1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "ABIInfoImpl.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/AttributeMask.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <optional> 45 using namespace clang; 46 using namespace CodeGen; 47 48 /***/ 49 50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 51 switch (CC) { 52 default: return llvm::CallingConv::C; 53 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 54 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 55 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 56 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 57 case CC_Win64: return llvm::CallingConv::Win64; 58 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 59 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 60 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 61 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 62 // TODO: Add support for __pascal to LLVM. 63 case CC_X86Pascal: return llvm::CallingConv::C; 64 // TODO: Add support for __vectorcall to LLVM. 65 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 66 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 67 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 68 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 69 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 70 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 71 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 72 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 73 case CC_Swift: return llvm::CallingConv::Swift; 74 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 75 case CC_M68kRTD: return llvm::CallingConv::M68k_RTD; 76 } 77 } 78 79 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 80 /// qualification. Either or both of RD and MD may be null. A null RD indicates 81 /// that there is no meaningful 'this' type, and a null MD can occur when 82 /// calling a method pointer. 83 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 84 const CXXMethodDecl *MD) { 85 QualType RecTy; 86 if (RD) 87 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 88 else 89 RecTy = Context.VoidTy; 90 91 if (MD) 92 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 93 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 94 } 95 96 /// Returns the canonical formal type of the given C++ method. 97 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 98 return MD->getType()->getCanonicalTypeUnqualified() 99 .getAs<FunctionProtoType>(); 100 } 101 102 /// Returns the "extra-canonicalized" return type, which discards 103 /// qualifiers on the return type. Codegen doesn't care about them, 104 /// and it makes ABI code a little easier to be able to assume that 105 /// all parameter and return types are top-level unqualified. 106 static CanQualType GetReturnType(QualType RetTy) { 107 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 108 } 109 110 /// Arrange the argument and result information for a value of the given 111 /// unprototyped freestanding function type. 112 const CGFunctionInfo & 113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 114 // When translating an unprototyped function type, always use a 115 // variadic type. 116 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 117 FnInfoOpts::None, std::nullopt, 118 FTNP->getExtInfo(), {}, RequiredArgs(0)); 119 } 120 121 static void addExtParameterInfosForCall( 122 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 123 const FunctionProtoType *proto, 124 unsigned prefixArgs, 125 unsigned totalArgs) { 126 assert(proto->hasExtParameterInfos()); 127 assert(paramInfos.size() <= prefixArgs); 128 assert(proto->getNumParams() + prefixArgs <= totalArgs); 129 130 paramInfos.reserve(totalArgs); 131 132 // Add default infos for any prefix args that don't already have infos. 133 paramInfos.resize(prefixArgs); 134 135 // Add infos for the prototype. 136 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 137 paramInfos.push_back(ParamInfo); 138 // pass_object_size params have no parameter info. 139 if (ParamInfo.hasPassObjectSize()) 140 paramInfos.emplace_back(); 141 } 142 143 assert(paramInfos.size() <= totalArgs && 144 "Did we forget to insert pass_object_size args?"); 145 // Add default infos for the variadic and/or suffix arguments. 146 paramInfos.resize(totalArgs); 147 } 148 149 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 150 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 151 static void appendParameterTypes(const CodeGenTypes &CGT, 152 SmallVectorImpl<CanQualType> &prefix, 153 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 154 CanQual<FunctionProtoType> FPT) { 155 // Fast path: don't touch param info if we don't need to. 156 if (!FPT->hasExtParameterInfos()) { 157 assert(paramInfos.empty() && 158 "We have paramInfos, but the prototype doesn't?"); 159 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 160 return; 161 } 162 163 unsigned PrefixSize = prefix.size(); 164 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 165 // parameters; the only thing that can change this is the presence of 166 // pass_object_size. So, we preallocate for the common case. 167 prefix.reserve(prefix.size() + FPT->getNumParams()); 168 169 auto ExtInfos = FPT->getExtParameterInfos(); 170 assert(ExtInfos.size() == FPT->getNumParams()); 171 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 172 prefix.push_back(FPT->getParamType(I)); 173 if (ExtInfos[I].hasPassObjectSize()) 174 prefix.push_back(CGT.getContext().getSizeType()); 175 } 176 177 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 178 prefix.size()); 179 } 180 181 /// Arrange the LLVM function layout for a value of the given function 182 /// type, on top of any implicit parameters already stored. 183 static const CGFunctionInfo & 184 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 185 SmallVectorImpl<CanQualType> &prefix, 186 CanQual<FunctionProtoType> FTP) { 187 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 188 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 189 // FIXME: Kill copy. 190 appendParameterTypes(CGT, prefix, paramInfos, FTP); 191 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 192 193 FnInfoOpts opts = 194 instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None; 195 return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix, 196 FTP->getExtInfo(), paramInfos, Required); 197 } 198 199 /// Arrange the argument and result information for a value of the 200 /// given freestanding function type. 201 const CGFunctionInfo & 202 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 203 SmallVector<CanQualType, 16> argTypes; 204 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 205 FTP); 206 } 207 208 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 209 bool IsWindows) { 210 // Set the appropriate calling convention for the Function. 211 if (D->hasAttr<StdCallAttr>()) 212 return CC_X86StdCall; 213 214 if (D->hasAttr<FastCallAttr>()) 215 return CC_X86FastCall; 216 217 if (D->hasAttr<RegCallAttr>()) 218 return CC_X86RegCall; 219 220 if (D->hasAttr<ThisCallAttr>()) 221 return CC_X86ThisCall; 222 223 if (D->hasAttr<VectorCallAttr>()) 224 return CC_X86VectorCall; 225 226 if (D->hasAttr<PascalAttr>()) 227 return CC_X86Pascal; 228 229 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 230 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 231 232 if (D->hasAttr<AArch64VectorPcsAttr>()) 233 return CC_AArch64VectorCall; 234 235 if (D->hasAttr<AArch64SVEPcsAttr>()) 236 return CC_AArch64SVEPCS; 237 238 if (D->hasAttr<AMDGPUKernelCallAttr>()) 239 return CC_AMDGPUKernelCall; 240 241 if (D->hasAttr<IntelOclBiccAttr>()) 242 return CC_IntelOclBicc; 243 244 if (D->hasAttr<MSABIAttr>()) 245 return IsWindows ? CC_C : CC_Win64; 246 247 if (D->hasAttr<SysVABIAttr>()) 248 return IsWindows ? CC_X86_64SysV : CC_C; 249 250 if (D->hasAttr<PreserveMostAttr>()) 251 return CC_PreserveMost; 252 253 if (D->hasAttr<PreserveAllAttr>()) 254 return CC_PreserveAll; 255 256 if (D->hasAttr<M68kRTDAttr>()) 257 return CC_M68kRTD; 258 259 return CC_C; 260 } 261 262 /// Arrange the argument and result information for a call to an 263 /// unknown C++ non-static member function of the given abstract type. 264 /// (A null RD means we don't have any meaningful "this" argument type, 265 /// so fall back to a generic pointer type). 266 /// The member function must be an ordinary function, i.e. not a 267 /// constructor or destructor. 268 const CGFunctionInfo & 269 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 270 const FunctionProtoType *FTP, 271 const CXXMethodDecl *MD) { 272 SmallVector<CanQualType, 16> argTypes; 273 274 // Add the 'this' pointer. 275 argTypes.push_back(DeriveThisType(RD, MD)); 276 277 return ::arrangeLLVMFunctionInfo( 278 *this, /*instanceMethod=*/true, argTypes, 279 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 280 } 281 282 /// Set calling convention for CUDA/HIP kernel. 283 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 284 const FunctionDecl *FD) { 285 if (FD->hasAttr<CUDAGlobalAttr>()) { 286 const FunctionType *FT = FTy->getAs<FunctionType>(); 287 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 288 FTy = FT->getCanonicalTypeUnqualified(); 289 } 290 } 291 292 /// Arrange the argument and result information for a declaration or 293 /// definition of the given C++ non-static member function. The 294 /// member function must be an ordinary function, i.e. not a 295 /// constructor or destructor. 296 const CGFunctionInfo & 297 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 298 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 299 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 300 301 CanQualType FT = GetFormalType(MD).getAs<Type>(); 302 setCUDAKernelCallingConvention(FT, CGM, MD); 303 auto prototype = FT.getAs<FunctionProtoType>(); 304 305 if (MD->isImplicitObjectMemberFunction()) { 306 // The abstract case is perfectly fine. 307 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 308 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 309 } 310 311 return arrangeFreeFunctionType(prototype); 312 } 313 314 bool CodeGenTypes::inheritingCtorHasParams( 315 const InheritedConstructor &Inherited, CXXCtorType Type) { 316 // Parameters are unnecessary if we're constructing a base class subobject 317 // and the inherited constructor lives in a virtual base. 318 return Type == Ctor_Complete || 319 !Inherited.getShadowDecl()->constructsVirtualBase() || 320 !Target.getCXXABI().hasConstructorVariants(); 321 } 322 323 const CGFunctionInfo & 324 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 325 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 326 327 SmallVector<CanQualType, 16> argTypes; 328 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 329 330 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD); 331 argTypes.push_back(DeriveThisType(ThisType, MD)); 332 333 bool PassParams = true; 334 335 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 336 // A base class inheriting constructor doesn't get forwarded arguments 337 // needed to construct a virtual base (or base class thereof). 338 if (auto Inherited = CD->getInheritedConstructor()) 339 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 340 } 341 342 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 343 344 // Add the formal parameters. 345 if (PassParams) 346 appendParameterTypes(*this, argTypes, paramInfos, FTP); 347 348 CGCXXABI::AddedStructorArgCounts AddedArgs = 349 TheCXXABI.buildStructorSignature(GD, argTypes); 350 if (!paramInfos.empty()) { 351 // Note: prefix implies after the first param. 352 if (AddedArgs.Prefix) 353 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 354 FunctionProtoType::ExtParameterInfo{}); 355 if (AddedArgs.Suffix) 356 paramInfos.append(AddedArgs.Suffix, 357 FunctionProtoType::ExtParameterInfo{}); 358 } 359 360 RequiredArgs required = 361 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 362 : RequiredArgs::All); 363 364 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 365 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 366 ? argTypes.front() 367 : TheCXXABI.hasMostDerivedReturn(GD) 368 ? CGM.getContext().VoidPtrTy 369 : Context.VoidTy; 370 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod, 371 argTypes, extInfo, paramInfos, required); 372 } 373 374 static SmallVector<CanQualType, 16> 375 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 376 SmallVector<CanQualType, 16> argTypes; 377 for (auto &arg : args) 378 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 379 return argTypes; 380 } 381 382 static SmallVector<CanQualType, 16> 383 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 384 SmallVector<CanQualType, 16> argTypes; 385 for (auto &arg : args) 386 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 387 return argTypes; 388 } 389 390 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 391 getExtParameterInfosForCall(const FunctionProtoType *proto, 392 unsigned prefixArgs, unsigned totalArgs) { 393 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 394 if (proto->hasExtParameterInfos()) { 395 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 396 } 397 return result; 398 } 399 400 /// Arrange a call to a C++ method, passing the given arguments. 401 /// 402 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 403 /// parameter. 404 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 405 /// args. 406 /// PassProtoArgs indicates whether `args` has args for the parameters in the 407 /// given CXXConstructorDecl. 408 const CGFunctionInfo & 409 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 410 const CXXConstructorDecl *D, 411 CXXCtorType CtorKind, 412 unsigned ExtraPrefixArgs, 413 unsigned ExtraSuffixArgs, 414 bool PassProtoArgs) { 415 // FIXME: Kill copy. 416 SmallVector<CanQualType, 16> ArgTypes; 417 for (const auto &Arg : args) 418 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 419 420 // +1 for implicit this, which should always be args[0]. 421 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 422 423 CanQual<FunctionProtoType> FPT = GetFormalType(D); 424 RequiredArgs Required = PassProtoArgs 425 ? RequiredArgs::forPrototypePlus( 426 FPT, TotalPrefixArgs + ExtraSuffixArgs) 427 : RequiredArgs::All; 428 429 GlobalDecl GD(D, CtorKind); 430 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 431 ? ArgTypes.front() 432 : TheCXXABI.hasMostDerivedReturn(GD) 433 ? CGM.getContext().VoidPtrTy 434 : Context.VoidTy; 435 436 FunctionType::ExtInfo Info = FPT->getExtInfo(); 437 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 438 // If the prototype args are elided, we should only have ABI-specific args, 439 // which never have param info. 440 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 441 // ABI-specific suffix arguments are treated the same as variadic arguments. 442 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 443 ArgTypes.size()); 444 } 445 446 return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod, 447 ArgTypes, Info, ParamInfos, Required); 448 } 449 450 /// Arrange the argument and result information for the declaration or 451 /// definition of the given function. 452 const CGFunctionInfo & 453 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 454 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 455 if (MD->isImplicitObjectMemberFunction()) 456 return arrangeCXXMethodDeclaration(MD); 457 458 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 459 460 assert(isa<FunctionType>(FTy)); 461 setCUDAKernelCallingConvention(FTy, CGM, FD); 462 463 // When declaring a function without a prototype, always use a 464 // non-variadic type. 465 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 466 return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None, 467 std::nullopt, noProto->getExtInfo(), {}, 468 RequiredArgs::All); 469 } 470 471 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 472 } 473 474 /// Arrange the argument and result information for the declaration or 475 /// definition of an Objective-C method. 476 const CGFunctionInfo & 477 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 478 // It happens that this is the same as a call with no optional 479 // arguments, except also using the formal 'self' type. 480 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 481 } 482 483 /// Arrange the argument and result information for the function type 484 /// through which to perform a send to the given Objective-C method, 485 /// using the given receiver type. The receiver type is not always 486 /// the 'self' type of the method or even an Objective-C pointer type. 487 /// This is *not* the right method for actually performing such a 488 /// message send, due to the possibility of optional arguments. 489 const CGFunctionInfo & 490 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 491 QualType receiverType) { 492 SmallVector<CanQualType, 16> argTys; 493 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos( 494 MD->isDirectMethod() ? 1 : 2); 495 argTys.push_back(Context.getCanonicalParamType(receiverType)); 496 if (!MD->isDirectMethod()) 497 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 498 // FIXME: Kill copy? 499 for (const auto *I : MD->parameters()) { 500 argTys.push_back(Context.getCanonicalParamType(I->getType())); 501 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 502 I->hasAttr<NoEscapeAttr>()); 503 extParamInfos.push_back(extParamInfo); 504 } 505 506 FunctionType::ExtInfo einfo; 507 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 508 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 509 510 if (getContext().getLangOpts().ObjCAutoRefCount && 511 MD->hasAttr<NSReturnsRetainedAttr>()) 512 einfo = einfo.withProducesResult(true); 513 514 RequiredArgs required = 515 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 516 517 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), 518 FnInfoOpts::None, argTys, einfo, extParamInfos, 519 required); 520 } 521 522 const CGFunctionInfo & 523 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 524 const CallArgList &args) { 525 auto argTypes = getArgTypesForCall(Context, args); 526 FunctionType::ExtInfo einfo; 527 528 return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None, 529 argTypes, einfo, {}, RequiredArgs::All); 530 } 531 532 const CGFunctionInfo & 533 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 534 // FIXME: Do we need to handle ObjCMethodDecl? 535 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 536 537 if (isa<CXXConstructorDecl>(GD.getDecl()) || 538 isa<CXXDestructorDecl>(GD.getDecl())) 539 return arrangeCXXStructorDeclaration(GD); 540 541 return arrangeFunctionDeclaration(FD); 542 } 543 544 /// Arrange a thunk that takes 'this' as the first parameter followed by 545 /// varargs. Return a void pointer, regardless of the actual return type. 546 /// The body of the thunk will end in a musttail call to a function of the 547 /// correct type, and the caller will bitcast the function to the correct 548 /// prototype. 549 const CGFunctionInfo & 550 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 551 assert(MD->isVirtual() && "only methods have thunks"); 552 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 553 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 554 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys, 555 FTP->getExtInfo(), {}, RequiredArgs(1)); 556 } 557 558 const CGFunctionInfo & 559 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 560 CXXCtorType CT) { 561 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 562 563 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 564 SmallVector<CanQualType, 2> ArgTys; 565 const CXXRecordDecl *RD = CD->getParent(); 566 ArgTys.push_back(DeriveThisType(RD, CD)); 567 if (CT == Ctor_CopyingClosure) 568 ArgTys.push_back(*FTP->param_type_begin()); 569 if (RD->getNumVBases() > 0) 570 ArgTys.push_back(Context.IntTy); 571 CallingConv CC = Context.getDefaultCallingConvention( 572 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 573 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod, 574 ArgTys, FunctionType::ExtInfo(CC), {}, 575 RequiredArgs::All); 576 } 577 578 /// Arrange a call as unto a free function, except possibly with an 579 /// additional number of formal parameters considered required. 580 static const CGFunctionInfo & 581 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 582 CodeGenModule &CGM, 583 const CallArgList &args, 584 const FunctionType *fnType, 585 unsigned numExtraRequiredArgs, 586 bool chainCall) { 587 assert(args.size() >= numExtraRequiredArgs); 588 589 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 590 591 // In most cases, there are no optional arguments. 592 RequiredArgs required = RequiredArgs::All; 593 594 // If we have a variadic prototype, the required arguments are the 595 // extra prefix plus the arguments in the prototype. 596 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 597 if (proto->isVariadic()) 598 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 599 600 if (proto->hasExtParameterInfos()) 601 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 602 args.size()); 603 604 // If we don't have a prototype at all, but we're supposed to 605 // explicitly use the variadic convention for unprototyped calls, 606 // treat all of the arguments as required but preserve the nominal 607 // possibility of variadics. 608 } else if (CGM.getTargetCodeGenInfo() 609 .isNoProtoCallVariadic(args, 610 cast<FunctionNoProtoType>(fnType))) { 611 required = RequiredArgs(args.size()); 612 } 613 614 // FIXME: Kill copy. 615 SmallVector<CanQualType, 16> argTypes; 616 for (const auto &arg : args) 617 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 618 FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None; 619 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 620 opts, argTypes, fnType->getExtInfo(), 621 paramInfos, required); 622 } 623 624 /// Figure out the rules for calling a function with the given formal 625 /// type using the given arguments. The arguments are necessary 626 /// because the function might be unprototyped, in which case it's 627 /// target-dependent in crazy ways. 628 const CGFunctionInfo & 629 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 630 const FunctionType *fnType, 631 bool chainCall) { 632 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 633 chainCall ? 1 : 0, chainCall); 634 } 635 636 /// A block function is essentially a free function with an 637 /// extra implicit argument. 638 const CGFunctionInfo & 639 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 640 const FunctionType *fnType) { 641 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 642 /*chainCall=*/false); 643 } 644 645 const CGFunctionInfo & 646 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 647 const FunctionArgList ¶ms) { 648 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 649 auto argTypes = getArgTypesForDeclaration(Context, params); 650 651 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 652 FnInfoOpts::None, argTypes, 653 proto->getExtInfo(), paramInfos, 654 RequiredArgs::forPrototypePlus(proto, 1)); 655 } 656 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 659 const CallArgList &args) { 660 // FIXME: Kill copy. 661 SmallVector<CanQualType, 16> argTypes; 662 for (const auto &Arg : args) 663 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 664 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 665 argTypes, FunctionType::ExtInfo(), 666 /*paramInfos=*/{}, RequiredArgs::All); 667 } 668 669 const CGFunctionInfo & 670 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 671 const FunctionArgList &args) { 672 auto argTypes = getArgTypesForDeclaration(Context, args); 673 674 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 675 argTypes, FunctionType::ExtInfo(), {}, 676 RequiredArgs::All); 677 } 678 679 const CGFunctionInfo & 680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 681 ArrayRef<CanQualType> argTypes) { 682 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes, 683 FunctionType::ExtInfo(), {}, 684 RequiredArgs::All); 685 } 686 687 /// Arrange a call to a C++ method, passing the given arguments. 688 /// 689 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 690 /// does not count `this`. 691 const CGFunctionInfo & 692 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 693 const FunctionProtoType *proto, 694 RequiredArgs required, 695 unsigned numPrefixArgs) { 696 assert(numPrefixArgs + 1 <= args.size() && 697 "Emitting a call with less args than the required prefix?"); 698 // Add one to account for `this`. It's a bit awkward here, but we don't count 699 // `this` in similar places elsewhere. 700 auto paramInfos = 701 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 702 703 // FIXME: Kill copy. 704 auto argTypes = getArgTypesForCall(Context, args); 705 706 FunctionType::ExtInfo info = proto->getExtInfo(); 707 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 708 FnInfoOpts::IsInstanceMethod, argTypes, info, 709 paramInfos, required); 710 } 711 712 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 713 return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None, 714 std::nullopt, FunctionType::ExtInfo(), {}, 715 RequiredArgs::All); 716 } 717 718 const CGFunctionInfo & 719 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 720 const CallArgList &args) { 721 assert(signature.arg_size() <= args.size()); 722 if (signature.arg_size() == args.size()) 723 return signature; 724 725 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 726 auto sigParamInfos = signature.getExtParameterInfos(); 727 if (!sigParamInfos.empty()) { 728 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 729 paramInfos.resize(args.size()); 730 } 731 732 auto argTypes = getArgTypesForCall(Context, args); 733 734 assert(signature.getRequiredArgs().allowsOptionalArgs()); 735 FnInfoOpts opts = FnInfoOpts::None; 736 if (signature.isInstanceMethod()) 737 opts |= FnInfoOpts::IsInstanceMethod; 738 if (signature.isChainCall()) 739 opts |= FnInfoOpts::IsChainCall; 740 if (signature.isDelegateCall()) 741 opts |= FnInfoOpts::IsDelegateCall; 742 return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes, 743 signature.getExtInfo(), paramInfos, 744 signature.getRequiredArgs()); 745 } 746 747 namespace clang { 748 namespace CodeGen { 749 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 750 } 751 } 752 753 /// Arrange the argument and result information for an abstract value 754 /// of a given function type. This is the method which all of the 755 /// above functions ultimately defer to. 756 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo( 757 CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, 758 FunctionType::ExtInfo info, 759 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 760 RequiredArgs required) { 761 assert(llvm::all_of(argTypes, 762 [](CanQualType T) { return T.isCanonicalAsParam(); })); 763 764 // Lookup or create unique function info. 765 llvm::FoldingSetNodeID ID; 766 bool isInstanceMethod = 767 (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod; 768 bool isChainCall = 769 (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall; 770 bool isDelegateCall = 771 (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall; 772 CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall, 773 info, paramInfos, required, resultType, argTypes); 774 775 void *insertPos = nullptr; 776 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 777 if (FI) 778 return *FI; 779 780 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 781 782 // Construct the function info. We co-allocate the ArgInfos. 783 FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall, 784 info, paramInfos, resultType, argTypes, required); 785 FunctionInfos.InsertNode(FI, insertPos); 786 787 bool inserted = FunctionsBeingProcessed.insert(FI).second; 788 (void)inserted; 789 assert(inserted && "Recursively being processed?"); 790 791 // Compute ABI information. 792 if (CC == llvm::CallingConv::SPIR_KERNEL) { 793 // Force target independent argument handling for the host visible 794 // kernel functions. 795 computeSPIRKernelABIInfo(CGM, *FI); 796 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 797 swiftcall::computeABIInfo(CGM, *FI); 798 } else { 799 getABIInfo().computeInfo(*FI); 800 } 801 802 // Loop over all of the computed argument and return value info. If any of 803 // them are direct or extend without a specified coerce type, specify the 804 // default now. 805 ABIArgInfo &retInfo = FI->getReturnInfo(); 806 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 807 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 808 809 for (auto &I : FI->arguments()) 810 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 811 I.info.setCoerceToType(ConvertType(I.type)); 812 813 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 814 assert(erased && "Not in set?"); 815 816 return *FI; 817 } 818 819 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod, 820 bool chainCall, bool delegateCall, 821 const FunctionType::ExtInfo &info, 822 ArrayRef<ExtParameterInfo> paramInfos, 823 CanQualType resultType, 824 ArrayRef<CanQualType> argTypes, 825 RequiredArgs required) { 826 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 827 assert(!required.allowsOptionalArgs() || 828 required.getNumRequiredArgs() <= argTypes.size()); 829 830 void *buffer = 831 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 832 argTypes.size() + 1, paramInfos.size())); 833 834 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 835 FI->CallingConvention = llvmCC; 836 FI->EffectiveCallingConvention = llvmCC; 837 FI->ASTCallingConvention = info.getCC(); 838 FI->InstanceMethod = instanceMethod; 839 FI->ChainCall = chainCall; 840 FI->DelegateCall = delegateCall; 841 FI->CmseNSCall = info.getCmseNSCall(); 842 FI->NoReturn = info.getNoReturn(); 843 FI->ReturnsRetained = info.getProducesResult(); 844 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 845 FI->NoCfCheck = info.getNoCfCheck(); 846 FI->Required = required; 847 FI->HasRegParm = info.getHasRegParm(); 848 FI->RegParm = info.getRegParm(); 849 FI->ArgStruct = nullptr; 850 FI->ArgStructAlign = 0; 851 FI->NumArgs = argTypes.size(); 852 FI->HasExtParameterInfos = !paramInfos.empty(); 853 FI->getArgsBuffer()[0].type = resultType; 854 FI->MaxVectorWidth = 0; 855 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 856 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 857 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 858 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 859 return FI; 860 } 861 862 /***/ 863 864 namespace { 865 // ABIArgInfo::Expand implementation. 866 867 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 868 struct TypeExpansion { 869 enum TypeExpansionKind { 870 // Elements of constant arrays are expanded recursively. 871 TEK_ConstantArray, 872 // Record fields are expanded recursively (but if record is a union, only 873 // the field with the largest size is expanded). 874 TEK_Record, 875 // For complex types, real and imaginary parts are expanded recursively. 876 TEK_Complex, 877 // All other types are not expandable. 878 TEK_None 879 }; 880 881 const TypeExpansionKind Kind; 882 883 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 884 virtual ~TypeExpansion() {} 885 }; 886 887 struct ConstantArrayExpansion : TypeExpansion { 888 QualType EltTy; 889 uint64_t NumElts; 890 891 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 892 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_ConstantArray; 895 } 896 }; 897 898 struct RecordExpansion : TypeExpansion { 899 SmallVector<const CXXBaseSpecifier *, 1> Bases; 900 901 SmallVector<const FieldDecl *, 1> Fields; 902 903 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 904 SmallVector<const FieldDecl *, 1> &&Fields) 905 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 906 Fields(std::move(Fields)) {} 907 static bool classof(const TypeExpansion *TE) { 908 return TE->Kind == TEK_Record; 909 } 910 }; 911 912 struct ComplexExpansion : TypeExpansion { 913 QualType EltTy; 914 915 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 916 static bool classof(const TypeExpansion *TE) { 917 return TE->Kind == TEK_Complex; 918 } 919 }; 920 921 struct NoExpansion : TypeExpansion { 922 NoExpansion() : TypeExpansion(TEK_None) {} 923 static bool classof(const TypeExpansion *TE) { 924 return TE->Kind == TEK_None; 925 } 926 }; 927 } // namespace 928 929 static std::unique_ptr<TypeExpansion> 930 getTypeExpansion(QualType Ty, const ASTContext &Context) { 931 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 932 return std::make_unique<ConstantArrayExpansion>( 933 AT->getElementType(), AT->getSize().getZExtValue()); 934 } 935 if (const RecordType *RT = Ty->getAs<RecordType>()) { 936 SmallVector<const CXXBaseSpecifier *, 1> Bases; 937 SmallVector<const FieldDecl *, 1> Fields; 938 const RecordDecl *RD = RT->getDecl(); 939 assert(!RD->hasFlexibleArrayMember() && 940 "Cannot expand structure with flexible array."); 941 if (RD->isUnion()) { 942 // Unions can be here only in degenerative cases - all the fields are same 943 // after flattening. Thus we have to use the "largest" field. 944 const FieldDecl *LargestFD = nullptr; 945 CharUnits UnionSize = CharUnits::Zero(); 946 947 for (const auto *FD : RD->fields()) { 948 if (FD->isZeroLengthBitField(Context)) 949 continue; 950 assert(!FD->isBitField() && 951 "Cannot expand structure with bit-field members."); 952 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 953 if (UnionSize < FieldSize) { 954 UnionSize = FieldSize; 955 LargestFD = FD; 956 } 957 } 958 if (LargestFD) 959 Fields.push_back(LargestFD); 960 } else { 961 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 962 assert(!CXXRD->isDynamicClass() && 963 "cannot expand vtable pointers in dynamic classes"); 964 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 965 } 966 967 for (const auto *FD : RD->fields()) { 968 if (FD->isZeroLengthBitField(Context)) 969 continue; 970 assert(!FD->isBitField() && 971 "Cannot expand structure with bit-field members."); 972 Fields.push_back(FD); 973 } 974 } 975 return std::make_unique<RecordExpansion>(std::move(Bases), 976 std::move(Fields)); 977 } 978 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 979 return std::make_unique<ComplexExpansion>(CT->getElementType()); 980 } 981 return std::make_unique<NoExpansion>(); 982 } 983 984 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 985 auto Exp = getTypeExpansion(Ty, Context); 986 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 987 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 988 } 989 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 int Res = 0; 991 for (auto BS : RExp->Bases) 992 Res += getExpansionSize(BS->getType(), Context); 993 for (auto FD : RExp->Fields) 994 Res += getExpansionSize(FD->getType(), Context); 995 return Res; 996 } 997 if (isa<ComplexExpansion>(Exp.get())) 998 return 2; 999 assert(isa<NoExpansion>(Exp.get())); 1000 return 1; 1001 } 1002 1003 void 1004 CodeGenTypes::getExpandedTypes(QualType Ty, 1005 SmallVectorImpl<llvm::Type *>::iterator &TI) { 1006 auto Exp = getTypeExpansion(Ty, Context); 1007 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1008 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 1009 getExpandedTypes(CAExp->EltTy, TI); 1010 } 1011 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1012 for (auto BS : RExp->Bases) 1013 getExpandedTypes(BS->getType(), TI); 1014 for (auto FD : RExp->Fields) 1015 getExpandedTypes(FD->getType(), TI); 1016 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1017 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1018 *TI++ = EltTy; 1019 *TI++ = EltTy; 1020 } else { 1021 assert(isa<NoExpansion>(Exp.get())); 1022 *TI++ = ConvertType(Ty); 1023 } 1024 } 1025 1026 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1027 ConstantArrayExpansion *CAE, 1028 Address BaseAddr, 1029 llvm::function_ref<void(Address)> Fn) { 1030 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1031 CharUnits EltAlign = 1032 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1033 llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy); 1034 1035 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1036 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1037 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1038 Fn(Address(EltAddr, EltTy, EltAlign)); 1039 } 1040 } 1041 1042 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1043 llvm::Function::arg_iterator &AI) { 1044 assert(LV.isSimple() && 1045 "Unexpected non-simple lvalue during struct expansion."); 1046 1047 auto Exp = getTypeExpansion(Ty, getContext()); 1048 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1049 forConstantArrayExpansion( 1050 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1051 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1052 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1053 }); 1054 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1055 Address This = LV.getAddress(*this); 1056 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1057 // Perform a single step derived-to-base conversion. 1058 Address Base = 1059 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1060 /*NullCheckValue=*/false, SourceLocation()); 1061 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1062 1063 // Recurse onto bases. 1064 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1065 } 1066 for (auto FD : RExp->Fields) { 1067 // FIXME: What are the right qualifiers here? 1068 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1069 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1070 } 1071 } else if (isa<ComplexExpansion>(Exp.get())) { 1072 auto realValue = &*AI++; 1073 auto imagValue = &*AI++; 1074 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1075 } else { 1076 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1077 // primitive store. 1078 assert(isa<NoExpansion>(Exp.get())); 1079 llvm::Value *Arg = &*AI++; 1080 if (LV.isBitField()) { 1081 EmitStoreThroughLValue(RValue::get(Arg), LV); 1082 } else { 1083 // TODO: currently there are some places are inconsistent in what LLVM 1084 // pointer type they use (see D118744). Once clang uses opaque pointers 1085 // all LLVM pointer types will be the same and we can remove this check. 1086 if (Arg->getType()->isPointerTy()) { 1087 Address Addr = LV.getAddress(*this); 1088 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1089 } 1090 EmitStoreOfScalar(Arg, LV); 1091 } 1092 } 1093 } 1094 1095 void CodeGenFunction::ExpandTypeToArgs( 1096 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1097 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1098 auto Exp = getTypeExpansion(Ty, getContext()); 1099 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1100 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1101 : Arg.getKnownRValue().getAggregateAddress(); 1102 forConstantArrayExpansion( 1103 *this, CAExp, Addr, [&](Address EltAddr) { 1104 CallArg EltArg = CallArg( 1105 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1106 CAExp->EltTy); 1107 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1108 IRCallArgPos); 1109 }); 1110 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1111 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1112 : Arg.getKnownRValue().getAggregateAddress(); 1113 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1114 // Perform a single step derived-to-base conversion. 1115 Address Base = 1116 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1117 /*NullCheckValue=*/false, SourceLocation()); 1118 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1119 1120 // Recurse onto bases. 1121 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1122 IRCallArgPos); 1123 } 1124 1125 LValue LV = MakeAddrLValue(This, Ty); 1126 for (auto FD : RExp->Fields) { 1127 CallArg FldArg = 1128 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1129 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1130 IRCallArgPos); 1131 } 1132 } else if (isa<ComplexExpansion>(Exp.get())) { 1133 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1134 IRCallArgs[IRCallArgPos++] = CV.first; 1135 IRCallArgs[IRCallArgPos++] = CV.second; 1136 } else { 1137 assert(isa<NoExpansion>(Exp.get())); 1138 auto RV = Arg.getKnownRValue(); 1139 assert(RV.isScalar() && 1140 "Unexpected non-scalar rvalue during struct expansion."); 1141 1142 // Insert a bitcast as needed. 1143 llvm::Value *V = RV.getScalarVal(); 1144 if (IRCallArgPos < IRFuncTy->getNumParams() && 1145 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1146 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1147 1148 IRCallArgs[IRCallArgPos++] = V; 1149 } 1150 } 1151 1152 /// Create a temporary allocation for the purposes of coercion. 1153 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1154 CharUnits MinAlign, 1155 const Twine &Name = "tmp") { 1156 // Don't use an alignment that's worse than what LLVM would prefer. 1157 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty); 1158 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1159 1160 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1161 } 1162 1163 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1164 /// accessing some number of bytes out of it, try to gep into the struct to get 1165 /// at its inner goodness. Dive as deep as possible without entering an element 1166 /// with an in-memory size smaller than DstSize. 1167 static Address 1168 EnterStructPointerForCoercedAccess(Address SrcPtr, 1169 llvm::StructType *SrcSTy, 1170 uint64_t DstSize, CodeGenFunction &CGF) { 1171 // We can't dive into a zero-element struct. 1172 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1173 1174 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1175 1176 // If the first elt is at least as large as what we're looking for, or if the 1177 // first element is the same size as the whole struct, we can enter it. The 1178 // comparison must be made on the store size and not the alloca size. Using 1179 // the alloca size may overstate the size of the load. 1180 uint64_t FirstEltSize = 1181 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1182 if (FirstEltSize < DstSize && 1183 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1184 return SrcPtr; 1185 1186 // GEP into the first element. 1187 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1188 1189 // If the first element is a struct, recurse. 1190 llvm::Type *SrcTy = SrcPtr.getElementType(); 1191 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1192 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1193 1194 return SrcPtr; 1195 } 1196 1197 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1198 /// are either integers or pointers. This does a truncation of the value if it 1199 /// is too large or a zero extension if it is too small. 1200 /// 1201 /// This behaves as if the value were coerced through memory, so on big-endian 1202 /// targets the high bits are preserved in a truncation, while little-endian 1203 /// targets preserve the low bits. 1204 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1205 llvm::Type *Ty, 1206 CodeGenFunction &CGF) { 1207 if (Val->getType() == Ty) 1208 return Val; 1209 1210 if (isa<llvm::PointerType>(Val->getType())) { 1211 // If this is Pointer->Pointer avoid conversion to and from int. 1212 if (isa<llvm::PointerType>(Ty)) 1213 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1214 1215 // Convert the pointer to an integer so we can play with its width. 1216 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1217 } 1218 1219 llvm::Type *DestIntTy = Ty; 1220 if (isa<llvm::PointerType>(DestIntTy)) 1221 DestIntTy = CGF.IntPtrTy; 1222 1223 if (Val->getType() != DestIntTy) { 1224 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1225 if (DL.isBigEndian()) { 1226 // Preserve the high bits on big-endian targets. 1227 // That is what memory coercion does. 1228 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1229 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1230 1231 if (SrcSize > DstSize) { 1232 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1233 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1234 } else { 1235 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1236 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1237 } 1238 } else { 1239 // Little-endian targets preserve the low bits. No shifts required. 1240 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1241 } 1242 } 1243 1244 if (isa<llvm::PointerType>(Ty)) 1245 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1246 return Val; 1247 } 1248 1249 1250 1251 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1252 /// a pointer to an object of type \arg Ty, known to be aligned to 1253 /// \arg SrcAlign bytes. 1254 /// 1255 /// This safely handles the case when the src type is smaller than the 1256 /// destination type; in this situation the values of bits which not 1257 /// present in the src are undefined. 1258 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1259 CodeGenFunction &CGF) { 1260 llvm::Type *SrcTy = Src.getElementType(); 1261 1262 // If SrcTy and Ty are the same, just do a load. 1263 if (SrcTy == Ty) 1264 return CGF.Builder.CreateLoad(Src); 1265 1266 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1267 1268 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1269 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1270 DstSize.getFixedValue(), CGF); 1271 SrcTy = Src.getElementType(); 1272 } 1273 1274 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1275 1276 // If the source and destination are integer or pointer types, just do an 1277 // extension or truncation to the desired type. 1278 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1279 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1280 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1281 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1282 } 1283 1284 // If load is legal, just bitcast the src pointer. 1285 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1286 SrcSize.getFixedValue() >= DstSize.getFixedValue()) { 1287 // Generally SrcSize is never greater than DstSize, since this means we are 1288 // losing bits. However, this can happen in cases where the structure has 1289 // additional padding, for example due to a user specified alignment. 1290 // 1291 // FIXME: Assert that we aren't truncating non-padding bits when have access 1292 // to that information. 1293 Src = Src.withElementType(Ty); 1294 return CGF.Builder.CreateLoad(Src); 1295 } 1296 1297 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1298 // the types match, use the llvm.vector.insert intrinsic to perform the 1299 // conversion. 1300 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1301 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1302 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1303 // vector, use a vector insert and bitcast the result. 1304 bool NeedsBitcast = false; 1305 auto PredType = 1306 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1307 llvm::Type *OrigType = Ty; 1308 if (ScalableDst == PredType && 1309 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1310 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1311 NeedsBitcast = true; 1312 } 1313 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1314 auto *Load = CGF.Builder.CreateLoad(Src); 1315 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1316 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1317 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1318 ScalableDst, UndefVec, Load, Zero, "cast.scalable"); 1319 if (NeedsBitcast) 1320 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1321 return Result; 1322 } 1323 } 1324 } 1325 1326 // Otherwise do coercion through memory. This is stupid, but simple. 1327 Address Tmp = 1328 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1329 CGF.Builder.CreateMemCpy( 1330 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1331 Src.getAlignment().getAsAlign(), 1332 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue())); 1333 return CGF.Builder.CreateLoad(Tmp); 1334 } 1335 1336 // Function to store a first-class aggregate into memory. We prefer to 1337 // store the elements rather than the aggregate to be more friendly to 1338 // fast-isel. 1339 // FIXME: Do we need to recurse here? 1340 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1341 bool DestIsVolatile) { 1342 // Prefer scalar stores to first-class aggregate stores. 1343 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1344 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1345 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1346 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1347 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1348 } 1349 } else { 1350 Builder.CreateStore(Val, Dest, DestIsVolatile); 1351 } 1352 } 1353 1354 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1355 /// where the source and destination may have different types. The 1356 /// destination is known to be aligned to \arg DstAlign bytes. 1357 /// 1358 /// This safely handles the case when the src type is larger than the 1359 /// destination type; the upper bits of the src will be lost. 1360 static void CreateCoercedStore(llvm::Value *Src, 1361 Address Dst, 1362 bool DstIsVolatile, 1363 CodeGenFunction &CGF) { 1364 llvm::Type *SrcTy = Src->getType(); 1365 llvm::Type *DstTy = Dst.getElementType(); 1366 if (SrcTy == DstTy) { 1367 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1368 return; 1369 } 1370 1371 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1372 1373 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1374 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1375 SrcSize.getFixedValue(), CGF); 1376 DstTy = Dst.getElementType(); 1377 } 1378 1379 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1380 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1381 if (SrcPtrTy && DstPtrTy && 1382 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1383 Src = CGF.Builder.CreateAddrSpaceCast(Src, DstTy); 1384 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1385 return; 1386 } 1387 1388 // If the source and destination are integer or pointer types, just do an 1389 // extension or truncation to the desired type. 1390 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1391 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1392 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1393 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1394 return; 1395 } 1396 1397 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1398 1399 // If store is legal, just bitcast the src pointer. 1400 if (isa<llvm::ScalableVectorType>(SrcTy) || 1401 isa<llvm::ScalableVectorType>(DstTy) || 1402 SrcSize.getFixedValue() <= DstSize.getFixedValue()) { 1403 Dst = Dst.withElementType(SrcTy); 1404 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1405 } else { 1406 // Otherwise do coercion through memory. This is stupid, but 1407 // simple. 1408 1409 // Generally SrcSize is never greater than DstSize, since this means we are 1410 // losing bits. However, this can happen in cases where the structure has 1411 // additional padding, for example due to a user specified alignment. 1412 // 1413 // FIXME: Assert that we aren't truncating non-padding bits when have access 1414 // to that information. 1415 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1416 CGF.Builder.CreateStore(Src, Tmp); 1417 CGF.Builder.CreateMemCpy( 1418 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1419 Tmp.getAlignment().getAsAlign(), 1420 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedValue())); 1421 } 1422 } 1423 1424 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1425 const ABIArgInfo &info) { 1426 if (unsigned offset = info.getDirectOffset()) { 1427 addr = addr.withElementType(CGF.Int8Ty); 1428 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1429 CharUnits::fromQuantity(offset)); 1430 addr = addr.withElementType(info.getCoerceToType()); 1431 } 1432 return addr; 1433 } 1434 1435 namespace { 1436 1437 /// Encapsulates information about the way function arguments from 1438 /// CGFunctionInfo should be passed to actual LLVM IR function. 1439 class ClangToLLVMArgMapping { 1440 static const unsigned InvalidIndex = ~0U; 1441 unsigned InallocaArgNo; 1442 unsigned SRetArgNo; 1443 unsigned TotalIRArgs; 1444 1445 /// Arguments of LLVM IR function corresponding to single Clang argument. 1446 struct IRArgs { 1447 unsigned PaddingArgIndex; 1448 // Argument is expanded to IR arguments at positions 1449 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1450 unsigned FirstArgIndex; 1451 unsigned NumberOfArgs; 1452 1453 IRArgs() 1454 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1455 NumberOfArgs(0) {} 1456 }; 1457 1458 SmallVector<IRArgs, 8> ArgInfo; 1459 1460 public: 1461 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1462 bool OnlyRequiredArgs = false) 1463 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1464 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1465 construct(Context, FI, OnlyRequiredArgs); 1466 } 1467 1468 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1469 unsigned getInallocaArgNo() const { 1470 assert(hasInallocaArg()); 1471 return InallocaArgNo; 1472 } 1473 1474 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1475 unsigned getSRetArgNo() const { 1476 assert(hasSRetArg()); 1477 return SRetArgNo; 1478 } 1479 1480 unsigned totalIRArgs() const { return TotalIRArgs; } 1481 1482 bool hasPaddingArg(unsigned ArgNo) const { 1483 assert(ArgNo < ArgInfo.size()); 1484 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1485 } 1486 unsigned getPaddingArgNo(unsigned ArgNo) const { 1487 assert(hasPaddingArg(ArgNo)); 1488 return ArgInfo[ArgNo].PaddingArgIndex; 1489 } 1490 1491 /// Returns index of first IR argument corresponding to ArgNo, and their 1492 /// quantity. 1493 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1494 assert(ArgNo < ArgInfo.size()); 1495 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1496 ArgInfo[ArgNo].NumberOfArgs); 1497 } 1498 1499 private: 1500 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1501 bool OnlyRequiredArgs); 1502 }; 1503 1504 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1505 const CGFunctionInfo &FI, 1506 bool OnlyRequiredArgs) { 1507 unsigned IRArgNo = 0; 1508 bool SwapThisWithSRet = false; 1509 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1510 1511 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1512 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1513 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1514 } 1515 1516 unsigned ArgNo = 0; 1517 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1518 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1519 ++I, ++ArgNo) { 1520 assert(I != FI.arg_end()); 1521 QualType ArgType = I->type; 1522 const ABIArgInfo &AI = I->info; 1523 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1524 auto &IRArgs = ArgInfo[ArgNo]; 1525 1526 if (AI.getPaddingType()) 1527 IRArgs.PaddingArgIndex = IRArgNo++; 1528 1529 switch (AI.getKind()) { 1530 case ABIArgInfo::Extend: 1531 case ABIArgInfo::Direct: { 1532 // FIXME: handle sseregparm someday... 1533 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1534 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1535 IRArgs.NumberOfArgs = STy->getNumElements(); 1536 } else { 1537 IRArgs.NumberOfArgs = 1; 1538 } 1539 break; 1540 } 1541 case ABIArgInfo::Indirect: 1542 case ABIArgInfo::IndirectAliased: 1543 IRArgs.NumberOfArgs = 1; 1544 break; 1545 case ABIArgInfo::Ignore: 1546 case ABIArgInfo::InAlloca: 1547 // ignore and inalloca doesn't have matching LLVM parameters. 1548 IRArgs.NumberOfArgs = 0; 1549 break; 1550 case ABIArgInfo::CoerceAndExpand: 1551 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1552 break; 1553 case ABIArgInfo::Expand: 1554 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1555 break; 1556 } 1557 1558 if (IRArgs.NumberOfArgs > 0) { 1559 IRArgs.FirstArgIndex = IRArgNo; 1560 IRArgNo += IRArgs.NumberOfArgs; 1561 } 1562 1563 // Skip over the sret parameter when it comes second. We already handled it 1564 // above. 1565 if (IRArgNo == 1 && SwapThisWithSRet) 1566 IRArgNo++; 1567 } 1568 assert(ArgNo == ArgInfo.size()); 1569 1570 if (FI.usesInAlloca()) 1571 InallocaArgNo = IRArgNo++; 1572 1573 TotalIRArgs = IRArgNo; 1574 } 1575 } // namespace 1576 1577 /***/ 1578 1579 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1580 const auto &RI = FI.getReturnInfo(); 1581 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1582 } 1583 1584 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1585 return ReturnTypeUsesSRet(FI) && 1586 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1587 } 1588 1589 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1590 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1591 switch (BT->getKind()) { 1592 default: 1593 return false; 1594 case BuiltinType::Float: 1595 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1596 case BuiltinType::Double: 1597 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1598 case BuiltinType::LongDouble: 1599 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1600 } 1601 } 1602 1603 return false; 1604 } 1605 1606 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1607 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1608 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1609 if (BT->getKind() == BuiltinType::LongDouble) 1610 return getTarget().useObjCFP2RetForComplexLongDouble(); 1611 } 1612 } 1613 1614 return false; 1615 } 1616 1617 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1618 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1619 return GetFunctionType(FI); 1620 } 1621 1622 llvm::FunctionType * 1623 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1624 1625 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1626 (void)Inserted; 1627 assert(Inserted && "Recursively being processed?"); 1628 1629 llvm::Type *resultType = nullptr; 1630 const ABIArgInfo &retAI = FI.getReturnInfo(); 1631 switch (retAI.getKind()) { 1632 case ABIArgInfo::Expand: 1633 case ABIArgInfo::IndirectAliased: 1634 llvm_unreachable("Invalid ABI kind for return argument"); 1635 1636 case ABIArgInfo::Extend: 1637 case ABIArgInfo::Direct: 1638 resultType = retAI.getCoerceToType(); 1639 break; 1640 1641 case ABIArgInfo::InAlloca: 1642 if (retAI.getInAllocaSRet()) { 1643 // sret things on win32 aren't void, they return the sret pointer. 1644 QualType ret = FI.getReturnType(); 1645 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret); 1646 resultType = llvm::PointerType::get(getLLVMContext(), addressSpace); 1647 } else { 1648 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1649 } 1650 break; 1651 1652 case ABIArgInfo::Indirect: 1653 case ABIArgInfo::Ignore: 1654 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1655 break; 1656 1657 case ABIArgInfo::CoerceAndExpand: 1658 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1659 break; 1660 } 1661 1662 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1663 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1664 1665 // Add type for sret argument. 1666 if (IRFunctionArgs.hasSRetArg()) { 1667 QualType Ret = FI.getReturnType(); 1668 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret); 1669 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1670 llvm::PointerType::get(getLLVMContext(), AddressSpace); 1671 } 1672 1673 // Add type for inalloca argument. 1674 if (IRFunctionArgs.hasInallocaArg()) 1675 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = 1676 llvm::PointerType::getUnqual(getLLVMContext()); 1677 1678 // Add in all of the required arguments. 1679 unsigned ArgNo = 0; 1680 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1681 ie = it + FI.getNumRequiredArgs(); 1682 for (; it != ie; ++it, ++ArgNo) { 1683 const ABIArgInfo &ArgInfo = it->info; 1684 1685 // Insert a padding type to ensure proper alignment. 1686 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1687 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1688 ArgInfo.getPaddingType(); 1689 1690 unsigned FirstIRArg, NumIRArgs; 1691 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1692 1693 switch (ArgInfo.getKind()) { 1694 case ABIArgInfo::Ignore: 1695 case ABIArgInfo::InAlloca: 1696 assert(NumIRArgs == 0); 1697 break; 1698 1699 case ABIArgInfo::Indirect: 1700 assert(NumIRArgs == 1); 1701 // indirect arguments are always on the stack, which is alloca addr space. 1702 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1703 getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 1704 break; 1705 case ABIArgInfo::IndirectAliased: 1706 assert(NumIRArgs == 1); 1707 ArgTypes[FirstIRArg] = llvm::PointerType::get( 1708 getLLVMContext(), ArgInfo.getIndirectAddrSpace()); 1709 break; 1710 case ABIArgInfo::Extend: 1711 case ABIArgInfo::Direct: { 1712 // Fast-isel and the optimizer generally like scalar values better than 1713 // FCAs, so we flatten them if this is safe to do for this argument. 1714 llvm::Type *argType = ArgInfo.getCoerceToType(); 1715 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1716 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1717 assert(NumIRArgs == st->getNumElements()); 1718 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1719 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1720 } else { 1721 assert(NumIRArgs == 1); 1722 ArgTypes[FirstIRArg] = argType; 1723 } 1724 break; 1725 } 1726 1727 case ABIArgInfo::CoerceAndExpand: { 1728 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1729 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1730 *ArgTypesIter++ = EltTy; 1731 } 1732 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1733 break; 1734 } 1735 1736 case ABIArgInfo::Expand: 1737 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1738 getExpandedTypes(it->type, ArgTypesIter); 1739 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1740 break; 1741 } 1742 } 1743 1744 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1745 assert(Erased && "Not in set?"); 1746 1747 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1748 } 1749 1750 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1751 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1752 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1753 1754 if (!isFuncTypeConvertible(FPT)) 1755 return llvm::StructType::get(getLLVMContext()); 1756 1757 return GetFunctionType(GD); 1758 } 1759 1760 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1761 llvm::AttrBuilder &FuncAttrs, 1762 const FunctionProtoType *FPT) { 1763 if (!FPT) 1764 return; 1765 1766 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1767 FPT->isNothrow()) 1768 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1769 1770 if (FPT->getAArch64SMEAttributes() & FunctionType::SME_PStateSMEnabledMask) 1771 FuncAttrs.addAttribute("aarch64_pstate_sm_enabled"); 1772 if (FPT->getAArch64SMEAttributes() & FunctionType::SME_PStateSMCompatibleMask) 1773 FuncAttrs.addAttribute("aarch64_pstate_sm_compatible"); 1774 if (FPT->getAArch64SMEAttributes() & FunctionType::SME_PStateZASharedMask) 1775 FuncAttrs.addAttribute("aarch64_pstate_za_shared"); 1776 if (FPT->getAArch64SMEAttributes() & FunctionType::SME_PStateZAPreservedMask) 1777 FuncAttrs.addAttribute("aarch64_pstate_za_preserved"); 1778 } 1779 1780 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, 1781 const Decl *Callee) { 1782 if (!Callee) 1783 return; 1784 1785 SmallVector<StringRef, 4> Attrs; 1786 1787 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>()) 1788 AA->getAssumption().split(Attrs, ","); 1789 1790 if (!Attrs.empty()) 1791 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1792 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1793 } 1794 1795 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1796 QualType ReturnType) const { 1797 // We can't just discard the return value for a record type with a 1798 // complex destructor or a non-trivially copyable type. 1799 if (const RecordType *RT = 1800 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1801 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1802 return ClassDecl->hasTrivialDestructor(); 1803 } 1804 return ReturnType.isTriviallyCopyableType(Context); 1805 } 1806 1807 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy, 1808 const Decl *TargetDecl) { 1809 // As-is msan can not tolerate noundef mismatch between caller and 1810 // implementation. Mismatch is possible for e.g. indirect calls from C-caller 1811 // into C++. Such mismatches lead to confusing false reports. To avoid 1812 // expensive workaround on msan we enforce initialization event in uncommon 1813 // cases where it's allowed. 1814 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory)) 1815 return true; 1816 // C++ explicitly makes returning undefined values UB. C's rule only applies 1817 // to used values, so we never mark them noundef for now. 1818 if (!Module.getLangOpts().CPlusPlus) 1819 return false; 1820 if (TargetDecl) { 1821 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) { 1822 if (FDecl->isExternC()) 1823 return false; 1824 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) { 1825 // Function pointer. 1826 if (VDecl->isExternC()) 1827 return false; 1828 } 1829 } 1830 1831 // We don't want to be too aggressive with the return checking, unless 1832 // it's explicit in the code opts or we're using an appropriate sanitizer. 1833 // Try to respect what the programmer intended. 1834 return Module.getCodeGenOpts().StrictReturn || 1835 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) || 1836 Module.getLangOpts().Sanitize.has(SanitizerKind::Return); 1837 } 1838 1839 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the 1840 /// requested denormal behavior, accounting for the overriding behavior of the 1841 /// -f32 case. 1842 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode, 1843 llvm::DenormalMode FP32DenormalMode, 1844 llvm::AttrBuilder &FuncAttrs) { 1845 if (FPDenormalMode != llvm::DenormalMode::getDefault()) 1846 FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str()); 1847 1848 if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid()) 1849 FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str()); 1850 } 1851 1852 /// Add default attributes to a function, which have merge semantics under 1853 /// -mlink-builtin-bitcode and should not simply overwrite any existing 1854 /// attributes in the linked library. 1855 static void 1856 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts, 1857 llvm::AttrBuilder &FuncAttrs) { 1858 addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode, 1859 FuncAttrs); 1860 } 1861 1862 static void getTrivialDefaultFunctionAttributes( 1863 StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts, 1864 const LangOptions &LangOpts, bool AttrOnCallSite, 1865 llvm::AttrBuilder &FuncAttrs) { 1866 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1867 if (!HasOptnone) { 1868 if (CodeGenOpts.OptimizeSize) 1869 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1870 if (CodeGenOpts.OptimizeSize == 2) 1871 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1872 } 1873 1874 if (CodeGenOpts.DisableRedZone) 1875 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1876 if (CodeGenOpts.IndirectTlsSegRefs) 1877 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1878 if (CodeGenOpts.NoImplicitFloat) 1879 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1880 1881 if (AttrOnCallSite) { 1882 // Attributes that should go on the call site only. 1883 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1884 // the -fno-builtin-foo list. 1885 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1886 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1887 if (!CodeGenOpts.TrapFuncName.empty()) 1888 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1889 } else { 1890 switch (CodeGenOpts.getFramePointer()) { 1891 case CodeGenOptions::FramePointerKind::None: 1892 // This is the default behavior. 1893 break; 1894 case CodeGenOptions::FramePointerKind::NonLeaf: 1895 case CodeGenOptions::FramePointerKind::All: 1896 FuncAttrs.addAttribute("frame-pointer", 1897 CodeGenOptions::getFramePointerKindName( 1898 CodeGenOpts.getFramePointer())); 1899 } 1900 1901 if (CodeGenOpts.LessPreciseFPMAD) 1902 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1903 1904 if (CodeGenOpts.NullPointerIsValid) 1905 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1906 1907 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) 1908 FuncAttrs.addAttribute("no-trapping-math", "true"); 1909 1910 // TODO: Are these all needed? 1911 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1912 if (LangOpts.NoHonorInfs) 1913 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1914 if (LangOpts.NoHonorNaNs) 1915 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1916 if (LangOpts.ApproxFunc) 1917 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1918 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 1919 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 1920 (LangOpts.getDefaultFPContractMode() == 1921 LangOptions::FPModeKind::FPM_Fast || 1922 LangOpts.getDefaultFPContractMode() == 1923 LangOptions::FPModeKind::FPM_FastHonorPragmas)) 1924 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1925 if (CodeGenOpts.SoftFloat) 1926 FuncAttrs.addAttribute("use-soft-float", "true"); 1927 FuncAttrs.addAttribute("stack-protector-buffer-size", 1928 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1929 if (LangOpts.NoSignedZero) 1930 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1931 1932 // TODO: Reciprocal estimate codegen options should apply to instructions? 1933 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1934 if (!Recips.empty()) 1935 FuncAttrs.addAttribute("reciprocal-estimates", 1936 llvm::join(Recips, ",")); 1937 1938 if (!CodeGenOpts.PreferVectorWidth.empty() && 1939 CodeGenOpts.PreferVectorWidth != "none") 1940 FuncAttrs.addAttribute("prefer-vector-width", 1941 CodeGenOpts.PreferVectorWidth); 1942 1943 if (CodeGenOpts.StackRealignment) 1944 FuncAttrs.addAttribute("stackrealign"); 1945 if (CodeGenOpts.Backchain) 1946 FuncAttrs.addAttribute("backchain"); 1947 if (CodeGenOpts.EnableSegmentedStacks) 1948 FuncAttrs.addAttribute("split-stack"); 1949 1950 if (CodeGenOpts.SpeculativeLoadHardening) 1951 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1952 1953 // Add zero-call-used-regs attribute. 1954 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1955 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1956 FuncAttrs.removeAttribute("zero-call-used-regs"); 1957 break; 1958 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1959 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1960 break; 1961 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1962 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1963 break; 1964 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1965 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1966 break; 1967 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1968 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1969 break; 1970 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1971 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1972 break; 1973 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 1974 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 1975 break; 1976 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 1977 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 1978 break; 1979 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 1980 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 1981 break; 1982 } 1983 } 1984 1985 if (LangOpts.assumeFunctionsAreConvergent()) { 1986 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1987 // convergent (meaning, they may call an intrinsically convergent op, such 1988 // as __syncthreads() / barrier(), and so can't have certain optimizations 1989 // applied around them). LLVM will remove this attribute where it safely 1990 // can. 1991 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1992 } 1993 1994 // TODO: NoUnwind attribute should be added for other GPU modes HIP, 1995 // OpenMP offload. AFAIK, neither of them support exceptions in device code. 1996 if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL || 1997 LangOpts.SYCLIsDevice) { 1998 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1999 } 2000 2001 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 2002 StringRef Var, Value; 2003 std::tie(Var, Value) = Attr.split('='); 2004 FuncAttrs.addAttribute(Var, Value); 2005 } 2006 } 2007 2008 /// Merges `target-features` from \TargetOpts and \F, and sets the result in 2009 /// \FuncAttr 2010 /// * features from \F are always kept 2011 /// * a feature from \TargetOpts is kept if itself and its opposite are absent 2012 /// from \F 2013 static void 2014 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr, 2015 const llvm::Function &F, 2016 const TargetOptions &TargetOpts) { 2017 auto FFeatures = F.getFnAttribute("target-features"); 2018 2019 llvm::StringSet<> MergedNames; 2020 SmallVector<StringRef> MergedFeatures; 2021 MergedFeatures.reserve(TargetOpts.Features.size()); 2022 2023 auto AddUnmergedFeatures = [&](auto &&FeatureRange) { 2024 for (StringRef Feature : FeatureRange) { 2025 if (Feature.empty()) 2026 continue; 2027 assert(Feature[0] == '+' || Feature[0] == '-'); 2028 StringRef Name = Feature.drop_front(1); 2029 bool Merged = !MergedNames.insert(Name).second; 2030 if (!Merged) 2031 MergedFeatures.push_back(Feature); 2032 } 2033 }; 2034 2035 if (FFeatures.isValid()) 2036 AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ',')); 2037 AddUnmergedFeatures(TargetOpts.Features); 2038 2039 if (!MergedFeatures.empty()) { 2040 llvm::sort(MergedFeatures); 2041 FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ",")); 2042 } 2043 } 2044 2045 void CodeGen::mergeDefaultFunctionDefinitionAttributes( 2046 llvm::Function &F, const CodeGenOptions &CodeGenOpts, 2047 const LangOptions &LangOpts, const TargetOptions &TargetOpts, 2048 bool WillInternalize) { 2049 2050 llvm::AttrBuilder FuncAttrs(F.getContext()); 2051 // Here we only extract the options that are relevant compared to the version 2052 // from GetCPUAndFeaturesAttributes. 2053 if (!TargetOpts.CPU.empty()) 2054 FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU); 2055 if (!TargetOpts.TuneCPU.empty()) 2056 FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU); 2057 2058 ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 2059 CodeGenOpts, LangOpts, 2060 /*AttrOnCallSite=*/false, FuncAttrs); 2061 2062 if (!WillInternalize && F.isInterposable()) { 2063 // Do not promote "dynamic" denormal-fp-math to this translation unit's 2064 // setting for weak functions that won't be internalized. The user has no 2065 // real control for how builtin bitcode is linked, so we shouldn't assume 2066 // later copies will use a consistent mode. 2067 F.addFnAttrs(FuncAttrs); 2068 return; 2069 } 2070 2071 llvm::AttributeMask AttrsToRemove; 2072 2073 llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw(); 2074 llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw(); 2075 llvm::DenormalMode Merged = 2076 CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge); 2077 llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode; 2078 2079 if (DenormModeToMergeF32.isValid()) { 2080 MergedF32 = 2081 CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32); 2082 } 2083 2084 if (Merged == llvm::DenormalMode::getDefault()) { 2085 AttrsToRemove.addAttribute("denormal-fp-math"); 2086 } else if (Merged != DenormModeToMerge) { 2087 // Overwrite existing attribute 2088 FuncAttrs.addAttribute("denormal-fp-math", 2089 CodeGenOpts.FPDenormalMode.str()); 2090 } 2091 2092 if (MergedF32 == llvm::DenormalMode::getDefault()) { 2093 AttrsToRemove.addAttribute("denormal-fp-math-f32"); 2094 } else if (MergedF32 != DenormModeToMergeF32) { 2095 // Overwrite existing attribute 2096 FuncAttrs.addAttribute("denormal-fp-math-f32", 2097 CodeGenOpts.FP32DenormalMode.str()); 2098 } 2099 2100 F.removeFnAttrs(AttrsToRemove); 2101 addDenormalModeAttrs(Merged, MergedF32, FuncAttrs); 2102 2103 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts); 2104 2105 F.addFnAttrs(FuncAttrs); 2106 } 2107 2108 void CodeGenModule::getTrivialDefaultFunctionAttributes( 2109 StringRef Name, bool HasOptnone, bool AttrOnCallSite, 2110 llvm::AttrBuilder &FuncAttrs) { 2111 ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(), 2112 getLangOpts(), AttrOnCallSite, 2113 FuncAttrs); 2114 } 2115 2116 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 2117 bool HasOptnone, 2118 bool AttrOnCallSite, 2119 llvm::AttrBuilder &FuncAttrs) { 2120 getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, 2121 FuncAttrs); 2122 // If we're just getting the default, get the default values for mergeable 2123 // attributes. 2124 if (!AttrOnCallSite) 2125 addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs); 2126 } 2127 2128 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 2129 llvm::AttrBuilder &attrs) { 2130 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 2131 /*for call*/ false, attrs); 2132 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 2133 } 2134 2135 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 2136 const LangOptions &LangOpts, 2137 const NoBuiltinAttr *NBA = nullptr) { 2138 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 2139 SmallString<32> AttributeName; 2140 AttributeName += "no-builtin-"; 2141 AttributeName += BuiltinName; 2142 FuncAttrs.addAttribute(AttributeName); 2143 }; 2144 2145 // First, handle the language options passed through -fno-builtin. 2146 if (LangOpts.NoBuiltin) { 2147 // -fno-builtin disables them all. 2148 FuncAttrs.addAttribute("no-builtins"); 2149 return; 2150 } 2151 2152 // Then, add attributes for builtins specified through -fno-builtin-<name>. 2153 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 2154 2155 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 2156 // the source. 2157 if (!NBA) 2158 return; 2159 2160 // If there is a wildcard in the builtin names specified through the 2161 // attribute, disable them all. 2162 if (llvm::is_contained(NBA->builtinNames(), "*")) { 2163 FuncAttrs.addAttribute("no-builtins"); 2164 return; 2165 } 2166 2167 // And last, add the rest of the builtin names. 2168 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 2169 } 2170 2171 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 2172 const llvm::DataLayout &DL, const ABIArgInfo &AI, 2173 bool CheckCoerce = true) { 2174 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 2175 if (AI.getKind() == ABIArgInfo::Indirect || 2176 AI.getKind() == ABIArgInfo::IndirectAliased) 2177 return true; 2178 if (AI.getKind() == ABIArgInfo::Extend) 2179 return true; 2180 if (!DL.typeSizeEqualsStoreSize(Ty)) 2181 // TODO: This will result in a modest amount of values not marked noundef 2182 // when they could be. We care about values that *invisibly* contain undef 2183 // bits from the perspective of LLVM IR. 2184 return false; 2185 if (CheckCoerce && AI.canHaveCoerceToType()) { 2186 llvm::Type *CoerceTy = AI.getCoerceToType(); 2187 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2188 DL.getTypeSizeInBits(Ty))) 2189 // If we're coercing to a type with a greater size than the canonical one, 2190 // we're introducing new undef bits. 2191 // Coercing to a type of smaller or equal size is ok, as we know that 2192 // there's no internal padding (typeSizeEqualsStoreSize). 2193 return false; 2194 } 2195 if (QTy->isBitIntType()) 2196 return true; 2197 if (QTy->isReferenceType()) 2198 return true; 2199 if (QTy->isNullPtrType()) 2200 return false; 2201 if (QTy->isMemberPointerType()) 2202 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2203 // now, never mark them. 2204 return false; 2205 if (QTy->isScalarType()) { 2206 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2207 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2208 return true; 2209 } 2210 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2211 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2212 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2213 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2214 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2215 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2216 2217 // TODO: Some structs may be `noundef`, in specific situations. 2218 return false; 2219 } 2220 2221 /// Check if the argument of a function has maybe_undef attribute. 2222 static bool IsArgumentMaybeUndef(const Decl *TargetDecl, 2223 unsigned NumRequiredArgs, unsigned ArgNo) { 2224 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 2225 if (!FD) 2226 return false; 2227 2228 // Assume variadic arguments do not have maybe_undef attribute. 2229 if (ArgNo >= NumRequiredArgs) 2230 return false; 2231 2232 // Check if argument has maybe_undef attribute. 2233 if (ArgNo < FD->getNumParams()) { 2234 const ParmVarDecl *Param = FD->getParamDecl(ArgNo); 2235 if (Param && Param->hasAttr<MaybeUndefAttr>()) 2236 return true; 2237 } 2238 2239 return false; 2240 } 2241 2242 /// Test if it's legal to apply nofpclass for the given parameter type and it's 2243 /// lowered IR type. 2244 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType, 2245 bool IsReturn) { 2246 // Should only apply to FP types in the source, not ABI promoted. 2247 if (!ParamType->hasFloatingRepresentation()) 2248 return false; 2249 2250 // The promoted-to IR type also needs to support nofpclass. 2251 llvm::Type *IRTy = AI.getCoerceToType(); 2252 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy)) 2253 return true; 2254 2255 if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) { 2256 return !IsReturn && AI.getCanBeFlattened() && 2257 llvm::all_of(ST->elements(), [](llvm::Type *Ty) { 2258 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty); 2259 }); 2260 } 2261 2262 return false; 2263 } 2264 2265 /// Return the nofpclass mask that can be applied to floating-point parameters. 2266 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) { 2267 llvm::FPClassTest Mask = llvm::fcNone; 2268 if (LangOpts.NoHonorInfs) 2269 Mask |= llvm::fcInf; 2270 if (LangOpts.NoHonorNaNs) 2271 Mask |= llvm::fcNan; 2272 return Mask; 2273 } 2274 2275 void CodeGenModule::AdjustMemoryAttribute(StringRef Name, 2276 CGCalleeInfo CalleeInfo, 2277 llvm::AttributeList &Attrs) { 2278 if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) { 2279 Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory); 2280 llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects( 2281 getLLVMContext(), llvm::MemoryEffects::writeOnly()); 2282 Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr); 2283 } 2284 } 2285 2286 /// Construct the IR attribute list of a function or call. 2287 /// 2288 /// When adding an attribute, please consider where it should be handled: 2289 /// 2290 /// - getDefaultFunctionAttributes is for attributes that are essentially 2291 /// part of the global target configuration (but perhaps can be 2292 /// overridden on a per-function basis). Adding attributes there 2293 /// will cause them to also be set in frontends that build on Clang's 2294 /// target-configuration logic, as well as for code defined in library 2295 /// modules such as CUDA's libdevice. 2296 /// 2297 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2298 /// and adds declaration-specific, convention-specific, and 2299 /// frontend-specific logic. The last is of particular importance: 2300 /// attributes that restrict how the frontend generates code must be 2301 /// added here rather than getDefaultFunctionAttributes. 2302 /// 2303 void CodeGenModule::ConstructAttributeList(StringRef Name, 2304 const CGFunctionInfo &FI, 2305 CGCalleeInfo CalleeInfo, 2306 llvm::AttributeList &AttrList, 2307 unsigned &CallingConv, 2308 bool AttrOnCallSite, bool IsThunk) { 2309 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2310 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2311 2312 // Collect function IR attributes from the CC lowering. 2313 // We'll collect the paramete and result attributes later. 2314 CallingConv = FI.getEffectiveCallingConvention(); 2315 if (FI.isNoReturn()) 2316 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2317 if (FI.isCmseNSCall()) 2318 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2319 2320 // Collect function IR attributes from the callee prototype if we have one. 2321 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2322 CalleeInfo.getCalleeFunctionProtoType()); 2323 2324 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2325 2326 // Attach assumption attributes to the declaration. If this is a call 2327 // site, attach assumptions from the caller to the call as well. 2328 AddAttributesFromAssumes(FuncAttrs, TargetDecl); 2329 2330 bool HasOptnone = false; 2331 // The NoBuiltinAttr attached to the target FunctionDecl. 2332 const NoBuiltinAttr *NBA = nullptr; 2333 2334 // Some ABIs may result in additional accesses to arguments that may 2335 // otherwise not be present. 2336 auto AddPotentialArgAccess = [&]() { 2337 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory); 2338 if (A.isValid()) 2339 FuncAttrs.addMemoryAttr(A.getMemoryEffects() | 2340 llvm::MemoryEffects::argMemOnly()); 2341 }; 2342 2343 // Collect function IR attributes based on declaration-specific 2344 // information. 2345 // FIXME: handle sseregparm someday... 2346 if (TargetDecl) { 2347 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2348 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2349 if (TargetDecl->hasAttr<NoThrowAttr>()) 2350 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2351 if (TargetDecl->hasAttr<NoReturnAttr>()) 2352 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2353 if (TargetDecl->hasAttr<ColdAttr>()) 2354 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2355 if (TargetDecl->hasAttr<HotAttr>()) 2356 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2357 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2358 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2359 if (TargetDecl->hasAttr<ConvergentAttr>()) 2360 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2361 2362 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2363 AddAttributesFromFunctionProtoType( 2364 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2365 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2366 // A sane operator new returns a non-aliasing pointer. 2367 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2368 if (getCodeGenOpts().AssumeSaneOperatorNew && 2369 (Kind == OO_New || Kind == OO_Array_New)) 2370 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2371 } 2372 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2373 const bool IsVirtualCall = MD && MD->isVirtual(); 2374 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2375 // virtual function. These attributes are not inherited by overloads. 2376 if (!(AttrOnCallSite && IsVirtualCall)) { 2377 if (Fn->isNoReturn()) 2378 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2379 NBA = Fn->getAttr<NoBuiltinAttr>(); 2380 } 2381 } 2382 2383 if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) { 2384 // Only place nomerge attribute on call sites, never functions. This 2385 // allows it to work on indirect virtual function calls. 2386 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2387 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2388 } 2389 2390 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2391 if (TargetDecl->hasAttr<ConstAttr>()) { 2392 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none()); 2393 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2394 // gcc specifies that 'const' functions have greater restrictions than 2395 // 'pure' functions, so they also cannot have infinite loops. 2396 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2397 } else if (TargetDecl->hasAttr<PureAttr>()) { 2398 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); 2399 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2400 // gcc specifies that 'pure' functions cannot have infinite loops. 2401 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2402 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2403 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly()); 2404 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2405 } 2406 if (TargetDecl->hasAttr<RestrictAttr>()) 2407 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2408 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2409 !CodeGenOpts.NullPointerIsValid) 2410 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2411 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2412 FuncAttrs.addAttribute("no_caller_saved_registers"); 2413 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2414 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2415 if (TargetDecl->hasAttr<LeafAttr>()) 2416 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2417 2418 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2419 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2420 std::optional<unsigned> NumElemsParam; 2421 if (AllocSize->getNumElemsParam().isValid()) 2422 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2423 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2424 NumElemsParam); 2425 } 2426 2427 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2428 if (getLangOpts().OpenCLVersion <= 120) { 2429 // OpenCL v1.2 Work groups are always uniform 2430 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2431 } else { 2432 // OpenCL v2.0 Work groups may be whether uniform or not. 2433 // '-cl-uniform-work-group-size' compile option gets a hint 2434 // to the compiler that the global work-size be a multiple of 2435 // the work-group size specified to clEnqueueNDRangeKernel 2436 // (i.e. work groups are uniform). 2437 FuncAttrs.addAttribute( 2438 "uniform-work-group-size", 2439 llvm::toStringRef(getLangOpts().OffloadUniformBlock)); 2440 } 2441 } 2442 2443 if (TargetDecl->hasAttr<CUDAGlobalAttr>() && 2444 getLangOpts().OffloadUniformBlock) 2445 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2446 2447 if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>()) 2448 FuncAttrs.addAttribute("aarch64_pstate_sm_body"); 2449 2450 if (TargetDecl->hasAttr<ArmNewZAAttr>()) 2451 FuncAttrs.addAttribute("aarch64_pstate_za_new"); 2452 } 2453 2454 // Attach "no-builtins" attributes to: 2455 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2456 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2457 // The attributes can come from: 2458 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2459 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2460 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2461 2462 // Collect function IR attributes based on global settiings. 2463 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2464 2465 // Override some default IR attributes based on declaration-specific 2466 // information. 2467 if (TargetDecl) { 2468 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2469 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2470 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2471 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2472 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2473 FuncAttrs.removeAttribute("split-stack"); 2474 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2475 // A function "__attribute__((...))" overrides the command-line flag. 2476 auto Kind = 2477 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2478 FuncAttrs.removeAttribute("zero-call-used-regs"); 2479 FuncAttrs.addAttribute( 2480 "zero-call-used-regs", 2481 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2482 } 2483 2484 // Add NonLazyBind attribute to function declarations when -fno-plt 2485 // is used. 2486 // FIXME: what if we just haven't processed the function definition 2487 // yet, or if it's an external definition like C99 inline? 2488 if (CodeGenOpts.NoPLT) { 2489 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2490 if (!Fn->isDefined() && !AttrOnCallSite) { 2491 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2492 } 2493 } 2494 } 2495 } 2496 2497 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2498 // functions with -funique-internal-linkage-names. 2499 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2500 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2501 if (!FD->isExternallyVisible()) 2502 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2503 "selected"); 2504 } 2505 } 2506 2507 // Collect non-call-site function IR attributes from declaration-specific 2508 // information. 2509 if (!AttrOnCallSite) { 2510 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2511 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2512 2513 // Whether tail calls are enabled. 2514 auto shouldDisableTailCalls = [&] { 2515 // Should this be honored in getDefaultFunctionAttributes? 2516 if (CodeGenOpts.DisableTailCalls) 2517 return true; 2518 2519 if (!TargetDecl) 2520 return false; 2521 2522 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2523 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2524 return true; 2525 2526 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2527 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2528 if (!BD->doesNotEscape()) 2529 return true; 2530 } 2531 2532 return false; 2533 }; 2534 if (shouldDisableTailCalls()) 2535 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2536 2537 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2538 // handles these separately to set them based on the global defaults. 2539 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2540 } 2541 2542 // Collect attributes from arguments and return values. 2543 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2544 2545 QualType RetTy = FI.getReturnType(); 2546 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2547 const llvm::DataLayout &DL = getDataLayout(); 2548 2549 // Determine if the return type could be partially undef 2550 if (CodeGenOpts.EnableNoundefAttrs && 2551 HasStrictReturn(*this, RetTy, TargetDecl)) { 2552 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2553 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2554 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2555 } 2556 2557 switch (RetAI.getKind()) { 2558 case ABIArgInfo::Extend: 2559 if (RetAI.isSignExt()) 2560 RetAttrs.addAttribute(llvm::Attribute::SExt); 2561 else 2562 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2563 [[fallthrough]]; 2564 case ABIArgInfo::Direct: 2565 if (RetAI.getInReg()) 2566 RetAttrs.addAttribute(llvm::Attribute::InReg); 2567 2568 if (canApplyNoFPClass(RetAI, RetTy, true)) 2569 RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2570 2571 break; 2572 case ABIArgInfo::Ignore: 2573 break; 2574 2575 case ABIArgInfo::InAlloca: 2576 case ABIArgInfo::Indirect: { 2577 // inalloca and sret disable readnone and readonly 2578 AddPotentialArgAccess(); 2579 break; 2580 } 2581 2582 case ABIArgInfo::CoerceAndExpand: 2583 break; 2584 2585 case ABIArgInfo::Expand: 2586 case ABIArgInfo::IndirectAliased: 2587 llvm_unreachable("Invalid ABI kind for return argument"); 2588 } 2589 2590 if (!IsThunk) { 2591 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2592 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2593 QualType PTy = RefTy->getPointeeType(); 2594 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2595 RetAttrs.addDereferenceableAttr( 2596 getMinimumObjectSize(PTy).getQuantity()); 2597 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2598 !CodeGenOpts.NullPointerIsValid) 2599 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2600 if (PTy->isObjectType()) { 2601 llvm::Align Alignment = 2602 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2603 RetAttrs.addAlignmentAttr(Alignment); 2604 } 2605 } 2606 } 2607 2608 bool hasUsedSRet = false; 2609 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2610 2611 // Attach attributes to sret. 2612 if (IRFunctionArgs.hasSRetArg()) { 2613 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2614 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2615 SRETAttrs.addAttribute(llvm::Attribute::Writable); 2616 SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind); 2617 hasUsedSRet = true; 2618 if (RetAI.getInReg()) 2619 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2620 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2621 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2622 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2623 } 2624 2625 // Attach attributes to inalloca argument. 2626 if (IRFunctionArgs.hasInallocaArg()) { 2627 llvm::AttrBuilder Attrs(getLLVMContext()); 2628 Attrs.addInAllocaAttr(FI.getArgStruct()); 2629 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2630 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2631 } 2632 2633 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2634 // unless this is a thunk function. 2635 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2636 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2637 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2638 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2639 2640 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2641 2642 llvm::AttrBuilder Attrs(getLLVMContext()); 2643 2644 QualType ThisTy = 2645 FI.arg_begin()->type.getTypePtr()->getPointeeType(); 2646 2647 if (!CodeGenOpts.NullPointerIsValid && 2648 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2649 Attrs.addAttribute(llvm::Attribute::NonNull); 2650 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2651 } else { 2652 // FIXME dereferenceable should be correct here, regardless of 2653 // NullPointerIsValid. However, dereferenceable currently does not always 2654 // respect NullPointerIsValid and may imply nonnull and break the program. 2655 // See https://reviews.llvm.org/D66618 for discussions. 2656 Attrs.addDereferenceableOrNullAttr( 2657 getMinimumObjectSize( 2658 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2659 .getQuantity()); 2660 } 2661 2662 llvm::Align Alignment = 2663 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2664 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2665 .getAsAlign(); 2666 Attrs.addAlignmentAttr(Alignment); 2667 2668 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2669 } 2670 2671 unsigned ArgNo = 0; 2672 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2673 E = FI.arg_end(); 2674 I != E; ++I, ++ArgNo) { 2675 QualType ParamType = I->type; 2676 const ABIArgInfo &AI = I->info; 2677 llvm::AttrBuilder Attrs(getLLVMContext()); 2678 2679 // Add attribute for padding argument, if necessary. 2680 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2681 if (AI.getPaddingInReg()) { 2682 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2683 llvm::AttributeSet::get( 2684 getLLVMContext(), 2685 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2686 } 2687 } 2688 2689 // Decide whether the argument we're handling could be partially undef 2690 if (CodeGenOpts.EnableNoundefAttrs && 2691 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2692 Attrs.addAttribute(llvm::Attribute::NoUndef); 2693 } 2694 2695 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2696 // have the corresponding parameter variable. It doesn't make 2697 // sense to do it here because parameters are so messed up. 2698 switch (AI.getKind()) { 2699 case ABIArgInfo::Extend: 2700 if (AI.isSignExt()) 2701 Attrs.addAttribute(llvm::Attribute::SExt); 2702 else 2703 Attrs.addAttribute(llvm::Attribute::ZExt); 2704 [[fallthrough]]; 2705 case ABIArgInfo::Direct: 2706 if (ArgNo == 0 && FI.isChainCall()) 2707 Attrs.addAttribute(llvm::Attribute::Nest); 2708 else if (AI.getInReg()) 2709 Attrs.addAttribute(llvm::Attribute::InReg); 2710 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2711 2712 if (canApplyNoFPClass(AI, ParamType, false)) 2713 Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 2714 break; 2715 case ABIArgInfo::Indirect: { 2716 if (AI.getInReg()) 2717 Attrs.addAttribute(llvm::Attribute::InReg); 2718 2719 if (AI.getIndirectByVal()) 2720 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2721 2722 auto *Decl = ParamType->getAsRecordDecl(); 2723 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2724 Decl->getArgPassingRestrictions() == 2725 RecordArgPassingKind::CanPassInRegs) 2726 // When calling the function, the pointer passed in will be the only 2727 // reference to the underlying object. Mark it accordingly. 2728 Attrs.addAttribute(llvm::Attribute::NoAlias); 2729 2730 // TODO: We could add the byref attribute if not byval, but it would 2731 // require updating many testcases. 2732 2733 CharUnits Align = AI.getIndirectAlign(); 2734 2735 // In a byval argument, it is important that the required 2736 // alignment of the type is honored, as LLVM might be creating a 2737 // *new* stack object, and needs to know what alignment to give 2738 // it. (Sometimes it can deduce a sensible alignment on its own, 2739 // but not if clang decides it must emit a packed struct, or the 2740 // user specifies increased alignment requirements.) 2741 // 2742 // This is different from indirect *not* byval, where the object 2743 // exists already, and the align attribute is purely 2744 // informative. 2745 assert(!Align.isZero()); 2746 2747 // For now, only add this when we have a byval argument. 2748 // TODO: be less lazy about updating test cases. 2749 if (AI.getIndirectByVal()) 2750 Attrs.addAlignmentAttr(Align.getQuantity()); 2751 2752 // byval disables readnone and readonly. 2753 AddPotentialArgAccess(); 2754 break; 2755 } 2756 case ABIArgInfo::IndirectAliased: { 2757 CharUnits Align = AI.getIndirectAlign(); 2758 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2759 Attrs.addAlignmentAttr(Align.getQuantity()); 2760 break; 2761 } 2762 case ABIArgInfo::Ignore: 2763 case ABIArgInfo::Expand: 2764 case ABIArgInfo::CoerceAndExpand: 2765 break; 2766 2767 case ABIArgInfo::InAlloca: 2768 // inalloca disables readnone and readonly. 2769 AddPotentialArgAccess(); 2770 continue; 2771 } 2772 2773 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2774 QualType PTy = RefTy->getPointeeType(); 2775 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2776 Attrs.addDereferenceableAttr( 2777 getMinimumObjectSize(PTy).getQuantity()); 2778 if (getTypes().getTargetAddressSpace(PTy) == 0 && 2779 !CodeGenOpts.NullPointerIsValid) 2780 Attrs.addAttribute(llvm::Attribute::NonNull); 2781 if (PTy->isObjectType()) { 2782 llvm::Align Alignment = 2783 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2784 Attrs.addAlignmentAttr(Alignment); 2785 } 2786 } 2787 2788 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2789 // > For arguments to a __kernel function declared to be a pointer to a 2790 // > data type, the OpenCL compiler can assume that the pointee is always 2791 // > appropriately aligned as required by the data type. 2792 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2793 ParamType->isPointerType()) { 2794 QualType PTy = ParamType->getPointeeType(); 2795 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2796 llvm::Align Alignment = 2797 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2798 Attrs.addAlignmentAttr(Alignment); 2799 } 2800 } 2801 2802 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2803 case ParameterABI::Ordinary: 2804 break; 2805 2806 case ParameterABI::SwiftIndirectResult: { 2807 // Add 'sret' if we haven't already used it for something, but 2808 // only if the result is void. 2809 if (!hasUsedSRet && RetTy->isVoidType()) { 2810 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2811 hasUsedSRet = true; 2812 } 2813 2814 // Add 'noalias' in either case. 2815 Attrs.addAttribute(llvm::Attribute::NoAlias); 2816 2817 // Add 'dereferenceable' and 'alignment'. 2818 auto PTy = ParamType->getPointeeType(); 2819 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2820 auto info = getContext().getTypeInfoInChars(PTy); 2821 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2822 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2823 } 2824 break; 2825 } 2826 2827 case ParameterABI::SwiftErrorResult: 2828 Attrs.addAttribute(llvm::Attribute::SwiftError); 2829 break; 2830 2831 case ParameterABI::SwiftContext: 2832 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2833 break; 2834 2835 case ParameterABI::SwiftAsyncContext: 2836 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2837 break; 2838 } 2839 2840 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2841 Attrs.addAttribute(llvm::Attribute::NoCapture); 2842 2843 if (Attrs.hasAttributes()) { 2844 unsigned FirstIRArg, NumIRArgs; 2845 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2846 for (unsigned i = 0; i < NumIRArgs; i++) 2847 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2848 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2849 } 2850 } 2851 assert(ArgNo == FI.arg_size()); 2852 2853 AttrList = llvm::AttributeList::get( 2854 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2855 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2856 } 2857 2858 /// An argument came in as a promoted argument; demote it back to its 2859 /// declared type. 2860 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2861 const VarDecl *var, 2862 llvm::Value *value) { 2863 llvm::Type *varType = CGF.ConvertType(var->getType()); 2864 2865 // This can happen with promotions that actually don't change the 2866 // underlying type, like the enum promotions. 2867 if (value->getType() == varType) return value; 2868 2869 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2870 && "unexpected promotion type"); 2871 2872 if (isa<llvm::IntegerType>(varType)) 2873 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2874 2875 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2876 } 2877 2878 /// Returns the attribute (either parameter attribute, or function 2879 /// attribute), which declares argument ArgNo to be non-null. 2880 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2881 QualType ArgType, unsigned ArgNo) { 2882 // FIXME: __attribute__((nonnull)) can also be applied to: 2883 // - references to pointers, where the pointee is known to be 2884 // nonnull (apparently a Clang extension) 2885 // - transparent unions containing pointers 2886 // In the former case, LLVM IR cannot represent the constraint. In 2887 // the latter case, we have no guarantee that the transparent union 2888 // is in fact passed as a pointer. 2889 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2890 return nullptr; 2891 // First, check attribute on parameter itself. 2892 if (PVD) { 2893 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2894 return ParmNNAttr; 2895 } 2896 // Check function attributes. 2897 if (!FD) 2898 return nullptr; 2899 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2900 if (NNAttr->isNonNull(ArgNo)) 2901 return NNAttr; 2902 } 2903 return nullptr; 2904 } 2905 2906 namespace { 2907 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2908 Address Temp; 2909 Address Arg; 2910 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2911 void Emit(CodeGenFunction &CGF, Flags flags) override { 2912 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2913 CGF.Builder.CreateStore(errorValue, Arg); 2914 } 2915 }; 2916 } 2917 2918 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2919 llvm::Function *Fn, 2920 const FunctionArgList &Args) { 2921 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2922 // Naked functions don't have prologues. 2923 return; 2924 2925 // If this is an implicit-return-zero function, go ahead and 2926 // initialize the return value. TODO: it might be nice to have 2927 // a more general mechanism for this that didn't require synthesized 2928 // return statements. 2929 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2930 if (FD->hasImplicitReturnZero()) { 2931 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2932 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2933 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2934 Builder.CreateStore(Zero, ReturnValue); 2935 } 2936 } 2937 2938 // FIXME: We no longer need the types from FunctionArgList; lift up and 2939 // simplify. 2940 2941 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2942 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2943 2944 // If we're using inalloca, all the memory arguments are GEPs off of the last 2945 // parameter, which is a pointer to the complete memory area. 2946 Address ArgStruct = Address::invalid(); 2947 if (IRFunctionArgs.hasInallocaArg()) 2948 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2949 FI.getArgStruct(), FI.getArgStructAlignment()); 2950 2951 // Name the struct return parameter. 2952 if (IRFunctionArgs.hasSRetArg()) { 2953 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2954 AI->setName("agg.result"); 2955 AI->addAttr(llvm::Attribute::NoAlias); 2956 } 2957 2958 // Track if we received the parameter as a pointer (indirect, byval, or 2959 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2960 // into a local alloca for us. 2961 SmallVector<ParamValue, 16> ArgVals; 2962 ArgVals.reserve(Args.size()); 2963 2964 // Create a pointer value for every parameter declaration. This usually 2965 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2966 // any cleanups or do anything that might unwind. We do that separately, so 2967 // we can push the cleanups in the correct order for the ABI. 2968 assert(FI.arg_size() == Args.size() && 2969 "Mismatch between function signature & arguments."); 2970 unsigned ArgNo = 0; 2971 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2972 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2973 i != e; ++i, ++info_it, ++ArgNo) { 2974 const VarDecl *Arg = *i; 2975 const ABIArgInfo &ArgI = info_it->info; 2976 2977 bool isPromoted = 2978 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2979 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2980 // the parameter is promoted. In this case we convert to 2981 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2982 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2983 assert(hasScalarEvaluationKind(Ty) == 2984 hasScalarEvaluationKind(Arg->getType())); 2985 2986 unsigned FirstIRArg, NumIRArgs; 2987 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2988 2989 switch (ArgI.getKind()) { 2990 case ABIArgInfo::InAlloca: { 2991 assert(NumIRArgs == 0); 2992 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2993 Address V = 2994 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2995 if (ArgI.getInAllocaIndirect()) 2996 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 2997 getContext().getTypeAlignInChars(Ty)); 2998 ArgVals.push_back(ParamValue::forIndirect(V)); 2999 break; 3000 } 3001 3002 case ABIArgInfo::Indirect: 3003 case ABIArgInfo::IndirectAliased: { 3004 assert(NumIRArgs == 1); 3005 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), 3006 ArgI.getIndirectAlign(), KnownNonNull); 3007 3008 if (!hasScalarEvaluationKind(Ty)) { 3009 // Aggregates and complex variables are accessed by reference. All we 3010 // need to do is realign the value, if requested. Also, if the address 3011 // may be aliased, copy it to ensure that the parameter variable is 3012 // mutable and has a unique adress, as C requires. 3013 Address V = ParamAddr; 3014 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 3015 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 3016 3017 // Copy from the incoming argument pointer to the temporary with the 3018 // appropriate alignment. 3019 // 3020 // FIXME: We should have a common utility for generating an aggregate 3021 // copy. 3022 CharUnits Size = getContext().getTypeSizeInChars(Ty); 3023 Builder.CreateMemCpy( 3024 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 3025 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 3026 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 3027 V = AlignedTemp; 3028 } 3029 ArgVals.push_back(ParamValue::forIndirect(V)); 3030 } else { 3031 // Load scalar value from indirect argument. 3032 llvm::Value *V = 3033 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 3034 3035 if (isPromoted) 3036 V = emitArgumentDemotion(*this, Arg, V); 3037 ArgVals.push_back(ParamValue::forDirect(V)); 3038 } 3039 break; 3040 } 3041 3042 case ABIArgInfo::Extend: 3043 case ABIArgInfo::Direct: { 3044 auto AI = Fn->getArg(FirstIRArg); 3045 llvm::Type *LTy = ConvertType(Arg->getType()); 3046 3047 // Prepare parameter attributes. So far, only attributes for pointer 3048 // parameters are prepared. See 3049 // http://llvm.org/docs/LangRef.html#paramattrs. 3050 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 3051 ArgI.getCoerceToType()->isPointerTy()) { 3052 assert(NumIRArgs == 1); 3053 3054 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 3055 // Set `nonnull` attribute if any. 3056 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 3057 PVD->getFunctionScopeIndex()) && 3058 !CGM.getCodeGenOpts().NullPointerIsValid) 3059 AI->addAttr(llvm::Attribute::NonNull); 3060 3061 QualType OTy = PVD->getOriginalType(); 3062 if (const auto *ArrTy = 3063 getContext().getAsConstantArrayType(OTy)) { 3064 // A C99 array parameter declaration with the static keyword also 3065 // indicates dereferenceability, and if the size is constant we can 3066 // use the dereferenceable attribute (which requires the size in 3067 // bytes). 3068 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3069 QualType ETy = ArrTy->getElementType(); 3070 llvm::Align Alignment = 3071 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3072 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3073 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 3074 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 3075 ArrSize) { 3076 llvm::AttrBuilder Attrs(getLLVMContext()); 3077 Attrs.addDereferenceableAttr( 3078 getContext().getTypeSizeInChars(ETy).getQuantity() * 3079 ArrSize); 3080 AI->addAttrs(Attrs); 3081 } else if (getContext().getTargetInfo().getNullPointerValue( 3082 ETy.getAddressSpace()) == 0 && 3083 !CGM.getCodeGenOpts().NullPointerIsValid) { 3084 AI->addAttr(llvm::Attribute::NonNull); 3085 } 3086 } 3087 } else if (const auto *ArrTy = 3088 getContext().getAsVariableArrayType(OTy)) { 3089 // For C99 VLAs with the static keyword, we don't know the size so 3090 // we can't use the dereferenceable attribute, but in addrspace(0) 3091 // we know that it must be nonnull. 3092 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3093 QualType ETy = ArrTy->getElementType(); 3094 llvm::Align Alignment = 3095 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 3096 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3097 if (!getTypes().getTargetAddressSpace(ETy) && 3098 !CGM.getCodeGenOpts().NullPointerIsValid) 3099 AI->addAttr(llvm::Attribute::NonNull); 3100 } 3101 } 3102 3103 // Set `align` attribute if any. 3104 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 3105 if (!AVAttr) 3106 if (const auto *TOTy = OTy->getAs<TypedefType>()) 3107 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 3108 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 3109 // If alignment-assumption sanitizer is enabled, we do *not* add 3110 // alignment attribute here, but emit normal alignment assumption, 3111 // so the UBSAN check could function. 3112 llvm::ConstantInt *AlignmentCI = 3113 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 3114 uint64_t AlignmentInt = 3115 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 3116 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 3117 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 3118 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 3119 llvm::Align(AlignmentInt))); 3120 } 3121 } 3122 } 3123 3124 // Set 'noalias' if an argument type has the `restrict` qualifier. 3125 if (Arg->getType().isRestrictQualified()) 3126 AI->addAttr(llvm::Attribute::NoAlias); 3127 } 3128 3129 // Prepare the argument value. If we have the trivial case, handle it 3130 // with no muss and fuss. 3131 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 3132 ArgI.getCoerceToType() == ConvertType(Ty) && 3133 ArgI.getDirectOffset() == 0) { 3134 assert(NumIRArgs == 1); 3135 3136 // LLVM expects swifterror parameters to be used in very restricted 3137 // ways. Copy the value into a less-restricted temporary. 3138 llvm::Value *V = AI; 3139 if (FI.getExtParameterInfo(ArgNo).getABI() 3140 == ParameterABI::SwiftErrorResult) { 3141 QualType pointeeTy = Ty->getPointeeType(); 3142 assert(pointeeTy->isPointerType()); 3143 Address temp = 3144 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3145 Address arg(V, ConvertTypeForMem(pointeeTy), 3146 getContext().getTypeAlignInChars(pointeeTy)); 3147 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 3148 Builder.CreateStore(incomingErrorValue, temp); 3149 V = temp.getPointer(); 3150 3151 // Push a cleanup to copy the value back at the end of the function. 3152 // The convention does not guarantee that the value will be written 3153 // back if the function exits with an unwind exception. 3154 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 3155 } 3156 3157 // Ensure the argument is the correct type. 3158 if (V->getType() != ArgI.getCoerceToType()) 3159 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 3160 3161 if (isPromoted) 3162 V = emitArgumentDemotion(*this, Arg, V); 3163 3164 // Because of merging of function types from multiple decls it is 3165 // possible for the type of an argument to not match the corresponding 3166 // type in the function type. Since we are codegening the callee 3167 // in here, add a cast to the argument type. 3168 llvm::Type *LTy = ConvertType(Arg->getType()); 3169 if (V->getType() != LTy) 3170 V = Builder.CreateBitCast(V, LTy); 3171 3172 ArgVals.push_back(ParamValue::forDirect(V)); 3173 break; 3174 } 3175 3176 // VLST arguments are coerced to VLATs at the function boundary for 3177 // ABI consistency. If this is a VLST that was coerced to 3178 // a VLAT at the function boundary and the types match up, use 3179 // llvm.vector.extract to convert back to the original VLST. 3180 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 3181 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 3182 if (auto *VecTyFrom = 3183 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 3184 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 3185 // vector, bitcast the source and use a vector extract. 3186 auto PredType = 3187 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 3188 if (VecTyFrom == PredType && 3189 VecTyTo->getElementType() == Builder.getInt8Ty()) { 3190 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 3191 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 3192 } 3193 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 3194 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 3195 3196 assert(NumIRArgs == 1); 3197 Coerced->setName(Arg->getName() + ".coerce"); 3198 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 3199 VecTyTo, Coerced, Zero, "cast.fixed"))); 3200 break; 3201 } 3202 } 3203 } 3204 3205 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 3206 Arg->getName()); 3207 3208 // Pointer to store into. 3209 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 3210 3211 // Fast-isel and the optimizer generally like scalar values better than 3212 // FCAs, so we flatten them if this is safe to do for this argument. 3213 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 3214 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 3215 STy->getNumElements() > 1) { 3216 llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy); 3217 llvm::TypeSize PtrElementSize = 3218 CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType()); 3219 if (StructSize.isScalable()) { 3220 assert(STy->containsHomogeneousScalableVectorTypes() && 3221 "ABI only supports structure with homogeneous scalable vector " 3222 "type"); 3223 assert(StructSize == PtrElementSize && 3224 "Only allow non-fractional movement of structure with" 3225 "homogeneous scalable vector type"); 3226 assert(STy->getNumElements() == NumIRArgs); 3227 3228 llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy); 3229 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3230 auto *AI = Fn->getArg(FirstIRArg + i); 3231 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3232 LoadedStructValue = 3233 Builder.CreateInsertValue(LoadedStructValue, AI, i); 3234 } 3235 3236 Builder.CreateStore(LoadedStructValue, Ptr); 3237 } else { 3238 uint64_t SrcSize = StructSize.getFixedValue(); 3239 uint64_t DstSize = PtrElementSize.getFixedValue(); 3240 3241 Address AddrToStoreInto = Address::invalid(); 3242 if (SrcSize <= DstSize) { 3243 AddrToStoreInto = Ptr.withElementType(STy); 3244 } else { 3245 AddrToStoreInto = 3246 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 3247 } 3248 3249 assert(STy->getNumElements() == NumIRArgs); 3250 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3251 auto AI = Fn->getArg(FirstIRArg + i); 3252 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 3253 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 3254 Builder.CreateStore(AI, EltPtr); 3255 } 3256 3257 if (SrcSize > DstSize) { 3258 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 3259 } 3260 } 3261 } else { 3262 // Simple case, just do a coerced store of the argument into the alloca. 3263 assert(NumIRArgs == 1); 3264 auto AI = Fn->getArg(FirstIRArg); 3265 AI->setName(Arg->getName() + ".coerce"); 3266 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 3267 } 3268 3269 // Match to what EmitParmDecl is expecting for this type. 3270 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3271 llvm::Value *V = 3272 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3273 if (isPromoted) 3274 V = emitArgumentDemotion(*this, Arg, V); 3275 ArgVals.push_back(ParamValue::forDirect(V)); 3276 } else { 3277 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3278 } 3279 break; 3280 } 3281 3282 case ABIArgInfo::CoerceAndExpand: { 3283 // Reconstruct into a temporary. 3284 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3285 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3286 3287 auto coercionType = ArgI.getCoerceAndExpandType(); 3288 alloca = alloca.withElementType(coercionType); 3289 3290 unsigned argIndex = FirstIRArg; 3291 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3292 llvm::Type *eltType = coercionType->getElementType(i); 3293 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3294 continue; 3295 3296 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3297 auto elt = Fn->getArg(argIndex++); 3298 Builder.CreateStore(elt, eltAddr); 3299 } 3300 assert(argIndex == FirstIRArg + NumIRArgs); 3301 break; 3302 } 3303 3304 case ABIArgInfo::Expand: { 3305 // If this structure was expanded into multiple arguments then 3306 // we need to create a temporary and reconstruct it from the 3307 // arguments. 3308 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3309 LValue LV = MakeAddrLValue(Alloca, Ty); 3310 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3311 3312 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3313 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3314 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3315 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3316 auto AI = Fn->getArg(FirstIRArg + i); 3317 AI->setName(Arg->getName() + "." + Twine(i)); 3318 } 3319 break; 3320 } 3321 3322 case ABIArgInfo::Ignore: 3323 assert(NumIRArgs == 0); 3324 // Initialize the local variable appropriately. 3325 if (!hasScalarEvaluationKind(Ty)) { 3326 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3327 } else { 3328 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3329 ArgVals.push_back(ParamValue::forDirect(U)); 3330 } 3331 break; 3332 } 3333 } 3334 3335 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3336 for (int I = Args.size() - 1; I >= 0; --I) 3337 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3338 } else { 3339 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3340 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3341 } 3342 } 3343 3344 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3345 while (insn->use_empty()) { 3346 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3347 if (!bitcast) return; 3348 3349 // This is "safe" because we would have used a ConstantExpr otherwise. 3350 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3351 bitcast->eraseFromParent(); 3352 } 3353 } 3354 3355 /// Try to emit a fused autorelease of a return result. 3356 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3357 llvm::Value *result) { 3358 // We must be immediately followed the cast. 3359 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3360 if (BB->empty()) return nullptr; 3361 if (&BB->back() != result) return nullptr; 3362 3363 llvm::Type *resultType = result->getType(); 3364 3365 // result is in a BasicBlock and is therefore an Instruction. 3366 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3367 3368 SmallVector<llvm::Instruction *, 4> InstsToKill; 3369 3370 // Look for: 3371 // %generator = bitcast %type1* %generator2 to %type2* 3372 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3373 // We would have emitted this as a constant if the operand weren't 3374 // an Instruction. 3375 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3376 3377 // Require the generator to be immediately followed by the cast. 3378 if (generator->getNextNode() != bitcast) 3379 return nullptr; 3380 3381 InstsToKill.push_back(bitcast); 3382 } 3383 3384 // Look for: 3385 // %generator = call i8* @objc_retain(i8* %originalResult) 3386 // or 3387 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3388 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3389 if (!call) return nullptr; 3390 3391 bool doRetainAutorelease; 3392 3393 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3394 doRetainAutorelease = true; 3395 } else if (call->getCalledOperand() == 3396 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3397 doRetainAutorelease = false; 3398 3399 // If we emitted an assembly marker for this call (and the 3400 // ARCEntrypoints field should have been set if so), go looking 3401 // for that call. If we can't find it, we can't do this 3402 // optimization. But it should always be the immediately previous 3403 // instruction, unless we needed bitcasts around the call. 3404 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3405 llvm::Instruction *prev = call->getPrevNode(); 3406 assert(prev); 3407 if (isa<llvm::BitCastInst>(prev)) { 3408 prev = prev->getPrevNode(); 3409 assert(prev); 3410 } 3411 assert(isa<llvm::CallInst>(prev)); 3412 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3413 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3414 InstsToKill.push_back(prev); 3415 } 3416 } else { 3417 return nullptr; 3418 } 3419 3420 result = call->getArgOperand(0); 3421 InstsToKill.push_back(call); 3422 3423 // Keep killing bitcasts, for sanity. Note that we no longer care 3424 // about precise ordering as long as there's exactly one use. 3425 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3426 if (!bitcast->hasOneUse()) break; 3427 InstsToKill.push_back(bitcast); 3428 result = bitcast->getOperand(0); 3429 } 3430 3431 // Delete all the unnecessary instructions, from latest to earliest. 3432 for (auto *I : InstsToKill) 3433 I->eraseFromParent(); 3434 3435 // Do the fused retain/autorelease if we were asked to. 3436 if (doRetainAutorelease) 3437 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3438 3439 // Cast back to the result type. 3440 return CGF.Builder.CreateBitCast(result, resultType); 3441 } 3442 3443 /// If this is a +1 of the value of an immutable 'self', remove it. 3444 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3445 llvm::Value *result) { 3446 // This is only applicable to a method with an immutable 'self'. 3447 const ObjCMethodDecl *method = 3448 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3449 if (!method) return nullptr; 3450 const VarDecl *self = method->getSelfDecl(); 3451 if (!self->getType().isConstQualified()) return nullptr; 3452 3453 // Look for a retain call. Note: stripPointerCasts looks through returned arg 3454 // functions, which would cause us to miss the retain. 3455 llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result); 3456 if (!retainCall || retainCall->getCalledOperand() != 3457 CGF.CGM.getObjCEntrypoints().objc_retain) 3458 return nullptr; 3459 3460 // Look for an ordinary load of 'self'. 3461 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3462 llvm::LoadInst *load = 3463 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3464 if (!load || load->isAtomic() || load->isVolatile() || 3465 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3466 return nullptr; 3467 3468 // Okay! Burn it all down. This relies for correctness on the 3469 // assumption that the retain is emitted as part of the return and 3470 // that thereafter everything is used "linearly". 3471 llvm::Type *resultType = result->getType(); 3472 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3473 assert(retainCall->use_empty()); 3474 retainCall->eraseFromParent(); 3475 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3476 3477 return CGF.Builder.CreateBitCast(load, resultType); 3478 } 3479 3480 /// Emit an ARC autorelease of the result of a function. 3481 /// 3482 /// \return the value to actually return from the function 3483 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3484 llvm::Value *result) { 3485 // If we're returning 'self', kill the initial retain. This is a 3486 // heuristic attempt to "encourage correctness" in the really unfortunate 3487 // case where we have a return of self during a dealloc and we desperately 3488 // need to avoid the possible autorelease. 3489 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3490 return self; 3491 3492 // At -O0, try to emit a fused retain/autorelease. 3493 if (CGF.shouldUseFusedARCCalls()) 3494 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3495 return fused; 3496 3497 return CGF.EmitARCAutoreleaseReturnValue(result); 3498 } 3499 3500 /// Heuristically search for a dominating store to the return-value slot. 3501 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3502 // Check if a User is a store which pointerOperand is the ReturnValue. 3503 // We are looking for stores to the ReturnValue, not for stores of the 3504 // ReturnValue to some other location. 3505 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3506 auto *SI = dyn_cast<llvm::StoreInst>(U); 3507 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() || 3508 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3509 return nullptr; 3510 // These aren't actually possible for non-coerced returns, and we 3511 // only care about non-coerced returns on this code path. 3512 // All memory instructions inside __try block are volatile. 3513 assert(!SI->isAtomic() && 3514 (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry())); 3515 return SI; 3516 }; 3517 // If there are multiple uses of the return-value slot, just check 3518 // for something immediately preceding the IP. Sometimes this can 3519 // happen with how we generate implicit-returns; it can also happen 3520 // with noreturn cleanups. 3521 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3522 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3523 if (IP->empty()) return nullptr; 3524 3525 // Look at directly preceding instruction, skipping bitcasts and lifetime 3526 // markers. 3527 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3528 if (isa<llvm::BitCastInst>(&I)) 3529 continue; 3530 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 3531 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3532 continue; 3533 3534 return GetStoreIfValid(&I); 3535 } 3536 return nullptr; 3537 } 3538 3539 llvm::StoreInst *store = 3540 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3541 if (!store) return nullptr; 3542 3543 // Now do a first-and-dirty dominance check: just walk up the 3544 // single-predecessors chain from the current insertion point. 3545 llvm::BasicBlock *StoreBB = store->getParent(); 3546 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3547 llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs; 3548 while (IP != StoreBB) { 3549 if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor())) 3550 return nullptr; 3551 } 3552 3553 // Okay, the store's basic block dominates the insertion point; we 3554 // can do our thing. 3555 return store; 3556 } 3557 3558 // Helper functions for EmitCMSEClearRecord 3559 3560 // Set the bits corresponding to a field having width `BitWidth` and located at 3561 // offset `BitOffset` (from the least significant bit) within a storage unit of 3562 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3563 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3564 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3565 int BitWidth, int CharWidth) { 3566 assert(CharWidth <= 64); 3567 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3568 3569 int Pos = 0; 3570 if (BitOffset >= CharWidth) { 3571 Pos += BitOffset / CharWidth; 3572 BitOffset = BitOffset % CharWidth; 3573 } 3574 3575 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3576 if (BitOffset + BitWidth >= CharWidth) { 3577 Bits[Pos++] |= (Used << BitOffset) & Used; 3578 BitWidth -= CharWidth - BitOffset; 3579 BitOffset = 0; 3580 } 3581 3582 while (BitWidth >= CharWidth) { 3583 Bits[Pos++] = Used; 3584 BitWidth -= CharWidth; 3585 } 3586 3587 if (BitWidth > 0) 3588 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3589 } 3590 3591 // Set the bits corresponding to a field having width `BitWidth` and located at 3592 // offset `BitOffset` (from the least significant bit) within a storage unit of 3593 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3594 // `Bits` corresponds to one target byte. Use target endian layout. 3595 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3596 int StorageSize, int BitOffset, int BitWidth, 3597 int CharWidth, bool BigEndian) { 3598 3599 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3600 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3601 3602 if (BigEndian) 3603 std::reverse(TmpBits.begin(), TmpBits.end()); 3604 3605 for (uint64_t V : TmpBits) 3606 Bits[StorageOffset++] |= V; 3607 } 3608 3609 static void setUsedBits(CodeGenModule &, QualType, int, 3610 SmallVectorImpl<uint64_t> &); 3611 3612 // Set the bits in `Bits`, which correspond to the value representations of 3613 // the actual members of the record type `RTy`. Note that this function does 3614 // not handle base classes, virtual tables, etc, since they cannot happen in 3615 // CMSE function arguments or return. The bit mask corresponds to the target 3616 // memory layout, i.e. it's endian dependent. 3617 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3618 SmallVectorImpl<uint64_t> &Bits) { 3619 ASTContext &Context = CGM.getContext(); 3620 int CharWidth = Context.getCharWidth(); 3621 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3622 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3623 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3624 3625 int Idx = 0; 3626 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3627 const FieldDecl *F = *I; 3628 3629 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3630 F->getType()->isIncompleteArrayType()) 3631 continue; 3632 3633 if (F->isBitField()) { 3634 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3635 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3636 BFI.StorageSize / CharWidth, BFI.Offset, 3637 BFI.Size, CharWidth, 3638 CGM.getDataLayout().isBigEndian()); 3639 continue; 3640 } 3641 3642 setUsedBits(CGM, F->getType(), 3643 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3644 } 3645 } 3646 3647 // Set the bits in `Bits`, which correspond to the value representations of 3648 // the elements of an array type `ATy`. 3649 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3650 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3651 const ASTContext &Context = CGM.getContext(); 3652 3653 QualType ETy = Context.getBaseElementType(ATy); 3654 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3655 SmallVector<uint64_t, 4> TmpBits(Size); 3656 setUsedBits(CGM, ETy, 0, TmpBits); 3657 3658 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3659 auto Src = TmpBits.begin(); 3660 auto Dst = Bits.begin() + Offset + I * Size; 3661 for (int J = 0; J < Size; ++J) 3662 *Dst++ |= *Src++; 3663 } 3664 } 3665 3666 // Set the bits in `Bits`, which correspond to the value representations of 3667 // the type `QTy`. 3668 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3669 SmallVectorImpl<uint64_t> &Bits) { 3670 if (const auto *RTy = QTy->getAs<RecordType>()) 3671 return setUsedBits(CGM, RTy, Offset, Bits); 3672 3673 ASTContext &Context = CGM.getContext(); 3674 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3675 return setUsedBits(CGM, ATy, Offset, Bits); 3676 3677 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3678 if (Size <= 0) 3679 return; 3680 3681 std::fill_n(Bits.begin() + Offset, Size, 3682 (uint64_t(1) << Context.getCharWidth()) - 1); 3683 } 3684 3685 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3686 int Pos, int Size, int CharWidth, 3687 bool BigEndian) { 3688 assert(Size > 0); 3689 uint64_t Mask = 0; 3690 if (BigEndian) { 3691 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3692 ++P) 3693 Mask = (Mask << CharWidth) | *P; 3694 } else { 3695 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3696 do 3697 Mask = (Mask << CharWidth) | *--P; 3698 while (P != End); 3699 } 3700 return Mask; 3701 } 3702 3703 // Emit code to clear the bits in a record, which aren't a part of any user 3704 // declared member, when the record is a function return. 3705 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3706 llvm::IntegerType *ITy, 3707 QualType QTy) { 3708 assert(Src->getType() == ITy); 3709 assert(ITy->getScalarSizeInBits() <= 64); 3710 3711 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3712 int Size = DataLayout.getTypeStoreSize(ITy); 3713 SmallVector<uint64_t, 4> Bits(Size); 3714 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3715 3716 int CharWidth = CGM.getContext().getCharWidth(); 3717 uint64_t Mask = 3718 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3719 3720 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3721 } 3722 3723 // Emit code to clear the bits in a record, which aren't a part of any user 3724 // declared member, when the record is a function argument. 3725 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3726 llvm::ArrayType *ATy, 3727 QualType QTy) { 3728 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3729 int Size = DataLayout.getTypeStoreSize(ATy); 3730 SmallVector<uint64_t, 16> Bits(Size); 3731 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3732 3733 // Clear each element of the LLVM array. 3734 int CharWidth = CGM.getContext().getCharWidth(); 3735 int CharsPerElt = 3736 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3737 int MaskIndex = 0; 3738 llvm::Value *R = llvm::PoisonValue::get(ATy); 3739 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3740 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3741 DataLayout.isBigEndian()); 3742 MaskIndex += CharsPerElt; 3743 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3744 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3745 R = Builder.CreateInsertValue(R, T1, I); 3746 } 3747 3748 return R; 3749 } 3750 3751 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3752 bool EmitRetDbgLoc, 3753 SourceLocation EndLoc) { 3754 if (FI.isNoReturn()) { 3755 // Noreturn functions don't return. 3756 EmitUnreachable(EndLoc); 3757 return; 3758 } 3759 3760 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3761 // Naked functions don't have epilogues. 3762 Builder.CreateUnreachable(); 3763 return; 3764 } 3765 3766 // Functions with no result always return void. 3767 if (!ReturnValue.isValid()) { 3768 Builder.CreateRetVoid(); 3769 return; 3770 } 3771 3772 llvm::DebugLoc RetDbgLoc; 3773 llvm::Value *RV = nullptr; 3774 QualType RetTy = FI.getReturnType(); 3775 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3776 3777 switch (RetAI.getKind()) { 3778 case ABIArgInfo::InAlloca: 3779 // Aggregates get evaluated directly into the destination. Sometimes we 3780 // need to return the sret value in a register, though. 3781 assert(hasAggregateEvaluationKind(RetTy)); 3782 if (RetAI.getInAllocaSRet()) { 3783 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3784 --EI; 3785 llvm::Value *ArgStruct = &*EI; 3786 llvm::Value *SRet = Builder.CreateStructGEP( 3787 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3788 llvm::Type *Ty = 3789 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3790 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3791 } 3792 break; 3793 3794 case ABIArgInfo::Indirect: { 3795 auto AI = CurFn->arg_begin(); 3796 if (RetAI.isSRetAfterThis()) 3797 ++AI; 3798 switch (getEvaluationKind(RetTy)) { 3799 case TEK_Complex: { 3800 ComplexPairTy RT = 3801 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3802 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3803 /*isInit*/ true); 3804 break; 3805 } 3806 case TEK_Aggregate: 3807 // Do nothing; aggregates get evaluated directly into the destination. 3808 break; 3809 case TEK_Scalar: { 3810 LValueBaseInfo BaseInfo; 3811 TBAAAccessInfo TBAAInfo; 3812 CharUnits Alignment = 3813 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3814 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3815 LValue ArgVal = 3816 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3817 EmitStoreOfScalar( 3818 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); 3819 break; 3820 } 3821 } 3822 break; 3823 } 3824 3825 case ABIArgInfo::Extend: 3826 case ABIArgInfo::Direct: 3827 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3828 RetAI.getDirectOffset() == 0) { 3829 // The internal return value temp always will have pointer-to-return-type 3830 // type, just do a load. 3831 3832 // If there is a dominating store to ReturnValue, we can elide 3833 // the load, zap the store, and usually zap the alloca. 3834 if (llvm::StoreInst *SI = 3835 findDominatingStoreToReturnValue(*this)) { 3836 // Reuse the debug location from the store unless there is 3837 // cleanup code to be emitted between the store and return 3838 // instruction. 3839 if (EmitRetDbgLoc && !AutoreleaseResult) 3840 RetDbgLoc = SI->getDebugLoc(); 3841 // Get the stored value and nuke the now-dead store. 3842 RV = SI->getValueOperand(); 3843 SI->eraseFromParent(); 3844 3845 // Otherwise, we have to do a simple load. 3846 } else { 3847 RV = Builder.CreateLoad(ReturnValue); 3848 } 3849 } else { 3850 // If the value is offset in memory, apply the offset now. 3851 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3852 3853 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3854 } 3855 3856 // In ARC, end functions that return a retainable type with a call 3857 // to objc_autoreleaseReturnValue. 3858 if (AutoreleaseResult) { 3859 #ifndef NDEBUG 3860 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3861 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3862 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3863 // CurCodeDecl or BlockInfo. 3864 QualType RT; 3865 3866 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3867 RT = FD->getReturnType(); 3868 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3869 RT = MD->getReturnType(); 3870 else if (isa<BlockDecl>(CurCodeDecl)) 3871 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3872 else 3873 llvm_unreachable("Unexpected function/method type"); 3874 3875 assert(getLangOpts().ObjCAutoRefCount && 3876 !FI.isReturnsRetained() && 3877 RT->isObjCRetainableType()); 3878 #endif 3879 RV = emitAutoreleaseOfResult(*this, RV); 3880 } 3881 3882 break; 3883 3884 case ABIArgInfo::Ignore: 3885 break; 3886 3887 case ABIArgInfo::CoerceAndExpand: { 3888 auto coercionType = RetAI.getCoerceAndExpandType(); 3889 3890 // Load all of the coerced elements out into results. 3891 llvm::SmallVector<llvm::Value*, 4> results; 3892 Address addr = ReturnValue.withElementType(coercionType); 3893 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3894 auto coercedEltType = coercionType->getElementType(i); 3895 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3896 continue; 3897 3898 auto eltAddr = Builder.CreateStructGEP(addr, i); 3899 auto elt = Builder.CreateLoad(eltAddr); 3900 results.push_back(elt); 3901 } 3902 3903 // If we have one result, it's the single direct result type. 3904 if (results.size() == 1) { 3905 RV = results[0]; 3906 3907 // Otherwise, we need to make a first-class aggregate. 3908 } else { 3909 // Construct a return type that lacks padding elements. 3910 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3911 3912 RV = llvm::PoisonValue::get(returnType); 3913 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3914 RV = Builder.CreateInsertValue(RV, results[i], i); 3915 } 3916 } 3917 break; 3918 } 3919 case ABIArgInfo::Expand: 3920 case ABIArgInfo::IndirectAliased: 3921 llvm_unreachable("Invalid ABI kind for return argument"); 3922 } 3923 3924 llvm::Instruction *Ret; 3925 if (RV) { 3926 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3927 // For certain return types, clear padding bits, as they may reveal 3928 // sensitive information. 3929 // Small struct/union types are passed as integers. 3930 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3931 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3932 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3933 } 3934 EmitReturnValueCheck(RV); 3935 Ret = Builder.CreateRet(RV); 3936 } else { 3937 Ret = Builder.CreateRetVoid(); 3938 } 3939 3940 if (RetDbgLoc) 3941 Ret->setDebugLoc(std::move(RetDbgLoc)); 3942 } 3943 3944 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3945 // A current decl may not be available when emitting vtable thunks. 3946 if (!CurCodeDecl) 3947 return; 3948 3949 // If the return block isn't reachable, neither is this check, so don't emit 3950 // it. 3951 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3952 return; 3953 3954 ReturnsNonNullAttr *RetNNAttr = nullptr; 3955 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3956 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3957 3958 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3959 return; 3960 3961 // Prefer the returns_nonnull attribute if it's present. 3962 SourceLocation AttrLoc; 3963 SanitizerMask CheckKind; 3964 SanitizerHandler Handler; 3965 if (RetNNAttr) { 3966 assert(!requiresReturnValueNullabilityCheck() && 3967 "Cannot check nullability and the nonnull attribute"); 3968 AttrLoc = RetNNAttr->getLocation(); 3969 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3970 Handler = SanitizerHandler::NonnullReturn; 3971 } else { 3972 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3973 if (auto *TSI = DD->getTypeSourceInfo()) 3974 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3975 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3976 CheckKind = SanitizerKind::NullabilityReturn; 3977 Handler = SanitizerHandler::NullabilityReturn; 3978 } 3979 3980 SanitizerScope SanScope(this); 3981 3982 // Make sure the "return" source location is valid. If we're checking a 3983 // nullability annotation, make sure the preconditions for the check are met. 3984 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3985 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3986 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3987 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3988 if (requiresReturnValueNullabilityCheck()) 3989 CanNullCheck = 3990 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3991 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3992 EmitBlock(Check); 3993 3994 // Now do the null check. 3995 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3996 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3997 llvm::Value *DynamicData[] = {SLocPtr}; 3998 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3999 4000 EmitBlock(NoCheck); 4001 4002 #ifndef NDEBUG 4003 // The return location should not be used after the check has been emitted. 4004 ReturnLocation = Address::invalid(); 4005 #endif 4006 } 4007 4008 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 4009 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 4010 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 4011 } 4012 4013 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 4014 QualType Ty) { 4015 // FIXME: Generate IR in one pass, rather than going back and fixing up these 4016 // placeholders. 4017 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 4018 llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext()); 4019 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy); 4020 4021 // FIXME: When we generate this IR in one pass, we shouldn't need 4022 // this win32-specific alignment hack. 4023 CharUnits Align = CharUnits::fromQuantity(4); 4024 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 4025 4026 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 4027 Ty.getQualifiers(), 4028 AggValueSlot::IsNotDestructed, 4029 AggValueSlot::DoesNotNeedGCBarriers, 4030 AggValueSlot::IsNotAliased, 4031 AggValueSlot::DoesNotOverlap); 4032 } 4033 4034 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 4035 const VarDecl *param, 4036 SourceLocation loc) { 4037 // StartFunction converted the ABI-lowered parameter(s) into a 4038 // local alloca. We need to turn that into an r-value suitable 4039 // for EmitCall. 4040 Address local = GetAddrOfLocalVar(param); 4041 4042 QualType type = param->getType(); 4043 4044 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 4045 // but the argument needs to be the original pointer. 4046 if (type->isReferenceType()) { 4047 args.add(RValue::get(Builder.CreateLoad(local)), type); 4048 4049 // In ARC, move out of consumed arguments so that the release cleanup 4050 // entered by StartFunction doesn't cause an over-release. This isn't 4051 // optimal -O0 code generation, but it should get cleaned up when 4052 // optimization is enabled. This also assumes that delegate calls are 4053 // performed exactly once for a set of arguments, but that should be safe. 4054 } else if (getLangOpts().ObjCAutoRefCount && 4055 param->hasAttr<NSConsumedAttr>() && 4056 type->isObjCRetainableType()) { 4057 llvm::Value *ptr = Builder.CreateLoad(local); 4058 auto null = 4059 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 4060 Builder.CreateStore(null, local); 4061 args.add(RValue::get(ptr), type); 4062 4063 // For the most part, we just need to load the alloca, except that 4064 // aggregate r-values are actually pointers to temporaries. 4065 } else { 4066 args.add(convertTempToRValue(local, type, loc), type); 4067 } 4068 4069 // Deactivate the cleanup for the callee-destructed param that was pushed. 4070 if (type->isRecordType() && !CurFuncIsThunk && 4071 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 4072 param->needsDestruction(getContext())) { 4073 EHScopeStack::stable_iterator cleanup = 4074 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 4075 assert(cleanup.isValid() && 4076 "cleanup for callee-destructed param not recorded"); 4077 // This unreachable is a temporary marker which will be removed later. 4078 llvm::Instruction *isActive = Builder.CreateUnreachable(); 4079 args.addArgCleanupDeactivation(cleanup, isActive); 4080 } 4081 } 4082 4083 static bool isProvablyNull(llvm::Value *addr) { 4084 return isa<llvm::ConstantPointerNull>(addr); 4085 } 4086 4087 /// Emit the actual writing-back of a writeback. 4088 static void emitWriteback(CodeGenFunction &CGF, 4089 const CallArgList::Writeback &writeback) { 4090 const LValue &srcLV = writeback.Source; 4091 Address srcAddr = srcLV.getAddress(CGF); 4092 assert(!isProvablyNull(srcAddr.getPointer()) && 4093 "shouldn't have writeback for provably null argument"); 4094 4095 llvm::BasicBlock *contBB = nullptr; 4096 4097 // If the argument wasn't provably non-null, we need to null check 4098 // before doing the store. 4099 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 4100 CGF.CGM.getDataLayout()); 4101 if (!provablyNonNull) { 4102 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 4103 contBB = CGF.createBasicBlock("icr.done"); 4104 4105 llvm::Value *isNull = 4106 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 4107 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 4108 CGF.EmitBlock(writebackBB); 4109 } 4110 4111 // Load the value to writeback. 4112 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 4113 4114 // Cast it back, in case we're writing an id to a Foo* or something. 4115 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 4116 "icr.writeback-cast"); 4117 4118 // Perform the writeback. 4119 4120 // If we have a "to use" value, it's something we need to emit a use 4121 // of. This has to be carefully threaded in: if it's done after the 4122 // release it's potentially undefined behavior (and the optimizer 4123 // will ignore it), and if it happens before the retain then the 4124 // optimizer could move the release there. 4125 if (writeback.ToUse) { 4126 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 4127 4128 // Retain the new value. No need to block-copy here: the block's 4129 // being passed up the stack. 4130 value = CGF.EmitARCRetainNonBlock(value); 4131 4132 // Emit the intrinsic use here. 4133 CGF.EmitARCIntrinsicUse(writeback.ToUse); 4134 4135 // Load the old value (primitively). 4136 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 4137 4138 // Put the new value in place (primitively). 4139 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 4140 4141 // Release the old value. 4142 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 4143 4144 // Otherwise, we can just do a normal lvalue store. 4145 } else { 4146 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 4147 } 4148 4149 // Jump to the continuation block. 4150 if (!provablyNonNull) 4151 CGF.EmitBlock(contBB); 4152 } 4153 4154 static void emitWritebacks(CodeGenFunction &CGF, 4155 const CallArgList &args) { 4156 for (const auto &I : args.writebacks()) 4157 emitWriteback(CGF, I); 4158 } 4159 4160 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 4161 const CallArgList &CallArgs) { 4162 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 4163 CallArgs.getCleanupsToDeactivate(); 4164 // Iterate in reverse to increase the likelihood of popping the cleanup. 4165 for (const auto &I : llvm::reverse(Cleanups)) { 4166 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 4167 I.IsActiveIP->eraseFromParent(); 4168 } 4169 } 4170 4171 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 4172 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 4173 if (uop->getOpcode() == UO_AddrOf) 4174 return uop->getSubExpr(); 4175 return nullptr; 4176 } 4177 4178 /// Emit an argument that's being passed call-by-writeback. That is, 4179 /// we are passing the address of an __autoreleased temporary; it 4180 /// might be copy-initialized with the current value of the given 4181 /// address, but it will definitely be copied out of after the call. 4182 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 4183 const ObjCIndirectCopyRestoreExpr *CRE) { 4184 LValue srcLV; 4185 4186 // Make an optimistic effort to emit the address as an l-value. 4187 // This can fail if the argument expression is more complicated. 4188 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 4189 srcLV = CGF.EmitLValue(lvExpr); 4190 4191 // Otherwise, just emit it as a scalar. 4192 } else { 4193 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 4194 4195 QualType srcAddrType = 4196 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 4197 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 4198 } 4199 Address srcAddr = srcLV.getAddress(CGF); 4200 4201 // The dest and src types don't necessarily match in LLVM terms 4202 // because of the crazy ObjC compatibility rules. 4203 4204 llvm::PointerType *destType = 4205 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 4206 llvm::Type *destElemType = 4207 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 4208 4209 // If the address is a constant null, just pass the appropriate null. 4210 if (isProvablyNull(srcAddr.getPointer())) { 4211 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 4212 CRE->getType()); 4213 return; 4214 } 4215 4216 // Create the temporary. 4217 Address temp = 4218 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 4219 // Loading an l-value can introduce a cleanup if the l-value is __weak, 4220 // and that cleanup will be conditional if we can't prove that the l-value 4221 // isn't null, so we need to register a dominating point so that the cleanups 4222 // system will make valid IR. 4223 CodeGenFunction::ConditionalEvaluation condEval(CGF); 4224 4225 // Zero-initialize it if we're not doing a copy-initialization. 4226 bool shouldCopy = CRE->shouldCopy(); 4227 if (!shouldCopy) { 4228 llvm::Value *null = 4229 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 4230 CGF.Builder.CreateStore(null, temp); 4231 } 4232 4233 llvm::BasicBlock *contBB = nullptr; 4234 llvm::BasicBlock *originBB = nullptr; 4235 4236 // If the address is *not* known to be non-null, we need to switch. 4237 llvm::Value *finalArgument; 4238 4239 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 4240 CGF.CGM.getDataLayout()); 4241 if (provablyNonNull) { 4242 finalArgument = temp.getPointer(); 4243 } else { 4244 llvm::Value *isNull = 4245 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 4246 4247 finalArgument = CGF.Builder.CreateSelect(isNull, 4248 llvm::ConstantPointerNull::get(destType), 4249 temp.getPointer(), "icr.argument"); 4250 4251 // If we need to copy, then the load has to be conditional, which 4252 // means we need control flow. 4253 if (shouldCopy) { 4254 originBB = CGF.Builder.GetInsertBlock(); 4255 contBB = CGF.createBasicBlock("icr.cont"); 4256 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 4257 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 4258 CGF.EmitBlock(copyBB); 4259 condEval.begin(CGF); 4260 } 4261 } 4262 4263 llvm::Value *valueToUse = nullptr; 4264 4265 // Perform a copy if necessary. 4266 if (shouldCopy) { 4267 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 4268 assert(srcRV.isScalar()); 4269 4270 llvm::Value *src = srcRV.getScalarVal(); 4271 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4272 4273 // Use an ordinary store, not a store-to-lvalue. 4274 CGF.Builder.CreateStore(src, temp); 4275 4276 // If optimization is enabled, and the value was held in a 4277 // __strong variable, we need to tell the optimizer that this 4278 // value has to stay alive until we're doing the store back. 4279 // This is because the temporary is effectively unretained, 4280 // and so otherwise we can violate the high-level semantics. 4281 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4282 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4283 valueToUse = src; 4284 } 4285 } 4286 4287 // Finish the control flow if we needed it. 4288 if (shouldCopy && !provablyNonNull) { 4289 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4290 CGF.EmitBlock(contBB); 4291 4292 // Make a phi for the value to intrinsically use. 4293 if (valueToUse) { 4294 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4295 "icr.to-use"); 4296 phiToUse->addIncoming(valueToUse, copyBB); 4297 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4298 originBB); 4299 valueToUse = phiToUse; 4300 } 4301 4302 condEval.end(CGF); 4303 } 4304 4305 args.addWriteback(srcLV, temp, valueToUse); 4306 args.add(RValue::get(finalArgument), CRE->getType()); 4307 } 4308 4309 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4310 assert(!StackBase); 4311 4312 // Save the stack. 4313 StackBase = CGF.Builder.CreateStackSave("inalloca.save"); 4314 } 4315 4316 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4317 if (StackBase) { 4318 // Restore the stack after the call. 4319 CGF.Builder.CreateStackRestore(StackBase); 4320 } 4321 } 4322 4323 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4324 SourceLocation ArgLoc, 4325 AbstractCallee AC, 4326 unsigned ParmNum) { 4327 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4328 SanOpts.has(SanitizerKind::NullabilityArg))) 4329 return; 4330 4331 // The param decl may be missing in a variadic function. 4332 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4333 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4334 4335 // Prefer the nonnull attribute if it's present. 4336 const NonNullAttr *NNAttr = nullptr; 4337 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4338 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4339 4340 bool CanCheckNullability = false; 4341 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4342 auto Nullability = PVD->getType()->getNullability(); 4343 CanCheckNullability = Nullability && 4344 *Nullability == NullabilityKind::NonNull && 4345 PVD->getTypeSourceInfo(); 4346 } 4347 4348 if (!NNAttr && !CanCheckNullability) 4349 return; 4350 4351 SourceLocation AttrLoc; 4352 SanitizerMask CheckKind; 4353 SanitizerHandler Handler; 4354 if (NNAttr) { 4355 AttrLoc = NNAttr->getLocation(); 4356 CheckKind = SanitizerKind::NonnullAttribute; 4357 Handler = SanitizerHandler::NonnullArg; 4358 } else { 4359 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4360 CheckKind = SanitizerKind::NullabilityArg; 4361 Handler = SanitizerHandler::NullabilityArg; 4362 } 4363 4364 SanitizerScope SanScope(this); 4365 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4366 llvm::Constant *StaticData[] = { 4367 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4368 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4369 }; 4370 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt); 4371 } 4372 4373 // Check if the call is going to use the inalloca convention. This needs to 4374 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4375 // later, so we can't check it directly. 4376 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4377 ArrayRef<QualType> ArgTypes) { 4378 // The Swift calling conventions don't go through the target-specific 4379 // argument classification, they never use inalloca. 4380 // TODO: Consider limiting inalloca use to only calling conventions supported 4381 // by MSVC. 4382 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4383 return false; 4384 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4385 return false; 4386 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4387 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4388 }); 4389 } 4390 4391 #ifndef NDEBUG 4392 // Determine whether the given argument is an Objective-C method 4393 // that may have type parameters in its signature. 4394 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4395 const DeclContext *dc = method->getDeclContext(); 4396 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4397 return classDecl->getTypeParamListAsWritten(); 4398 } 4399 4400 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4401 return catDecl->getTypeParamList(); 4402 } 4403 4404 return false; 4405 } 4406 #endif 4407 4408 /// EmitCallArgs - Emit call arguments for a function. 4409 void CodeGenFunction::EmitCallArgs( 4410 CallArgList &Args, PrototypeWrapper Prototype, 4411 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4412 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4413 SmallVector<QualType, 16> ArgTypes; 4414 4415 assert((ParamsToSkip == 0 || Prototype.P) && 4416 "Can't skip parameters if type info is not provided"); 4417 4418 // This variable only captures *explicitly* written conventions, not those 4419 // applied by default via command line flags or target defaults, such as 4420 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4421 // require knowing if this is a C++ instance method or being able to see 4422 // unprototyped FunctionTypes. 4423 CallingConv ExplicitCC = CC_C; 4424 4425 // First, if a prototype was provided, use those argument types. 4426 bool IsVariadic = false; 4427 if (Prototype.P) { 4428 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4429 if (MD) { 4430 IsVariadic = MD->isVariadic(); 4431 ExplicitCC = getCallingConventionForDecl( 4432 MD, CGM.getTarget().getTriple().isOSWindows()); 4433 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4434 MD->param_type_end()); 4435 } else { 4436 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4437 IsVariadic = FPT->isVariadic(); 4438 ExplicitCC = FPT->getExtInfo().getCC(); 4439 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4440 FPT->param_type_end()); 4441 } 4442 4443 #ifndef NDEBUG 4444 // Check that the prototyped types match the argument expression types. 4445 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4446 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4447 for (QualType Ty : ArgTypes) { 4448 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4449 assert( 4450 (isGenericMethod || Ty->isVariablyModifiedType() || 4451 Ty.getNonReferenceType()->isObjCRetainableType() || 4452 getContext() 4453 .getCanonicalType(Ty.getNonReferenceType()) 4454 .getTypePtr() == 4455 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4456 "type mismatch in call argument!"); 4457 ++Arg; 4458 } 4459 4460 // Either we've emitted all the call args, or we have a call to variadic 4461 // function. 4462 assert((Arg == ArgRange.end() || IsVariadic) && 4463 "Extra arguments in non-variadic function!"); 4464 #endif 4465 } 4466 4467 // If we still have any arguments, emit them using the type of the argument. 4468 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4469 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4470 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4471 4472 // We must evaluate arguments from right to left in the MS C++ ABI, 4473 // because arguments are destroyed left to right in the callee. As a special 4474 // case, there are certain language constructs that require left-to-right 4475 // evaluation, and in those cases we consider the evaluation order requirement 4476 // to trump the "destruction order is reverse construction order" guarantee. 4477 bool LeftToRight = 4478 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4479 ? Order == EvaluationOrder::ForceLeftToRight 4480 : Order != EvaluationOrder::ForceRightToLeft; 4481 4482 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4483 RValue EmittedArg) { 4484 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4485 return; 4486 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4487 if (PS == nullptr) 4488 return; 4489 4490 const auto &Context = getContext(); 4491 auto SizeTy = Context.getSizeType(); 4492 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4493 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4494 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4495 EmittedArg.getScalarVal(), 4496 PS->isDynamic()); 4497 Args.add(RValue::get(V), SizeTy); 4498 // If we're emitting args in reverse, be sure to do so with 4499 // pass_object_size, as well. 4500 if (!LeftToRight) 4501 std::swap(Args.back(), *(&Args.back() - 1)); 4502 }; 4503 4504 // Insert a stack save if we're going to need any inalloca args. 4505 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4506 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4507 "inalloca only supported on x86"); 4508 Args.allocateArgumentMemory(*this); 4509 } 4510 4511 // Evaluate each argument in the appropriate order. 4512 size_t CallArgsStart = Args.size(); 4513 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4514 unsigned Idx = LeftToRight ? I : E - I - 1; 4515 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4516 unsigned InitialArgSize = Args.size(); 4517 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4518 // the argument and parameter match or the objc method is parameterized. 4519 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4520 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4521 ArgTypes[Idx]) || 4522 (isa<ObjCMethodDecl>(AC.getDecl()) && 4523 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4524 "Argument and parameter types don't match"); 4525 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4526 // In particular, we depend on it being the last arg in Args, and the 4527 // objectsize bits depend on there only being one arg if !LeftToRight. 4528 assert(InitialArgSize + 1 == Args.size() && 4529 "The code below depends on only adding one arg per EmitCallArg"); 4530 (void)InitialArgSize; 4531 // Since pointer argument are never emitted as LValue, it is safe to emit 4532 // non-null argument check for r-value only. 4533 if (!Args.back().hasLValue()) { 4534 RValue RVArg = Args.back().getKnownRValue(); 4535 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4536 ParamsToSkip + Idx); 4537 // @llvm.objectsize should never have side-effects and shouldn't need 4538 // destruction/cleanups, so we can safely "emit" it after its arg, 4539 // regardless of right-to-leftness 4540 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4541 } 4542 } 4543 4544 if (!LeftToRight) { 4545 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4546 // IR function. 4547 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4548 } 4549 } 4550 4551 namespace { 4552 4553 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4554 DestroyUnpassedArg(Address Addr, QualType Ty) 4555 : Addr(Addr), Ty(Ty) {} 4556 4557 Address Addr; 4558 QualType Ty; 4559 4560 void Emit(CodeGenFunction &CGF, Flags flags) override { 4561 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4562 if (DtorKind == QualType::DK_cxx_destructor) { 4563 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4564 assert(!Dtor->isTrivial()); 4565 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4566 /*Delegating=*/false, Addr, Ty); 4567 } else { 4568 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4569 } 4570 } 4571 }; 4572 4573 struct DisableDebugLocationUpdates { 4574 CodeGenFunction &CGF; 4575 bool disabledDebugInfo; 4576 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4577 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4578 CGF.disableDebugInfo(); 4579 } 4580 ~DisableDebugLocationUpdates() { 4581 if (disabledDebugInfo) 4582 CGF.enableDebugInfo(); 4583 } 4584 }; 4585 4586 } // end anonymous namespace 4587 4588 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4589 if (!HasLV) 4590 return RV; 4591 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4592 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4593 LV.isVolatile()); 4594 IsUsed = true; 4595 return RValue::getAggregate(Copy.getAddress(CGF)); 4596 } 4597 4598 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4599 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4600 if (!HasLV && RV.isScalar()) 4601 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4602 else if (!HasLV && RV.isComplex()) 4603 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4604 else { 4605 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4606 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4607 // We assume that call args are never copied into subobjects. 4608 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4609 HasLV ? LV.isVolatileQualified() 4610 : RV.isVolatileQualified()); 4611 } 4612 IsUsed = true; 4613 } 4614 4615 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4616 QualType type) { 4617 DisableDebugLocationUpdates Dis(*this, E); 4618 if (const ObjCIndirectCopyRestoreExpr *CRE 4619 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4620 assert(getLangOpts().ObjCAutoRefCount); 4621 return emitWritebackArg(*this, args, CRE); 4622 } 4623 4624 assert(type->isReferenceType() == E->isGLValue() && 4625 "reference binding to unmaterialized r-value!"); 4626 4627 if (E->isGLValue()) { 4628 assert(E->getObjectKind() == OK_Ordinary); 4629 return args.add(EmitReferenceBindingToExpr(E), type); 4630 } 4631 4632 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4633 4634 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4635 // However, we still have to push an EH-only cleanup in case we unwind before 4636 // we make it to the call. 4637 if (type->isRecordType() && 4638 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4639 // If we're using inalloca, use the argument memory. Otherwise, use a 4640 // temporary. 4641 AggValueSlot Slot = args.isUsingInAlloca() 4642 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4643 4644 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4645 if (const auto *RD = type->getAsCXXRecordDecl()) 4646 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4647 else 4648 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4649 4650 if (DestroyedInCallee) 4651 Slot.setExternallyDestructed(); 4652 4653 EmitAggExpr(E, Slot); 4654 RValue RV = Slot.asRValue(); 4655 args.add(RV, type); 4656 4657 if (DestroyedInCallee && NeedsEHCleanup) { 4658 // Create a no-op GEP between the placeholder and the cleanup so we can 4659 // RAUW it successfully. It also serves as a marker of the first 4660 // instruction where the cleanup is active. 4661 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4662 type); 4663 // This unreachable is a temporary marker which will be removed later. 4664 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4665 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4666 } 4667 return; 4668 } 4669 4670 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4671 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4672 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4673 assert(L.isSimple()); 4674 args.addUncopiedAggregate(L, type); 4675 return; 4676 } 4677 4678 args.add(EmitAnyExprToTemp(E), type); 4679 } 4680 4681 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4682 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4683 // implicitly widens null pointer constants that are arguments to varargs 4684 // functions to pointer-sized ints. 4685 if (!getTarget().getTriple().isOSWindows()) 4686 return Arg->getType(); 4687 4688 if (Arg->getType()->isIntegerType() && 4689 getContext().getTypeSize(Arg->getType()) < 4690 getContext().getTargetInfo().getPointerWidth(LangAS::Default) && 4691 Arg->isNullPointerConstant(getContext(), 4692 Expr::NPC_ValueDependentIsNotNull)) { 4693 return getContext().getIntPtrType(); 4694 } 4695 4696 return Arg->getType(); 4697 } 4698 4699 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4700 // optimizer it can aggressively ignore unwind edges. 4701 void 4702 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4703 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4704 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4705 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4706 CGM.getNoObjCARCExceptionsMetadata()); 4707 } 4708 4709 /// Emits a call to the given no-arguments nounwind runtime function. 4710 llvm::CallInst * 4711 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4712 const llvm::Twine &name) { 4713 return EmitNounwindRuntimeCall(callee, std::nullopt, name); 4714 } 4715 4716 /// Emits a call to the given nounwind runtime function. 4717 llvm::CallInst * 4718 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4719 ArrayRef<llvm::Value *> args, 4720 const llvm::Twine &name) { 4721 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4722 call->setDoesNotThrow(); 4723 return call; 4724 } 4725 4726 /// Emits a simple call (never an invoke) to the given no-arguments 4727 /// runtime function. 4728 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4729 const llvm::Twine &name) { 4730 return EmitRuntimeCall(callee, std::nullopt, name); 4731 } 4732 4733 // Calls which may throw must have operand bundles indicating which funclet 4734 // they are nested within. 4735 SmallVector<llvm::OperandBundleDef, 1> 4736 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4737 // There is no need for a funclet operand bundle if we aren't inside a 4738 // funclet. 4739 if (!CurrentFuncletPad) 4740 return (SmallVector<llvm::OperandBundleDef, 1>()); 4741 4742 // Skip intrinsics which cannot throw (as long as they don't lower into 4743 // regular function calls in the course of IR transformations). 4744 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) { 4745 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { 4746 auto IID = CalleeFn->getIntrinsicID(); 4747 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) 4748 return (SmallVector<llvm::OperandBundleDef, 1>()); 4749 } 4750 } 4751 4752 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4753 BundleList.emplace_back("funclet", CurrentFuncletPad); 4754 return BundleList; 4755 } 4756 4757 /// Emits a simple call (never an invoke) to the given runtime function. 4758 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4759 ArrayRef<llvm::Value *> args, 4760 const llvm::Twine &name) { 4761 llvm::CallInst *call = Builder.CreateCall( 4762 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4763 call->setCallingConv(getRuntimeCC()); 4764 return call; 4765 } 4766 4767 /// Emits a call or invoke to the given noreturn runtime function. 4768 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4769 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4770 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4771 getBundlesForFunclet(callee.getCallee()); 4772 4773 if (getInvokeDest()) { 4774 llvm::InvokeInst *invoke = 4775 Builder.CreateInvoke(callee, 4776 getUnreachableBlock(), 4777 getInvokeDest(), 4778 args, 4779 BundleList); 4780 invoke->setDoesNotReturn(); 4781 invoke->setCallingConv(getRuntimeCC()); 4782 } else { 4783 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4784 call->setDoesNotReturn(); 4785 call->setCallingConv(getRuntimeCC()); 4786 Builder.CreateUnreachable(); 4787 } 4788 } 4789 4790 /// Emits a call or invoke instruction to the given nullary runtime function. 4791 llvm::CallBase * 4792 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4793 const Twine &name) { 4794 return EmitRuntimeCallOrInvoke(callee, std::nullopt, name); 4795 } 4796 4797 /// Emits a call or invoke instruction to the given runtime function. 4798 llvm::CallBase * 4799 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4800 ArrayRef<llvm::Value *> args, 4801 const Twine &name) { 4802 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4803 call->setCallingConv(getRuntimeCC()); 4804 return call; 4805 } 4806 4807 /// Emits a call or invoke instruction to the given function, depending 4808 /// on the current state of the EH stack. 4809 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4810 ArrayRef<llvm::Value *> Args, 4811 const Twine &Name) { 4812 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4813 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4814 getBundlesForFunclet(Callee.getCallee()); 4815 4816 llvm::CallBase *Inst; 4817 if (!InvokeDest) 4818 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4819 else { 4820 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4821 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4822 Name); 4823 EmitBlock(ContBB); 4824 } 4825 4826 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4827 // optimizer it can aggressively ignore unwind edges. 4828 if (CGM.getLangOpts().ObjCAutoRefCount) 4829 AddObjCARCExceptionMetadata(Inst); 4830 4831 return Inst; 4832 } 4833 4834 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4835 llvm::Value *New) { 4836 DeferredReplacements.push_back( 4837 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4838 } 4839 4840 namespace { 4841 4842 /// Specify given \p NewAlign as the alignment of return value attribute. If 4843 /// such attribute already exists, re-set it to the maximal one of two options. 4844 [[nodiscard]] llvm::AttributeList 4845 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4846 const llvm::AttributeList &Attrs, 4847 llvm::Align NewAlign) { 4848 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4849 if (CurAlign >= NewAlign) 4850 return Attrs; 4851 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4852 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4853 .addRetAttribute(Ctx, AlignAttr); 4854 } 4855 4856 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4857 protected: 4858 CodeGenFunction &CGF; 4859 4860 /// We do nothing if this is, or becomes, nullptr. 4861 const AlignedAttrTy *AA = nullptr; 4862 4863 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4864 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4865 4866 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4867 : CGF(CGF_) { 4868 if (!FuncDecl) 4869 return; 4870 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4871 } 4872 4873 public: 4874 /// If we can, materialize the alignment as an attribute on return value. 4875 [[nodiscard]] llvm::AttributeList 4876 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4877 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4878 return Attrs; 4879 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4880 if (!AlignmentCI) 4881 return Attrs; 4882 // We may legitimately have non-power-of-2 alignment here. 4883 // If so, this is UB land, emit it via `@llvm.assume` instead. 4884 if (!AlignmentCI->getValue().isPowerOf2()) 4885 return Attrs; 4886 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4887 CGF.getLLVMContext(), Attrs, 4888 llvm::Align( 4889 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4890 AA = nullptr; // We're done. Disallow doing anything else. 4891 return NewAttrs; 4892 } 4893 4894 /// Emit alignment assumption. 4895 /// This is a general fallback that we take if either there is an offset, 4896 /// or the alignment is variable or we are sanitizing for alignment. 4897 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4898 if (!AA) 4899 return; 4900 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4901 AA->getLocation(), Alignment, OffsetCI); 4902 AA = nullptr; // We're done. Disallow doing anything else. 4903 } 4904 }; 4905 4906 /// Helper data structure to emit `AssumeAlignedAttr`. 4907 class AssumeAlignedAttrEmitter final 4908 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4909 public: 4910 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4911 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4912 if (!AA) 4913 return; 4914 // It is guaranteed that the alignment/offset are constants. 4915 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4916 if (Expr *Offset = AA->getOffset()) { 4917 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4918 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4919 OffsetCI = nullptr; 4920 } 4921 } 4922 }; 4923 4924 /// Helper data structure to emit `AllocAlignAttr`. 4925 class AllocAlignAttrEmitter final 4926 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4927 public: 4928 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4929 const CallArgList &CallArgs) 4930 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4931 if (!AA) 4932 return; 4933 // Alignment may or may not be a constant, and that is okay. 4934 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4935 .getRValue(CGF) 4936 .getScalarVal(); 4937 } 4938 }; 4939 4940 } // namespace 4941 4942 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 4943 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 4944 return VT->getPrimitiveSizeInBits().getKnownMinValue(); 4945 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 4946 return getMaxVectorWidth(AT->getElementType()); 4947 4948 unsigned MaxVectorWidth = 0; 4949 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 4950 for (auto *I : ST->elements()) 4951 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 4952 return MaxVectorWidth; 4953 } 4954 4955 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4956 const CGCallee &Callee, 4957 ReturnValueSlot ReturnValue, 4958 const CallArgList &CallArgs, 4959 llvm::CallBase **callOrInvoke, bool IsMustTail, 4960 SourceLocation Loc) { 4961 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4962 4963 assert(Callee.isOrdinary() || Callee.isVirtual()); 4964 4965 // Handle struct-return functions by passing a pointer to the 4966 // location that we would like to return into. 4967 QualType RetTy = CallInfo.getReturnType(); 4968 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4969 4970 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4971 4972 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4973 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4974 // We can only guarantee that a function is called from the correct 4975 // context/function based on the appropriate target attributes, 4976 // so only check in the case where we have both always_inline and target 4977 // since otherwise we could be making a conditional call after a check for 4978 // the proper cpu features (and it won't cause code generation issues due to 4979 // function based code generation). 4980 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4981 (TargetDecl->hasAttr<TargetAttr>() || 4982 (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>()))) 4983 checkTargetFeatures(Loc, FD); 4984 4985 // Some architectures (such as x86-64) have the ABI changed based on 4986 // attribute-target/features. Give them a chance to diagnose. 4987 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4988 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4989 } 4990 4991 // 1. Set up the arguments. 4992 4993 // If we're using inalloca, insert the allocation after the stack save. 4994 // FIXME: Do this earlier rather than hacking it in here! 4995 Address ArgMemory = Address::invalid(); 4996 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4997 const llvm::DataLayout &DL = CGM.getDataLayout(); 4998 llvm::Instruction *IP = CallArgs.getStackBase(); 4999 llvm::AllocaInst *AI; 5000 if (IP) { 5001 IP = IP->getNextNode(); 5002 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 5003 "argmem", IP); 5004 } else { 5005 AI = CreateTempAlloca(ArgStruct, "argmem"); 5006 } 5007 auto Align = CallInfo.getArgStructAlignment(); 5008 AI->setAlignment(Align.getAsAlign()); 5009 AI->setUsedWithInAlloca(true); 5010 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 5011 ArgMemory = Address(AI, ArgStruct, Align); 5012 } 5013 5014 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 5015 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 5016 5017 // If the call returns a temporary with struct return, create a temporary 5018 // alloca to hold the result, unless one is given to us. 5019 Address SRetPtr = Address::invalid(); 5020 Address SRetAlloca = Address::invalid(); 5021 llvm::Value *UnusedReturnSizePtr = nullptr; 5022 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 5023 if (!ReturnValue.isNull()) { 5024 SRetPtr = ReturnValue.getValue(); 5025 } else { 5026 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 5027 if (HaveInsertPoint() && ReturnValue.isUnused()) { 5028 llvm::TypeSize size = 5029 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 5030 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 5031 } 5032 } 5033 if (IRFunctionArgs.hasSRetArg()) { 5034 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 5035 } else if (RetAI.isInAlloca()) { 5036 Address Addr = 5037 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 5038 Builder.CreateStore(SRetPtr.getPointer(), Addr); 5039 } 5040 } 5041 5042 Address swiftErrorTemp = Address::invalid(); 5043 Address swiftErrorArg = Address::invalid(); 5044 5045 // When passing arguments using temporary allocas, we need to add the 5046 // appropriate lifetime markers. This vector keeps track of all the lifetime 5047 // markers that need to be ended right after the call. 5048 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 5049 5050 // Translate all of the arguments as necessary to match the IR lowering. 5051 assert(CallInfo.arg_size() == CallArgs.size() && 5052 "Mismatch between function signature & arguments."); 5053 unsigned ArgNo = 0; 5054 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 5055 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 5056 I != E; ++I, ++info_it, ++ArgNo) { 5057 const ABIArgInfo &ArgInfo = info_it->info; 5058 5059 // Insert a padding argument to ensure proper alignment. 5060 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 5061 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 5062 llvm::UndefValue::get(ArgInfo.getPaddingType()); 5063 5064 unsigned FirstIRArg, NumIRArgs; 5065 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 5066 5067 bool ArgHasMaybeUndefAttr = 5068 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo); 5069 5070 switch (ArgInfo.getKind()) { 5071 case ABIArgInfo::InAlloca: { 5072 assert(NumIRArgs == 0); 5073 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 5074 if (I->isAggregate()) { 5075 Address Addr = I->hasLValue() 5076 ? I->getKnownLValue().getAddress(*this) 5077 : I->getKnownRValue().getAggregateAddress(); 5078 llvm::Instruction *Placeholder = 5079 cast<llvm::Instruction>(Addr.getPointer()); 5080 5081 if (!ArgInfo.getInAllocaIndirect()) { 5082 // Replace the placeholder with the appropriate argument slot GEP. 5083 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 5084 Builder.SetInsertPoint(Placeholder); 5085 Addr = Builder.CreateStructGEP(ArgMemory, 5086 ArgInfo.getInAllocaFieldIndex()); 5087 Builder.restoreIP(IP); 5088 } else { 5089 // For indirect things such as overaligned structs, replace the 5090 // placeholder with a regular aggregate temporary alloca. Store the 5091 // address of this alloca into the struct. 5092 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 5093 Address ArgSlot = Builder.CreateStructGEP( 5094 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5095 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5096 } 5097 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 5098 } else if (ArgInfo.getInAllocaIndirect()) { 5099 // Make a temporary alloca and store the address of it into the argument 5100 // struct. 5101 Address Addr = CreateMemTempWithoutCast( 5102 I->Ty, getContext().getTypeAlignInChars(I->Ty), 5103 "indirect-arg-temp"); 5104 I->copyInto(*this, Addr); 5105 Address ArgSlot = 5106 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5107 Builder.CreateStore(Addr.getPointer(), ArgSlot); 5108 } else { 5109 // Store the RValue into the argument struct. 5110 Address Addr = 5111 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 5112 Addr = Addr.withElementType(ConvertTypeForMem(I->Ty)); 5113 I->copyInto(*this, Addr); 5114 } 5115 break; 5116 } 5117 5118 case ABIArgInfo::Indirect: 5119 case ABIArgInfo::IndirectAliased: { 5120 assert(NumIRArgs == 1); 5121 if (!I->isAggregate()) { 5122 // Make a temporary alloca to pass the argument. 5123 Address Addr = CreateMemTempWithoutCast( 5124 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 5125 5126 llvm::Value *Val = Addr.getPointer(); 5127 if (ArgHasMaybeUndefAttr) 5128 Val = Builder.CreateFreeze(Addr.getPointer()); 5129 IRCallArgs[FirstIRArg] = Val; 5130 5131 I->copyInto(*this, Addr); 5132 } else { 5133 // We want to avoid creating an unnecessary temporary+copy here; 5134 // however, we need one in three cases: 5135 // 1. If the argument is not byval, and we are required to copy the 5136 // source. (This case doesn't occur on any common architecture.) 5137 // 2. If the argument is byval, RV is not sufficiently aligned, and 5138 // we cannot force it to be sufficiently aligned. 5139 // 3. If the argument is byval, but RV is not located in default 5140 // or alloca address space. 5141 Address Addr = I->hasLValue() 5142 ? I->getKnownLValue().getAddress(*this) 5143 : I->getKnownRValue().getAggregateAddress(); 5144 llvm::Value *V = Addr.getPointer(); 5145 CharUnits Align = ArgInfo.getIndirectAlign(); 5146 const llvm::DataLayout *TD = &CGM.getDataLayout(); 5147 5148 assert((FirstIRArg >= IRFuncTy->getNumParams() || 5149 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 5150 TD->getAllocaAddrSpace()) && 5151 "indirect argument must be in alloca address space"); 5152 5153 bool NeedCopy = false; 5154 if (Addr.getAlignment() < Align && 5155 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 5156 Align.getAsAlign()) { 5157 NeedCopy = true; 5158 } else if (I->hasLValue()) { 5159 auto LV = I->getKnownLValue(); 5160 auto AS = LV.getAddressSpace(); 5161 5162 bool isByValOrRef = 5163 ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal(); 5164 5165 if (!isByValOrRef || 5166 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 5167 NeedCopy = true; 5168 } 5169 if (!getLangOpts().OpenCL) { 5170 if ((isByValOrRef && 5171 (AS != LangAS::Default && 5172 AS != CGM.getASTAllocaAddressSpace()))) { 5173 NeedCopy = true; 5174 } 5175 } 5176 // For OpenCL even if RV is located in default or alloca address space 5177 // we don't want to perform address space cast for it. 5178 else if ((isByValOrRef && 5179 Addr.getType()->getAddressSpace() != IRFuncTy-> 5180 getParamType(FirstIRArg)->getPointerAddressSpace())) { 5181 NeedCopy = true; 5182 } 5183 } 5184 5185 if (NeedCopy) { 5186 // Create an aligned temporary, and copy to it. 5187 Address AI = CreateMemTempWithoutCast( 5188 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 5189 llvm::Value *Val = AI.getPointer(); 5190 if (ArgHasMaybeUndefAttr) 5191 Val = Builder.CreateFreeze(AI.getPointer()); 5192 IRCallArgs[FirstIRArg] = Val; 5193 5194 // Emit lifetime markers for the temporary alloca. 5195 llvm::TypeSize ByvalTempElementSize = 5196 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 5197 llvm::Value *LifetimeSize = 5198 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 5199 5200 // Add cleanup code to emit the end lifetime marker after the call. 5201 if (LifetimeSize) // In case we disabled lifetime markers. 5202 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 5203 5204 // Generate the copy. 5205 I->copyInto(*this, AI); 5206 } else { 5207 // Skip the extra memcpy call. 5208 auto *T = llvm::PointerType::get( 5209 CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 5210 5211 llvm::Value *Val = getTargetHooks().performAddrSpaceCast( 5212 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 5213 true); 5214 if (ArgHasMaybeUndefAttr) 5215 Val = Builder.CreateFreeze(Val); 5216 IRCallArgs[FirstIRArg] = Val; 5217 } 5218 } 5219 break; 5220 } 5221 5222 case ABIArgInfo::Ignore: 5223 assert(NumIRArgs == 0); 5224 break; 5225 5226 case ABIArgInfo::Extend: 5227 case ABIArgInfo::Direct: { 5228 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 5229 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 5230 ArgInfo.getDirectOffset() == 0) { 5231 assert(NumIRArgs == 1); 5232 llvm::Value *V; 5233 if (!I->isAggregate()) 5234 V = I->getKnownRValue().getScalarVal(); 5235 else 5236 V = Builder.CreateLoad( 5237 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5238 : I->getKnownRValue().getAggregateAddress()); 5239 5240 // Implement swifterror by copying into a new swifterror argument. 5241 // We'll write back in the normal path out of the call. 5242 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 5243 == ParameterABI::SwiftErrorResult) { 5244 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 5245 5246 QualType pointeeTy = I->Ty->getPointeeType(); 5247 swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy), 5248 getContext().getTypeAlignInChars(pointeeTy)); 5249 5250 swiftErrorTemp = 5251 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 5252 V = swiftErrorTemp.getPointer(); 5253 cast<llvm::AllocaInst>(V)->setSwiftError(true); 5254 5255 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 5256 Builder.CreateStore(errorValue, swiftErrorTemp); 5257 } 5258 5259 // We might have to widen integers, but we should never truncate. 5260 if (ArgInfo.getCoerceToType() != V->getType() && 5261 V->getType()->isIntegerTy()) 5262 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 5263 5264 // If the argument doesn't match, perform a bitcast to coerce it. This 5265 // can happen due to trivial type mismatches. 5266 if (FirstIRArg < IRFuncTy->getNumParams() && 5267 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5268 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5269 5270 if (ArgHasMaybeUndefAttr) 5271 V = Builder.CreateFreeze(V); 5272 IRCallArgs[FirstIRArg] = V; 5273 break; 5274 } 5275 5276 // FIXME: Avoid the conversion through memory if possible. 5277 Address Src = Address::invalid(); 5278 if (!I->isAggregate()) { 5279 Src = CreateMemTemp(I->Ty, "coerce"); 5280 I->copyInto(*this, Src); 5281 } else { 5282 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5283 : I->getKnownRValue().getAggregateAddress(); 5284 } 5285 5286 // If the value is offset in memory, apply the offset now. 5287 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5288 5289 // Fast-isel and the optimizer generally like scalar values better than 5290 // FCAs, so we flatten them if this is safe to do for this argument. 5291 llvm::StructType *STy = 5292 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5293 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5294 llvm::Type *SrcTy = Src.getElementType(); 5295 llvm::TypeSize SrcTypeSize = 5296 CGM.getDataLayout().getTypeAllocSize(SrcTy); 5297 llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy); 5298 if (SrcTypeSize.isScalable()) { 5299 assert(STy->containsHomogeneousScalableVectorTypes() && 5300 "ABI only supports structure with homogeneous scalable vector " 5301 "type"); 5302 assert(SrcTypeSize == DstTypeSize && 5303 "Only allow non-fractional movement of structure with " 5304 "homogeneous scalable vector type"); 5305 assert(NumIRArgs == STy->getNumElements()); 5306 5307 llvm::Value *StoredStructValue = 5308 Builder.CreateLoad(Src, Src.getName() + ".tuple"); 5309 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5310 llvm::Value *Extract = Builder.CreateExtractValue( 5311 StoredStructValue, i, Src.getName() + ".extract" + Twine(i)); 5312 IRCallArgs[FirstIRArg + i] = Extract; 5313 } 5314 } else { 5315 uint64_t SrcSize = SrcTypeSize.getFixedValue(); 5316 uint64_t DstSize = DstTypeSize.getFixedValue(); 5317 5318 // If the source type is smaller than the destination type of the 5319 // coerce-to logic, copy the source value into a temp alloca the size 5320 // of the destination type to allow loading all of it. The bits past 5321 // the source value are left undef. 5322 if (SrcSize < DstSize) { 5323 Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(), 5324 Src.getName() + ".coerce"); 5325 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5326 Src = TempAlloca; 5327 } else { 5328 Src = Src.withElementType(STy); 5329 } 5330 5331 assert(NumIRArgs == STy->getNumElements()); 5332 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5333 Address EltPtr = Builder.CreateStructGEP(Src, i); 5334 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5335 if (ArgHasMaybeUndefAttr) 5336 LI = Builder.CreateFreeze(LI); 5337 IRCallArgs[FirstIRArg + i] = LI; 5338 } 5339 } 5340 } else { 5341 // In the simple case, just pass the coerced loaded value. 5342 assert(NumIRArgs == 1); 5343 llvm::Value *Load = 5344 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5345 5346 if (CallInfo.isCmseNSCall()) { 5347 // For certain parameter types, clear padding bits, as they may reveal 5348 // sensitive information. 5349 // Small struct/union types are passed as integer arrays. 5350 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5351 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5352 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5353 } 5354 5355 if (ArgHasMaybeUndefAttr) 5356 Load = Builder.CreateFreeze(Load); 5357 IRCallArgs[FirstIRArg] = Load; 5358 } 5359 5360 break; 5361 } 5362 5363 case ABIArgInfo::CoerceAndExpand: { 5364 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5365 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5366 5367 llvm::Value *tempSize = nullptr; 5368 Address addr = Address::invalid(); 5369 Address AllocaAddr = Address::invalid(); 5370 if (I->isAggregate()) { 5371 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5372 : I->getKnownRValue().getAggregateAddress(); 5373 5374 } else { 5375 RValue RV = I->getKnownRValue(); 5376 assert(RV.isScalar()); // complex should always just be direct 5377 5378 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5379 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5380 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType); 5381 5382 // Materialize to a temporary. 5383 addr = CreateTempAlloca( 5384 RV.getScalarVal()->getType(), 5385 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)), 5386 "tmp", 5387 /*ArraySize=*/nullptr, &AllocaAddr); 5388 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5389 5390 Builder.CreateStore(RV.getScalarVal(), addr); 5391 } 5392 5393 addr = addr.withElementType(coercionType); 5394 5395 unsigned IRArgPos = FirstIRArg; 5396 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5397 llvm::Type *eltType = coercionType->getElementType(i); 5398 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5399 Address eltAddr = Builder.CreateStructGEP(addr, i); 5400 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5401 if (ArgHasMaybeUndefAttr) 5402 elt = Builder.CreateFreeze(elt); 5403 IRCallArgs[IRArgPos++] = elt; 5404 } 5405 assert(IRArgPos == FirstIRArg + NumIRArgs); 5406 5407 if (tempSize) { 5408 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5409 } 5410 5411 break; 5412 } 5413 5414 case ABIArgInfo::Expand: { 5415 unsigned IRArgPos = FirstIRArg; 5416 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5417 assert(IRArgPos == FirstIRArg + NumIRArgs); 5418 break; 5419 } 5420 } 5421 } 5422 5423 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5424 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5425 5426 // If we're using inalloca, set up that argument. 5427 if (ArgMemory.isValid()) { 5428 llvm::Value *Arg = ArgMemory.getPointer(); 5429 assert(IRFunctionArgs.hasInallocaArg()); 5430 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5431 } 5432 5433 // 2. Prepare the function pointer. 5434 5435 // If the callee is a bitcast of a non-variadic function to have a 5436 // variadic function pointer type, check to see if we can remove the 5437 // bitcast. This comes up with unprototyped functions. 5438 // 5439 // This makes the IR nicer, but more importantly it ensures that we 5440 // can inline the function at -O0 if it is marked always_inline. 5441 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5442 llvm::Value *Ptr) -> llvm::Function * { 5443 if (!CalleeFT->isVarArg()) 5444 return nullptr; 5445 5446 // Get underlying value if it's a bitcast 5447 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5448 if (CE->getOpcode() == llvm::Instruction::BitCast) 5449 Ptr = CE->getOperand(0); 5450 } 5451 5452 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5453 if (!OrigFn) 5454 return nullptr; 5455 5456 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5457 5458 // If the original type is variadic, or if any of the component types 5459 // disagree, we cannot remove the cast. 5460 if (OrigFT->isVarArg() || 5461 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5462 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5463 return nullptr; 5464 5465 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5466 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5467 return nullptr; 5468 5469 return OrigFn; 5470 }; 5471 5472 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5473 CalleePtr = OrigFn; 5474 IRFuncTy = OrigFn->getFunctionType(); 5475 } 5476 5477 // 3. Perform the actual call. 5478 5479 // Deactivate any cleanups that we're supposed to do immediately before 5480 // the call. 5481 if (!CallArgs.getCleanupsToDeactivate().empty()) 5482 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5483 5484 // Assert that the arguments we computed match up. The IR verifier 5485 // will catch this, but this is a common enough source of problems 5486 // during IRGen changes that it's way better for debugging to catch 5487 // it ourselves here. 5488 #ifndef NDEBUG 5489 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5490 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5491 // Inalloca argument can have different type. 5492 if (IRFunctionArgs.hasInallocaArg() && 5493 i == IRFunctionArgs.getInallocaArgNo()) 5494 continue; 5495 if (i < IRFuncTy->getNumParams()) 5496 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5497 } 5498 #endif 5499 5500 // Update the largest vector width if any arguments have vector types. 5501 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5502 LargestVectorWidth = std::max(LargestVectorWidth, 5503 getMaxVectorWidth(IRCallArgs[i]->getType())); 5504 5505 // Compute the calling convention and attributes. 5506 unsigned CallingConv; 5507 llvm::AttributeList Attrs; 5508 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5509 Callee.getAbstractInfo(), Attrs, CallingConv, 5510 /*AttrOnCallSite=*/true, 5511 /*IsThunk=*/false); 5512 5513 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5514 if (FD->hasAttr<StrictFPAttr>()) 5515 // All calls within a strictfp function are marked strictfp 5516 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5517 5518 // If -ffast-math is enabled and the function is guarded by an 5519 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the 5520 // library call instead of the intrinsic. 5521 if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath) 5522 CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(), 5523 Attrs); 5524 } 5525 // Add call-site nomerge attribute if exists. 5526 if (InNoMergeAttributedStmt) 5527 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5528 5529 // Add call-site noinline attribute if exists. 5530 if (InNoInlineAttributedStmt) 5531 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5532 5533 // Add call-site always_inline attribute if exists. 5534 if (InAlwaysInlineAttributedStmt) 5535 Attrs = 5536 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5537 5538 // Apply some call-site-specific attributes. 5539 // TODO: work this into building the attribute set. 5540 5541 // Apply always_inline to all calls within flatten functions. 5542 // FIXME: should this really take priority over __try, below? 5543 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5544 !InNoInlineAttributedStmt && 5545 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5546 Attrs = 5547 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5548 } 5549 5550 // Disable inlining inside SEH __try blocks. 5551 if (isSEHTryScope()) { 5552 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5553 } 5554 5555 // Decide whether to use a call or an invoke. 5556 bool CannotThrow; 5557 if (currentFunctionUsesSEHTry()) { 5558 // SEH cares about asynchronous exceptions, so everything can "throw." 5559 CannotThrow = false; 5560 } else if (isCleanupPadScope() && 5561 EHPersonality::get(*this).isMSVCXXPersonality()) { 5562 // The MSVC++ personality will implicitly terminate the program if an 5563 // exception is thrown during a cleanup outside of a try/catch. 5564 // We don't need to model anything in IR to get this behavior. 5565 CannotThrow = true; 5566 } else { 5567 // Otherwise, nounwind call sites will never throw. 5568 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5569 5570 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5571 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5572 CannotThrow = true; 5573 } 5574 5575 // If we made a temporary, be sure to clean up after ourselves. Note that we 5576 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5577 // pop this cleanup later on. Being eager about this is OK, since this 5578 // temporary is 'invisible' outside of the callee. 5579 if (UnusedReturnSizePtr) 5580 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5581 UnusedReturnSizePtr); 5582 5583 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5584 5585 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5586 getBundlesForFunclet(CalleePtr); 5587 5588 if (SanOpts.has(SanitizerKind::KCFI) && 5589 !isa_and_nonnull<FunctionDecl>(TargetDecl)) 5590 EmitKCFIOperandBundle(ConcreteCallee, BundleList); 5591 5592 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5593 if (FD->hasAttr<StrictFPAttr>()) 5594 // All calls within a strictfp function are marked strictfp 5595 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5596 5597 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5598 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5599 5600 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5601 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5602 5603 // Emit the actual call/invoke instruction. 5604 llvm::CallBase *CI; 5605 if (!InvokeDest) { 5606 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5607 } else { 5608 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5609 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5610 BundleList); 5611 EmitBlock(Cont); 5612 } 5613 if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() && 5614 CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) { 5615 SetSqrtFPAccuracy(CI); 5616 } 5617 if (callOrInvoke) 5618 *callOrInvoke = CI; 5619 5620 // If this is within a function that has the guard(nocf) attribute and is an 5621 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5622 // Control Flow Guard checks should not be added, even if the call is inlined. 5623 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5624 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5625 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5626 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5627 } 5628 } 5629 5630 // Apply the attributes and calling convention. 5631 CI->setAttributes(Attrs); 5632 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5633 5634 // Apply various metadata. 5635 5636 if (!CI->getType()->isVoidTy()) 5637 CI->setName("call"); 5638 5639 // Update largest vector width from the return type. 5640 LargestVectorWidth = 5641 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5642 5643 // Insert instrumentation or attach profile metadata at indirect call sites. 5644 // For more details, see the comment before the definition of 5645 // IPVK_IndirectCallTarget in InstrProfData.inc. 5646 if (!CI->getCalledFunction()) 5647 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5648 CI, CalleePtr); 5649 5650 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5651 // optimizer it can aggressively ignore unwind edges. 5652 if (CGM.getLangOpts().ObjCAutoRefCount) 5653 AddObjCARCExceptionMetadata(CI); 5654 5655 // Set tail call kind if necessary. 5656 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5657 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5658 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5659 else if (IsMustTail) 5660 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5661 } 5662 5663 // Add metadata for calls to MSAllocator functions 5664 if (getDebugInfo() && TargetDecl && 5665 TargetDecl->hasAttr<MSAllocatorAttr>()) 5666 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5667 5668 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5669 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5670 llvm::ConstantInt *Line = 5671 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5672 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5673 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5674 CI->setMetadata("srcloc", MDT); 5675 } 5676 5677 // 4. Finish the call. 5678 5679 // If the call doesn't return, finish the basic block and clear the 5680 // insertion point; this allows the rest of IRGen to discard 5681 // unreachable code. 5682 if (CI->doesNotReturn()) { 5683 if (UnusedReturnSizePtr) 5684 PopCleanupBlock(); 5685 5686 // Strip away the noreturn attribute to better diagnose unreachable UB. 5687 if (SanOpts.has(SanitizerKind::Unreachable)) { 5688 // Also remove from function since CallBase::hasFnAttr additionally checks 5689 // attributes of the called function. 5690 if (auto *F = CI->getCalledFunction()) 5691 F->removeFnAttr(llvm::Attribute::NoReturn); 5692 CI->removeFnAttr(llvm::Attribute::NoReturn); 5693 5694 // Avoid incompatibility with ASan which relies on the `noreturn` 5695 // attribute to insert handler calls. 5696 if (SanOpts.hasOneOf(SanitizerKind::Address | 5697 SanitizerKind::KernelAddress)) { 5698 SanitizerScope SanScope(this); 5699 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5700 Builder.SetInsertPoint(CI); 5701 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5702 llvm::FunctionCallee Fn = 5703 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5704 EmitNounwindRuntimeCall(Fn); 5705 } 5706 } 5707 5708 EmitUnreachable(Loc); 5709 Builder.ClearInsertionPoint(); 5710 5711 // FIXME: For now, emit a dummy basic block because expr emitters in 5712 // generally are not ready to handle emitting expressions at unreachable 5713 // points. 5714 EnsureInsertPoint(); 5715 5716 // Return a reasonable RValue. 5717 return GetUndefRValue(RetTy); 5718 } 5719 5720 // If this is a musttail call, return immediately. We do not branch to the 5721 // epilogue in this case. 5722 if (IsMustTail) { 5723 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5724 ++it) { 5725 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5726 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5727 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5728 } 5729 if (CI->getType()->isVoidTy()) 5730 Builder.CreateRetVoid(); 5731 else 5732 Builder.CreateRet(CI); 5733 Builder.ClearInsertionPoint(); 5734 EnsureInsertPoint(); 5735 return GetUndefRValue(RetTy); 5736 } 5737 5738 // Perform the swifterror writeback. 5739 if (swiftErrorTemp.isValid()) { 5740 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5741 Builder.CreateStore(errorResult, swiftErrorArg); 5742 } 5743 5744 // Emit any call-associated writebacks immediately. Arguably this 5745 // should happen after any return-value munging. 5746 if (CallArgs.hasWritebacks()) 5747 emitWritebacks(*this, CallArgs); 5748 5749 // The stack cleanup for inalloca arguments has to run out of the normal 5750 // lexical order, so deactivate it and run it manually here. 5751 CallArgs.freeArgumentMemory(*this); 5752 5753 // Extract the return value. 5754 RValue Ret = [&] { 5755 switch (RetAI.getKind()) { 5756 case ABIArgInfo::CoerceAndExpand: { 5757 auto coercionType = RetAI.getCoerceAndExpandType(); 5758 5759 Address addr = SRetPtr.withElementType(coercionType); 5760 5761 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5762 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5763 5764 unsigned unpaddedIndex = 0; 5765 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5766 llvm::Type *eltType = coercionType->getElementType(i); 5767 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5768 Address eltAddr = Builder.CreateStructGEP(addr, i); 5769 llvm::Value *elt = CI; 5770 if (requiresExtract) 5771 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5772 else 5773 assert(unpaddedIndex == 0); 5774 Builder.CreateStore(elt, eltAddr); 5775 } 5776 [[fallthrough]]; 5777 } 5778 5779 case ABIArgInfo::InAlloca: 5780 case ABIArgInfo::Indirect: { 5781 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5782 if (UnusedReturnSizePtr) 5783 PopCleanupBlock(); 5784 return ret; 5785 } 5786 5787 case ABIArgInfo::Ignore: 5788 // If we are ignoring an argument that had a result, make sure to 5789 // construct the appropriate return value for our caller. 5790 return GetUndefRValue(RetTy); 5791 5792 case ABIArgInfo::Extend: 5793 case ABIArgInfo::Direct: { 5794 llvm::Type *RetIRTy = ConvertType(RetTy); 5795 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5796 switch (getEvaluationKind(RetTy)) { 5797 case TEK_Complex: { 5798 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5799 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5800 return RValue::getComplex(std::make_pair(Real, Imag)); 5801 } 5802 case TEK_Aggregate: { 5803 Address DestPtr = ReturnValue.getValue(); 5804 bool DestIsVolatile = ReturnValue.isVolatile(); 5805 5806 if (!DestPtr.isValid()) { 5807 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5808 DestIsVolatile = false; 5809 } 5810 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5811 return RValue::getAggregate(DestPtr); 5812 } 5813 case TEK_Scalar: { 5814 // If the argument doesn't match, perform a bitcast to coerce it. This 5815 // can happen due to trivial type mismatches. 5816 llvm::Value *V = CI; 5817 if (V->getType() != RetIRTy) 5818 V = Builder.CreateBitCast(V, RetIRTy); 5819 return RValue::get(V); 5820 } 5821 } 5822 llvm_unreachable("bad evaluation kind"); 5823 } 5824 5825 // If coercing a fixed vector from a scalable vector for ABI 5826 // compatibility, and the types match, use the llvm.vector.extract 5827 // intrinsic to perform the conversion. 5828 if (auto *FixedDst = dyn_cast<llvm::FixedVectorType>(RetIRTy)) { 5829 llvm::Value *V = CI; 5830 if (auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(V->getType())) { 5831 if (FixedDst->getElementType() == ScalableSrc->getElementType()) { 5832 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 5833 V = Builder.CreateExtractVector(FixedDst, V, Zero, "cast.fixed"); 5834 return RValue::get(V); 5835 } 5836 } 5837 } 5838 5839 Address DestPtr = ReturnValue.getValue(); 5840 bool DestIsVolatile = ReturnValue.isVolatile(); 5841 5842 if (!DestPtr.isValid()) { 5843 DestPtr = CreateMemTemp(RetTy, "coerce"); 5844 DestIsVolatile = false; 5845 } 5846 5847 // An empty record can overlap other data (if declared with 5848 // no_unique_address); omit the store for such types - as there is no 5849 // actual data to store. 5850 if (!isEmptyRecord(getContext(), RetTy, true)) { 5851 // If the value is offset in memory, apply the offset now. 5852 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5853 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5854 } 5855 5856 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5857 } 5858 5859 case ABIArgInfo::Expand: 5860 case ABIArgInfo::IndirectAliased: 5861 llvm_unreachable("Invalid ABI kind for return argument"); 5862 } 5863 5864 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5865 } (); 5866 5867 // Emit the assume_aligned check on the return value. 5868 if (Ret.isScalar() && TargetDecl) { 5869 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5870 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5871 } 5872 5873 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5874 // we can't use the full cleanup mechanism. 5875 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5876 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5877 5878 if (!ReturnValue.isExternallyDestructed() && 5879 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5880 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5881 RetTy); 5882 5883 return Ret; 5884 } 5885 5886 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5887 if (isVirtual()) { 5888 const CallExpr *CE = getVirtualCallExpr(); 5889 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5890 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5891 CE ? CE->getBeginLoc() : SourceLocation()); 5892 } 5893 5894 return *this; 5895 } 5896 5897 /* VarArg handling */ 5898 5899 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5900 VAListAddr = VE->isMicrosoftABI() 5901 ? EmitMSVAListRef(VE->getSubExpr()) 5902 : EmitVAListRef(VE->getSubExpr()); 5903 QualType Ty = VE->getType(); 5904 if (VE->isMicrosoftABI()) 5905 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5906 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5907 } 5908