       ArgTypes[FirstIRArg] = llvm::PointerType::get(
1687           getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
1688       break;
1689     case ABIArgInfo::IndirectAliased:
1690       assert(NumIRArgs == 1);
1691       ArgTypes[FirstIRArg] = llvm::PointerType::get(
1692           getLLVMContext(), ArgInfo.getIndirectAddrSpace());
1693       break;
1694     case ABIArgInfo::Extend:
1695     case ABIArgInfo::Direct: {
1696       // Fast-isel and the optimizer generally like scalar values better than
1697       // FCAs, so we flatten them if this is safe to do for this argument.
1698       llvm::Type *argType = ArgInfo.getCoerceToType();
1699       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1700       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1701         assert(NumIRArgs == st->getNumElements());
1702         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1703           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1704       } else {
1705         assert(NumIRArgs == 1);
1706         ArgTypes[FirstIRArg] = argType;
1707       }
1708       break;
1709     }
1710 
1711     case ABIArgInfo::CoerceAndExpand: {
1712       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1713       for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1714         *ArgTypesIter++ = EltTy;
1715       }
1716       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1717       break;
1718     }
1719 
1720     case ABIArgInfo::Expand:
1721       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1722       getExpandedTypes(it->type, ArgTypesIter);
1723       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1724       break;
1725     }
1726   }
1727 
1728   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1729   assert(Erased && "Not in set?");
1730 
1731   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1732 }
1733 
1734 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1735   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1736   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1737 
1738   if (!isFuncTypeConvertible(FPT))
1739     return llvm::StructType::get(getLLVMContext());
1740 
1741   return GetFunctionType(GD);
1742 }
1743 
1744 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1745                                                llvm::AttrBuilder &FuncAttrs,
1746                                                const FunctionProtoType *FPT) {
1747   if (!FPT)
1748     return;
1749 
1750   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1751       FPT->isNothrow())
1752     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1753 
1754   unsigned SMEBits = FPT->getAArch64SMEAttributes();
1755   if (SMEBits & FunctionType::SME_PStateSMEnabledMask)
1756     FuncAttrs.addAttribute("aarch64_pstate_sm_enabled");
1757   if (SMEBits & FunctionType::SME_PStateSMCompatibleMask)
1758     FuncAttrs.addAttribute("aarch64_pstate_sm_compatible");
1759 
1760   // ZA
1761   if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves)
1762     FuncAttrs.addAttribute("aarch64_preserves_za");
1763   if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In)
1764     FuncAttrs.addAttribute("aarch64_in_za");
1765   if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out)
1766     FuncAttrs.addAttribute("aarch64_out_za");
1767   if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut)
1768     FuncAttrs.addAttribute("aarch64_inout_za");
1769 
1770   // ZT0
1771   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves)
1772     FuncAttrs.addAttribute("aarch64_preserves_zt0");
1773   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In)
1774     FuncAttrs.addAttribute("aarch64_in_zt0");
1775   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out)
1776     FuncAttrs.addAttribute("aarch64_out_zt0");
1777   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut)
1778     FuncAttrs.addAttribute("aarch64_inout_zt0");
1779 }
1780 
1781 static void AddAttributesFromOMPAssumes(llvm::AttrBuilder &FuncAttrs,
1782                                         const Decl *Callee) {
1783   if (!Callee)
1784     return;
1785 
1786   SmallVector<StringRef, 4> Attrs;
1787 
1788   for (const OMPAssumeAttr *AA : Callee->specific_attrs<OMPAssumeAttr>())
1789     AA->getAssumption().split(Attrs, ",");
1790 
1791   if (!Attrs.empty())
1792     FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1793                            llvm::join(Attrs.begin(), Attrs.end(), ","));
1794 }
1795 
1796 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1797                                           QualType ReturnType) const {
1798   // We can't just discard the return value for a record type with a
1799   // complex destructor or a non-trivially copyable type.
1800   if (const RecordType *RT =
1801           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1802     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1803       return ClassDecl->hasTrivialDestructor();
1804   }
1805   return ReturnType.isTriviallyCopyableType(Context);
1806 }
1807 
1808 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy,
1809                             const Decl *TargetDecl) {
1810   // As-is msan can not tolerate noundef mismatch between caller and
1811   // implementation. Mismatch is possible for e.g. indirect calls from C-caller
1812   // into C++. Such mismatches lead to confusing false reports. To avoid
1813   // expensive workaround on msan we enforce initialization event in uncommon
1814   // cases where it's allowed.
1815   if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory))
1816     return true;
1817   // C++ explicitly makes returning undefined values UB. C's rule only applies
1818   // to used values, so we never mark them noundef for now.
1819   if (!Module.getLangOpts().CPlusPlus)
1820     return false;
1821   if (TargetDecl) {
1822     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) {
1823       if (FDecl->isExternC())
1824         return false;
1825     } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) {
1826       // Function pointer.
1827       if (VDecl->isExternC())
1828         return false;
1829     }
1830   }
1831 
1832   // We don't want to be too aggressive with the return checking, unless
1833   // it's explicit in the code opts or we're using an appropriate sanitizer.
1834   // Try to respect what the programmer intended.
1835   return Module.getCodeGenOpts().StrictReturn ||
1836          !Module.MayDropFunctionReturn(Module.getContext(), RetTy) ||
1837          Module.getLangOpts().Sanitize.has(SanitizerKind::Return);
1838 }
1839 
1840 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the
1841 /// requested denormal behavior, accounting for the overriding behavior of the
1842 /// -f32 case.
1843 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode,
1844                                  llvm::DenormalMode FP32DenormalMode,
1845                                  llvm::AttrBuilder &FuncAttrs) {
1846   if (FPDenormalMode != llvm::DenormalMode::getDefault())
1847     FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str());
1848 
1849   if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid())
1850     FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str());
1851 }
1852 
1853 /// Add default attributes to a function, which have merge semantics under
1854 /// -mlink-builtin-bitcode and should not simply overwrite any existing
1855 /// attributes in the linked library.
1856 static void
1857 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts,
1858                                      llvm::AttrBuilder &FuncAttrs) {
1859   addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode,
1860                        FuncAttrs);
1861 }
1862 
1863 static void getTrivialDefaultFunctionAttributes(
1864     StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts,
1865     const LangOptions &LangOpts, bool AttrOnCallSite,
1866     llvm::AttrBuilder &FuncAttrs) {
1867   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1868   if (!HasOptnone) {
1869     if (CodeGenOpts.OptimizeSize)
1870       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1871     if (CodeGenOpts.OptimizeSize == 2)
1872       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1873   }
1874 
1875   if (CodeGenOpts.DisableRedZone)
1876     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1877   if (CodeGenOpts.IndirectTlsSegRefs)
1878     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1879   if (CodeGenOpts.NoImplicitFloat)
1880     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1881 
1882   if (AttrOnCallSite) {
1883     // Attributes that should go on the call site only.
1884     // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1885     // the -fno-builtin-foo list.
1886     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1887       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1888     if (!CodeGenOpts.TrapFuncName.empty())
1889       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1890   } else {
1891     switch (CodeGenOpts.getFramePointer()) {
1892     case CodeGenOptions::FramePointerKind::None:
1893       // This is the default behavior.
1894       break;
1895     case CodeGenOptions::FramePointerKind::Reserved:
1896     case CodeGenOptions::FramePointerKind::NonLeaf:
1897     case CodeGenOptions::FramePointerKind::All:
1898       FuncAttrs.addAttribute("frame-pointer",
1899                              CodeGenOptions::getFramePointerKindName(
1900                                  CodeGenOpts.getFramePointer()));
1901     }
1902 
1903     if (CodeGenOpts.LessPreciseFPMAD)
1904       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1905 
1906     if (CodeGenOpts.NullPointerIsValid)
1907       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1908 
1909     if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore)
1910       FuncAttrs.addAttribute("no-trapping-math", "true");
1911 
1912     // TODO: Are these all needed?
1913     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1914     if (LangOpts.NoHonorInfs)
1915       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1916     if (LangOpts.NoHonorNaNs)
1917       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1918     if (LangOpts.ApproxFunc)
1919       FuncAttrs.addAttribute("approx-func-fp-math", "true");
1920     if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
1921         LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
1922         (LangOpts.getDefaultFPContractMode() ==
1923              LangOptions::FPModeKind::FPM_Fast ||
1924          LangOpts.getDefaultFPContractMode() ==
1925              LangOptions::FPModeKind::FPM_FastHonorPragmas))
1926       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1927     if (CodeGenOpts.SoftFloat)
1928       FuncAttrs.addAttribute("use-soft-float", "true");
1929     FuncAttrs.addAttribute("stack-protector-buffer-size",
1930                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1931     if (LangOpts.NoSignedZero)
1932       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1933 
1934     // TODO: Reciprocal estimate codegen options should apply to instructions?
1935     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1936     if (!Recips.empty())
1937       FuncAttrs.addAttribute("reciprocal-estimates",
1938                              llvm::join(Recips, ","));
1939 
1940     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1941         CodeGenOpts.PreferVectorWidth != "none")
1942       FuncAttrs.addAttribute("prefer-vector-width",
1943                              CodeGenOpts.PreferVectorWidth);
1944 
1945     if (CodeGenOpts.StackRealignment)
1946       FuncAttrs.addAttribute("stackrealign");
1947     if (CodeGenOpts.Backchain)
1948       FuncAttrs.addAttribute("backchain");
1949     if (CodeGenOpts.EnableSegmentedStacks)
1950       FuncAttrs.addAttribute("split-stack");
1951 
1952     if (CodeGenOpts.SpeculativeLoadHardening)
1953       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1954 
1955     // Add zero-call-used-regs attribute.
1956     switch (CodeGenOpts.getZeroCallUsedRegs()) {
1957     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1958       FuncAttrs.removeAttribute("zero-call-used-regs");
1959       break;
1960     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1961       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1962       break;
1963     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1964       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1965       break;
1966     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1967       FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1968       break;
1969     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1970       FuncAttrs.addAttribute("zero-call-used-regs", "used");
1971       break;
1972     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1973       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1974       break;
1975     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1976       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1977       break;
1978     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1979       FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
1980       break;
1981     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1982       FuncAttrs.addAttribute("zero-call-used-regs", "all");
1983       break;
1984     }
1985   }
1986 
1987   if (LangOpts.assumeFunctionsAreConvergent()) {
1988     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1989     // convergent (meaning, they may call an intrinsically convergent op, such
1990     // as __syncthreads() / barrier(), and so can't have certain optimizations
1991     // applied around them).  LLVM will remove this attribute where it safely
1992     // can.
1993     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1994   }
1995 
1996   // TODO: NoUnwind attribute should be added for other GPU modes HIP,
1997   // OpenMP offload. AFAIK, neither of them support exceptions in device code.
1998   if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL ||
1999       LangOpts.SYCLIsDevice) {
2000     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2001   }
2002 
2003   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
2004     StringRef Var, Value;
2005     std::tie(Var, Value) = Attr.split('=');
2006     FuncAttrs.addAttribute(Var, Value);
2007   }
2008 
2009   TargetInfo::BranchProtectionInfo BPI(LangOpts);
2010   TargetCodeGenInfo::initBranchProtectionFnAttributes(BPI, FuncAttrs);
2011 }
2012 
2013 /// Merges `target-features` from \TargetOpts and \F, and sets the result in
2014 /// \FuncAttr
2015 /// * features from \F are always kept
2016 /// * a feature from \TargetOpts is kept if itself and its opposite are absent
2017 /// from \F
2018 static void
2019 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr,
2020                                            const llvm::Function &F,
2021                                            const TargetOptions &TargetOpts) {
2022   auto FFeatures = F.getFnAttribute("target-features");
2023 
2024   llvm::StringSet<> MergedNames;
2025   SmallVector<StringRef> MergedFeatures;
2026   MergedFeatures.reserve(TargetOpts.Features.size());
2027 
2028   auto AddUnmergedFeatures = [&](auto &&FeatureRange) {
2029     for (StringRef Feature : FeatureRange) {
2030       if (Feature.empty())
2031         continue;
2032       assert(Feature[0] == '+' || Feature[0] == '-');
2033       StringRef Name = Feature.drop_front(1);
2034       bool Merged = !MergedNames.insert(Name).second;
2035       if (!Merged)
2036         MergedFeatures.push_back(Feature);
2037     }
2038   };
2039 
2040   if (FFeatures.isValid())
2041     AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ','));
2042   AddUnmergedFeatures(TargetOpts.Features);
2043 
2044   if (!MergedFeatures.empty()) {
2045     llvm::sort(MergedFeatures);
2046     FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ","));
2047   }
2048 }
2049 
2050 void CodeGen::mergeDefaultFunctionDefinitionAttributes(
2051     llvm::Function &F, const CodeGenOptions &CodeGenOpts,
2052     const LangOptions &LangOpts, const TargetOptions &TargetOpts,
2053     bool WillInternalize) {
2054 
2055   llvm::AttrBuilder FuncAttrs(F.getContext());
2056   // Here we only extract the options that are relevant compared to the version
2057   // from GetCPUAndFeaturesAttributes.
2058   if (!TargetOpts.CPU.empty())
2059     FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU);
2060   if (!TargetOpts.TuneCPU.empty())
2061     FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU);
2062 
2063   ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
2064                                         CodeGenOpts, LangOpts,
2065                                         /*AttrOnCallSite=*/false, FuncAttrs);
2066 
2067   if (!WillInternalize && F.isInterposable()) {
2068     // Do not promote "dynamic" denormal-fp-math to this translation unit's
2069     // setting for weak functions that won't be internalized. The user has no
2070     // real control for how builtin bitcode is linked, so we shouldn't assume
2071     // later copies will use a consistent mode.
2072     F.addFnAttrs(FuncAttrs);
2073     return;
2074   }
2075 
2076   llvm::AttributeMask AttrsToRemove;
2077 
2078   llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw();
2079   llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw();
2080   llvm::DenormalMode Merged =
2081       CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge);
2082   llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode;
2083 
2084   if (DenormModeToMergeF32.isValid()) {
2085     MergedF32 =
2086         CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32);
2087   }
2088 
2089   if (Merged == llvm::DenormalMode::getDefault()) {
2090     AttrsToRemove.addAttribute("denormal-fp-math");
2091   } else if (Merged != DenormModeToMerge) {
2092     // Overwrite existing attribute
2093     FuncAttrs.addAttribute("denormal-fp-math",
2094                            CodeGenOpts.FPDenormalMode.str());
2095   }
2096 
2097   if (MergedF32 == llvm::DenormalMode::getDefault()) {
2098     AttrsToRemove.addAttribute("denormal-fp-math-f32");
2099   } else if (MergedF32 != DenormModeToMergeF32) {
2100     // Overwrite existing attribute
2101     FuncAttrs.addAttribute("denormal-fp-math-f32",
2102                            CodeGenOpts.FP32DenormalMode.str());
2103   }
2104 
2105   F.removeFnAttrs(AttrsToRemove);
2106   addDenormalModeAttrs(Merged, MergedF32, FuncAttrs);
2107 
2108   overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts);
2109 
2110   F.addFnAttrs(FuncAttrs);
2111 }
2112 
2113 void CodeGenModule::getTrivialDefaultFunctionAttributes(
2114     StringRef Name, bool HasOptnone, bool AttrOnCallSite,
2115     llvm::AttrBuilder &FuncAttrs) {
2116   ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(),
2117                                         getLangOpts(), AttrOnCallSite,
2118                                         FuncAttrs);
2119 }
2120 
2121 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
2122                                                  bool HasOptnone,
2123                                                  bool AttrOnCallSite,
2124                                                  llvm::AttrBuilder &FuncAttrs) {
2125   getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite,
2126                                       FuncAttrs);
2127   // If we're just getting the default, get the default values for mergeable
2128   // attributes.
2129   if (!AttrOnCallSite)
2130     addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs);
2131 }
2132 
2133 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
2134     llvm::AttrBuilder &attrs) {
2135   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
2136                                /*for call*/ false, attrs);
2137   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
2138 }
2139 
2140 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
2141                                    const LangOptions &LangOpts,
2142                                    const NoBuiltinAttr *NBA = nullptr) {
2143   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
2144     SmallString<32> AttributeName;
2145     AttributeName += "no-builtin-";
2146     AttributeName += BuiltinName;
2147     FuncAttrs.addAttribute(AttributeName);
2148   };
2149 
2150   // First, handle the language options passed through -fno-builtin.
2151   if (LangOpts.NoBuiltin) {
2152     // -fno-builtin disables them all.
2153     FuncAttrs.addAttribute("no-builtins");
2154     return;
2155   }
2156 
2157   // Then, add attributes for builtins specified through -fno-builtin-<name>.
2158   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
2159 
2160   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
2161   // the source.
2162   if (!NBA)
2163     return;
2164 
2165   // If there is a wildcard in the builtin names specified through the
2166   // attribute, disable them all.
2167   if (llvm::is_contained(NBA->builtinNames(), "*")) {
2168     FuncAttrs.addAttribute("no-builtins");
2169     return;
2170   }
2171 
2172   // And last, add the rest of the builtin names.
2173   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
2174 }
2175 
2176 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
2177                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
2178                              bool CheckCoerce = true) {
2179   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
2180   if (AI.getKind() == ABIArgInfo::Indirect ||
2181       AI.getKind() == ABIArgInfo::IndirectAliased)
2182     return true;
2183   if (AI.getKind() == ABIArgInfo::Extend)
2184     return true;
2185   if (!DL.typeSizeEqualsStoreSize(Ty))
2186     // TODO: This will result in a modest amount of values not marked noundef
2187     // when they could be. We care about values that *invisibly* contain undef
2188     // bits from the perspective of LLVM IR.
2189     return false;
2190   if (CheckCoerce && AI.canHaveCoerceToType()) {
2191     llvm::Type *CoerceTy = AI.getCoerceToType();
2192     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2193                                   DL.getTypeSizeInBits(Ty)))
2194       // If we're coercing to a type with a greater size than the canonical one,
2195       // we're introducing new undef bits.
2196       // Coercing to a type of smaller or equal size is ok, as we know that
2197       // there's no internal padding (typeSizeEqualsStoreSize).
2198       return false;
2199   }
2200   if (QTy->isBitIntType())
2201     return true;
2202   if (QTy->isReferenceType())
2203     return true;
2204   if (QTy->isNullPtrType())
2205     return false;
2206   if (QTy->isMemberPointerType())
2207     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2208     // now, never mark them.
2209     return false;
2210   if (QTy->isScalarType()) {
2211     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2212       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2213     return true;
2214   }
2215   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2216     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2217   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2218     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2219   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2220     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2221 
2222   // TODO: Some structs may be `noundef`, in specific situations.
2223   return false;
2224 }
2225 
2226 /// Check if the argument of a function has maybe_undef attribute.
2227 static bool IsArgumentMaybeUndef(const Decl *TargetDecl,
2228                                  unsigned NumRequiredArgs, unsigned ArgNo) {
2229   const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
2230   if (!FD)
2231     return false;
2232 
2233   // Assume variadic arguments do not have maybe_undef attribute.
2234   if (ArgNo >= NumRequiredArgs)
2235     return false;
2236 
2237   // Check if argument has maybe_undef attribute.
2238   if (ArgNo < FD->getNumParams()) {
2239     const ParmVarDecl *Param = FD->getParamDecl(ArgNo);
2240     if (Param && Param->hasAttr<MaybeUndefAttr>())
2241       return true;
2242   }
2243 
2244   return false;
2245 }
2246 
2247 /// Test if it's legal to apply nofpclass for the given parameter type and it's
2248 /// lowered IR type.
2249 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType,
2250                               bool IsReturn) {
2251   // Should only apply to FP types in the source, not ABI promoted.
2252   if (!ParamType->hasFloatingRepresentation())
2253     return false;
2254 
2255   // The promoted-to IR type also needs to support nofpclass.
2256   llvm::Type *IRTy = AI.getCoerceToType();
2257   if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy))
2258     return true;
2259 
2260   if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) {
2261     return !IsReturn && AI.getCanBeFlattened() &&
2262            llvm::all_of(ST->elements(), [](llvm::Type *Ty) {
2263              return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty);
2264            });
2265   }
2266 
2267   return false;
2268 }
2269 
2270 /// Return the nofpclass mask that can be applied to floating-point parameters.
2271 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) {
2272   llvm::FPClassTest Mask = llvm::fcNone;
2273   if (LangOpts.NoHonorInfs)
2274     Mask |= llvm::fcInf;
2275   if (LangOpts.NoHonorNaNs)
2276     Mask |= llvm::fcNan;
2277   return Mask;
2278 }
2279 
2280 void CodeGenModule::AdjustMemoryAttribute(StringRef Name,
2281                                           CGCalleeInfo CalleeInfo,
2282                                           llvm::AttributeList &Attrs) {
2283   if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) {
2284     Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory);
2285     llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects(
2286         getLLVMContext(), llvm::MemoryEffects::writeOnly());
2287     Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr);
2288   }
2289 }
2290 
2291 /// Construct the IR attribute list of a function or call.
2292 ///
2293 /// When adding an attribute, please consider where it should be handled:
2294 ///
2295 ///   - getDefaultFunctionAttributes is for attributes that are essentially
2296 ///     part of the global target configuration (but perhaps can be
2297 ///     overridden on a per-function basis).  Adding attributes there
2298 ///     will cause them to also be set in frontends that build on Clang's
2299 ///     target-configuration logic, as well as for code defined in library
2300 ///     modules such as CUDA's libdevice.
2301 ///
2302 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2303 ///     and adds declaration-specific, convention-specific, and
2304 ///     frontend-specific logic.  The last is of particular importance:
2305 ///     attributes that restrict how the frontend generates code must be
2306 ///     added here rather than getDefaultFunctionAttributes.
2307 ///
2308 void CodeGenModule::ConstructAttributeList(StringRef Name,
2309                                            const CGFunctionInfo &FI,
2310                                            CGCalleeInfo CalleeInfo,
2311                                            llvm::AttributeList &AttrList,
2312                                            unsigned &CallingConv,
2313                                            bool AttrOnCallSite, bool IsThunk) {
2314   llvm::AttrBuilder FuncAttrs(getLLVMContext());
2315   llvm::AttrBuilder RetAttrs(getLLVMContext());
2316 
2317   // Collect function IR attributes from the CC lowering.
2318   // We'll collect the paramete and result attributes later.
2319   CallingConv = FI.getEffectiveCallingConvention();
2320   if (FI.isNoReturn())
2321     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2322   if (FI.isCmseNSCall())
2323     FuncAttrs.addAttribute("cmse_nonsecure_call");
2324 
2325   // Collect function IR attributes from the callee prototype if we have one.
2326   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2327                                      CalleeInfo.getCalleeFunctionProtoType());
2328 
2329   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2330 
2331   // Attach assumption attributes to the declaration. If this is a call
2332   // site, attach assumptions from the caller to the call as well.
2333   AddAttributesFromOMPAssumes(FuncAttrs, TargetDecl);
2334 
2335   bool HasOptnone = false;
2336   // The NoBuiltinAttr attached to the target FunctionDecl.
2337   const NoBuiltinAttr *NBA = nullptr;
2338 
2339   // Some ABIs may result in additional accesses to arguments that may
2340   // otherwise not be present.
2341   auto AddPotentialArgAccess = [&]() {
2342     llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory);
2343     if (A.isValid())
2344       FuncAttrs.addMemoryAttr(A.getMemoryEffects() |
2345                               llvm::MemoryEffects::argMemOnly());
2346   };
2347 
2348   // Collect function IR attributes based on declaration-specific
2349   // information.
2350   // FIXME: handle sseregparm someday...
2351   if (TargetDecl) {
2352     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2353       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2354     if (TargetDecl->hasAttr<NoThrowAttr>())
2355       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2356     if (TargetDecl->hasAttr<NoReturnAttr>())
2357       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2358     if (TargetDecl->hasAttr<ColdAttr>())
2359       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2360     if (TargetDecl->hasAttr<HotAttr>())
2361       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2362     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2363       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2364     if (TargetDecl->hasAttr<ConvergentAttr>())
2365       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2366 
2367     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2368       AddAttributesFromFunctionProtoType(
2369           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2370       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2371         // A sane operator new returns a non-aliasing pointer.
2372         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2373         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2374             (Kind == OO_New || Kind == OO_Array_New))
2375           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2376       }
2377       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2378       const bool IsVirtualCall = MD && MD->isVirtual();
2379       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2380       // virtual function. These attributes are not inherited by overloads.
2381       if (!(AttrOnCallSite && IsVirtualCall)) {
2382         if (Fn->isNoReturn())
2383           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2384         NBA = Fn->getAttr<NoBuiltinAttr>();
2385       }
2386     }
2387 
2388     if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) {
2389       // Only place nomerge attribute on call sites, never functions. This
2390       // allows it to work on indirect virtual function calls.
2391       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2392         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2393     }
2394 
2395     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2396     if (TargetDecl->hasAttr<ConstAttr>()) {
2397       FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none());
2398       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2399       // gcc specifies that 'const' functions have greater restrictions than
2400       // 'pure' functions, so they also cannot have infinite loops.
2401       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2402     } else if (TargetDecl->hasAttr<PureAttr>()) {
2403       FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly());
2404       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2405       // gcc specifies that 'pure' functions cannot have infinite loops.
2406       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2407     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2408       FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly());
2409       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2410     }
2411     if (TargetDecl->hasAttr<RestrictAttr>())
2412       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2413     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2414         !CodeGenOpts.NullPointerIsValid)
2415       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2416     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2417       FuncAttrs.addAttribute("no_caller_saved_registers");
2418     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2419       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2420     if (TargetDecl->hasAttr<LeafAttr>())
2421       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2422 
2423     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2424     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2425       std::optional<unsigned> NumElemsParam;
2426       if (AllocSize->getNumElemsParam().isValid())
2427         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2428       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2429                                  NumElemsParam);
2430     }
2431 
2432     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2433       if (getLangOpts().OpenCLVersion <= 120) {
2434         // OpenCL v1.2 Work groups are always uniform
2435         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2436       } else {
2437         // OpenCL v2.0 Work groups may be whether uniform or not.
2438         // '-cl-uniform-work-group-size' compile option gets a hint
2439         // to the compiler that the global work-size be a multiple of
2440         // the work-group size specified to clEnqueueNDRangeKernel
2441         // (i.e. work groups are uniform).
2442         FuncAttrs.addAttribute(
2443             "uniform-work-group-size",
2444             llvm::toStringRef(getLangOpts().OffloadUniformBlock));
2445       }
2446     }
2447 
2448     if (TargetDecl->hasAttr<CUDAGlobalAttr>() &&
2449         getLangOpts().OffloadUniformBlock)
2450       FuncAttrs.addAttribute("uniform-work-group-size", "true");
2451 
2452     if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>())
2453       FuncAttrs.addAttribute("aarch64_pstate_sm_body");
2454   }
2455 
2456   // Attach "no-builtins" attributes to:
2457   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2458   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2459   // The attributes can come from:
2460   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2461   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2462   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2463 
2464   // Collect function IR attributes based on global settiings.
2465   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2466 
2467   // Override some default IR attributes based on declaration-specific
2468   // information.
2469   if (TargetDecl) {
2470     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2471       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2472     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2473       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2474     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2475       FuncAttrs.removeAttribute("split-stack");
2476     if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2477       // A function "__attribute__((...))" overrides the command-line flag.
2478       auto Kind =
2479           TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2480       FuncAttrs.removeAttribute("zero-call-used-regs");
2481       FuncAttrs.addAttribute(
2482           "zero-call-used-regs",
2483           ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2484     }
2485 
2486     // Add NonLazyBind attribute to function declarations when -fno-plt
2487     // is used.
2488     // FIXME: what if we just haven't processed the function definition
2489     // yet, or if it's an external definition like C99 inline?
2490     if (CodeGenOpts.NoPLT) {
2491       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2492         if (!Fn->isDefined() && !AttrOnCallSite) {
2493           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2494         }
2495       }
2496     }
2497   }
2498 
2499   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2500   // functions with -funique-internal-linkage-names.
2501   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2502     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2503       if (!FD->isExternallyVisible())
2504         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2505                                "selected");
2506     }
2507   }
2508 
2509   // Collect non-call-site function IR attributes from declaration-specific
2510   // information.
2511   if (!AttrOnCallSite) {
2512     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2513       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2514 
2515     // Whether tail calls are enabled.
2516     auto shouldDisableTailCalls = [&] {
2517       // Should this be honored in getDefaultFunctionAttributes?
2518       if (CodeGenOpts.DisableTailCalls)
2519         return true;
2520 
2521       if (!TargetDecl)
2522         return false;
2523 
2524       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2525           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2526         return true;
2527 
2528       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2529         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2530           if (!BD->doesNotEscape())
2531             return true;
2532       }
2533 
2534       return false;
2535     };
2536     if (shouldDisableTailCalls())
2537       FuncAttrs.addAttribute("disable-tail-calls", "true");
2538 
2539     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2540     // handles these separately to set them based on the global defaults.
2541     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2542   }
2543 
2544   // Collect attributes from arguments and return values.
2545   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2546 
2547   QualType RetTy = FI.getReturnType();
2548   const ABIArgInfo &RetAI = FI.getReturnInfo();
2549   const llvm::DataLayout &DL = getDataLayout();
2550 
2551   // Determine if the return type could be partially undef
2552   if (CodeGenOpts.EnableNoundefAttrs &&
2553       HasStrictReturn(*this, RetTy, TargetDecl)) {
2554     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2555         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2556       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2557   }
2558 
2559   switch (RetAI.getKind()) {
2560   case ABIArgInfo::Extend:
2561     if (RetAI.isSignExt())
2562       RetAttrs.addAttribute(llvm::Attribute::SExt);
2563     else
2564       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2565     [[fallthrough]];
2566   case ABIArgInfo::Direct:
2567     if (RetAI.getInReg())
2568       RetAttrs.addAttribute(llvm::Attribute::InReg);
2569 
2570     if (canApplyNoFPClass(RetAI, RetTy, true))
2571       RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2572 
2573     break;
2574   case ABIArgInfo::Ignore:
2575     break;
2576 
2577   case ABIArgInfo::InAlloca:
2578   case ABIArgInfo::Indirect: {
2579     // inalloca and sret disable readnone and readonly
2580     AddPotentialArgAccess();
2581     break;
2582   }
2583 
2584   case ABIArgInfo::CoerceAndExpand:
2585     break;
2586 
2587   case ABIArgInfo::Expand:
2588   case ABIArgInfo::IndirectAliased:
2589     llvm_unreachable("Invalid ABI kind for return argument");
2590   }
2591 
2592   if (!IsThunk) {
2593     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2594     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2595       QualType PTy = RefTy->getPointeeType();
2596       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2597         RetAttrs.addDereferenceableAttr(
2598             getMinimumObjectSize(PTy).getQuantity());
2599       if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2600           !CodeGenOpts.NullPointerIsValid)
2601         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2602       if (PTy->isObjectType()) {
2603         llvm::Align Alignment =
2604             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2605         RetAttrs.addAlignmentAttr(Alignment);
2606       }
2607     }
2608   }
2609 
2610   bool hasUsedSRet = false;
2611   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2612 
2613   // Attach attributes to sret.
2614   if (IRFunctionArgs.hasSRetArg()) {
2615     llvm::AttrBuilder SRETAttrs(getLLVMContext());
2616     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2617     SRETAttrs.addAttribute(llvm::Attribute::Writable);
2618     SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind);
2619     hasUsedSRet = true;
2620     if (RetAI.getInReg())
2621       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2622     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2623     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2624         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2625   }
2626 
2627   // Attach attributes to inalloca argument.
2628   if (IRFunctionArgs.hasInallocaArg()) {
2629     llvm::AttrBuilder Attrs(getLLVMContext());
2630     Attrs.addInAllocaAttr(FI.getArgStruct());
2631     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2632         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2633   }
2634 
2635   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2636   // unless this is a thunk function.
2637   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2638   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2639       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2640     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2641 
2642     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2643 
2644     llvm::AttrBuilder Attrs(getLLVMContext());
2645 
2646     QualType ThisTy =
2647         FI.arg_begin()->type.getTypePtr()->getPointeeType();
2648 
2649     if (!CodeGenOpts.NullPointerIsValid &&
2650         getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2651       Attrs.addAttribute(llvm::Attribute::NonNull);
2652       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2653     } else {
2654       // FIXME dereferenceable should be correct here, regardless of
2655       // NullPointerIsValid. However, dereferenceable currently does not always
2656       // respect NullPointerIsValid and may imply nonnull and break the program.
2657       // See https://reviews.llvm.org/D66618 for discussions.
2658       Attrs.addDereferenceableOrNullAttr(
2659           getMinimumObjectSize(
2660               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2661               .getQuantity());
2662     }
2663 
2664     llvm::Align Alignment =
2665         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2666                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2667             .getAsAlign();
2668     Attrs.addAlignmentAttr(Alignment);
2669 
2670     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2671   }
2672 
2673   unsigned ArgNo = 0;
2674   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2675                                           E = FI.arg_end();
2676        I != E; ++I, ++ArgNo) {
2677     QualType ParamType = I->type;
2678     const ABIArgInfo &AI = I->info;
2679     llvm::AttrBuilder Attrs(getLLVMContext());
2680 
2681     // Add attribute for padding argument, if necessary.
2682     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2683       if (AI.getPaddingInReg()) {
2684         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2685             llvm::AttributeSet::get(
2686                 getLLVMContext(),
2687                 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2688       }
2689     }
2690 
2691     // Decide whether the argument we're handling could be partially undef
2692     if (CodeGenOpts.EnableNoundefAttrs &&
2693         DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2694       Attrs.addAttribute(llvm::Attribute::NoUndef);
2695     }
2696 
2697     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2698     // have the corresponding parameter variable.  It doesn't make
2699     // sense to do it here because parameters are so messed up.
2700     switch (AI.getKind()) {
2701     case ABIArgInfo::Extend:
2702       if (AI.isSignExt())
2703         Attrs.addAttribute(llvm::Attribute::SExt);
2704       else
2705         Attrs.addAttribute(llvm::Attribute::ZExt);
2706       [[fallthrough]];
2707     case ABIArgInfo::Direct:
2708       if (ArgNo == 0 && FI.isChainCall())
2709         Attrs.addAttribute(llvm::Attribute::Nest);
2710       else if (AI.getInReg())
2711         Attrs.addAttribute(llvm::Attribute::InReg);
2712       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2713 
2714       if (canApplyNoFPClass(AI, ParamType, false))
2715         Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2716       break;
2717     case ABIArgInfo::Indirect: {
2718       if (AI.getInReg())
2719         Attrs.addAttribute(llvm::Attribute::InReg);
2720 
2721       if (AI.getIndirectByVal())
2722         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2723 
2724       auto *Decl = ParamType->getAsRecordDecl();
2725       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2726           Decl->getArgPassingRestrictions() ==
2727               RecordArgPassingKind::CanPassInRegs)
2728         // When calling the function, the pointer passed in will be the only
2729         // reference to the underlying object. Mark it accordingly.
2730         Attrs.addAttribute(llvm::Attribute::NoAlias);
2731 
2732       // TODO: We could add the byref attribute if not byval, but it would
2733       // require updating many testcases.
2734 
2735       CharUnits Align = AI.getIndirectAlign();
2736 
2737       // In a byval argument, it is important that the required
2738       // alignment of the type is honored, as LLVM might be creating a
2739       // *new* stack object, and needs to know what alignment to give
2740       // it. (Sometimes it can deduce a sensible alignment on its own,
2741       // but not if clang decides it must emit a packed struct, or the
2742       // user specifies increased alignment requirements.)
2743       //
2744       // This is different from indirect *not* byval, where the object
2745       // exists already, and the align attribute is purely
2746       // informative.
2747       assert(!Align.isZero());
2748 
2749       // For now, only add this when we have a byval argument.
2750       // TODO: be less lazy about updating test cases.
2751       if (AI.getIndirectByVal())
2752         Attrs.addAlignmentAttr(Align.getQuantity());
2753 
2754       // byval disables readnone and readonly.
2755       AddPotentialArgAccess();
2756       break;
2757     }
2758     case ABIArgInfo::IndirectAliased: {
2759       CharUnits Align = AI.getIndirectAlign();
2760       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2761       Attrs.addAlignmentAttr(Align.getQuantity());
2762       break;
2763     }
2764     case ABIArgInfo::Ignore:
2765     case ABIArgInfo::Expand:
2766     case ABIArgInfo::CoerceAndExpand:
2767       break;
2768 
2769     case ABIArgInfo::InAlloca:
2770       // inalloca disables readnone and readonly.
2771       AddPotentialArgAccess();
2772       continue;
2773     }
2774 
2775     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2776       QualType PTy = RefTy->getPointeeType();
2777       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2778         Attrs.addDereferenceableAttr(
2779             getMinimumObjectSize(PTy).getQuantity());
2780       if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2781           !CodeGenOpts.NullPointerIsValid)
2782         Attrs.addAttribute(llvm::Attribute::NonNull);
2783       if (PTy->isObjectType()) {
2784         llvm::Align Alignment =
2785             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2786         Attrs.addAlignmentAttr(Alignment);
2787       }
2788     }
2789 
2790     // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2791     // > For arguments to a __kernel function declared to be a pointer to a
2792     // > data type, the OpenCL compiler can assume that the pointee is always
2793     // > appropriately aligned as required by the data type.
2794     if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2795         ParamType->isPointerType()) {
2796       QualType PTy = ParamType->getPointeeType();
2797       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2798         llvm::Align Alignment =
2799             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2800         Attrs.addAlignmentAttr(Alignment);
2801       }
2802     }
2803 
2804     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2805     case ParameterABI::Ordinary:
2806       break;
2807 
2808     case ParameterABI::SwiftIndirectResult: {
2809       // Add 'sret' if we haven't already used it for something, but
2810       // only if the result is void.
2811       if (!hasUsedSRet && RetTy->isVoidType()) {
2812         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2813         hasUsedSRet = true;
2814       }
2815 
2816       // Add 'noalias' in either case.
2817       Attrs.addAttribute(llvm::Attribute::NoAlias);
2818 
2819       // Add 'dereferenceable' and 'alignment'.
2820       auto PTy = ParamType->getPointeeType();
2821       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2822         auto info = getContext().getTypeInfoInChars(PTy);
2823         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2824         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2825       }
2826       break;
2827     }
2828 
2829     case ParameterABI::SwiftErrorResult:
2830       Attrs.addAttribute(llvm::Attribute::SwiftError);
2831       break;
2832 
2833     case ParameterABI::SwiftContext:
2834       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2835       break;
2836 
2837     case ParameterABI::SwiftAsyncContext:
2838       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2839       break;
2840     }
2841 
2842     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2843       Attrs.addAttribute(llvm::Attribute::NoCapture);
2844 
2845     if (Attrs.hasAttributes()) {
2846       unsigned FirstIRArg, NumIRArgs;
2847       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2848       for (unsigned i = 0; i < NumIRArgs; i++)
2849         ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2850             getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2851     }
2852   }
2853   assert(ArgNo == FI.arg_size());
2854 
2855   AttrList = llvm::AttributeList::get(
2856       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2857       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2858 }
2859 
2860 /// An argument came in as a promoted argument; demote it back to its
2861 /// declared type.
2862 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2863                                          const VarDecl *var,
2864                                          llvm::Value *value) {
2865   llvm::Type *varType = CGF.ConvertType(var->getType());
2866 
2867   // This can happen with promotions that actually don't change the
2868   // underlying type, like the enum promotions.
2869   if (value->getType() == varType) return value;
2870 
2871   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2872          && "unexpected promotion type");
2873 
2874   if (isa<llvm::IntegerType>(varType))
2875     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2876 
2877   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2878 }
2879 
2880 /// Returns the attribute (either parameter attribute, or function
2881 /// attribute), which declares argument ArgNo to be non-null.
2882 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2883                                          QualType ArgType, unsigned ArgNo) {
2884   // FIXME: __attribute__((nonnull)) can also be applied to:
2885   //   - references to pointers, where the pointee is known to be
2886   //     nonnull (apparently a Clang extension)
2887   //   - transparent unions containing pointers
2888   // In the former case, LLVM IR cannot represent the constraint. In
2889   // the latter case, we have no guarantee that the transparent union
2890   // is in fact passed as a pointer.
2891   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2892     return nullptr;
2893   // First, check attribute on parameter itself.
2894   if (PVD) {
2895     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2896       return ParmNNAttr;
2897   }
2898   // Check function attributes.
2899   if (!FD)
2900     return nullptr;
2901   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2902     if (NNAttr->isNonNull(ArgNo))
2903       return NNAttr;
2904   }
2905   return nullptr;
2906 }
2907 
2908 namespace {
2909   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2910     Address Temp;
2911     Address Arg;
2912     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2913     void Emit(CodeGenFunction &CGF, Flags flags) override {
2914       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2915       CGF.Builder.CreateStore(errorValue, Arg);
2916     }
2917   };
2918 }
2919 
2920 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2921                                          llvm::Function *Fn,
2922                                          const FunctionArgList &Args) {
2923   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2924     // Naked functions don't have prologues.
2925     return;
2926 
2927   // If this is an implicit-return-zero function, go ahead and
2928   // initialize the return value.  TODO: it might be nice to have
2929   // a more general mechanism for this that didn't require synthesized
2930   // return statements.
2931   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2932     if (FD->hasImplicitReturnZero()) {
2933       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2934       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2935       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2936       Builder.CreateStore(Zero, ReturnValue);
2937     }
2938   }
2939 
2940   // FIXME: We no longer need the types from FunctionArgList; lift up and
2941   // simplify.
2942 
2943   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2944   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2945 
2946   // If we're using inalloca, all the memory arguments are GEPs off of the last
2947   // parameter, which is a pointer to the complete memory area.
2948   Address ArgStruct = Address::invalid();
2949   if (IRFunctionArgs.hasInallocaArg())
2950     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2951                         FI.getArgStruct(), FI.getArgStructAlignment());
2952 
2953   // Name the struct return parameter.
2954   if (IRFunctionArgs.hasSRetArg()) {
2955     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2956     AI->setName("agg.result");
2957     AI->addAttr(llvm::Attribute::NoAlias);
2958   }
2959 
2960   // Track if we received the parameter as a pointer (indirect, byval, or
2961   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2962   // into a local alloca for us.
2963   SmallVector<ParamValue, 16> ArgVals;
2964   ArgVals.reserve(Args.size());
2965 
2966   // Create a pointer value for every parameter declaration.  This usually
2967   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2968   // any cleanups or do anything that might unwind.  We do that separately, so
2969   // we can push the cleanups in the correct order for the ABI.
2970   assert(FI.arg_size() == Args.size() &&
2971          "Mismatch between function signature & arguments.");
2972   unsigned ArgNo = 0;
2973   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2974   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2975        i != e; ++i, ++info_it, ++ArgNo) {
2976     const VarDecl *Arg = *i;
2977     const ABIArgInfo &ArgI = info_it->info;
2978 
2979     bool isPromoted =
2980       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2981     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2982     // the parameter is promoted. In this case we convert to
2983     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2984     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2985     assert(hasScalarEvaluationKind(Ty) ==
2986            hasScalarEvaluationKind(Arg->getType()));
2987 
2988     unsigned FirstIRArg, NumIRArgs;
2989     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2990 
2991     switch (ArgI.getKind()) {
2992     case ABIArgInfo::InAlloca: {
2993       assert(NumIRArgs == 0);
2994       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2995       Address V =
2996           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2997       if (ArgI.getInAllocaIndirect())
2998         V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
2999                     getContext().getTypeAlignInChars(Ty));
3000       ArgVals.push_back(ParamValue::forIndirect(V));
3001       break;
3002     }
3003 
3004     case ABIArgInfo::Indirect:
3005     case ABIArgInfo::IndirectAliased: {
3006       assert(NumIRArgs == 1);
3007       Address ParamAddr = makeNaturalAddressForPointer(
3008           Fn->getArg(FirstIRArg), Ty, ArgI.getIndirectAlign(), false, nullptr,
3009           nullptr, KnownNonNull);
3010 
3011       if (!hasScalarEvaluationKind(Ty)) {
3012         // Aggregates and complex variables are accessed by reference. All we
3013         // need to do is realign the value, if requested. Also, if the address
3014         // may be aliased, copy it to ensure that the parameter variable is
3015         // mutable and has a unique adress, as C requires.
3016         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
3017           RawAddress AlignedTemp = CreateMemTemp(Ty, "coerce");
3018 
3019           // Copy from the incoming argument pointer to the temporary with the
3020           // appropriate alignment.
3021           //
3022           // FIXME: We should have a common utility for generating an aggregate
3023           // copy.
3024           CharUnits Size = getContext().getTypeSizeInChars(Ty);
3025           Builder.CreateMemCpy(
3026               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
3027               ParamAddr.emitRawPointer(*this),
3028               ParamAddr.getAlignment().getAsAlign(),
3029               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
3030           ParamAddr = AlignedTemp;
3031         }
3032         ArgVals.push_back(ParamValue::forIndirect(ParamAddr));
3033       } else {
3034         // Load scalar value from indirect argument.
3035         llvm::Value *V =
3036             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
3037 
3038         if (isPromoted)
3039           V = emitArgumentDemotion(*this, Arg, V);
3040         ArgVals.push_back(ParamValue::forDirect(V));
3041       }
3042       break;
3043     }
3044 
3045     case ABIArgInfo::Extend:
3046     case ABIArgInfo::Direct: {
3047       auto AI = Fn->getArg(FirstIRArg);
3048       llvm::Type *LTy = ConvertType(Arg->getType());
3049 
3050       // Prepare parameter attributes. So far, only attributes for pointer
3051       // parameters are prepared. See
3052       // http://llvm.org/docs/LangRef.html#paramattrs.
3053       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
3054           ArgI.getCoerceToType()->isPointerTy()) {
3055         assert(NumIRArgs == 1);
3056 
3057         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
3058           // Set `nonnull` attribute if any.
3059           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
3060                              PVD->getFunctionScopeIndex()) &&
3061               !CGM.getCodeGenOpts().NullPointerIsValid)
3062             AI->addAttr(llvm::Attribute::NonNull);
3063 
3064           QualType OTy = PVD->getOriginalType();
3065           if (const auto *ArrTy =
3066               getContext().getAsConstantArrayType(OTy)) {
3067             // A C99 array parameter declaration with the static keyword also
3068             // indicates dereferenceability, and if the size is constant we can
3069             // use the dereferenceable attribute (which requires the size in
3070             // bytes).
3071             if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3072               QualType ETy = ArrTy->getElementType();
3073               llvm::Align Alignment =
3074                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3075               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3076               uint64_t ArrSize = ArrTy->getZExtSize();
3077               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
3078                   ArrSize) {
3079                 llvm::AttrBuilder Attrs(getLLVMContext());
3080                 Attrs.addDereferenceableAttr(
3081                     getContext().getTypeSizeInChars(ETy).getQuantity() *
3082                     ArrSize);
3083                 AI->addAttrs(Attrs);
3084               } else if (getContext().getTargetInfo().getNullPointerValue(
3085                              ETy.getAddressSpace()) == 0 &&
3086                          !CGM.getCodeGenOpts().NullPointerIsValid) {
3087                 AI->addAttr(llvm::Attribute::NonNull);
3088               }
3089             }
3090           } else if (const auto *ArrTy =
3091                      getContext().getAsVariableArrayType(OTy)) {
3092             // For C99 VLAs with the static keyword, we don't know the size so
3093             // we can't use the dereferenceable attribute, but in addrspace(0)
3094             // we know that it must be nonnull.
3095             if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3096               QualType ETy = ArrTy->getElementType();
3097               llvm::Align Alignment =
3098                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3099               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3100               if (!getTypes().getTargetAddressSpace(ETy) &&
3101                   !CGM.getCodeGenOpts().NullPointerIsValid)
3102                 AI->addAttr(llvm::Attribute::NonNull);
3103             }
3104           }
3105 
3106           // Set `align` attribute if any.
3107           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
3108           if (!AVAttr)
3109             if (const auto *TOTy = OTy->getAs<TypedefType>())
3110               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
3111           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
3112             // If alignment-assumption sanitizer is enabled, we do *not* add
3113             // alignment attribute here, but emit normal alignment assumption,
3114             // so the UBSAN check could function.
3115             llvm::ConstantInt *AlignmentCI =
3116                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
3117             uint64_t AlignmentInt =
3118                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
3119             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
3120               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
3121               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
3122                   llvm::Align(AlignmentInt)));
3123             }
3124           }
3125         }
3126 
3127         // Set 'noalias' if an argument type has the `restrict` qualifier.
3128         if (Arg->getType().isRestrictQualified())
3129           AI->addAttr(llvm::Attribute::NoAlias);
3130       }
3131 
3132       // Prepare the argument value. If we have the trivial case, handle it
3133       // with no muss and fuss.
3134       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
3135           ArgI.getCoerceToType() == ConvertType(Ty) &&
3136           ArgI.getDirectOffset() == 0) {
3137         assert(NumIRArgs == 1);
3138 
3139         // LLVM expects swifterror parameters to be used in very restricted
3140         // ways.  Copy the value into a less-restricted temporary.
3141         llvm::Value *V = AI;
3142         if (FI.getExtParameterInfo(ArgNo).getABI()
3143               == ParameterABI::SwiftErrorResult) {
3144           QualType pointeeTy = Ty->getPointeeType();
3145           assert(pointeeTy->isPointerType());
3146           RawAddress temp =
3147               CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3148           Address arg = makeNaturalAddressForPointer(
3149               V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy));
3150           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
3151           Builder.CreateStore(incomingErrorValue, temp);
3152           V = temp.getPointer();
3153 
3154           // Push a cleanup to copy the value back at the end of the function.
3155           // The convention does not guarantee that the value will be written
3156           // back if the function exits with an unwind exception.
3157           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
3158         }
3159 
3160         // Ensure the argument is the correct type.
3161         if (V->getType() != ArgI.getCoerceToType())
3162           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
3163 
3164         if (isPromoted)
3165           V = emitArgumentDemotion(*this, Arg, V);
3166 
3167         // Because of merging of function types from multiple decls it is
3168         // possible for the type of an argument to not match the corresponding
3169         // type in the function type. Since we are codegening the callee
3170         // in here, add a cast to the argument type.
3171         llvm::Type *LTy = ConvertType(Arg->getType());
3172         if (V->getType() != LTy)
3173           V = Builder.CreateBitCast(V, LTy);
3174 
3175         ArgVals.push_back(ParamValue::forDirect(V));
3176         break;
3177       }
3178 
3179       // VLST arguments are coerced to VLATs at the function boundary for
3180       // ABI consistency. If this is a VLST that was coerced to
3181       // a VLAT at the function boundary and the types match up, use
3182       // llvm.vector.extract to convert back to the original VLST.
3183       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
3184         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
3185         if (auto *VecTyFrom =
3186                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
3187           // If we are casting a scalable i1 predicate vector to a fixed i8
3188           // vector, bitcast the source and use a vector extract.
3189           if (VecTyFrom->getElementType()->isIntegerTy(1) &&
3190               VecTyFrom->getElementCount().isKnownMultipleOf(8) &&
3191               VecTyTo->getElementType() == Builder.getInt8Ty()) {
3192             VecTyFrom = llvm::ScalableVectorType::get(
3193                 VecTyTo->getElementType(),
3194                 VecTyFrom->getElementCount().getKnownMinValue() / 8);
3195             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
3196           }
3197           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
3198             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
3199 
3200             assert(NumIRArgs == 1);
3201             Coerced->setName(Arg->getName() + ".coerce");
3202             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
3203                 VecTyTo, Coerced, Zero, "cast.fixed")));
3204             break;
3205           }
3206         }
3207       }
3208 
3209       llvm::StructType *STy =
3210           dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
3211       if (ArgI.isDirect() && !ArgI.getCanBeFlattened() && STy &&
3212           STy->getNumElements() > 1) {
3213         [[maybe_unused]] llvm::TypeSize StructSize =
3214             CGM.getDataLayout().getTypeAllocSize(STy);
3215         [[maybe_unused]] llvm::TypeSize PtrElementSize =
3216             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(Ty));
3217         if (STy->containsHomogeneousScalableVectorTypes()) {
3218           assert(StructSize == PtrElementSize &&
3219                  "Only allow non-fractional movement of structure with"
3220                  "homogeneous scalable vector type");
3221 
3222           ArgVals.push_back(ParamValue::forDirect(AI));
3223           break;
3224         }
3225       }
3226 
3227       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
3228                                      Arg->getName());
3229 
3230       // Pointer to store into.
3231       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
3232 
3233       // Fast-isel and the optimizer generally like scalar values better than
3234       // FCAs, so we flatten them if this is safe to do for this argument.
3235       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
3236           STy->getNumElements() > 1) {
3237         llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy);
3238         llvm::TypeSize PtrElementSize =
3239             CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType());
3240         if (StructSize.isScalable()) {
3241           assert(STy->containsHomogeneousScalableVectorTypes() &&
3242                  "ABI only supports structure with homogeneous scalable vector "
3243                  "type");
3244           assert(StructSize == PtrElementSize &&
3245                  "Only allow non-fractional movement of structure with"
3246                  "homogeneous scalable vector type");
3247           assert(STy->getNumElements() == NumIRArgs);
3248 
3249           llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy);
3250           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3251             auto *AI = Fn->getArg(FirstIRArg + i);
3252             AI->setName(Arg->getName() + ".coerce" + Twine(i));
3253             LoadedStructValue =
3254                 Builder.CreateInsertValue(LoadedStructValue, AI, i);
3255           }
3256 
3257           Builder.CreateStore(LoadedStructValue, Ptr);
3258         } else {
3259           uint64_t SrcSize = StructSize.getFixedValue();
3260           uint64_t DstSize = PtrElementSize.getFixedValue();
3261 
3262           Address AddrToStoreInto = Address::invalid();
3263           if (SrcSize <= DstSize) {
3264             AddrToStoreInto = Ptr.withElementType(STy);
3265           } else {
3266             AddrToStoreInto =
3267                 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
3268           }
3269 
3270           assert(STy->getNumElements() == NumIRArgs);
3271           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3272             auto AI = Fn->getArg(FirstIRArg + i);
3273             AI->setName(Arg->getName() + ".coerce" + Twine(i));
3274             Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
3275             Builder.CreateStore(AI, EltPtr);
3276           }
3277 
3278           if (SrcSize > DstSize) {
3279             Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
3280           }
3281         }
3282       } else {
3283         // Simple case, just do a coerced store of the argument into the alloca.
3284         assert(NumIRArgs == 1);
3285         auto AI = Fn->getArg(FirstIRArg);
3286         AI->setName(Arg->getName() + ".coerce");
3287         CreateCoercedStore(
3288             AI, Ptr,
3289             llvm::TypeSize::getFixed(
3290                 getContext().getTypeSizeInChars(Ty).getQuantity() -
3291                 ArgI.getDirectOffset()),
3292             /*DstIsVolatile=*/false);
3293       }
3294 
3295       // Match to what EmitParmDecl is expecting for this type.
3296       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
3297         llvm::Value *V =
3298             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
3299         if (isPromoted)
3300           V = emitArgumentDemotion(*this, Arg, V);
3301         ArgVals.push_back(ParamValue::forDirect(V));
3302       } else {
3303         ArgVals.push_back(ParamValue::forIndirect(Alloca));
3304       }
3305       break;
3306     }
3307 
3308     case ABIArgInfo::CoerceAndExpand: {
3309       // Reconstruct into a temporary.
3310       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3311       ArgVals.push_back(ParamValue::forIndirect(alloca));
3312 
3313       auto coercionType = ArgI.getCoerceAndExpandType();
3314       alloca = alloca.withElementType(coercionType);
3315 
3316       unsigned argIndex = FirstIRArg;
3317       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3318         llvm::Type *eltType = coercionType->getElementType(i);
3319         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3320           continue;
3321 
3322         auto eltAddr = Builder.CreateStructGEP(alloca, i);
3323         auto elt = Fn->getArg(argIndex++);
3324         Builder.CreateStore(elt, eltAddr);
3325       }
3326       assert(argIndex == FirstIRArg + NumIRArgs);
3327       break;
3328     }
3329 
3330     case ABIArgInfo::Expand: {
3331       // If this structure was expanded into multiple arguments then
3332       // we need to create a temporary and reconstruct it from the
3333       // arguments.
3334       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3335       LValue LV = MakeAddrLValue(Alloca, Ty);
3336       ArgVals.push_back(ParamValue::forIndirect(Alloca));
3337 
3338       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3339       ExpandTypeFromArgs(Ty, LV, FnArgIter);
3340       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3341       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3342         auto AI = Fn->getArg(FirstIRArg + i);
3343         AI->setName(Arg->getName() + "." + Twine(i));
3344       }
3345       break;
3346     }
3347 
3348     case ABIArgInfo::Ignore:
3349       assert(NumIRArgs == 0);
3350       // Initialize the local variable appropriately.
3351       if (!hasScalarEvaluationKind(Ty)) {
3352         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3353       } else {
3354         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3355         ArgVals.push_back(ParamValue::forDirect(U));
3356       }
3357       break;
3358     }
3359   }
3360 
3361   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3362     for (int I = Args.size() - 1; I >= 0; --I)
3363       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3364   } else {
3365     for (unsigned I = 0, E = Args.size(); I != E; ++I)
3366       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3367   }
3368 }
3369 
3370 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3371   while (insn->use_empty()) {
3372     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3373     if (!bitcast) return;
3374 
3375     // This is "safe" because we would have used a ConstantExpr otherwise.
3376     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3377     bitcast->eraseFromParent();
3378   }
3379 }
3380 
3381 /// Try to emit a fused autorelease of a return result.
3382 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3383                                                     llvm::Value *result) {
3384   // We must be immediately followed the cast.
3385   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3386   if (BB->empty()) return nullptr;
3387   if (&BB->back() != result) return nullptr;
3388 
3389   llvm::Type *resultType = result->getType();
3390 
3391   // result is in a BasicBlock and is therefore an Instruction.
3392   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3393 
3394   SmallVector<llvm::Instruction *, 4> InstsToKill;
3395 
3396   // Look for:
3397   //  %generator = bitcast %type1* %generator2 to %type2*
3398   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3399     // We would have emitted this as a constant if the operand weren't
3400     // an Instruction.
3401     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3402 
3403     // Require the generator to be immediately followed by the cast.
3404     if (generator->getNextNode() != bitcast)
3405       return nullptr;
3406 
3407     InstsToKill.push_back(bitcast);
3408   }
3409 
3410   // Look for:
3411   //   %generator = call i8* @objc_retain(i8* %originalResult)
3412   // or
3413   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3414   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3415   if (!call) return nullptr;
3416 
3417   bool doRetainAutorelease;
3418 
3419   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3420     doRetainAutorelease = true;
3421   } else if (call->getCalledOperand() ==
3422              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3423     doRetainAutorelease = false;
3424 
3425     // If we emitted an assembly marker for this call (and the
3426     // ARCEntrypoints field should have been set if so), go looking
3427     // for that call.  If we can't find it, we can't do this
3428     // optimization.  But it should always be the immediately previous
3429     // instruction, unless we needed bitcasts around the call.
3430     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3431       llvm::Instruction *prev = call->getPrevNode();
3432       assert(prev);
3433       if (isa<llvm::BitCastInst>(prev)) {
3434         prev = prev->getPrevNode();
3435         assert(prev);
3436       }
3437       assert(isa<llvm::CallInst>(prev));
3438       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3439              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3440       InstsToKill.push_back(prev);
3441     }
3442   } else {
3443     return nullptr;
3444   }
3445 
3446   result = call->getArgOperand(0);
3447   InstsToKill.push_back(call);
3448 
3449   // Keep killing bitcasts, for sanity.  Note that we no longer care
3450   // about precise ordering as long as there's exactly one use.
3451   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3452     if (!bitcast->hasOneUse()) break;
3453     InstsToKill.push_back(bitcast);
3454     result = bitcast->getOperand(0);
3455   }
3456 
3457   // Delete all the unnecessary instructions, from latest to earliest.
3458   for (auto *I : InstsToKill)
3459     I->eraseFromParent();
3460 
3461   // Do the fused retain/autorelease if we were asked to.
3462   if (doRetainAutorelease)
3463     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3464 
3465   // Cast back to the result type.
3466   return CGF.Builder.CreateBitCast(result, resultType);
3467 }
3468 
3469 /// If this is a +1 of the value of an immutable 'self', remove it.
3470 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3471                                           llvm::Value *result) {
3472   // This is only applicable to a method with an immutable 'self'.
3473   const ObjCMethodDecl *method =
3474     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3475   if (!method) return nullptr;
3476   const VarDecl *self = method->getSelfDecl();
3477   if (!self->getType().isConstQualified()) return nullptr;
3478 
3479   // Look for a retain call. Note: stripPointerCasts looks through returned arg
3480   // functions, which would cause us to miss the retain.
3481   llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result);
3482   if (!retainCall || retainCall->getCalledOperand() !=
3483                          CGF.CGM.getObjCEntrypoints().objc_retain)
3484     return nullptr;
3485 
3486   // Look for an ordinary load of 'self'.
3487   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3488   llvm::LoadInst *load =
3489     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3490   if (!load || load->isAtomic() || load->isVolatile() ||
3491       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getBasePointer())
3492     return nullptr;
3493 
3494   // Okay!  Burn it all down.  This relies for correctness on the
3495   // assumption that the retain is emitted as part of the return and
3496   // that thereafter everything is used "linearly".
3497   llvm::Type *resultType = result->getType();
3498   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3499   assert(retainCall->use_empty());
3500   retainCall->eraseFromParent();
3501   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3502 
3503   return CGF.Builder.CreateBitCast(load, resultType);
3504 }
3505 
3506 /// Emit an ARC autorelease of the result of a function.
3507 ///
3508 /// \return the value to actually return from the function
3509 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3510                                             llvm::Value *result) {
3511   // If we're returning 'self', kill the initial retain.  This is a
3512   // heuristic attempt to "encourage correctness" in the really unfortunate
3513   // case where we have a return of self during a dealloc and we desperately
3514   // need to avoid the possible autorelease.
3515   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3516     return self;
3517 
3518   // At -O0, try to emit a fused retain/autorelease.
3519   if (CGF.shouldUseFusedARCCalls())
3520     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3521       return fused;
3522 
3523   return CGF.EmitARCAutoreleaseReturnValue(result);
3524 }
3525 
3526 /// Heuristically search for a dominating store to the return-value slot.
3527 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3528   llvm::Value *ReturnValuePtr = CGF.ReturnValue.getBasePointer();
3529 
3530   // Check if a User is a store which pointerOperand is the ReturnValue.
3531   // We are looking for stores to the ReturnValue, not for stores of the
3532   // ReturnValue to some other location.
3533   auto GetStoreIfValid = [&CGF,
3534                           ReturnValuePtr](llvm::User *U) -> llvm::StoreInst * {
3535     auto *SI = dyn_cast<llvm::StoreInst>(U);
3536     if (!SI || SI->getPointerOperand() != ReturnValuePtr ||
3537         SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
3538       return nullptr;
3539     // These aren't actually possible for non-coerced returns, and we
3540     // only care about non-coerced returns on this code path.
3541     // All memory instructions inside __try block are volatile.
3542     assert(!SI->isAtomic() &&
3543            (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry()));
3544     return SI;
3545   };
3546   // If there are multiple uses of the return-value slot, just check
3547   // for something immediately preceding the IP.  Sometimes this can
3548   // happen with how we generate implicit-returns; it can also happen
3549   // with noreturn cleanups.
3550   if (!ReturnValuePtr->hasOneUse()) {
3551     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3552     if (IP->empty()) return nullptr;
3553 
3554     // Look at directly preceding instruction, skipping bitcasts and lifetime
3555     // markers.
3556     for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
3557       if (isa<llvm::BitCastInst>(&I))
3558         continue;
3559       if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
3560         if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3561           continue;
3562 
3563       return GetStoreIfValid(&I);
3564     }
3565     return nullptr;
3566   }
3567 
3568   llvm::StoreInst *store = GetStoreIfValid(ReturnValuePtr->user_back());
3569   if (!store) return nullptr;
3570 
3571   // Now do a first-and-dirty dominance check: just walk up the
3572   // single-predecessors chain from the current insertion point.
3573   llvm::BasicBlock *StoreBB = store->getParent();
3574   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3575   llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs;
3576   while (IP != StoreBB) {
3577     if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor()))
3578       return nullptr;
3579   }
3580 
3581   // Okay, the store's basic block dominates the insertion point; we
3582   // can do our thing.
3583   return store;
3584 }
3585 
3586 // Helper functions for EmitCMSEClearRecord
3587 
3588 // Set the bits corresponding to a field having width `BitWidth` and located at
3589 // offset `BitOffset` (from the least significant bit) within a storage unit of
3590 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3591 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3592 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3593                         int BitWidth, int CharWidth) {
3594   assert(CharWidth <= 64);
3595   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3596 
3597   int Pos = 0;
3598   if (BitOffset >= CharWidth) {
3599     Pos += BitOffset / CharWidth;
3600     BitOffset = BitOffset % CharWidth;
3601   }
3602 
3603   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3604   if (BitOffset + BitWidth >= CharWidth) {
3605     Bits[Pos++] |= (Used << BitOffset) & Used;
3606     BitWidth -= CharWidth - BitOffset;
3607     BitOffset = 0;
3608   }
3609 
3610   while (BitWidth >= CharWidth) {
3611     Bits[Pos++] = Used;
3612     BitWidth -= CharWidth;
3613   }
3614 
3615   if (BitWidth > 0)
3616     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3617 }
3618 
3619 // Set the bits corresponding to a field having width `BitWidth` and located at
3620 // offset `BitOffset` (from the least significant bit) within a storage unit of
3621 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3622 // `Bits` corresponds to one target byte. Use target endian layout.
3623 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3624                         int StorageSize, int BitOffset, int BitWidth,
3625                         int CharWidth, bool BigEndian) {
3626 
3627   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3628   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3629 
3630   if (BigEndian)
3631     std::reverse(TmpBits.begin(), TmpBits.end());
3632 
3633   for (uint64_t V : TmpBits)
3634     Bits[StorageOffset++] |= V;
3635 }
3636 
3637 static void setUsedBits(CodeGenModule &, QualType, int,
3638                         SmallVectorImpl<uint64_t> &);
3639 
3640 // Set the bits in `Bits`, which correspond to the value representations of
3641 // the actual members of the record type `RTy`. Note that this function does
3642 // not handle base classes, virtual tables, etc, since they cannot happen in
3643 // CMSE function arguments or return. The bit mask corresponds to the target
3644 // memory layout, i.e. it's endian dependent.
3645 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3646                         SmallVectorImpl<uint64_t> &Bits) {
3647   ASTContext &Context = CGM.getContext();
3648   int CharWidth = Context.getCharWidth();
3649   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3650   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3651   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3652 
3653   int Idx = 0;
3654   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3655     const FieldDecl *F = *I;
3656 
3657     if (F->isUnnamedBitField() || F->isZeroLengthBitField(Context) ||
3658         F->getType()->isIncompleteArrayType())
3659       continue;
3660 
3661     if (F->isBitField()) {
3662       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3663       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3664                   BFI.StorageSize / CharWidth, BFI.Offset,
3665                   BFI.Size, CharWidth,
3666                   CGM.getDataLayout().isBigEndian());
3667       continue;
3668     }
3669 
3670     setUsedBits(CGM, F->getType(),
3671                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3672   }
3673 }
3674 
3675 // Set the bits in `Bits`, which correspond to the value representations of
3676 // the elements of an array type `ATy`.
3677 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3678                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3679   const ASTContext &Context = CGM.getContext();
3680 
3681   QualType ETy = Context.getBaseElementType(ATy);
3682   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3683   SmallVector<uint64_t, 4> TmpBits(Size);
3684   setUsedBits(CGM, ETy, 0, TmpBits);
3685 
3686   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3687     auto Src = TmpBits.begin();
3688     auto Dst = Bits.begin() + Offset + I * Size;
3689     for (int J = 0; J < Size; ++J)
3690       *Dst++ |= *Src++;
3691   }
3692 }
3693 
3694 // Set the bits in `Bits`, which correspond to the value representations of
3695 // the type `QTy`.
3696 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3697                         SmallVectorImpl<uint64_t> &Bits) {
3698   if (const auto *RTy = QTy->getAs<RecordType>())
3699     return setUsedBits(CGM, RTy, Offset, Bits);
3700 
3701   ASTContext &Context = CGM.getContext();
3702   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3703     return setUsedBits(CGM, ATy, Offset, Bits);
3704 
3705   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3706   if (Size <= 0)
3707     return;
3708 
3709   std::fill_n(Bits.begin() + Offset, Size,
3710               (uint64_t(1) << Context.getCharWidth()) - 1);
3711 }
3712 
3713 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3714                                    int Pos, int Size, int CharWidth,
3715                                    bool BigEndian) {
3716   assert(Size > 0);
3717   uint64_t Mask = 0;
3718   if (BigEndian) {
3719     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3720          ++P)
3721       Mask = (Mask << CharWidth) | *P;
3722   } else {
3723     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3724     do
3725       Mask = (Mask << CharWidth) | *--P;
3726     while (P != End);
3727   }
3728   return Mask;
3729 }
3730 
3731 // Emit code to clear the bits in a record, which aren't a part of any user
3732 // declared member, when the record is a function return.
3733 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3734                                                   llvm::IntegerType *ITy,
3735                                                   QualType QTy) {
3736   assert(Src->getType() == ITy);
3737   assert(ITy->getScalarSizeInBits() <= 64);
3738 
3739   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3740   int Size = DataLayout.getTypeStoreSize(ITy);
3741   SmallVector<uint64_t, 4> Bits(Size);
3742   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3743 
3744   int CharWidth = CGM.getContext().getCharWidth();
3745   uint64_t Mask =
3746       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3747 
3748   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3749 }
3750 
3751 // Emit code to clear the bits in a record, which aren't a part of any user
3752 // declared member, when the record is a function argument.
3753 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3754                                                   llvm::ArrayType *ATy,
3755                                                   QualType QTy) {
3756   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3757   int Size = DataLayout.getTypeStoreSize(ATy);
3758   SmallVector<uint64_t, 16> Bits(Size);
3759   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3760 
3761   // Clear each element of the LLVM array.
3762   int CharWidth = CGM.getContext().getCharWidth();
3763   int CharsPerElt =
3764       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3765   int MaskIndex = 0;
3766   llvm::Value *R = llvm::PoisonValue::get(ATy);
3767   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3768     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3769                                        DataLayout.isBigEndian());
3770     MaskIndex += CharsPerElt;
3771     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3772     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3773     R = Builder.CreateInsertValue(R, T1, I);
3774   }
3775 
3776   return R;
3777 }
3778 
3779 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3780                                          bool EmitRetDbgLoc,
3781                                          SourceLocation EndLoc) {
3782   if (FI.isNoReturn()) {
3783     // Noreturn functions don't return.
3784     EmitUnreachable(EndLoc);
3785     return;
3786   }
3787 
3788   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3789     // Naked functions don't have epilogues.
3790     Builder.CreateUnreachable();
3791     return;
3792   }
3793 
3794   // Functions with no result always return void.
3795   if (!ReturnValue.isValid()) {
3796     Builder.CreateRetVoid();
3797     return;
3798   }
3799 
3800   llvm::DebugLoc RetDbgLoc;
3801   llvm::Value *RV = nullptr;
3802   QualType RetTy = FI.getReturnType();
3803   const ABIArgInfo &RetAI = FI.getReturnInfo();
3804 
3805   switch (RetAI.getKind()) {
3806   case ABIArgInfo::InAlloca:
3807     // Aggregates get evaluated directly into the destination.  Sometimes we
3808     // need to return the sret value in a register, though.
3809     assert(hasAggregateEvaluationKind(RetTy));
3810     if (RetAI.getInAllocaSRet()) {
3811       llvm::Function::arg_iterator EI = CurFn->arg_end();
3812       --EI;
3813       llvm::Value *ArgStruct = &*EI;
3814       llvm::Value *SRet = Builder.CreateStructGEP(
3815           FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3816       llvm::Type *Ty =
3817           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3818       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3819     }
3820     break;
3821 
3822   case ABIArgInfo::Indirect: {
3823     auto AI = CurFn->arg_begin();
3824     if (RetAI.isSRetAfterThis())
3825       ++AI;
3826     switch (getEvaluationKind(RetTy)) {
3827     case TEK_Complex: {
3828       ComplexPairTy RT =
3829         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3830       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3831                          /*isInit*/ true);
3832       break;
3833     }
3834     case TEK_Aggregate:
3835       // Do nothing; aggregates get evaluated directly into the destination.
3836       break;
3837     case TEK_Scalar: {
3838       LValueBaseInfo BaseInfo;
3839       TBAAAccessInfo TBAAInfo;
3840       CharUnits Alignment =
3841           CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3842       Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3843       LValue ArgVal =
3844           LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3845       EmitStoreOfScalar(
3846           EmitLoadOfScalar(MakeAddrLValue(ReturnValue, RetTy), EndLoc), ArgVal,
3847           /*isInit*/ true);
3848       break;
3849     }
3850     }
3851     break;
3852   }
3853 
3854   case ABIArgInfo::Extend:
3855   case ABIArgInfo::Direct:
3856     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3857         RetAI.getDirectOffset() == 0) {
3858       // The internal return value temp always will have pointer-to-return-type
3859       // type, just do a load.
3860 
3861       // If there is a dominating store to ReturnValue, we can elide
3862       // the load, zap the store, and usually zap the alloca.
3863       if (llvm::StoreInst *SI =
3864               findDominatingStoreToReturnValue(*this)) {
3865         // Reuse the debug location from the store unless there is
3866         // cleanup code to be emitted between the store and return
3867         // instruction.
3868         if (EmitRetDbgLoc && !AutoreleaseResult)
3869           RetDbgLoc = SI->getDebugLoc();
3870         // Get the stored value and nuke the now-dead store.
3871         RV = SI->getValueOperand();
3872         SI->eraseFromParent();
3873 
3874       // Otherwise, we have to do a simple load.
3875       } else {
3876         RV = Builder.CreateLoad(ReturnValue);
3877       }
3878     } else {
3879       // If the value is offset in memory, apply the offset now.
3880       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3881 
3882       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3883     }
3884 
3885     // In ARC, end functions that return a retainable type with a call
3886     // to objc_autoreleaseReturnValue.
3887     if (AutoreleaseResult) {
3888 #ifndef NDEBUG
3889       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3890       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3891       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3892       // CurCodeDecl or BlockInfo.
3893       QualType RT;
3894 
3895       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3896         RT = FD->getReturnType();
3897       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3898         RT = MD->getReturnType();
3899       else if (isa<BlockDecl>(CurCodeDecl))
3900         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3901       else
3902         llvm_unreachable("Unexpected function/method type");
3903 
3904       assert(getLangOpts().ObjCAutoRefCount &&
3905              !FI.isReturnsRetained() &&
3906              RT->isObjCRetainableType());
3907 #endif
3908       RV = emitAutoreleaseOfResult(*this, RV);
3909     }
3910 
3911     break;
3912 
3913   case ABIArgInfo::Ignore:
3914     break;
3915 
3916   case ABIArgInfo::CoerceAndExpand: {
3917     auto coercionType = RetAI.getCoerceAndExpandType();
3918 
3919     // Load all of the coerced elements out into results.
3920     llvm::SmallVector<llvm::Value*, 4> results;
3921     Address addr = ReturnValue.withElementType(coercionType);
3922     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3923       auto coercedEltType = coercionType->getElementType(i);
3924       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3925         continue;
3926 
3927       auto eltAddr = Builder.CreateStructGEP(addr, i);
3928       auto elt = Builder.CreateLoad(eltAddr);
3929       results.push_back(elt);
3930     }
3931 
3932     // If we have one result, it's the single direct result type.
3933     if (results.size() == 1) {
3934       RV = results[0];
3935 
3936     // Otherwise, we need to make a first-class aggregate.
3937     } else {
3938       // Construct a return type that lacks padding elements.
3939       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3940 
3941       RV = llvm::PoisonValue::get(returnType);
3942       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3943         RV = Builder.CreateInsertValue(RV, results[i], i);
3944       }
3945     }
3946     break;
3947   }
3948   case ABIArgInfo::Expand:
3949   case ABIArgInfo::IndirectAliased:
3950     llvm_unreachable("Invalid ABI kind for return argument");
3951   }
3952 
3953   llvm::Instruction *Ret;
3954   if (RV) {
3955     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3956       // For certain return types, clear padding bits, as they may reveal
3957       // sensitive information.
3958       // Small struct/union types are passed as integers.
3959       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3960       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3961         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3962     }
3963     EmitReturnValueCheck(RV);
3964     Ret = Builder.CreateRet(RV);
3965   } else {
3966     Ret = Builder.CreateRetVoid();
3967   }
3968 
3969   if (RetDbgLoc)
3970     Ret->setDebugLoc(std::move(RetDbgLoc));
3971 }
3972 
3973 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3974   // A current decl may not be available when emitting vtable thunks.
3975   if (!CurCodeDecl)
3976     return;
3977 
3978   // If the return block isn't reachable, neither is this check, so don't emit
3979   // it.
3980   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3981     return;
3982 
3983   ReturnsNonNullAttr *RetNNAttr = nullptr;
3984   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3985     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3986 
3987   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3988     return;
3989 
3990   // Prefer the returns_nonnull attribute if it's present.
3991   SourceLocation AttrLoc;
3992   SanitizerMask CheckKind;
3993   SanitizerHandler Handler;
3994   if (RetNNAttr) {
3995     assert(!requiresReturnValueNullabilityCheck() &&
3996            "Cannot check nullability and the nonnull attribute");
3997     AttrLoc = RetNNAttr->getLocation();
3998     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3999     Handler = SanitizerHandler::NonnullReturn;
4000   } else {
4001     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
4002       if (auto *TSI = DD->getTypeSourceInfo())
4003         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
4004           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
4005     CheckKind = SanitizerKind::NullabilityReturn;
4006     Handler = SanitizerHandler::NullabilityReturn;
4007   }
4008 
4009   SanitizerScope SanScope(this);
4010 
4011   // Make sure the "return" source location is valid. If we're checking a
4012   // nullability annotation, make sure the preconditions for the check are met.
4013   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
4014   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
4015   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
4016   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
4017   if (requiresReturnValueNullabilityCheck())
4018     CanNullCheck =
4019         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
4020   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
4021   EmitBlock(Check);
4022 
4023   // Now do the null check.
4024   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
4025   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
4026   llvm::Value *DynamicData[] = {SLocPtr};
4027   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
4028 
4029   EmitBlock(NoCheck);
4030 
4031 #ifndef NDEBUG
4032   // The return location should not be used after the check has been emitted.
4033   ReturnLocation = Address::invalid();
4034 #endif
4035 }
4036 
4037 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
4038   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
4039   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
4040 }
4041 
4042 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
4043                                           QualType Ty) {
4044   // FIXME: Generate IR in one pass, rather than going back and fixing up these
4045   // placeholders.
4046   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
4047   llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext());
4048   llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy);
4049 
4050   // FIXME: When we generate this IR in one pass, we shouldn't need
4051   // this win32-specific alignment hack.
4052   CharUnits Align = CharUnits::fromQuantity(4);
4053   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
4054 
4055   return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
4056                                Ty.getQualifiers(),
4057                                AggValueSlot::IsNotDestructed,
4058                                AggValueSlot::DoesNotNeedGCBarriers,
4059                                AggValueSlot::IsNotAliased,
4060                                AggValueSlot::DoesNotOverlap);
4061 }
4062 
4063 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
4064                                           const VarDecl *param,
4065                                           SourceLocation loc) {
4066   // StartFunction converted the ABI-lowered parameter(s) into a
4067   // local alloca.  We need to turn that into an r-value suitable
4068   // for EmitCall.
4069   Address local = GetAddrOfLocalVar(param);
4070 
4071   QualType type = param->getType();
4072 
4073   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
4074   // but the argument needs to be the original pointer.
4075   if (type->isReferenceType()) {
4076     args.add(RValue::get(Builder.CreateLoad(local)), type);
4077 
4078   // In ARC, move out of consumed arguments so that the release cleanup
4079   // entered by StartFunction doesn't cause an over-release.  This isn't
4080   // optimal -O0 code generation, but it should get cleaned up when
4081   // optimization is enabled.  This also assumes that delegate calls are
4082   // performed exactly once for a set of arguments, but that should be safe.
4083   } else if (getLangOpts().ObjCAutoRefCount &&
4084              param->hasAttr<NSConsumedAttr>() &&
4085              type->isObjCRetainableType()) {
4086     llvm::Value *ptr = Builder.CreateLoad(local);
4087     auto null =
4088       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
4089     Builder.CreateStore(null, local);
4090     args.add(RValue::get(ptr), type);
4091 
4092   // For the most part, we just need to load the alloca, except that
4093   // aggregate r-values are actually pointers to temporaries.
4094   } else {
4095     args.add(convertTempToRValue(local, type, loc), type);
4096   }
4097 
4098   // Deactivate the cleanup for the callee-destructed param that was pushed.
4099   if (type->isRecordType() && !CurFuncIsThunk &&
4100       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
4101       param->needsDestruction(getContext())) {
4102     EHScopeStack::stable_iterator cleanup =
4103         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
4104     assert(cleanup.isValid() &&
4105            "cleanup for callee-destructed param not recorded");
4106     // This unreachable is a temporary marker which will be removed later.
4107     llvm::Instruction *isActive = Builder.CreateUnreachable();
4108     args.addArgCleanupDeactivation(cleanup, isActive);
4109   }
4110 }
4111 
4112 static bool isProvablyNull(llvm::Value *addr) {
4113   return llvm::isa_and_nonnull<llvm::ConstantPointerNull>(addr);
4114 }
4115 
4116 static bool isProvablyNonNull(Address Addr, CodeGenFunction &CGF) {
4117   return llvm::isKnownNonZero(Addr.getBasePointer(), CGF.CGM.getDataLayout());
4118 }
4119 
4120 /// Emit the actual writing-back of a writeback.
4121 static void emitWriteback(CodeGenFunction &CGF,
4122                           const CallArgList::Writeback &writeback) {
4123   const LValue &srcLV = writeback.Source;
4124   Address srcAddr = srcLV.getAddress();
4125   assert(!isProvablyNull(srcAddr.getBasePointer()) &&
4126          "shouldn't have writeback for provably null argument");
4127 
4128   llvm::BasicBlock *contBB = nullptr;
4129 
4130   // If the argument wasn't provably non-null, we need to null check
4131   // before doing the store.
4132   bool provablyNonNull = isProvablyNonNull(srcAddr, CGF);
4133 
4134   if (!provablyNonNull) {
4135     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
4136     contBB = CGF.createBasicBlock("icr.done");
4137 
4138     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
4139     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
4140     CGF.EmitBlock(writebackBB);
4141   }
4142 
4143   // Load the value to writeback.
4144   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
4145 
4146   // Cast it back, in case we're writing an id to a Foo* or something.
4147   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
4148                                     "icr.writeback-cast");
4149 
4150   // Perform the writeback.
4151 
4152   // If we have a "to use" value, it's something we need to emit a use
4153   // of.  This has to be carefully threaded in: if it's done after the
4154   // release it's potentially undefined behavior (and the optimizer
4155   // will ignore it), and if it happens before the retain then the
4156   // optimizer could move the release there.
4157   if (writeback.ToUse) {
4158     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
4159 
4160     // Retain the new value.  No need to block-copy here:  the block's
4161     // being passed up the stack.
4162     value = CGF.EmitARCRetainNonBlock(value);
4163 
4164     // Emit the intrinsic use here.
4165     CGF.EmitARCIntrinsicUse(writeback.ToUse);
4166 
4167     // Load the old value (primitively).
4168     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
4169 
4170     // Put the new value in place (primitively).
4171     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
4172 
4173     // Release the old value.
4174     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
4175 
4176   // Otherwise, we can just do a normal lvalue store.
4177   } else {
4178     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
4179   }
4180 
4181   // Jump to the continuation block.
4182   if (!provablyNonNull)
4183     CGF.EmitBlock(contBB);
4184 }
4185 
4186 static void emitWritebacks(CodeGenFunction &CGF,
4187                            const CallArgList &args) {
4188   for (const auto &I : args.writebacks())
4189     emitWriteback(CGF, I);
4190 }
4191 
4192 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
4193                                             const CallArgList &CallArgs) {
4194   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
4195     CallArgs.getCleanupsToDeactivate();
4196   // Iterate in reverse to increase the likelihood of popping the cleanup.
4197   for (const auto &I : llvm::reverse(Cleanups)) {
4198     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
4199     I.IsActiveIP->eraseFromParent();
4200   }
4201 }
4202 
4203 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
4204   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
4205     if (uop->getOpcode() == UO_AddrOf)
4206       return uop->getSubExpr();
4207   return nullptr;
4208 }
4209 
4210 /// Emit an argument that's being passed call-by-writeback.  That is,
4211 /// we are passing the address of an __autoreleased temporary; it
4212 /// might be copy-initialized with the current value of the given
4213 /// address, but it will definitely be copied out of after the call.
4214 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
4215                              const ObjCIndirectCopyRestoreExpr *CRE) {
4216   LValue srcLV;
4217 
4218   // Make an optimistic effort to emit the address as an l-value.
4219   // This can fail if the argument expression is more complicated.
4220   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
4221     srcLV = CGF.EmitLValue(lvExpr);
4222 
4223   // Otherwise, just emit it as a scalar.
4224   } else {
4225     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
4226 
4227     QualType srcAddrType =
4228       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
4229     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
4230   }
4231   Address srcAddr = srcLV.getAddress();
4232 
4233   // The dest and src types don't necessarily match in LLVM terms
4234   // because of the crazy ObjC compatibility rules.
4235 
4236   llvm::PointerType *destType =
4237       cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
4238   llvm::Type *destElemType =
4239       CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
4240 
4241   // If the address is a constant null, just pass the appropriate null.
4242   if (isProvablyNull(srcAddr.getBasePointer())) {
4243     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
4244              CRE->getType());
4245     return;
4246   }
4247 
4248   // Create the temporary.
4249   Address temp =
4250       CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
4251   // Loading an l-value can introduce a cleanup if the l-value is __weak,
4252   // and that cleanup will be conditional if we can't prove that the l-value
4253   // isn't null, so we need to register a dominating point so that the cleanups
4254   // system will make valid IR.
4255   CodeGenFunction::ConditionalEvaluation condEval(CGF);
4256 
4257   // Zero-initialize it if we're not doing a copy-initialization.
4258   bool shouldCopy = CRE->shouldCopy();
4259   if (!shouldCopy) {
4260     llvm::Value *null =
4261         llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
4262     CGF.Builder.CreateStore(null, temp);
4263   }
4264 
4265   llvm::BasicBlock *contBB = nullptr;
4266   llvm::BasicBlock *originBB = nullptr;
4267 
4268   // If the address is *not* known to be non-null, we need to switch.
4269   llvm::Value *finalArgument;
4270 
4271   bool provablyNonNull = isProvablyNonNull(srcAddr, CGF);
4272 
4273   if (provablyNonNull) {
4274     finalArgument = temp.emitRawPointer(CGF);
4275   } else {
4276     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
4277 
4278     finalArgument = CGF.Builder.CreateSelect(
4279         isNull, llvm::ConstantPointerNull::get(destType),
4280         temp.emitRawPointer(CGF), "icr.argument");
4281 
4282     // If we need to copy, then the load has to be conditional, which
4283     // means we need control flow.
4284     if (shouldCopy) {
4285       originBB = CGF.Builder.GetInsertBlock();
4286       contBB = CGF.createBasicBlock("icr.cont");
4287       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
4288       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
4289       CGF.EmitBlock(copyBB);
4290       condEval.begin(CGF);
4291     }
4292   }
4293 
4294   llvm::Value *valueToUse = nullptr;
4295 
4296   // Perform a copy if necessary.
4297   if (shouldCopy) {
4298     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
4299     assert(srcRV.isScalar());
4300 
4301     llvm::Value *src = srcRV.getScalarVal();
4302     src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
4303 
4304     // Use an ordinary store, not a store-to-lvalue.
4305     CGF.Builder.CreateStore(src, temp);
4306 
4307     // If optimization is enabled, and the value was held in a
4308     // __strong variable, we need to tell the optimizer that this
4309     // value has to stay alive until we're doing the store back.
4310     // This is because the temporary is effectively unretained,
4311     // and so otherwise we can violate the high-level semantics.
4312     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4313         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4314       valueToUse = src;
4315     }
4316   }
4317 
4318   // Finish the control flow if we needed it.
4319   if (shouldCopy && !provablyNonNull) {
4320     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4321     CGF.EmitBlock(contBB);
4322 
4323     // Make a phi for the value to intrinsically use.
4324     if (valueToUse) {
4325       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4326                                                       "icr.to-use");
4327       phiToUse->addIncoming(valueToUse, copyBB);
4328       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4329                             originBB);
4330       valueToUse = phiToUse;
4331     }
4332 
4333     condEval.end(CGF);
4334   }
4335 
4336   args.addWriteback(srcLV, temp, valueToUse);
4337   args.add(RValue::get(finalArgument), CRE->getType());
4338 }
4339 
4340 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4341   assert(!StackBase);
4342 
4343   // Save the stack.
4344   StackBase = CGF.Builder.CreateStackSave("inalloca.save");
4345 }
4346 
4347 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4348   if (StackBase) {
4349     // Restore the stack after the call.
4350     CGF.Builder.CreateStackRestore(StackBase);
4351   }
4352 }
4353 
4354 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4355                                           SourceLocation ArgLoc,
4356                                           AbstractCallee AC,
4357                                           unsigned ParmNum) {
4358   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4359                          SanOpts.has(SanitizerKind::NullabilityArg)))
4360     return;
4361 
4362   // The param decl may be missing in a variadic function.
4363   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4364   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4365 
4366   // Prefer the nonnull attribute if it's present.
4367   const NonNullAttr *NNAttr = nullptr;
4368   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4369     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4370 
4371   bool CanCheckNullability = false;
4372   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD &&
4373       !PVD->getType()->isRecordType()) {
4374     auto Nullability = PVD->getType()->getNullability();
4375     CanCheckNullability = Nullability &&
4376                           *Nullability == NullabilityKind::NonNull &&
4377                           PVD->getTypeSourceInfo();
4378   }
4379 
4380   if (!NNAttr && !CanCheckNullability)
4381     return;
4382 
4383   SourceLocation AttrLoc;
4384   SanitizerMask CheckKind;
4385   SanitizerHandler Handler;
4386   if (NNAttr) {
4387     AttrLoc = NNAttr->getLocation();
4388     CheckKind = SanitizerKind::NonnullAttribute;
4389     Handler = SanitizerHandler::NonnullArg;
4390   } else {
4391     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4392     CheckKind = SanitizerKind::NullabilityArg;
4393     Handler = SanitizerHandler::NullabilityArg;
4394   }
4395 
4396   SanitizerScope SanScope(this);
4397   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4398   llvm::Constant *StaticData[] = {
4399       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4400       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4401   };
4402   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt);
4403 }
4404 
4405 void CodeGenFunction::EmitNonNullArgCheck(Address Addr, QualType ArgType,
4406                                           SourceLocation ArgLoc,
4407                                           AbstractCallee AC, unsigned ParmNum) {
4408   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4409                          SanOpts.has(SanitizerKind::NullabilityArg)))
4410     return;
4411 
4412   EmitNonNullArgCheck(RValue::get(Addr, *this), ArgType, ArgLoc, AC, ParmNum);
4413 }
4414 
4415 // Check if the call is going to use the inalloca convention. This needs to
4416 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4417 // later, so we can't check it directly.
4418 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4419                             ArrayRef<QualType> ArgTypes) {
4420   // The Swift calling conventions don't go through the target-specific
4421   // argument classification, they never use inalloca.
4422   // TODO: Consider limiting inalloca use to only calling conventions supported
4423   // by MSVC.
4424   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4425     return false;
4426   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4427     return false;
4428   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4429     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4430   });
4431 }
4432 
4433 #ifndef NDEBUG
4434 // Determine whether the given argument is an Objective-C method
4435 // that may have type parameters in its signature.
4436 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4437   const DeclContext *dc = method->getDeclContext();
4438   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4439     return classDecl->getTypeParamListAsWritten();
4440   }
4441 
4442   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4443     return catDecl->getTypeParamList();
4444   }
4445 
4446   return false;
4447 }
4448 #endif
4449 
4450 /// EmitCallArgs - Emit call arguments for a function.
4451 void CodeGenFunction::EmitCallArgs(
4452     CallArgList &Args, PrototypeWrapper Prototype,
4453     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4454     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4455   SmallVector<QualType, 16> ArgTypes;
4456 
4457   assert((ParamsToSkip == 0 || Prototype.P) &&
4458          "Can't skip parameters if type info is not provided");
4459 
4460   // This variable only captures *explicitly* written conventions, not those
4461   // applied by default via command line flags or target defaults, such as
4462   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4463   // require knowing if this is a C++ instance method or being able to see
4464   // unprototyped FunctionTypes.
4465   CallingConv ExplicitCC = CC_C;
4466 
4467   // First, if a prototype was provided, use those argument types.
4468   bool IsVariadic = false;
4469   if (Prototype.P) {
4470     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4471     if (MD) {
4472       IsVariadic = MD->isVariadic();
4473       ExplicitCC = getCallingConventionForDecl(
4474           MD, CGM.getTarget().getTriple().isOSWindows());
4475       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4476                       MD->param_type_end());
4477     } else {
4478       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4479       IsVariadic = FPT->isVariadic();
4480       ExplicitCC = FPT->getExtInfo().getCC();
4481       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4482                       FPT->param_type_end());
4483     }
4484 
4485 #ifndef NDEBUG
4486     // Check that the prototyped types match the argument expression types.
4487     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4488     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4489     for (QualType Ty : ArgTypes) {
4490       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4491       assert(
4492           (isGenericMethod || Ty->isVariablyModifiedType() ||
4493            Ty.getNonReferenceType()->isObjCRetainableType() ||
4494            getContext()
4495                    .getCanonicalType(Ty.getNonReferenceType())
4496                    .getTypePtr() ==
4497                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4498           "type mismatch in call argument!");
4499       ++Arg;
4500     }
4501 
4502     // Either we've emitted all the call args, or we have a call to variadic
4503     // function.
4504     assert((Arg == ArgRange.end() || IsVariadic) &&
4505            "Extra arguments in non-variadic function!");
4506 #endif
4507   }
4508 
4509   // If we still have any arguments, emit them using the type of the argument.
4510   for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4511     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4512   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4513 
4514   // We must evaluate arguments from right to left in the MS C++ ABI,
4515   // because arguments are destroyed left to right in the callee. As a special
4516   // case, there are certain language constructs that require left-to-right
4517   // evaluation, and in those cases we consider the evaluation order requirement
4518   // to trump the "destruction order is reverse construction order" guarantee.
4519   bool LeftToRight =
4520       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4521           ? Order == EvaluationOrder::ForceLeftToRight
4522           : Order != EvaluationOrder::ForceRightToLeft;
4523 
4524   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4525                                          RValue EmittedArg) {
4526     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4527       return;
4528     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4529     if (PS == nullptr)
4530       return;
4531 
4532     const auto &Context = getContext();
4533     auto SizeTy = Context.getSizeType();
4534     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4535     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4536     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4537                                                      EmittedArg.getScalarVal(),
4538                                                      PS->isDynamic());
4539     Args.add(RValue::get(V), SizeTy);
4540     // If we're emitting args in reverse, be sure to do so with
4541     // pass_object_size, as well.
4542     if (!LeftToRight)
4543       std::swap(Args.back(), *(&Args.back() - 1));
4544   };
4545 
4546   // Insert a stack save if we're going to need any inalloca args.
4547   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4548     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4549            "inalloca only supported on x86");
4550     Args.allocateArgumentMemory(*this);
4551   }
4552 
4553   // Evaluate each argument in the appropriate order.
4554   size_t CallArgsStart = Args.size();
4555   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4556     unsigned Idx = LeftToRight ? I : E - I - 1;
4557     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4558     unsigned InitialArgSize = Args.size();
4559     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4560     // the argument and parameter match or the objc method is parameterized.
4561     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4562             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4563                                                 ArgTypes[Idx]) ||
4564             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4565              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4566            "Argument and parameter types don't match");
4567     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4568     // In particular, we depend on it being the last arg in Args, and the
4569     // objectsize bits depend on there only being one arg if !LeftToRight.
4570     assert(InitialArgSize + 1 == Args.size() &&
4571            "The code below depends on only adding one arg per EmitCallArg");
4572     (void)InitialArgSize;
4573     // Since pointer argument are never emitted as LValue, it is safe to emit
4574     // non-null argument check for r-value only.
4575     if (!Args.back().hasLValue()) {
4576       RValue RVArg = Args.back().getKnownRValue();
4577       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4578                           ParamsToSkip + Idx);
4579       // @llvm.objectsize should never have side-effects and shouldn't need
4580       // destruction/cleanups, so we can safely "emit" it after its arg,
4581       // regardless of right-to-leftness
4582       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4583     }
4584   }
4585 
4586   if (!LeftToRight) {
4587     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4588     // IR function.
4589     std::reverse(Args.begin() + CallArgsStart, Args.end());
4590   }
4591 }
4592 
4593 namespace {
4594 
4595 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4596   DestroyUnpassedArg(Address Addr, QualType Ty)
4597       : Addr(Addr), Ty(Ty) {}
4598 
4599   Address Addr;
4600   QualType Ty;
4601 
4602   void Emit(CodeGenFunction &CGF, Flags flags) override {
4603     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4604     if (DtorKind == QualType::DK_cxx_destructor) {
4605       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4606       assert(!Dtor->isTrivial());
4607       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4608                                 /*Delegating=*/false, Addr, Ty);
4609     } else {
4610       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4611     }
4612   }
4613 };
4614 
4615 struct DisableDebugLocationUpdates {
4616   CodeGenFunction &CGF;
4617   bool disabledDebugInfo;
4618   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4619     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4620       CGF.disableDebugInfo();
4621   }
4622   ~DisableDebugLocationUpdates() {
4623     if (disabledDebugInfo)
4624       CGF.enableDebugInfo();
4625   }
4626 };
4627 
4628 } // end anonymous namespace
4629 
4630 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4631   if (!HasLV)
4632     return RV;
4633   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4634   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4635                         LV.isVolatile());
4636   IsUsed = true;
4637   return RValue::getAggregate(Copy.getAddress());
4638 }
4639 
4640 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4641   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4642   if (!HasLV && RV.isScalar())
4643     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4644   else if (!HasLV && RV.isComplex())
4645     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4646   else {
4647     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
4648     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4649     // We assume that call args are never copied into subobjects.
4650     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4651                           HasLV ? LV.isVolatileQualified()
4652                                 : RV.isVolatileQualified());
4653   }
4654   IsUsed = true;
4655 }
4656 
4657 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4658                                   QualType type) {
4659   DisableDebugLocationUpdates Dis(*this, E);
4660   if (const ObjCIndirectCopyRestoreExpr *CRE
4661         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4662     assert(getLangOpts().ObjCAutoRefCount);
4663     return emitWritebackArg(*this, args, CRE);
4664   }
4665 
4666   assert(type->isReferenceType() == E->isGLValue() &&
4667          "reference binding to unmaterialized r-value!");
4668 
4669   if (E->isGLValue()) {
4670     assert(E->getObjectKind() == OK_Ordinary);
4671     return args.add(EmitReferenceBindingToExpr(E), type);
4672   }
4673 
4674   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4675 
4676   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4677   // However, we still have to push an EH-only cleanup in case we unwind before
4678   // we make it to the call.
4679   if (type->isRecordType() &&
4680       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4681     // If we're using inalloca, use the argument memory.  Otherwise, use a
4682     // temporary.
4683     AggValueSlot Slot = args.isUsingInAlloca()
4684         ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4685 
4686     bool DestroyedInCallee = true, NeedsCleanup = true;
4687     if (const auto *RD = type->getAsCXXRecordDecl())
4688       DestroyedInCallee = RD->hasNonTrivialDestructor();
4689     else
4690       NeedsCleanup = type.isDestructedType();
4691 
4692     if (DestroyedInCallee)
4693       Slot.setExternallyDestructed();
4694 
4695     EmitAggExpr(E, Slot);
4696     RValue RV = Slot.asRValue();
4697     args.add(RV, type);
4698 
4699     if (DestroyedInCallee && NeedsCleanup) {
4700       // Create a no-op GEP between the placeholder and the cleanup so we can
4701       // RAUW it successfully.  It also serves as a marker of the first
4702       // instruction where the cleanup is active.
4703       pushFullExprCleanup<DestroyUnpassedArg>(NormalAndEHCleanup,
4704                                               Slot.getAddress(), type);
4705       // This unreachable is a temporary marker which will be removed later.
4706       llvm::Instruction *IsActive =
4707           Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy));
4708       args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4709     }
4710     return;
4711   }
4712 
4713   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4714       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue &&
4715       !type->isArrayParameterType()) {
4716     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4717     assert(L.isSimple());
4718     args.addUncopiedAggregate(L, type);
4719     return;
4720   }
4721 
4722   args.add(EmitAnyExprToTemp(E), type);
4723 }
4724 
4725 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4726   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4727   // implicitly widens null pointer constants that are arguments to varargs
4728   // functions to pointer-sized ints.
4729   if (!getTarget().getTriple().isOSWindows())
4730     return Arg->getType();
4731 
4732   if (Arg->getType()->isIntegerType() &&
4733       getContext().getTypeSize(Arg->getType()) <
4734           getContext().getTargetInfo().getPointerWidth(LangAS::Default) &&
4735       Arg->isNullPointerConstant(getContext(),
4736                                  Expr::NPC_ValueDependentIsNotNull)) {
4737     return getContext().getIntPtrType();
4738   }
4739 
4740   return Arg->getType();
4741 }
4742 
4743 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4744 // optimizer it can aggressively ignore unwind edges.
4745 void
4746 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4747   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4748       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4749     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4750                       CGM.getNoObjCARCExceptionsMetadata());
4751 }
4752 
4753 /// Emits a call to the given no-arguments nounwind runtime function.
4754 llvm::CallInst *
4755 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4756                                          const llvm::Twine &name) {
4757   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value *>(), name);
4758 }
4759 
4760 /// Emits a call to the given nounwind runtime function.
4761 llvm::CallInst *
4762 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4763                                          ArrayRef<Address> args,
4764                                          const llvm::Twine &name) {
4765   SmallVector<llvm::Value *, 3> values;
4766   for (auto arg : args)
4767     values.push_back(arg.emitRawPointer(*this));
4768   return EmitNounwindRuntimeCall(callee, values, name);
4769 }
4770 
4771 llvm::CallInst *
4772 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4773                                          ArrayRef<llvm::Value *> args,
4774                                          const llvm::Twine &name) {
4775   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4776   call->setDoesNotThrow();
4777   return call;
4778 }
4779 
4780 /// Emits a simple call (never an invoke) to the given no-arguments
4781 /// runtime function.
4782 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4783                                                  const llvm::Twine &name) {
4784   return EmitRuntimeCall(callee, std::nullopt, name);
4785 }
4786 
4787 // Calls which may throw must have operand bundles indicating which funclet
4788 // they are nested within.
4789 SmallVector<llvm::OperandBundleDef, 1>
4790 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4791   // There is no need for a funclet operand bundle if we aren't inside a
4792   // funclet.
4793   if (!CurrentFuncletPad)
4794     return (SmallVector<llvm::OperandBundleDef, 1>());
4795 
4796   // Skip intrinsics which cannot throw (as long as they don't lower into
4797   // regular function calls in the course of IR transformations).
4798   if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) {
4799     if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) {
4800       auto IID = CalleeFn->getIntrinsicID();
4801       if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID))
4802         return (SmallVector<llvm::OperandBundleDef, 1>());
4803     }
4804   }
4805 
4806   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4807   BundleList.emplace_back("funclet", CurrentFuncletPad);
4808   return BundleList;
4809 }
4810 
4811 /// Emits a simple call (never an invoke) to the given runtime function.
4812 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4813                                                  ArrayRef<llvm::Value *> args,
4814                                                  const llvm::Twine &name) {
4815   llvm::CallInst *call = Builder.CreateCall(
4816       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4817   call->setCallingConv(getRuntimeCC());
4818 
4819   if (CGM.shouldEmitConvergenceTokens() && call->isConvergent())
4820     return addControlledConvergenceToken(call);
4821   return call;
4822 }
4823 
4824 /// Emits a call or invoke to the given noreturn runtime function.
4825 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4826     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4827   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4828       getBundlesForFunclet(callee.getCallee());
4829 
4830   if (getInvokeDest()) {
4831     llvm::InvokeInst *invoke =
4832       Builder.CreateInvoke(callee,
4833                            getUnreachableBlock(),
4834                            getInvokeDest(),
4835                            args,
4836                            BundleList);
4837     invoke->setDoesNotReturn();
4838     invoke->setCallingConv(getRuntimeCC());
4839   } else {
4840     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4841     call->setDoesNotReturn();
4842     call->setCallingConv(getRuntimeCC());
4843     Builder.CreateUnreachable();
4844   }
4845 }
4846 
4847 /// Emits a call or invoke instruction to the given nullary runtime function.
4848 llvm::CallBase *
4849 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4850                                          const Twine &name) {
4851   return EmitRuntimeCallOrInvoke(callee, std::nullopt, name);
4852 }
4853 
4854 /// Emits a call or invoke instruction to the given runtime function.
4855 llvm::CallBase *
4856 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4857                                          ArrayRef<llvm::Value *> args,
4858                                          const Twine &name) {
4859   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4860   call->setCallingConv(getRuntimeCC());
4861   return call;
4862 }
4863 
4864 /// Emits a call or invoke instruction to the given function, depending
4865 /// on the current state of the EH stack.
4866 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4867                                                   ArrayRef<llvm::Value *> Args,
4868                                                   const Twine &Name) {
4869   llvm::BasicBlock *InvokeDest = getInvokeDest();
4870   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4871       getBundlesForFunclet(Callee.getCallee());
4872 
4873   llvm::CallBase *Inst;
4874   if (!InvokeDest)
4875     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4876   else {
4877     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4878     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4879                                 Name);
4880     EmitBlock(ContBB);
4881   }
4882 
4883   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4884   // optimizer it can aggressively ignore unwind edges.
4885   if (CGM.getLangOpts().ObjCAutoRefCount)
4886     AddObjCARCExceptionMetadata(Inst);
4887 
4888   return Inst;
4889 }
4890 
4891 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4892                                                   llvm::Value *New) {
4893   DeferredReplacements.push_back(
4894       std::make_pair(llvm::WeakTrackingVH(Old), New));
4895 }
4896 
4897 namespace {
4898 
4899 /// Specify given \p NewAlign as the alignment of return value attribute. If
4900 /// such attribute already exists, re-set it to the maximal one of two options.
4901 [[nodiscard]] llvm::AttributeList
4902 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4903                                 const llvm::AttributeList &Attrs,
4904                                 llvm::Align NewAlign) {
4905   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4906   if (CurAlign >= NewAlign)
4907     return Attrs;
4908   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4909   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4910       .addRetAttribute(Ctx, AlignAttr);
4911 }
4912 
4913 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4914 protected:
4915   CodeGenFunction &CGF;
4916 
4917   /// We do nothing if this is, or becomes, nullptr.
4918   const AlignedAttrTy *AA = nullptr;
4919 
4920   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4921   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4922 
4923   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4924       : CGF(CGF_) {
4925     if (!FuncDecl)
4926       return;
4927     AA = FuncDecl->getAttr<AlignedAttrTy>();
4928   }
4929 
4930 public:
4931   /// If we can, materialize the alignment as an attribute on return value.
4932   [[nodiscard]] llvm::AttributeList
4933   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4934     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4935       return Attrs;
4936     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4937     if (!AlignmentCI)
4938       return Attrs;
4939     // We may legitimately have non-power-of-2 alignment here.
4940     // If so, this is UB land, emit it via `@llvm.assume` instead.
4941     if (!AlignmentCI->getValue().isPowerOf2())
4942       return Attrs;
4943     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4944         CGF.getLLVMContext(), Attrs,
4945         llvm::Align(
4946             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4947     AA = nullptr; // We're done. Disallow doing anything else.
4948     return NewAttrs;
4949   }
4950 
4951   /// Emit alignment assumption.
4952   /// This is a general fallback that we take if either there is an offset,
4953   /// or the alignment is variable or we are sanitizing for alignment.
4954   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4955     if (!AA)
4956       return;
4957     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4958                                 AA->getLocation(), Alignment, OffsetCI);
4959     AA = nullptr; // We're done. Disallow doing anything else.
4960   }
4961 };
4962 
4963 /// Helper data structure to emit `AssumeAlignedAttr`.
4964 class AssumeAlignedAttrEmitter final
4965     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4966 public:
4967   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4968       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4969     if (!AA)
4970       return;
4971     // It is guaranteed that the alignment/offset are constants.
4972     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4973     if (Expr *Offset = AA->getOffset()) {
4974       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4975       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4976         OffsetCI = nullptr;
4977     }
4978   }
4979 };
4980 
4981 /// Helper data structure to emit `AllocAlignAttr`.
4982 class AllocAlignAttrEmitter final
4983     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4984 public:
4985   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4986                         const CallArgList &CallArgs)
4987       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4988     if (!AA)
4989       return;
4990     // Alignment may or may not be a constant, and that is okay.
4991     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4992                     .getRValue(CGF)
4993                     .getScalarVal();
4994   }
4995 };
4996 
4997 } // namespace
4998 
4999 static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
5000   if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
5001     return VT->getPrimitiveSizeInBits().getKnownMinValue();
5002   if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
5003     return getMaxVectorWidth(AT->getElementType());
5004 
5005   unsigned MaxVectorWidth = 0;
5006   if (auto *ST = dyn_cast<llvm::StructType>(Ty))
5007     for (auto *I : ST->elements())
5008       MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
5009   return MaxVectorWidth;
5010 }
5011 
5012 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
5013                                  const CGCallee &Callee,
5014                                  ReturnValueSlot ReturnValue,
5015                                  const CallArgList &CallArgs,
5016                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
5017                                  SourceLocation Loc,
5018                                  bool IsVirtualFunctionPointerThunk) {
5019   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
5020 
5021   assert(Callee.isOrdinary() || Callee.isVirtual());
5022 
5023   // Handle struct-return functions by passing a pointer to the
5024   // location that we would like to return into.
5025   QualType RetTy = CallInfo.getReturnType();
5026   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
5027 
5028   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
5029 
5030   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
5031   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5032     // We can only guarantee that a function is called from the correct
5033     // context/function based on the appropriate target attributes,
5034     // so only check in the case where we have both always_inline and target
5035     // since otherwise we could be making a conditional call after a check for
5036     // the proper cpu features (and it won't cause code generation issues due to
5037     // function based code generation).
5038     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
5039         (TargetDecl->hasAttr<TargetAttr>() ||
5040          (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>())))
5041       checkTargetFeatures(Loc, FD);
5042   }
5043 
5044   // Some architectures (such as x86-64) have the ABI changed based on
5045   // attribute-target/features. Give them a chance to diagnose.
5046   CGM.getTargetCodeGenInfo().checkFunctionCallABI(
5047       CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl),
5048       dyn_cast_or_null<FunctionDecl>(TargetDecl), CallArgs, RetTy);
5049 
5050   // 1. Set up the arguments.
5051 
5052   // If we're using inalloca, insert the allocation after the stack save.
5053   // FIXME: Do this earlier rather than hacking it in here!
5054   RawAddress ArgMemory = RawAddress::invalid();
5055   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
5056     const llvm::DataLayout &DL = CGM.getDataLayout();
5057     llvm::Instruction *IP = CallArgs.getStackBase();
5058     llvm::AllocaInst *AI;
5059     if (IP) {
5060       IP = IP->getNextNode();
5061       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
5062                                 "argmem", IP);
5063     } else {
5064       AI = CreateTempAlloca(ArgStruct, "argmem");
5065     }
5066     auto Align = CallInfo.getArgStructAlignment();
5067     AI->setAlignment(Align.getAsAlign());
5068     AI->setUsedWithInAlloca(true);
5069     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
5070     ArgMemory = RawAddress(AI, ArgStruct, Align);
5071   }
5072 
5073   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
5074   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
5075 
5076   // If the call returns a temporary with struct return, create a temporary
5077   // alloca to hold the result, unless one is given to us.
5078   Address SRetPtr = Address::invalid();
5079   RawAddress SRetAlloca = RawAddress::invalid();
5080   llvm::Value *UnusedReturnSizePtr = nullptr;
5081   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
5082     if (IsVirtualFunctionPointerThunk && RetAI.isIndirect()) {
5083       SRetPtr = makeNaturalAddressForPointer(CurFn->arg_begin() +
5084                                                  IRFunctionArgs.getSRetArgNo(),
5085                                              RetTy, CharUnits::fromQuantity(1));
5086     } else if (!ReturnValue.isNull()) {
5087       SRetPtr = ReturnValue.getAddress();
5088     } else {
5089       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
5090       if (HaveInsertPoint() && ReturnValue.isUnused()) {
5091         llvm::TypeSize size =
5092             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
5093         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
5094       }
5095     }
5096     if (IRFunctionArgs.hasSRetArg()) {
5097       IRCallArgs[IRFunctionArgs.getSRetArgNo()] =
5098           getAsNaturalPointerTo(SRetPtr, RetTy);
5099     } else if (RetAI.isInAlloca()) {
5100       Address Addr =
5101           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
5102       Builder.CreateStore(getAsNaturalPointerTo(SRetPtr, RetTy), Addr);
5103     }
5104   }
5105 
5106   RawAddress swiftErrorTemp = RawAddress::invalid();
5107   Address swiftErrorArg = Address::invalid();
5108 
5109   // When passing arguments using temporary allocas, we need to add the
5110   // appropriate lifetime markers. This vector keeps track of all the lifetime
5111   // markers that need to be ended right after the call.
5112   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
5113 
5114   // Translate all of the arguments as necessary to match the IR lowering.
5115   assert(CallInfo.arg_size() == CallArgs.size() &&
5116          "Mismatch between function signature & arguments.");
5117   unsigned ArgNo = 0;
5118   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
5119   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
5120        I != E; ++I, ++info_it, ++ArgNo) {
5121     const ABIArgInfo &ArgInfo = info_it->info;
5122 
5123     // Insert a padding argument to ensure proper alignment.
5124     if (IRFunctionArgs.hasPaddingArg(ArgNo))
5125       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
5126           llvm::UndefValue::get(ArgInfo.getPaddingType());
5127 
5128     unsigned FirstIRArg, NumIRArgs;
5129     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
5130 
5131     bool ArgHasMaybeUndefAttr =
5132         IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo);
5133 
5134     switch (ArgInfo.getKind()) {
5135     case ABIArgInfo::InAlloca: {
5136       assert(NumIRArgs == 0);
5137       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
5138       if (I->isAggregate()) {
5139         RawAddress Addr = I->hasLValue()
5140                               ? I->getKnownLValue().getAddress()
5141                               : I->getKnownRValue().getAggregateAddress();
5142         llvm::Instruction *Placeholder =
5143             cast<llvm::Instruction>(Addr.getPointer());
5144 
5145         if (!ArgInfo.getInAllocaIndirect()) {
5146           // Replace the placeholder with the appropriate argument slot GEP.
5147           CGBuilderTy::InsertPoint IP = Builder.saveIP();
5148           Builder.SetInsertPoint(Placeholder);
5149           Addr = Builder.CreateStructGEP(ArgMemory,
5150                                          ArgInfo.getInAllocaFieldIndex());
5151           Builder.restoreIP(IP);
5152         } else {
5153           // For indirect things such as overaligned structs, replace the
5154           // placeholder with a regular aggregate temporary alloca. Store the
5155           // address of this alloca into the struct.
5156           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
5157           Address ArgSlot = Builder.CreateStructGEP(
5158               ArgMemory, ArgInfo.getInAllocaFieldIndex());
5159           Builder.CreateStore(Addr.getPointer(), ArgSlot);
5160         }
5161         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
5162       } else if (ArgInfo.getInAllocaIndirect()) {
5163         // Make a temporary alloca and store the address of it into the argument
5164         // struct.
5165         RawAddress Addr = CreateMemTempWithoutCast(
5166             I->Ty, getContext().getTypeAlignInChars(I->Ty),
5167             "indirect-arg-temp");
5168         I->copyInto(*this, Addr);
5169         Address ArgSlot =
5170             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5171         Builder.CreateStore(Addr.getPointer(), ArgSlot);
5172       } else {
5173         // Store the RValue into the argument struct.
5174         Address Addr =
5175             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5176         Addr = Addr.withElementType(ConvertTypeForMem(I->Ty));
5177         I->copyInto(*this, Addr);
5178       }
5179       break;
5180     }
5181 
5182     case ABIArgInfo::Indirect:
5183     case ABIArgInfo::IndirectAliased: {
5184       assert(NumIRArgs == 1);
5185       if (I->isAggregate()) {
5186         // We want to avoid creating an unnecessary temporary+copy here;
5187         // however, we need one in three cases:
5188         // 1. If the argument is not byval, and we are required to copy the
5189         //    source.  (This case doesn't occur on any common architecture.)
5190         // 2. If the argument is byval, RV is not sufficiently aligned, and
5191         //    we cannot force it to be sufficiently aligned.
5192         // 3. If the argument is byval, but RV is not located in default
5193         //    or alloca address space.
5194         Address Addr = I->hasLValue()
5195                            ? I->getKnownLValue().getAddress()
5196                            : I->getKnownRValue().getAggregateAddress();
5197         CharUnits Align = ArgInfo.getIndirectAlign();
5198         const llvm::DataLayout *TD = &CGM.getDataLayout();
5199 
5200         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
5201                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
5202                     TD->getAllocaAddrSpace()) &&
5203                "indirect argument must be in alloca address space");
5204 
5205         bool NeedCopy = false;
5206         if (Addr.getAlignment() < Align &&
5207             llvm::getOrEnforceKnownAlignment(Addr.emitRawPointer(*this),
5208                                              Align.getAsAlign(),
5209                                              *TD) < Align.getAsAlign()) {
5210           NeedCopy = true;
5211         } else if (I->hasLValue()) {
5212           auto LV = I->getKnownLValue();
5213           auto AS = LV.getAddressSpace();
5214 
5215           bool isByValOrRef =
5216               ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal();
5217 
5218           if (!isByValOrRef ||
5219               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
5220             NeedCopy = true;
5221           }
5222           if (!getLangOpts().OpenCL) {
5223             if ((isByValOrRef &&
5224                 (AS != LangAS::Default &&
5225                  AS != CGM.getASTAllocaAddressSpace()))) {
5226               NeedCopy = true;
5227             }
5228           }
5229           // For OpenCL even if RV is located in default or alloca address space
5230           // we don't want to perform address space cast for it.
5231           else if ((isByValOrRef &&
5232                     Addr.getType()->getAddressSpace() != IRFuncTy->
5233                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
5234             NeedCopy = true;
5235           }
5236         }
5237 
5238         if (!NeedCopy) {
5239           // Skip the extra memcpy call.
5240           llvm::Value *V = getAsNaturalPointerTo(Addr, I->Ty);
5241           auto *T = llvm::PointerType::get(
5242               CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
5243 
5244           llvm::Value *Val = getTargetHooks().performAddrSpaceCast(
5245               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
5246               true);
5247           if (ArgHasMaybeUndefAttr)
5248             Val = Builder.CreateFreeze(Val);
5249           IRCallArgs[FirstIRArg] = Val;
5250           break;
5251         }
5252       }
5253 
5254       // For non-aggregate args and aggregate args meeting conditions above
5255       // we need to create an aligned temporary, and copy to it.
5256       RawAddress AI = CreateMemTempWithoutCast(
5257           I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
5258       llvm::Value *Val = getAsNaturalPointerTo(AI, I->Ty);
5259       if (ArgHasMaybeUndefAttr)
5260         Val = Builder.CreateFreeze(Val);
5261       IRCallArgs[FirstIRArg] = Val;
5262 
5263       // Emit lifetime markers for the temporary alloca.
5264       llvm::TypeSize ByvalTempElementSize =
5265           CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
5266       llvm::Value *LifetimeSize =
5267           EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
5268 
5269       // Add cleanup code to emit the end lifetime marker after the call.
5270       if (LifetimeSize) // In case we disabled lifetime markers.
5271         CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
5272 
5273       // Generate the copy.
5274       I->copyInto(*this, AI);
5275       break;
5276     }
5277 
5278     case ABIArgInfo::Ignore:
5279       assert(NumIRArgs == 0);
5280       break;
5281 
5282     case ABIArgInfo::Extend:
5283     case ABIArgInfo::Direct: {
5284       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
5285           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
5286           ArgInfo.getDirectOffset() == 0) {
5287         assert(NumIRArgs == 1);
5288         llvm::Value *V;
5289         if (!I->isAggregate())
5290           V = I->getKnownRValue().getScalarVal();
5291         else
5292           V = Builder.CreateLoad(
5293               I->hasLValue() ? I->getKnownLValue().getAddress()
5294                              : I->getKnownRValue().getAggregateAddress());
5295 
5296         // Implement swifterror by copying into a new swifterror argument.
5297         // We'll write back in the normal path out of the call.
5298         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
5299               == ParameterABI::SwiftErrorResult) {
5300           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
5301 
5302           QualType pointeeTy = I->Ty->getPointeeType();
5303           swiftErrorArg = makeNaturalAddressForPointer(
5304               V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy));
5305 
5306           swiftErrorTemp =
5307             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
5308           V = swiftErrorTemp.getPointer();
5309           cast<llvm::AllocaInst>(V)->setSwiftError(true);
5310 
5311           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
5312           Builder.CreateStore(errorValue, swiftErrorTemp);
5313         }
5314 
5315         // We might have to widen integers, but we should never truncate.
5316         if (ArgInfo.getCoerceToType() != V->getType() &&
5317             V->getType()->isIntegerTy())
5318           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
5319 
5320         // If the argument doesn't match, perform a bitcast to coerce it.  This
5321         // can happen due to trivial type mismatches.
5322         if (FirstIRArg < IRFuncTy->getNumParams() &&
5323             V->getType() != IRFuncTy->getParamType(FirstIRArg))
5324           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
5325 
5326         if (ArgHasMaybeUndefAttr)
5327           V = Builder.CreateFreeze(V);
5328         IRCallArgs[FirstIRArg] = V;
5329         break;
5330       }
5331 
5332       llvm::StructType *STy =
5333           dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5334       if (STy && ArgInfo.isDirect() && !ArgInfo.getCanBeFlattened()) {
5335         llvm::Type *SrcTy = ConvertTypeForMem(I->Ty);
5336         [[maybe_unused]] llvm::TypeSize SrcTypeSize =
5337             CGM.getDataLayout().getTypeAllocSize(SrcTy);
5338         [[maybe_unused]] llvm::TypeSize DstTypeSize =
5339             CGM.getDataLayout().getTypeAllocSize(STy);
5340         if (STy->containsHomogeneousScalableVectorTypes()) {
5341           assert(SrcTypeSize == DstTypeSize &&
5342                  "Only allow non-fractional movement of structure with "
5343                  "homogeneous scalable vector type");
5344 
5345           IRCallArgs[FirstIRArg] = I->getKnownRValue().getScalarVal();
5346           break;
5347         }
5348       }
5349 
5350       // FIXME: Avoid the conversion through memory if possible.
5351       Address Src = Address::invalid();
5352       if (!I->isAggregate()) {
5353         Src = CreateMemTemp(I->Ty, "coerce");
5354         I->copyInto(*this, Src);
5355       } else {
5356         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
5357                              : I->getKnownRValue().getAggregateAddress();
5358       }
5359 
5360       // If the value is offset in memory, apply the offset now.
5361       Src = emitAddressAtOffset(*this, Src, ArgInfo);
5362 
5363       // Fast-isel and the optimizer generally like scalar values better than
5364       // FCAs, so we flatten them if this is safe to do for this argument.
5365       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5366         llvm::Type *SrcTy = Src.getElementType();
5367         llvm::TypeSize SrcTypeSize =
5368             CGM.getDataLayout().getTypeAllocSize(SrcTy);
5369         llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy);
5370         if (SrcTypeSize.isScalable()) {
5371           assert(STy->containsHomogeneousScalableVectorTypes() &&
5372                  "ABI only supports structure with homogeneous scalable vector "
5373                  "type");
5374           assert(SrcTypeSize == DstTypeSize &&
5375                  "Only allow non-fractional movement of structure with "
5376                  "homogeneous scalable vector type");
5377           assert(NumIRArgs == STy->getNumElements());
5378 
5379           llvm::Value *StoredStructValue =
5380               Builder.CreateLoad(Src, Src.getName() + ".tuple");
5381           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5382             llvm::Value *Extract = Builder.CreateExtractValue(
5383                 StoredStructValue, i, Src.getName() + ".extract" + Twine(i));
5384             IRCallArgs[FirstIRArg + i] = Extract;
5385           }
5386         } else {
5387           uint64_t SrcSize = SrcTypeSize.getFixedValue();
5388           uint64_t DstSize = DstTypeSize.getFixedValue();
5389 
5390           // If the source type is smaller than the destination type of the
5391           // coerce-to logic, copy the source value into a temp alloca the size
5392           // of the destination type to allow loading all of it. The bits past
5393           // the source value are left undef.
5394           if (SrcSize < DstSize) {
5395             Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(),
5396                                                   Src.getName() + ".coerce");
5397             Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5398             Src = TempAlloca;
5399           } else {
5400             Src = Src.withElementType(STy);
5401           }
5402 
5403           assert(NumIRArgs == STy->getNumElements());
5404           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5405             Address EltPtr = Builder.CreateStructGEP(Src, i);
5406             llvm::Value *LI = Builder.CreateLoad(EltPtr);
5407             if (ArgHasMaybeUndefAttr)
5408               LI = Builder.CreateFreeze(LI);
5409             IRCallArgs[FirstIRArg + i] = LI;
5410           }
5411         }
5412       } else {
5413         // In the simple case, just pass the coerced loaded value.
5414         assert(NumIRArgs == 1);
5415         llvm::Value *Load =
5416             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5417 
5418         if (CallInfo.isCmseNSCall()) {
5419           // For certain parameter types, clear padding bits, as they may reveal
5420           // sensitive information.
5421           // Small struct/union types are passed as integer arrays.
5422           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5423           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5424             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5425         }
5426 
5427         if (ArgHasMaybeUndefAttr)
5428           Load = Builder.CreateFreeze(Load);
5429         IRCallArgs[FirstIRArg] = Load;
5430       }
5431 
5432       break;
5433     }
5434 
5435     case ABIArgInfo::CoerceAndExpand: {
5436       auto coercionType = ArgInfo.getCoerceAndExpandType();
5437       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5438 
5439       llvm::Value *tempSize = nullptr;
5440       Address addr = Address::invalid();
5441       RawAddress AllocaAddr = RawAddress::invalid();
5442       if (I->isAggregate()) {
5443         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
5444                               : I->getKnownRValue().getAggregateAddress();
5445 
5446       } else {
5447         RValue RV = I->getKnownRValue();
5448         assert(RV.isScalar()); // complex should always just be direct
5449 
5450         llvm::Type *scalarType = RV.getScalarVal()->getType();
5451         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5452         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType);
5453 
5454         // Materialize to a temporary.
5455         addr = CreateTempAlloca(
5456             RV.getScalarVal()->getType(),
5457             CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)),
5458             "tmp",
5459             /*ArraySize=*/nullptr, &AllocaAddr);
5460         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5461 
5462         Builder.CreateStore(RV.getScalarVal(), addr);
5463       }
5464 
5465       addr = addr.withElementType(coercionType);
5466 
5467       unsigned IRArgPos = FirstIRArg;
5468       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5469         llvm::Type *eltType = coercionType->getElementType(i);
5470         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5471         Address eltAddr = Builder.CreateStructGEP(addr, i);
5472         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5473         if (ArgHasMaybeUndefAttr)
5474           elt = Builder.CreateFreeze(elt);
5475         IRCallArgs[IRArgPos++] = elt;
5476       }
5477       assert(IRArgPos == FirstIRArg + NumIRArgs);
5478 
5479       if (tempSize) {
5480         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5481       }
5482 
5483       break;
5484     }
5485 
5486     case ABIArgInfo::Expand: {
5487       unsigned IRArgPos = FirstIRArg;
5488       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5489       assert(IRArgPos == FirstIRArg + NumIRArgs);
5490       break;
5491     }
5492     }
5493   }
5494 
5495   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5496   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5497 
5498   // If we're using inalloca, set up that argument.
5499   if (ArgMemory.isValid()) {
5500     llvm::Value *Arg = ArgMemory.getPointer();
5501     assert(IRFunctionArgs.hasInallocaArg());
5502     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5503   }
5504 
5505   // 2. Prepare the function pointer.
5506 
5507   // If the callee is a bitcast of a non-variadic function to have a
5508   // variadic function pointer type, check to see if we can remove the
5509   // bitcast.  This comes up with unprototyped functions.
5510   //
5511   // This makes the IR nicer, but more importantly it ensures that we
5512   // can inline the function at -O0 if it is marked always_inline.
5513   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5514                                    llvm::Value *Ptr) -> llvm::Function * {
5515     if (!CalleeFT->isVarArg())
5516       return nullptr;
5517 
5518     // Get underlying value if it's a bitcast
5519     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5520       if (CE->getOpcode() == llvm::Instruction::BitCast)
5521         Ptr = CE->getOperand(0);
5522     }
5523 
5524     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5525     if (!OrigFn)
5526       return nullptr;
5527 
5528     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5529 
5530     // If the original type is variadic, or if any of the component types
5531     // disagree, we cannot remove the cast.
5532     if (OrigFT->isVarArg() ||
5533         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5534         OrigFT->getReturnType() != CalleeFT->getReturnType())
5535       return nullptr;
5536 
5537     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5538       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5539         return nullptr;
5540 
5541     return OrigFn;
5542   };
5543 
5544   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5545     CalleePtr = OrigFn;
5546     IRFuncTy = OrigFn->getFunctionType();
5547   }
5548 
5549   // 3. Perform the actual call.
5550 
5551   // Deactivate any cleanups that we're supposed to do immediately before
5552   // the call.
5553   if (!CallArgs.getCleanupsToDeactivate().empty())
5554     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5555 
5556   // Assert that the arguments we computed match up.  The IR verifier
5557   // will catch this, but this is a common enough source of problems
5558   // during IRGen changes that it's way better for debugging to catch
5559   // it ourselves here.
5560 #ifndef NDEBUG
5561   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5562   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5563     // Inalloca argument can have different type.
5564     if (IRFunctionArgs.hasInallocaArg() &&
5565         i == IRFunctionArgs.getInallocaArgNo())
5566       continue;
5567     if (i < IRFuncTy->getNumParams())
5568       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5569   }
5570 #endif
5571 
5572   // Update the largest vector width if any arguments have vector types.
5573   for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5574     LargestVectorWidth = std::max(LargestVectorWidth,
5575                                   getMaxVectorWidth(IRCallArgs[i]->getType()));
5576 
5577   // Compute the calling convention and attributes.
5578   unsigned CallingConv;
5579   llvm::AttributeList Attrs;
5580   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5581                              Callee.getAbstractInfo(), Attrs, CallingConv,
5582                              /*AttrOnCallSite=*/true,
5583                              /*IsThunk=*/false);
5584 
5585   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
5586       getTarget().getTriple().isWindowsArm64EC()) {
5587     CGM.Error(Loc, "__vectorcall calling convention is not currently "
5588                    "supported");
5589   }
5590 
5591   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5592     if (FD->hasAttr<StrictFPAttr>())
5593       // All calls within a strictfp function are marked strictfp
5594       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5595 
5596     // If -ffast-math is enabled and the function is guarded by an
5597     // '__attribute__((optnone)) adjust the memory attribute so the BE emits the
5598     // library call instead of the intrinsic.
5599     if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath)
5600       CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(),
5601                                 Attrs);
5602   }
5603   // Add call-site nomerge attribute if exists.
5604   if (InNoMergeAttributedStmt)
5605     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5606 
5607   // Add call-site noinline attribute if exists.
5608   if (InNoInlineAttributedStmt)
5609     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5610 
5611   // Add call-site always_inline attribute if exists.
5612   if (InAlwaysInlineAttributedStmt)
5613     Attrs =
5614         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5615 
5616   // Apply some call-site-specific attributes.
5617   // TODO: work this into building the attribute set.
5618 
5619   // Apply always_inline to all calls within flatten functions.
5620   // FIXME: should this really take priority over __try, below?
5621   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5622       !InNoInlineAttributedStmt &&
5623       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5624     Attrs =
5625         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5626   }
5627 
5628   // Disable inlining inside SEH __try blocks.
5629   if (isSEHTryScope()) {
5630     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5631   }
5632 
5633   // Decide whether to use a call or an invoke.
5634   bool CannotThrow;
5635   if (currentFunctionUsesSEHTry()) {
5636     // SEH cares about asynchronous exceptions, so everything can "throw."
5637     CannotThrow = false;
5638   } else if (isCleanupPadScope() &&
5639              EHPersonality::get(*this).isMSVCXXPersonality()) {
5640     // The MSVC++ personality will implicitly terminate the program if an
5641     // exception is thrown during a cleanup outside of a try/catch.
5642     // We don't need to model anything in IR to get this behavior.
5643     CannotThrow = true;
5644   } else {
5645     // Otherwise, nounwind call sites will never throw.
5646     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5647 
5648     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5649       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5650         CannotThrow = true;
5651   }
5652 
5653   // If we made a temporary, be sure to clean up after ourselves. Note that we
5654   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5655   // pop this cleanup later on. Being eager about this is OK, since this
5656   // temporary is 'invisible' outside of the callee.
5657   if (UnusedReturnSizePtr)
5658     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5659                                          UnusedReturnSizePtr);
5660 
5661   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5662 
5663   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5664       getBundlesForFunclet(CalleePtr);
5665 
5666   if (SanOpts.has(SanitizerKind::KCFI) &&
5667       !isa_and_nonnull<FunctionDecl>(TargetDecl))
5668     EmitKCFIOperandBundle(ConcreteCallee, BundleList);
5669 
5670   // Add the pointer-authentication bundle.
5671   EmitPointerAuthOperandBundle(ConcreteCallee.getPointerAuthInfo(), BundleList);
5672 
5673   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5674     if (FD->hasAttr<StrictFPAttr>())
5675       // All calls within a strictfp function are marked strictfp
5676       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5677 
5678   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5679   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5680 
5681   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5682   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5683 
5684   // Emit the actual call/invoke instruction.
5685   llvm::CallBase *CI;
5686   if (!InvokeDest) {
5687     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5688   } else {
5689     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5690     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5691                               BundleList);
5692     EmitBlock(Cont);
5693   }
5694   if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() &&
5695       CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) {
5696     SetSqrtFPAccuracy(CI);
5697   }
5698   if (callOrInvoke)
5699     *callOrInvoke = CI;
5700 
5701   // If this is within a function that has the guard(nocf) attribute and is an
5702   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5703   // Control Flow Guard checks should not be added, even if the call is inlined.
5704   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5705     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5706       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5707         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5708     }
5709   }
5710 
5711   // Apply the attributes and calling convention.
5712   CI->setAttributes(Attrs);
5713   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5714 
5715   // Apply various metadata.
5716 
5717   if (!CI->getType()->isVoidTy())
5718     CI->setName("call");
5719 
5720   if (CGM.shouldEmitConvergenceTokens() && CI->isConvergent())
5721     CI = addControlledConvergenceToken(CI);
5722 
5723   // Update largest vector width from the return type.
5724   LargestVectorWidth =
5725       std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
5726 
5727   // Insert instrumentation or attach profile metadata at indirect call sites.
5728   // For more details, see the comment before the definition of
5729   // IPVK_IndirectCallTarget in InstrProfData.inc.
5730   if (!CI->getCalledFunction())
5731     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5732                      CI, CalleePtr);
5733 
5734   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5735   // optimizer it can aggressively ignore unwind edges.
5736   if (CGM.getLangOpts().ObjCAutoRefCount)
5737     AddObjCARCExceptionMetadata(CI);
5738 
5739   // Set tail call kind if necessary.
5740   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5741     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5742       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5743     else if (IsMustTail) {
5744       if (getTarget().getTriple().isPPC()) {
5745         if (getTarget().getTriple().isOSAIX())
5746           CGM.getDiags().Report(Loc, diag::err_aix_musttail_unsupported);
5747         else if (!getTarget().hasFeature("pcrelative-memops")) {
5748           if (getTarget().hasFeature("longcall"))
5749             CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 0;
5750           else if (Call->isIndirectCall())
5751             CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 1;
5752           else if (isa_and_nonnull<FunctionDecl>(TargetDecl)) {
5753             if (!cast<FunctionDecl>(TargetDecl)->isDefined())
5754               // The undefined callee may be a forward declaration. Without
5755               // knowning all symbols in the module, we won't know the symbol is
5756               // defined or not. Collect all these symbols for later diagnosing.
5757               CGM.addUndefinedGlobalForTailCall(
5758                   {cast<FunctionDecl>(TargetDecl), Loc});
5759             else {
5760               llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(
5761                   GlobalDecl(cast<FunctionDecl>(TargetDecl)));
5762               if (llvm::GlobalValue::isWeakForLinker(Linkage) ||
5763                   llvm::GlobalValue::isDiscardableIfUnused(Linkage))
5764                 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail)
5765                     << 2;
5766             }
5767           }
5768         }
5769       }
5770       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5771     }
5772   }
5773 
5774   // Add metadata for calls to MSAllocator functions
5775   if (getDebugInfo() && TargetDecl &&
5776       TargetDecl->hasAttr<MSAllocatorAttr>())
5777     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5778 
5779   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5780   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5781     llvm::ConstantInt *Line =
5782         llvm::ConstantInt::get(Int64Ty, Loc.getRawEncoding());
5783     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5784     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5785     CI->setMetadata("srcloc", MDT);
5786   }
5787 
5788   // 4. Finish the call.
5789 
5790   // If the call doesn't return, finish the basic block and clear the
5791   // insertion point; this allows the rest of IRGen to discard
5792   // unreachable code.
5793   if (CI->doesNotReturn()) {
5794     if (UnusedReturnSizePtr)
5795       PopCleanupBlock();
5796 
5797     // Strip away the noreturn attribute to better diagnose unreachable UB.
5798     if (SanOpts.has(SanitizerKind::Unreachable)) {
5799       // Also remove from function since CallBase::hasFnAttr additionally checks
5800       // attributes of the called function.
5801       if (auto *F = CI->getCalledFunction())
5802         F->removeFnAttr(llvm::Attribute::NoReturn);
5803       CI->removeFnAttr(llvm::Attribute::NoReturn);
5804 
5805       // Avoid incompatibility with ASan which relies on the `noreturn`
5806       // attribute to insert handler calls.
5807       if (SanOpts.hasOneOf(SanitizerKind::Address |
5808                            SanitizerKind::KernelAddress)) {
5809         SanitizerScope SanScope(this);
5810         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5811         Builder.SetInsertPoint(CI);
5812         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5813         llvm::FunctionCallee Fn =
5814             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5815         EmitNounwindRuntimeCall(Fn);
5816       }
5817     }
5818 
5819     EmitUnreachable(Loc);
5820     Builder.ClearInsertionPoint();
5821 
5822     // FIXME: For now, emit a dummy basic block because expr emitters in
5823     // generally are not ready to handle emitting expressions at unreachable
5824     // points.
5825     EnsureInsertPoint();
5826 
5827     // Return a reasonable RValue.
5828     return GetUndefRValue(RetTy);
5829   }
5830 
5831   // If this is a musttail call, return immediately. We do not branch to the
5832   // epilogue in this case.
5833   if (IsMustTail) {
5834     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5835          ++it) {
5836       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5837       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5838         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5839     }
5840     if (CI->getType()->isVoidTy())
5841       Builder.CreateRetVoid();
5842     else
5843       Builder.CreateRet(CI);
5844     Builder.ClearInsertionPoint();
5845     EnsureInsertPoint();
5846     return GetUndefRValue(RetTy);
5847   }
5848 
5849   // Perform the swifterror writeback.
5850   if (swiftErrorTemp.isValid()) {
5851     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5852     Builder.CreateStore(errorResult, swiftErrorArg);
5853   }
5854 
5855   // Emit any call-associated writebacks immediately.  Arguably this
5856   // should happen after any return-value munging.
5857   if (CallArgs.hasWritebacks())
5858     emitWritebacks(*this, CallArgs);
5859 
5860   // The stack cleanup for inalloca arguments has to run out of the normal
5861   // lexical order, so deactivate it and run it manually here.
5862   CallArgs.freeArgumentMemory(*this);
5863 
5864   // Extract the return value.
5865   RValue Ret;
5866 
5867   // If the current function is a virtual function pointer thunk, avoid copying
5868   // the return value of the musttail call to a temporary.
5869   if (IsVirtualFunctionPointerThunk) {
5870     Ret = RValue::get(CI);
5871   } else {
5872     Ret = [&] {
5873       switch (RetAI.getKind()) {
5874       case ABIArgInfo::CoerceAndExpand: {
5875         auto coercionType = RetAI.getCoerceAndExpandType();
5876 
5877         Address addr = SRetPtr.withElementType(coercionType);
5878 
5879         assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5880         bool requiresExtract = isa<llvm::StructType>(CI->getType());
5881 
5882         unsigned unpaddedIndex = 0;
5883         for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5884           llvm::Type *eltType = coercionType->getElementType(i);
5885           if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
5886             continue;
5887           Address eltAddr = Builder.CreateStructGEP(addr, i);
5888           llvm::Value *elt = CI;
5889           if (requiresExtract)
5890             elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5891           else
5892             assert(unpaddedIndex == 0);
5893           Builder.CreateStore(elt, eltAddr);
5894         }
5895         [[fallthrough]];
5896       }
5897 
5898       case ABIArgInfo::InAlloca:
5899       case ABIArgInfo::Indirect: {
5900         RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5901         if (UnusedReturnSizePtr)
5902           PopCleanupBlock();
5903         return ret;
5904       }
5905 
5906       case ABIArgInfo::Ignore:
5907         // If we are ignoring an argument that had a result, make sure to
5908         // construct the appropriate return value for our caller.
5909         return GetUndefRValue(RetTy);
5910 
5911       case ABIArgInfo::Extend:
5912       case ABIArgInfo::Direct: {
5913         llvm::Type *RetIRTy = ConvertType(RetTy);
5914         if (RetAI.getCoerceToType() == RetIRTy &&
5915             RetAI.getDirectOffset() == 0) {
5916           switch (getEvaluationKind(RetTy)) {
5917           case TEK_Complex: {
5918             llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5919             llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5920             return RValue::getComplex(std::make_pair(Real, Imag));
5921           }
5922           case TEK_Aggregate:
5923             break;
5924           case TEK_Scalar: {
5925             // If the argument doesn't match, perform a bitcast to coerce it.
5926             // This can happen due to trivial type mismatches.
5927             llvm::Value *V = CI;
5928             if (V->getType() != RetIRTy)
5929               V = Builder.CreateBitCast(V, RetIRTy);
5930             return RValue::get(V);
5931           }
5932           }
5933         }
5934 
5935         // If coercing a fixed vector from a scalable vector for ABI
5936         // compatibility, and the types match, use the llvm.vector.extract
5937         // intrinsic to perform the conversion.
5938         if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(RetIRTy)) {
5939           llvm::Value *V = CI;
5940           if (auto *ScalableSrcTy =
5941                   dyn_cast<llvm::ScalableVectorType>(V->getType())) {
5942             if (FixedDstTy->getElementType() ==
5943                 ScalableSrcTy->getElementType()) {
5944               llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
5945               V = Builder.CreateExtractVector(FixedDstTy, V, Zero,
5946                                               "cast.fixed");
5947               return RValue::get(V);
5948             }
5949           }
5950         }
5951 
5952         Address DestPtr = ReturnValue.getValue();
5953         bool DestIsVolatile = ReturnValue.isVolatile();
5954         uint64_t DestSize =
5955             getContext().getTypeInfoDataSizeInChars(RetTy).Width.getQuantity();
5956 
5957         if (!DestPtr.isValid()) {
5958           DestPtr = CreateMemTemp(RetTy, "coerce");
5959           DestIsVolatile = false;
5960           DestSize = getContext().getTypeSizeInChars(RetTy).getQuantity();
5961         }
5962 
5963         // An empty record can overlap other data (if declared with
5964         // no_unique_address); omit the store for such types - as there is no
5965         // actual data to store.
5966         if (!isEmptyRecord(getContext(), RetTy, true)) {
5967           // If the value is offset in memory, apply the offset now.
5968           Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5969           CreateCoercedStore(
5970               CI, StorePtr,
5971               llvm::TypeSize::getFixed(DestSize - RetAI.getDirectOffset()),
5972               DestIsVolatile);
5973         }
5974 
5975         return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5976       }
5977 
5978       case ABIArgInfo::Expand:
5979       case ABIArgInfo::IndirectAliased:
5980         llvm_unreachable("Invalid ABI kind for return argument");
5981       }
5982 
5983       llvm_unreachable("Unhandled ABIArgInfo::Kind");
5984     }();
5985   }
5986 
5987   // Emit the assume_aligned check on the return value.
5988   if (Ret.isScalar() && TargetDecl) {
5989     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5990     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5991   }
5992 
5993   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5994   // we can't use the full cleanup mechanism.
5995   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5996     LifetimeEnd.Emit(*this, /*Flags=*/{});
5997 
5998   if (!ReturnValue.isExternallyDestructed() &&
5999       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
6000     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
6001                 RetTy);
6002 
6003   return Ret;
6004 }
6005 
6006 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
6007   if (isVirtual()) {
6008     const CallExpr *CE = getVirtualCallExpr();
6009     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
6010         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
6011         CE ? CE->getBeginLoc() : SourceLocation());
6012   }
6013 
6014   return *this;
6015 }
6016 
6017 /* VarArg handling */
6018 
6019 RValue CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr,
6020                                   AggValueSlot Slot) {
6021   VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(VE->getSubExpr())
6022                                     : EmitVAListRef(VE->getSubExpr());
6023   QualType Ty = VE->getType();
6024   if (VE->isMicrosoftABI())
6025     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty, Slot);
6026   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty, Slot);
6027 }
6028