1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "ABIInfoImpl.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/AttributeMask.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <optional> 45 using namespace clang; 46 using namespace CodeGen; 47 48 /***/ 49 50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 51 switch (CC) { 52 default: return llvm::CallingConv::C; 53 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 54 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 55 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 56 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 57 case CC_Win64: return llvm::CallingConv::Win64; 58 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 59 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 60 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 61 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 62 // TODO: Add support for __pascal to LLVM. 63 case CC_X86Pascal: return llvm::CallingConv::C; 64 // TODO: Add support for __vectorcall to LLVM. 65 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 66 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 67 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 68 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 69 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 70 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 71 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 72 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 73 case CC_Swift: return llvm::CallingConv::Swift; 74 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 75 case CC_M68kRTD: return llvm::CallingConv::M68k_RTD; 76 case CC_PreserveNone: return llvm::CallingConv::PreserveNone; 77 // clang-format off 78 case CC_RISCVVectorCall: return llvm::CallingConv::RISCV_VectorCall; 79 // clang-format on 80 } 81 } 82 83 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 84 /// qualification. Either or both of RD and MD may be null. A null RD indicates 85 /// that there is no meaningful 'this' type, and a null MD can occur when 86 /// calling a method pointer. 87 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 88 const CXXMethodDecl *MD) { 89 QualType RecTy; 90 if (RD) 91 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 92 else 93 RecTy = Context.VoidTy; 94 95 if (MD) 96 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 97 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 98 } 99 100 /// Returns the canonical formal type of the given C++ method. 101 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 102 return MD->getType()->getCanonicalTypeUnqualified() 103 .getAs<FunctionProtoType>(); 104 } 105 106 /// Returns the "extra-canonicalized" return type, which discards 107 /// qualifiers on the return type. Codegen doesn't care about them, 108 /// and it makes ABI code a little easier to be able to assume that 109 /// all parameter and return types are top-level unqualified. 110 static CanQualType GetReturnType(QualType RetTy) { 111 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 112 } 113 114 /// Arrange the argument and result information for a value of the given 115 /// unprototyped freestanding function type. 116 const CGFunctionInfo & 117 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 118 // When translating an unprototyped function type, always use a 119 // variadic type. 120 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 121 FnInfoOpts::None, std::nullopt, 122 FTNP->getExtInfo(), {}, RequiredArgs(0)); 123 } 124 125 static void addExtParameterInfosForCall( 126 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 127 const FunctionProtoType *proto, 128 unsigned prefixArgs, 129 unsigned totalArgs) { 130 assert(proto->hasExtParameterInfos()); 131 assert(paramInfos.size() <= prefixArgs); 132 assert(proto->getNumParams() + prefixArgs <= totalArgs); 133 134 paramInfos.reserve(totalArgs); 135 136 // Add default infos for any prefix args that don't already have infos. 137 paramInfos.resize(prefixArgs); 138 139 // Add infos for the prototype. 140 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 141 paramInfos.push_back(ParamInfo); 142 // pass_object_size params have no parameter info. 143 if (ParamInfo.hasPassObjectSize()) 144 paramInfos.emplace_back(); 145 } 146 147 assert(paramInfos.size() <= totalArgs && 148 "Did we forget to insert pass_object_size args?"); 149 // Add default infos for the variadic and/or suffix arguments. 150 paramInfos.resize(totalArgs); 151 } 152 153 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 154 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 155 static void appendParameterTypes(const CodeGenTypes &CGT, 156 SmallVectorImpl<CanQualType> &prefix, 157 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 158 CanQual<FunctionProtoType> FPT) { 159 // Fast path: don't touch param info if we don't need to. 160 if (!FPT->hasExtParameterInfos()) { 161 assert(paramInfos.empty() && 162 "We have paramInfos, but the prototype doesn't?"); 163 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 164 return; 165 } 166 167 unsigned PrefixSize = prefix.size(); 168 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 169 // parameters; the only thing that can change this is the presence of 170 // pass_object_size. So, we preallocate for the common case. 171 prefix.reserve(prefix.size() + FPT->getNumParams()); 172 173 auto ExtInfos = FPT->getExtParameterInfos(); 174 assert(ExtInfos.size() == FPT->getNumParams()); 175 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 176 prefix.push_back(FPT->getParamType(I)); 177 if (ExtInfos[I].hasPassObjectSize()) 178 prefix.push_back(CGT.getContext().getSizeType()); 179 } 180 181 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 182 prefix.size()); 183 } 184 185 /// Arrange the LLVM function layout for a value of the given function 186 /// type, on top of any implicit parameters already stored. 187 static const CGFunctionInfo & 188 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 189 SmallVectorImpl<CanQualType> &prefix, 190 CanQual<FunctionProtoType> FTP) { 191 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 192 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 193 // FIXME: Kill copy. 194 appendParameterTypes(CGT, prefix, paramInfos, FTP); 195 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 196 197 FnInfoOpts opts = 198 instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None; 199 return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix, 200 FTP->getExtInfo(), paramInfos, Required); 201 } 202 203 /// Arrange the argument and result information for a value of the 204 /// given freestanding function type. 205 const CGFunctionInfo & 206 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 207 SmallVector<CanQualType, 16> argTypes; 208 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 209 FTP); 210 } 211 212 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 213 bool IsWindows) { 214 // Set the appropriate calling convention for the Function. 215 if (D->hasAttr<StdCallAttr>()) 216 return CC_X86StdCall; 217 218 if (D->hasAttr<FastCallAttr>()) 219 return CC_X86FastCall; 220 221 if (D->hasAttr<RegCallAttr>()) 222 return CC_X86RegCall; 223 224 if (D->hasAttr<ThisCallAttr>()) 225 return CC_X86ThisCall; 226 227 if (D->hasAttr<VectorCallAttr>()) 228 return CC_X86VectorCall; 229 230 if (D->hasAttr<PascalAttr>()) 231 return CC_X86Pascal; 232 233 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 234 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 235 236 if (D->hasAttr<AArch64VectorPcsAttr>()) 237 return CC_AArch64VectorCall; 238 239 if (D->hasAttr<AArch64SVEPcsAttr>()) 240 return CC_AArch64SVEPCS; 241 242 if (D->hasAttr<AMDGPUKernelCallAttr>()) 243 return CC_AMDGPUKernelCall; 244 245 if (D->hasAttr<IntelOclBiccAttr>()) 246 return CC_IntelOclBicc; 247 248 if (D->hasAttr<MSABIAttr>()) 249 return IsWindows ? CC_C : CC_Win64; 250 251 if (D->hasAttr<SysVABIAttr>()) 252 return IsWindows ? CC_X86_64SysV : CC_C; 253 254 if (D->hasAttr<PreserveMostAttr>()) 255 return CC_PreserveMost; 256 257 if (D->hasAttr<PreserveAllAttr>()) 258 return CC_PreserveAll; 259 260 if (D->hasAttr<M68kRTDAttr>()) 261 return CC_M68kRTD; 262 263 if (D->hasAttr<PreserveNoneAttr>()) 264 return CC_PreserveNone; 265 266 if (D->hasAttr<RISCVVectorCCAttr>()) 267 return CC_RISCVVectorCall; 268 269 return CC_C; 270 } 271 272 /// Arrange the argument and result information for a call to an 273 /// unknown C++ non-static member function of the given abstract type. 274 /// (A null RD means we don't have any meaningful "this" argument type, 275 /// so fall back to a generic pointer type). 276 /// The member function must be an ordinary function, i.e. not a 277 /// constructor or destructor. 278 const CGFunctionInfo & 279 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 280 const FunctionProtoType *FTP, 281 const CXXMethodDecl *MD) { 282 SmallVector<CanQualType, 16> argTypes; 283 284 // Add the 'this' pointer. 285 argTypes.push_back(DeriveThisType(RD, MD)); 286 287 return ::arrangeLLVMFunctionInfo( 288 *this, /*instanceMethod=*/true, argTypes, 289 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 290 } 291 292 /// Set calling convention for CUDA/HIP kernel. 293 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 294 const FunctionDecl *FD) { 295 if (FD->hasAttr<CUDAGlobalAttr>()) { 296 const FunctionType *FT = FTy->getAs<FunctionType>(); 297 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 298 FTy = FT->getCanonicalTypeUnqualified(); 299 } 300 } 301 302 /// Arrange the argument and result information for a declaration or 303 /// definition of the given C++ non-static member function. The 304 /// member function must be an ordinary function, i.e. not a 305 /// constructor or destructor. 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 308 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 309 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 310 311 CanQualType FT = GetFormalType(MD).getAs<Type>(); 312 setCUDAKernelCallingConvention(FT, CGM, MD); 313 auto prototype = FT.getAs<FunctionProtoType>(); 314 315 if (MD->isImplicitObjectMemberFunction()) { 316 // The abstract case is perfectly fine. 317 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 318 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 319 } 320 321 return arrangeFreeFunctionType(prototype); 322 } 323 324 bool CodeGenTypes::inheritingCtorHasParams( 325 const InheritedConstructor &Inherited, CXXCtorType Type) { 326 // Parameters are unnecessary if we're constructing a base class subobject 327 // and the inherited constructor lives in a virtual base. 328 return Type == Ctor_Complete || 329 !Inherited.getShadowDecl()->constructsVirtualBase() || 330 !Target.getCXXABI().hasConstructorVariants(); 331 } 332 333 const CGFunctionInfo & 334 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 335 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 336 337 SmallVector<CanQualType, 16> argTypes; 338 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 339 340 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD); 341 argTypes.push_back(DeriveThisType(ThisType, MD)); 342 343 bool PassParams = true; 344 345 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 346 // A base class inheriting constructor doesn't get forwarded arguments 347 // needed to construct a virtual base (or base class thereof). 348 if (auto Inherited = CD->getInheritedConstructor()) 349 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 350 } 351 352 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 353 354 // Add the formal parameters. 355 if (PassParams) 356 appendParameterTypes(*this, argTypes, paramInfos, FTP); 357 358 CGCXXABI::AddedStructorArgCounts AddedArgs = 359 TheCXXABI.buildStructorSignature(GD, argTypes); 360 if (!paramInfos.empty()) { 361 // Note: prefix implies after the first param. 362 if (AddedArgs.Prefix) 363 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 364 FunctionProtoType::ExtParameterInfo{}); 365 if (AddedArgs.Suffix) 366 paramInfos.append(AddedArgs.Suffix, 367 FunctionProtoType::ExtParameterInfo{}); 368 } 369 370 RequiredArgs required = 371 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 372 : RequiredArgs::All); 373 374 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 375 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 376 ? argTypes.front() 377 : TheCXXABI.hasMostDerivedReturn(GD) 378 ? CGM.getContext().VoidPtrTy 379 : Context.VoidTy; 380 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod, 381 argTypes, extInfo, paramInfos, required); 382 } 383 384 static SmallVector<CanQualType, 16> 385 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 386 SmallVector<CanQualType, 16> argTypes; 387 for (auto &arg : args) 388 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 389 return argTypes; 390 } 391 392 static SmallVector<CanQualType, 16> 393 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 394 SmallVector<CanQualType, 16> argTypes; 395 for (auto &arg : args) 396 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 397 return argTypes; 398 } 399 400 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 401 getExtParameterInfosForCall(const FunctionProtoType *proto, 402 unsigned prefixArgs, unsigned totalArgs) { 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 404 if (proto->hasExtParameterInfos()) { 405 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 406 } 407 return result; 408 } 409 410 /// Arrange a call to a C++ method, passing the given arguments. 411 /// 412 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 413 /// parameter. 414 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 415 /// args. 416 /// PassProtoArgs indicates whether `args` has args for the parameters in the 417 /// given CXXConstructorDecl. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 420 const CXXConstructorDecl *D, 421 CXXCtorType CtorKind, 422 unsigned ExtraPrefixArgs, 423 unsigned ExtraSuffixArgs, 424 bool PassProtoArgs) { 425 // FIXME: Kill copy. 426 SmallVector<CanQualType, 16> ArgTypes; 427 for (const auto &Arg : args) 428 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 429 430 // +1 for implicit this, which should always be args[0]. 431 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 432 433 CanQual<FunctionProtoType> FPT = GetFormalType(D); 434 RequiredArgs Required = PassProtoArgs 435 ? RequiredArgs::forPrototypePlus( 436 FPT, TotalPrefixArgs + ExtraSuffixArgs) 437 : RequiredArgs::All; 438 439 GlobalDecl GD(D, CtorKind); 440 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 441 ? ArgTypes.front() 442 : TheCXXABI.hasMostDerivedReturn(GD) 443 ? CGM.getContext().VoidPtrTy 444 : Context.VoidTy; 445 446 FunctionType::ExtInfo Info = FPT->getExtInfo(); 447 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 448 // If the prototype args are elided, we should only have ABI-specific args, 449 // which never have param info. 450 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 451 // ABI-specific suffix arguments are treated the same as variadic arguments. 452 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 453 ArgTypes.size()); 454 } 455 456 return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod, 457 ArgTypes, Info, ParamInfos, Required); 458 } 459 460 /// Arrange the argument and result information for the declaration or 461 /// definition of the given function. 462 const CGFunctionInfo & 463 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 464 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 465 if (MD->isImplicitObjectMemberFunction()) 466 return arrangeCXXMethodDeclaration(MD); 467 468 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 469 470 assert(isa<FunctionType>(FTy)); 471 setCUDAKernelCallingConvention(FTy, CGM, FD); 472 473 // When declaring a function without a prototype, always use a 474 // non-variadic type. 475 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 476 return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None, 477 std::nullopt, noProto->getExtInfo(), {}, 478 RequiredArgs::All); 479 } 480 481 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 482 } 483 484 /// Arrange the argument and result information for the declaration or 485 /// definition of an Objective-C method. 486 const CGFunctionInfo & 487 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 488 // It happens that this is the same as a call with no optional 489 // arguments, except also using the formal 'self' type. 490 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 491 } 492 493 /// Arrange the argument and result information for the function type 494 /// through which to perform a send to the given Objective-C method, 495 /// using the given receiver type. The receiver type is not always 496 /// the 'self' type of the method or even an Objective-C pointer type. 497 /// This is *not* the right method for actually performing such a 498 /// message send, due to the possibility of optional arguments. 499 const CGFunctionInfo & 500 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 501 QualType receiverType) { 502 SmallVector<CanQualType, 16> argTys; 503 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos( 504 MD->isDirectMethod() ? 1 : 2); 505 argTys.push_back(Context.getCanonicalParamType(receiverType)); 506 if (!MD->isDirectMethod()) 507 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 508 // FIXME: Kill copy? 509 for (const auto *I : MD->parameters()) { 510 argTys.push_back(Context.getCanonicalParamType(I->getType())); 511 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 512 I->hasAttr<NoEscapeAttr>()); 513 extParamInfos.push_back(extParamInfo); 514 } 515 516 FunctionType::ExtInfo einfo; 517 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 518 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 519 520 if (getContext().getLangOpts().ObjCAutoRefCount && 521 MD->hasAttr<NSReturnsRetainedAttr>()) 522 einfo = einfo.withProducesResult(true); 523 524 RequiredArgs required = 525 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 526 527 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), 528 FnInfoOpts::None, argTys, einfo, extParamInfos, 529 required); 530 } 531 532 const CGFunctionInfo & 533 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 534 const CallArgList &args) { 535 auto argTypes = getArgTypesForCall(Context, args); 536 FunctionType::ExtInfo einfo; 537 538 return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None, 539 argTypes, einfo, {}, RequiredArgs::All); 540 } 541 542 const CGFunctionInfo & 543 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 544 // FIXME: Do we need to handle ObjCMethodDecl? 545 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 546 547 if (isa<CXXConstructorDecl>(GD.getDecl()) || 548 isa<CXXDestructorDecl>(GD.getDecl())) 549 return arrangeCXXStructorDeclaration(GD); 550 551 return arrangeFunctionDeclaration(FD); 552 } 553 554 /// Arrange a thunk that takes 'this' as the first parameter followed by 555 /// varargs. Return a void pointer, regardless of the actual return type. 556 /// The body of the thunk will end in a musttail call to a function of the 557 /// correct type, and the caller will bitcast the function to the correct 558 /// prototype. 559 const CGFunctionInfo & 560 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 561 assert(MD->isVirtual() && "only methods have thunks"); 562 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 563 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 564 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys, 565 FTP->getExtInfo(), {}, RequiredArgs(1)); 566 } 567 568 const CGFunctionInfo & 569 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 570 CXXCtorType CT) { 571 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 572 573 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 574 SmallVector<CanQualType, 2> ArgTys; 575 const CXXRecordDecl *RD = CD->getParent(); 576 ArgTys.push_back(DeriveThisType(RD, CD)); 577 if (CT == Ctor_CopyingClosure) 578 ArgTys.push_back(*FTP->param_type_begin()); 579 if (RD->getNumVBases() > 0) 580 ArgTys.push_back(Context.IntTy); 581 CallingConv CC = Context.getDefaultCallingConvention( 582 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 583 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod, 584 ArgTys, FunctionType::ExtInfo(CC), {}, 585 RequiredArgs::All); 586 } 587 588 /// Arrange a call as unto a free function, except possibly with an 589 /// additional number of formal parameters considered required. 590 static const CGFunctionInfo & 591 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 592 CodeGenModule &CGM, 593 const CallArgList &args, 594 const FunctionType *fnType, 595 unsigned numExtraRequiredArgs, 596 bool chainCall) { 597 assert(args.size() >= numExtraRequiredArgs); 598 599 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 600 601 // In most cases, there are no optional arguments. 602 RequiredArgs required = RequiredArgs::All; 603 604 // If we have a variadic prototype, the required arguments are the 605 // extra prefix plus the arguments in the prototype. 606 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 607 if (proto->isVariadic()) 608 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 609 610 if (proto->hasExtParameterInfos()) 611 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 612 args.size()); 613 614 // If we don't have a prototype at all, but we're supposed to 615 // explicitly use the variadic convention for unprototyped calls, 616 // treat all of the arguments as required but preserve the nominal 617 // possibility of variadics. 618 } else if (CGM.getTargetCodeGenInfo() 619 .isNoProtoCallVariadic(args, 620 cast<FunctionNoProtoType>(fnType))) { 621 required = RequiredArgs(args.size()); 622 } 623 624 // FIXME: Kill copy. 625 SmallVector<CanQualType, 16> argTypes; 626 for (const auto &arg : args) 627 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 628 FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None; 629 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 630 opts, argTypes, fnType->getExtInfo(), 631 paramInfos, required); 632 } 633 634 /// Figure out the rules for calling a function with the given formal 635 /// type using the given arguments. The arguments are necessary 636 /// because the function might be unprototyped, in which case it's 637 /// target-dependent in crazy ways. 638 const CGFunctionInfo & 639 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 640 const FunctionType *fnType, 641 bool chainCall) { 642 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 643 chainCall ? 1 : 0, chainCall); 644 } 645 646 /// A block function is essentially a free function with an 647 /// extra implicit argument. 648 const CGFunctionInfo & 649 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 650 const FunctionType *fnType) { 651 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 652 /*chainCall=*/false); 653 } 654 655 const CGFunctionInfo & 656 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 657 const FunctionArgList ¶ms) { 658 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 659 auto argTypes = getArgTypesForDeclaration(Context, params); 660 661 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 662 FnInfoOpts::None, argTypes, 663 proto->getExtInfo(), paramInfos, 664 RequiredArgs::forPrototypePlus(proto, 1)); 665 } 666 667 const CGFunctionInfo & 668 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 669 const CallArgList &args) { 670 // FIXME: Kill copy. 671 SmallVector<CanQualType, 16> argTypes; 672 for (const auto &Arg : args) 673 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 674 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 675 argTypes, FunctionType::ExtInfo(), 676 /*paramInfos=*/{}, RequiredArgs::All); 677 } 678 679 const CGFunctionInfo & 680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 681 const FunctionArgList &args) { 682 auto argTypes = getArgTypesForDeclaration(Context, args); 683 684 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 685 argTypes, FunctionType::ExtInfo(), {}, 686 RequiredArgs::All); 687 } 688 689 const CGFunctionInfo & 690 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 691 ArrayRef<CanQualType> argTypes) { 692 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes, 693 FunctionType::ExtInfo(), {}, 694 RequiredArgs::All); 695 } 696 697 /// Arrange a call to a C++ method, passing the given arguments. 698 /// 699 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 700 /// does not count `this`. 701 const CGFunctionInfo & 702 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 703 const FunctionProtoType *proto, 704 RequiredArgs required, 705 unsigned numPrefixArgs) { 706 assert(numPrefixArgs + 1 <= args.size() && 707 "Emitting a call with less args than the required prefix?"); 708 // Add one to account for `this`. It's a bit awkward here, but we don't count 709 // `this` in similar places elsewhere. 710 auto paramInfos = 711 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 712 713 // FIXME: Kill copy. 714 auto argTypes = getArgTypesForCall(Context, args); 715 716 FunctionType::ExtInfo info = proto->getExtInfo(); 717 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 718 FnInfoOpts::IsInstanceMethod, argTypes, info, 719 paramInfos, required); 720 } 721 722 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 723 return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None, 724 std::nullopt, FunctionType::ExtInfo(), {}, 725 RequiredArgs::All); 726 } 727 728 const CGFunctionInfo & 729 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 730 const CallArgList &args) { 731 assert(signature.arg_size() <= args.size()); 732 if (signature.arg_size() == args.size()) 733 return signature; 734 735 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 736 auto sigParamInfos = signature.getExtParameterInfos(); 737 if (!sigParamInfos.empty()) { 738 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 739 paramInfos.resize(args.size()); 740 } 741 742 auto argTypes = getArgTypesForCall(Context, args); 743 744 assert(signature.getRequiredArgs().allowsOptionalArgs()); 745 FnInfoOpts opts = FnInfoOpts::None; 746 if (signature.isInstanceMethod()) 747 opts |= FnInfoOpts::IsInstanceMethod; 748 if (signature.isChainCall()) 749 opts |= FnInfoOpts::IsChainCall; 750 if (signature.isDelegateCall()) 751 opts |= FnInfoOpts::IsDelegateCall; 752 return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes, 753 signature.getExtInfo(), paramInfos, 754 signature.getRequiredArgs()); 755 } 756 757 namespace clang { 758 namespace CodeGen { 759 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 760 } 761 } 762 763 /// Arrange the argument and result information for an abstract value 764 /// of a given function type. This is the method which all of the 765 /// above functions ultimately defer to. 766 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo( 767 CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, 768 FunctionType::ExtInfo info, 769 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 770 RequiredArgs required) { 771 assert(llvm::all_of(argTypes, 772 [](CanQualType T) { return T.isCanonicalAsParam(); })); 773 774 // Lookup or create unique function info. 775 llvm::FoldingSetNodeID ID; 776 bool isInstanceMethod = 777 (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod; 778 bool isChainCall = 779 (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall; 780 bool isDelegateCall = 781 (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall; 782 CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall, 783 info, paramInfos, required, resultType, argTypes); 784 785 void *insertPos = nullptr; 786 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 787 if (FI) 788 return *FI; 789 790 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 791 792 // Construct the function info. We co-allocate the ArgInfos. 793 FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall, 794 info, paramInfos, resultType, argTypes, required); 795 FunctionInfos.InsertNode(FI, insertPos); 796 797 bool inserted = FunctionsBeingProcessed.insert(FI).second; 798 (void)inserted; 799 assert(inserted && "Recursively being processed?"); 800 801 // Compute ABI information. 802 if (CC == llvm::CallingConv::SPIR_KERNEL) { 803 // Force target independent argument handling for the host visible 804 // kernel functions. 805 computeSPIRKernelABIInfo(CGM, *FI); 806 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 807 swiftcall::computeABIInfo(CGM, *FI); 808 } else { 809 getABIInfo().computeInfo(*FI); 810 } 811 812 // Loop over all of the computed argument and return value info. If any of 813 // them are direct or extend without a specified coerce type, specify the 814 // default now. 815 ABIArgInfo &retInfo = FI->getReturnInfo(); 816 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 817 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 818 819 for (auto &I : FI->arguments()) 820 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 821 I.info.setCoerceToType(ConvertType(I.type)); 822 823 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 824 assert(erased && "Not in set?"); 825 826 return *FI; 827 } 828 829 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod, 830 bool chainCall, bool delegateCall, 831 const FunctionType::ExtInfo &info, 832 ArrayRef<ExtParameterInfo> paramInfos, 833 CanQualType resultType, 834 ArrayRef<CanQualType> argTypes, 835 RequiredArgs required) { 836 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 837 assert(!required.allowsOptionalArgs() || 838 required.getNumRequiredArgs() <= argTypes.size()); 839 840 void *buffer = 841 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 842 argTypes.size() + 1, paramInfos.size())); 843 844 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 845 FI->CallingConvention = llvmCC; 846 FI->EffectiveCallingConvention = llvmCC; 847 FI->ASTCallingConvention = info.getCC(); 848 FI->InstanceMethod = instanceMethod; 849 FI->ChainCall = chainCall; 850 FI->DelegateCall = delegateCall; 851 FI->CmseNSCall = info.getCmseNSCall(); 852 FI->NoReturn = info.getNoReturn(); 853 FI->ReturnsRetained = info.getProducesResult(); 854 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 855 FI->NoCfCheck = info.getNoCfCheck(); 856 FI->Required = required; 857 FI->HasRegParm = info.getHasRegParm(); 858 FI->RegParm = info.getRegParm(); 859 FI->ArgStruct = nullptr; 860 FI->ArgStructAlign = 0; 861 FI->NumArgs = argTypes.size(); 862 FI->HasExtParameterInfos = !paramInfos.empty(); 863 FI->getArgsBuffer()[0].type = resultType; 864 FI->MaxVectorWidth = 0; 865 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 866 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 867 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 868 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 869 return FI; 870 } 871 872 /***/ 873 874 namespace { 875 // ABIArgInfo::Expand implementation. 876 877 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 878 struct TypeExpansion { 879 enum TypeExpansionKind { 880 // Elements of constant arrays are expanded recursively. 881 TEK_ConstantArray, 882 // Record fields are expanded recursively (but if record is a union, only 883 // the field with the largest size is expanded). 884 TEK_Record, 885 // For complex types, real and imaginary parts are expanded recursively. 886 TEK_Complex, 887 // All other types are not expandable. 888 TEK_None 889 }; 890 891 const TypeExpansionKind Kind; 892 893 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 894 virtual ~TypeExpansion() {} 895 }; 896 897 struct ConstantArrayExpansion : TypeExpansion { 898 QualType EltTy; 899 uint64_t NumElts; 900 901 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 902 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 903 static bool classof(const TypeExpansion *TE) { 904 return TE->Kind == TEK_ConstantArray; 905 } 906 }; 907 908 struct RecordExpansion : TypeExpansion { 909 SmallVector<const CXXBaseSpecifier *, 1> Bases; 910 911 SmallVector<const FieldDecl *, 1> Fields; 912 913 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 914 SmallVector<const FieldDecl *, 1> &&Fields) 915 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 916 Fields(std::move(Fields)) {} 917 static bool classof(const TypeExpansion *TE) { 918 return TE->Kind == TEK_Record; 919 } 920 }; 921 922 struct ComplexExpansion : TypeExpansion { 923 QualType EltTy; 924 925 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 926 static bool classof(const TypeExpansion *TE) { 927 return TE->Kind == TEK_Complex; 928 } 929 }; 930 931 struct NoExpansion : TypeExpansion { 932 NoExpansion() : TypeExpansion(TEK_None) {} 933 static bool classof(const TypeExpansion *TE) { 934 return TE->Kind == TEK_None; 935 } 936 }; 937 } // namespace 938 939 static std::unique_ptr<TypeExpansion> 940 getTypeExpansion(QualType Ty, const ASTContext &Context) { 941 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 942 return std::make_unique<ConstantArrayExpansion>(AT->getElementType(), 943 AT->getZExtSize()); 944 } 945 if (const RecordType *RT = Ty->getAs<RecordType>()) { 946 SmallVector<const CXXBaseSpecifier *, 1> Bases; 947 SmallVector<const FieldDecl *, 1> Fields; 948 const RecordDecl *RD = RT->getDecl(); 949 assert(!RD->hasFlexibleArrayMember() && 950 "Cannot expand structure with flexible array."); 951 if (RD->isUnion()) { 952 // Unions can be here only in degenerative cases - all the fields are same 953 // after flattening. Thus we have to use the "largest" field. 954 const FieldDecl *LargestFD = nullptr; 955 CharUnits UnionSize = CharUnits::Zero(); 956 957 for (const auto *FD : RD->fields()) { 958 if (FD->isZeroLengthBitField(Context)) 959 continue; 960 assert(!FD->isBitField() && 961 "Cannot expand structure with bit-field members."); 962 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 963 if (UnionSize < FieldSize) { 964 UnionSize = FieldSize; 965 LargestFD = FD; 966 } 967 } 968 if (LargestFD) 969 Fields.push_back(LargestFD); 970 } else { 971 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 972 assert(!CXXRD->isDynamicClass() && 973 "cannot expand vtable pointers in dynamic classes"); 974 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 975 } 976 977 for (const auto *FD : RD->fields()) { 978 if (FD->isZeroLengthBitField(Context)) 979 continue; 980 assert(!FD->isBitField() && 981 "Cannot expand structure with bit-field members."); 982 Fields.push_back(FD); 983 } 984 } 985 return std::make_unique<RecordExpansion>(std::move(Bases), 986 std::move(Fields)); 987 } 988 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 989 return std::make_unique<ComplexExpansion>(CT->getElementType()); 990 } 991 return std::make_unique<NoExpansion>(); 992 } 993 994 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 995 auto Exp = getTypeExpansion(Ty, Context); 996 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 997 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 998 } 999 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1000 int Res = 0; 1001 for (auto BS : RExp->Bases) 1002 Res += getExpansionSize(BS->getType(), Context); 1003 for (auto FD : RExp->Fields) 1004 Res += getExpansionSize(FD->getType(), Context); 1005 return Res; 1006 } 1007 if (isa<ComplexExpansion>(Exp.get())) 1008 return 2; 1009 assert(isa<NoExpansion>(Exp.get())); 1010 return 1; 1011 } 1012 1013 void 1014 CodeGenTypes::getExpandedTypes(QualType Ty, 1015 SmallVectorImpl<llvm::Type *>::iterator &TI) { 1016 auto Exp = getTypeExpansion(Ty, Context); 1017 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1018 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 1019 getExpandedTypes(CAExp->EltTy, TI); 1020 } 1021 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1022 for (auto BS : RExp->Bases) 1023 getExpandedTypes(BS->getType(), TI); 1024 for (auto FD : RExp->Fields) 1025 getExpandedTypes(FD->getType(), TI); 1026 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1027 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1028 *TI++ = EltTy; 1029 *TI++ = EltTy; 1030 } else { 1031 assert(isa<NoExpansion>(Exp.get())); 1032 *TI++ = ConvertType(Ty); 1033 } 1034 } 1035 1036 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1037 ConstantArrayExpansion *CAE, 1038 Address BaseAddr, 1039 llvm::function_ref<void(Address)> Fn) { 1040 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1041 Address EltAddr = CGF.Builder.CreateConstGEP2_32(BaseAddr, 0, i); 1042 Fn(EltAddr); 1043 } 1044 } 1045 1046 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1047 llvm::Function::arg_iterator &AI) { 1048 assert(LV.isSimple() && 1049 "Unexpected non-simple lvalue during struct expansion."); 1050 1051 auto Exp = getTypeExpansion(Ty, getContext()); 1052 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1053 forConstantArrayExpansion( 1054 *this, CAExp, LV.getAddress(), [&](Address EltAddr) { 1055 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1056 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1057 }); 1058 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1059 Address This = LV.getAddress(); 1060 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1061 // Perform a single step derived-to-base conversion. 1062 Address Base = 1063 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1064 /*NullCheckValue=*/false, SourceLocation()); 1065 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1066 1067 // Recurse onto bases. 1068 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1069 } 1070 for (auto FD : RExp->Fields) { 1071 // FIXME: What are the right qualifiers here? 1072 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1073 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1074 } 1075 } else if (isa<ComplexExpansion>(Exp.get())) { 1076 auto realValue = &*AI++; 1077 auto imagValue = &*AI++; 1078 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1079 } else { 1080 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1081 // primitive store. 1082 assert(isa<NoExpansion>(Exp.get())); 1083 llvm::Value *Arg = &*AI++; 1084 if (LV.isBitField()) { 1085 EmitStoreThroughLValue(RValue::get(Arg), LV); 1086 } else { 1087 // TODO: currently there are some places are inconsistent in what LLVM 1088 // pointer type they use (see D118744). Once clang uses opaque pointers 1089 // all LLVM pointer types will be the same and we can remove this check. 1090 if (Arg->getType()->isPointerTy()) { 1091 Address Addr = LV.getAddress(); 1092 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1093 } 1094 EmitStoreOfScalar(Arg, LV); 1095 } 1096 } 1097 } 1098 1099 void CodeGenFunction::ExpandTypeToArgs( 1100 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1101 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1102 auto Exp = getTypeExpansion(Ty, getContext()); 1103 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1104 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1105 : Arg.getKnownRValue().getAggregateAddress(); 1106 forConstantArrayExpansion( 1107 *this, CAExp, Addr, [&](Address EltAddr) { 1108 CallArg EltArg = CallArg( 1109 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1110 CAExp->EltTy); 1111 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1112 IRCallArgPos); 1113 }); 1114 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1115 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1116 : Arg.getKnownRValue().getAggregateAddress(); 1117 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1118 // Perform a single step derived-to-base conversion. 1119 Address Base = 1120 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1121 /*NullCheckValue=*/false, SourceLocation()); 1122 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1123 1124 // Recurse onto bases. 1125 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1126 IRCallArgPos); 1127 } 1128 1129 LValue LV = MakeAddrLValue(This, Ty); 1130 for (auto FD : RExp->Fields) { 1131 CallArg FldArg = 1132 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1133 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1134 IRCallArgPos); 1135 } 1136 } else if (isa<ComplexExpansion>(Exp.get())) { 1137 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1138 IRCallArgs[IRCallArgPos++] = CV.first; 1139 IRCallArgs[IRCallArgPos++] = CV.second; 1140 } else { 1141 assert(isa<NoExpansion>(Exp.get())); 1142 auto RV = Arg.getKnownRValue(); 1143 assert(RV.isScalar() && 1144 "Unexpected non-scalar rvalue during struct expansion."); 1145 1146 // Insert a bitcast as needed. 1147 llvm::Value *V = RV.getScalarVal(); 1148 if (IRCallArgPos < IRFuncTy->getNumParams() && 1149 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1150 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1151 1152 IRCallArgs[IRCallArgPos++] = V; 1153 } 1154 } 1155 1156 /// Create a temporary allocation for the purposes of coercion. 1157 static RawAddress CreateTempAllocaForCoercion(CodeGenFunction &CGF, 1158 llvm::Type *Ty, 1159 CharUnits MinAlign, 1160 const Twine &Name = "tmp") { 1161 // Don't use an alignment that's worse than what LLVM would prefer. 1162 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty); 1163 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1164 1165 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1166 } 1167 1168 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1169 /// accessing some number of bytes out of it, try to gep into the struct to get 1170 /// at its inner goodness. Dive as deep as possible without entering an element 1171 /// with an in-memory size smaller than DstSize. 1172 static Address 1173 EnterStructPointerForCoercedAccess(Address SrcPtr, 1174 llvm::StructType *SrcSTy, 1175 uint64_t DstSize, CodeGenFunction &CGF) { 1176 // We can't dive into a zero-element struct. 1177 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1178 1179 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1180 1181 // If the first elt is at least as large as what we're looking for, or if the 1182 // first element is the same size as the whole struct, we can enter it. The 1183 // comparison must be made on the store size and not the alloca size. Using 1184 // the alloca size may overstate the size of the load. 1185 uint64_t FirstEltSize = 1186 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1187 if (FirstEltSize < DstSize && 1188 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1189 return SrcPtr; 1190 1191 // GEP into the first element. 1192 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1193 1194 // If the first element is a struct, recurse. 1195 llvm::Type *SrcTy = SrcPtr.getElementType(); 1196 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1197 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1198 1199 return SrcPtr; 1200 } 1201 1202 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1203 /// are either integers or pointers. This does a truncation of the value if it 1204 /// is too large or a zero extension if it is too small. 1205 /// 1206 /// This behaves as if the value were coerced through memory, so on big-endian 1207 /// targets the high bits are preserved in a truncation, while little-endian 1208 /// targets preserve the low bits. 1209 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1210 llvm::Type *Ty, 1211 CodeGenFunction &CGF) { 1212 if (Val->getType() == Ty) 1213 return Val; 1214 1215 if (isa<llvm::PointerType>(Val->getType())) { 1216 // If this is Pointer->Pointer avoid conversion to and from int. 1217 if (isa<llvm::PointerType>(Ty)) 1218 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1219 1220 // Convert the pointer to an integer so we can play with its width. 1221 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1222 } 1223 1224 llvm::Type *DestIntTy = Ty; 1225 if (isa<llvm::PointerType>(DestIntTy)) 1226 DestIntTy = CGF.IntPtrTy; 1227 1228 if (Val->getType() != DestIntTy) { 1229 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1230 if (DL.isBigEndian()) { 1231 // Preserve the high bits on big-endian targets. 1232 // That is what memory coercion does. 1233 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1234 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1235 1236 if (SrcSize > DstSize) { 1237 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1238 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1239 } else { 1240 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1241 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1242 } 1243 } else { 1244 // Little-endian targets preserve the low bits. No shifts required. 1245 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1246 } 1247 } 1248 1249 if (isa<llvm::PointerType>(Ty)) 1250 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1251 return Val; 1252 } 1253 1254 1255 1256 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1257 /// a pointer to an object of type \arg Ty, known to be aligned to 1258 /// \arg SrcAlign bytes. 1259 /// 1260 /// This safely handles the case when the src type is smaller than the 1261 /// destination type; in this situation the values of bits which not 1262 /// present in the src are undefined. 1263 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1264 CodeGenFunction &CGF) { 1265 llvm::Type *SrcTy = Src.getElementType(); 1266 1267 // If SrcTy and Ty are the same, just do a load. 1268 if (SrcTy == Ty) 1269 return CGF.Builder.CreateLoad(Src); 1270 1271 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1272 1273 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1274 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1275 DstSize.getFixedValue(), CGF); 1276 SrcTy = Src.getElementType(); 1277 } 1278 1279 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1280 1281 // If the source and destination are integer or pointer types, just do an 1282 // extension or truncation to the desired type. 1283 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1284 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1285 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1286 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1287 } 1288 1289 // If load is legal, just bitcast the src pointer. 1290 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1291 SrcSize.getFixedValue() >= DstSize.getFixedValue()) { 1292 // Generally SrcSize is never greater than DstSize, since this means we are 1293 // losing bits. However, this can happen in cases where the structure has 1294 // additional padding, for example due to a user specified alignment. 1295 // 1296 // FIXME: Assert that we aren't truncating non-padding bits when have access 1297 // to that information. 1298 Src = Src.withElementType(Ty); 1299 return CGF.Builder.CreateLoad(Src); 1300 } 1301 1302 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1303 // the types match, use the llvm.vector.insert intrinsic to perform the 1304 // conversion. 1305 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1306 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1307 // If we are casting a fixed i8 vector to a scalable i1 predicate 1308 // vector, use a vector insert and bitcast the result. 1309 if (ScalableDstTy->getElementType()->isIntegerTy(1) && 1310 ScalableDstTy->getElementCount().isKnownMultipleOf(8) && 1311 FixedSrcTy->getElementType()->isIntegerTy(8)) { 1312 ScalableDstTy = llvm::ScalableVectorType::get( 1313 FixedSrcTy->getElementType(), 1314 ScalableDstTy->getElementCount().getKnownMinValue() / 8); 1315 } 1316 if (ScalableDstTy->getElementType() == FixedSrcTy->getElementType()) { 1317 auto *Load = CGF.Builder.CreateLoad(Src); 1318 auto *UndefVec = llvm::UndefValue::get(ScalableDstTy); 1319 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1320 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1321 ScalableDstTy, UndefVec, Load, Zero, "cast.scalable"); 1322 if (ScalableDstTy != Ty) 1323 Result = CGF.Builder.CreateBitCast(Result, Ty); 1324 return Result; 1325 } 1326 } 1327 } 1328 1329 // Otherwise do coercion through memory. This is stupid, but simple. 1330 RawAddress Tmp = 1331 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1332 CGF.Builder.CreateMemCpy( 1333 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1334 Src.emitRawPointer(CGF), Src.getAlignment().getAsAlign(), 1335 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue())); 1336 return CGF.Builder.CreateLoad(Tmp); 1337 } 1338 1339 // Function to store a first-class aggregate into memory. We prefer to 1340 // store the elements rather than the aggregate to be more friendly to 1341 // fast-isel. 1342 // FIXME: Do we need to recurse here? 1343 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1344 bool DestIsVolatile) { 1345 // Prefer scalar stores to first-class aggregate stores. 1346 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1347 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1348 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1349 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1350 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1351 } 1352 } else { 1353 Builder.CreateStore(Val, Dest, DestIsVolatile); 1354 } 1355 } 1356 1357 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1358 /// where the source and destination may have different types. The 1359 /// destination is known to be aligned to \arg DstAlign bytes. 1360 /// 1361 /// This safely handles the case when the src type is larger than the 1362 /// destination type; the upper bits of the src will be lost. 1363 static void CreateCoercedStore(llvm::Value *Src, 1364 Address Dst, 1365 bool DstIsVolatile, 1366 CodeGenFunction &CGF) { 1367 llvm::Type *SrcTy = Src->getType(); 1368 llvm::Type *DstTy = Dst.getElementType(); 1369 if (SrcTy == DstTy) { 1370 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1371 return; 1372 } 1373 1374 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1375 1376 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1377 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1378 SrcSize.getFixedValue(), CGF); 1379 DstTy = Dst.getElementType(); 1380 } 1381 1382 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1383 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1384 if (SrcPtrTy && DstPtrTy && 1385 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1386 Src = CGF.Builder.CreateAddrSpaceCast(Src, DstTy); 1387 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1388 return; 1389 } 1390 1391 // If the source and destination are integer or pointer types, just do an 1392 // extension or truncation to the desired type. 1393 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1394 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1395 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1396 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1397 return; 1398 } 1399 1400 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1401 1402 // If store is legal, just bitcast the src pointer. 1403 if (isa<llvm::ScalableVectorType>(SrcTy) || 1404 isa<llvm::ScalableVectorType>(DstTy) || 1405 SrcSize.getFixedValue() <= DstSize.getFixedValue()) { 1406 Dst = Dst.withElementType(SrcTy); 1407 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1408 } else { 1409 // Otherwise do coercion through memory. This is stupid, but 1410 // simple. 1411 1412 // Generally SrcSize is never greater than DstSize, since this means we are 1413 // losing bits. However, this can happen in cases where the structure has 1414 // additional padding, for example due to a user specified alignment. 1415 // 1416 // FIXME: Assert that we aren't truncating non-padding bits when have access 1417 // to that information. 1418 RawAddress Tmp = 1419 CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1420 CGF.Builder.CreateStore(Src, Tmp); 1421 CGF.Builder.CreateMemCpy( 1422 Dst.emitRawPointer(CGF), Dst.getAlignment().getAsAlign(), 1423 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1424 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedValue())); 1425 } 1426 } 1427 1428 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1429 const ABIArgInfo &info) { 1430 if (unsigned offset = info.getDirectOffset()) { 1431 addr = addr.withElementType(CGF.Int8Ty); 1432 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1433 CharUnits::fromQuantity(offset)); 1434 addr = addr.withElementType(info.getCoerceToType()); 1435 } 1436 return addr; 1437 } 1438 1439 namespace { 1440 1441 /// Encapsulates information about the way function arguments from 1442 /// CGFunctionInfo should be passed to actual LLVM IR function. 1443 class ClangToLLVMArgMapping { 1444 static const unsigned InvalidIndex = ~0U; 1445 unsigned InallocaArgNo; 1446 unsigned SRetArgNo; 1447 unsigned TotalIRArgs; 1448 1449 /// Arguments of LLVM IR function corresponding to single Clang argument. 1450 struct IRArgs { 1451 unsigned PaddingArgIndex; 1452 // Argument is expanded to IR arguments at positions 1453 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1454 unsigned FirstArgIndex; 1455 unsigned NumberOfArgs; 1456 1457 IRArgs() 1458 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1459 NumberOfArgs(0) {} 1460 }; 1461 1462 SmallVector<IRArgs, 8> ArgInfo; 1463 1464 public: 1465 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1466 bool OnlyRequiredArgs = false) 1467 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1468 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1469 construct(Context, FI, OnlyRequiredArgs); 1470 } 1471 1472 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1473 unsigned getInallocaArgNo() const { 1474 assert(hasInallocaArg()); 1475 return InallocaArgNo; 1476 } 1477 1478 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1479 unsigned getSRetArgNo() const { 1480 assert(hasSRetArg()); 1481 return SRetArgNo; 1482 } 1483 1484 unsigned totalIRArgs() const { return TotalIRArgs; } 1485 1486 bool hasPaddingArg(unsigned ArgNo) const { 1487 assert(ArgNo < ArgInfo.size()); 1488 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1489 } 1490 unsigned getPaddingArgNo(unsigned ArgNo) const { 1491 assert(hasPaddingArg(ArgNo)); 1492 return ArgInfo[ArgNo].PaddingArgIndex; 1493 } 1494 1495 /// Returns index of first IR argument corresponding to ArgNo, and their 1496 /// quantity. 1497 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1498 assert(ArgNo < ArgInfo.size()); 1499 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1500 ArgInfo[ArgNo].NumberOfArgs); 1501 } 1502 1503 private: 1504 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1505 bool OnlyRequiredArgs); 1506 }; 1507 1508 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1509 const CGFunctionInfo &FI, 1510 bool OnlyRequiredArgs) { 1511 unsigned IRArgNo = 0; 1512 bool SwapThisWithSRet = false; 1513 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1514 1515 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1516 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1517 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1518 } 1519 1520 unsigned ArgNo = 0; 1521 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1522 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1523 ++I, ++ArgNo) { 1524 assert(I != FI.arg_end()); 1525 QualType ArgType = I->type; 1526 const ABIArgInfo &AI = I->info; 1527 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1528 auto &IRArgs = ArgInfo[ArgNo]; 1529 1530 if (AI.getPaddingType()) 1531 IRArgs.PaddingArgIndex = IRArgNo++; 1532 1533 switch (AI.getKind()) { 1534 case ABIArgInfo::Extend: 1535 case ABIArgInfo::Direct: { 1536 // FIXME: handle sseregparm someday... 1537 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1538 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1539 IRArgs.NumberOfArgs = STy->getNumElements(); 1540 } else { 1541 IRArgs.NumberOfArgs = 1; 1542 } 1543 break; 1544 } 1545 case ABIArgInfo::Indirect: 1546 case ABIArgInfo::IndirectAliased: 1547 IRArgs.NumberOfArgs = 1; 1548 break; 1549 case ABIArgInfo::Ignore: 1550 case ABIArgInfo::InAlloca: 1551 // ignore and inalloca doesn't have matching LLVM parameters. 1552 IRArgs.NumberOfArgs = 0; 1553 break; 1554 case ABIArgInfo::CoerceAndExpand: 1555 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1556 break; 1557 case ABIArgInfo::Expand: 1558 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1559 break; 1560 } 1561 1562 if (IRArgs.NumberOfArgs > 0) { 1563 IRArgs.FirstArgIndex = IRArgNo; 1564 IRArgNo += IRArgs.NumberOfArgs; 1565 } 1566 1567 // Skip over the sret parameter when it comes second. We already handled it 1568 // above. 1569 if (IRArgNo == 1 && SwapThisWithSRet) 1570 IRArgNo++; 1571 } 1572 assert(ArgNo == ArgInfo.size()); 1573 1574 if (FI.usesInAlloca()) 1575 InallocaArgNo = IRArgNo++; 1576 1577 TotalIRArgs = IRArgNo; 1578 } 1579 } // namespace 1580 1581 /***/ 1582 1583 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1584 const auto &RI = FI.getReturnInfo(); 1585 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1586 } 1587 1588 bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) { 1589 const auto &RI = FI.getReturnInfo(); 1590 return RI.getInReg(); 1591 } 1592 1593 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1594 return ReturnTypeUsesSRet(FI) && 1595 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1596 } 1597 1598 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1599 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1600 switch (BT->getKind()) { 1601 default: 1602 return false; 1603 case BuiltinType::Float: 1604 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1605 case BuiltinType::Double: 1606 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1607 case BuiltinType::LongDouble: 1608 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1609 } 1610 } 1611 1612 return false; 1613 } 1614 1615 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1616 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1617 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1618 if (BT->getKind() == BuiltinType::LongDouble) 1619 return getTarget().useObjCFP2RetForComplexLongDouble(); 1620 } 1621 } 1622 1623 return false; 1624 } 1625 1626 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1627 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1628 return GetFunctionType(FI); 1629 } 1630 1631 llvm::FunctionType * 1632 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1633 1634 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1635 (void)Inserted; 1636 assert(Inserted && "Recursively being processed?"); 1637 1638 llvm::Type *resultType = nullptr; 1639 const ABIArgInfo &retAI = FI.getReturnInfo(); 1640 switch (retAI.getKind()) { 1641 case ABIArgInfo::Expand: 1642 case ABIArgInfo::IndirectAliased: 1643 llvm_unreachable("Invalid ABI kind for return argument"); 1644 1645 case ABIArgInfo::Extend: 1646 case ABIArgInfo::Direct: 1647 resultType = retAI.getCoerceToType(); 1648 break; 1649 1650 case ABIArgInfo::InAlloca: 1651 if (retAI.getInAllocaSRet()) { 1652 // sret things on win32 aren't void, they return the sret pointer. 1653 QualType ret = FI.getReturnType(); 1654 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret); 1655 resultType = llvm::PointerType::get(getLLVMContext(), addressSpace); 1656 } else { 1657 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1658 } 1659 break; 1660 1661 case ABIArgInfo::Indirect: 1662 case ABIArgInfo::Ignore: 1663 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1664 break; 1665 1666 case ABIArgInfo::CoerceAndExpand: 1667 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1668 break; 1669 } 1670 1671 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1672 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1673 1674 // Add type for sret argument. 1675 if (IRFunctionArgs.hasSRetArg()) { 1676 QualType Ret = FI.getReturnType(); 1677 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret); 1678 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1679 llvm::PointerType::get(getLLVMContext(), AddressSpace); 1680 } 1681 1682 // Add type for inalloca argument. 1683 if (IRFunctionArgs.hasInallocaArg()) 1684 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = 1685 llvm::PointerType::getUnqual(getLLVMContext()); 1686 1687 // Add in all of the required arguments. 1688 unsigned ArgNo = 0; 1689 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1690 ie = it + FI.getNumRequiredArgs(); 1691 for (; it != ie; ++it, ++ArgNo) { 1692 const ABIArgInfo &ArgInfo = it->info; 1693 1694 // Insert a padding type to ensure proper alignment. 1695 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1696 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1697 ArgInfo.getPaddingType(); 1698 1699 unsigned FirstIRArg, NumIRArgs; 1700 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1701 1702 switch (ArgInfo.getKind()) { 1703 case ABIArgInfo::Ignore: 1704 case ABIArgInfo::InAlloca: 1705 assert(NumIRArgs == 0); 1706 break; 1707 1708 case ABIArgInfo::Indirect: 1709 assert(NumIRArgs == 1); 1710 // indirect arguments are always on the stack, which is alloca addr space. 1711 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1712 getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 1713 break; 1714 case ABIArgInfo::IndirectAliased: 1715 assert(NumIRArgs == 1); 1716 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1717 getLLVMContext(), ArgInfo.getIndirectAddrSpace()); 1718 break; 1719 case ABIArgInfo::Extend: 1720 case ABIArgInfo::Direct: { 1721 // Fast-isel and the optimizer generally like scalar values better than 1722 // FCAs, so we flatten them if this is safe to do for this argument. 1723 llvm::Type *argType = ArgInfo.getCoerceToType(); 1724 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1725 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1726 assert(NumIRArgs == st->getNumElements()); 1727 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1728 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1729 } else { 1730 assert(NumIRArgs == 1); 1731 ArgTypes[FirstIRArg] = argType; 1732 } 1733 break; 1734 } 1735 1736 case ABIArgInfo::CoerceAndExpand: { 1737 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1738 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1739 *ArgTypesIter++ = EltTy; 1740 } 1741 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1742 break; 1743 } 1744 1745 case ABIArgInfo::Expand: 1746 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1747 getExpandedTypes(it->type, ArgTypesIter); 1748 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1749 break; 1750 } 1751 } 1752 1753 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1754 assert(Erased && "Not in set?"); 1755 1756 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1757 } 1758 1759 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1760 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1761 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1762 1763 if (!isFuncTypeConvertible(FPT)) 1764 return llvm::StructType::get(getLLVMContext()); 1765 1766 return GetFunctionType(GD); 1767 } 1768 1769 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1770 llvm::AttrBuilder &FuncAttrs, 1771 const FunctionProtoType *FPT) { 1772 if (!FPT) 1773 return; 1774 1775 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1776 FPT->isNothrow()) 1777 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1778 1779 unsigned SMEBits = FPT->getAArch64SMEAttributes(); 1780 if (SMEBits & FunctionType::SME_PStateSMEnabledMask) 1781 FuncAttrs.addAttribute("aarch64_pstate_sm_enabled"); 1782 if (SMEBits & FunctionType::SME_PStateSMCompatibleMask) 1783 FuncAttrs.addAttribute("aarch64_pstate_sm_compatible"); 1784 1785 // ZA 1786 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves) 1787 FuncAttrs.addAttribute("aarch64_preserves_za"); 1788 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In) 1789 FuncAttrs.addAttribute("aarch64_in_za"); 1790 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out) 1791 FuncAttrs.addAttribute("aarch64_out_za"); 1792 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut) 1793 FuncAttrs.addAttribute("aarch64_inout_za"); 1794 1795 // ZT0 1796 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves) 1797 FuncAttrs.addAttribute("aarch64_preserves_zt0"); 1798 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In) 1799 FuncAttrs.addAttribute("aarch64_in_zt0"); 1800 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out) 1801 FuncAttrs.addAttribute("aarch64_out_zt0"); 1802 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut) 1803 FuncAttrs.addAttribute("aarch64_inout_zt0"); 1804 } 1805 1806 static void AddAttributesFromOMPAssumes(llvm::AttrBuilder &FuncAttrs, 1807 const Decl *Callee) { 1808 if (!Callee) 1809 return; 1810 1811 SmallVector<StringRef, 4> Attrs; 1812 1813 for (const OMPAssumeAttr *AA : Callee->specific_attrs<OMPAssumeAttr>()) 1814 AA->getAssumption().split(Attrs, ","); 1815 1816 if (!Attrs.empty()) 1817 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1818 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1819 } 1820 1821 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1822 QualType ReturnType) const { 1823 // We can't just discard the return value for a record type with a 1824 // complex destructor or a non-trivially copyable type. 1825 if (const RecordType *RT = 1826 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1827 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1828 return ClassDecl->hasTrivialDestructor(); 1829 } 1830 return ReturnType.isTriviallyCopyableType(Context); 1831 } 1832 1833 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy, 1834 const Decl *TargetDecl) { 1835 // As-is msan can not tolerate noundef mismatch between caller and 1836 // implementation. Mismatch is possible for e.g. indirect calls from C-caller 1837 // into C++. Such mismatches lead to confusing false reports. To avoid 1838 // expensive workaround on msan we enforce initialization event in uncommon 1839 // cases where it's allowed. 1840 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory)) 1841 return true; 1842 // C++ explicitly makes returning undefined values UB. C's rule only applies 1843 // to used values, so we never mark them noundef for now. 1844 if (!Module.getLangOpts().CPlusPlus) 1845 return false; 1846 if (TargetDecl) { 1847 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) { 1848 if (FDecl->isExternC()) 1849 return false; 1850 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) { 1851 // Function pointer. 1852 if (VDecl->isExternC()) 1853 return false; 1854 } 1855 } 1856 1857 // We don't want to be too aggressive with the return checking, unless 1858 // it's explicit in the code opts or we're using an appropriate sanitizer. 1859 // Try to respect what the programmer intended. 1860 return Module.getCodeGenOpts().StrictReturn || 1861 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) || 1862 Module.getLangOpts().Sanitize.has(SanitizerKind::Return); 1863 } 1864 1865 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the 1866 /// requested denormal behavior, accounting for the overriding behavior of the 1867 /// -f32 case. 1868 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode, 1869 llvm::DenormalMode FP32DenormalMode, 1870 llvm::AttrBuilder &FuncAttrs) { 1871 if (FPDenormalMode != llvm::DenormalMode::getDefault()) 1872 FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str()); 1873 1874 if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid()) 1875 FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str()); 1876 } 1877 1878 /// Add default attributes to a function, which have merge semantics under 1879 /// -mlink-builtin-bitcode and should not simply overwrite any existing 1880 /// attributes in the linked library. 1881 static void 1882 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts, 1883 llvm::AttrBuilder &FuncAttrs) { 1884 addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode, 1885 FuncAttrs); 1886 } 1887 1888 static void getTrivialDefaultFunctionAttributes( 1889 StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts, 1890 const LangOptions &LangOpts, bool AttrOnCallSite, 1891 llvm::AttrBuilder &FuncAttrs) { 1892 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1893 if (!HasOptnone) { 1894 if (CodeGenOpts.OptimizeSize) 1895 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1896 if (CodeGenOpts.OptimizeSize == 2) 1897 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1898 } 1899 1900 if (CodeGenOpts.DisableRedZone) 1901 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1902 if (CodeGenOpts.IndirectTlsSegRefs) 1903 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1904 if (CodeGenOpts.NoImplicitFloat) 1905 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1906 1907 if (AttrOnCallSite) { 1908 // Attributes that should go on the call site only. 1909 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1910 // the -fno-builtin-foo list. 1911 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1912 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1913 if (!CodeGenOpts.TrapFuncName.empty()) 1914 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1915 } else { 1916 switch (CodeGenOpts.getFramePointer()) { 1917 case CodeGenOptions::FramePointerKind::None: 1918 // This is the default behavior. 1919 break; 1920 case CodeGenOptions::FramePointerKind::Reserved: 1921 case CodeGenOptions::FramePointerKind::NonLeaf: 1922 case CodeGenOptions::FramePointerKind::All: 1923 FuncAttrs.addAttribute("frame-pointer", 1924 CodeGenOptions::getFramePointerKindName( 1925 CodeGenOpts.getFramePointer())); 1926 } 1927 1928 if (CodeGenOpts.LessPreciseFPMAD) 1929 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1930 1931 if (CodeGenOpts.NullPointerIsValid) 1932 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1933 1934 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) 1935 FuncAttrs.addAttribute("no-trapping-math", "true"); 1936 1937 // TODO: Are these all needed? 1938 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1939 if (LangOpts.NoHonorInfs) 1940 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1941 if (LangOpts.NoHonorNaNs) 1942 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1943 if (LangOpts.ApproxFunc) 1944 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1945 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 1946 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 1947 (LangOpts.getDefaultFPContractMode() == 1948 LangOptions::FPModeKind::FPM_Fast || 1949 LangOpts.getDefaultFPContractMode() == 1950 LangOptions::FPModeKind::FPM_FastHonorPragmas)) 1951 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1952 if (CodeGenOpts.SoftFloat) 1953 FuncAttrs.addAttribute("use-soft-float", "true"); 1954 FuncAttrs.addAttribute("stack-protector-buffer-size", 1955 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1956 if (LangOpts.NoSignedZero) 1957 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1958 1959 // TODO: Reciprocal estimate codegen options should apply to instructions? 1960 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1961 if (!Recips.empty()) 1962 FuncAttrs.addAttribute("reciprocal-estimates", 1963 llvm::join(Recips, ",")); 1964 1965 if (!CodeGenOpts.PreferVectorWidth.empty() && 1966 CodeGenOpts.PreferVectorWidth != "none") 1967 FuncAttrs.addAttribute("prefer-vector-width", 1968 CodeGenOpts.PreferVectorWidth); 1969 1970 if (CodeGenOpts.StackRealignment) 1971 FuncAttrs.addAttribute("stackrealign"); 1972 if (CodeGenOpts.Backchain) 1973 FuncAttrs.addAttribute("backchain"); 1974 if (CodeGenOpts.EnableSegmentedStacks) 1975 FuncAttrs.addAttribute("split-stack"); 1976 1977 if (CodeGenOpts.SpeculativeLoadHardening) 1978 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1979 1980 // Add zero-call-used-regs attribute. 1981 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1982 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1983 FuncAttrs.removeAttribute("zero-call-used-regs"); 1984 break; 1985 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1986 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1987 break; 1988 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1989 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1990 break; 1991 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1992 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1993 break; 1994 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1995 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1996 break; 1997 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1998 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1999 break; 2000 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 2001 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 2002 break; 2003 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 2004 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 2005 break; 2006 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 2007 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 2008 break; 2009 } 2010 } 2011 2012 if (LangOpts.assumeFunctionsAreConvergent()) { 2013 // Conservatively, mark all functions and calls in CUDA and OpenCL as 2014 // convergent (meaning, they may call an intrinsically convergent op, such 2015 // as __syncthreads() / barrier(), and so can't have certain optimizations 2016 // applied around them). LLVM will remove this attribute where it safely 2017 // can. 2018 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2019 } 2020 2021 // TODO: NoUnwind attribute should be added for other GPU modes HIP, 2022 // OpenMP offload. AFAIK, neither of them support exceptions in device code. 2023 if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL || 2024 LangOpts.SYCLIsDevice) { 2025 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2026 } 2027 2028 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 2029 StringRef Var, Value; 2030 std::tie(Var, Value) = Attr.split('='); 2031 FuncAttrs.addAttribute(Var, Value); 2032 } 2033 2034 TargetInfo::BranchProtectionInfo BPI(LangOpts); 2035 TargetCodeGenInfo::initBranchProtectionFnAttributes(BPI, FuncAttrs); 2036 } 2037 2038 /// Merges `target-features` from \TargetOpts and \F, and sets the result in 2039 /// \FuncAttr 2040 /// * features from \F are always kept 2041 /// * a feature from \TargetOpts is kept if itself and its opposite are absent 2042 /// from \F 2043 static void 2044 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr, 2045 const llvm::Function &F, 2046 const TargetOptions &TargetOpts) { 2047 auto FFeatures = F.getFnAttribute("target-features"); 2048 2049 llvm::StringSet<> MergedNames; 2050 SmallVector<StringRef> MergedFeatures; 2051 MergedFeatures.reserve(TargetOpts.Features.size()); 2052 2053 auto AddUnmergedFeatures = [&](auto &&FeatureRange) { 2054 for (StringRef Feature : FeatureRange) { 2055 if (Feature.empty()) 2056 continue; 2057 assert(Feature[0] == '+' || Feature[0] == '-'); 2058 StringRef Name = Feature.drop_front(1); 2059 bool Merged = !MergedNames.insert(Name).second; 2060 if (!Merged) 2061 MergedFeatures.push_back(Feature); 2062 } 2063 }; 2064 2065 if (FFeatures.isValid()) 2066 AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ',')); 2067 AddUnmergedFeatures(TargetOpts.Features); 2068 2069 if (!MergedFeatures.empty()) { 2070 llvm::sort(MergedFeatures); 2071 FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ",")); 2072 } 2073 } 2074 2075 void CodeGen::mergeDefaultFunctionDefinitionAttributes( 2076 llvm::Function &F, const CodeGenOptions &CodeGenOpts, 2077 const LangOptions &LangOpts, const TargetOptions &TargetOpts, 2078 bool WillInternalize) { 2079 2080 llvm::AttrBuilder FuncAttrs(F.getContext()); 2081 // Here we only extract the options that are relevant compared to the version 2082 // from GetCPUAndFeaturesAttributes. 2083 if (!TargetOpts.CPU.empty()) 2084 FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU); 2085 if (!TargetOpts.TuneCPU.empty()) 2086 FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU); 2087 2088 ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 2089 CodeGenOpts, LangOpts, 2090 /*AttrOnCallSite=*/false, FuncAttrs); 2091 2092 if (!WillInternalize && F.isInterposable()) { 2093 // Do not promote "dynamic" denormal-fp-math to this translation unit's 2094 // setting for weak functions that won't be internalized. The user has no 2095 // real control for how builtin bitcode is linked, so we shouldn't assume 2096 // later copies will use a consistent mode. 2097 F.addFnAttrs(FuncAttrs); 2098 return; 2099 } 2100 2101 llvm::AttributeMask AttrsToRemove; 2102 2103 llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw(); 2104 llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw(); 2105 llvm::DenormalMode Merged = 2106 CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge); 2107 llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode; 2108 2109 if (DenormModeToMergeF32.isValid()) { 2110 MergedF32 = 2111 CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32); 2112 } 2113 2114 if (Merged == llvm::DenormalMode::getDefault()) { 2115 AttrsToRemove.addAttribute("denormal-fp-math"); 2116 } else if (Merged != DenormModeToMerge) { 2117 // Overwrite existing attribute 2118 FuncAttrs.addAttribute("denormal-fp-math", 2119 CodeGenOpts.FPDenormalMode.str()); 2120 } 2121 2122 if (MergedF32 == llvm::DenormalMode::getDefault()) { 2123 AttrsToRemove.addAttribute("denormal-fp-math-f32"); 2124 } else if (MergedF32 != DenormModeToMergeF32) { 2125 // Overwrite existing attribute 2126 FuncAttrs.addAttribute("denormal-fp-math-f32", 2127 CodeGenOpts.FP32DenormalMode.str()); 2128 } 2129 2130 F.removeFnAttrs(AttrsToRemove); 2131 addDenormalModeAttrs(Merged, MergedF32, FuncAttrs); 2132 2133 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts); 2134 2135 F.addFnAttrs(FuncAttrs); 2136 } 2137 2138 void CodeGenModule::getTrivialDefaultFunctionAttributes( 2139 StringRef Name, bool HasOptnone, bool AttrOnCallSite, 2140 llvm::AttrBuilder &FuncAttrs) { 2141 ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(), 2142 getLangOpts(), AttrOnCallSite, 2143 FuncAttrs); 2144 } 2145 2146 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 2147 bool HasOptnone, 2148 bool AttrOnCallSite, 2149 llvm::AttrBuilder &FuncAttrs) { 2150 getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, 2151 FuncAttrs); 2152 // If we're just getting the default, get the default values for mergeable 2153 // attributes. 2154 if (!AttrOnCallSite) 2155 addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs); 2156 } 2157 2158 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 2159 llvm::AttrBuilder &attrs) { 2160 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 2161 /*for call*/ false, attrs); 2162 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 2163 } 2164 2165 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 2166 const LangOptions &LangOpts, 2167 const NoBuiltinAttr *NBA = nullptr) { 2168 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 2169 SmallString<32> AttributeName; 2170 AttributeName += "no-builtin-"; 2171 AttributeName += BuiltinName; 2172 FuncAttrs.addAttribute(AttributeName); 2173 }; 2174 2175 // First, handle the language options passed through -fno-builtin. 2176 if (LangOpts.NoBuiltin) { 2177 // -fno-builtin disables them all. 2178 FuncAttrs.addAttribute("no-builtins"); 2179 return; 2180 } 2181 2182 // Then, add attributes for builtins specified through -fno-builtin-<name>. 2183 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 2184 2185 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 2186 // the source. 2187 if (!NBA) 2188 return; 2189 2190 // If there is a wildcard in the builtin names specified through the 2191 // attribute, disable them all. 2192 if (llvm::is_contained(NBA->builtinNames(), "*")) { 2193 FuncAttrs.addAttribute("no-builtins"); 2194 return; 2195 } 2196 2197 // And last, add the rest of the builtin names. 2198 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 2199 } 2200 2201 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 2202 const llvm::DataLayout &DL, const ABIArgInfo &AI, 2203 bool CheckCoerce = true) { 2204 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 2205 if (AI.getKind() == ABIArgInfo::Indirect || 2206 AI.getKind() == ABIArgInfo::IndirectAliased) 2207 return true; 2208 if (AI.getKind() == ABIArgInfo::Extend) 2209 return true; 2210 if (!DL.typeSizeEqualsStoreSize(Ty)) 2211 // TODO: This will result in a modest amount of values not marked noundef 2212 // when they could be. We care about values that *invisibly* contain undef 2213 // bits from the perspective of LLVM IR. 2214 return false; 2215 if (CheckCoerce && AI.canHaveCoerceToType()) { 2216 llvm::Type *CoerceTy = AI.getCoerceToType(); 2217 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2218 DL.getTypeSizeInBits(Ty))) 2219 // If we're coercing to a type with a greater size than the canonical one, 2220 // we're introducing new undef bits. 2221 // Coercing to a type of smaller or equal size is ok, as we know that 2222 // there's no internal padding (typeSizeEqualsStoreSize). 2223 return false; 2224 } 2225 if (QTy->isBitIntType()) 2226 return true; 2227 if (QTy->isReferenceType()) 2228 return true; 2229 if (QTy->isNullPtrType()) 2230 return false; 2231 if (QTy->isMemberPointerType()) 2232 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2233 // now, never mark them. 2234 return false; 2235 if (QTy->isScalarType()) { 2236 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2237 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2238 return true; 2239 } 2240 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2241 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2242 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2243 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2244 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2245 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2246 2247 // TODO: Some structs may be `noundef`, in specific situations. 2248 return false; 2249 } 2250 2251 /// Check if the argument of a function has maybe_undef attribute. 2252 static bool IsArgumentMaybeUndef(const Decl *TargetDecl, 2253 unsigned NumRequiredArgs, unsigned ArgNo) { 2254 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 2255 if (!FD) 2256 return false; 2257 2258 // Assume variadic arguments do not have maybe_undef attribute. 2259 if (ArgNo >= NumRequiredArgs) 2260 return false; 2261 2262 // Check if argument has maybe_undef attribute. 2263 if (ArgNo < FD->getNumParams()) { 2264 const ParmVarDecl *Param = FD->getParamDecl(ArgNo); 2265 if (Param && Param->hasAttr<MaybeUndefAttr>()) 2266 return true; 2267 } 2268 2269 return false; 2270 } 2271 2272 /// Test if it's legal to apply nofpclass for the given parameter type and it's 2273 /// lowered IR type. 2274 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType, 2275 bool IsReturn) { 2276 // Should only apply to FP types in the source, not ABI promoted. 2277 if (!ParamType->hasFloatingRepresentation()) 2278 return false; 2279 2280 // The promoted-to IR type also needs to support nofpclass. 2281 llvm::Type *IRTy = AI.getCoerceToType(); 2282 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy)) 2283 return true; 2284 2285 if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) { 2286 return !IsReturn && AI.getCanBeFlattened() && 2287 llvm::all_of(ST->elements(), [](llvm::Type *Ty) { 2288 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty); 2289 }); 2290 } 2291 2292 return false; 2293 } 2294 2295 /// Return the nofpclass mask that can be applied to floating-point parameters. 2296 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) { 2297 llvm::FPClassTest Mask = llvm::fcNone; 2298 if (LangOpts.NoHonorInfs) 2299 Mask |= llvm::fcInf; 2300 if (LangOpts.NoHonorNaNs) 2301 Mask |= llvm::fcNan; 2302 return Mask; 2303 } 2304 2305 void CodeGenModule::AdjustMemoryAttribute(StringRef Name, 2306 CGCalleeInfo CalleeInfo, 2307 llvm::AttributeList &Attrs) { 2308 if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) { 2309 Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory); 2310 llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects( 2311 getLLVMContext(), llvm::MemoryEffects::writeOnly()); 2312 Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr); 2313 } 2314 } 2315 2316 /// Construct the IR attribute list of a function or call. 2317 /// 2318 /// When adding an attribute, please consider where it should be handled: 2319 /// 2320 /// - getDefaultFunctionAttributes is for attributes that are essentially 2321 /// part of the global target configuration (but perhaps can be 2322 /// overridden on a per-function basis). Adding attributes there 2323 /// will cause them to also be set in frontends that build on Clang's 2324 /// target-configuration logic, as well as for code defined in library 2325 /// modules such as CUDA's libdevice. 2326 /// 2327 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2328 /// and adds declaration-specific, convention-specific, and 2329 /// frontend-specific logic. The last is of particular importance: 2330 /// attributes that restrict how the frontend generates code must be 2331 /// added here rather than getDefaultFunctionAttributes. 2332 /// 2333 void CodeGenModule::ConstructAttributeList(StringRef Name, 2334 const CGFunctionInfo &FI, 2335 CGCalleeInfo CalleeInfo, 2336 llvm::AttributeList &AttrList, 2337 unsigned &CallingConv, 2338 bool AttrOnCallSite, bool IsThunk) { 2339 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2340 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2341 2342 // Collect function IR attributes from the CC lowering. 2343 // We'll collect the paramete and result attributes later. 2344 CallingConv = FI.getEffectiveCallingConvention(); 2345 if (FI.isNoReturn()) 2346 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2347 if (FI.isCmseNSCall()) 2348 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2349 2350 // Collect function IR attributes from the callee prototype if we have one. 2351 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2352 CalleeInfo.getCalleeFunctionProtoType()); 2353 2354 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2355 2356 // Attach assumption attributes to the declaration. If this is a call 2357 // site, attach assumptions from the caller to the call as well. 2358 AddAttributesFromOMPAssumes(FuncAttrs, TargetDecl); 2359 2360 bool HasOptnone = false; 2361 // The NoBuiltinAttr attached to the target FunctionDecl. 2362 const NoBuiltinAttr *NBA = nullptr; 2363 2364 // Some ABIs may result in additional accesses to arguments that may 2365 // otherwise not be present. 2366 auto AddPotentialArgAccess = [&]() { 2367 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory); 2368 if (A.isValid()) 2369 FuncAttrs.addMemoryAttr(A.getMemoryEffects() | 2370 llvm::MemoryEffects::argMemOnly()); 2371 }; 2372 2373 // Collect function IR attributes based on declaration-specific 2374 // information. 2375 // FIXME: handle sseregparm someday... 2376 if (TargetDecl) { 2377 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2378 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2379 if (TargetDecl->hasAttr<NoThrowAttr>()) 2380 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2381 if (TargetDecl->hasAttr<NoReturnAttr>()) 2382 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2383 if (TargetDecl->hasAttr<ColdAttr>()) 2384 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2385 if (TargetDecl->hasAttr<HotAttr>()) 2386 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2387 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2388 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2389 if (TargetDecl->hasAttr<ConvergentAttr>()) 2390 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2391 2392 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2393 AddAttributesFromFunctionProtoType( 2394 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2395 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2396 // A sane operator new returns a non-aliasing pointer. 2397 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2398 if (getCodeGenOpts().AssumeSaneOperatorNew && 2399 (Kind == OO_New || Kind == OO_Array_New)) 2400 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2401 } 2402 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2403 const bool IsVirtualCall = MD && MD->isVirtual(); 2404 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2405 // virtual function. These attributes are not inherited by overloads. 2406 if (!(AttrOnCallSite && IsVirtualCall)) { 2407 if (Fn->isNoReturn()) 2408 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2409 NBA = Fn->getAttr<NoBuiltinAttr>(); 2410 } 2411 } 2412 2413 if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) { 2414 // Only place nomerge attribute on call sites, never functions. This 2415 // allows it to work on indirect virtual function calls. 2416 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2417 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2418 } 2419 2420 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2421 if (TargetDecl->hasAttr<ConstAttr>()) { 2422 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none()); 2423 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2424 // gcc specifies that 'const' functions have greater restrictions than 2425 // 'pure' functions, so they also cannot have infinite loops. 2426 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2427 } else if (TargetDecl->hasAttr<PureAttr>()) { 2428 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); 2429 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2430 // gcc specifies that 'pure' functions cannot have infinite loops. 2431 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2432 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2433 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly()); 2434 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2435 } 2436 if (TargetDecl->hasAttr<RestrictAttr>()) 2437 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2438 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2439 !CodeGenOpts.NullPointerIsValid) 2440 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2441 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2442 FuncAttrs.addAttribute("no_caller_saved_registers"); 2443 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2444 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2445 if (TargetDecl->hasAttr<LeafAttr>()) 2446 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2447 2448 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2449 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2450 std::optional<unsigned> NumElemsParam; 2451 if (AllocSize->getNumElemsParam().isValid()) 2452 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2453 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2454 NumElemsParam); 2455 } 2456 2457 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2458 if (getLangOpts().OpenCLVersion <= 120) { 2459 // OpenCL v1.2 Work groups are always uniform 2460 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2461 } else { 2462 // OpenCL v2.0 Work groups may be whether uniform or not. 2463 // '-cl-uniform-work-group-size' compile option gets a hint 2464 // to the compiler that the global work-size be a multiple of 2465 // the work-group size specified to clEnqueueNDRangeKernel 2466 // (i.e. work groups are uniform). 2467 FuncAttrs.addAttribute( 2468 "uniform-work-group-size", 2469 llvm::toStringRef(getLangOpts().OffloadUniformBlock)); 2470 } 2471 } 2472 2473 if (TargetDecl->hasAttr<CUDAGlobalAttr>() && 2474 getLangOpts().OffloadUniformBlock) 2475 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2476 2477 if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>()) 2478 FuncAttrs.addAttribute("aarch64_pstate_sm_body"); 2479 } 2480 2481 // Attach "no-builtins" attributes to: 2482 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2483 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2484 // The attributes can come from: 2485 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2486 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2487 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2488 2489 // Collect function IR attributes based on global settiings. 2490 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2491 2492 // Override some default IR attributes based on declaration-specific 2493 // information. 2494 if (TargetDecl) { 2495 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2496 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2497 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2498 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2499 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2500 FuncAttrs.removeAttribute("split-stack"); 2501 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2502 // A function "__attribute__((...))" overrides the command-line flag. 2503 auto Kind = 2504 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2505 FuncAttrs.removeAttribute("zero-call-used-regs"); 2506 FuncAttrs.addAttribute( 2507 "zero-call-used-regs", 2508 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2509 } 2510 2511 // Add NonLazyBind attribute to function declarations when -fno-plt 2512 // is used. 2513 // FIXME: what if we just haven't processed the function definition 2514 // yet, or if it's an external definition like C99 inline? 2515 if (CodeGenOpts.NoPLT) { 2516 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2517 if (!Fn->isDefined() && !AttrOnCallSite) { 2518 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2519 } 2520 } 2521 } 2522 } 2523 2524 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2525 // functions with -funique-internal-linkage-names. 2526 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2527 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2528 if (!FD->isExternallyVisible()) 2529 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2530 "selected"); 2531 } 2532 } 2533 2534 // Collect non-call-site function IR attributes from declaration-specific 2535 // information. 2536 if (!AttrOnCallSite) { 2537 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2538 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2539 2540 // Whether tail calls are enabled. 2541 auto shouldDisableTailCalls = [&] { 2542 // Should this be honored in getDefaultFunctionAttributes? 2543 if (CodeGenOpts.DisableTailCalls) 2544 return true; 2545 2546 if (!TargetDecl) 2547 return false; 2548 2549 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2550 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2551 return true; 2552 2553 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2554 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2555 if (!BD->doesNotEscape()) 2556 return true; 2557 } 2558 2559 return false; 2560 }; 2561 if (shouldDisableTailCalls()) 2562 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2563 2564 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2565 // handles these separately to set them based on the global defaults. 2566 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2567 } 2568 2569 // Collect attributes from arguments and return values. 2570 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2571 2572 QualType RetTy = FI.getReturnType(); 2573 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2574 const llvm::DataLayout &DL = getDataLayout(); 2575 2576 // Determine if the return type could be partially undef 2577 if (CodeGenOpts.EnableNoundefAttrs && 2578 HasStrictReturn(*this, RetTy, TargetDecl)) { 2579 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2580 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2581 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2582 } 2583 2584 switch (RetAI.getKind()) { 2585 case ABIArgInfo::Extend: 2586 if (RetAI.isSignExt()) 2587 RetAttrs.addAttribute(llvm::Attribute::SExt); 2588 else 2589 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2590 [[fallthrough]]; 2591 case ABIArgInfo::Direct: 2592 if (RetAI.getInReg()) 2593 RetAttrs.addAttribute(llvm::Attribute::InReg); 2594 2595 if (canApplyNoFPClass(RetAI, RetTy, true)) 2596 RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2597 2598 break; 2599 case ABIArgInfo::Ignore: 2600 break; 2601 2602 case ABIArgInfo::InAlloca: 2603 case ABIArgInfo::Indirect: { 2604 // inalloca and sret disable readnone and readonly 2605 AddPotentialArgAccess(); 2606 break; 2607 } 2608 2609 case ABIArgInfo::CoerceAndExpand: 2610 break; 2611 2612 case ABIArgInfo::Expand: 2613 case ABIArgInfo::IndirectAliased: 2614 llvm_unreachable("Invalid ABI kind for return argument"); 2615 } 2616 2617 if (!IsThunk) { 2618 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2619 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2620 QualType PTy = RefTy->getPointeeType(); 2621 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2622 RetAttrs.addDereferenceableAttr( 2623 getMinimumObjectSize(PTy).getQuantity()); 2624 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2625 !CodeGenOpts.NullPointerIsValid) 2626 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2627 if (PTy->isObjectType()) { 2628 llvm::Align Alignment = 2629 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2630 RetAttrs.addAlignmentAttr(Alignment); 2631 } 2632 } 2633 } 2634 2635 bool hasUsedSRet = false; 2636 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2637 2638 // Attach attributes to sret. 2639 if (IRFunctionArgs.hasSRetArg()) { 2640 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2641 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2642 SRETAttrs.addAttribute(llvm::Attribute::Writable); 2643 SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind); 2644 hasUsedSRet = true; 2645 if (RetAI.getInReg()) 2646 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2647 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2648 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2649 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2650 } 2651 2652 // Attach attributes to inalloca argument. 2653 if (IRFunctionArgs.hasInallocaArg()) { 2654 llvm::AttrBuilder Attrs(getLLVMContext()); 2655 Attrs.addInAllocaAttr(FI.getArgStruct()); 2656 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2657 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2658 } 2659 2660 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2661 // unless this is a thunk function. 2662 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2663 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2664 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2665 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2666 2667 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2668 2669 llvm::AttrBuilder Attrs(getLLVMContext()); 2670 2671 QualType ThisTy = 2672 FI.arg_begin()->type.getTypePtr()->getPointeeType(); 2673 2674 if (!CodeGenOpts.NullPointerIsValid && 2675 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2676 Attrs.addAttribute(llvm::Attribute::NonNull); 2677 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2678 } else { 2679 // FIXME dereferenceable should be correct here, regardless of 2680 // NullPointerIsValid. However, dereferenceable currently does not always 2681 // respect NullPointerIsValid and may imply nonnull and break the program. 2682 // See https://reviews.llvm.org/D66618 for discussions. 2683 Attrs.addDereferenceableOrNullAttr( 2684 getMinimumObjectSize( 2685 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2686 .getQuantity()); 2687 } 2688 2689 llvm::Align Alignment = 2690 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2691 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2692 .getAsAlign(); 2693 Attrs.addAlignmentAttr(Alignment); 2694 2695 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2696 } 2697 2698 unsigned ArgNo = 0; 2699 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2700 E = FI.arg_end(); 2701 I != E; ++I, ++ArgNo) { 2702 QualType ParamType = I->type; 2703 const ABIArgInfo &AI = I->info; 2704 llvm::AttrBuilder Attrs(getLLVMContext()); 2705 2706 // Add attribute for padding argument, if necessary. 2707 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2708 if (AI.getPaddingInReg()) { 2709 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2710 llvm::AttributeSet::get( 2711 getLLVMContext(), 2712 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2713 } 2714 } 2715 2716 // Decide whether the argument we're handling could be partially undef 2717 if (CodeGenOpts.EnableNoundefAttrs && 2718 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2719 Attrs.addAttribute(llvm::Attribute::NoUndef); 2720 } 2721 2722 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2723 // have the corresponding parameter variable. It doesn't make 2724 // sense to do it here because parameters are so messed up. 2725 switch (AI.getKind()) { 2726 case ABIArgInfo::Extend: 2727 if (AI.isSignExt()) 2728 Attrs.addAttribute(llvm::Attribute::SExt); 2729 else 2730 Attrs.addAttribute(llvm::Attribute::ZExt); 2731 [[fallthrough]]; 2732 case ABIArgInfo::Direct: 2733 if (ArgNo == 0 && FI.isChainCall()) 2734 Attrs.addAttribute(llvm::Attribute::Nest); 2735 else if (AI.getInReg()) 2736 Attrs.addAttribute(llvm::Attribute::InReg); 2737 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2738 2739 if (canApplyNoFPClass(AI, ParamType, false)) 2740 Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2741 break; 2742 case ABIArgInfo::Indirect: { 2743 if (AI.getInReg()) 2744 Attrs.addAttribute(llvm::Attribute::InReg); 2745 2746 if (AI.getIndirectByVal()) 2747 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2748 2749 auto *Decl = ParamType->getAsRecordDecl(); 2750 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2751 Decl->getArgPassingRestrictions() == 2752 RecordArgPassingKind::CanPassInRegs) 2753 // When calling the function, the pointer passed in will be the only 2754 // reference to the underlying object. Mark it accordingly. 2755 Attrs.addAttribute(llvm::Attribute::NoAlias); 2756 2757 // TODO: We could add the byref attribute if not byval, but it would 2758 // require updating many testcases. 2759 2760 CharUnits Align = AI.getIndirectAlign(); 2761 2762 // In a byval argument, it is important that the required 2763 // alignment of the type is honored, as LLVM might be creating a 2764 // *new* stack object, and needs to know what alignment to give 2765 // it. (Sometimes it can deduce a sensible alignment on its own, 2766 // but not if clang decides it must emit a packed struct, or the 2767 // user specifies increased alignment requirements.) 2768 // 2769 // This is different from indirect *not* byval, where the object 2770 // exists already, and the align attribute is purely 2771 // informative. 2772 assert(!Align.isZero()); 2773 2774 // For now, only add this when we have a byval argument. 2775 // TODO: be less lazy about updating test cases. 2776 if (AI.getIndirectByVal()) 2777 Attrs.addAlignmentAttr(Align.getQuantity()); 2778 2779 // byval disables readnone and readonly. 2780 AddPotentialArgAccess(); 2781 break; 2782 } 2783 case ABIArgInfo::IndirectAliased: { 2784 CharUnits Align = AI.getIndirectAlign(); 2785 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2786 Attrs.addAlignmentAttr(Align.getQuantity()); 2787 break; 2788 } 2789 case ABIArgInfo::Ignore: 2790 case ABIArgInfo::Expand: 2791 case ABIArgInfo::CoerceAndExpand: 2792 break; 2793 2794 case ABIArgInfo::InAlloca: 2795 // inalloca disables readnone and readonly. 2796 AddPotentialArgAccess(); 2797 continue; 2798 } 2799 2800 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2801 QualType PTy = RefTy->getPointeeType(); 2802 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2803 Attrs.addDereferenceableAttr( 2804 getMinimumObjectSize(PTy).getQuantity()); 2805 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2806 !CodeGenOpts.NullPointerIsValid) 2807 Attrs.addAttribute(llvm::Attribute::NonNull); 2808 if (PTy->isObjectType()) { 2809 llvm::Align Alignment = 2810 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2811 Attrs.addAlignmentAttr(Alignment); 2812 } 2813 } 2814 2815 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2816 // > For arguments to a __kernel function declared to be a pointer to a 2817 // > data type, the OpenCL compiler can assume that the pointee is always 2818 // > appropriately aligned as required by the data type. 2819 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2820 ParamType->isPointerType()) { 2821 QualType PTy = ParamType->getPointeeType(); 2822 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2823 llvm::Align Alignment = 2824 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2825 Attrs.addAlignmentAttr(Alignment); 2826 } 2827 } 2828 2829 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2830 case ParameterABI::Ordinary: 2831 break; 2832 2833 case ParameterABI::SwiftIndirectResult: { 2834 // Add 'sret' if we haven't already used it for something, but 2835 // only if the result is void. 2836 if (!hasUsedSRet && RetTy->isVoidType()) { 2837 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2838 hasUsedSRet = true; 2839 } 2840 2841 // Add 'noalias' in either case. 2842 Attrs.addAttribute(llvm::Attribute::NoAlias); 2843 2844 // Add 'dereferenceable' and 'alignment'. 2845 auto PTy = ParamType->getPointeeType(); 2846 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2847 auto info = getContext().getTypeInfoInChars(PTy); 2848 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2849 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2850 } 2851 break; 2852 } 2853 2854 case ParameterABI::SwiftErrorResult: 2855 Attrs.addAttribute(llvm::Attribute::SwiftError); 2856 break; 2857 2858 case ParameterABI::SwiftContext: 2859 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2860 break; 2861 2862 case ParameterABI::SwiftAsyncContext: 2863 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2864 break; 2865 } 2866 2867 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2868 Attrs.addAttribute(llvm::Attribute::NoCapture); 2869 2870 if (Attrs.hasAttributes()) { 2871 unsigned FirstIRArg, NumIRArgs; 2872 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2873 for (unsigned i = 0; i < NumIRArgs; i++) 2874 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2875 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2876 } 2877 } 2878 assert(ArgNo == FI.arg_size()); 2879 2880 AttrList = llvm::AttributeList::get( 2881 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2882 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2883 } 2884 2885 /// An argument came in as a promoted argument; demote it back to its 2886 /// declared type. 2887 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2888 const VarDecl *var, 2889 llvm::Value *value) { 2890 llvm::Type *varType = CGF.ConvertType(var->getType()); 2891 2892 // This can happen with promotions that actually don't change the 2893 // underlying type, like the enum promotions. 2894 if (value->getType() == varType) return value; 2895 2896 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2897 && "unexpected promotion type"); 2898 2899 if (isa<llvm::IntegerType>(varType)) 2900 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2901 2902 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2903 } 2904 2905 /// Returns the attribute (either parameter attribute, or function 2906 /// attribute), which declares argument ArgNo to be non-null. 2907 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2908 QualType ArgType, unsigned ArgNo) { 2909 // FIXME: __attribute__((nonnull)) can also be applied to: 2910 // - references to pointers, where the pointee is known to be 2911 // nonnull (apparently a Clang extension) 2912 // - transparent unions containing pointers 2913 // In the former case, LLVM IR cannot represent the constraint. In 2914 // the latter case, we have no guarantee that the transparent union 2915 // is in fact passed as a pointer. 2916 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2917 return nullptr; 2918 // First, check attribute on parameter itself. 2919 if (PVD) { 2920 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2921 return ParmNNAttr; 2922 } 2923 // Check function attributes. 2924 if (!FD) 2925 return nullptr; 2926 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2927 if (NNAttr->isNonNull(ArgNo)) 2928 return NNAttr; 2929 } 2930 return nullptr; 2931 } 2932 2933 namespace { 2934 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2935 Address Temp; 2936 Address Arg; 2937 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2938 void Emit(CodeGenFunction &CGF, Flags flags) override { 2939 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2940 CGF.Builder.CreateStore(errorValue, Arg); 2941 } 2942 }; 2943 } 2944 2945 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2946 llvm::Function *Fn, 2947 const FunctionArgList &Args) { 2948 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2949 // Naked functions don't have prologues. 2950 return; 2951 2952 // If this is an implicit-return-zero function, go ahead and 2953 // initialize the return value. TODO: it might be nice to have 2954 // a more general mechanism for this that didn't require synthesized 2955 // return statements. 2956 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2957 if (FD->hasImplicitReturnZero()) { 2958 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2959 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2960 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2961 Builder.CreateStore(Zero, ReturnValue); 2962 } 2963 } 2964 2965 // FIXME: We no longer need the types from FunctionArgList; lift up and 2966 // simplify. 2967 2968 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2969 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2970 2971 // If we're using inalloca, all the memory arguments are GEPs off of the last 2972 // parameter, which is a pointer to the complete memory area. 2973 Address ArgStruct = Address::invalid(); 2974 if (IRFunctionArgs.hasInallocaArg()) 2975 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2976 FI.getArgStruct(), FI.getArgStructAlignment()); 2977 2978 // Name the struct return parameter. 2979 if (IRFunctionArgs.hasSRetArg()) { 2980 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2981 AI->setName("agg.result"); 2982 AI->addAttr(llvm::Attribute::NoAlias); 2983 } 2984 2985 // Track if we received the parameter as a pointer (indirect, byval, or 2986 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2987 // into a local alloca for us. 2988 SmallVector<ParamValue, 16> ArgVals; 2989 ArgVals.reserve(Args.size()); 2990 2991 // Create a pointer value for every parameter declaration. This usually 2992 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2993 // any cleanups or do anything that might unwind. We do that separately, so 2994 // we can push the cleanups in the correct order for the ABI. 2995 assert(FI.arg_size() == Args.size() && 2996 "Mismatch between function signature & arguments."); 2997 unsigned ArgNo = 0; 2998 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2999 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 3000 i != e; ++i, ++info_it, ++ArgNo) { 3001 const VarDecl *Arg = *i; 3002 const ABIArgInfo &ArgI = info_it->info; 3003 3004 bool isPromoted = 3005 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 3006 // We are converting from ABIArgInfo type to VarDecl type directly, unless 3007 // the parameter is promoted. In this case we convert to 3008 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 3009 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 3010 assert(hasScalarEvaluationKind(Ty) == 3011 hasScalarEvaluationKind(Arg->getType())); 3012 3013 unsigned FirstIRArg, NumIRArgs; 3014 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3015 3016 switch (ArgI.getKind()) { 3017 case ABIArgInfo::InAlloca: { 3018 assert(NumIRArgs == 0); 3019 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 3020 Address V = 3021 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 3022 if (ArgI.getInAllocaIndirect()) 3023 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 3024 getContext().getTypeAlignInChars(Ty)); 3025 ArgVals.push_back(ParamValue::forIndirect(V)); 3026 break; 3027 } 3028 3029 case ABIArgInfo::Indirect: 3030 case ABIArgInfo::IndirectAliased: { 3031 assert(NumIRArgs == 1); 3032 Address ParamAddr = makeNaturalAddressForPointer( 3033 Fn->getArg(FirstIRArg), Ty, ArgI.getIndirectAlign(), false, nullptr, 3034 nullptr, KnownNonNull); 3035 3036 if (!hasScalarEvaluationKind(Ty)) { 3037 // Aggregates and complex variables are accessed by reference. All we 3038 // need to do is realign the value, if requested. Also, if the address 3039 // may be aliased, copy it to ensure that the parameter variable is 3040 // mutable and has a unique adress, as C requires. 3041 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 3042 RawAddress AlignedTemp = CreateMemTemp(Ty, "coerce"); 3043 3044 // Copy from the incoming argument pointer to the temporary with the 3045 // appropriate alignment. 3046 // 3047 // FIXME: We should have a common utility for generating an aggregate 3048 // copy. 3049 CharUnits Size = getContext().getTypeSizeInChars(Ty); 3050 Builder.CreateMemCpy( 3051 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 3052 ParamAddr.emitRawPointer(*this), 3053 ParamAddr.getAlignment().getAsAlign(), 3054 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 3055 ParamAddr = AlignedTemp; 3056 } 3057 ArgVals.push_back(ParamValue::forIndirect(ParamAddr)); 3058 } else { 3059 // Load scalar value from indirect argument. 3060 llvm::Value *V = 3061 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 3062 3063 if (isPromoted) 3064 V = emitArgumentDemotion(*this, Arg, V); 3065 ArgVals.push_back(ParamValue::forDirect(V)); 3066 } 3067 break; 3068 } 3069 3070 case ABIArgInfo::Extend: 3071 case ABIArgInfo::Direct: { 3072 auto AI = Fn->getArg(FirstIRArg); 3073 llvm::Type *LTy = ConvertType(Arg->getType()); 3074 3075 // Prepare parameter attributes. So far, only attributes for pointer 3076 // parameters are prepared. See 3077 // http://llvm.org/docs/LangRef.html#paramattrs. 3078 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 3079 ArgI.getCoerceToType()->isPointerTy()) { 3080 assert(NumIRArgs == 1); 3081 3082 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 3083 // Set `nonnull` attribute if any. 3084 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 3085 PVD->getFunctionScopeIndex()) && 3086 !CGM.getCodeGenOpts().NullPointerIsValid) 3087 AI->addAttr(llvm::Attribute::NonNull); 3088 3089 QualType OTy = PVD->getOriginalType(); 3090 if (const auto *ArrTy = 3091 getContext().getAsConstantArrayType(OTy)) { 3092 // A C99 array parameter declaration with the static keyword also 3093 // indicates dereferenceability, and if the size is constant we can 3094 // use the dereferenceable attribute (which requires the size in 3095 // bytes). 3096 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3097 QualType ETy = ArrTy->getElementType(); 3098 llvm::Align Alignment = 3099 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3100 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3101 uint64_t ArrSize = ArrTy->getZExtSize(); 3102 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 3103 ArrSize) { 3104 llvm::AttrBuilder Attrs(getLLVMContext()); 3105 Attrs.addDereferenceableAttr( 3106 getContext().getTypeSizeInChars(ETy).getQuantity() * 3107 ArrSize); 3108 AI->addAttrs(Attrs); 3109 } else if (getContext().getTargetInfo().getNullPointerValue( 3110 ETy.getAddressSpace()) == 0 && 3111 !CGM.getCodeGenOpts().NullPointerIsValid) { 3112 AI->addAttr(llvm::Attribute::NonNull); 3113 } 3114 } 3115 } else if (const auto *ArrTy = 3116 getContext().getAsVariableArrayType(OTy)) { 3117 // For C99 VLAs with the static keyword, we don't know the size so 3118 // we can't use the dereferenceable attribute, but in addrspace(0) 3119 // we know that it must be nonnull. 3120 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3121 QualType ETy = ArrTy->getElementType(); 3122 llvm::Align Alignment = 3123 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3124 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3125 if (!getTypes().getTargetAddressSpace(ETy) && 3126 !CGM.getCodeGenOpts().NullPointerIsValid) 3127 AI->addAttr(llvm::Attribute::NonNull); 3128 } 3129 } 3130 3131 // Set `align` attribute if any. 3132 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 3133 if (!AVAttr) 3134 if (const auto *TOTy = OTy->getAs<TypedefType>()) 3135 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 3136 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 3137 // If alignment-assumption sanitizer is enabled, we do *not* add 3138 // alignment attribute here, but emit normal alignment assumption, 3139 // so the UBSAN check could function. 3140 llvm::ConstantInt *AlignmentCI = 3141 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 3142 uint64_t AlignmentInt = 3143 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 3144 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 3145 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 3146 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 3147 llvm::Align(AlignmentInt))); 3148 } 3149 } 3150 } 3151 3152 // Set 'noalias' if an argument type has the `restrict` qualifier. 3153 if (Arg->getType().isRestrictQualified()) 3154 AI->addAttr(llvm::Attribute::NoAlias); 3155 } 3156 3157 // Prepare the argument value. If we have the trivial case, handle it 3158 // with no muss and fuss. 3159 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 3160 ArgI.getCoerceToType() == ConvertType(Ty) && 3161 ArgI.getDirectOffset() == 0) { 3162 assert(NumIRArgs == 1); 3163 3164 // LLVM expects swifterror parameters to be used in very restricted 3165 // ways. Copy the value into a less-restricted temporary. 3166 llvm::Value *V = AI; 3167 if (FI.getExtParameterInfo(ArgNo).getABI() 3168 == ParameterABI::SwiftErrorResult) { 3169 QualType pointeeTy = Ty->getPointeeType(); 3170 assert(pointeeTy->isPointerType()); 3171 RawAddress temp = 3172 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3173 Address arg = makeNaturalAddressForPointer( 3174 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 3175 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 3176 Builder.CreateStore(incomingErrorValue, temp); 3177 V = temp.getPointer(); 3178 3179 // Push a cleanup to copy the value back at the end of the function. 3180 // The convention does not guarantee that the value will be written 3181 // back if the function exits with an unwind exception. 3182 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 3183 } 3184 3185 // Ensure the argument is the correct type. 3186 if (V->getType() != ArgI.getCoerceToType()) 3187 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 3188 3189 if (isPromoted) 3190 V = emitArgumentDemotion(*this, Arg, V); 3191 3192 // Because of merging of function types from multiple decls it is 3193 // possible for the type of an argument to not match the corresponding 3194 // type in the function type. Since we are codegening the callee 3195 // in here, add a cast to the argument type. 3196 llvm::Type *LTy = ConvertType(Arg->getType()); 3197 if (V->getType() != LTy) 3198 V = Builder.CreateBitCast(V, LTy); 3199 3200 ArgVals.push_back(ParamValue::forDirect(V)); 3201 break; 3202 } 3203 3204 // VLST arguments are coerced to VLATs at the function boundary for 3205 // ABI consistency. If this is a VLST that was coerced to 3206 // a VLAT at the function boundary and the types match up, use 3207 // llvm.vector.extract to convert back to the original VLST. 3208 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 3209 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 3210 if (auto *VecTyFrom = 3211 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 3212 // If we are casting a scalable i1 predicate vector to a fixed i8 3213 // vector, bitcast the source and use a vector extract. 3214 if (VecTyFrom->getElementType()->isIntegerTy(1) && 3215 VecTyFrom->getElementCount().isKnownMultipleOf(8) && 3216 VecTyTo->getElementType() == Builder.getInt8Ty()) { 3217 VecTyFrom = llvm::ScalableVectorType::get( 3218 VecTyTo->getElementType(), 3219 VecTyFrom->getElementCount().getKnownMinValue() / 8); 3220 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 3221 } 3222 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 3223 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 3224 3225 assert(NumIRArgs == 1); 3226 Coerced->setName(Arg->getName() + ".coerce"); 3227 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 3228 VecTyTo, Coerced, Zero, "cast.fixed"))); 3229 break; 3230 } 3231 } 3232 } 3233 3234 llvm::StructType *STy = 3235 dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 3236 if (ArgI.isDirect() && !ArgI.getCanBeFlattened() && STy && 3237 STy->getNumElements() > 1) { 3238 [[maybe_unused]] llvm::TypeSize StructSize = 3239 CGM.getDataLayout().getTypeAllocSize(STy); 3240 [[maybe_unused]] llvm::TypeSize PtrElementSize = 3241 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(Ty)); 3242 if (STy->containsHomogeneousScalableVectorTypes()) { 3243 assert(StructSize == PtrElementSize && 3244 "Only allow non-fractional movement of structure with" 3245 "homogeneous scalable vector type"); 3246 3247 ArgVals.push_back(ParamValue::forDirect(AI)); 3248 break; 3249 } 3250 } 3251 3252 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 3253 Arg->getName()); 3254 3255 // Pointer to store into. 3256 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 3257 3258 // Fast-isel and the optimizer generally like scalar values better than 3259 // FCAs, so we flatten them if this is safe to do for this argument. 3260 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 3261 STy->getNumElements() > 1) { 3262 llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy); 3263 llvm::TypeSize PtrElementSize = 3264 CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType()); 3265 if (StructSize.isScalable()) { 3266 assert(STy->containsHomogeneousScalableVectorTypes() && 3267 "ABI only supports structure with homogeneous scalable vector " 3268 "type"); 3269 assert(StructSize == PtrElementSize && 3270 "Only allow non-fractional movement of structure with" 3271 "homogeneous scalable vector type"); 3272 assert(STy->getNumElements() == NumIRArgs); 3273 3274 llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy); 3275 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3276 auto *AI = Fn->getArg(FirstIRArg + i); 3277 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3278 LoadedStructValue = 3279 Builder.CreateInsertValue(LoadedStructValue, AI, i); 3280 } 3281 3282 Builder.CreateStore(LoadedStructValue, Ptr); 3283 } else { 3284 uint64_t SrcSize = StructSize.getFixedValue(); 3285 uint64_t DstSize = PtrElementSize.getFixedValue(); 3286 3287 Address AddrToStoreInto = Address::invalid(); 3288 if (SrcSize <= DstSize) { 3289 AddrToStoreInto = Ptr.withElementType(STy); 3290 } else { 3291 AddrToStoreInto = 3292 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 3293 } 3294 3295 assert(STy->getNumElements() == NumIRArgs); 3296 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3297 auto AI = Fn->getArg(FirstIRArg + i); 3298 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3299 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 3300 Builder.CreateStore(AI, EltPtr); 3301 } 3302 3303 if (SrcSize > DstSize) { 3304 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 3305 } 3306 } 3307 } else { 3308 // Simple case, just do a coerced store of the argument into the alloca. 3309 assert(NumIRArgs == 1); 3310 auto AI = Fn->getArg(FirstIRArg); 3311 AI->setName(Arg->getName() + ".coerce"); 3312 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 3313 } 3314 3315 // Match to what EmitParmDecl is expecting for this type. 3316 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3317 llvm::Value *V = 3318 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3319 if (isPromoted) 3320 V = emitArgumentDemotion(*this, Arg, V); 3321 ArgVals.push_back(ParamValue::forDirect(V)); 3322 } else { 3323 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3324 } 3325 break; 3326 } 3327 3328 case ABIArgInfo::CoerceAndExpand: { 3329 // Reconstruct into a temporary. 3330 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3331 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3332 3333 auto coercionType = ArgI.getCoerceAndExpandType(); 3334 alloca = alloca.withElementType(coercionType); 3335 3336 unsigned argIndex = FirstIRArg; 3337 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3338 llvm::Type *eltType = coercionType->getElementType(i); 3339 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3340 continue; 3341 3342 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3343 auto elt = Fn->getArg(argIndex++); 3344 Builder.CreateStore(elt, eltAddr); 3345 } 3346 assert(argIndex == FirstIRArg + NumIRArgs); 3347 break; 3348 } 3349 3350 case ABIArgInfo::Expand: { 3351 // If this structure was expanded into multiple arguments then 3352 // we need to create a temporary and reconstruct it from the 3353 // arguments. 3354 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3355 LValue LV = MakeAddrLValue(Alloca, Ty); 3356 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3357 3358 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3359 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3360 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3361 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3362 auto AI = Fn->getArg(FirstIRArg + i); 3363 AI->setName(Arg->getName() + "." + Twine(i)); 3364 } 3365 break; 3366 } 3367 3368 case ABIArgInfo::Ignore: 3369 assert(NumIRArgs == 0); 3370 // Initialize the local variable appropriately. 3371 if (!hasScalarEvaluationKind(Ty)) { 3372 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3373 } else { 3374 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3375 ArgVals.push_back(ParamValue::forDirect(U)); 3376 } 3377 break; 3378 } 3379 } 3380 3381 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3382 for (int I = Args.size() - 1; I >= 0; --I) 3383 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3384 } else { 3385 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3386 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3387 } 3388 } 3389 3390 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3391 while (insn->use_empty()) { 3392 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3393 if (!bitcast) return; 3394 3395 // This is "safe" because we would have used a ConstantExpr otherwise. 3396 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3397 bitcast->eraseFromParent(); 3398 } 3399 } 3400 3401 /// Try to emit a fused autorelease of a return result. 3402 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3403 llvm::Value *result) { 3404 // We must be immediately followed the cast. 3405 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3406 if (BB->empty()) return nullptr; 3407 if (&BB->back() != result) return nullptr; 3408 3409 llvm::Type *resultType = result->getType(); 3410 3411 // result is in a BasicBlock and is therefore an Instruction. 3412 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3413 3414 SmallVector<llvm::Instruction *, 4> InstsToKill; 3415 3416 // Look for: 3417 // %generator = bitcast %type1* %generator2 to %type2* 3418 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3419 // We would have emitted this as a constant if the operand weren't 3420 // an Instruction. 3421 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3422 3423 // Require the generator to be immediately followed by the cast. 3424 if (generator->getNextNode() != bitcast) 3425 return nullptr; 3426 3427 InstsToKill.push_back(bitcast); 3428 } 3429 3430 // Look for: 3431 // %generator = call i8* @objc_retain(i8* %originalResult) 3432 // or 3433 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3434 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3435 if (!call) return nullptr; 3436 3437 bool doRetainAutorelease; 3438 3439 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3440 doRetainAutorelease = true; 3441 } else if (call->getCalledOperand() == 3442 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3443 doRetainAutorelease = false; 3444 3445 // If we emitted an assembly marker for this call (and the 3446 // ARCEntrypoints field should have been set if so), go looking 3447 // for that call. If we can't find it, we can't do this 3448 // optimization. But it should always be the immediately previous 3449 // instruction, unless we needed bitcasts around the call. 3450 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3451 llvm::Instruction *prev = call->getPrevNode(); 3452 assert(prev); 3453 if (isa<llvm::BitCastInst>(prev)) { 3454 prev = prev->getPrevNode(); 3455 assert(prev); 3456 } 3457 assert(isa<llvm::CallInst>(prev)); 3458 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3459 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3460 InstsToKill.push_back(prev); 3461 } 3462 } else { 3463 return nullptr; 3464 } 3465 3466 result = call->getArgOperand(0); 3467 InstsToKill.push_back(call); 3468 3469 // Keep killing bitcasts, for sanity. Note that we no longer care 3470 // about precise ordering as long as there's exactly one use. 3471 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3472 if (!bitcast->hasOneUse()) break; 3473 InstsToKill.push_back(bitcast); 3474 result = bitcast->getOperand(0); 3475 } 3476 3477 // Delete all the unnecessary instructions, from latest to earliest. 3478 for (auto *I : InstsToKill) 3479 I->eraseFromParent(); 3480 3481 // Do the fused retain/autorelease if we were asked to. 3482 if (doRetainAutorelease) 3483 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3484 3485 // Cast back to the result type. 3486 return CGF.Builder.CreateBitCast(result, resultType); 3487 } 3488 3489 /// If this is a +1 of the value of an immutable 'self', remove it. 3490 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3491 llvm::Value *result) { 3492 // This is only applicable to a method with an immutable 'self'. 3493 const ObjCMethodDecl *method = 3494 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3495 if (!method) return nullptr; 3496 const VarDecl *self = method->getSelfDecl(); 3497 if (!self->getType().isConstQualified()) return nullptr; 3498 3499 // Look for a retain call. Note: stripPointerCasts looks through returned arg 3500 // functions, which would cause us to miss the retain. 3501 llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result); 3502 if (!retainCall || retainCall->getCalledOperand() != 3503 CGF.CGM.getObjCEntrypoints().objc_retain) 3504 return nullptr; 3505 3506 // Look for an ordinary load of 'self'. 3507 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3508 llvm::LoadInst *load = 3509 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3510 if (!load || load->isAtomic() || load->isVolatile() || 3511 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getBasePointer()) 3512 return nullptr; 3513 3514 // Okay! Burn it all down. This relies for correctness on the 3515 // assumption that the retain is emitted as part of the return and 3516 // that thereafter everything is used "linearly". 3517 llvm::Type *resultType = result->getType(); 3518 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3519 assert(retainCall->use_empty()); 3520 retainCall->eraseFromParent(); 3521 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3522 3523 return CGF.Builder.CreateBitCast(load, resultType); 3524 } 3525 3526 /// Emit an ARC autorelease of the result of a function. 3527 /// 3528 /// \return the value to actually return from the function 3529 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3530 llvm::Value *result) { 3531 // If we're returning 'self', kill the initial retain. This is a 3532 // heuristic attempt to "encourage correctness" in the really unfortunate 3533 // case where we have a return of self during a dealloc and we desperately 3534 // need to avoid the possible autorelease. 3535 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3536 return self; 3537 3538 // At -O0, try to emit a fused retain/autorelease. 3539 if (CGF.shouldUseFusedARCCalls()) 3540 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3541 return fused; 3542 3543 return CGF.EmitARCAutoreleaseReturnValue(result); 3544 } 3545 3546 /// Heuristically search for a dominating store to the return-value slot. 3547 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3548 llvm::Value *ReturnValuePtr = CGF.ReturnValue.getBasePointer(); 3549 3550 // Check if a User is a store which pointerOperand is the ReturnValue. 3551 // We are looking for stores to the ReturnValue, not for stores of the 3552 // ReturnValue to some other location. 3553 auto GetStoreIfValid = [&CGF, 3554 ReturnValuePtr](llvm::User *U) -> llvm::StoreInst * { 3555 auto *SI = dyn_cast<llvm::StoreInst>(U); 3556 if (!SI || SI->getPointerOperand() != ReturnValuePtr || 3557 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3558 return nullptr; 3559 // These aren't actually possible for non-coerced returns, and we 3560 // only care about non-coerced returns on this code path. 3561 // All memory instructions inside __try block are volatile. 3562 assert(!SI->isAtomic() && 3563 (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry())); 3564 return SI; 3565 }; 3566 // If there are multiple uses of the return-value slot, just check 3567 // for something immediately preceding the IP. Sometimes this can 3568 // happen with how we generate implicit-returns; it can also happen 3569 // with noreturn cleanups. 3570 if (!ReturnValuePtr->hasOneUse()) { 3571 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3572 if (IP->empty()) return nullptr; 3573 3574 // Look at directly preceding instruction, skipping bitcasts and lifetime 3575 // markers. 3576 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3577 if (isa<llvm::BitCastInst>(&I)) 3578 continue; 3579 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 3580 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3581 continue; 3582 3583 return GetStoreIfValid(&I); 3584 } 3585 return nullptr; 3586 } 3587 3588 llvm::StoreInst *store = GetStoreIfValid(ReturnValuePtr->user_back()); 3589 if (!store) return nullptr; 3590 3591 // Now do a first-and-dirty dominance check: just walk up the 3592 // single-predecessors chain from the current insertion point. 3593 llvm::BasicBlock *StoreBB = store->getParent(); 3594 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3595 llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs; 3596 while (IP != StoreBB) { 3597 if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor())) 3598 return nullptr; 3599 } 3600 3601 // Okay, the store's basic block dominates the insertion point; we 3602 // can do our thing. 3603 return store; 3604 } 3605 3606 // Helper functions for EmitCMSEClearRecord 3607 3608 // Set the bits corresponding to a field having width `BitWidth` and located at 3609 // offset `BitOffset` (from the least significant bit) within a storage unit of 3610 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3611 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3612 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3613 int BitWidth, int CharWidth) { 3614 assert(CharWidth <= 64); 3615 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3616 3617 int Pos = 0; 3618 if (BitOffset >= CharWidth) { 3619 Pos += BitOffset / CharWidth; 3620 BitOffset = BitOffset % CharWidth; 3621 } 3622 3623 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3624 if (BitOffset + BitWidth >= CharWidth) { 3625 Bits[Pos++] |= (Used << BitOffset) & Used; 3626 BitWidth -= CharWidth - BitOffset; 3627 BitOffset = 0; 3628 } 3629 3630 while (BitWidth >= CharWidth) { 3631 Bits[Pos++] = Used; 3632 BitWidth -= CharWidth; 3633 } 3634 3635 if (BitWidth > 0) 3636 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3637 } 3638 3639 // Set the bits corresponding to a field having width `BitWidth` and located at 3640 // offset `BitOffset` (from the least significant bit) within a storage unit of 3641 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3642 // `Bits` corresponds to one target byte. Use target endian layout. 3643 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3644 int StorageSize, int BitOffset, int BitWidth, 3645 int CharWidth, bool BigEndian) { 3646 3647 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3648 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3649 3650 if (BigEndian) 3651 std::reverse(TmpBits.begin(), TmpBits.end()); 3652 3653 for (uint64_t V : TmpBits) 3654 Bits[StorageOffset++] |= V; 3655 } 3656 3657 static void setUsedBits(CodeGenModule &, QualType, int, 3658 SmallVectorImpl<uint64_t> &); 3659 3660 // Set the bits in `Bits`, which correspond to the value representations of 3661 // the actual members of the record type `RTy`. Note that this function does 3662 // not handle base classes, virtual tables, etc, since they cannot happen in 3663 // CMSE function arguments or return. The bit mask corresponds to the target 3664 // memory layout, i.e. it's endian dependent. 3665 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3666 SmallVectorImpl<uint64_t> &Bits) { 3667 ASTContext &Context = CGM.getContext(); 3668 int CharWidth = Context.getCharWidth(); 3669 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3670 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3671 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3672 3673 int Idx = 0; 3674 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3675 const FieldDecl *F = *I; 3676 3677 if (F->isUnnamedBitField() || F->isZeroLengthBitField(Context) || 3678 F->getType()->isIncompleteArrayType()) 3679 continue; 3680 3681 if (F->isBitField()) { 3682 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3683 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3684 BFI.StorageSize / CharWidth, BFI.Offset, 3685 BFI.Size, CharWidth, 3686 CGM.getDataLayout().isBigEndian()); 3687 continue; 3688 } 3689 3690 setUsedBits(CGM, F->getType(), 3691 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3692 } 3693 } 3694 3695 // Set the bits in `Bits`, which correspond to the value representations of 3696 // the elements of an array type `ATy`. 3697 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3698 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3699 const ASTContext &Context = CGM.getContext(); 3700 3701 QualType ETy = Context.getBaseElementType(ATy); 3702 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3703 SmallVector<uint64_t, 4> TmpBits(Size); 3704 setUsedBits(CGM, ETy, 0, TmpBits); 3705 3706 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3707 auto Src = TmpBits.begin(); 3708 auto Dst = Bits.begin() + Offset + I * Size; 3709 for (int J = 0; J < Size; ++J) 3710 *Dst++ |= *Src++; 3711 } 3712 } 3713 3714 // Set the bits in `Bits`, which correspond to the value representations of 3715 // the type `QTy`. 3716 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3717 SmallVectorImpl<uint64_t> &Bits) { 3718 if (const auto *RTy = QTy->getAs<RecordType>()) 3719 return setUsedBits(CGM, RTy, Offset, Bits); 3720 3721 ASTContext &Context = CGM.getContext(); 3722 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3723 return setUsedBits(CGM, ATy, Offset, Bits); 3724 3725 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3726 if (Size <= 0) 3727 return; 3728 3729 std::fill_n(Bits.begin() + Offset, Size, 3730 (uint64_t(1) << Context.getCharWidth()) - 1); 3731 } 3732 3733 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3734 int Pos, int Size, int CharWidth, 3735 bool BigEndian) { 3736 assert(Size > 0); 3737 uint64_t Mask = 0; 3738 if (BigEndian) { 3739 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3740 ++P) 3741 Mask = (Mask << CharWidth) | *P; 3742 } else { 3743 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3744 do 3745 Mask = (Mask << CharWidth) | *--P; 3746 while (P != End); 3747 } 3748 return Mask; 3749 } 3750 3751 // Emit code to clear the bits in a record, which aren't a part of any user 3752 // declared member, when the record is a function return. 3753 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3754 llvm::IntegerType *ITy, 3755 QualType QTy) { 3756 assert(Src->getType() == ITy); 3757 assert(ITy->getScalarSizeInBits() <= 64); 3758 3759 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3760 int Size = DataLayout.getTypeStoreSize(ITy); 3761 SmallVector<uint64_t, 4> Bits(Size); 3762 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3763 3764 int CharWidth = CGM.getContext().getCharWidth(); 3765 uint64_t Mask = 3766 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3767 3768 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3769 } 3770 3771 // Emit code to clear the bits in a record, which aren't a part of any user 3772 // declared member, when the record is a function argument. 3773 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3774 llvm::ArrayType *ATy, 3775 QualType QTy) { 3776 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3777 int Size = DataLayout.getTypeStoreSize(ATy); 3778 SmallVector<uint64_t, 16> Bits(Size); 3779 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3780 3781 // Clear each element of the LLVM array. 3782 int CharWidth = CGM.getContext().getCharWidth(); 3783 int CharsPerElt = 3784 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3785 int MaskIndex = 0; 3786 llvm::Value *R = llvm::PoisonValue::get(ATy); 3787 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3788 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3789 DataLayout.isBigEndian()); 3790 MaskIndex += CharsPerElt; 3791 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3792 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3793 R = Builder.CreateInsertValue(R, T1, I); 3794 } 3795 3796 return R; 3797 } 3798 3799 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3800 bool EmitRetDbgLoc, 3801 SourceLocation EndLoc) { 3802 if (FI.isNoReturn()) { 3803 // Noreturn functions don't return. 3804 EmitUnreachable(EndLoc); 3805 return; 3806 } 3807 3808 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3809 // Naked functions don't have epilogues. 3810 Builder.CreateUnreachable(); 3811 return; 3812 } 3813 3814 // Functions with no result always return void. 3815 if (!ReturnValue.isValid()) { 3816 Builder.CreateRetVoid(); 3817 return; 3818 } 3819 3820 llvm::DebugLoc RetDbgLoc; 3821 llvm::Value *RV = nullptr; 3822 QualType RetTy = FI.getReturnType(); 3823 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3824 3825 switch (RetAI.getKind()) { 3826 case ABIArgInfo::InAlloca: 3827 // Aggregates get evaluated directly into the destination. Sometimes we 3828 // need to return the sret value in a register, though. 3829 assert(hasAggregateEvaluationKind(RetTy)); 3830 if (RetAI.getInAllocaSRet()) { 3831 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3832 --EI; 3833 llvm::Value *ArgStruct = &*EI; 3834 llvm::Value *SRet = Builder.CreateStructGEP( 3835 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3836 llvm::Type *Ty = 3837 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3838 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3839 } 3840 break; 3841 3842 case ABIArgInfo::Indirect: { 3843 auto AI = CurFn->arg_begin(); 3844 if (RetAI.isSRetAfterThis()) 3845 ++AI; 3846 switch (getEvaluationKind(RetTy)) { 3847 case TEK_Complex: { 3848 ComplexPairTy RT = 3849 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3850 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3851 /*isInit*/ true); 3852 break; 3853 } 3854 case TEK_Aggregate: 3855 // Do nothing; aggregates get evaluated directly into the destination. 3856 break; 3857 case TEK_Scalar: { 3858 LValueBaseInfo BaseInfo; 3859 TBAAAccessInfo TBAAInfo; 3860 CharUnits Alignment = 3861 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3862 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3863 LValue ArgVal = 3864 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3865 EmitStoreOfScalar( 3866 EmitLoadOfScalar(MakeAddrLValue(ReturnValue, RetTy), EndLoc), ArgVal, 3867 /*isInit*/ true); 3868 break; 3869 } 3870 } 3871 break; 3872 } 3873 3874 case ABIArgInfo::Extend: 3875 case ABIArgInfo::Direct: 3876 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3877 RetAI.getDirectOffset() == 0) { 3878 // The internal return value temp always will have pointer-to-return-type 3879 // type, just do a load. 3880 3881 // If there is a dominating store to ReturnValue, we can elide 3882 // the load, zap the store, and usually zap the alloca. 3883 if (llvm::StoreInst *SI = 3884 findDominatingStoreToReturnValue(*this)) { 3885 // Reuse the debug location from the store unless there is 3886 // cleanup code to be emitted between the store and return 3887 // instruction. 3888 if (EmitRetDbgLoc && !AutoreleaseResult) 3889 RetDbgLoc = SI->getDebugLoc(); 3890 // Get the stored value and nuke the now-dead store. 3891 RV = SI->getValueOperand(); 3892 SI->eraseFromParent(); 3893 3894 // Otherwise, we have to do a simple load. 3895 } else { 3896 RV = Builder.CreateLoad(ReturnValue); 3897 } 3898 } else { 3899 // If the value is offset in memory, apply the offset now. 3900 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3901 3902 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3903 } 3904 3905 // In ARC, end functions that return a retainable type with a call 3906 // to objc_autoreleaseReturnValue. 3907 if (AutoreleaseResult) { 3908 #ifndef NDEBUG 3909 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3910 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3911 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3912 // CurCodeDecl or BlockInfo. 3913 QualType RT; 3914 3915 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3916 RT = FD->getReturnType(); 3917 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3918 RT = MD->getReturnType(); 3919 else if (isa<BlockDecl>(CurCodeDecl)) 3920 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3921 else 3922 llvm_unreachable("Unexpected function/method type"); 3923 3924 assert(getLangOpts().ObjCAutoRefCount && 3925 !FI.isReturnsRetained() && 3926 RT->isObjCRetainableType()); 3927 #endif 3928 RV = emitAutoreleaseOfResult(*this, RV); 3929 } 3930 3931 break; 3932 3933 case ABIArgInfo::Ignore: 3934 break; 3935 3936 case ABIArgInfo::CoerceAndExpand: { 3937 auto coercionType = RetAI.getCoerceAndExpandType(); 3938 3939 // Load all of the coerced elements out into results. 3940 llvm::SmallVector<llvm::Value*, 4> results; 3941 Address addr = ReturnValue.withElementType(coercionType); 3942 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3943 auto coercedEltType = coercionType->getElementType(i); 3944 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3945 continue; 3946 3947 auto eltAddr = Builder.CreateStructGEP(addr, i); 3948 auto elt = Builder.CreateLoad(eltAddr); 3949 results.push_back(elt); 3950 } 3951 3952 // If we have one result, it's the single direct result type. 3953 if (results.size() == 1) { 3954 RV = results[0]; 3955 3956 // Otherwise, we need to make a first-class aggregate. 3957 } else { 3958 // Construct a return type that lacks padding elements. 3959 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3960 3961 RV = llvm::PoisonValue::get(returnType); 3962 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3963 RV = Builder.CreateInsertValue(RV, results[i], i); 3964 } 3965 } 3966 break; 3967 } 3968 case ABIArgInfo::Expand: 3969 case ABIArgInfo::IndirectAliased: 3970 llvm_unreachable("Invalid ABI kind for return argument"); 3971 } 3972 3973 llvm::Instruction *Ret; 3974 if (RV) { 3975 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3976 // For certain return types, clear padding bits, as they may reveal 3977 // sensitive information. 3978 // Small struct/union types are passed as integers. 3979 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3980 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3981 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3982 } 3983 EmitReturnValueCheck(RV); 3984 Ret = Builder.CreateRet(RV); 3985 } else { 3986 Ret = Builder.CreateRetVoid(); 3987 } 3988 3989 if (RetDbgLoc) 3990 Ret->setDebugLoc(std::move(RetDbgLoc)); 3991 } 3992 3993 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3994 // A current decl may not be available when emitting vtable thunks. 3995 if (!CurCodeDecl) 3996 return; 3997 3998 // If the return block isn't reachable, neither is this check, so don't emit 3999 // it. 4000 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 4001 return; 4002 4003 ReturnsNonNullAttr *RetNNAttr = nullptr; 4004 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 4005 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 4006 4007 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 4008 return; 4009 4010 // Prefer the returns_nonnull attribute if it's present. 4011 SourceLocation AttrLoc; 4012 SanitizerMask CheckKind; 4013 SanitizerHandler Handler; 4014 if (RetNNAttr) { 4015 assert(!requiresReturnValueNullabilityCheck() && 4016 "Cannot check nullability and the nonnull attribute"); 4017 AttrLoc = RetNNAttr->getLocation(); 4018 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 4019 Handler = SanitizerHandler::NonnullReturn; 4020 } else { 4021 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 4022 if (auto *TSI = DD->getTypeSourceInfo()) 4023 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 4024 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 4025 CheckKind = SanitizerKind::NullabilityReturn; 4026 Handler = SanitizerHandler::NullabilityReturn; 4027 } 4028 4029 SanitizerScope SanScope(this); 4030 4031 // Make sure the "return" source location is valid. If we're checking a 4032 // nullability annotation, make sure the preconditions for the check are met. 4033 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 4034 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 4035 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 4036 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 4037 if (requiresReturnValueNullabilityCheck()) 4038 CanNullCheck = 4039 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 4040 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 4041 EmitBlock(Check); 4042 4043 // Now do the null check. 4044 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 4045 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 4046 llvm::Value *DynamicData[] = {SLocPtr}; 4047 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 4048 4049 EmitBlock(NoCheck); 4050 4051 #ifndef NDEBUG 4052 // The return location should not be used after the check has been emitted. 4053 ReturnLocation = Address::invalid(); 4054 #endif 4055 } 4056 4057 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 4058 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 4059 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 4060 } 4061 4062 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 4063 QualType Ty) { 4064 // FIXME: Generate IR in one pass, rather than going back and fixing up these 4065 // placeholders. 4066 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 4067 llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext()); 4068 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy); 4069 4070 // FIXME: When we generate this IR in one pass, we shouldn't need 4071 // this win32-specific alignment hack. 4072 CharUnits Align = CharUnits::fromQuantity(4); 4073 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 4074 4075 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 4076 Ty.getQualifiers(), 4077 AggValueSlot::IsNotDestructed, 4078 AggValueSlot::DoesNotNeedGCBarriers, 4079 AggValueSlot::IsNotAliased, 4080 AggValueSlot::DoesNotOverlap); 4081 } 4082 4083 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 4084 const VarDecl *param, 4085 SourceLocation loc) { 4086 // StartFunction converted the ABI-lowered parameter(s) into a 4087 // local alloca. We need to turn that into an r-value suitable 4088 // for EmitCall. 4089 Address local = GetAddrOfLocalVar(param); 4090 4091 QualType type = param->getType(); 4092 4093 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 4094 // but the argument needs to be the original pointer. 4095 if (type->isReferenceType()) { 4096 args.add(RValue::get(Builder.CreateLoad(local)), type); 4097 4098 // In ARC, move out of consumed arguments so that the release cleanup 4099 // entered by StartFunction doesn't cause an over-release. This isn't 4100 // optimal -O0 code generation, but it should get cleaned up when 4101 // optimization is enabled. This also assumes that delegate calls are 4102 // performed exactly once for a set of arguments, but that should be safe. 4103 } else if (getLangOpts().ObjCAutoRefCount && 4104 param->hasAttr<NSConsumedAttr>() && 4105 type->isObjCRetainableType()) { 4106 llvm::Value *ptr = Builder.CreateLoad(local); 4107 auto null = 4108 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 4109 Builder.CreateStore(null, local); 4110 args.add(RValue::get(ptr), type); 4111 4112 // For the most part, we just need to load the alloca, except that 4113 // aggregate r-values are actually pointers to temporaries. 4114 } else { 4115 args.add(convertTempToRValue(local, type, loc), type); 4116 } 4117 4118 // Deactivate the cleanup for the callee-destructed param that was pushed. 4119 if (type->isRecordType() && !CurFuncIsThunk && 4120 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 4121 param->needsDestruction(getContext())) { 4122 EHScopeStack::stable_iterator cleanup = 4123 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 4124 assert(cleanup.isValid() && 4125 "cleanup for callee-destructed param not recorded"); 4126 // This unreachable is a temporary marker which will be removed later. 4127 llvm::Instruction *isActive = Builder.CreateUnreachable(); 4128 args.addArgCleanupDeactivation(cleanup, isActive); 4129 } 4130 } 4131 4132 static bool isProvablyNull(llvm::Value *addr) { 4133 return llvm::isa_and_nonnull<llvm::ConstantPointerNull>(addr); 4134 } 4135 4136 static bool isProvablyNonNull(Address Addr, CodeGenFunction &CGF) { 4137 return llvm::isKnownNonZero(Addr.getBasePointer(), CGF.CGM.getDataLayout()); 4138 } 4139 4140 /// Emit the actual writing-back of a writeback. 4141 static void emitWriteback(CodeGenFunction &CGF, 4142 const CallArgList::Writeback &writeback) { 4143 const LValue &srcLV = writeback.Source; 4144 Address srcAddr = srcLV.getAddress(); 4145 assert(!isProvablyNull(srcAddr.getBasePointer()) && 4146 "shouldn't have writeback for provably null argument"); 4147 4148 llvm::BasicBlock *contBB = nullptr; 4149 4150 // If the argument wasn't provably non-null, we need to null check 4151 // before doing the store. 4152 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 4153 4154 if (!provablyNonNull) { 4155 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 4156 contBB = CGF.createBasicBlock("icr.done"); 4157 4158 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 4159 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 4160 CGF.EmitBlock(writebackBB); 4161 } 4162 4163 // Load the value to writeback. 4164 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 4165 4166 // Cast it back, in case we're writing an id to a Foo* or something. 4167 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 4168 "icr.writeback-cast"); 4169 4170 // Perform the writeback. 4171 4172 // If we have a "to use" value, it's something we need to emit a use 4173 // of. This has to be carefully threaded in: if it's done after the 4174 // release it's potentially undefined behavior (and the optimizer 4175 // will ignore it), and if it happens before the retain then the 4176 // optimizer could move the release there. 4177 if (writeback.ToUse) { 4178 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 4179 4180 // Retain the new value. No need to block-copy here: the block's 4181 // being passed up the stack. 4182 value = CGF.EmitARCRetainNonBlock(value); 4183 4184 // Emit the intrinsic use here. 4185 CGF.EmitARCIntrinsicUse(writeback.ToUse); 4186 4187 // Load the old value (primitively). 4188 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 4189 4190 // Put the new value in place (primitively). 4191 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 4192 4193 // Release the old value. 4194 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 4195 4196 // Otherwise, we can just do a normal lvalue store. 4197 } else { 4198 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 4199 } 4200 4201 // Jump to the continuation block. 4202 if (!provablyNonNull) 4203 CGF.EmitBlock(contBB); 4204 } 4205 4206 static void emitWritebacks(CodeGenFunction &CGF, 4207 const CallArgList &args) { 4208 for (const auto &I : args.writebacks()) 4209 emitWriteback(CGF, I); 4210 } 4211 4212 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 4213 const CallArgList &CallArgs) { 4214 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 4215 CallArgs.getCleanupsToDeactivate(); 4216 // Iterate in reverse to increase the likelihood of popping the cleanup. 4217 for (const auto &I : llvm::reverse(Cleanups)) { 4218 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 4219 I.IsActiveIP->eraseFromParent(); 4220 } 4221 } 4222 4223 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 4224 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 4225 if (uop->getOpcode() == UO_AddrOf) 4226 return uop->getSubExpr(); 4227 return nullptr; 4228 } 4229 4230 /// Emit an argument that's being passed call-by-writeback. That is, 4231 /// we are passing the address of an __autoreleased temporary; it 4232 /// might be copy-initialized with the current value of the given 4233 /// address, but it will definitely be copied out of after the call. 4234 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 4235 const ObjCIndirectCopyRestoreExpr *CRE) { 4236 LValue srcLV; 4237 4238 // Make an optimistic effort to emit the address as an l-value. 4239 // This can fail if the argument expression is more complicated. 4240 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 4241 srcLV = CGF.EmitLValue(lvExpr); 4242 4243 // Otherwise, just emit it as a scalar. 4244 } else { 4245 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 4246 4247 QualType srcAddrType = 4248 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 4249 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 4250 } 4251 Address srcAddr = srcLV.getAddress(); 4252 4253 // The dest and src types don't necessarily match in LLVM terms 4254 // because of the crazy ObjC compatibility rules. 4255 4256 llvm::PointerType *destType = 4257 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 4258 llvm::Type *destElemType = 4259 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 4260 4261 // If the address is a constant null, just pass the appropriate null. 4262 if (isProvablyNull(srcAddr.getBasePointer())) { 4263 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 4264 CRE->getType()); 4265 return; 4266 } 4267 4268 // Create the temporary. 4269 Address temp = 4270 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 4271 // Loading an l-value can introduce a cleanup if the l-value is __weak, 4272 // and that cleanup will be conditional if we can't prove that the l-value 4273 // isn't null, so we need to register a dominating point so that the cleanups 4274 // system will make valid IR. 4275 CodeGenFunction::ConditionalEvaluation condEval(CGF); 4276 4277 // Zero-initialize it if we're not doing a copy-initialization. 4278 bool shouldCopy = CRE->shouldCopy(); 4279 if (!shouldCopy) { 4280 llvm::Value *null = 4281 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 4282 CGF.Builder.CreateStore(null, temp); 4283 } 4284 4285 llvm::BasicBlock *contBB = nullptr; 4286 llvm::BasicBlock *originBB = nullptr; 4287 4288 // If the address is *not* known to be non-null, we need to switch. 4289 llvm::Value *finalArgument; 4290 4291 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 4292 4293 if (provablyNonNull) { 4294 finalArgument = temp.emitRawPointer(CGF); 4295 } else { 4296 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 4297 4298 finalArgument = CGF.Builder.CreateSelect( 4299 isNull, llvm::ConstantPointerNull::get(destType), 4300 temp.emitRawPointer(CGF), "icr.argument"); 4301 4302 // If we need to copy, then the load has to be conditional, which 4303 // means we need control flow. 4304 if (shouldCopy) { 4305 originBB = CGF.Builder.GetInsertBlock(); 4306 contBB = CGF.createBasicBlock("icr.cont"); 4307 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 4308 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 4309 CGF.EmitBlock(copyBB); 4310 condEval.begin(CGF); 4311 } 4312 } 4313 4314 llvm::Value *valueToUse = nullptr; 4315 4316 // Perform a copy if necessary. 4317 if (shouldCopy) { 4318 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 4319 assert(srcRV.isScalar()); 4320 4321 llvm::Value *src = srcRV.getScalarVal(); 4322 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4323 4324 // Use an ordinary store, not a store-to-lvalue. 4325 CGF.Builder.CreateStore(src, temp); 4326 4327 // If optimization is enabled, and the value was held in a 4328 // __strong variable, we need to tell the optimizer that this 4329 // value has to stay alive until we're doing the store back. 4330 // This is because the temporary is effectively unretained, 4331 // and so otherwise we can violate the high-level semantics. 4332 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4333 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4334 valueToUse = src; 4335 } 4336 } 4337 4338 // Finish the control flow if we needed it. 4339 if (shouldCopy && !provablyNonNull) { 4340 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4341 CGF.EmitBlock(contBB); 4342 4343 // Make a phi for the value to intrinsically use. 4344 if (valueToUse) { 4345 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4346 "icr.to-use"); 4347 phiToUse->addIncoming(valueToUse, copyBB); 4348 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4349 originBB); 4350 valueToUse = phiToUse; 4351 } 4352 4353 condEval.end(CGF); 4354 } 4355 4356 args.addWriteback(srcLV, temp, valueToUse); 4357 args.add(RValue::get(finalArgument), CRE->getType()); 4358 } 4359 4360 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4361 assert(!StackBase); 4362 4363 // Save the stack. 4364 StackBase = CGF.Builder.CreateStackSave("inalloca.save"); 4365 } 4366 4367 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4368 if (StackBase) { 4369 // Restore the stack after the call. 4370 CGF.Builder.CreateStackRestore(StackBase); 4371 } 4372 } 4373 4374 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4375 SourceLocation ArgLoc, 4376 AbstractCallee AC, 4377 unsigned ParmNum) { 4378 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4379 SanOpts.has(SanitizerKind::NullabilityArg))) 4380 return; 4381 4382 // The param decl may be missing in a variadic function. 4383 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4384 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4385 4386 // Prefer the nonnull attribute if it's present. 4387 const NonNullAttr *NNAttr = nullptr; 4388 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4389 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4390 4391 bool CanCheckNullability = false; 4392 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD && 4393 !PVD->getType()->isRecordType()) { 4394 auto Nullability = PVD->getType()->getNullability(); 4395 CanCheckNullability = Nullability && 4396 *Nullability == NullabilityKind::NonNull && 4397 PVD->getTypeSourceInfo(); 4398 } 4399 4400 if (!NNAttr && !CanCheckNullability) 4401 return; 4402 4403 SourceLocation AttrLoc; 4404 SanitizerMask CheckKind; 4405 SanitizerHandler Handler; 4406 if (NNAttr) { 4407 AttrLoc = NNAttr->getLocation(); 4408 CheckKind = SanitizerKind::NonnullAttribute; 4409 Handler = SanitizerHandler::NonnullArg; 4410 } else { 4411 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4412 CheckKind = SanitizerKind::NullabilityArg; 4413 Handler = SanitizerHandler::NullabilityArg; 4414 } 4415 4416 SanitizerScope SanScope(this); 4417 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4418 llvm::Constant *StaticData[] = { 4419 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4420 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4421 }; 4422 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt); 4423 } 4424 4425 void CodeGenFunction::EmitNonNullArgCheck(Address Addr, QualType ArgType, 4426 SourceLocation ArgLoc, 4427 AbstractCallee AC, unsigned ParmNum) { 4428 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4429 SanOpts.has(SanitizerKind::NullabilityArg))) 4430 return; 4431 4432 EmitNonNullArgCheck(RValue::get(Addr, *this), ArgType, ArgLoc, AC, ParmNum); 4433 } 4434 4435 // Check if the call is going to use the inalloca convention. This needs to 4436 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4437 // later, so we can't check it directly. 4438 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4439 ArrayRef<QualType> ArgTypes) { 4440 // The Swift calling conventions don't go through the target-specific 4441 // argument classification, they never use inalloca. 4442 // TODO: Consider limiting inalloca use to only calling conventions supported 4443 // by MSVC. 4444 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4445 return false; 4446 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4447 return false; 4448 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4449 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4450 }); 4451 } 4452 4453 #ifndef NDEBUG 4454 // Determine whether the given argument is an Objective-C method 4455 // that may have type parameters in its signature. 4456 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4457 const DeclContext *dc = method->getDeclContext(); 4458 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4459 return classDecl->getTypeParamListAsWritten(); 4460 } 4461 4462 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4463 return catDecl->getTypeParamList(); 4464 } 4465 4466 return false; 4467 } 4468 #endif 4469 4470 /// EmitCallArgs - Emit call arguments for a function. 4471 void CodeGenFunction::EmitCallArgs( 4472 CallArgList &Args, PrototypeWrapper Prototype, 4473 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4474 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4475 SmallVector<QualType, 16> ArgTypes; 4476 4477 assert((ParamsToSkip == 0 || Prototype.P) && 4478 "Can't skip parameters if type info is not provided"); 4479 4480 // This variable only captures *explicitly* written conventions, not those 4481 // applied by default via command line flags or target defaults, such as 4482 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4483 // require knowing if this is a C++ instance method or being able to see 4484 // unprototyped FunctionTypes. 4485 CallingConv ExplicitCC = CC_C; 4486 4487 // First, if a prototype was provided, use those argument types. 4488 bool IsVariadic = false; 4489 if (Prototype.P) { 4490 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4491 if (MD) { 4492 IsVariadic = MD->isVariadic(); 4493 ExplicitCC = getCallingConventionForDecl( 4494 MD, CGM.getTarget().getTriple().isOSWindows()); 4495 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4496 MD->param_type_end()); 4497 } else { 4498 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4499 IsVariadic = FPT->isVariadic(); 4500 ExplicitCC = FPT->getExtInfo().getCC(); 4501 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4502 FPT->param_type_end()); 4503 } 4504 4505 #ifndef NDEBUG 4506 // Check that the prototyped types match the argument expression types. 4507 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4508 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4509 for (QualType Ty : ArgTypes) { 4510 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4511 assert( 4512 (isGenericMethod || Ty->isVariablyModifiedType() || 4513 Ty.getNonReferenceType()->isObjCRetainableType() || 4514 getContext() 4515 .getCanonicalType(Ty.getNonReferenceType()) 4516 .getTypePtr() == 4517 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4518 "type mismatch in call argument!"); 4519 ++Arg; 4520 } 4521 4522 // Either we've emitted all the call args, or we have a call to variadic 4523 // function. 4524 assert((Arg == ArgRange.end() || IsVariadic) && 4525 "Extra arguments in non-variadic function!"); 4526 #endif 4527 } 4528 4529 // If we still have any arguments, emit them using the type of the argument. 4530 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4531 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4532 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4533 4534 // We must evaluate arguments from right to left in the MS C++ ABI, 4535 // because arguments are destroyed left to right in the callee. As a special 4536 // case, there are certain language constructs that require left-to-right 4537 // evaluation, and in those cases we consider the evaluation order requirement 4538 // to trump the "destruction order is reverse construction order" guarantee. 4539 bool LeftToRight = 4540 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4541 ? Order == EvaluationOrder::ForceLeftToRight 4542 : Order != EvaluationOrder::ForceRightToLeft; 4543 4544 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4545 RValue EmittedArg) { 4546 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4547 return; 4548 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4549 if (PS == nullptr) 4550 return; 4551 4552 const auto &Context = getContext(); 4553 auto SizeTy = Context.getSizeType(); 4554 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4555 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4556 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4557 EmittedArg.getScalarVal(), 4558 PS->isDynamic()); 4559 Args.add(RValue::get(V), SizeTy); 4560 // If we're emitting args in reverse, be sure to do so with 4561 // pass_object_size, as well. 4562 if (!LeftToRight) 4563 std::swap(Args.back(), *(&Args.back() - 1)); 4564 }; 4565 4566 // Insert a stack save if we're going to need any inalloca args. 4567 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4568 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4569 "inalloca only supported on x86"); 4570 Args.allocateArgumentMemory(*this); 4571 } 4572 4573 // Evaluate each argument in the appropriate order. 4574 size_t CallArgsStart = Args.size(); 4575 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4576 unsigned Idx = LeftToRight ? I : E - I - 1; 4577 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4578 unsigned InitialArgSize = Args.size(); 4579 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4580 // the argument and parameter match or the objc method is parameterized. 4581 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4582 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4583 ArgTypes[Idx]) || 4584 (isa<ObjCMethodDecl>(AC.getDecl()) && 4585 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4586 "Argument and parameter types don't match"); 4587 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4588 // In particular, we depend on it being the last arg in Args, and the 4589 // objectsize bits depend on there only being one arg if !LeftToRight. 4590 assert(InitialArgSize + 1 == Args.size() && 4591 "The code below depends on only adding one arg per EmitCallArg"); 4592 (void)InitialArgSize; 4593 // Since pointer argument are never emitted as LValue, it is safe to emit 4594 // non-null argument check for r-value only. 4595 if (!Args.back().hasLValue()) { 4596 RValue RVArg = Args.back().getKnownRValue(); 4597 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4598 ParamsToSkip + Idx); 4599 // @llvm.objectsize should never have side-effects and shouldn't need 4600 // destruction/cleanups, so we can safely "emit" it after its arg, 4601 // regardless of right-to-leftness 4602 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4603 } 4604 } 4605 4606 if (!LeftToRight) { 4607 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4608 // IR function. 4609 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4610 } 4611 } 4612 4613 namespace { 4614 4615 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4616 DestroyUnpassedArg(Address Addr, QualType Ty) 4617 : Addr(Addr), Ty(Ty) {} 4618 4619 Address Addr; 4620 QualType Ty; 4621 4622 void Emit(CodeGenFunction &CGF, Flags flags) override { 4623 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4624 if (DtorKind == QualType::DK_cxx_destructor) { 4625 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4626 assert(!Dtor->isTrivial()); 4627 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4628 /*Delegating=*/false, Addr, Ty); 4629 } else { 4630 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4631 } 4632 } 4633 }; 4634 4635 struct DisableDebugLocationUpdates { 4636 CodeGenFunction &CGF; 4637 bool disabledDebugInfo; 4638 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4639 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4640 CGF.disableDebugInfo(); 4641 } 4642 ~DisableDebugLocationUpdates() { 4643 if (disabledDebugInfo) 4644 CGF.enableDebugInfo(); 4645 } 4646 }; 4647 4648 } // end anonymous namespace 4649 4650 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4651 if (!HasLV) 4652 return RV; 4653 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4654 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4655 LV.isVolatile()); 4656 IsUsed = true; 4657 return RValue::getAggregate(Copy.getAddress()); 4658 } 4659 4660 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4661 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4662 if (!HasLV && RV.isScalar()) 4663 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4664 else if (!HasLV && RV.isComplex()) 4665 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4666 else { 4667 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 4668 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4669 // We assume that call args are never copied into subobjects. 4670 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4671 HasLV ? LV.isVolatileQualified() 4672 : RV.isVolatileQualified()); 4673 } 4674 IsUsed = true; 4675 } 4676 4677 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4678 QualType type) { 4679 DisableDebugLocationUpdates Dis(*this, E); 4680 if (const ObjCIndirectCopyRestoreExpr *CRE 4681 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4682 assert(getLangOpts().ObjCAutoRefCount); 4683 return emitWritebackArg(*this, args, CRE); 4684 } 4685 4686 assert(type->isReferenceType() == E->isGLValue() && 4687 "reference binding to unmaterialized r-value!"); 4688 4689 if (E->isGLValue()) { 4690 assert(E->getObjectKind() == OK_Ordinary); 4691 return args.add(EmitReferenceBindingToExpr(E), type); 4692 } 4693 4694 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4695 4696 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4697 // However, we still have to push an EH-only cleanup in case we unwind before 4698 // we make it to the call. 4699 if (type->isRecordType() && 4700 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4701 // If we're using inalloca, use the argument memory. Otherwise, use a 4702 // temporary. 4703 AggValueSlot Slot = args.isUsingInAlloca() 4704 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4705 4706 bool DestroyedInCallee = true, NeedsCleanup = true; 4707 if (const auto *RD = type->getAsCXXRecordDecl()) 4708 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4709 else 4710 NeedsCleanup = type.isDestructedType(); 4711 4712 if (DestroyedInCallee) 4713 Slot.setExternallyDestructed(); 4714 4715 EmitAggExpr(E, Slot); 4716 RValue RV = Slot.asRValue(); 4717 args.add(RV, type); 4718 4719 if (DestroyedInCallee && NeedsCleanup) { 4720 // Create a no-op GEP between the placeholder and the cleanup so we can 4721 // RAUW it successfully. It also serves as a marker of the first 4722 // instruction where the cleanup is active. 4723 pushFullExprCleanup<DestroyUnpassedArg>(NormalAndEHCleanup, 4724 Slot.getAddress(), type); 4725 // This unreachable is a temporary marker which will be removed later. 4726 llvm::Instruction *IsActive = 4727 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 4728 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4729 } 4730 return; 4731 } 4732 4733 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4734 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue && 4735 !type->isArrayParameterType()) { 4736 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4737 assert(L.isSimple()); 4738 args.addUncopiedAggregate(L, type); 4739 return; 4740 } 4741 4742 args.add(EmitAnyExprToTemp(E), type); 4743 } 4744 4745 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4746 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4747 // implicitly widens null pointer constants that are arguments to varargs 4748 // functions to pointer-sized ints. 4749 if (!getTarget().getTriple().isOSWindows()) 4750 return Arg->getType(); 4751 4752 if (Arg->getType()->isIntegerType() && 4753 getContext().getTypeSize(Arg->getType()) < 4754 getContext().getTargetInfo().getPointerWidth(LangAS::Default) && 4755 Arg->isNullPointerConstant(getContext(), 4756 Expr::NPC_ValueDependentIsNotNull)) { 4757 return getContext().getIntPtrType(); 4758 } 4759 4760 return Arg->getType(); 4761 } 4762 4763 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4764 // optimizer it can aggressively ignore unwind edges. 4765 void 4766 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4767 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4768 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4769 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4770 CGM.getNoObjCARCExceptionsMetadata()); 4771 } 4772 4773 /// Emits a call to the given no-arguments nounwind runtime function. 4774 llvm::CallInst * 4775 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4776 const llvm::Twine &name) { 4777 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value *>(), name); 4778 } 4779 4780 /// Emits a call to the given nounwind runtime function. 4781 llvm::CallInst * 4782 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4783 ArrayRef<Address> args, 4784 const llvm::Twine &name) { 4785 SmallVector<llvm::Value *, 3> values; 4786 for (auto arg : args) 4787 values.push_back(arg.emitRawPointer(*this)); 4788 return EmitNounwindRuntimeCall(callee, values, name); 4789 } 4790 4791 llvm::CallInst * 4792 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4793 ArrayRef<llvm::Value *> args, 4794 const llvm::Twine &name) { 4795 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4796 call->setDoesNotThrow(); 4797 return call; 4798 } 4799 4800 /// Emits a simple call (never an invoke) to the given no-arguments 4801 /// runtime function. 4802 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4803 const llvm::Twine &name) { 4804 return EmitRuntimeCall(callee, std::nullopt, name); 4805 } 4806 4807 // Calls which may throw must have operand bundles indicating which funclet 4808 // they are nested within. 4809 SmallVector<llvm::OperandBundleDef, 1> 4810 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4811 // There is no need for a funclet operand bundle if we aren't inside a 4812 // funclet. 4813 if (!CurrentFuncletPad) 4814 return (SmallVector<llvm::OperandBundleDef, 1>()); 4815 4816 // Skip intrinsics which cannot throw (as long as they don't lower into 4817 // regular function calls in the course of IR transformations). 4818 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) { 4819 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { 4820 auto IID = CalleeFn->getIntrinsicID(); 4821 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) 4822 return (SmallVector<llvm::OperandBundleDef, 1>()); 4823 } 4824 } 4825 4826 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4827 BundleList.emplace_back("funclet", CurrentFuncletPad); 4828 return BundleList; 4829 } 4830 4831 /// Emits a simple call (never an invoke) to the given runtime function. 4832 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4833 ArrayRef<llvm::Value *> args, 4834 const llvm::Twine &name) { 4835 llvm::CallInst *call = Builder.CreateCall( 4836 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4837 call->setCallingConv(getRuntimeCC()); 4838 4839 if (CGM.shouldEmitConvergenceTokens() && call->isConvergent()) 4840 return addControlledConvergenceToken(call); 4841 return call; 4842 } 4843 4844 /// Emits a call or invoke to the given noreturn runtime function. 4845 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4846 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4847 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4848 getBundlesForFunclet(callee.getCallee()); 4849 4850 if (getInvokeDest()) { 4851 llvm::InvokeInst *invoke = 4852 Builder.CreateInvoke(callee, 4853 getUnreachableBlock(), 4854 getInvokeDest(), 4855 args, 4856 BundleList); 4857 invoke->setDoesNotReturn(); 4858 invoke->setCallingConv(getRuntimeCC()); 4859 } else { 4860 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4861 call->setDoesNotReturn(); 4862 call->setCallingConv(getRuntimeCC()); 4863 Builder.CreateUnreachable(); 4864 } 4865 } 4866 4867 /// Emits a call or invoke instruction to the given nullary runtime function. 4868 llvm::CallBase * 4869 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4870 const Twine &name) { 4871 return EmitRuntimeCallOrInvoke(callee, std::nullopt, name); 4872 } 4873 4874 /// Emits a call or invoke instruction to the given runtime function. 4875 llvm::CallBase * 4876 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4877 ArrayRef<llvm::Value *> args, 4878 const Twine &name) { 4879 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4880 call->setCallingConv(getRuntimeCC()); 4881 return call; 4882 } 4883 4884 /// Emits a call or invoke instruction to the given function, depending 4885 /// on the current state of the EH stack. 4886 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4887 ArrayRef<llvm::Value *> Args, 4888 const Twine &Name) { 4889 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4890 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4891 getBundlesForFunclet(Callee.getCallee()); 4892 4893 llvm::CallBase *Inst; 4894 if (!InvokeDest) 4895 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4896 else { 4897 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4898 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4899 Name); 4900 EmitBlock(ContBB); 4901 } 4902 4903 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4904 // optimizer it can aggressively ignore unwind edges. 4905 if (CGM.getLangOpts().ObjCAutoRefCount) 4906 AddObjCARCExceptionMetadata(Inst); 4907 4908 return Inst; 4909 } 4910 4911 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4912 llvm::Value *New) { 4913 DeferredReplacements.push_back( 4914 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4915 } 4916 4917 namespace { 4918 4919 /// Specify given \p NewAlign as the alignment of return value attribute. If 4920 /// such attribute already exists, re-set it to the maximal one of two options. 4921 [[nodiscard]] llvm::AttributeList 4922 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4923 const llvm::AttributeList &Attrs, 4924 llvm::Align NewAlign) { 4925 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4926 if (CurAlign >= NewAlign) 4927 return Attrs; 4928 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4929 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4930 .addRetAttribute(Ctx, AlignAttr); 4931 } 4932 4933 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4934 protected: 4935 CodeGenFunction &CGF; 4936 4937 /// We do nothing if this is, or becomes, nullptr. 4938 const AlignedAttrTy *AA = nullptr; 4939 4940 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4941 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4942 4943 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4944 : CGF(CGF_) { 4945 if (!FuncDecl) 4946 return; 4947 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4948 } 4949 4950 public: 4951 /// If we can, materialize the alignment as an attribute on return value. 4952 [[nodiscard]] llvm::AttributeList 4953 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4954 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4955 return Attrs; 4956 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4957 if (!AlignmentCI) 4958 return Attrs; 4959 // We may legitimately have non-power-of-2 alignment here. 4960 // If so, this is UB land, emit it via `@llvm.assume` instead. 4961 if (!AlignmentCI->getValue().isPowerOf2()) 4962 return Attrs; 4963 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4964 CGF.getLLVMContext(), Attrs, 4965 llvm::Align( 4966 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4967 AA = nullptr; // We're done. Disallow doing anything else. 4968 return NewAttrs; 4969 } 4970 4971 /// Emit alignment assumption. 4972 /// This is a general fallback that we take if either there is an offset, 4973 /// or the alignment is variable or we are sanitizing for alignment. 4974 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4975 if (!AA) 4976 return; 4977 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4978 AA->getLocation(), Alignment, OffsetCI); 4979 AA = nullptr; // We're done. Disallow doing anything else. 4980 } 4981 }; 4982 4983 /// Helper data structure to emit `AssumeAlignedAttr`. 4984 class AssumeAlignedAttrEmitter final 4985 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4986 public: 4987 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4988 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4989 if (!AA) 4990 return; 4991 // It is guaranteed that the alignment/offset are constants. 4992 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4993 if (Expr *Offset = AA->getOffset()) { 4994 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4995 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4996 OffsetCI = nullptr; 4997 } 4998 } 4999 }; 5000 5001 /// Helper data structure to emit `AllocAlignAttr`. 5002 class AllocAlignAttrEmitter final 5003 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 5004 public: 5005 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 5006 const CallArgList &CallArgs) 5007 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 5008 if (!AA) 5009 return; 5010 // Alignment may or may not be a constant, and that is okay. 5011 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 5012 .getRValue(CGF) 5013 .getScalarVal(); 5014 } 5015 }; 5016 5017 } // namespace 5018 5019 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 5020 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 5021 return VT->getPrimitiveSizeInBits().getKnownMinValue(); 5022 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 5023 return getMaxVectorWidth(AT->getElementType()); 5024 5025 unsigned MaxVectorWidth = 0; 5026 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 5027 for (auto *I : ST->elements()) 5028 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 5029 return MaxVectorWidth; 5030 } 5031 5032 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 5033 const CGCallee &Callee, 5034 ReturnValueSlot ReturnValue, 5035 const CallArgList &CallArgs, 5036 llvm::CallBase **callOrInvoke, bool IsMustTail, 5037 SourceLocation Loc, 5038 bool IsVirtualFunctionPointerThunk) { 5039 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 5040 5041 assert(Callee.isOrdinary() || Callee.isVirtual()); 5042 5043 // Handle struct-return functions by passing a pointer to the 5044 // location that we would like to return into. 5045 QualType RetTy = CallInfo.getReturnType(); 5046 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 5047 5048 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 5049 5050 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 5051 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5052 // We can only guarantee that a function is called from the correct 5053 // context/function based on the appropriate target attributes, 5054 // so only check in the case where we have both always_inline and target 5055 // since otherwise we could be making a conditional call after a check for 5056 // the proper cpu features (and it won't cause code generation issues due to 5057 // function based code generation). 5058 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 5059 (TargetDecl->hasAttr<TargetAttr>() || 5060 (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>()))) 5061 checkTargetFeatures(Loc, FD); 5062 } 5063 5064 // Some architectures (such as x86-64) have the ABI changed based on 5065 // attribute-target/features. Give them a chance to diagnose. 5066 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 5067 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), 5068 dyn_cast_or_null<FunctionDecl>(TargetDecl), CallArgs, RetTy); 5069 5070 // 1. Set up the arguments. 5071 5072 // If we're using inalloca, insert the allocation after the stack save. 5073 // FIXME: Do this earlier rather than hacking it in here! 5074 RawAddress ArgMemory = RawAddress::invalid(); 5075 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 5076 const llvm::DataLayout &DL = CGM.getDataLayout(); 5077 llvm::Instruction *IP = CallArgs.getStackBase(); 5078 llvm::AllocaInst *AI; 5079 if (IP) { 5080 IP = IP->getNextNode(); 5081 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 5082 "argmem", IP); 5083 } else { 5084 AI = CreateTempAlloca(ArgStruct, "argmem"); 5085 } 5086 auto Align = CallInfo.getArgStructAlignment(); 5087 AI->setAlignment(Align.getAsAlign()); 5088 AI->setUsedWithInAlloca(true); 5089 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 5090 ArgMemory = RawAddress(AI, ArgStruct, Align); 5091 } 5092 5093 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 5094 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 5095 5096 // If the call returns a temporary with struct return, create a temporary 5097 // alloca to hold the result, unless one is given to us. 5098 Address SRetPtr = Address::invalid(); 5099 RawAddress SRetAlloca = RawAddress::invalid(); 5100 llvm::Value *UnusedReturnSizePtr = nullptr; 5101 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 5102 if (IsVirtualFunctionPointerThunk && RetAI.isIndirect()) { 5103 SRetPtr = makeNaturalAddressForPointer(CurFn->arg_begin() + 5104 IRFunctionArgs.getSRetArgNo(), 5105 RetTy, CharUnits::fromQuantity(1)); 5106 } else if (!ReturnValue.isNull()) { 5107 SRetPtr = ReturnValue.getAddress(); 5108 } else { 5109 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 5110 if (HaveInsertPoint() && ReturnValue.isUnused()) { 5111 llvm::TypeSize size = 5112 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 5113 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 5114 } 5115 } 5116 if (IRFunctionArgs.hasSRetArg()) { 5117 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = 5118 getAsNaturalPointerTo(SRetPtr, RetTy); 5119 } else if (RetAI.isInAlloca()) { 5120 Address Addr = 5121 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 5122 Builder.CreateStore(getAsNaturalPointerTo(SRetPtr, RetTy), Addr); 5123 } 5124 } 5125 5126 RawAddress swiftErrorTemp = RawAddress::invalid(); 5127 Address swiftErrorArg = Address::invalid(); 5128 5129 // When passing arguments using temporary allocas, we need to add the 5130 // appropriate lifetime markers. This vector keeps track of all the lifetime 5131 // markers that need to be ended right after the call. 5132 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 5133 5134 // Translate all of the arguments as necessary to match the IR lowering. 5135 assert(CallInfo.arg_size() == CallArgs.size() && 5136 "Mismatch between function signature & arguments."); 5137 unsigned ArgNo = 0; 5138 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 5139 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 5140 I != E; ++I, ++info_it, ++ArgNo) { 5141 const ABIArgInfo &ArgInfo = info_it->info; 5142 5143 // Insert a padding argument to ensure proper alignment. 5144 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 5145 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 5146 llvm::UndefValue::get(ArgInfo.getPaddingType()); 5147 5148 unsigned FirstIRArg, NumIRArgs; 5149 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 5150 5151 bool ArgHasMaybeUndefAttr = 5152 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo); 5153 5154 switch (ArgInfo.getKind()) { 5155 case ABIArgInfo::InAlloca: { 5156 assert(NumIRArgs == 0); 5157 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 5158 if (I->isAggregate()) { 5159 RawAddress Addr = I->hasLValue() 5160 ? I->getKnownLValue().getAddress() 5161 : I->getKnownRValue().getAggregateAddress(); 5162 llvm::Instruction *Placeholder = 5163 cast<llvm::Instruction>(Addr.getPointer()); 5164 5165 if (!ArgInfo.getInAllocaIndirect()) { 5166 // Replace the placeholder with the appropriate argument slot GEP. 5167 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 5168 Builder.SetInsertPoint(Placeholder); 5169 Addr = Builder.CreateStructGEP(ArgMemory, 5170 ArgInfo.getInAllocaFieldIndex()); 5171 Builder.restoreIP(IP); 5172 } else { 5173 // For indirect things such as overaligned structs, replace the 5174 // placeholder with a regular aggregate temporary alloca. Store the 5175 // address of this alloca into the struct. 5176 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 5177 Address ArgSlot = Builder.CreateStructGEP( 5178 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5179 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5180 } 5181 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 5182 } else if (ArgInfo.getInAllocaIndirect()) { 5183 // Make a temporary alloca and store the address of it into the argument 5184 // struct. 5185 RawAddress Addr = CreateMemTempWithoutCast( 5186 I->Ty, getContext().getTypeAlignInChars(I->Ty), 5187 "indirect-arg-temp"); 5188 I->copyInto(*this, Addr); 5189 Address ArgSlot = 5190 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5191 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5192 } else { 5193 // Store the RValue into the argument struct. 5194 Address Addr = 5195 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5196 Addr = Addr.withElementType(ConvertTypeForMem(I->Ty)); 5197 I->copyInto(*this, Addr); 5198 } 5199 break; 5200 } 5201 5202 case ABIArgInfo::Indirect: 5203 case ABIArgInfo::IndirectAliased: { 5204 assert(NumIRArgs == 1); 5205 if (I->isAggregate()) { 5206 // We want to avoid creating an unnecessary temporary+copy here; 5207 // however, we need one in three cases: 5208 // 1. If the argument is not byval, and we are required to copy the 5209 // source. (This case doesn't occur on any common architecture.) 5210 // 2. If the argument is byval, RV is not sufficiently aligned, and 5211 // we cannot force it to be sufficiently aligned. 5212 // 3. If the argument is byval, but RV is not located in default 5213 // or alloca address space. 5214 Address Addr = I->hasLValue() 5215 ? I->getKnownLValue().getAddress() 5216 : I->getKnownRValue().getAggregateAddress(); 5217 CharUnits Align = ArgInfo.getIndirectAlign(); 5218 const llvm::DataLayout *TD = &CGM.getDataLayout(); 5219 5220 assert((FirstIRArg >= IRFuncTy->getNumParams() || 5221 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 5222 TD->getAllocaAddrSpace()) && 5223 "indirect argument must be in alloca address space"); 5224 5225 bool NeedCopy = false; 5226 if (Addr.getAlignment() < Align && 5227 llvm::getOrEnforceKnownAlignment(Addr.emitRawPointer(*this), 5228 Align.getAsAlign(), 5229 *TD) < Align.getAsAlign()) { 5230 NeedCopy = true; 5231 } else if (I->hasLValue()) { 5232 auto LV = I->getKnownLValue(); 5233 auto AS = LV.getAddressSpace(); 5234 5235 bool isByValOrRef = 5236 ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal(); 5237 5238 if (!isByValOrRef || 5239 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 5240 NeedCopy = true; 5241 } 5242 if (!getLangOpts().OpenCL) { 5243 if ((isByValOrRef && 5244 (AS != LangAS::Default && 5245 AS != CGM.getASTAllocaAddressSpace()))) { 5246 NeedCopy = true; 5247 } 5248 } 5249 // For OpenCL even if RV is located in default or alloca address space 5250 // we don't want to perform address space cast for it. 5251 else if ((isByValOrRef && 5252 Addr.getType()->getAddressSpace() != IRFuncTy-> 5253 getParamType(FirstIRArg)->getPointerAddressSpace())) { 5254 NeedCopy = true; 5255 } 5256 } 5257 5258 if (!NeedCopy) { 5259 // Skip the extra memcpy call. 5260 llvm::Value *V = getAsNaturalPointerTo(Addr, I->Ty); 5261 auto *T = llvm::PointerType::get( 5262 CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 5263 5264 llvm::Value *Val = getTargetHooks().performAddrSpaceCast( 5265 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 5266 true); 5267 if (ArgHasMaybeUndefAttr) 5268 Val = Builder.CreateFreeze(Val); 5269 IRCallArgs[FirstIRArg] = Val; 5270 break; 5271 } 5272 } 5273 5274 // For non-aggregate args and aggregate args meeting conditions above 5275 // we need to create an aligned temporary, and copy to it. 5276 RawAddress AI = CreateMemTempWithoutCast( 5277 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 5278 llvm::Value *Val = getAsNaturalPointerTo(AI, I->Ty); 5279 if (ArgHasMaybeUndefAttr) 5280 Val = Builder.CreateFreeze(Val); 5281 IRCallArgs[FirstIRArg] = Val; 5282 5283 // Emit lifetime markers for the temporary alloca. 5284 llvm::TypeSize ByvalTempElementSize = 5285 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 5286 llvm::Value *LifetimeSize = 5287 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 5288 5289 // Add cleanup code to emit the end lifetime marker after the call. 5290 if (LifetimeSize) // In case we disabled lifetime markers. 5291 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 5292 5293 // Generate the copy. 5294 I->copyInto(*this, AI); 5295 break; 5296 } 5297 5298 case ABIArgInfo::Ignore: 5299 assert(NumIRArgs == 0); 5300 break; 5301 5302 case ABIArgInfo::Extend: 5303 case ABIArgInfo::Direct: { 5304 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 5305 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 5306 ArgInfo.getDirectOffset() == 0) { 5307 assert(NumIRArgs == 1); 5308 llvm::Value *V; 5309 if (!I->isAggregate()) 5310 V = I->getKnownRValue().getScalarVal(); 5311 else 5312 V = Builder.CreateLoad( 5313 I->hasLValue() ? I->getKnownLValue().getAddress() 5314 : I->getKnownRValue().getAggregateAddress()); 5315 5316 // Implement swifterror by copying into a new swifterror argument. 5317 // We'll write back in the normal path out of the call. 5318 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 5319 == ParameterABI::SwiftErrorResult) { 5320 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 5321 5322 QualType pointeeTy = I->Ty->getPointeeType(); 5323 swiftErrorArg = makeNaturalAddressForPointer( 5324 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 5325 5326 swiftErrorTemp = 5327 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 5328 V = swiftErrorTemp.getPointer(); 5329 cast<llvm::AllocaInst>(V)->setSwiftError(true); 5330 5331 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 5332 Builder.CreateStore(errorValue, swiftErrorTemp); 5333 } 5334 5335 // We might have to widen integers, but we should never truncate. 5336 if (ArgInfo.getCoerceToType() != V->getType() && 5337 V->getType()->isIntegerTy()) 5338 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 5339 5340 // If the argument doesn't match, perform a bitcast to coerce it. This 5341 // can happen due to trivial type mismatches. 5342 if (FirstIRArg < IRFuncTy->getNumParams() && 5343 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5344 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5345 5346 if (ArgHasMaybeUndefAttr) 5347 V = Builder.CreateFreeze(V); 5348 IRCallArgs[FirstIRArg] = V; 5349 break; 5350 } 5351 5352 llvm::StructType *STy = 5353 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5354 if (STy && ArgInfo.isDirect() && !ArgInfo.getCanBeFlattened()) { 5355 llvm::Type *SrcTy = ConvertTypeForMem(I->Ty); 5356 [[maybe_unused]] llvm::TypeSize SrcTypeSize = 5357 CGM.getDataLayout().getTypeAllocSize(SrcTy); 5358 [[maybe_unused]] llvm::TypeSize DstTypeSize = 5359 CGM.getDataLayout().getTypeAllocSize(STy); 5360 if (STy->containsHomogeneousScalableVectorTypes()) { 5361 assert(SrcTypeSize == DstTypeSize && 5362 "Only allow non-fractional movement of structure with " 5363 "homogeneous scalable vector type"); 5364 5365 IRCallArgs[FirstIRArg] = I->getKnownRValue().getScalarVal(); 5366 break; 5367 } 5368 } 5369 5370 // FIXME: Avoid the conversion through memory if possible. 5371 Address Src = Address::invalid(); 5372 if (!I->isAggregate()) { 5373 Src = CreateMemTemp(I->Ty, "coerce"); 5374 I->copyInto(*this, Src); 5375 } else { 5376 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 5377 : I->getKnownRValue().getAggregateAddress(); 5378 } 5379 5380 // If the value is offset in memory, apply the offset now. 5381 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5382 5383 // Fast-isel and the optimizer generally like scalar values better than 5384 // FCAs, so we flatten them if this is safe to do for this argument. 5385 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5386 llvm::Type *SrcTy = Src.getElementType(); 5387 llvm::TypeSize SrcTypeSize = 5388 CGM.getDataLayout().getTypeAllocSize(SrcTy); 5389 llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy); 5390 if (SrcTypeSize.isScalable()) { 5391 assert(STy->containsHomogeneousScalableVectorTypes() && 5392 "ABI only supports structure with homogeneous scalable vector " 5393 "type"); 5394 assert(SrcTypeSize == DstTypeSize && 5395 "Only allow non-fractional movement of structure with " 5396 "homogeneous scalable vector type"); 5397 assert(NumIRArgs == STy->getNumElements()); 5398 5399 llvm::Value *StoredStructValue = 5400 Builder.CreateLoad(Src, Src.getName() + ".tuple"); 5401 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5402 llvm::Value *Extract = Builder.CreateExtractValue( 5403 StoredStructValue, i, Src.getName() + ".extract" + Twine(i)); 5404 IRCallArgs[FirstIRArg + i] = Extract; 5405 } 5406 } else { 5407 uint64_t SrcSize = SrcTypeSize.getFixedValue(); 5408 uint64_t DstSize = DstTypeSize.getFixedValue(); 5409 5410 // If the source type is smaller than the destination type of the 5411 // coerce-to logic, copy the source value into a temp alloca the size 5412 // of the destination type to allow loading all of it. The bits past 5413 // the source value are left undef. 5414 if (SrcSize < DstSize) { 5415 Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(), 5416 Src.getName() + ".coerce"); 5417 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5418 Src = TempAlloca; 5419 } else { 5420 Src = Src.withElementType(STy); 5421 } 5422 5423 assert(NumIRArgs == STy->getNumElements()); 5424 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5425 Address EltPtr = Builder.CreateStructGEP(Src, i); 5426 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5427 if (ArgHasMaybeUndefAttr) 5428 LI = Builder.CreateFreeze(LI); 5429 IRCallArgs[FirstIRArg + i] = LI; 5430 } 5431 } 5432 } else { 5433 // In the simple case, just pass the coerced loaded value. 5434 assert(NumIRArgs == 1); 5435 llvm::Value *Load = 5436 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5437 5438 if (CallInfo.isCmseNSCall()) { 5439 // For certain parameter types, clear padding bits, as they may reveal 5440 // sensitive information. 5441 // Small struct/union types are passed as integer arrays. 5442 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5443 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5444 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5445 } 5446 5447 if (ArgHasMaybeUndefAttr) 5448 Load = Builder.CreateFreeze(Load); 5449 IRCallArgs[FirstIRArg] = Load; 5450 } 5451 5452 break; 5453 } 5454 5455 case ABIArgInfo::CoerceAndExpand: { 5456 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5457 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5458 5459 llvm::Value *tempSize = nullptr; 5460 Address addr = Address::invalid(); 5461 RawAddress AllocaAddr = RawAddress::invalid(); 5462 if (I->isAggregate()) { 5463 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 5464 : I->getKnownRValue().getAggregateAddress(); 5465 5466 } else { 5467 RValue RV = I->getKnownRValue(); 5468 assert(RV.isScalar()); // complex should always just be direct 5469 5470 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5471 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5472 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType); 5473 5474 // Materialize to a temporary. 5475 addr = CreateTempAlloca( 5476 RV.getScalarVal()->getType(), 5477 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)), 5478 "tmp", 5479 /*ArraySize=*/nullptr, &AllocaAddr); 5480 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5481 5482 Builder.CreateStore(RV.getScalarVal(), addr); 5483 } 5484 5485 addr = addr.withElementType(coercionType); 5486 5487 unsigned IRArgPos = FirstIRArg; 5488 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5489 llvm::Type *eltType = coercionType->getElementType(i); 5490 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5491 Address eltAddr = Builder.CreateStructGEP(addr, i); 5492 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5493 if (ArgHasMaybeUndefAttr) 5494 elt = Builder.CreateFreeze(elt); 5495 IRCallArgs[IRArgPos++] = elt; 5496 } 5497 assert(IRArgPos == FirstIRArg + NumIRArgs); 5498 5499 if (tempSize) { 5500 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5501 } 5502 5503 break; 5504 } 5505 5506 case ABIArgInfo::Expand: { 5507 unsigned IRArgPos = FirstIRArg; 5508 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5509 assert(IRArgPos == FirstIRArg + NumIRArgs); 5510 break; 5511 } 5512 } 5513 } 5514 5515 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5516 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5517 5518 // If we're using inalloca, set up that argument. 5519 if (ArgMemory.isValid()) { 5520 llvm::Value *Arg = ArgMemory.getPointer(); 5521 assert(IRFunctionArgs.hasInallocaArg()); 5522 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5523 } 5524 5525 // 2. Prepare the function pointer. 5526 5527 // If the callee is a bitcast of a non-variadic function to have a 5528 // variadic function pointer type, check to see if we can remove the 5529 // bitcast. This comes up with unprototyped functions. 5530 // 5531 // This makes the IR nicer, but more importantly it ensures that we 5532 // can inline the function at -O0 if it is marked always_inline. 5533 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5534 llvm::Value *Ptr) -> llvm::Function * { 5535 if (!CalleeFT->isVarArg()) 5536 return nullptr; 5537 5538 // Get underlying value if it's a bitcast 5539 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5540 if (CE->getOpcode() == llvm::Instruction::BitCast) 5541 Ptr = CE->getOperand(0); 5542 } 5543 5544 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5545 if (!OrigFn) 5546 return nullptr; 5547 5548 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5549 5550 // If the original type is variadic, or if any of the component types 5551 // disagree, we cannot remove the cast. 5552 if (OrigFT->isVarArg() || 5553 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5554 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5555 return nullptr; 5556 5557 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5558 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5559 return nullptr; 5560 5561 return OrigFn; 5562 }; 5563 5564 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5565 CalleePtr = OrigFn; 5566 IRFuncTy = OrigFn->getFunctionType(); 5567 } 5568 5569 // 3. Perform the actual call. 5570 5571 // Deactivate any cleanups that we're supposed to do immediately before 5572 // the call. 5573 if (!CallArgs.getCleanupsToDeactivate().empty()) 5574 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5575 5576 // Assert that the arguments we computed match up. The IR verifier 5577 // will catch this, but this is a common enough source of problems 5578 // during IRGen changes that it's way better for debugging to catch 5579 // it ourselves here. 5580 #ifndef NDEBUG 5581 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5582 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5583 // Inalloca argument can have different type. 5584 if (IRFunctionArgs.hasInallocaArg() && 5585 i == IRFunctionArgs.getInallocaArgNo()) 5586 continue; 5587 if (i < IRFuncTy->getNumParams()) 5588 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5589 } 5590 #endif 5591 5592 // Update the largest vector width if any arguments have vector types. 5593 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5594 LargestVectorWidth = std::max(LargestVectorWidth, 5595 getMaxVectorWidth(IRCallArgs[i]->getType())); 5596 5597 // Compute the calling convention and attributes. 5598 unsigned CallingConv; 5599 llvm::AttributeList Attrs; 5600 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5601 Callee.getAbstractInfo(), Attrs, CallingConv, 5602 /*AttrOnCallSite=*/true, 5603 /*IsThunk=*/false); 5604 5605 if (CallingConv == llvm::CallingConv::X86_VectorCall && 5606 getTarget().getTriple().isWindowsArm64EC()) { 5607 CGM.Error(Loc, "__vectorcall calling convention is not currently " 5608 "supported"); 5609 } 5610 5611 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5612 if (FD->hasAttr<StrictFPAttr>()) 5613 // All calls within a strictfp function are marked strictfp 5614 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5615 5616 // If -ffast-math is enabled and the function is guarded by an 5617 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the 5618 // library call instead of the intrinsic. 5619 if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath) 5620 CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(), 5621 Attrs); 5622 } 5623 // Add call-site nomerge attribute if exists. 5624 if (InNoMergeAttributedStmt) 5625 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5626 5627 // Add call-site noinline attribute if exists. 5628 if (InNoInlineAttributedStmt) 5629 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5630 5631 // Add call-site always_inline attribute if exists. 5632 if (InAlwaysInlineAttributedStmt) 5633 Attrs = 5634 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5635 5636 // Apply some call-site-specific attributes. 5637 // TODO: work this into building the attribute set. 5638 5639 // Apply always_inline to all calls within flatten functions. 5640 // FIXME: should this really take priority over __try, below? 5641 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5642 !InNoInlineAttributedStmt && 5643 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5644 Attrs = 5645 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5646 } 5647 5648 // Disable inlining inside SEH __try blocks. 5649 if (isSEHTryScope()) { 5650 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5651 } 5652 5653 // Decide whether to use a call or an invoke. 5654 bool CannotThrow; 5655 if (currentFunctionUsesSEHTry()) { 5656 // SEH cares about asynchronous exceptions, so everything can "throw." 5657 CannotThrow = false; 5658 } else if (isCleanupPadScope() && 5659 EHPersonality::get(*this).isMSVCXXPersonality()) { 5660 // The MSVC++ personality will implicitly terminate the program if an 5661 // exception is thrown during a cleanup outside of a try/catch. 5662 // We don't need to model anything in IR to get this behavior. 5663 CannotThrow = true; 5664 } else { 5665 // Otherwise, nounwind call sites will never throw. 5666 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5667 5668 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5669 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5670 CannotThrow = true; 5671 } 5672 5673 // If we made a temporary, be sure to clean up after ourselves. Note that we 5674 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5675 // pop this cleanup later on. Being eager about this is OK, since this 5676 // temporary is 'invisible' outside of the callee. 5677 if (UnusedReturnSizePtr) 5678 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5679 UnusedReturnSizePtr); 5680 5681 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5682 5683 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5684 getBundlesForFunclet(CalleePtr); 5685 5686 if (SanOpts.has(SanitizerKind::KCFI) && 5687 !isa_and_nonnull<FunctionDecl>(TargetDecl)) 5688 EmitKCFIOperandBundle(ConcreteCallee, BundleList); 5689 5690 // Add the pointer-authentication bundle. 5691 EmitPointerAuthOperandBundle(ConcreteCallee.getPointerAuthInfo(), BundleList); 5692 5693 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5694 if (FD->hasAttr<StrictFPAttr>()) 5695 // All calls within a strictfp function are marked strictfp 5696 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5697 5698 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5699 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5700 5701 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5702 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5703 5704 // Emit the actual call/invoke instruction. 5705 llvm::CallBase *CI; 5706 if (!InvokeDest) { 5707 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5708 } else { 5709 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5710 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5711 BundleList); 5712 EmitBlock(Cont); 5713 } 5714 if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() && 5715 CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) { 5716 SetSqrtFPAccuracy(CI); 5717 } 5718 if (callOrInvoke) 5719 *callOrInvoke = CI; 5720 5721 // If this is within a function that has the guard(nocf) attribute and is an 5722 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5723 // Control Flow Guard checks should not be added, even if the call is inlined. 5724 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5725 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5726 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5727 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5728 } 5729 } 5730 5731 // Apply the attributes and calling convention. 5732 CI->setAttributes(Attrs); 5733 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5734 5735 // Apply various metadata. 5736 5737 if (!CI->getType()->isVoidTy()) 5738 CI->setName("call"); 5739 5740 if (CGM.shouldEmitConvergenceTokens() && CI->isConvergent()) 5741 CI = addControlledConvergenceToken(CI); 5742 5743 // Update largest vector width from the return type. 5744 LargestVectorWidth = 5745 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5746 5747 // Insert instrumentation or attach profile metadata at indirect call sites. 5748 // For more details, see the comment before the definition of 5749 // IPVK_IndirectCallTarget in InstrProfData.inc. 5750 if (!CI->getCalledFunction()) 5751 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5752 CI, CalleePtr); 5753 5754 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5755 // optimizer it can aggressively ignore unwind edges. 5756 if (CGM.getLangOpts().ObjCAutoRefCount) 5757 AddObjCARCExceptionMetadata(CI); 5758 5759 // Set tail call kind if necessary. 5760 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5761 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5762 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5763 else if (IsMustTail) { 5764 if (getTarget().getTriple().isPPC()) { 5765 if (getTarget().getTriple().isOSAIX()) 5766 CGM.getDiags().Report(Loc, diag::err_aix_musttail_unsupported); 5767 else if (!getTarget().hasFeature("pcrelative-memops")) { 5768 if (getTarget().hasFeature("longcall")) 5769 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 0; 5770 else if (Call->isIndirectCall()) 5771 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 1; 5772 else if (isa_and_nonnull<FunctionDecl>(TargetDecl)) { 5773 if (!cast<FunctionDecl>(TargetDecl)->isDefined()) 5774 // The undefined callee may be a forward declaration. Without 5775 // knowning all symbols in the module, we won't know the symbol is 5776 // defined or not. Collect all these symbols for later diagnosing. 5777 CGM.addUndefinedGlobalForTailCall( 5778 {cast<FunctionDecl>(TargetDecl), Loc}); 5779 else { 5780 llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage( 5781 GlobalDecl(cast<FunctionDecl>(TargetDecl))); 5782 if (llvm::GlobalValue::isWeakForLinker(Linkage) || 5783 llvm::GlobalValue::isDiscardableIfUnused(Linkage)) 5784 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) 5785 << 2; 5786 } 5787 } 5788 } 5789 } 5790 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5791 } 5792 } 5793 5794 // Add metadata for calls to MSAllocator functions 5795 if (getDebugInfo() && TargetDecl && 5796 TargetDecl->hasAttr<MSAllocatorAttr>()) 5797 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5798 5799 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5800 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5801 llvm::ConstantInt *Line = 5802 llvm::ConstantInt::get(Int64Ty, Loc.getRawEncoding()); 5803 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5804 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5805 CI->setMetadata("srcloc", MDT); 5806 } 5807 5808 // 4. Finish the call. 5809 5810 // If the call doesn't return, finish the basic block and clear the 5811 // insertion point; this allows the rest of IRGen to discard 5812 // unreachable code. 5813 if (CI->doesNotReturn()) { 5814 if (UnusedReturnSizePtr) 5815 PopCleanupBlock(); 5816 5817 // Strip away the noreturn attribute to better diagnose unreachable UB. 5818 if (SanOpts.has(SanitizerKind::Unreachable)) { 5819 // Also remove from function since CallBase::hasFnAttr additionally checks 5820 // attributes of the called function. 5821 if (auto *F = CI->getCalledFunction()) 5822 F->removeFnAttr(llvm::Attribute::NoReturn); 5823 CI->removeFnAttr(llvm::Attribute::NoReturn); 5824 5825 // Avoid incompatibility with ASan which relies on the `noreturn` 5826 // attribute to insert handler calls. 5827 if (SanOpts.hasOneOf(SanitizerKind::Address | 5828 SanitizerKind::KernelAddress)) { 5829 SanitizerScope SanScope(this); 5830 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5831 Builder.SetInsertPoint(CI); 5832 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5833 llvm::FunctionCallee Fn = 5834 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5835 EmitNounwindRuntimeCall(Fn); 5836 } 5837 } 5838 5839 EmitUnreachable(Loc); 5840 Builder.ClearInsertionPoint(); 5841 5842 // FIXME: For now, emit a dummy basic block because expr emitters in 5843 // generally are not ready to handle emitting expressions at unreachable 5844 // points. 5845 EnsureInsertPoint(); 5846 5847 // Return a reasonable RValue. 5848 return GetUndefRValue(RetTy); 5849 } 5850 5851 // If this is a musttail call, return immediately. We do not branch to the 5852 // epilogue in this case. 5853 if (IsMustTail) { 5854 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5855 ++it) { 5856 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5857 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5858 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5859 } 5860 if (CI->getType()->isVoidTy()) 5861 Builder.CreateRetVoid(); 5862 else 5863 Builder.CreateRet(CI); 5864 Builder.ClearInsertionPoint(); 5865 EnsureInsertPoint(); 5866 return GetUndefRValue(RetTy); 5867 } 5868 5869 // Perform the swifterror writeback. 5870 if (swiftErrorTemp.isValid()) { 5871 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5872 Builder.CreateStore(errorResult, swiftErrorArg); 5873 } 5874 5875 // Emit any call-associated writebacks immediately. Arguably this 5876 // should happen after any return-value munging. 5877 if (CallArgs.hasWritebacks()) 5878 emitWritebacks(*this, CallArgs); 5879 5880 // The stack cleanup for inalloca arguments has to run out of the normal 5881 // lexical order, so deactivate it and run it manually here. 5882 CallArgs.freeArgumentMemory(*this); 5883 5884 // Extract the return value. 5885 RValue Ret; 5886 5887 // If the current function is a virtual function pointer thunk, avoid copying 5888 // the return value of the musttail call to a temporary. 5889 if (IsVirtualFunctionPointerThunk) { 5890 Ret = RValue::get(CI); 5891 } else { 5892 Ret = [&] { 5893 switch (RetAI.getKind()) { 5894 case ABIArgInfo::CoerceAndExpand: { 5895 auto coercionType = RetAI.getCoerceAndExpandType(); 5896 5897 Address addr = SRetPtr.withElementType(coercionType); 5898 5899 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5900 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5901 5902 unsigned unpaddedIndex = 0; 5903 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5904 llvm::Type *eltType = coercionType->getElementType(i); 5905 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 5906 continue; 5907 Address eltAddr = Builder.CreateStructGEP(addr, i); 5908 llvm::Value *elt = CI; 5909 if (requiresExtract) 5910 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5911 else 5912 assert(unpaddedIndex == 0); 5913 Builder.CreateStore(elt, eltAddr); 5914 } 5915 [[fallthrough]]; 5916 } 5917 5918 case ABIArgInfo::InAlloca: 5919 case ABIArgInfo::Indirect: { 5920 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5921 if (UnusedReturnSizePtr) 5922 PopCleanupBlock(); 5923 return ret; 5924 } 5925 5926 case ABIArgInfo::Ignore: 5927 // If we are ignoring an argument that had a result, make sure to 5928 // construct the appropriate return value for our caller. 5929 return GetUndefRValue(RetTy); 5930 5931 case ABIArgInfo::Extend: 5932 case ABIArgInfo::Direct: { 5933 llvm::Type *RetIRTy = ConvertType(RetTy); 5934 if (RetAI.getCoerceToType() == RetIRTy && 5935 RetAI.getDirectOffset() == 0) { 5936 switch (getEvaluationKind(RetTy)) { 5937 case TEK_Complex: { 5938 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5939 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5940 return RValue::getComplex(std::make_pair(Real, Imag)); 5941 } 5942 case TEK_Aggregate: { 5943 Address DestPtr = ReturnValue.getAddress(); 5944 bool DestIsVolatile = ReturnValue.isVolatile(); 5945 5946 if (!DestPtr.isValid()) { 5947 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5948 DestIsVolatile = false; 5949 } 5950 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5951 return RValue::getAggregate(DestPtr); 5952 } 5953 case TEK_Scalar: { 5954 // If the argument doesn't match, perform a bitcast to coerce it. 5955 // This can happen due to trivial type mismatches. 5956 llvm::Value *V = CI; 5957 if (V->getType() != RetIRTy) 5958 V = Builder.CreateBitCast(V, RetIRTy); 5959 return RValue::get(V); 5960 } 5961 } 5962 llvm_unreachable("bad evaluation kind"); 5963 } 5964 5965 // If coercing a fixed vector from a scalable vector for ABI 5966 // compatibility, and the types match, use the llvm.vector.extract 5967 // intrinsic to perform the conversion. 5968 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(RetIRTy)) { 5969 llvm::Value *V = CI; 5970 if (auto *ScalableSrcTy = 5971 dyn_cast<llvm::ScalableVectorType>(V->getType())) { 5972 if (FixedDstTy->getElementType() == 5973 ScalableSrcTy->getElementType()) { 5974 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 5975 V = Builder.CreateExtractVector(FixedDstTy, V, Zero, 5976 "cast.fixed"); 5977 return RValue::get(V); 5978 } 5979 } 5980 } 5981 5982 Address DestPtr = ReturnValue.getValue(); 5983 bool DestIsVolatile = ReturnValue.isVolatile(); 5984 5985 if (!DestPtr.isValid()) { 5986 DestPtr = CreateMemTemp(RetTy, "coerce"); 5987 DestIsVolatile = false; 5988 } 5989 5990 // An empty record can overlap other data (if declared with 5991 // no_unique_address); omit the store for such types - as there is no 5992 // actual data to store. 5993 if (!isEmptyRecord(getContext(), RetTy, true)) { 5994 // If the value is offset in memory, apply the offset now. 5995 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5996 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5997 } 5998 5999 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 6000 } 6001 6002 case ABIArgInfo::Expand: 6003 case ABIArgInfo::IndirectAliased: 6004 llvm_unreachable("Invalid ABI kind for return argument"); 6005 } 6006 6007 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 6008 }(); 6009 } 6010 6011 // Emit the assume_aligned check on the return value. 6012 if (Ret.isScalar() && TargetDecl) { 6013 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 6014 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 6015 } 6016 6017 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 6018 // we can't use the full cleanup mechanism. 6019 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 6020 LifetimeEnd.Emit(*this, /*Flags=*/{}); 6021 6022 if (!ReturnValue.isExternallyDestructed() && 6023 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 6024 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 6025 RetTy); 6026 6027 return Ret; 6028 } 6029 6030 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 6031 if (isVirtual()) { 6032 const CallExpr *CE = getVirtualCallExpr(); 6033 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 6034 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 6035 CE ? CE->getBeginLoc() : SourceLocation()); 6036 } 6037 6038 return *this; 6039 } 6040 6041 /* VarArg handling */ 6042 6043 RValue CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 6044 AggValueSlot Slot) { 6045 VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(VE->getSubExpr()) 6046 : EmitVAListRef(VE->getSubExpr()); 6047 QualType Ty = VE->getType(); 6048 if (VE->isMicrosoftABI()) 6049 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty, Slot); 6050 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty, Slot); 6051 } 6052