xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CGCall.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 /***/
46 
47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
48   switch (CC) {
49   default: return llvm::CallingConv::C;
50   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
51   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
52   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
53   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
54   case CC_Win64: return llvm::CallingConv::Win64;
55   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
56   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
57   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
58   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
59   // TODO: Add support for __pascal to LLVM.
60   case CC_X86Pascal: return llvm::CallingConv::C;
61   // TODO: Add support for __vectorcall to LLVM.
62   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
63   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
64   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
65   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
66   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
67   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
68   case CC_Swift: return llvm::CallingConv::Swift;
69   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
70   }
71 }
72 
73 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
74 /// qualification. Either or both of RD and MD may be null. A null RD indicates
75 /// that there is no meaningful 'this' type, and a null MD can occur when
76 /// calling a method pointer.
77 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
78                                          const CXXMethodDecl *MD) {
79   QualType RecTy;
80   if (RD)
81     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
82   else
83     RecTy = Context.VoidTy;
84 
85   if (MD)
86     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
87   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
88 }
89 
90 /// Returns the canonical formal type of the given C++ method.
91 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
92   return MD->getType()->getCanonicalTypeUnqualified()
93            .getAs<FunctionProtoType>();
94 }
95 
96 /// Returns the "extra-canonicalized" return type, which discards
97 /// qualifiers on the return type.  Codegen doesn't care about them,
98 /// and it makes ABI code a little easier to be able to assume that
99 /// all parameter and return types are top-level unqualified.
100 static CanQualType GetReturnType(QualType RetTy) {
101   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
102 }
103 
104 /// Arrange the argument and result information for a value of the given
105 /// unprototyped freestanding function type.
106 const CGFunctionInfo &
107 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
108   // When translating an unprototyped function type, always use a
109   // variadic type.
110   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
111                                  /*instanceMethod=*/false,
112                                  /*chainCall=*/false, None,
113                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
114 }
115 
116 static void addExtParameterInfosForCall(
117          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
118                                         const FunctionProtoType *proto,
119                                         unsigned prefixArgs,
120                                         unsigned totalArgs) {
121   assert(proto->hasExtParameterInfos());
122   assert(paramInfos.size() <= prefixArgs);
123   assert(proto->getNumParams() + prefixArgs <= totalArgs);
124 
125   paramInfos.reserve(totalArgs);
126 
127   // Add default infos for any prefix args that don't already have infos.
128   paramInfos.resize(prefixArgs);
129 
130   // Add infos for the prototype.
131   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
132     paramInfos.push_back(ParamInfo);
133     // pass_object_size params have no parameter info.
134     if (ParamInfo.hasPassObjectSize())
135       paramInfos.emplace_back();
136   }
137 
138   assert(paramInfos.size() <= totalArgs &&
139          "Did we forget to insert pass_object_size args?");
140   // Add default infos for the variadic and/or suffix arguments.
141   paramInfos.resize(totalArgs);
142 }
143 
144 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
145 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
146 static void appendParameterTypes(const CodeGenTypes &CGT,
147                                  SmallVectorImpl<CanQualType> &prefix,
148               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
149                                  CanQual<FunctionProtoType> FPT) {
150   // Fast path: don't touch param info if we don't need to.
151   if (!FPT->hasExtParameterInfos()) {
152     assert(paramInfos.empty() &&
153            "We have paramInfos, but the prototype doesn't?");
154     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
155     return;
156   }
157 
158   unsigned PrefixSize = prefix.size();
159   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
160   // parameters; the only thing that can change this is the presence of
161   // pass_object_size. So, we preallocate for the common case.
162   prefix.reserve(prefix.size() + FPT->getNumParams());
163 
164   auto ExtInfos = FPT->getExtParameterInfos();
165   assert(ExtInfos.size() == FPT->getNumParams());
166   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
167     prefix.push_back(FPT->getParamType(I));
168     if (ExtInfos[I].hasPassObjectSize())
169       prefix.push_back(CGT.getContext().getSizeType());
170   }
171 
172   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
173                               prefix.size());
174 }
175 
176 /// Arrange the LLVM function layout for a value of the given function
177 /// type, on top of any implicit parameters already stored.
178 static const CGFunctionInfo &
179 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
180                         SmallVectorImpl<CanQualType> &prefix,
181                         CanQual<FunctionProtoType> FTP) {
182   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
183   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
184   // FIXME: Kill copy.
185   appendParameterTypes(CGT, prefix, paramInfos, FTP);
186   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
187 
188   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
189                                      /*chainCall=*/false, prefix,
190                                      FTP->getExtInfo(), paramInfos,
191                                      Required);
192 }
193 
194 /// Arrange the argument and result information for a value of the
195 /// given freestanding function type.
196 const CGFunctionInfo &
197 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
198   SmallVector<CanQualType, 16> argTypes;
199   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
200                                    FTP);
201 }
202 
203 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
204                                                bool IsWindows) {
205   // Set the appropriate calling convention for the Function.
206   if (D->hasAttr<StdCallAttr>())
207     return CC_X86StdCall;
208 
209   if (D->hasAttr<FastCallAttr>())
210     return CC_X86FastCall;
211 
212   if (D->hasAttr<RegCallAttr>())
213     return CC_X86RegCall;
214 
215   if (D->hasAttr<ThisCallAttr>())
216     return CC_X86ThisCall;
217 
218   if (D->hasAttr<VectorCallAttr>())
219     return CC_X86VectorCall;
220 
221   if (D->hasAttr<PascalAttr>())
222     return CC_X86Pascal;
223 
224   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
225     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
226 
227   if (D->hasAttr<AArch64VectorPcsAttr>())
228     return CC_AArch64VectorCall;
229 
230   if (D->hasAttr<IntelOclBiccAttr>())
231     return CC_IntelOclBicc;
232 
233   if (D->hasAttr<MSABIAttr>())
234     return IsWindows ? CC_C : CC_Win64;
235 
236   if (D->hasAttr<SysVABIAttr>())
237     return IsWindows ? CC_X86_64SysV : CC_C;
238 
239   if (D->hasAttr<PreserveMostAttr>())
240     return CC_PreserveMost;
241 
242   if (D->hasAttr<PreserveAllAttr>())
243     return CC_PreserveAll;
244 
245   return CC_C;
246 }
247 
248 /// Arrange the argument and result information for a call to an
249 /// unknown C++ non-static member function of the given abstract type.
250 /// (A null RD means we don't have any meaningful "this" argument type,
251 ///  so fall back to a generic pointer type).
252 /// The member function must be an ordinary function, i.e. not a
253 /// constructor or destructor.
254 const CGFunctionInfo &
255 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
256                                    const FunctionProtoType *FTP,
257                                    const CXXMethodDecl *MD) {
258   SmallVector<CanQualType, 16> argTypes;
259 
260   // Add the 'this' pointer.
261   argTypes.push_back(DeriveThisType(RD, MD));
262 
263   return ::arrangeLLVMFunctionInfo(
264       *this, true, argTypes,
265       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
266 }
267 
268 /// Set calling convention for CUDA/HIP kernel.
269 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
270                                            const FunctionDecl *FD) {
271   if (FD->hasAttr<CUDAGlobalAttr>()) {
272     const FunctionType *FT = FTy->getAs<FunctionType>();
273     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
274     FTy = FT->getCanonicalTypeUnqualified();
275   }
276 }
277 
278 /// Arrange the argument and result information for a declaration or
279 /// definition of the given C++ non-static member function.  The
280 /// member function must be an ordinary function, i.e. not a
281 /// constructor or destructor.
282 const CGFunctionInfo &
283 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
284   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
285   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
286 
287   CanQualType FT = GetFormalType(MD).getAs<Type>();
288   setCUDAKernelCallingConvention(FT, CGM, MD);
289   auto prototype = FT.getAs<FunctionProtoType>();
290 
291   if (MD->isInstance()) {
292     // The abstract case is perfectly fine.
293     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
294     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
295   }
296 
297   return arrangeFreeFunctionType(prototype);
298 }
299 
300 bool CodeGenTypes::inheritingCtorHasParams(
301     const InheritedConstructor &Inherited, CXXCtorType Type) {
302   // Parameters are unnecessary if we're constructing a base class subobject
303   // and the inherited constructor lives in a virtual base.
304   return Type == Ctor_Complete ||
305          !Inherited.getShadowDecl()->constructsVirtualBase() ||
306          !Target.getCXXABI().hasConstructorVariants();
307 }
308 
309 const CGFunctionInfo &
310 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
311   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
312 
313   SmallVector<CanQualType, 16> argTypes;
314   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
315   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
316 
317   bool PassParams = true;
318 
319   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
320     // A base class inheriting constructor doesn't get forwarded arguments
321     // needed to construct a virtual base (or base class thereof).
322     if (auto Inherited = CD->getInheritedConstructor())
323       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
324   }
325 
326   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
327 
328   // Add the formal parameters.
329   if (PassParams)
330     appendParameterTypes(*this, argTypes, paramInfos, FTP);
331 
332   CGCXXABI::AddedStructorArgCounts AddedArgs =
333       TheCXXABI.buildStructorSignature(GD, argTypes);
334   if (!paramInfos.empty()) {
335     // Note: prefix implies after the first param.
336     if (AddedArgs.Prefix)
337       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
338                         FunctionProtoType::ExtParameterInfo{});
339     if (AddedArgs.Suffix)
340       paramInfos.append(AddedArgs.Suffix,
341                         FunctionProtoType::ExtParameterInfo{});
342   }
343 
344   RequiredArgs required =
345       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
346                                       : RequiredArgs::All);
347 
348   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
349   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
350                                ? argTypes.front()
351                                : TheCXXABI.hasMostDerivedReturn(GD)
352                                      ? CGM.getContext().VoidPtrTy
353                                      : Context.VoidTy;
354   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
355                                  /*chainCall=*/false, argTypes, extInfo,
356                                  paramInfos, required);
357 }
358 
359 static SmallVector<CanQualType, 16>
360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
361   SmallVector<CanQualType, 16> argTypes;
362   for (auto &arg : args)
363     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
364   return argTypes;
365 }
366 
367 static SmallVector<CanQualType, 16>
368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
369   SmallVector<CanQualType, 16> argTypes;
370   for (auto &arg : args)
371     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
372   return argTypes;
373 }
374 
375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
376 getExtParameterInfosForCall(const FunctionProtoType *proto,
377                             unsigned prefixArgs, unsigned totalArgs) {
378   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
379   if (proto->hasExtParameterInfos()) {
380     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
381   }
382   return result;
383 }
384 
385 /// Arrange a call to a C++ method, passing the given arguments.
386 ///
387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
388 /// parameter.
389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
390 /// args.
391 /// PassProtoArgs indicates whether `args` has args for the parameters in the
392 /// given CXXConstructorDecl.
393 const CGFunctionInfo &
394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
395                                         const CXXConstructorDecl *D,
396                                         CXXCtorType CtorKind,
397                                         unsigned ExtraPrefixArgs,
398                                         unsigned ExtraSuffixArgs,
399                                         bool PassProtoArgs) {
400   // FIXME: Kill copy.
401   SmallVector<CanQualType, 16> ArgTypes;
402   for (const auto &Arg : args)
403     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
404 
405   // +1 for implicit this, which should always be args[0].
406   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
407 
408   CanQual<FunctionProtoType> FPT = GetFormalType(D);
409   RequiredArgs Required = PassProtoArgs
410                               ? RequiredArgs::forPrototypePlus(
411                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
412                               : RequiredArgs::All;
413 
414   GlobalDecl GD(D, CtorKind);
415   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
416                                ? ArgTypes.front()
417                                : TheCXXABI.hasMostDerivedReturn(GD)
418                                      ? CGM.getContext().VoidPtrTy
419                                      : Context.VoidTy;
420 
421   FunctionType::ExtInfo Info = FPT->getExtInfo();
422   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
423   // If the prototype args are elided, we should only have ABI-specific args,
424   // which never have param info.
425   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
426     // ABI-specific suffix arguments are treated the same as variadic arguments.
427     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
428                                 ArgTypes.size());
429   }
430   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
431                                  /*chainCall=*/false, ArgTypes, Info,
432                                  ParamInfos, Required);
433 }
434 
435 /// Arrange the argument and result information for the declaration or
436 /// definition of the given function.
437 const CGFunctionInfo &
438 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
439   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
440     if (MD->isInstance())
441       return arrangeCXXMethodDeclaration(MD);
442 
443   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
444 
445   assert(isa<FunctionType>(FTy));
446   setCUDAKernelCallingConvention(FTy, CGM, FD);
447 
448   // When declaring a function without a prototype, always use a
449   // non-variadic type.
450   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
451     return arrangeLLVMFunctionInfo(
452         noProto->getReturnType(), /*instanceMethod=*/false,
453         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
454   }
455 
456   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
457 }
458 
459 /// Arrange the argument and result information for the declaration or
460 /// definition of an Objective-C method.
461 const CGFunctionInfo &
462 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
463   // It happens that this is the same as a call with no optional
464   // arguments, except also using the formal 'self' type.
465   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
466 }
467 
468 /// Arrange the argument and result information for the function type
469 /// through which to perform a send to the given Objective-C method,
470 /// using the given receiver type.  The receiver type is not always
471 /// the 'self' type of the method or even an Objective-C pointer type.
472 /// This is *not* the right method for actually performing such a
473 /// message send, due to the possibility of optional arguments.
474 const CGFunctionInfo &
475 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
476                                               QualType receiverType) {
477   SmallVector<CanQualType, 16> argTys;
478   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
479   argTys.push_back(Context.getCanonicalParamType(receiverType));
480   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
481   // FIXME: Kill copy?
482   for (const auto *I : MD->parameters()) {
483     argTys.push_back(Context.getCanonicalParamType(I->getType()));
484     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
485         I->hasAttr<NoEscapeAttr>());
486     extParamInfos.push_back(extParamInfo);
487   }
488 
489   FunctionType::ExtInfo einfo;
490   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
491   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
492 
493   if (getContext().getLangOpts().ObjCAutoRefCount &&
494       MD->hasAttr<NSReturnsRetainedAttr>())
495     einfo = einfo.withProducesResult(true);
496 
497   RequiredArgs required =
498     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
499 
500   return arrangeLLVMFunctionInfo(
501       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
502       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
503 }
504 
505 const CGFunctionInfo &
506 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
507                                                  const CallArgList &args) {
508   auto argTypes = getArgTypesForCall(Context, args);
509   FunctionType::ExtInfo einfo;
510 
511   return arrangeLLVMFunctionInfo(
512       GetReturnType(returnType), /*instanceMethod=*/false,
513       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
514 }
515 
516 const CGFunctionInfo &
517 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
518   // FIXME: Do we need to handle ObjCMethodDecl?
519   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
520 
521   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
522       isa<CXXDestructorDecl>(GD.getDecl()))
523     return arrangeCXXStructorDeclaration(GD);
524 
525   return arrangeFunctionDeclaration(FD);
526 }
527 
528 /// Arrange a thunk that takes 'this' as the first parameter followed by
529 /// varargs.  Return a void pointer, regardless of the actual return type.
530 /// The body of the thunk will end in a musttail call to a function of the
531 /// correct type, and the caller will bitcast the function to the correct
532 /// prototype.
533 const CGFunctionInfo &
534 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
535   assert(MD->isVirtual() && "only methods have thunks");
536   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
537   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
538   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
539                                  /*chainCall=*/false, ArgTys,
540                                  FTP->getExtInfo(), {}, RequiredArgs(1));
541 }
542 
543 const CGFunctionInfo &
544 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
545                                    CXXCtorType CT) {
546   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
547 
548   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
549   SmallVector<CanQualType, 2> ArgTys;
550   const CXXRecordDecl *RD = CD->getParent();
551   ArgTys.push_back(DeriveThisType(RD, CD));
552   if (CT == Ctor_CopyingClosure)
553     ArgTys.push_back(*FTP->param_type_begin());
554   if (RD->getNumVBases() > 0)
555     ArgTys.push_back(Context.IntTy);
556   CallingConv CC = Context.getDefaultCallingConvention(
557       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
558   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
559                                  /*chainCall=*/false, ArgTys,
560                                  FunctionType::ExtInfo(CC), {},
561                                  RequiredArgs::All);
562 }
563 
564 /// Arrange a call as unto a free function, except possibly with an
565 /// additional number of formal parameters considered required.
566 static const CGFunctionInfo &
567 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
568                             CodeGenModule &CGM,
569                             const CallArgList &args,
570                             const FunctionType *fnType,
571                             unsigned numExtraRequiredArgs,
572                             bool chainCall) {
573   assert(args.size() >= numExtraRequiredArgs);
574 
575   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
576 
577   // In most cases, there are no optional arguments.
578   RequiredArgs required = RequiredArgs::All;
579 
580   // If we have a variadic prototype, the required arguments are the
581   // extra prefix plus the arguments in the prototype.
582   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
583     if (proto->isVariadic())
584       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
585 
586     if (proto->hasExtParameterInfos())
587       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
588                                   args.size());
589 
590   // If we don't have a prototype at all, but we're supposed to
591   // explicitly use the variadic convention for unprototyped calls,
592   // treat all of the arguments as required but preserve the nominal
593   // possibility of variadics.
594   } else if (CGM.getTargetCodeGenInfo()
595                 .isNoProtoCallVariadic(args,
596                                        cast<FunctionNoProtoType>(fnType))) {
597     required = RequiredArgs(args.size());
598   }
599 
600   // FIXME: Kill copy.
601   SmallVector<CanQualType, 16> argTypes;
602   for (const auto &arg : args)
603     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
604   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
605                                      /*instanceMethod=*/false, chainCall,
606                                      argTypes, fnType->getExtInfo(), paramInfos,
607                                      required);
608 }
609 
610 /// Figure out the rules for calling a function with the given formal
611 /// type using the given arguments.  The arguments are necessary
612 /// because the function might be unprototyped, in which case it's
613 /// target-dependent in crazy ways.
614 const CGFunctionInfo &
615 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
616                                       const FunctionType *fnType,
617                                       bool chainCall) {
618   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
619                                      chainCall ? 1 : 0, chainCall);
620 }
621 
622 /// A block function is essentially a free function with an
623 /// extra implicit argument.
624 const CGFunctionInfo &
625 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
626                                        const FunctionType *fnType) {
627   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
628                                      /*chainCall=*/false);
629 }
630 
631 const CGFunctionInfo &
632 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
633                                               const FunctionArgList &params) {
634   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
635   auto argTypes = getArgTypesForDeclaration(Context, params);
636 
637   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
638                                  /*instanceMethod*/ false, /*chainCall*/ false,
639                                  argTypes, proto->getExtInfo(), paramInfos,
640                                  RequiredArgs::forPrototypePlus(proto, 1));
641 }
642 
643 const CGFunctionInfo &
644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
645                                          const CallArgList &args) {
646   // FIXME: Kill copy.
647   SmallVector<CanQualType, 16> argTypes;
648   for (const auto &Arg : args)
649     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
650   return arrangeLLVMFunctionInfo(
651       GetReturnType(resultType), /*instanceMethod=*/false,
652       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
653       /*paramInfos=*/ {}, RequiredArgs::All);
654 }
655 
656 const CGFunctionInfo &
657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
658                                                 const FunctionArgList &args) {
659   auto argTypes = getArgTypesForDeclaration(Context, args);
660 
661   return arrangeLLVMFunctionInfo(
662       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
663       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
664 }
665 
666 const CGFunctionInfo &
667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
668                                               ArrayRef<CanQualType> argTypes) {
669   return arrangeLLVMFunctionInfo(
670       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
671       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
672 }
673 
674 /// Arrange a call to a C++ method, passing the given arguments.
675 ///
676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
677 /// does not count `this`.
678 const CGFunctionInfo &
679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
680                                    const FunctionProtoType *proto,
681                                    RequiredArgs required,
682                                    unsigned numPrefixArgs) {
683   assert(numPrefixArgs + 1 <= args.size() &&
684          "Emitting a call with less args than the required prefix?");
685   // Add one to account for `this`. It's a bit awkward here, but we don't count
686   // `this` in similar places elsewhere.
687   auto paramInfos =
688     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
689 
690   // FIXME: Kill copy.
691   auto argTypes = getArgTypesForCall(Context, args);
692 
693   FunctionType::ExtInfo info = proto->getExtInfo();
694   return arrangeLLVMFunctionInfo(
695       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
696       /*chainCall=*/false, argTypes, info, paramInfos, required);
697 }
698 
699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
700   return arrangeLLVMFunctionInfo(
701       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
702       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
703 }
704 
705 const CGFunctionInfo &
706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
707                           const CallArgList &args) {
708   assert(signature.arg_size() <= args.size());
709   if (signature.arg_size() == args.size())
710     return signature;
711 
712   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
713   auto sigParamInfos = signature.getExtParameterInfos();
714   if (!sigParamInfos.empty()) {
715     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
716     paramInfos.resize(args.size());
717   }
718 
719   auto argTypes = getArgTypesForCall(Context, args);
720 
721   assert(signature.getRequiredArgs().allowsOptionalArgs());
722   return arrangeLLVMFunctionInfo(signature.getReturnType(),
723                                  signature.isInstanceMethod(),
724                                  signature.isChainCall(),
725                                  argTypes,
726                                  signature.getExtInfo(),
727                                  paramInfos,
728                                  signature.getRequiredArgs());
729 }
730 
731 namespace clang {
732 namespace CodeGen {
733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
734 }
735 }
736 
737 /// Arrange the argument and result information for an abstract value
738 /// of a given function type.  This is the method which all of the
739 /// above functions ultimately defer to.
740 const CGFunctionInfo &
741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
742                                       bool instanceMethod,
743                                       bool chainCall,
744                                       ArrayRef<CanQualType> argTypes,
745                                       FunctionType::ExtInfo info,
746                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
747                                       RequiredArgs required) {
748   assert(llvm::all_of(argTypes,
749                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
750 
751   // Lookup or create unique function info.
752   llvm::FoldingSetNodeID ID;
753   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
754                           required, resultType, argTypes);
755 
756   void *insertPos = nullptr;
757   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
758   if (FI)
759     return *FI;
760 
761   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
762 
763   // Construct the function info.  We co-allocate the ArgInfos.
764   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
765                               paramInfos, resultType, argTypes, required);
766   FunctionInfos.InsertNode(FI, insertPos);
767 
768   bool inserted = FunctionsBeingProcessed.insert(FI).second;
769   (void)inserted;
770   assert(inserted && "Recursively being processed?");
771 
772   // Compute ABI information.
773   if (CC == llvm::CallingConv::SPIR_KERNEL) {
774     // Force target independent argument handling for the host visible
775     // kernel functions.
776     computeSPIRKernelABIInfo(CGM, *FI);
777   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
778     swiftcall::computeABIInfo(CGM, *FI);
779   } else {
780     getABIInfo().computeInfo(*FI);
781   }
782 
783   // Loop over all of the computed argument and return value info.  If any of
784   // them are direct or extend without a specified coerce type, specify the
785   // default now.
786   ABIArgInfo &retInfo = FI->getReturnInfo();
787   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
788     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
789 
790   for (auto &I : FI->arguments())
791     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
792       I.info.setCoerceToType(ConvertType(I.type));
793 
794   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
795   assert(erased && "Not in set?");
796 
797   return *FI;
798 }
799 
800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
801                                        bool instanceMethod,
802                                        bool chainCall,
803                                        const FunctionType::ExtInfo &info,
804                                        ArrayRef<ExtParameterInfo> paramInfos,
805                                        CanQualType resultType,
806                                        ArrayRef<CanQualType> argTypes,
807                                        RequiredArgs required) {
808   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
809   assert(!required.allowsOptionalArgs() ||
810          required.getNumRequiredArgs() <= argTypes.size());
811 
812   void *buffer =
813     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
814                                   argTypes.size() + 1, paramInfos.size()));
815 
816   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
817   FI->CallingConvention = llvmCC;
818   FI->EffectiveCallingConvention = llvmCC;
819   FI->ASTCallingConvention = info.getCC();
820   FI->InstanceMethod = instanceMethod;
821   FI->ChainCall = chainCall;
822   FI->CmseNSCall = info.getCmseNSCall();
823   FI->NoReturn = info.getNoReturn();
824   FI->ReturnsRetained = info.getProducesResult();
825   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
826   FI->NoCfCheck = info.getNoCfCheck();
827   FI->Required = required;
828   FI->HasRegParm = info.getHasRegParm();
829   FI->RegParm = info.getRegParm();
830   FI->ArgStruct = nullptr;
831   FI->ArgStructAlign = 0;
832   FI->NumArgs = argTypes.size();
833   FI->HasExtParameterInfos = !paramInfos.empty();
834   FI->getArgsBuffer()[0].type = resultType;
835   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
836     FI->getArgsBuffer()[i + 1].type = argTypes[i];
837   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
838     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
839   return FI;
840 }
841 
842 /***/
843 
844 namespace {
845 // ABIArgInfo::Expand implementation.
846 
847 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
848 struct TypeExpansion {
849   enum TypeExpansionKind {
850     // Elements of constant arrays are expanded recursively.
851     TEK_ConstantArray,
852     // Record fields are expanded recursively (but if record is a union, only
853     // the field with the largest size is expanded).
854     TEK_Record,
855     // For complex types, real and imaginary parts are expanded recursively.
856     TEK_Complex,
857     // All other types are not expandable.
858     TEK_None
859   };
860 
861   const TypeExpansionKind Kind;
862 
863   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
864   virtual ~TypeExpansion() {}
865 };
866 
867 struct ConstantArrayExpansion : TypeExpansion {
868   QualType EltTy;
869   uint64_t NumElts;
870 
871   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
872       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
873   static bool classof(const TypeExpansion *TE) {
874     return TE->Kind == TEK_ConstantArray;
875   }
876 };
877 
878 struct RecordExpansion : TypeExpansion {
879   SmallVector<const CXXBaseSpecifier *, 1> Bases;
880 
881   SmallVector<const FieldDecl *, 1> Fields;
882 
883   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
884                   SmallVector<const FieldDecl *, 1> &&Fields)
885       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
886         Fields(std::move(Fields)) {}
887   static bool classof(const TypeExpansion *TE) {
888     return TE->Kind == TEK_Record;
889   }
890 };
891 
892 struct ComplexExpansion : TypeExpansion {
893   QualType EltTy;
894 
895   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
896   static bool classof(const TypeExpansion *TE) {
897     return TE->Kind == TEK_Complex;
898   }
899 };
900 
901 struct NoExpansion : TypeExpansion {
902   NoExpansion() : TypeExpansion(TEK_None) {}
903   static bool classof(const TypeExpansion *TE) {
904     return TE->Kind == TEK_None;
905   }
906 };
907 }  // namespace
908 
909 static std::unique_ptr<TypeExpansion>
910 getTypeExpansion(QualType Ty, const ASTContext &Context) {
911   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
912     return std::make_unique<ConstantArrayExpansion>(
913         AT->getElementType(), AT->getSize().getZExtValue());
914   }
915   if (const RecordType *RT = Ty->getAs<RecordType>()) {
916     SmallVector<const CXXBaseSpecifier *, 1> Bases;
917     SmallVector<const FieldDecl *, 1> Fields;
918     const RecordDecl *RD = RT->getDecl();
919     assert(!RD->hasFlexibleArrayMember() &&
920            "Cannot expand structure with flexible array.");
921     if (RD->isUnion()) {
922       // Unions can be here only in degenerative cases - all the fields are same
923       // after flattening. Thus we have to use the "largest" field.
924       const FieldDecl *LargestFD = nullptr;
925       CharUnits UnionSize = CharUnits::Zero();
926 
927       for (const auto *FD : RD->fields()) {
928         if (FD->isZeroLengthBitField(Context))
929           continue;
930         assert(!FD->isBitField() &&
931                "Cannot expand structure with bit-field members.");
932         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
933         if (UnionSize < FieldSize) {
934           UnionSize = FieldSize;
935           LargestFD = FD;
936         }
937       }
938       if (LargestFD)
939         Fields.push_back(LargestFD);
940     } else {
941       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
942         assert(!CXXRD->isDynamicClass() &&
943                "cannot expand vtable pointers in dynamic classes");
944         for (const CXXBaseSpecifier &BS : CXXRD->bases())
945           Bases.push_back(&BS);
946       }
947 
948       for (const auto *FD : RD->fields()) {
949         if (FD->isZeroLengthBitField(Context))
950           continue;
951         assert(!FD->isBitField() &&
952                "Cannot expand structure with bit-field members.");
953         Fields.push_back(FD);
954       }
955     }
956     return std::make_unique<RecordExpansion>(std::move(Bases),
957                                               std::move(Fields));
958   }
959   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
960     return std::make_unique<ComplexExpansion>(CT->getElementType());
961   }
962   return std::make_unique<NoExpansion>();
963 }
964 
965 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
966   auto Exp = getTypeExpansion(Ty, Context);
967   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
968     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
969   }
970   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
971     int Res = 0;
972     for (auto BS : RExp->Bases)
973       Res += getExpansionSize(BS->getType(), Context);
974     for (auto FD : RExp->Fields)
975       Res += getExpansionSize(FD->getType(), Context);
976     return Res;
977   }
978   if (isa<ComplexExpansion>(Exp.get()))
979     return 2;
980   assert(isa<NoExpansion>(Exp.get()));
981   return 1;
982 }
983 
984 void
985 CodeGenTypes::getExpandedTypes(QualType Ty,
986                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
987   auto Exp = getTypeExpansion(Ty, Context);
988   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
989     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
990       getExpandedTypes(CAExp->EltTy, TI);
991     }
992   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
993     for (auto BS : RExp->Bases)
994       getExpandedTypes(BS->getType(), TI);
995     for (auto FD : RExp->Fields)
996       getExpandedTypes(FD->getType(), TI);
997   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
998     llvm::Type *EltTy = ConvertType(CExp->EltTy);
999     *TI++ = EltTy;
1000     *TI++ = EltTy;
1001   } else {
1002     assert(isa<NoExpansion>(Exp.get()));
1003     *TI++ = ConvertType(Ty);
1004   }
1005 }
1006 
1007 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1008                                       ConstantArrayExpansion *CAE,
1009                                       Address BaseAddr,
1010                                       llvm::function_ref<void(Address)> Fn) {
1011   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1012   CharUnits EltAlign =
1013     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1014 
1015   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1016     llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1017         BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1018     Fn(Address(EltAddr, EltAlign));
1019   }
1020 }
1021 
1022 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1023                                          llvm::Function::arg_iterator &AI) {
1024   assert(LV.isSimple() &&
1025          "Unexpected non-simple lvalue during struct expansion.");
1026 
1027   auto Exp = getTypeExpansion(Ty, getContext());
1028   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1029     forConstantArrayExpansion(
1030         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1031           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1032           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1033         });
1034   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1035     Address This = LV.getAddress(*this);
1036     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1037       // Perform a single step derived-to-base conversion.
1038       Address Base =
1039           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1040                                 /*NullCheckValue=*/false, SourceLocation());
1041       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1042 
1043       // Recurse onto bases.
1044       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1045     }
1046     for (auto FD : RExp->Fields) {
1047       // FIXME: What are the right qualifiers here?
1048       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1049       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1050     }
1051   } else if (isa<ComplexExpansion>(Exp.get())) {
1052     auto realValue = &*AI++;
1053     auto imagValue = &*AI++;
1054     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1055   } else {
1056     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1057     // primitive store.
1058     assert(isa<NoExpansion>(Exp.get()));
1059     if (LV.isBitField())
1060       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1061     else
1062       EmitStoreOfScalar(&*AI++, LV);
1063   }
1064 }
1065 
1066 void CodeGenFunction::ExpandTypeToArgs(
1067     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1068     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1069   auto Exp = getTypeExpansion(Ty, getContext());
1070   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1071     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1072                                    : Arg.getKnownRValue().getAggregateAddress();
1073     forConstantArrayExpansion(
1074         *this, CAExp, Addr, [&](Address EltAddr) {
1075           CallArg EltArg = CallArg(
1076               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1077               CAExp->EltTy);
1078           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1079                            IRCallArgPos);
1080         });
1081   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1082     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1083                                    : Arg.getKnownRValue().getAggregateAddress();
1084     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1085       // Perform a single step derived-to-base conversion.
1086       Address Base =
1087           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1088                                 /*NullCheckValue=*/false, SourceLocation());
1089       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1090 
1091       // Recurse onto bases.
1092       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1093                        IRCallArgPos);
1094     }
1095 
1096     LValue LV = MakeAddrLValue(This, Ty);
1097     for (auto FD : RExp->Fields) {
1098       CallArg FldArg =
1099           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1100       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1101                        IRCallArgPos);
1102     }
1103   } else if (isa<ComplexExpansion>(Exp.get())) {
1104     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1105     IRCallArgs[IRCallArgPos++] = CV.first;
1106     IRCallArgs[IRCallArgPos++] = CV.second;
1107   } else {
1108     assert(isa<NoExpansion>(Exp.get()));
1109     auto RV = Arg.getKnownRValue();
1110     assert(RV.isScalar() &&
1111            "Unexpected non-scalar rvalue during struct expansion.");
1112 
1113     // Insert a bitcast as needed.
1114     llvm::Value *V = RV.getScalarVal();
1115     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1116         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1117       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1118 
1119     IRCallArgs[IRCallArgPos++] = V;
1120   }
1121 }
1122 
1123 /// Create a temporary allocation for the purposes of coercion.
1124 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1125                                            CharUnits MinAlign,
1126                                            const Twine &Name = "tmp") {
1127   // Don't use an alignment that's worse than what LLVM would prefer.
1128   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1129   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1130 
1131   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1132 }
1133 
1134 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1135 /// accessing some number of bytes out of it, try to gep into the struct to get
1136 /// at its inner goodness.  Dive as deep as possible without entering an element
1137 /// with an in-memory size smaller than DstSize.
1138 static Address
1139 EnterStructPointerForCoercedAccess(Address SrcPtr,
1140                                    llvm::StructType *SrcSTy,
1141                                    uint64_t DstSize, CodeGenFunction &CGF) {
1142   // We can't dive into a zero-element struct.
1143   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1144 
1145   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1146 
1147   // If the first elt is at least as large as what we're looking for, or if the
1148   // first element is the same size as the whole struct, we can enter it. The
1149   // comparison must be made on the store size and not the alloca size. Using
1150   // the alloca size may overstate the size of the load.
1151   uint64_t FirstEltSize =
1152     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1153   if (FirstEltSize < DstSize &&
1154       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1155     return SrcPtr;
1156 
1157   // GEP into the first element.
1158   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1159 
1160   // If the first element is a struct, recurse.
1161   llvm::Type *SrcTy = SrcPtr.getElementType();
1162   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1163     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1164 
1165   return SrcPtr;
1166 }
1167 
1168 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1169 /// are either integers or pointers.  This does a truncation of the value if it
1170 /// is too large or a zero extension if it is too small.
1171 ///
1172 /// This behaves as if the value were coerced through memory, so on big-endian
1173 /// targets the high bits are preserved in a truncation, while little-endian
1174 /// targets preserve the low bits.
1175 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1176                                              llvm::Type *Ty,
1177                                              CodeGenFunction &CGF) {
1178   if (Val->getType() == Ty)
1179     return Val;
1180 
1181   if (isa<llvm::PointerType>(Val->getType())) {
1182     // If this is Pointer->Pointer avoid conversion to and from int.
1183     if (isa<llvm::PointerType>(Ty))
1184       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1185 
1186     // Convert the pointer to an integer so we can play with its width.
1187     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1188   }
1189 
1190   llvm::Type *DestIntTy = Ty;
1191   if (isa<llvm::PointerType>(DestIntTy))
1192     DestIntTy = CGF.IntPtrTy;
1193 
1194   if (Val->getType() != DestIntTy) {
1195     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1196     if (DL.isBigEndian()) {
1197       // Preserve the high bits on big-endian targets.
1198       // That is what memory coercion does.
1199       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1200       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1201 
1202       if (SrcSize > DstSize) {
1203         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1204         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1205       } else {
1206         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1207         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1208       }
1209     } else {
1210       // Little-endian targets preserve the low bits. No shifts required.
1211       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1212     }
1213   }
1214 
1215   if (isa<llvm::PointerType>(Ty))
1216     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1217   return Val;
1218 }
1219 
1220 
1221 
1222 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1223 /// a pointer to an object of type \arg Ty, known to be aligned to
1224 /// \arg SrcAlign bytes.
1225 ///
1226 /// This safely handles the case when the src type is smaller than the
1227 /// destination type; in this situation the values of bits which not
1228 /// present in the src are undefined.
1229 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1230                                       CodeGenFunction &CGF) {
1231   llvm::Type *SrcTy = Src.getElementType();
1232 
1233   // If SrcTy and Ty are the same, just do a load.
1234   if (SrcTy == Ty)
1235     return CGF.Builder.CreateLoad(Src);
1236 
1237   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1238 
1239   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1240     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1241                                              DstSize.getFixedSize(), CGF);
1242     SrcTy = Src.getElementType();
1243   }
1244 
1245   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1246 
1247   // If the source and destination are integer or pointer types, just do an
1248   // extension or truncation to the desired type.
1249   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1250       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1251     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1252     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1253   }
1254 
1255   // If load is legal, just bitcast the src pointer.
1256   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1257       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1258     // Generally SrcSize is never greater than DstSize, since this means we are
1259     // losing bits. However, this can happen in cases where the structure has
1260     // additional padding, for example due to a user specified alignment.
1261     //
1262     // FIXME: Assert that we aren't truncating non-padding bits when have access
1263     // to that information.
1264     Src = CGF.Builder.CreateElementBitCast(Src, Ty);
1265     return CGF.Builder.CreateLoad(Src);
1266   }
1267 
1268   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1269   // the types match, use the llvm.experimental.vector.insert intrinsic to
1270   // perform the conversion.
1271   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1272     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1273       // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1274       // vector, use a vector insert and bitcast the result.
1275       bool NeedsBitcast = false;
1276       auto PredType =
1277           llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1278       llvm::Type *OrigType = Ty;
1279       if (ScalableDst == PredType &&
1280           FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1281         ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1282         NeedsBitcast = true;
1283       }
1284       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1285         auto *Load = CGF.Builder.CreateLoad(Src);
1286         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1287         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1288         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1289             ScalableDst, UndefVec, Load, Zero, "castScalableSve");
1290         if (NeedsBitcast)
1291           Result = CGF.Builder.CreateBitCast(Result, OrigType);
1292         return Result;
1293       }
1294     }
1295   }
1296 
1297   // Otherwise do coercion through memory. This is stupid, but simple.
1298   Address Tmp =
1299       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1300   CGF.Builder.CreateMemCpy(
1301       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1302       Src.getAlignment().getAsAlign(),
1303       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1304   return CGF.Builder.CreateLoad(Tmp);
1305 }
1306 
1307 // Function to store a first-class aggregate into memory.  We prefer to
1308 // store the elements rather than the aggregate to be more friendly to
1309 // fast-isel.
1310 // FIXME: Do we need to recurse here?
1311 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1312                                          bool DestIsVolatile) {
1313   // Prefer scalar stores to first-class aggregate stores.
1314   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1315     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1316       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1317       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1318       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1319     }
1320   } else {
1321     Builder.CreateStore(Val, Dest, DestIsVolatile);
1322   }
1323 }
1324 
1325 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1326 /// where the source and destination may have different types.  The
1327 /// destination is known to be aligned to \arg DstAlign bytes.
1328 ///
1329 /// This safely handles the case when the src type is larger than the
1330 /// destination type; the upper bits of the src will be lost.
1331 static void CreateCoercedStore(llvm::Value *Src,
1332                                Address Dst,
1333                                bool DstIsVolatile,
1334                                CodeGenFunction &CGF) {
1335   llvm::Type *SrcTy = Src->getType();
1336   llvm::Type *DstTy = Dst.getElementType();
1337   if (SrcTy == DstTy) {
1338     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1339     return;
1340   }
1341 
1342   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1343 
1344   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1345     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1346                                              SrcSize.getFixedSize(), CGF);
1347     DstTy = Dst.getElementType();
1348   }
1349 
1350   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1351   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1352   if (SrcPtrTy && DstPtrTy &&
1353       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1354     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1355     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1356     return;
1357   }
1358 
1359   // If the source and destination are integer or pointer types, just do an
1360   // extension or truncation to the desired type.
1361   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1362       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1363     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1364     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1365     return;
1366   }
1367 
1368   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1369 
1370   // If store is legal, just bitcast the src pointer.
1371   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1372       isa<llvm::ScalableVectorType>(DstTy) ||
1373       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1374     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1375     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1376   } else {
1377     // Otherwise do coercion through memory. This is stupid, but
1378     // simple.
1379 
1380     // Generally SrcSize is never greater than DstSize, since this means we are
1381     // losing bits. However, this can happen in cases where the structure has
1382     // additional padding, for example due to a user specified alignment.
1383     //
1384     // FIXME: Assert that we aren't truncating non-padding bits when have access
1385     // to that information.
1386     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1387     CGF.Builder.CreateStore(Src, Tmp);
1388     CGF.Builder.CreateMemCpy(
1389         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1390         Tmp.getAlignment().getAsAlign(),
1391         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1392   }
1393 }
1394 
1395 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1396                                    const ABIArgInfo &info) {
1397   if (unsigned offset = info.getDirectOffset()) {
1398     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1399     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1400                                              CharUnits::fromQuantity(offset));
1401     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1402   }
1403   return addr;
1404 }
1405 
1406 namespace {
1407 
1408 /// Encapsulates information about the way function arguments from
1409 /// CGFunctionInfo should be passed to actual LLVM IR function.
1410 class ClangToLLVMArgMapping {
1411   static const unsigned InvalidIndex = ~0U;
1412   unsigned InallocaArgNo;
1413   unsigned SRetArgNo;
1414   unsigned TotalIRArgs;
1415 
1416   /// Arguments of LLVM IR function corresponding to single Clang argument.
1417   struct IRArgs {
1418     unsigned PaddingArgIndex;
1419     // Argument is expanded to IR arguments at positions
1420     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1421     unsigned FirstArgIndex;
1422     unsigned NumberOfArgs;
1423 
1424     IRArgs()
1425         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1426           NumberOfArgs(0) {}
1427   };
1428 
1429   SmallVector<IRArgs, 8> ArgInfo;
1430 
1431 public:
1432   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1433                         bool OnlyRequiredArgs = false)
1434       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1435         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1436     construct(Context, FI, OnlyRequiredArgs);
1437   }
1438 
1439   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1440   unsigned getInallocaArgNo() const {
1441     assert(hasInallocaArg());
1442     return InallocaArgNo;
1443   }
1444 
1445   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1446   unsigned getSRetArgNo() const {
1447     assert(hasSRetArg());
1448     return SRetArgNo;
1449   }
1450 
1451   unsigned totalIRArgs() const { return TotalIRArgs; }
1452 
1453   bool hasPaddingArg(unsigned ArgNo) const {
1454     assert(ArgNo < ArgInfo.size());
1455     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1456   }
1457   unsigned getPaddingArgNo(unsigned ArgNo) const {
1458     assert(hasPaddingArg(ArgNo));
1459     return ArgInfo[ArgNo].PaddingArgIndex;
1460   }
1461 
1462   /// Returns index of first IR argument corresponding to ArgNo, and their
1463   /// quantity.
1464   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1465     assert(ArgNo < ArgInfo.size());
1466     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1467                           ArgInfo[ArgNo].NumberOfArgs);
1468   }
1469 
1470 private:
1471   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1472                  bool OnlyRequiredArgs);
1473 };
1474 
1475 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1476                                       const CGFunctionInfo &FI,
1477                                       bool OnlyRequiredArgs) {
1478   unsigned IRArgNo = 0;
1479   bool SwapThisWithSRet = false;
1480   const ABIArgInfo &RetAI = FI.getReturnInfo();
1481 
1482   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1483     SwapThisWithSRet = RetAI.isSRetAfterThis();
1484     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1485   }
1486 
1487   unsigned ArgNo = 0;
1488   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1489   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1490        ++I, ++ArgNo) {
1491     assert(I != FI.arg_end());
1492     QualType ArgType = I->type;
1493     const ABIArgInfo &AI = I->info;
1494     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1495     auto &IRArgs = ArgInfo[ArgNo];
1496 
1497     if (AI.getPaddingType())
1498       IRArgs.PaddingArgIndex = IRArgNo++;
1499 
1500     switch (AI.getKind()) {
1501     case ABIArgInfo::Extend:
1502     case ABIArgInfo::Direct: {
1503       // FIXME: handle sseregparm someday...
1504       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1505       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1506         IRArgs.NumberOfArgs = STy->getNumElements();
1507       } else {
1508         IRArgs.NumberOfArgs = 1;
1509       }
1510       break;
1511     }
1512     case ABIArgInfo::Indirect:
1513     case ABIArgInfo::IndirectAliased:
1514       IRArgs.NumberOfArgs = 1;
1515       break;
1516     case ABIArgInfo::Ignore:
1517     case ABIArgInfo::InAlloca:
1518       // ignore and inalloca doesn't have matching LLVM parameters.
1519       IRArgs.NumberOfArgs = 0;
1520       break;
1521     case ABIArgInfo::CoerceAndExpand:
1522       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1523       break;
1524     case ABIArgInfo::Expand:
1525       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1526       break;
1527     }
1528 
1529     if (IRArgs.NumberOfArgs > 0) {
1530       IRArgs.FirstArgIndex = IRArgNo;
1531       IRArgNo += IRArgs.NumberOfArgs;
1532     }
1533 
1534     // Skip over the sret parameter when it comes second.  We already handled it
1535     // above.
1536     if (IRArgNo == 1 && SwapThisWithSRet)
1537       IRArgNo++;
1538   }
1539   assert(ArgNo == ArgInfo.size());
1540 
1541   if (FI.usesInAlloca())
1542     InallocaArgNo = IRArgNo++;
1543 
1544   TotalIRArgs = IRArgNo;
1545 }
1546 }  // namespace
1547 
1548 /***/
1549 
1550 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1551   const auto &RI = FI.getReturnInfo();
1552   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1553 }
1554 
1555 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1556   return ReturnTypeUsesSRet(FI) &&
1557          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1558 }
1559 
1560 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1561   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1562     switch (BT->getKind()) {
1563     default:
1564       return false;
1565     case BuiltinType::Float:
1566       return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1567     case BuiltinType::Double:
1568       return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1569     case BuiltinType::LongDouble:
1570       return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1571     }
1572   }
1573 
1574   return false;
1575 }
1576 
1577 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1578   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1579     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1580       if (BT->getKind() == BuiltinType::LongDouble)
1581         return getTarget().useObjCFP2RetForComplexLongDouble();
1582     }
1583   }
1584 
1585   return false;
1586 }
1587 
1588 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1589   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1590   return GetFunctionType(FI);
1591 }
1592 
1593 llvm::FunctionType *
1594 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1595 
1596   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1597   (void)Inserted;
1598   assert(Inserted && "Recursively being processed?");
1599 
1600   llvm::Type *resultType = nullptr;
1601   const ABIArgInfo &retAI = FI.getReturnInfo();
1602   switch (retAI.getKind()) {
1603   case ABIArgInfo::Expand:
1604   case ABIArgInfo::IndirectAliased:
1605     llvm_unreachable("Invalid ABI kind for return argument");
1606 
1607   case ABIArgInfo::Extend:
1608   case ABIArgInfo::Direct:
1609     resultType = retAI.getCoerceToType();
1610     break;
1611 
1612   case ABIArgInfo::InAlloca:
1613     if (retAI.getInAllocaSRet()) {
1614       // sret things on win32 aren't void, they return the sret pointer.
1615       QualType ret = FI.getReturnType();
1616       llvm::Type *ty = ConvertType(ret);
1617       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1618       resultType = llvm::PointerType::get(ty, addressSpace);
1619     } else {
1620       resultType = llvm::Type::getVoidTy(getLLVMContext());
1621     }
1622     break;
1623 
1624   case ABIArgInfo::Indirect:
1625   case ABIArgInfo::Ignore:
1626     resultType = llvm::Type::getVoidTy(getLLVMContext());
1627     break;
1628 
1629   case ABIArgInfo::CoerceAndExpand:
1630     resultType = retAI.getUnpaddedCoerceAndExpandType();
1631     break;
1632   }
1633 
1634   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1635   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1636 
1637   // Add type for sret argument.
1638   if (IRFunctionArgs.hasSRetArg()) {
1639     QualType Ret = FI.getReturnType();
1640     llvm::Type *Ty = ConvertType(Ret);
1641     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1642     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1643         llvm::PointerType::get(Ty, AddressSpace);
1644   }
1645 
1646   // Add type for inalloca argument.
1647   if (IRFunctionArgs.hasInallocaArg()) {
1648     auto ArgStruct = FI.getArgStruct();
1649     assert(ArgStruct);
1650     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1651   }
1652 
1653   // Add in all of the required arguments.
1654   unsigned ArgNo = 0;
1655   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1656                                      ie = it + FI.getNumRequiredArgs();
1657   for (; it != ie; ++it, ++ArgNo) {
1658     const ABIArgInfo &ArgInfo = it->info;
1659 
1660     // Insert a padding type to ensure proper alignment.
1661     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1662       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1663           ArgInfo.getPaddingType();
1664 
1665     unsigned FirstIRArg, NumIRArgs;
1666     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1667 
1668     switch (ArgInfo.getKind()) {
1669     case ABIArgInfo::Ignore:
1670     case ABIArgInfo::InAlloca:
1671       assert(NumIRArgs == 0);
1672       break;
1673 
1674     case ABIArgInfo::Indirect: {
1675       assert(NumIRArgs == 1);
1676       // indirect arguments are always on the stack, which is alloca addr space.
1677       llvm::Type *LTy = ConvertTypeForMem(it->type);
1678       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1679           CGM.getDataLayout().getAllocaAddrSpace());
1680       break;
1681     }
1682     case ABIArgInfo::IndirectAliased: {
1683       assert(NumIRArgs == 1);
1684       llvm::Type *LTy = ConvertTypeForMem(it->type);
1685       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1686       break;
1687     }
1688     case ABIArgInfo::Extend:
1689     case ABIArgInfo::Direct: {
1690       // Fast-isel and the optimizer generally like scalar values better than
1691       // FCAs, so we flatten them if this is safe to do for this argument.
1692       llvm::Type *argType = ArgInfo.getCoerceToType();
1693       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1694       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1695         assert(NumIRArgs == st->getNumElements());
1696         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1697           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1698       } else {
1699         assert(NumIRArgs == 1);
1700         ArgTypes[FirstIRArg] = argType;
1701       }
1702       break;
1703     }
1704 
1705     case ABIArgInfo::CoerceAndExpand: {
1706       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1707       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1708         *ArgTypesIter++ = EltTy;
1709       }
1710       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1711       break;
1712     }
1713 
1714     case ABIArgInfo::Expand:
1715       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1716       getExpandedTypes(it->type, ArgTypesIter);
1717       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1718       break;
1719     }
1720   }
1721 
1722   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1723   assert(Erased && "Not in set?");
1724 
1725   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1726 }
1727 
1728 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1729   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1730   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1731 
1732   if (!isFuncTypeConvertible(FPT))
1733     return llvm::StructType::get(getLLVMContext());
1734 
1735   return GetFunctionType(GD);
1736 }
1737 
1738 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1739                                                llvm::AttrBuilder &FuncAttrs,
1740                                                const FunctionProtoType *FPT) {
1741   if (!FPT)
1742     return;
1743 
1744   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1745       FPT->isNothrow())
1746     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1747 }
1748 
1749 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1750                                      const Decl *Callee) {
1751   if (!Callee)
1752     return;
1753 
1754   SmallVector<StringRef, 4> Attrs;
1755 
1756   for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1757     AA->getAssumption().split(Attrs, ",");
1758 
1759   if (!Attrs.empty())
1760     FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1761                            llvm::join(Attrs.begin(), Attrs.end(), ","));
1762 }
1763 
1764 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1765                                           QualType ReturnType) {
1766   // We can't just discard the return value for a record type with a
1767   // complex destructor or a non-trivially copyable type.
1768   if (const RecordType *RT =
1769           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1770     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1771       return ClassDecl->hasTrivialDestructor();
1772   }
1773   return ReturnType.isTriviallyCopyableType(Context);
1774 }
1775 
1776 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1777                                                  bool HasOptnone,
1778                                                  bool AttrOnCallSite,
1779                                                llvm::AttrBuilder &FuncAttrs) {
1780   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1781   if (!HasOptnone) {
1782     if (CodeGenOpts.OptimizeSize)
1783       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1784     if (CodeGenOpts.OptimizeSize == 2)
1785       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1786   }
1787 
1788   if (CodeGenOpts.DisableRedZone)
1789     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1790   if (CodeGenOpts.IndirectTlsSegRefs)
1791     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1792   if (CodeGenOpts.NoImplicitFloat)
1793     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1794 
1795   if (AttrOnCallSite) {
1796     // Attributes that should go on the call site only.
1797     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1798       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1799     if (!CodeGenOpts.TrapFuncName.empty())
1800       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1801   } else {
1802     StringRef FpKind;
1803     switch (CodeGenOpts.getFramePointer()) {
1804     case CodeGenOptions::FramePointerKind::None:
1805       FpKind = "none";
1806       break;
1807     case CodeGenOptions::FramePointerKind::NonLeaf:
1808       FpKind = "non-leaf";
1809       break;
1810     case CodeGenOptions::FramePointerKind::All:
1811       FpKind = "all";
1812       break;
1813     }
1814     FuncAttrs.addAttribute("frame-pointer", FpKind);
1815 
1816     if (CodeGenOpts.LessPreciseFPMAD)
1817       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1818 
1819     if (CodeGenOpts.NullPointerIsValid)
1820       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1821 
1822     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1823       FuncAttrs.addAttribute("denormal-fp-math",
1824                              CodeGenOpts.FPDenormalMode.str());
1825     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1826       FuncAttrs.addAttribute(
1827           "denormal-fp-math-f32",
1828           CodeGenOpts.FP32DenormalMode.str());
1829     }
1830 
1831     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1832       FuncAttrs.addAttribute("no-trapping-math", "true");
1833 
1834     // TODO: Are these all needed?
1835     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1836     if (LangOpts.NoHonorInfs)
1837       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1838     if (LangOpts.NoHonorNaNs)
1839       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1840     if (LangOpts.ApproxFunc)
1841       FuncAttrs.addAttribute("approx-func-fp-math", "true");
1842     if (LangOpts.UnsafeFPMath)
1843       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1844     if (CodeGenOpts.SoftFloat)
1845       FuncAttrs.addAttribute("use-soft-float", "true");
1846     FuncAttrs.addAttribute("stack-protector-buffer-size",
1847                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1848     if (LangOpts.NoSignedZero)
1849       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1850 
1851     // TODO: Reciprocal estimate codegen options should apply to instructions?
1852     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1853     if (!Recips.empty())
1854       FuncAttrs.addAttribute("reciprocal-estimates",
1855                              llvm::join(Recips, ","));
1856 
1857     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1858         CodeGenOpts.PreferVectorWidth != "none")
1859       FuncAttrs.addAttribute("prefer-vector-width",
1860                              CodeGenOpts.PreferVectorWidth);
1861 
1862     if (CodeGenOpts.StackRealignment)
1863       FuncAttrs.addAttribute("stackrealign");
1864     if (CodeGenOpts.Backchain)
1865       FuncAttrs.addAttribute("backchain");
1866     if (CodeGenOpts.EnableSegmentedStacks)
1867       FuncAttrs.addAttribute("split-stack");
1868 
1869     if (CodeGenOpts.SpeculativeLoadHardening)
1870       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1871   }
1872 
1873   if (getLangOpts().assumeFunctionsAreConvergent()) {
1874     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1875     // convergent (meaning, they may call an intrinsically convergent op, such
1876     // as __syncthreads() / barrier(), and so can't have certain optimizations
1877     // applied around them).  LLVM will remove this attribute where it safely
1878     // can.
1879     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1880   }
1881 
1882   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1883     // Exceptions aren't supported in CUDA device code.
1884     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1885   }
1886 
1887   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1888     StringRef Var, Value;
1889     std::tie(Var, Value) = Attr.split('=');
1890     FuncAttrs.addAttribute(Var, Value);
1891   }
1892 }
1893 
1894 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1895   llvm::AttrBuilder FuncAttrs;
1896   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1897                                /* AttrOnCallSite = */ false, FuncAttrs);
1898   // TODO: call GetCPUAndFeaturesAttributes?
1899   F.addFnAttrs(FuncAttrs);
1900 }
1901 
1902 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1903                                                    llvm::AttrBuilder &attrs) {
1904   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1905                                /*for call*/ false, attrs);
1906   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1907 }
1908 
1909 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1910                                    const LangOptions &LangOpts,
1911                                    const NoBuiltinAttr *NBA = nullptr) {
1912   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1913     SmallString<32> AttributeName;
1914     AttributeName += "no-builtin-";
1915     AttributeName += BuiltinName;
1916     FuncAttrs.addAttribute(AttributeName);
1917   };
1918 
1919   // First, handle the language options passed through -fno-builtin.
1920   if (LangOpts.NoBuiltin) {
1921     // -fno-builtin disables them all.
1922     FuncAttrs.addAttribute("no-builtins");
1923     return;
1924   }
1925 
1926   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1927   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1928 
1929   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1930   // the source.
1931   if (!NBA)
1932     return;
1933 
1934   // If there is a wildcard in the builtin names specified through the
1935   // attribute, disable them all.
1936   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1937     FuncAttrs.addAttribute("no-builtins");
1938     return;
1939   }
1940 
1941   // And last, add the rest of the builtin names.
1942   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1943 }
1944 
1945 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1946                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1947                              bool CheckCoerce = true) {
1948   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1949   if (AI.getKind() == ABIArgInfo::Indirect)
1950     return true;
1951   if (AI.getKind() == ABIArgInfo::Extend)
1952     return true;
1953   if (!DL.typeSizeEqualsStoreSize(Ty))
1954     // TODO: This will result in a modest amount of values not marked noundef
1955     // when they could be. We care about values that *invisibly* contain undef
1956     // bits from the perspective of LLVM IR.
1957     return false;
1958   if (CheckCoerce && AI.canHaveCoerceToType()) {
1959     llvm::Type *CoerceTy = AI.getCoerceToType();
1960     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
1961                                   DL.getTypeSizeInBits(Ty)))
1962       // If we're coercing to a type with a greater size than the canonical one,
1963       // we're introducing new undef bits.
1964       // Coercing to a type of smaller or equal size is ok, as we know that
1965       // there's no internal padding (typeSizeEqualsStoreSize).
1966       return false;
1967   }
1968   if (QTy->isBitIntType())
1969     return true;
1970   if (QTy->isReferenceType())
1971     return true;
1972   if (QTy->isNullPtrType())
1973     return false;
1974   if (QTy->isMemberPointerType())
1975     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
1976     // now, never mark them.
1977     return false;
1978   if (QTy->isScalarType()) {
1979     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
1980       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
1981     return true;
1982   }
1983   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
1984     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
1985   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
1986     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
1987   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
1988     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
1989 
1990   // TODO: Some structs may be `noundef`, in specific situations.
1991   return false;
1992 }
1993 
1994 /// Construct the IR attribute list of a function or call.
1995 ///
1996 /// When adding an attribute, please consider where it should be handled:
1997 ///
1998 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1999 ///     part of the global target configuration (but perhaps can be
2000 ///     overridden on a per-function basis).  Adding attributes there
2001 ///     will cause them to also be set in frontends that build on Clang's
2002 ///     target-configuration logic, as well as for code defined in library
2003 ///     modules such as CUDA's libdevice.
2004 ///
2005 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2006 ///     and adds declaration-specific, convention-specific, and
2007 ///     frontend-specific logic.  The last is of particular importance:
2008 ///     attributes that restrict how the frontend generates code must be
2009 ///     added here rather than getDefaultFunctionAttributes.
2010 ///
2011 void CodeGenModule::ConstructAttributeList(StringRef Name,
2012                                            const CGFunctionInfo &FI,
2013                                            CGCalleeInfo CalleeInfo,
2014                                            llvm::AttributeList &AttrList,
2015                                            unsigned &CallingConv,
2016                                            bool AttrOnCallSite, bool IsThunk) {
2017   llvm::AttrBuilder FuncAttrs;
2018   llvm::AttrBuilder RetAttrs;
2019 
2020   // Collect function IR attributes from the CC lowering.
2021   // We'll collect the paramete and result attributes later.
2022   CallingConv = FI.getEffectiveCallingConvention();
2023   if (FI.isNoReturn())
2024     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2025   if (FI.isCmseNSCall())
2026     FuncAttrs.addAttribute("cmse_nonsecure_call");
2027 
2028   // Collect function IR attributes from the callee prototype if we have one.
2029   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2030                                      CalleeInfo.getCalleeFunctionProtoType());
2031 
2032   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2033 
2034   // Attach assumption attributes to the declaration. If this is a call
2035   // site, attach assumptions from the caller to the call as well.
2036   AddAttributesFromAssumes(FuncAttrs, TargetDecl);
2037 
2038   bool HasOptnone = false;
2039   // The NoBuiltinAttr attached to the target FunctionDecl.
2040   const NoBuiltinAttr *NBA = nullptr;
2041 
2042   // Collect function IR attributes based on declaration-specific
2043   // information.
2044   // FIXME: handle sseregparm someday...
2045   if (TargetDecl) {
2046     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2047       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2048     if (TargetDecl->hasAttr<NoThrowAttr>())
2049       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2050     if (TargetDecl->hasAttr<NoReturnAttr>())
2051       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2052     if (TargetDecl->hasAttr<ColdAttr>())
2053       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2054     if (TargetDecl->hasAttr<HotAttr>())
2055       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2056     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2057       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2058     if (TargetDecl->hasAttr<ConvergentAttr>())
2059       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2060 
2061     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2062       AddAttributesFromFunctionProtoType(
2063           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2064       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2065         // A sane operator new returns a non-aliasing pointer.
2066         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2067         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2068             (Kind == OO_New || Kind == OO_Array_New))
2069           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2070       }
2071       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2072       const bool IsVirtualCall = MD && MD->isVirtual();
2073       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2074       // virtual function. These attributes are not inherited by overloads.
2075       if (!(AttrOnCallSite && IsVirtualCall)) {
2076         if (Fn->isNoReturn())
2077           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2078         NBA = Fn->getAttr<NoBuiltinAttr>();
2079       }
2080       // Only place nomerge attribute on call sites, never functions. This
2081       // allows it to work on indirect virtual function calls.
2082       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2083         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2084     }
2085 
2086     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2087     if (TargetDecl->hasAttr<ConstAttr>()) {
2088       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2089       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2090       // gcc specifies that 'const' functions have greater restrictions than
2091       // 'pure' functions, so they also cannot have infinite loops.
2092       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2093     } else if (TargetDecl->hasAttr<PureAttr>()) {
2094       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2095       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2096       // gcc specifies that 'pure' functions cannot have infinite loops.
2097       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2098     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2099       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2100       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2101     }
2102     if (TargetDecl->hasAttr<RestrictAttr>())
2103       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2104     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2105         !CodeGenOpts.NullPointerIsValid)
2106       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2107     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2108       FuncAttrs.addAttribute("no_caller_saved_registers");
2109     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2110       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2111     if (TargetDecl->hasAttr<LeafAttr>())
2112       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2113 
2114     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2115     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2116       Optional<unsigned> NumElemsParam;
2117       if (AllocSize->getNumElemsParam().isValid())
2118         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2119       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2120                                  NumElemsParam);
2121     }
2122 
2123     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2124       if (getLangOpts().OpenCLVersion <= 120) {
2125         // OpenCL v1.2 Work groups are always uniform
2126         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2127       } else {
2128         // OpenCL v2.0 Work groups may be whether uniform or not.
2129         // '-cl-uniform-work-group-size' compile option gets a hint
2130         // to the compiler that the global work-size be a multiple of
2131         // the work-group size specified to clEnqueueNDRangeKernel
2132         // (i.e. work groups are uniform).
2133         FuncAttrs.addAttribute("uniform-work-group-size",
2134                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2135       }
2136     }
2137   }
2138 
2139   // Attach "no-builtins" attributes to:
2140   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2141   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2142   // The attributes can come from:
2143   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2144   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2145   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2146 
2147   // Collect function IR attributes based on global settiings.
2148   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2149 
2150   // Override some default IR attributes based on declaration-specific
2151   // information.
2152   if (TargetDecl) {
2153     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2154       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2155     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2156       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2157     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2158       FuncAttrs.removeAttribute("split-stack");
2159 
2160     // Add NonLazyBind attribute to function declarations when -fno-plt
2161     // is used.
2162     // FIXME: what if we just haven't processed the function definition
2163     // yet, or if it's an external definition like C99 inline?
2164     if (CodeGenOpts.NoPLT) {
2165       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2166         if (!Fn->isDefined() && !AttrOnCallSite) {
2167           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2168         }
2169       }
2170     }
2171   }
2172 
2173   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2174   // functions with -funique-internal-linkage-names.
2175   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2176     if (isa<FunctionDecl>(TargetDecl)) {
2177       if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) ==
2178           llvm::GlobalValue::InternalLinkage)
2179         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2180                                "selected");
2181     }
2182   }
2183 
2184   // Collect non-call-site function IR attributes from declaration-specific
2185   // information.
2186   if (!AttrOnCallSite) {
2187     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2188       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2189 
2190     // Whether tail calls are enabled.
2191     auto shouldDisableTailCalls = [&] {
2192       // Should this be honored in getDefaultFunctionAttributes?
2193       if (CodeGenOpts.DisableTailCalls)
2194         return true;
2195 
2196       if (!TargetDecl)
2197         return false;
2198 
2199       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2200           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2201         return true;
2202 
2203       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2204         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2205           if (!BD->doesNotEscape())
2206             return true;
2207       }
2208 
2209       return false;
2210     };
2211     if (shouldDisableTailCalls())
2212       FuncAttrs.addAttribute("disable-tail-calls", "true");
2213 
2214     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2215     // handles these separately to set them based on the global defaults.
2216     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2217   }
2218 
2219   // Collect attributes from arguments and return values.
2220   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2221 
2222   QualType RetTy = FI.getReturnType();
2223   const ABIArgInfo &RetAI = FI.getReturnInfo();
2224   const llvm::DataLayout &DL = getDataLayout();
2225 
2226   // C++ explicitly makes returning undefined values UB. C's rule only applies
2227   // to used values, so we never mark them noundef for now.
2228   bool HasStrictReturn = getLangOpts().CPlusPlus;
2229   if (TargetDecl && HasStrictReturn) {
2230     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2231       HasStrictReturn &= !FDecl->isExternC();
2232     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2233       // Function pointer
2234       HasStrictReturn &= !VDecl->isExternC();
2235   }
2236 
2237   // We don't want to be too aggressive with the return checking, unless
2238   // it's explicit in the code opts or we're using an appropriate sanitizer.
2239   // Try to respect what the programmer intended.
2240   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2241                      !MayDropFunctionReturn(getContext(), RetTy) ||
2242                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2243                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2244 
2245   // Determine if the return type could be partially undef
2246   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2247     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2248         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2249       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2250   }
2251 
2252   switch (RetAI.getKind()) {
2253   case ABIArgInfo::Extend:
2254     if (RetAI.isSignExt())
2255       RetAttrs.addAttribute(llvm::Attribute::SExt);
2256     else
2257       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2258     LLVM_FALLTHROUGH;
2259   case ABIArgInfo::Direct:
2260     if (RetAI.getInReg())
2261       RetAttrs.addAttribute(llvm::Attribute::InReg);
2262     break;
2263   case ABIArgInfo::Ignore:
2264     break;
2265 
2266   case ABIArgInfo::InAlloca:
2267   case ABIArgInfo::Indirect: {
2268     // inalloca and sret disable readnone and readonly
2269     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2270       .removeAttribute(llvm::Attribute::ReadNone);
2271     break;
2272   }
2273 
2274   case ABIArgInfo::CoerceAndExpand:
2275     break;
2276 
2277   case ABIArgInfo::Expand:
2278   case ABIArgInfo::IndirectAliased:
2279     llvm_unreachable("Invalid ABI kind for return argument");
2280   }
2281 
2282   if (!IsThunk) {
2283     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2284     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2285       QualType PTy = RefTy->getPointeeType();
2286       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2287         RetAttrs.addDereferenceableAttr(
2288             getMinimumObjectSize(PTy).getQuantity());
2289       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2290           !CodeGenOpts.NullPointerIsValid)
2291         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2292       if (PTy->isObjectType()) {
2293         llvm::Align Alignment =
2294             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2295         RetAttrs.addAlignmentAttr(Alignment);
2296       }
2297     }
2298   }
2299 
2300   bool hasUsedSRet = false;
2301   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2302 
2303   // Attach attributes to sret.
2304   if (IRFunctionArgs.hasSRetArg()) {
2305     llvm::AttrBuilder SRETAttrs;
2306     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2307     hasUsedSRet = true;
2308     if (RetAI.getInReg())
2309       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2310     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2311     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2312         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2313   }
2314 
2315   // Attach attributes to inalloca argument.
2316   if (IRFunctionArgs.hasInallocaArg()) {
2317     llvm::AttrBuilder Attrs;
2318     Attrs.addInAllocaAttr(FI.getArgStruct());
2319     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2320         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2321   }
2322 
2323   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2324   // unless this is a thunk function.
2325   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2326   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2327       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2328     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2329 
2330     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2331 
2332     llvm::AttrBuilder Attrs;
2333 
2334     QualType ThisTy =
2335         FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2336 
2337     if (!CodeGenOpts.NullPointerIsValid &&
2338         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2339       Attrs.addAttribute(llvm::Attribute::NonNull);
2340       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2341     } else {
2342       // FIXME dereferenceable should be correct here, regardless of
2343       // NullPointerIsValid. However, dereferenceable currently does not always
2344       // respect NullPointerIsValid and may imply nonnull and break the program.
2345       // See https://reviews.llvm.org/D66618 for discussions.
2346       Attrs.addDereferenceableOrNullAttr(
2347           getMinimumObjectSize(
2348               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2349               .getQuantity());
2350     }
2351 
2352     llvm::Align Alignment =
2353         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2354                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2355             .getAsAlign();
2356     Attrs.addAlignmentAttr(Alignment);
2357 
2358     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2359   }
2360 
2361   unsigned ArgNo = 0;
2362   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2363                                           E = FI.arg_end();
2364        I != E; ++I, ++ArgNo) {
2365     QualType ParamType = I->type;
2366     const ABIArgInfo &AI = I->info;
2367     llvm::AttrBuilder Attrs;
2368 
2369     // Add attribute for padding argument, if necessary.
2370     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2371       if (AI.getPaddingInReg()) {
2372         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2373             llvm::AttributeSet::get(
2374                 getLLVMContext(),
2375                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2376       }
2377     }
2378 
2379     // Decide whether the argument we're handling could be partially undef
2380     bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI);
2381     if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef)
2382       Attrs.addAttribute(llvm::Attribute::NoUndef);
2383 
2384     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2385     // have the corresponding parameter variable.  It doesn't make
2386     // sense to do it here because parameters are so messed up.
2387     switch (AI.getKind()) {
2388     case ABIArgInfo::Extend:
2389       if (AI.isSignExt())
2390         Attrs.addAttribute(llvm::Attribute::SExt);
2391       else
2392         Attrs.addAttribute(llvm::Attribute::ZExt);
2393       LLVM_FALLTHROUGH;
2394     case ABIArgInfo::Direct:
2395       if (ArgNo == 0 && FI.isChainCall())
2396         Attrs.addAttribute(llvm::Attribute::Nest);
2397       else if (AI.getInReg())
2398         Attrs.addAttribute(llvm::Attribute::InReg);
2399       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2400       break;
2401 
2402     case ABIArgInfo::Indirect: {
2403       if (AI.getInReg())
2404         Attrs.addAttribute(llvm::Attribute::InReg);
2405 
2406       if (AI.getIndirectByVal())
2407         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2408 
2409       auto *Decl = ParamType->getAsRecordDecl();
2410       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2411           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2412         // When calling the function, the pointer passed in will be the only
2413         // reference to the underlying object. Mark it accordingly.
2414         Attrs.addAttribute(llvm::Attribute::NoAlias);
2415 
2416       // TODO: We could add the byref attribute if not byval, but it would
2417       // require updating many testcases.
2418 
2419       CharUnits Align = AI.getIndirectAlign();
2420 
2421       // In a byval argument, it is important that the required
2422       // alignment of the type is honored, as LLVM might be creating a
2423       // *new* stack object, and needs to know what alignment to give
2424       // it. (Sometimes it can deduce a sensible alignment on its own,
2425       // but not if clang decides it must emit a packed struct, or the
2426       // user specifies increased alignment requirements.)
2427       //
2428       // This is different from indirect *not* byval, where the object
2429       // exists already, and the align attribute is purely
2430       // informative.
2431       assert(!Align.isZero());
2432 
2433       // For now, only add this when we have a byval argument.
2434       // TODO: be less lazy about updating test cases.
2435       if (AI.getIndirectByVal())
2436         Attrs.addAlignmentAttr(Align.getQuantity());
2437 
2438       // byval disables readnone and readonly.
2439       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2440         .removeAttribute(llvm::Attribute::ReadNone);
2441 
2442       break;
2443     }
2444     case ABIArgInfo::IndirectAliased: {
2445       CharUnits Align = AI.getIndirectAlign();
2446       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2447       Attrs.addAlignmentAttr(Align.getQuantity());
2448       break;
2449     }
2450     case ABIArgInfo::Ignore:
2451     case ABIArgInfo::Expand:
2452     case ABIArgInfo::CoerceAndExpand:
2453       break;
2454 
2455     case ABIArgInfo::InAlloca:
2456       // inalloca disables readnone and readonly.
2457       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2458           .removeAttribute(llvm::Attribute::ReadNone);
2459       continue;
2460     }
2461 
2462     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2463       QualType PTy = RefTy->getPointeeType();
2464       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2465         Attrs.addDereferenceableAttr(
2466             getMinimumObjectSize(PTy).getQuantity());
2467       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2468           !CodeGenOpts.NullPointerIsValid)
2469         Attrs.addAttribute(llvm::Attribute::NonNull);
2470       if (PTy->isObjectType()) {
2471         llvm::Align Alignment =
2472             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2473         Attrs.addAlignmentAttr(Alignment);
2474       }
2475     }
2476 
2477     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2478     case ParameterABI::Ordinary:
2479       break;
2480 
2481     case ParameterABI::SwiftIndirectResult: {
2482       // Add 'sret' if we haven't already used it for something, but
2483       // only if the result is void.
2484       if (!hasUsedSRet && RetTy->isVoidType()) {
2485         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2486         hasUsedSRet = true;
2487       }
2488 
2489       // Add 'noalias' in either case.
2490       Attrs.addAttribute(llvm::Attribute::NoAlias);
2491 
2492       // Add 'dereferenceable' and 'alignment'.
2493       auto PTy = ParamType->getPointeeType();
2494       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2495         auto info = getContext().getTypeInfoInChars(PTy);
2496         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2497         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2498       }
2499       break;
2500     }
2501 
2502     case ParameterABI::SwiftErrorResult:
2503       Attrs.addAttribute(llvm::Attribute::SwiftError);
2504       break;
2505 
2506     case ParameterABI::SwiftContext:
2507       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2508       break;
2509 
2510     case ParameterABI::SwiftAsyncContext:
2511       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2512       break;
2513     }
2514 
2515     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2516       Attrs.addAttribute(llvm::Attribute::NoCapture);
2517 
2518     if (Attrs.hasAttributes()) {
2519       unsigned FirstIRArg, NumIRArgs;
2520       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2521       for (unsigned i = 0; i < NumIRArgs; i++)
2522         ArgAttrs[FirstIRArg + i] =
2523             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2524     }
2525   }
2526   assert(ArgNo == FI.arg_size());
2527 
2528   AttrList = llvm::AttributeList::get(
2529       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2530       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2531 }
2532 
2533 /// An argument came in as a promoted argument; demote it back to its
2534 /// declared type.
2535 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2536                                          const VarDecl *var,
2537                                          llvm::Value *value) {
2538   llvm::Type *varType = CGF.ConvertType(var->getType());
2539 
2540   // This can happen with promotions that actually don't change the
2541   // underlying type, like the enum promotions.
2542   if (value->getType() == varType) return value;
2543 
2544   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2545          && "unexpected promotion type");
2546 
2547   if (isa<llvm::IntegerType>(varType))
2548     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2549 
2550   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2551 }
2552 
2553 /// Returns the attribute (either parameter attribute, or function
2554 /// attribute), which declares argument ArgNo to be non-null.
2555 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2556                                          QualType ArgType, unsigned ArgNo) {
2557   // FIXME: __attribute__((nonnull)) can also be applied to:
2558   //   - references to pointers, where the pointee is known to be
2559   //     nonnull (apparently a Clang extension)
2560   //   - transparent unions containing pointers
2561   // In the former case, LLVM IR cannot represent the constraint. In
2562   // the latter case, we have no guarantee that the transparent union
2563   // is in fact passed as a pointer.
2564   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2565     return nullptr;
2566   // First, check attribute on parameter itself.
2567   if (PVD) {
2568     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2569       return ParmNNAttr;
2570   }
2571   // Check function attributes.
2572   if (!FD)
2573     return nullptr;
2574   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2575     if (NNAttr->isNonNull(ArgNo))
2576       return NNAttr;
2577   }
2578   return nullptr;
2579 }
2580 
2581 namespace {
2582   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2583     Address Temp;
2584     Address Arg;
2585     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2586     void Emit(CodeGenFunction &CGF, Flags flags) override {
2587       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2588       CGF.Builder.CreateStore(errorValue, Arg);
2589     }
2590   };
2591 }
2592 
2593 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2594                                          llvm::Function *Fn,
2595                                          const FunctionArgList &Args) {
2596   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2597     // Naked functions don't have prologues.
2598     return;
2599 
2600   // If this is an implicit-return-zero function, go ahead and
2601   // initialize the return value.  TODO: it might be nice to have
2602   // a more general mechanism for this that didn't require synthesized
2603   // return statements.
2604   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2605     if (FD->hasImplicitReturnZero()) {
2606       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2607       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2608       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2609       Builder.CreateStore(Zero, ReturnValue);
2610     }
2611   }
2612 
2613   // FIXME: We no longer need the types from FunctionArgList; lift up and
2614   // simplify.
2615 
2616   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2617   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2618 
2619   // If we're using inalloca, all the memory arguments are GEPs off of the last
2620   // parameter, which is a pointer to the complete memory area.
2621   Address ArgStruct = Address::invalid();
2622   if (IRFunctionArgs.hasInallocaArg()) {
2623     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2624                         FI.getArgStructAlignment());
2625 
2626     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2627   }
2628 
2629   // Name the struct return parameter.
2630   if (IRFunctionArgs.hasSRetArg()) {
2631     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2632     AI->setName("agg.result");
2633     AI->addAttr(llvm::Attribute::NoAlias);
2634   }
2635 
2636   // Track if we received the parameter as a pointer (indirect, byval, or
2637   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2638   // into a local alloca for us.
2639   SmallVector<ParamValue, 16> ArgVals;
2640   ArgVals.reserve(Args.size());
2641 
2642   // Create a pointer value for every parameter declaration.  This usually
2643   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2644   // any cleanups or do anything that might unwind.  We do that separately, so
2645   // we can push the cleanups in the correct order for the ABI.
2646   assert(FI.arg_size() == Args.size() &&
2647          "Mismatch between function signature & arguments.");
2648   unsigned ArgNo = 0;
2649   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2650   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2651        i != e; ++i, ++info_it, ++ArgNo) {
2652     const VarDecl *Arg = *i;
2653     const ABIArgInfo &ArgI = info_it->info;
2654 
2655     bool isPromoted =
2656       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2657     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2658     // the parameter is promoted. In this case we convert to
2659     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2660     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2661     assert(hasScalarEvaluationKind(Ty) ==
2662            hasScalarEvaluationKind(Arg->getType()));
2663 
2664     unsigned FirstIRArg, NumIRArgs;
2665     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2666 
2667     switch (ArgI.getKind()) {
2668     case ABIArgInfo::InAlloca: {
2669       assert(NumIRArgs == 0);
2670       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2671       Address V =
2672           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2673       if (ArgI.getInAllocaIndirect())
2674         V = Address(Builder.CreateLoad(V),
2675                     getContext().getTypeAlignInChars(Ty));
2676       ArgVals.push_back(ParamValue::forIndirect(V));
2677       break;
2678     }
2679 
2680     case ABIArgInfo::Indirect:
2681     case ABIArgInfo::IndirectAliased: {
2682       assert(NumIRArgs == 1);
2683       Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
2684                                   ArgI.getIndirectAlign());
2685 
2686       if (!hasScalarEvaluationKind(Ty)) {
2687         // Aggregates and complex variables are accessed by reference. All we
2688         // need to do is realign the value, if requested. Also, if the address
2689         // may be aliased, copy it to ensure that the parameter variable is
2690         // mutable and has a unique adress, as C requires.
2691         Address V = ParamAddr;
2692         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2693           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2694 
2695           // Copy from the incoming argument pointer to the temporary with the
2696           // appropriate alignment.
2697           //
2698           // FIXME: We should have a common utility for generating an aggregate
2699           // copy.
2700           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2701           Builder.CreateMemCpy(
2702               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2703               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2704               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2705           V = AlignedTemp;
2706         }
2707         ArgVals.push_back(ParamValue::forIndirect(V));
2708       } else {
2709         // Load scalar value from indirect argument.
2710         llvm::Value *V =
2711             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2712 
2713         if (isPromoted)
2714           V = emitArgumentDemotion(*this, Arg, V);
2715         ArgVals.push_back(ParamValue::forDirect(V));
2716       }
2717       break;
2718     }
2719 
2720     case ABIArgInfo::Extend:
2721     case ABIArgInfo::Direct: {
2722       auto AI = Fn->getArg(FirstIRArg);
2723       llvm::Type *LTy = ConvertType(Arg->getType());
2724 
2725       // Prepare parameter attributes. So far, only attributes for pointer
2726       // parameters are prepared. See
2727       // http://llvm.org/docs/LangRef.html#paramattrs.
2728       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2729           ArgI.getCoerceToType()->isPointerTy()) {
2730         assert(NumIRArgs == 1);
2731 
2732         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2733           // Set `nonnull` attribute if any.
2734           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2735                              PVD->getFunctionScopeIndex()) &&
2736               !CGM.getCodeGenOpts().NullPointerIsValid)
2737             AI->addAttr(llvm::Attribute::NonNull);
2738 
2739           QualType OTy = PVD->getOriginalType();
2740           if (const auto *ArrTy =
2741               getContext().getAsConstantArrayType(OTy)) {
2742             // A C99 array parameter declaration with the static keyword also
2743             // indicates dereferenceability, and if the size is constant we can
2744             // use the dereferenceable attribute (which requires the size in
2745             // bytes).
2746             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2747               QualType ETy = ArrTy->getElementType();
2748               llvm::Align Alignment =
2749                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2750               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2751               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2752               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2753                   ArrSize) {
2754                 llvm::AttrBuilder Attrs;
2755                 Attrs.addDereferenceableAttr(
2756                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2757                     ArrSize);
2758                 AI->addAttrs(Attrs);
2759               } else if (getContext().getTargetInfo().getNullPointerValue(
2760                              ETy.getAddressSpace()) == 0 &&
2761                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2762                 AI->addAttr(llvm::Attribute::NonNull);
2763               }
2764             }
2765           } else if (const auto *ArrTy =
2766                      getContext().getAsVariableArrayType(OTy)) {
2767             // For C99 VLAs with the static keyword, we don't know the size so
2768             // we can't use the dereferenceable attribute, but in addrspace(0)
2769             // we know that it must be nonnull.
2770             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2771               QualType ETy = ArrTy->getElementType();
2772               llvm::Align Alignment =
2773                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2774               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2775               if (!getContext().getTargetAddressSpace(ETy) &&
2776                   !CGM.getCodeGenOpts().NullPointerIsValid)
2777                 AI->addAttr(llvm::Attribute::NonNull);
2778             }
2779           }
2780 
2781           // Set `align` attribute if any.
2782           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2783           if (!AVAttr)
2784             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2785               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2786           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2787             // If alignment-assumption sanitizer is enabled, we do *not* add
2788             // alignment attribute here, but emit normal alignment assumption,
2789             // so the UBSAN check could function.
2790             llvm::ConstantInt *AlignmentCI =
2791                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2792             uint64_t AlignmentInt =
2793                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2794             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2795               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2796               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2797                   llvm::Align(AlignmentInt)));
2798             }
2799           }
2800         }
2801 
2802         // Set 'noalias' if an argument type has the `restrict` qualifier.
2803         if (Arg->getType().isRestrictQualified())
2804           AI->addAttr(llvm::Attribute::NoAlias);
2805       }
2806 
2807       // Prepare the argument value. If we have the trivial case, handle it
2808       // with no muss and fuss.
2809       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2810           ArgI.getCoerceToType() == ConvertType(Ty) &&
2811           ArgI.getDirectOffset() == 0) {
2812         assert(NumIRArgs == 1);
2813 
2814         // LLVM expects swifterror parameters to be used in very restricted
2815         // ways.  Copy the value into a less-restricted temporary.
2816         llvm::Value *V = AI;
2817         if (FI.getExtParameterInfo(ArgNo).getABI()
2818               == ParameterABI::SwiftErrorResult) {
2819           QualType pointeeTy = Ty->getPointeeType();
2820           assert(pointeeTy->isPointerType());
2821           Address temp =
2822             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2823           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2824           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2825           Builder.CreateStore(incomingErrorValue, temp);
2826           V = temp.getPointer();
2827 
2828           // Push a cleanup to copy the value back at the end of the function.
2829           // The convention does not guarantee that the value will be written
2830           // back if the function exits with an unwind exception.
2831           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2832         }
2833 
2834         // Ensure the argument is the correct type.
2835         if (V->getType() != ArgI.getCoerceToType())
2836           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2837 
2838         if (isPromoted)
2839           V = emitArgumentDemotion(*this, Arg, V);
2840 
2841         // Because of merging of function types from multiple decls it is
2842         // possible for the type of an argument to not match the corresponding
2843         // type in the function type. Since we are codegening the callee
2844         // in here, add a cast to the argument type.
2845         llvm::Type *LTy = ConvertType(Arg->getType());
2846         if (V->getType() != LTy)
2847           V = Builder.CreateBitCast(V, LTy);
2848 
2849         ArgVals.push_back(ParamValue::forDirect(V));
2850         break;
2851       }
2852 
2853       // VLST arguments are coerced to VLATs at the function boundary for
2854       // ABI consistency. If this is a VLST that was coerced to
2855       // a VLAT at the function boundary and the types match up, use
2856       // llvm.experimental.vector.extract to convert back to the original
2857       // VLST.
2858       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2859         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
2860         if (auto *VecTyFrom =
2861                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2862           // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2863           // vector, bitcast the source and use a vector extract.
2864           auto PredType =
2865               llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2866           if (VecTyFrom == PredType &&
2867               VecTyTo->getElementType() == Builder.getInt8Ty()) {
2868             VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2869             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
2870           }
2871           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2872             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2873 
2874             assert(NumIRArgs == 1);
2875             Coerced->setName(Arg->getName() + ".coerce");
2876             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2877                 VecTyTo, Coerced, Zero, "castFixedSve")));
2878             break;
2879           }
2880         }
2881       }
2882 
2883       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2884                                      Arg->getName());
2885 
2886       // Pointer to store into.
2887       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2888 
2889       // Fast-isel and the optimizer generally like scalar values better than
2890       // FCAs, so we flatten them if this is safe to do for this argument.
2891       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2892       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2893           STy->getNumElements() > 1) {
2894         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2895         llvm::Type *DstTy = Ptr.getElementType();
2896         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2897 
2898         Address AddrToStoreInto = Address::invalid();
2899         if (SrcSize <= DstSize) {
2900           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2901         } else {
2902           AddrToStoreInto =
2903             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2904         }
2905 
2906         assert(STy->getNumElements() == NumIRArgs);
2907         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2908           auto AI = Fn->getArg(FirstIRArg + i);
2909           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2910           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2911           Builder.CreateStore(AI, EltPtr);
2912         }
2913 
2914         if (SrcSize > DstSize) {
2915           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2916         }
2917 
2918       } else {
2919         // Simple case, just do a coerced store of the argument into the alloca.
2920         assert(NumIRArgs == 1);
2921         auto AI = Fn->getArg(FirstIRArg);
2922         AI->setName(Arg->getName() + ".coerce");
2923         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2924       }
2925 
2926       // Match to what EmitParmDecl is expecting for this type.
2927       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2928         llvm::Value *V =
2929             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2930         if (isPromoted)
2931           V = emitArgumentDemotion(*this, Arg, V);
2932         ArgVals.push_back(ParamValue::forDirect(V));
2933       } else {
2934         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2935       }
2936       break;
2937     }
2938 
2939     case ABIArgInfo::CoerceAndExpand: {
2940       // Reconstruct into a temporary.
2941       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2942       ArgVals.push_back(ParamValue::forIndirect(alloca));
2943 
2944       auto coercionType = ArgI.getCoerceAndExpandType();
2945       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2946 
2947       unsigned argIndex = FirstIRArg;
2948       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2949         llvm::Type *eltType = coercionType->getElementType(i);
2950         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2951           continue;
2952 
2953         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2954         auto elt = Fn->getArg(argIndex++);
2955         Builder.CreateStore(elt, eltAddr);
2956       }
2957       assert(argIndex == FirstIRArg + NumIRArgs);
2958       break;
2959     }
2960 
2961     case ABIArgInfo::Expand: {
2962       // If this structure was expanded into multiple arguments then
2963       // we need to create a temporary and reconstruct it from the
2964       // arguments.
2965       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2966       LValue LV = MakeAddrLValue(Alloca, Ty);
2967       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2968 
2969       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2970       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2971       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2972       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2973         auto AI = Fn->getArg(FirstIRArg + i);
2974         AI->setName(Arg->getName() + "." + Twine(i));
2975       }
2976       break;
2977     }
2978 
2979     case ABIArgInfo::Ignore:
2980       assert(NumIRArgs == 0);
2981       // Initialize the local variable appropriately.
2982       if (!hasScalarEvaluationKind(Ty)) {
2983         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2984       } else {
2985         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2986         ArgVals.push_back(ParamValue::forDirect(U));
2987       }
2988       break;
2989     }
2990   }
2991 
2992   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2993     for (int I = Args.size() - 1; I >= 0; --I)
2994       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2995   } else {
2996     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2997       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2998   }
2999 }
3000 
3001 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3002   while (insn->use_empty()) {
3003     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3004     if (!bitcast) return;
3005 
3006     // This is "safe" because we would have used a ConstantExpr otherwise.
3007     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3008     bitcast->eraseFromParent();
3009   }
3010 }
3011 
3012 /// Try to emit a fused autorelease of a return result.
3013 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3014                                                     llvm::Value *result) {
3015   // We must be immediately followed the cast.
3016   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3017   if (BB->empty()) return nullptr;
3018   if (&BB->back() != result) return nullptr;
3019 
3020   llvm::Type *resultType = result->getType();
3021 
3022   // result is in a BasicBlock and is therefore an Instruction.
3023   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3024 
3025   SmallVector<llvm::Instruction *, 4> InstsToKill;
3026 
3027   // Look for:
3028   //  %generator = bitcast %type1* %generator2 to %type2*
3029   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3030     // We would have emitted this as a constant if the operand weren't
3031     // an Instruction.
3032     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3033 
3034     // Require the generator to be immediately followed by the cast.
3035     if (generator->getNextNode() != bitcast)
3036       return nullptr;
3037 
3038     InstsToKill.push_back(bitcast);
3039   }
3040 
3041   // Look for:
3042   //   %generator = call i8* @objc_retain(i8* %originalResult)
3043   // or
3044   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3045   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3046   if (!call) return nullptr;
3047 
3048   bool doRetainAutorelease;
3049 
3050   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3051     doRetainAutorelease = true;
3052   } else if (call->getCalledOperand() ==
3053              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3054     doRetainAutorelease = false;
3055 
3056     // If we emitted an assembly marker for this call (and the
3057     // ARCEntrypoints field should have been set if so), go looking
3058     // for that call.  If we can't find it, we can't do this
3059     // optimization.  But it should always be the immediately previous
3060     // instruction, unless we needed bitcasts around the call.
3061     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3062       llvm::Instruction *prev = call->getPrevNode();
3063       assert(prev);
3064       if (isa<llvm::BitCastInst>(prev)) {
3065         prev = prev->getPrevNode();
3066         assert(prev);
3067       }
3068       assert(isa<llvm::CallInst>(prev));
3069       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3070              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3071       InstsToKill.push_back(prev);
3072     }
3073   } else {
3074     return nullptr;
3075   }
3076 
3077   result = call->getArgOperand(0);
3078   InstsToKill.push_back(call);
3079 
3080   // Keep killing bitcasts, for sanity.  Note that we no longer care
3081   // about precise ordering as long as there's exactly one use.
3082   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3083     if (!bitcast->hasOneUse()) break;
3084     InstsToKill.push_back(bitcast);
3085     result = bitcast->getOperand(0);
3086   }
3087 
3088   // Delete all the unnecessary instructions, from latest to earliest.
3089   for (auto *I : InstsToKill)
3090     I->eraseFromParent();
3091 
3092   // Do the fused retain/autorelease if we were asked to.
3093   if (doRetainAutorelease)
3094     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3095 
3096   // Cast back to the result type.
3097   return CGF.Builder.CreateBitCast(result, resultType);
3098 }
3099 
3100 /// If this is a +1 of the value of an immutable 'self', remove it.
3101 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3102                                           llvm::Value *result) {
3103   // This is only applicable to a method with an immutable 'self'.
3104   const ObjCMethodDecl *method =
3105     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3106   if (!method) return nullptr;
3107   const VarDecl *self = method->getSelfDecl();
3108   if (!self->getType().isConstQualified()) return nullptr;
3109 
3110   // Look for a retain call.
3111   llvm::CallInst *retainCall =
3112     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3113   if (!retainCall || retainCall->getCalledOperand() !=
3114                          CGF.CGM.getObjCEntrypoints().objc_retain)
3115     return nullptr;
3116 
3117   // Look for an ordinary load of 'self'.
3118   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3119   llvm::LoadInst *load =
3120     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3121   if (!load || load->isAtomic() || load->isVolatile() ||
3122       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3123     return nullptr;
3124 
3125   // Okay!  Burn it all down.  This relies for correctness on the
3126   // assumption that the retain is emitted as part of the return and
3127   // that thereafter everything is used "linearly".
3128   llvm::Type *resultType = result->getType();
3129   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3130   assert(retainCall->use_empty());
3131   retainCall->eraseFromParent();
3132   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3133 
3134   return CGF.Builder.CreateBitCast(load, resultType);
3135 }
3136 
3137 /// Emit an ARC autorelease of the result of a function.
3138 ///
3139 /// \return the value to actually return from the function
3140 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3141                                             llvm::Value *result) {
3142   // If we're returning 'self', kill the initial retain.  This is a
3143   // heuristic attempt to "encourage correctness" in the really unfortunate
3144   // case where we have a return of self during a dealloc and we desperately
3145   // need to avoid the possible autorelease.
3146   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3147     return self;
3148 
3149   // At -O0, try to emit a fused retain/autorelease.
3150   if (CGF.shouldUseFusedARCCalls())
3151     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3152       return fused;
3153 
3154   return CGF.EmitARCAutoreleaseReturnValue(result);
3155 }
3156 
3157 /// Heuristically search for a dominating store to the return-value slot.
3158 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3159   // Check if a User is a store which pointerOperand is the ReturnValue.
3160   // We are looking for stores to the ReturnValue, not for stores of the
3161   // ReturnValue to some other location.
3162   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3163     auto *SI = dyn_cast<llvm::StoreInst>(U);
3164     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3165       return nullptr;
3166     // These aren't actually possible for non-coerced returns, and we
3167     // only care about non-coerced returns on this code path.
3168     assert(!SI->isAtomic() && !SI->isVolatile());
3169     return SI;
3170   };
3171   // If there are multiple uses of the return-value slot, just check
3172   // for something immediately preceding the IP.  Sometimes this can
3173   // happen with how we generate implicit-returns; it can also happen
3174   // with noreturn cleanups.
3175   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3176     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3177     if (IP->empty()) return nullptr;
3178     llvm::Instruction *I = &IP->back();
3179 
3180     // Skip lifetime markers
3181     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3182                                             IE = IP->rend();
3183          II != IE; ++II) {
3184       if (llvm::IntrinsicInst *Intrinsic =
3185               dyn_cast<llvm::IntrinsicInst>(&*II)) {
3186         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3187           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3188           ++II;
3189           if (II == IE)
3190             break;
3191           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3192             continue;
3193         }
3194       }
3195       I = &*II;
3196       break;
3197     }
3198 
3199     return GetStoreIfValid(I);
3200   }
3201 
3202   llvm::StoreInst *store =
3203       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3204   if (!store) return nullptr;
3205 
3206   // Now do a first-and-dirty dominance check: just walk up the
3207   // single-predecessors chain from the current insertion point.
3208   llvm::BasicBlock *StoreBB = store->getParent();
3209   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3210   while (IP != StoreBB) {
3211     if (!(IP = IP->getSinglePredecessor()))
3212       return nullptr;
3213   }
3214 
3215   // Okay, the store's basic block dominates the insertion point; we
3216   // can do our thing.
3217   return store;
3218 }
3219 
3220 // Helper functions for EmitCMSEClearRecord
3221 
3222 // Set the bits corresponding to a field having width `BitWidth` and located at
3223 // offset `BitOffset` (from the least significant bit) within a storage unit of
3224 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3225 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3226 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3227                         int BitWidth, int CharWidth) {
3228   assert(CharWidth <= 64);
3229   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3230 
3231   int Pos = 0;
3232   if (BitOffset >= CharWidth) {
3233     Pos += BitOffset / CharWidth;
3234     BitOffset = BitOffset % CharWidth;
3235   }
3236 
3237   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3238   if (BitOffset + BitWidth >= CharWidth) {
3239     Bits[Pos++] |= (Used << BitOffset) & Used;
3240     BitWidth -= CharWidth - BitOffset;
3241     BitOffset = 0;
3242   }
3243 
3244   while (BitWidth >= CharWidth) {
3245     Bits[Pos++] = Used;
3246     BitWidth -= CharWidth;
3247   }
3248 
3249   if (BitWidth > 0)
3250     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3251 }
3252 
3253 // Set the bits corresponding to a field having width `BitWidth` and located at
3254 // offset `BitOffset` (from the least significant bit) within a storage unit of
3255 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3256 // `Bits` corresponds to one target byte. Use target endian layout.
3257 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3258                         int StorageSize, int BitOffset, int BitWidth,
3259                         int CharWidth, bool BigEndian) {
3260 
3261   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3262   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3263 
3264   if (BigEndian)
3265     std::reverse(TmpBits.begin(), TmpBits.end());
3266 
3267   for (uint64_t V : TmpBits)
3268     Bits[StorageOffset++] |= V;
3269 }
3270 
3271 static void setUsedBits(CodeGenModule &, QualType, int,
3272                         SmallVectorImpl<uint64_t> &);
3273 
3274 // Set the bits in `Bits`, which correspond to the value representations of
3275 // the actual members of the record type `RTy`. Note that this function does
3276 // not handle base classes, virtual tables, etc, since they cannot happen in
3277 // CMSE function arguments or return. The bit mask corresponds to the target
3278 // memory layout, i.e. it's endian dependent.
3279 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3280                         SmallVectorImpl<uint64_t> &Bits) {
3281   ASTContext &Context = CGM.getContext();
3282   int CharWidth = Context.getCharWidth();
3283   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3284   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3285   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3286 
3287   int Idx = 0;
3288   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3289     const FieldDecl *F = *I;
3290 
3291     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3292         F->getType()->isIncompleteArrayType())
3293       continue;
3294 
3295     if (F->isBitField()) {
3296       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3297       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3298                   BFI.StorageSize / CharWidth, BFI.Offset,
3299                   BFI.Size, CharWidth,
3300                   CGM.getDataLayout().isBigEndian());
3301       continue;
3302     }
3303 
3304     setUsedBits(CGM, F->getType(),
3305                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3306   }
3307 }
3308 
3309 // Set the bits in `Bits`, which correspond to the value representations of
3310 // the elements of an array type `ATy`.
3311 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3312                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3313   const ASTContext &Context = CGM.getContext();
3314 
3315   QualType ETy = Context.getBaseElementType(ATy);
3316   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3317   SmallVector<uint64_t, 4> TmpBits(Size);
3318   setUsedBits(CGM, ETy, 0, TmpBits);
3319 
3320   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3321     auto Src = TmpBits.begin();
3322     auto Dst = Bits.begin() + Offset + I * Size;
3323     for (int J = 0; J < Size; ++J)
3324       *Dst++ |= *Src++;
3325   }
3326 }
3327 
3328 // Set the bits in `Bits`, which correspond to the value representations of
3329 // the type `QTy`.
3330 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3331                         SmallVectorImpl<uint64_t> &Bits) {
3332   if (const auto *RTy = QTy->getAs<RecordType>())
3333     return setUsedBits(CGM, RTy, Offset, Bits);
3334 
3335   ASTContext &Context = CGM.getContext();
3336   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3337     return setUsedBits(CGM, ATy, Offset, Bits);
3338 
3339   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3340   if (Size <= 0)
3341     return;
3342 
3343   std::fill_n(Bits.begin() + Offset, Size,
3344               (uint64_t(1) << Context.getCharWidth()) - 1);
3345 }
3346 
3347 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3348                                    int Pos, int Size, int CharWidth,
3349                                    bool BigEndian) {
3350   assert(Size > 0);
3351   uint64_t Mask = 0;
3352   if (BigEndian) {
3353     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3354          ++P)
3355       Mask = (Mask << CharWidth) | *P;
3356   } else {
3357     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3358     do
3359       Mask = (Mask << CharWidth) | *--P;
3360     while (P != End);
3361   }
3362   return Mask;
3363 }
3364 
3365 // Emit code to clear the bits in a record, which aren't a part of any user
3366 // declared member, when the record is a function return.
3367 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3368                                                   llvm::IntegerType *ITy,
3369                                                   QualType QTy) {
3370   assert(Src->getType() == ITy);
3371   assert(ITy->getScalarSizeInBits() <= 64);
3372 
3373   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3374   int Size = DataLayout.getTypeStoreSize(ITy);
3375   SmallVector<uint64_t, 4> Bits(Size);
3376   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3377 
3378   int CharWidth = CGM.getContext().getCharWidth();
3379   uint64_t Mask =
3380       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3381 
3382   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3383 }
3384 
3385 // Emit code to clear the bits in a record, which aren't a part of any user
3386 // declared member, when the record is a function argument.
3387 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3388                                                   llvm::ArrayType *ATy,
3389                                                   QualType QTy) {
3390   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3391   int Size = DataLayout.getTypeStoreSize(ATy);
3392   SmallVector<uint64_t, 16> Bits(Size);
3393   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3394 
3395   // Clear each element of the LLVM array.
3396   int CharWidth = CGM.getContext().getCharWidth();
3397   int CharsPerElt =
3398       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3399   int MaskIndex = 0;
3400   llvm::Value *R = llvm::UndefValue::get(ATy);
3401   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3402     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3403                                        DataLayout.isBigEndian());
3404     MaskIndex += CharsPerElt;
3405     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3406     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3407     R = Builder.CreateInsertValue(R, T1, I);
3408   }
3409 
3410   return R;
3411 }
3412 
3413 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3414                                          bool EmitRetDbgLoc,
3415                                          SourceLocation EndLoc) {
3416   if (FI.isNoReturn()) {
3417     // Noreturn functions don't return.
3418     EmitUnreachable(EndLoc);
3419     return;
3420   }
3421 
3422   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3423     // Naked functions don't have epilogues.
3424     Builder.CreateUnreachable();
3425     return;
3426   }
3427 
3428   // Functions with no result always return void.
3429   if (!ReturnValue.isValid()) {
3430     Builder.CreateRetVoid();
3431     return;
3432   }
3433 
3434   llvm::DebugLoc RetDbgLoc;
3435   llvm::Value *RV = nullptr;
3436   QualType RetTy = FI.getReturnType();
3437   const ABIArgInfo &RetAI = FI.getReturnInfo();
3438 
3439   switch (RetAI.getKind()) {
3440   case ABIArgInfo::InAlloca:
3441     // Aggregrates get evaluated directly into the destination.  Sometimes we
3442     // need to return the sret value in a register, though.
3443     assert(hasAggregateEvaluationKind(RetTy));
3444     if (RetAI.getInAllocaSRet()) {
3445       llvm::Function::arg_iterator EI = CurFn->arg_end();
3446       --EI;
3447       llvm::Value *ArgStruct = &*EI;
3448       llvm::Value *SRet = Builder.CreateStructGEP(
3449           EI->getType()->getPointerElementType(), ArgStruct,
3450           RetAI.getInAllocaFieldIndex());
3451       llvm::Type *Ty =
3452           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3453       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3454     }
3455     break;
3456 
3457   case ABIArgInfo::Indirect: {
3458     auto AI = CurFn->arg_begin();
3459     if (RetAI.isSRetAfterThis())
3460       ++AI;
3461     switch (getEvaluationKind(RetTy)) {
3462     case TEK_Complex: {
3463       ComplexPairTy RT =
3464         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3465       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3466                          /*isInit*/ true);
3467       break;
3468     }
3469     case TEK_Aggregate:
3470       // Do nothing; aggregrates get evaluated directly into the destination.
3471       break;
3472     case TEK_Scalar: {
3473       LValueBaseInfo BaseInfo;
3474       TBAAAccessInfo TBAAInfo;
3475       CharUnits Alignment =
3476           CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3477       Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3478       LValue ArgVal =
3479           LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3480       EmitStoreOfScalar(
3481           Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
3482       break;
3483     }
3484     }
3485     break;
3486   }
3487 
3488   case ABIArgInfo::Extend:
3489   case ABIArgInfo::Direct:
3490     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3491         RetAI.getDirectOffset() == 0) {
3492       // The internal return value temp always will have pointer-to-return-type
3493       // type, just do a load.
3494 
3495       // If there is a dominating store to ReturnValue, we can elide
3496       // the load, zap the store, and usually zap the alloca.
3497       if (llvm::StoreInst *SI =
3498               findDominatingStoreToReturnValue(*this)) {
3499         // Reuse the debug location from the store unless there is
3500         // cleanup code to be emitted between the store and return
3501         // instruction.
3502         if (EmitRetDbgLoc && !AutoreleaseResult)
3503           RetDbgLoc = SI->getDebugLoc();
3504         // Get the stored value and nuke the now-dead store.
3505         RV = SI->getValueOperand();
3506         SI->eraseFromParent();
3507 
3508       // Otherwise, we have to do a simple load.
3509       } else {
3510         RV = Builder.CreateLoad(ReturnValue);
3511       }
3512     } else {
3513       // If the value is offset in memory, apply the offset now.
3514       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3515 
3516       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3517     }
3518 
3519     // In ARC, end functions that return a retainable type with a call
3520     // to objc_autoreleaseReturnValue.
3521     if (AutoreleaseResult) {
3522 #ifndef NDEBUG
3523       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3524       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3525       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3526       // CurCodeDecl or BlockInfo.
3527       QualType RT;
3528 
3529       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3530         RT = FD->getReturnType();
3531       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3532         RT = MD->getReturnType();
3533       else if (isa<BlockDecl>(CurCodeDecl))
3534         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3535       else
3536         llvm_unreachable("Unexpected function/method type");
3537 
3538       assert(getLangOpts().ObjCAutoRefCount &&
3539              !FI.isReturnsRetained() &&
3540              RT->isObjCRetainableType());
3541 #endif
3542       RV = emitAutoreleaseOfResult(*this, RV);
3543     }
3544 
3545     break;
3546 
3547   case ABIArgInfo::Ignore:
3548     break;
3549 
3550   case ABIArgInfo::CoerceAndExpand: {
3551     auto coercionType = RetAI.getCoerceAndExpandType();
3552 
3553     // Load all of the coerced elements out into results.
3554     llvm::SmallVector<llvm::Value*, 4> results;
3555     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3556     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3557       auto coercedEltType = coercionType->getElementType(i);
3558       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3559         continue;
3560 
3561       auto eltAddr = Builder.CreateStructGEP(addr, i);
3562       auto elt = Builder.CreateLoad(eltAddr);
3563       results.push_back(elt);
3564     }
3565 
3566     // If we have one result, it's the single direct result type.
3567     if (results.size() == 1) {
3568       RV = results[0];
3569 
3570     // Otherwise, we need to make a first-class aggregate.
3571     } else {
3572       // Construct a return type that lacks padding elements.
3573       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3574 
3575       RV = llvm::UndefValue::get(returnType);
3576       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3577         RV = Builder.CreateInsertValue(RV, results[i], i);
3578       }
3579     }
3580     break;
3581   }
3582   case ABIArgInfo::Expand:
3583   case ABIArgInfo::IndirectAliased:
3584     llvm_unreachable("Invalid ABI kind for return argument");
3585   }
3586 
3587   llvm::Instruction *Ret;
3588   if (RV) {
3589     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3590       // For certain return types, clear padding bits, as they may reveal
3591       // sensitive information.
3592       // Small struct/union types are passed as integers.
3593       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3594       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3595         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3596     }
3597     EmitReturnValueCheck(RV);
3598     Ret = Builder.CreateRet(RV);
3599   } else {
3600     Ret = Builder.CreateRetVoid();
3601   }
3602 
3603   if (RetDbgLoc)
3604     Ret->setDebugLoc(std::move(RetDbgLoc));
3605 }
3606 
3607 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3608   // A current decl may not be available when emitting vtable thunks.
3609   if (!CurCodeDecl)
3610     return;
3611 
3612   // If the return block isn't reachable, neither is this check, so don't emit
3613   // it.
3614   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3615     return;
3616 
3617   ReturnsNonNullAttr *RetNNAttr = nullptr;
3618   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3619     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3620 
3621   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3622     return;
3623 
3624   // Prefer the returns_nonnull attribute if it's present.
3625   SourceLocation AttrLoc;
3626   SanitizerMask CheckKind;
3627   SanitizerHandler Handler;
3628   if (RetNNAttr) {
3629     assert(!requiresReturnValueNullabilityCheck() &&
3630            "Cannot check nullability and the nonnull attribute");
3631     AttrLoc = RetNNAttr->getLocation();
3632     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3633     Handler = SanitizerHandler::NonnullReturn;
3634   } else {
3635     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3636       if (auto *TSI = DD->getTypeSourceInfo())
3637         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3638           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3639     CheckKind = SanitizerKind::NullabilityReturn;
3640     Handler = SanitizerHandler::NullabilityReturn;
3641   }
3642 
3643   SanitizerScope SanScope(this);
3644 
3645   // Make sure the "return" source location is valid. If we're checking a
3646   // nullability annotation, make sure the preconditions for the check are met.
3647   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3648   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3649   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3650   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3651   if (requiresReturnValueNullabilityCheck())
3652     CanNullCheck =
3653         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3654   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3655   EmitBlock(Check);
3656 
3657   // Now do the null check.
3658   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3659   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3660   llvm::Value *DynamicData[] = {SLocPtr};
3661   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3662 
3663   EmitBlock(NoCheck);
3664 
3665 #ifndef NDEBUG
3666   // The return location should not be used after the check has been emitted.
3667   ReturnLocation = Address::invalid();
3668 #endif
3669 }
3670 
3671 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3672   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3673   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3674 }
3675 
3676 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3677                                           QualType Ty) {
3678   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3679   // placeholders.
3680   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3681   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3682   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3683 
3684   // FIXME: When we generate this IR in one pass, we shouldn't need
3685   // this win32-specific alignment hack.
3686   CharUnits Align = CharUnits::fromQuantity(4);
3687   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3688 
3689   return AggValueSlot::forAddr(Address(Placeholder, Align),
3690                                Ty.getQualifiers(),
3691                                AggValueSlot::IsNotDestructed,
3692                                AggValueSlot::DoesNotNeedGCBarriers,
3693                                AggValueSlot::IsNotAliased,
3694                                AggValueSlot::DoesNotOverlap);
3695 }
3696 
3697 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3698                                           const VarDecl *param,
3699                                           SourceLocation loc) {
3700   // StartFunction converted the ABI-lowered parameter(s) into a
3701   // local alloca.  We need to turn that into an r-value suitable
3702   // for EmitCall.
3703   Address local = GetAddrOfLocalVar(param);
3704 
3705   QualType type = param->getType();
3706 
3707   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3708     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3709   }
3710 
3711   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3712   // but the argument needs to be the original pointer.
3713   if (type->isReferenceType()) {
3714     args.add(RValue::get(Builder.CreateLoad(local)), type);
3715 
3716   // In ARC, move out of consumed arguments so that the release cleanup
3717   // entered by StartFunction doesn't cause an over-release.  This isn't
3718   // optimal -O0 code generation, but it should get cleaned up when
3719   // optimization is enabled.  This also assumes that delegate calls are
3720   // performed exactly once for a set of arguments, but that should be safe.
3721   } else if (getLangOpts().ObjCAutoRefCount &&
3722              param->hasAttr<NSConsumedAttr>() &&
3723              type->isObjCRetainableType()) {
3724     llvm::Value *ptr = Builder.CreateLoad(local);
3725     auto null =
3726       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3727     Builder.CreateStore(null, local);
3728     args.add(RValue::get(ptr), type);
3729 
3730   // For the most part, we just need to load the alloca, except that
3731   // aggregate r-values are actually pointers to temporaries.
3732   } else {
3733     args.add(convertTempToRValue(local, type, loc), type);
3734   }
3735 
3736   // Deactivate the cleanup for the callee-destructed param that was pushed.
3737   if (type->isRecordType() && !CurFuncIsThunk &&
3738       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3739       param->needsDestruction(getContext())) {
3740     EHScopeStack::stable_iterator cleanup =
3741         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3742     assert(cleanup.isValid() &&
3743            "cleanup for callee-destructed param not recorded");
3744     // This unreachable is a temporary marker which will be removed later.
3745     llvm::Instruction *isActive = Builder.CreateUnreachable();
3746     args.addArgCleanupDeactivation(cleanup, isActive);
3747   }
3748 }
3749 
3750 static bool isProvablyNull(llvm::Value *addr) {
3751   return isa<llvm::ConstantPointerNull>(addr);
3752 }
3753 
3754 /// Emit the actual writing-back of a writeback.
3755 static void emitWriteback(CodeGenFunction &CGF,
3756                           const CallArgList::Writeback &writeback) {
3757   const LValue &srcLV = writeback.Source;
3758   Address srcAddr = srcLV.getAddress(CGF);
3759   assert(!isProvablyNull(srcAddr.getPointer()) &&
3760          "shouldn't have writeback for provably null argument");
3761 
3762   llvm::BasicBlock *contBB = nullptr;
3763 
3764   // If the argument wasn't provably non-null, we need to null check
3765   // before doing the store.
3766   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3767                                               CGF.CGM.getDataLayout());
3768   if (!provablyNonNull) {
3769     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3770     contBB = CGF.createBasicBlock("icr.done");
3771 
3772     llvm::Value *isNull =
3773       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3774     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3775     CGF.EmitBlock(writebackBB);
3776   }
3777 
3778   // Load the value to writeback.
3779   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3780 
3781   // Cast it back, in case we're writing an id to a Foo* or something.
3782   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3783                                     "icr.writeback-cast");
3784 
3785   // Perform the writeback.
3786 
3787   // If we have a "to use" value, it's something we need to emit a use
3788   // of.  This has to be carefully threaded in: if it's done after the
3789   // release it's potentially undefined behavior (and the optimizer
3790   // will ignore it), and if it happens before the retain then the
3791   // optimizer could move the release there.
3792   if (writeback.ToUse) {
3793     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3794 
3795     // Retain the new value.  No need to block-copy here:  the block's
3796     // being passed up the stack.
3797     value = CGF.EmitARCRetainNonBlock(value);
3798 
3799     // Emit the intrinsic use here.
3800     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3801 
3802     // Load the old value (primitively).
3803     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3804 
3805     // Put the new value in place (primitively).
3806     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3807 
3808     // Release the old value.
3809     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3810 
3811   // Otherwise, we can just do a normal lvalue store.
3812   } else {
3813     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3814   }
3815 
3816   // Jump to the continuation block.
3817   if (!provablyNonNull)
3818     CGF.EmitBlock(contBB);
3819 }
3820 
3821 static void emitWritebacks(CodeGenFunction &CGF,
3822                            const CallArgList &args) {
3823   for (const auto &I : args.writebacks())
3824     emitWriteback(CGF, I);
3825 }
3826 
3827 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3828                                             const CallArgList &CallArgs) {
3829   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3830     CallArgs.getCleanupsToDeactivate();
3831   // Iterate in reverse to increase the likelihood of popping the cleanup.
3832   for (const auto &I : llvm::reverse(Cleanups)) {
3833     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3834     I.IsActiveIP->eraseFromParent();
3835   }
3836 }
3837 
3838 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3839   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3840     if (uop->getOpcode() == UO_AddrOf)
3841       return uop->getSubExpr();
3842   return nullptr;
3843 }
3844 
3845 /// Emit an argument that's being passed call-by-writeback.  That is,
3846 /// we are passing the address of an __autoreleased temporary; it
3847 /// might be copy-initialized with the current value of the given
3848 /// address, but it will definitely be copied out of after the call.
3849 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3850                              const ObjCIndirectCopyRestoreExpr *CRE) {
3851   LValue srcLV;
3852 
3853   // Make an optimistic effort to emit the address as an l-value.
3854   // This can fail if the argument expression is more complicated.
3855   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3856     srcLV = CGF.EmitLValue(lvExpr);
3857 
3858   // Otherwise, just emit it as a scalar.
3859   } else {
3860     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3861 
3862     QualType srcAddrType =
3863       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3864     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3865   }
3866   Address srcAddr = srcLV.getAddress(CGF);
3867 
3868   // The dest and src types don't necessarily match in LLVM terms
3869   // because of the crazy ObjC compatibility rules.
3870 
3871   llvm::PointerType *destType =
3872     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3873 
3874   // If the address is a constant null, just pass the appropriate null.
3875   if (isProvablyNull(srcAddr.getPointer())) {
3876     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3877              CRE->getType());
3878     return;
3879   }
3880 
3881   // Create the temporary.
3882   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3883                                       CGF.getPointerAlign(),
3884                                       "icr.temp");
3885   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3886   // and that cleanup will be conditional if we can't prove that the l-value
3887   // isn't null, so we need to register a dominating point so that the cleanups
3888   // system will make valid IR.
3889   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3890 
3891   // Zero-initialize it if we're not doing a copy-initialization.
3892   bool shouldCopy = CRE->shouldCopy();
3893   if (!shouldCopy) {
3894     llvm::Value *null =
3895       llvm::ConstantPointerNull::get(
3896         cast<llvm::PointerType>(destType->getElementType()));
3897     CGF.Builder.CreateStore(null, temp);
3898   }
3899 
3900   llvm::BasicBlock *contBB = nullptr;
3901   llvm::BasicBlock *originBB = nullptr;
3902 
3903   // If the address is *not* known to be non-null, we need to switch.
3904   llvm::Value *finalArgument;
3905 
3906   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3907                                               CGF.CGM.getDataLayout());
3908   if (provablyNonNull) {
3909     finalArgument = temp.getPointer();
3910   } else {
3911     llvm::Value *isNull =
3912       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3913 
3914     finalArgument = CGF.Builder.CreateSelect(isNull,
3915                                    llvm::ConstantPointerNull::get(destType),
3916                                              temp.getPointer(), "icr.argument");
3917 
3918     // If we need to copy, then the load has to be conditional, which
3919     // means we need control flow.
3920     if (shouldCopy) {
3921       originBB = CGF.Builder.GetInsertBlock();
3922       contBB = CGF.createBasicBlock("icr.cont");
3923       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3924       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3925       CGF.EmitBlock(copyBB);
3926       condEval.begin(CGF);
3927     }
3928   }
3929 
3930   llvm::Value *valueToUse = nullptr;
3931 
3932   // Perform a copy if necessary.
3933   if (shouldCopy) {
3934     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3935     assert(srcRV.isScalar());
3936 
3937     llvm::Value *src = srcRV.getScalarVal();
3938     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3939                                     "icr.cast");
3940 
3941     // Use an ordinary store, not a store-to-lvalue.
3942     CGF.Builder.CreateStore(src, temp);
3943 
3944     // If optimization is enabled, and the value was held in a
3945     // __strong variable, we need to tell the optimizer that this
3946     // value has to stay alive until we're doing the store back.
3947     // This is because the temporary is effectively unretained,
3948     // and so otherwise we can violate the high-level semantics.
3949     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3950         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3951       valueToUse = src;
3952     }
3953   }
3954 
3955   // Finish the control flow if we needed it.
3956   if (shouldCopy && !provablyNonNull) {
3957     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3958     CGF.EmitBlock(contBB);
3959 
3960     // Make a phi for the value to intrinsically use.
3961     if (valueToUse) {
3962       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3963                                                       "icr.to-use");
3964       phiToUse->addIncoming(valueToUse, copyBB);
3965       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3966                             originBB);
3967       valueToUse = phiToUse;
3968     }
3969 
3970     condEval.end(CGF);
3971   }
3972 
3973   args.addWriteback(srcLV, temp, valueToUse);
3974   args.add(RValue::get(finalArgument), CRE->getType());
3975 }
3976 
3977 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3978   assert(!StackBase);
3979 
3980   // Save the stack.
3981   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3982   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3983 }
3984 
3985 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3986   if (StackBase) {
3987     // Restore the stack after the call.
3988     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3989     CGF.Builder.CreateCall(F, StackBase);
3990   }
3991 }
3992 
3993 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3994                                           SourceLocation ArgLoc,
3995                                           AbstractCallee AC,
3996                                           unsigned ParmNum) {
3997   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3998                          SanOpts.has(SanitizerKind::NullabilityArg)))
3999     return;
4000 
4001   // The param decl may be missing in a variadic function.
4002   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4003   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4004 
4005   // Prefer the nonnull attribute if it's present.
4006   const NonNullAttr *NNAttr = nullptr;
4007   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4008     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4009 
4010   bool CanCheckNullability = false;
4011   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4012     auto Nullability = PVD->getType()->getNullability(getContext());
4013     CanCheckNullability = Nullability &&
4014                           *Nullability == NullabilityKind::NonNull &&
4015                           PVD->getTypeSourceInfo();
4016   }
4017 
4018   if (!NNAttr && !CanCheckNullability)
4019     return;
4020 
4021   SourceLocation AttrLoc;
4022   SanitizerMask CheckKind;
4023   SanitizerHandler Handler;
4024   if (NNAttr) {
4025     AttrLoc = NNAttr->getLocation();
4026     CheckKind = SanitizerKind::NonnullAttribute;
4027     Handler = SanitizerHandler::NonnullArg;
4028   } else {
4029     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4030     CheckKind = SanitizerKind::NullabilityArg;
4031     Handler = SanitizerHandler::NullabilityArg;
4032   }
4033 
4034   SanitizerScope SanScope(this);
4035   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4036   llvm::Constant *StaticData[] = {
4037       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4038       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4039   };
4040   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4041 }
4042 
4043 // Check if the call is going to use the inalloca convention. This needs to
4044 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4045 // later, so we can't check it directly.
4046 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4047                             ArrayRef<QualType> ArgTypes) {
4048   // The Swift calling conventions don't go through the target-specific
4049   // argument classification, they never use inalloca.
4050   // TODO: Consider limiting inalloca use to only calling conventions supported
4051   // by MSVC.
4052   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4053     return false;
4054   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4055     return false;
4056   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4057     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4058   });
4059 }
4060 
4061 #ifndef NDEBUG
4062 // Determine whether the given argument is an Objective-C method
4063 // that may have type parameters in its signature.
4064 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4065   const DeclContext *dc = method->getDeclContext();
4066   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4067     return classDecl->getTypeParamListAsWritten();
4068   }
4069 
4070   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4071     return catDecl->getTypeParamList();
4072   }
4073 
4074   return false;
4075 }
4076 #endif
4077 
4078 /// EmitCallArgs - Emit call arguments for a function.
4079 void CodeGenFunction::EmitCallArgs(
4080     CallArgList &Args, PrototypeWrapper Prototype,
4081     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4082     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4083   SmallVector<QualType, 16> ArgTypes;
4084 
4085   assert((ParamsToSkip == 0 || Prototype.P) &&
4086          "Can't skip parameters if type info is not provided");
4087 
4088   // This variable only captures *explicitly* written conventions, not those
4089   // applied by default via command line flags or target defaults, such as
4090   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4091   // require knowing if this is a C++ instance method or being able to see
4092   // unprototyped FunctionTypes.
4093   CallingConv ExplicitCC = CC_C;
4094 
4095   // First, if a prototype was provided, use those argument types.
4096   bool IsVariadic = false;
4097   if (Prototype.P) {
4098     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4099     if (MD) {
4100       IsVariadic = MD->isVariadic();
4101       ExplicitCC = getCallingConventionForDecl(
4102           MD, CGM.getTarget().getTriple().isOSWindows());
4103       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4104                       MD->param_type_end());
4105     } else {
4106       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4107       IsVariadic = FPT->isVariadic();
4108       ExplicitCC = FPT->getExtInfo().getCC();
4109       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4110                       FPT->param_type_end());
4111     }
4112 
4113 #ifndef NDEBUG
4114     // Check that the prototyped types match the argument expression types.
4115     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4116     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4117     for (QualType Ty : ArgTypes) {
4118       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4119       assert(
4120           (isGenericMethod || Ty->isVariablyModifiedType() ||
4121            Ty.getNonReferenceType()->isObjCRetainableType() ||
4122            getContext()
4123                    .getCanonicalType(Ty.getNonReferenceType())
4124                    .getTypePtr() ==
4125                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4126           "type mismatch in call argument!");
4127       ++Arg;
4128     }
4129 
4130     // Either we've emitted all the call args, or we have a call to variadic
4131     // function.
4132     assert((Arg == ArgRange.end() || IsVariadic) &&
4133            "Extra arguments in non-variadic function!");
4134 #endif
4135   }
4136 
4137   // If we still have any arguments, emit them using the type of the argument.
4138   for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4139     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4140   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4141 
4142   // We must evaluate arguments from right to left in the MS C++ ABI,
4143   // because arguments are destroyed left to right in the callee. As a special
4144   // case, there are certain language constructs that require left-to-right
4145   // evaluation, and in those cases we consider the evaluation order requirement
4146   // to trump the "destruction order is reverse construction order" guarantee.
4147   bool LeftToRight =
4148       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4149           ? Order == EvaluationOrder::ForceLeftToRight
4150           : Order != EvaluationOrder::ForceRightToLeft;
4151 
4152   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4153                                          RValue EmittedArg) {
4154     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4155       return;
4156     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4157     if (PS == nullptr)
4158       return;
4159 
4160     const auto &Context = getContext();
4161     auto SizeTy = Context.getSizeType();
4162     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4163     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4164     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4165                                                      EmittedArg.getScalarVal(),
4166                                                      PS->isDynamic());
4167     Args.add(RValue::get(V), SizeTy);
4168     // If we're emitting args in reverse, be sure to do so with
4169     // pass_object_size, as well.
4170     if (!LeftToRight)
4171       std::swap(Args.back(), *(&Args.back() - 1));
4172   };
4173 
4174   // Insert a stack save if we're going to need any inalloca args.
4175   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4176     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4177            "inalloca only supported on x86");
4178     Args.allocateArgumentMemory(*this);
4179   }
4180 
4181   // Evaluate each argument in the appropriate order.
4182   size_t CallArgsStart = Args.size();
4183   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4184     unsigned Idx = LeftToRight ? I : E - I - 1;
4185     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4186     unsigned InitialArgSize = Args.size();
4187     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4188     // the argument and parameter match or the objc method is parameterized.
4189     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4190             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4191                                                 ArgTypes[Idx]) ||
4192             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4193              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4194            "Argument and parameter types don't match");
4195     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4196     // In particular, we depend on it being the last arg in Args, and the
4197     // objectsize bits depend on there only being one arg if !LeftToRight.
4198     assert(InitialArgSize + 1 == Args.size() &&
4199            "The code below depends on only adding one arg per EmitCallArg");
4200     (void)InitialArgSize;
4201     // Since pointer argument are never emitted as LValue, it is safe to emit
4202     // non-null argument check for r-value only.
4203     if (!Args.back().hasLValue()) {
4204       RValue RVArg = Args.back().getKnownRValue();
4205       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4206                           ParamsToSkip + Idx);
4207       // @llvm.objectsize should never have side-effects and shouldn't need
4208       // destruction/cleanups, so we can safely "emit" it after its arg,
4209       // regardless of right-to-leftness
4210       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4211     }
4212   }
4213 
4214   if (!LeftToRight) {
4215     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4216     // IR function.
4217     std::reverse(Args.begin() + CallArgsStart, Args.end());
4218   }
4219 }
4220 
4221 namespace {
4222 
4223 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4224   DestroyUnpassedArg(Address Addr, QualType Ty)
4225       : Addr(Addr), Ty(Ty) {}
4226 
4227   Address Addr;
4228   QualType Ty;
4229 
4230   void Emit(CodeGenFunction &CGF, Flags flags) override {
4231     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4232     if (DtorKind == QualType::DK_cxx_destructor) {
4233       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4234       assert(!Dtor->isTrivial());
4235       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4236                                 /*Delegating=*/false, Addr, Ty);
4237     } else {
4238       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4239     }
4240   }
4241 };
4242 
4243 struct DisableDebugLocationUpdates {
4244   CodeGenFunction &CGF;
4245   bool disabledDebugInfo;
4246   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4247     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4248       CGF.disableDebugInfo();
4249   }
4250   ~DisableDebugLocationUpdates() {
4251     if (disabledDebugInfo)
4252       CGF.enableDebugInfo();
4253   }
4254 };
4255 
4256 } // end anonymous namespace
4257 
4258 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4259   if (!HasLV)
4260     return RV;
4261   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4262   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4263                         LV.isVolatile());
4264   IsUsed = true;
4265   return RValue::getAggregate(Copy.getAddress(CGF));
4266 }
4267 
4268 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4269   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4270   if (!HasLV && RV.isScalar())
4271     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4272   else if (!HasLV && RV.isComplex())
4273     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4274   else {
4275     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4276     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4277     // We assume that call args are never copied into subobjects.
4278     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4279                           HasLV ? LV.isVolatileQualified()
4280                                 : RV.isVolatileQualified());
4281   }
4282   IsUsed = true;
4283 }
4284 
4285 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4286                                   QualType type) {
4287   DisableDebugLocationUpdates Dis(*this, E);
4288   if (const ObjCIndirectCopyRestoreExpr *CRE
4289         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4290     assert(getLangOpts().ObjCAutoRefCount);
4291     return emitWritebackArg(*this, args, CRE);
4292   }
4293 
4294   assert(type->isReferenceType() == E->isGLValue() &&
4295          "reference binding to unmaterialized r-value!");
4296 
4297   if (E->isGLValue()) {
4298     assert(E->getObjectKind() == OK_Ordinary);
4299     return args.add(EmitReferenceBindingToExpr(E), type);
4300   }
4301 
4302   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4303 
4304   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4305   // However, we still have to push an EH-only cleanup in case we unwind before
4306   // we make it to the call.
4307   if (type->isRecordType() &&
4308       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4309     // If we're using inalloca, use the argument memory.  Otherwise, use a
4310     // temporary.
4311     AggValueSlot Slot = args.isUsingInAlloca()
4312         ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4313 
4314     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4315     if (const auto *RD = type->getAsCXXRecordDecl())
4316       DestroyedInCallee = RD->hasNonTrivialDestructor();
4317     else
4318       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4319 
4320     if (DestroyedInCallee)
4321       Slot.setExternallyDestructed();
4322 
4323     EmitAggExpr(E, Slot);
4324     RValue RV = Slot.asRValue();
4325     args.add(RV, type);
4326 
4327     if (DestroyedInCallee && NeedsEHCleanup) {
4328       // Create a no-op GEP between the placeholder and the cleanup so we can
4329       // RAUW it successfully.  It also serves as a marker of the first
4330       // instruction where the cleanup is active.
4331       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4332                                               type);
4333       // This unreachable is a temporary marker which will be removed later.
4334       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4335       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4336     }
4337     return;
4338   }
4339 
4340   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4341       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4342     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4343     assert(L.isSimple());
4344     args.addUncopiedAggregate(L, type);
4345     return;
4346   }
4347 
4348   args.add(EmitAnyExprToTemp(E), type);
4349 }
4350 
4351 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4352   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4353   // implicitly widens null pointer constants that are arguments to varargs
4354   // functions to pointer-sized ints.
4355   if (!getTarget().getTriple().isOSWindows())
4356     return Arg->getType();
4357 
4358   if (Arg->getType()->isIntegerType() &&
4359       getContext().getTypeSize(Arg->getType()) <
4360           getContext().getTargetInfo().getPointerWidth(0) &&
4361       Arg->isNullPointerConstant(getContext(),
4362                                  Expr::NPC_ValueDependentIsNotNull)) {
4363     return getContext().getIntPtrType();
4364   }
4365 
4366   return Arg->getType();
4367 }
4368 
4369 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4370 // optimizer it can aggressively ignore unwind edges.
4371 void
4372 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4373   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4374       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4375     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4376                       CGM.getNoObjCARCExceptionsMetadata());
4377 }
4378 
4379 /// Emits a call to the given no-arguments nounwind runtime function.
4380 llvm::CallInst *
4381 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4382                                          const llvm::Twine &name) {
4383   return EmitNounwindRuntimeCall(callee, None, name);
4384 }
4385 
4386 /// Emits a call to the given nounwind runtime function.
4387 llvm::CallInst *
4388 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4389                                          ArrayRef<llvm::Value *> args,
4390                                          const llvm::Twine &name) {
4391   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4392   call->setDoesNotThrow();
4393   return call;
4394 }
4395 
4396 /// Emits a simple call (never an invoke) to the given no-arguments
4397 /// runtime function.
4398 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4399                                                  const llvm::Twine &name) {
4400   return EmitRuntimeCall(callee, None, name);
4401 }
4402 
4403 // Calls which may throw must have operand bundles indicating which funclet
4404 // they are nested within.
4405 SmallVector<llvm::OperandBundleDef, 1>
4406 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4407   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4408   // There is no need for a funclet operand bundle if we aren't inside a
4409   // funclet.
4410   if (!CurrentFuncletPad)
4411     return BundleList;
4412 
4413   // Skip intrinsics which cannot throw.
4414   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4415   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4416     return BundleList;
4417 
4418   BundleList.emplace_back("funclet", CurrentFuncletPad);
4419   return BundleList;
4420 }
4421 
4422 /// Emits a simple call (never an invoke) to the given runtime function.
4423 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4424                                                  ArrayRef<llvm::Value *> args,
4425                                                  const llvm::Twine &name) {
4426   llvm::CallInst *call = Builder.CreateCall(
4427       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4428   call->setCallingConv(getRuntimeCC());
4429   return call;
4430 }
4431 
4432 /// Emits a call or invoke to the given noreturn runtime function.
4433 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4434     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4435   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4436       getBundlesForFunclet(callee.getCallee());
4437 
4438   if (getInvokeDest()) {
4439     llvm::InvokeInst *invoke =
4440       Builder.CreateInvoke(callee,
4441                            getUnreachableBlock(),
4442                            getInvokeDest(),
4443                            args,
4444                            BundleList);
4445     invoke->setDoesNotReturn();
4446     invoke->setCallingConv(getRuntimeCC());
4447   } else {
4448     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4449     call->setDoesNotReturn();
4450     call->setCallingConv(getRuntimeCC());
4451     Builder.CreateUnreachable();
4452   }
4453 }
4454 
4455 /// Emits a call or invoke instruction to the given nullary runtime function.
4456 llvm::CallBase *
4457 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4458                                          const Twine &name) {
4459   return EmitRuntimeCallOrInvoke(callee, None, name);
4460 }
4461 
4462 /// Emits a call or invoke instruction to the given runtime function.
4463 llvm::CallBase *
4464 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4465                                          ArrayRef<llvm::Value *> args,
4466                                          const Twine &name) {
4467   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4468   call->setCallingConv(getRuntimeCC());
4469   return call;
4470 }
4471 
4472 /// Emits a call or invoke instruction to the given function, depending
4473 /// on the current state of the EH stack.
4474 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4475                                                   ArrayRef<llvm::Value *> Args,
4476                                                   const Twine &Name) {
4477   llvm::BasicBlock *InvokeDest = getInvokeDest();
4478   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4479       getBundlesForFunclet(Callee.getCallee());
4480 
4481   llvm::CallBase *Inst;
4482   if (!InvokeDest)
4483     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4484   else {
4485     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4486     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4487                                 Name);
4488     EmitBlock(ContBB);
4489   }
4490 
4491   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4492   // optimizer it can aggressively ignore unwind edges.
4493   if (CGM.getLangOpts().ObjCAutoRefCount)
4494     AddObjCARCExceptionMetadata(Inst);
4495 
4496   return Inst;
4497 }
4498 
4499 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4500                                                   llvm::Value *New) {
4501   DeferredReplacements.push_back(
4502       std::make_pair(llvm::WeakTrackingVH(Old), New));
4503 }
4504 
4505 namespace {
4506 
4507 /// Specify given \p NewAlign as the alignment of return value attribute. If
4508 /// such attribute already exists, re-set it to the maximal one of two options.
4509 LLVM_NODISCARD llvm::AttributeList
4510 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4511                                 const llvm::AttributeList &Attrs,
4512                                 llvm::Align NewAlign) {
4513   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4514   if (CurAlign >= NewAlign)
4515     return Attrs;
4516   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4517   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4518       .addRetAttribute(Ctx, AlignAttr);
4519 }
4520 
4521 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4522 protected:
4523   CodeGenFunction &CGF;
4524 
4525   /// We do nothing if this is, or becomes, nullptr.
4526   const AlignedAttrTy *AA = nullptr;
4527 
4528   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4529   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4530 
4531   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4532       : CGF(CGF_) {
4533     if (!FuncDecl)
4534       return;
4535     AA = FuncDecl->getAttr<AlignedAttrTy>();
4536   }
4537 
4538 public:
4539   /// If we can, materialize the alignment as an attribute on return value.
4540   LLVM_NODISCARD llvm::AttributeList
4541   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4542     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4543       return Attrs;
4544     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4545     if (!AlignmentCI)
4546       return Attrs;
4547     // We may legitimately have non-power-of-2 alignment here.
4548     // If so, this is UB land, emit it via `@llvm.assume` instead.
4549     if (!AlignmentCI->getValue().isPowerOf2())
4550       return Attrs;
4551     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4552         CGF.getLLVMContext(), Attrs,
4553         llvm::Align(
4554             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4555     AA = nullptr; // We're done. Disallow doing anything else.
4556     return NewAttrs;
4557   }
4558 
4559   /// Emit alignment assumption.
4560   /// This is a general fallback that we take if either there is an offset,
4561   /// or the alignment is variable or we are sanitizing for alignment.
4562   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4563     if (!AA)
4564       return;
4565     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4566                                 AA->getLocation(), Alignment, OffsetCI);
4567     AA = nullptr; // We're done. Disallow doing anything else.
4568   }
4569 };
4570 
4571 /// Helper data structure to emit `AssumeAlignedAttr`.
4572 class AssumeAlignedAttrEmitter final
4573     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4574 public:
4575   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4576       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4577     if (!AA)
4578       return;
4579     // It is guaranteed that the alignment/offset are constants.
4580     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4581     if (Expr *Offset = AA->getOffset()) {
4582       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4583       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4584         OffsetCI = nullptr;
4585     }
4586   }
4587 };
4588 
4589 /// Helper data structure to emit `AllocAlignAttr`.
4590 class AllocAlignAttrEmitter final
4591     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4592 public:
4593   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4594                         const CallArgList &CallArgs)
4595       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4596     if (!AA)
4597       return;
4598     // Alignment may or may not be a constant, and that is okay.
4599     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4600                     .getRValue(CGF)
4601                     .getScalarVal();
4602   }
4603 };
4604 
4605 } // namespace
4606 
4607 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4608                                  const CGCallee &Callee,
4609                                  ReturnValueSlot ReturnValue,
4610                                  const CallArgList &CallArgs,
4611                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4612                                  SourceLocation Loc) {
4613   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4614 
4615   assert(Callee.isOrdinary() || Callee.isVirtual());
4616 
4617   // Handle struct-return functions by passing a pointer to the
4618   // location that we would like to return into.
4619   QualType RetTy = CallInfo.getReturnType();
4620   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4621 
4622   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4623 
4624   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4625   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4626     // We can only guarantee that a function is called from the correct
4627     // context/function based on the appropriate target attributes,
4628     // so only check in the case where we have both always_inline and target
4629     // since otherwise we could be making a conditional call after a check for
4630     // the proper cpu features (and it won't cause code generation issues due to
4631     // function based code generation).
4632     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4633         TargetDecl->hasAttr<TargetAttr>())
4634       checkTargetFeatures(Loc, FD);
4635 
4636     // Some architectures (such as x86-64) have the ABI changed based on
4637     // attribute-target/features. Give them a chance to diagnose.
4638     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4639         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4640   }
4641 
4642 #ifndef NDEBUG
4643   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4644     // For an inalloca varargs function, we don't expect CallInfo to match the
4645     // function pointer's type, because the inalloca struct a will have extra
4646     // fields in it for the varargs parameters.  Code later in this function
4647     // bitcasts the function pointer to the type derived from CallInfo.
4648     //
4649     // In other cases, we assert that the types match up (until pointers stop
4650     // having pointee types).
4651     if (Callee.isVirtual())
4652       assert(IRFuncTy == Callee.getVirtualFunctionType());
4653     else {
4654       llvm::PointerType *PtrTy =
4655           llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType());
4656       assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy));
4657     }
4658   }
4659 #endif
4660 
4661   // 1. Set up the arguments.
4662 
4663   // If we're using inalloca, insert the allocation after the stack save.
4664   // FIXME: Do this earlier rather than hacking it in here!
4665   Address ArgMemory = Address::invalid();
4666   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4667     const llvm::DataLayout &DL = CGM.getDataLayout();
4668     llvm::Instruction *IP = CallArgs.getStackBase();
4669     llvm::AllocaInst *AI;
4670     if (IP) {
4671       IP = IP->getNextNode();
4672       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4673                                 "argmem", IP);
4674     } else {
4675       AI = CreateTempAlloca(ArgStruct, "argmem");
4676     }
4677     auto Align = CallInfo.getArgStructAlignment();
4678     AI->setAlignment(Align.getAsAlign());
4679     AI->setUsedWithInAlloca(true);
4680     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4681     ArgMemory = Address(AI, Align);
4682   }
4683 
4684   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4685   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4686 
4687   // If the call returns a temporary with struct return, create a temporary
4688   // alloca to hold the result, unless one is given to us.
4689   Address SRetPtr = Address::invalid();
4690   Address SRetAlloca = Address::invalid();
4691   llvm::Value *UnusedReturnSizePtr = nullptr;
4692   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4693     if (!ReturnValue.isNull()) {
4694       SRetPtr = ReturnValue.getValue();
4695     } else {
4696       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4697       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4698         llvm::TypeSize size =
4699             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4700         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4701       }
4702     }
4703     if (IRFunctionArgs.hasSRetArg()) {
4704       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4705     } else if (RetAI.isInAlloca()) {
4706       Address Addr =
4707           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4708       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4709     }
4710   }
4711 
4712   Address swiftErrorTemp = Address::invalid();
4713   Address swiftErrorArg = Address::invalid();
4714 
4715   // When passing arguments using temporary allocas, we need to add the
4716   // appropriate lifetime markers. This vector keeps track of all the lifetime
4717   // markers that need to be ended right after the call.
4718   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4719 
4720   // Translate all of the arguments as necessary to match the IR lowering.
4721   assert(CallInfo.arg_size() == CallArgs.size() &&
4722          "Mismatch between function signature & arguments.");
4723   unsigned ArgNo = 0;
4724   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4725   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4726        I != E; ++I, ++info_it, ++ArgNo) {
4727     const ABIArgInfo &ArgInfo = info_it->info;
4728 
4729     // Insert a padding argument to ensure proper alignment.
4730     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4731       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4732           llvm::UndefValue::get(ArgInfo.getPaddingType());
4733 
4734     unsigned FirstIRArg, NumIRArgs;
4735     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4736 
4737     switch (ArgInfo.getKind()) {
4738     case ABIArgInfo::InAlloca: {
4739       assert(NumIRArgs == 0);
4740       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4741       if (I->isAggregate()) {
4742         Address Addr = I->hasLValue()
4743                            ? I->getKnownLValue().getAddress(*this)
4744                            : I->getKnownRValue().getAggregateAddress();
4745         llvm::Instruction *Placeholder =
4746             cast<llvm::Instruction>(Addr.getPointer());
4747 
4748         if (!ArgInfo.getInAllocaIndirect()) {
4749           // Replace the placeholder with the appropriate argument slot GEP.
4750           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4751           Builder.SetInsertPoint(Placeholder);
4752           Addr = Builder.CreateStructGEP(ArgMemory,
4753                                          ArgInfo.getInAllocaFieldIndex());
4754           Builder.restoreIP(IP);
4755         } else {
4756           // For indirect things such as overaligned structs, replace the
4757           // placeholder with a regular aggregate temporary alloca. Store the
4758           // address of this alloca into the struct.
4759           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4760           Address ArgSlot = Builder.CreateStructGEP(
4761               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4762           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4763         }
4764         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4765       } else if (ArgInfo.getInAllocaIndirect()) {
4766         // Make a temporary alloca and store the address of it into the argument
4767         // struct.
4768         Address Addr = CreateMemTempWithoutCast(
4769             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4770             "indirect-arg-temp");
4771         I->copyInto(*this, Addr);
4772         Address ArgSlot =
4773             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4774         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4775       } else {
4776         // Store the RValue into the argument struct.
4777         Address Addr =
4778             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4779         unsigned AS = Addr.getType()->getPointerAddressSpace();
4780         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4781         // There are some cases where a trivial bitcast is not avoidable.  The
4782         // definition of a type later in a translation unit may change it's type
4783         // from {}* to (%struct.foo*)*.
4784         if (Addr.getType() != MemType)
4785           Addr = Builder.CreateBitCast(Addr, MemType);
4786         I->copyInto(*this, Addr);
4787       }
4788       break;
4789     }
4790 
4791     case ABIArgInfo::Indirect:
4792     case ABIArgInfo::IndirectAliased: {
4793       assert(NumIRArgs == 1);
4794       if (!I->isAggregate()) {
4795         // Make a temporary alloca to pass the argument.
4796         Address Addr = CreateMemTempWithoutCast(
4797             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4798         IRCallArgs[FirstIRArg] = Addr.getPointer();
4799 
4800         I->copyInto(*this, Addr);
4801       } else {
4802         // We want to avoid creating an unnecessary temporary+copy here;
4803         // however, we need one in three cases:
4804         // 1. If the argument is not byval, and we are required to copy the
4805         //    source.  (This case doesn't occur on any common architecture.)
4806         // 2. If the argument is byval, RV is not sufficiently aligned, and
4807         //    we cannot force it to be sufficiently aligned.
4808         // 3. If the argument is byval, but RV is not located in default
4809         //    or alloca address space.
4810         Address Addr = I->hasLValue()
4811                            ? I->getKnownLValue().getAddress(*this)
4812                            : I->getKnownRValue().getAggregateAddress();
4813         llvm::Value *V = Addr.getPointer();
4814         CharUnits Align = ArgInfo.getIndirectAlign();
4815         const llvm::DataLayout *TD = &CGM.getDataLayout();
4816 
4817         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4818                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4819                     TD->getAllocaAddrSpace()) &&
4820                "indirect argument must be in alloca address space");
4821 
4822         bool NeedCopy = false;
4823 
4824         if (Addr.getAlignment() < Align &&
4825             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4826                 Align.getAsAlign()) {
4827           NeedCopy = true;
4828         } else if (I->hasLValue()) {
4829           auto LV = I->getKnownLValue();
4830           auto AS = LV.getAddressSpace();
4831 
4832           if (!ArgInfo.getIndirectByVal() ||
4833               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4834             NeedCopy = true;
4835           }
4836           if (!getLangOpts().OpenCL) {
4837             if ((ArgInfo.getIndirectByVal() &&
4838                 (AS != LangAS::Default &&
4839                  AS != CGM.getASTAllocaAddressSpace()))) {
4840               NeedCopy = true;
4841             }
4842           }
4843           // For OpenCL even if RV is located in default or alloca address space
4844           // we don't want to perform address space cast for it.
4845           else if ((ArgInfo.getIndirectByVal() &&
4846                     Addr.getType()->getAddressSpace() != IRFuncTy->
4847                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4848             NeedCopy = true;
4849           }
4850         }
4851 
4852         if (NeedCopy) {
4853           // Create an aligned temporary, and copy to it.
4854           Address AI = CreateMemTempWithoutCast(
4855               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4856           IRCallArgs[FirstIRArg] = AI.getPointer();
4857 
4858           // Emit lifetime markers for the temporary alloca.
4859           llvm::TypeSize ByvalTempElementSize =
4860               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4861           llvm::Value *LifetimeSize =
4862               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4863 
4864           // Add cleanup code to emit the end lifetime marker after the call.
4865           if (LifetimeSize) // In case we disabled lifetime markers.
4866             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4867 
4868           // Generate the copy.
4869           I->copyInto(*this, AI);
4870         } else {
4871           // Skip the extra memcpy call.
4872           auto *T = llvm::PointerType::getWithSamePointeeType(
4873               cast<llvm::PointerType>(V->getType()),
4874               CGM.getDataLayout().getAllocaAddrSpace());
4875           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4876               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4877               true);
4878         }
4879       }
4880       break;
4881     }
4882 
4883     case ABIArgInfo::Ignore:
4884       assert(NumIRArgs == 0);
4885       break;
4886 
4887     case ABIArgInfo::Extend:
4888     case ABIArgInfo::Direct: {
4889       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4890           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4891           ArgInfo.getDirectOffset() == 0) {
4892         assert(NumIRArgs == 1);
4893         llvm::Value *V;
4894         if (!I->isAggregate())
4895           V = I->getKnownRValue().getScalarVal();
4896         else
4897           V = Builder.CreateLoad(
4898               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4899                              : I->getKnownRValue().getAggregateAddress());
4900 
4901         // Implement swifterror by copying into a new swifterror argument.
4902         // We'll write back in the normal path out of the call.
4903         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4904               == ParameterABI::SwiftErrorResult) {
4905           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4906 
4907           QualType pointeeTy = I->Ty->getPointeeType();
4908           swiftErrorArg =
4909             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4910 
4911           swiftErrorTemp =
4912             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4913           V = swiftErrorTemp.getPointer();
4914           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4915 
4916           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4917           Builder.CreateStore(errorValue, swiftErrorTemp);
4918         }
4919 
4920         // We might have to widen integers, but we should never truncate.
4921         if (ArgInfo.getCoerceToType() != V->getType() &&
4922             V->getType()->isIntegerTy())
4923           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4924 
4925         // If the argument doesn't match, perform a bitcast to coerce it.  This
4926         // can happen due to trivial type mismatches.
4927         if (FirstIRArg < IRFuncTy->getNumParams() &&
4928             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4929           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4930 
4931         IRCallArgs[FirstIRArg] = V;
4932         break;
4933       }
4934 
4935       // FIXME: Avoid the conversion through memory if possible.
4936       Address Src = Address::invalid();
4937       if (!I->isAggregate()) {
4938         Src = CreateMemTemp(I->Ty, "coerce");
4939         I->copyInto(*this, Src);
4940       } else {
4941         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4942                              : I->getKnownRValue().getAggregateAddress();
4943       }
4944 
4945       // If the value is offset in memory, apply the offset now.
4946       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4947 
4948       // Fast-isel and the optimizer generally like scalar values better than
4949       // FCAs, so we flatten them if this is safe to do for this argument.
4950       llvm::StructType *STy =
4951             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4952       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4953         llvm::Type *SrcTy = Src.getElementType();
4954         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4955         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4956 
4957         // If the source type is smaller than the destination type of the
4958         // coerce-to logic, copy the source value into a temp alloca the size
4959         // of the destination type to allow loading all of it. The bits past
4960         // the source value are left undef.
4961         if (SrcSize < DstSize) {
4962           Address TempAlloca
4963             = CreateTempAlloca(STy, Src.getAlignment(),
4964                                Src.getName() + ".coerce");
4965           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4966           Src = TempAlloca;
4967         } else {
4968           Src = Builder.CreateElementBitCast(Src, STy);
4969         }
4970 
4971         assert(NumIRArgs == STy->getNumElements());
4972         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4973           Address EltPtr = Builder.CreateStructGEP(Src, i);
4974           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4975           IRCallArgs[FirstIRArg + i] = LI;
4976         }
4977       } else {
4978         // In the simple case, just pass the coerced loaded value.
4979         assert(NumIRArgs == 1);
4980         llvm::Value *Load =
4981             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4982 
4983         if (CallInfo.isCmseNSCall()) {
4984           // For certain parameter types, clear padding bits, as they may reveal
4985           // sensitive information.
4986           // Small struct/union types are passed as integer arrays.
4987           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4988           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4989             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4990         }
4991         IRCallArgs[FirstIRArg] = Load;
4992       }
4993 
4994       break;
4995     }
4996 
4997     case ABIArgInfo::CoerceAndExpand: {
4998       auto coercionType = ArgInfo.getCoerceAndExpandType();
4999       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5000 
5001       llvm::Value *tempSize = nullptr;
5002       Address addr = Address::invalid();
5003       Address AllocaAddr = Address::invalid();
5004       if (I->isAggregate()) {
5005         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5006                               : I->getKnownRValue().getAggregateAddress();
5007 
5008       } else {
5009         RValue RV = I->getKnownRValue();
5010         assert(RV.isScalar()); // complex should always just be direct
5011 
5012         llvm::Type *scalarType = RV.getScalarVal()->getType();
5013         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5014         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
5015 
5016         // Materialize to a temporary.
5017         addr =
5018             CreateTempAlloca(RV.getScalarVal()->getType(),
5019                              CharUnits::fromQuantity(std::max(
5020                                  layout->getAlignment().value(), scalarAlign)),
5021                              "tmp",
5022                              /*ArraySize=*/nullptr, &AllocaAddr);
5023         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5024 
5025         Builder.CreateStore(RV.getScalarVal(), addr);
5026       }
5027 
5028       addr = Builder.CreateElementBitCast(addr, coercionType);
5029 
5030       unsigned IRArgPos = FirstIRArg;
5031       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5032         llvm::Type *eltType = coercionType->getElementType(i);
5033         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5034         Address eltAddr = Builder.CreateStructGEP(addr, i);
5035         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5036         IRCallArgs[IRArgPos++] = elt;
5037       }
5038       assert(IRArgPos == FirstIRArg + NumIRArgs);
5039 
5040       if (tempSize) {
5041         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5042       }
5043 
5044       break;
5045     }
5046 
5047     case ABIArgInfo::Expand: {
5048       unsigned IRArgPos = FirstIRArg;
5049       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5050       assert(IRArgPos == FirstIRArg + NumIRArgs);
5051       break;
5052     }
5053     }
5054   }
5055 
5056   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5057   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5058 
5059   // If we're using inalloca, set up that argument.
5060   if (ArgMemory.isValid()) {
5061     llvm::Value *Arg = ArgMemory.getPointer();
5062     if (CallInfo.isVariadic()) {
5063       // When passing non-POD arguments by value to variadic functions, we will
5064       // end up with a variadic prototype and an inalloca call site.  In such
5065       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5066       // the callee.
5067       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5068       CalleePtr =
5069           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5070     } else {
5071       llvm::Type *LastParamTy =
5072           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5073       if (Arg->getType() != LastParamTy) {
5074 #ifndef NDEBUG
5075         // Assert that these structs have equivalent element types.
5076         llvm::StructType *FullTy = CallInfo.getArgStruct();
5077         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5078             cast<llvm::PointerType>(LastParamTy)->getElementType());
5079         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5080         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
5081                                                 DE = DeclaredTy->element_end(),
5082                                                 FI = FullTy->element_begin();
5083              DI != DE; ++DI, ++FI)
5084           assert(*DI == *FI);
5085 #endif
5086         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5087       }
5088     }
5089     assert(IRFunctionArgs.hasInallocaArg());
5090     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5091   }
5092 
5093   // 2. Prepare the function pointer.
5094 
5095   // If the callee is a bitcast of a non-variadic function to have a
5096   // variadic function pointer type, check to see if we can remove the
5097   // bitcast.  This comes up with unprototyped functions.
5098   //
5099   // This makes the IR nicer, but more importantly it ensures that we
5100   // can inline the function at -O0 if it is marked always_inline.
5101   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5102                                    llvm::Value *Ptr) -> llvm::Function * {
5103     if (!CalleeFT->isVarArg())
5104       return nullptr;
5105 
5106     // Get underlying value if it's a bitcast
5107     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5108       if (CE->getOpcode() == llvm::Instruction::BitCast)
5109         Ptr = CE->getOperand(0);
5110     }
5111 
5112     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5113     if (!OrigFn)
5114       return nullptr;
5115 
5116     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5117 
5118     // If the original type is variadic, or if any of the component types
5119     // disagree, we cannot remove the cast.
5120     if (OrigFT->isVarArg() ||
5121         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5122         OrigFT->getReturnType() != CalleeFT->getReturnType())
5123       return nullptr;
5124 
5125     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5126       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5127         return nullptr;
5128 
5129     return OrigFn;
5130   };
5131 
5132   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5133     CalleePtr = OrigFn;
5134     IRFuncTy = OrigFn->getFunctionType();
5135   }
5136 
5137   // 3. Perform the actual call.
5138 
5139   // Deactivate any cleanups that we're supposed to do immediately before
5140   // the call.
5141   if (!CallArgs.getCleanupsToDeactivate().empty())
5142     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5143 
5144   // Assert that the arguments we computed match up.  The IR verifier
5145   // will catch this, but this is a common enough source of problems
5146   // during IRGen changes that it's way better for debugging to catch
5147   // it ourselves here.
5148 #ifndef NDEBUG
5149   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5150   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5151     // Inalloca argument can have different type.
5152     if (IRFunctionArgs.hasInallocaArg() &&
5153         i == IRFunctionArgs.getInallocaArgNo())
5154       continue;
5155     if (i < IRFuncTy->getNumParams())
5156       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5157   }
5158 #endif
5159 
5160   // Update the largest vector width if any arguments have vector types.
5161   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5162     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5163       LargestVectorWidth =
5164           std::max((uint64_t)LargestVectorWidth,
5165                    VT->getPrimitiveSizeInBits().getKnownMinSize());
5166   }
5167 
5168   // Compute the calling convention and attributes.
5169   unsigned CallingConv;
5170   llvm::AttributeList Attrs;
5171   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5172                              Callee.getAbstractInfo(), Attrs, CallingConv,
5173                              /*AttrOnCallSite=*/true,
5174                              /*IsThunk=*/false);
5175 
5176   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5177     if (FD->hasAttr<StrictFPAttr>())
5178       // All calls within a strictfp function are marked strictfp
5179       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5180 
5181   // Add call-site nomerge attribute if exists.
5182   if (InNoMergeAttributedStmt)
5183     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5184 
5185   // Apply some call-site-specific attributes.
5186   // TODO: work this into building the attribute set.
5187 
5188   // Apply always_inline to all calls within flatten functions.
5189   // FIXME: should this really take priority over __try, below?
5190   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5191       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5192     Attrs =
5193         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5194   }
5195 
5196   // Disable inlining inside SEH __try blocks.
5197   if (isSEHTryScope()) {
5198     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5199   }
5200 
5201   // Decide whether to use a call or an invoke.
5202   bool CannotThrow;
5203   if (currentFunctionUsesSEHTry()) {
5204     // SEH cares about asynchronous exceptions, so everything can "throw."
5205     CannotThrow = false;
5206   } else if (isCleanupPadScope() &&
5207              EHPersonality::get(*this).isMSVCXXPersonality()) {
5208     // The MSVC++ personality will implicitly terminate the program if an
5209     // exception is thrown during a cleanup outside of a try/catch.
5210     // We don't need to model anything in IR to get this behavior.
5211     CannotThrow = true;
5212   } else {
5213     // Otherwise, nounwind call sites will never throw.
5214     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5215 
5216     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5217       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5218         CannotThrow = true;
5219   }
5220 
5221   // If we made a temporary, be sure to clean up after ourselves. Note that we
5222   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5223   // pop this cleanup later on. Being eager about this is OK, since this
5224   // temporary is 'invisible' outside of the callee.
5225   if (UnusedReturnSizePtr)
5226     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5227                                          UnusedReturnSizePtr);
5228 
5229   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5230 
5231   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5232       getBundlesForFunclet(CalleePtr);
5233 
5234   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5235     if (FD->hasAttr<StrictFPAttr>())
5236       // All calls within a strictfp function are marked strictfp
5237       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5238 
5239   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5240   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5241 
5242   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5243   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5244 
5245   // Emit the actual call/invoke instruction.
5246   llvm::CallBase *CI;
5247   if (!InvokeDest) {
5248     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5249   } else {
5250     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5251     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5252                               BundleList);
5253     EmitBlock(Cont);
5254   }
5255   if (callOrInvoke)
5256     *callOrInvoke = CI;
5257 
5258   // If this is within a function that has the guard(nocf) attribute and is an
5259   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5260   // Control Flow Guard checks should not be added, even if the call is inlined.
5261   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5262     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5263       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5264         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5265     }
5266   }
5267 
5268   // Apply the attributes and calling convention.
5269   CI->setAttributes(Attrs);
5270   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5271 
5272   // Apply various metadata.
5273 
5274   if (!CI->getType()->isVoidTy())
5275     CI->setName("call");
5276 
5277   // Update largest vector width from the return type.
5278   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5279     LargestVectorWidth =
5280         std::max((uint64_t)LargestVectorWidth,
5281                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5282 
5283   // Insert instrumentation or attach profile metadata at indirect call sites.
5284   // For more details, see the comment before the definition of
5285   // IPVK_IndirectCallTarget in InstrProfData.inc.
5286   if (!CI->getCalledFunction())
5287     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5288                      CI, CalleePtr);
5289 
5290   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5291   // optimizer it can aggressively ignore unwind edges.
5292   if (CGM.getLangOpts().ObjCAutoRefCount)
5293     AddObjCARCExceptionMetadata(CI);
5294 
5295   // Set tail call kind if necessary.
5296   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5297     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5298       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5299     else if (IsMustTail)
5300       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5301   }
5302 
5303   // Add metadata for calls to MSAllocator functions
5304   if (getDebugInfo() && TargetDecl &&
5305       TargetDecl->hasAttr<MSAllocatorAttr>())
5306     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5307 
5308   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5309   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5310     llvm::ConstantInt *Line =
5311         llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5312     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5313     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5314     CI->setMetadata("srcloc", MDT);
5315   }
5316 
5317   // 4. Finish the call.
5318 
5319   // If the call doesn't return, finish the basic block and clear the
5320   // insertion point; this allows the rest of IRGen to discard
5321   // unreachable code.
5322   if (CI->doesNotReturn()) {
5323     if (UnusedReturnSizePtr)
5324       PopCleanupBlock();
5325 
5326     // Strip away the noreturn attribute to better diagnose unreachable UB.
5327     if (SanOpts.has(SanitizerKind::Unreachable)) {
5328       // Also remove from function since CallBase::hasFnAttr additionally checks
5329       // attributes of the called function.
5330       if (auto *F = CI->getCalledFunction())
5331         F->removeFnAttr(llvm::Attribute::NoReturn);
5332       CI->removeFnAttr(llvm::Attribute::NoReturn);
5333 
5334       // Avoid incompatibility with ASan which relies on the `noreturn`
5335       // attribute to insert handler calls.
5336       if (SanOpts.hasOneOf(SanitizerKind::Address |
5337                            SanitizerKind::KernelAddress)) {
5338         SanitizerScope SanScope(this);
5339         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5340         Builder.SetInsertPoint(CI);
5341         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5342         llvm::FunctionCallee Fn =
5343             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5344         EmitNounwindRuntimeCall(Fn);
5345       }
5346     }
5347 
5348     EmitUnreachable(Loc);
5349     Builder.ClearInsertionPoint();
5350 
5351     // FIXME: For now, emit a dummy basic block because expr emitters in
5352     // generally are not ready to handle emitting expressions at unreachable
5353     // points.
5354     EnsureInsertPoint();
5355 
5356     // Return a reasonable RValue.
5357     return GetUndefRValue(RetTy);
5358   }
5359 
5360   // If this is a musttail call, return immediately. We do not branch to the
5361   // epilogue in this case.
5362   if (IsMustTail) {
5363     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5364          ++it) {
5365       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5366       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5367         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5368     }
5369     if (CI->getType()->isVoidTy())
5370       Builder.CreateRetVoid();
5371     else
5372       Builder.CreateRet(CI);
5373     Builder.ClearInsertionPoint();
5374     EnsureInsertPoint();
5375     return GetUndefRValue(RetTy);
5376   }
5377 
5378   // Perform the swifterror writeback.
5379   if (swiftErrorTemp.isValid()) {
5380     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5381     Builder.CreateStore(errorResult, swiftErrorArg);
5382   }
5383 
5384   // Emit any call-associated writebacks immediately.  Arguably this
5385   // should happen after any return-value munging.
5386   if (CallArgs.hasWritebacks())
5387     emitWritebacks(*this, CallArgs);
5388 
5389   // The stack cleanup for inalloca arguments has to run out of the normal
5390   // lexical order, so deactivate it and run it manually here.
5391   CallArgs.freeArgumentMemory(*this);
5392 
5393   // Extract the return value.
5394   RValue Ret = [&] {
5395     switch (RetAI.getKind()) {
5396     case ABIArgInfo::CoerceAndExpand: {
5397       auto coercionType = RetAI.getCoerceAndExpandType();
5398 
5399       Address addr = SRetPtr;
5400       addr = Builder.CreateElementBitCast(addr, coercionType);
5401 
5402       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5403       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5404 
5405       unsigned unpaddedIndex = 0;
5406       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5407         llvm::Type *eltType = coercionType->getElementType(i);
5408         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5409         Address eltAddr = Builder.CreateStructGEP(addr, i);
5410         llvm::Value *elt = CI;
5411         if (requiresExtract)
5412           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5413         else
5414           assert(unpaddedIndex == 0);
5415         Builder.CreateStore(elt, eltAddr);
5416       }
5417       // FALLTHROUGH
5418       LLVM_FALLTHROUGH;
5419     }
5420 
5421     case ABIArgInfo::InAlloca:
5422     case ABIArgInfo::Indirect: {
5423       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5424       if (UnusedReturnSizePtr)
5425         PopCleanupBlock();
5426       return ret;
5427     }
5428 
5429     case ABIArgInfo::Ignore:
5430       // If we are ignoring an argument that had a result, make sure to
5431       // construct the appropriate return value for our caller.
5432       return GetUndefRValue(RetTy);
5433 
5434     case ABIArgInfo::Extend:
5435     case ABIArgInfo::Direct: {
5436       llvm::Type *RetIRTy = ConvertType(RetTy);
5437       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5438         switch (getEvaluationKind(RetTy)) {
5439         case TEK_Complex: {
5440           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5441           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5442           return RValue::getComplex(std::make_pair(Real, Imag));
5443         }
5444         case TEK_Aggregate: {
5445           Address DestPtr = ReturnValue.getValue();
5446           bool DestIsVolatile = ReturnValue.isVolatile();
5447 
5448           if (!DestPtr.isValid()) {
5449             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5450             DestIsVolatile = false;
5451           }
5452           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5453           return RValue::getAggregate(DestPtr);
5454         }
5455         case TEK_Scalar: {
5456           // If the argument doesn't match, perform a bitcast to coerce it.  This
5457           // can happen due to trivial type mismatches.
5458           llvm::Value *V = CI;
5459           if (V->getType() != RetIRTy)
5460             V = Builder.CreateBitCast(V, RetIRTy);
5461           return RValue::get(V);
5462         }
5463         }
5464         llvm_unreachable("bad evaluation kind");
5465       }
5466 
5467       Address DestPtr = ReturnValue.getValue();
5468       bool DestIsVolatile = ReturnValue.isVolatile();
5469 
5470       if (!DestPtr.isValid()) {
5471         DestPtr = CreateMemTemp(RetTy, "coerce");
5472         DestIsVolatile = false;
5473       }
5474 
5475       // If the value is offset in memory, apply the offset now.
5476       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5477       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5478 
5479       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5480     }
5481 
5482     case ABIArgInfo::Expand:
5483     case ABIArgInfo::IndirectAliased:
5484       llvm_unreachable("Invalid ABI kind for return argument");
5485     }
5486 
5487     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5488   } ();
5489 
5490   // Emit the assume_aligned check on the return value.
5491   if (Ret.isScalar() && TargetDecl) {
5492     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5493     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5494   }
5495 
5496   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5497   // we can't use the full cleanup mechanism.
5498   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5499     LifetimeEnd.Emit(*this, /*Flags=*/{});
5500 
5501   if (!ReturnValue.isExternallyDestructed() &&
5502       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5503     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5504                 RetTy);
5505 
5506   return Ret;
5507 }
5508 
5509 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5510   if (isVirtual()) {
5511     const CallExpr *CE = getVirtualCallExpr();
5512     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5513         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5514         CE ? CE->getBeginLoc() : SourceLocation());
5515   }
5516 
5517   return *this;
5518 }
5519 
5520 /* VarArg handling */
5521 
5522 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5523   VAListAddr = VE->isMicrosoftABI()
5524                  ? EmitMSVAListRef(VE->getSubExpr())
5525                  : EmitVAListRef(VE->getSubExpr());
5526   QualType Ty = VE->getType();
5527   if (VE->isMicrosoftABI())
5528     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5529   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5530 }
5531