10b57cec5SDimitry Andric //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // These classes wrap the information about a call or function 100b57cec5SDimitry Andric // definition used to handle ABI compliancy. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #include "CGCall.h" 150b57cec5SDimitry Andric #include "ABIInfo.h" 168a4dda33SDimitry Andric #include "ABIInfoImpl.h" 170b57cec5SDimitry Andric #include "CGBlocks.h" 180b57cec5SDimitry Andric #include "CGCXXABI.h" 190b57cec5SDimitry Andric #include "CGCleanup.h" 205ffd83dbSDimitry Andric #include "CGRecordLayout.h" 210b57cec5SDimitry Andric #include "CodeGenFunction.h" 220b57cec5SDimitry Andric #include "CodeGenModule.h" 230b57cec5SDimitry Andric #include "TargetInfo.h" 24480093f4SDimitry Andric #include "clang/AST/Attr.h" 250b57cec5SDimitry Andric #include "clang/AST/Decl.h" 260b57cec5SDimitry Andric #include "clang/AST/DeclCXX.h" 270b57cec5SDimitry Andric #include "clang/AST/DeclObjC.h" 280b57cec5SDimitry Andric #include "clang/Basic/CodeGenOptions.h" 290b57cec5SDimitry Andric #include "clang/Basic/TargetInfo.h" 300b57cec5SDimitry Andric #include "clang/CodeGen/CGFunctionInfo.h" 310b57cec5SDimitry Andric #include "clang/CodeGen/SwiftCallingConv.h" 320b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h" 330b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 34e8d8bef9SDimitry Andric #include "llvm/IR/Assumptions.h" 3506c3fb27SDimitry Andric #include "llvm/IR/AttributeMask.h" 360b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 370b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h" 380b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 390b57cec5SDimitry Andric #include "llvm/IR/InlineAsm.h" 400b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 410b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 426a5eebc1SDimitry Andric #include "llvm/IR/Type.h" 43480093f4SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 44bdd1243dSDimitry Andric #include <optional> 450b57cec5SDimitry Andric using namespace clang; 460b57cec5SDimitry Andric using namespace CodeGen; 470b57cec5SDimitry Andric 480b57cec5SDimitry Andric /***/ 490b57cec5SDimitry Andric 500b57cec5SDimitry Andric unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 510b57cec5SDimitry Andric switch (CC) { 520b57cec5SDimitry Andric default: return llvm::CallingConv::C; 530b57cec5SDimitry Andric case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 540b57cec5SDimitry Andric case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 550b57cec5SDimitry Andric case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 560b57cec5SDimitry Andric case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 570b57cec5SDimitry Andric case CC_Win64: return llvm::CallingConv::Win64; 580b57cec5SDimitry Andric case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 590b57cec5SDimitry Andric case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 600b57cec5SDimitry Andric case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 610b57cec5SDimitry Andric case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 620b57cec5SDimitry Andric // TODO: Add support for __pascal to LLVM. 630b57cec5SDimitry Andric case CC_X86Pascal: return llvm::CallingConv::C; 640b57cec5SDimitry Andric // TODO: Add support for __vectorcall to LLVM. 650b57cec5SDimitry Andric case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 660b57cec5SDimitry Andric case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 6781ad6265SDimitry Andric case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 6881ad6265SDimitry Andric case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 690b57cec5SDimitry Andric case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 700b57cec5SDimitry Andric case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 710b57cec5SDimitry Andric case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 720b57cec5SDimitry Andric case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 730b57cec5SDimitry Andric case CC_Swift: return llvm::CallingConv::Swift; 74fe6060f1SDimitry Andric case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 755f757f3fSDimitry Andric case CC_M68kRTD: return llvm::CallingConv::M68k_RTD; 760fca6ea1SDimitry Andric case CC_PreserveNone: return llvm::CallingConv::PreserveNone; 770fca6ea1SDimitry Andric // clang-format off 780fca6ea1SDimitry Andric case CC_RISCVVectorCall: return llvm::CallingConv::RISCV_VectorCall; 790fca6ea1SDimitry Andric // clang-format on 800b57cec5SDimitry Andric } 810b57cec5SDimitry Andric } 820b57cec5SDimitry Andric 830b57cec5SDimitry Andric /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 840b57cec5SDimitry Andric /// qualification. Either or both of RD and MD may be null. A null RD indicates 850b57cec5SDimitry Andric /// that there is no meaningful 'this' type, and a null MD can occur when 860b57cec5SDimitry Andric /// calling a method pointer. 870b57cec5SDimitry Andric CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 880b57cec5SDimitry Andric const CXXMethodDecl *MD) { 890b57cec5SDimitry Andric QualType RecTy; 900b57cec5SDimitry Andric if (RD) 910b57cec5SDimitry Andric RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 920b57cec5SDimitry Andric else 930b57cec5SDimitry Andric RecTy = Context.VoidTy; 940b57cec5SDimitry Andric 950b57cec5SDimitry Andric if (MD) 960b57cec5SDimitry Andric RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 970b57cec5SDimitry Andric return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 980b57cec5SDimitry Andric } 990b57cec5SDimitry Andric 1000b57cec5SDimitry Andric /// Returns the canonical formal type of the given C++ method. 1010b57cec5SDimitry Andric static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 1020b57cec5SDimitry Andric return MD->getType()->getCanonicalTypeUnqualified() 1030b57cec5SDimitry Andric .getAs<FunctionProtoType>(); 1040b57cec5SDimitry Andric } 1050b57cec5SDimitry Andric 1060b57cec5SDimitry Andric /// Returns the "extra-canonicalized" return type, which discards 1070b57cec5SDimitry Andric /// qualifiers on the return type. Codegen doesn't care about them, 1080b57cec5SDimitry Andric /// and it makes ABI code a little easier to be able to assume that 1090b57cec5SDimitry Andric /// all parameter and return types are top-level unqualified. 1100b57cec5SDimitry Andric static CanQualType GetReturnType(QualType RetTy) { 1110b57cec5SDimitry Andric return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 1120b57cec5SDimitry Andric } 1130b57cec5SDimitry Andric 1140b57cec5SDimitry Andric /// Arrange the argument and result information for a value of the given 1150b57cec5SDimitry Andric /// unprototyped freestanding function type. 1160b57cec5SDimitry Andric const CGFunctionInfo & 1170b57cec5SDimitry Andric CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 1180b57cec5SDimitry Andric // When translating an unprototyped function type, always use a 1190b57cec5SDimitry Andric // variadic type. 1200b57cec5SDimitry Andric return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 1218a4dda33SDimitry Andric FnInfoOpts::None, std::nullopt, 1220b57cec5SDimitry Andric FTNP->getExtInfo(), {}, RequiredArgs(0)); 1230b57cec5SDimitry Andric } 1240b57cec5SDimitry Andric 1250b57cec5SDimitry Andric static void addExtParameterInfosForCall( 1260b57cec5SDimitry Andric llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 1270b57cec5SDimitry Andric const FunctionProtoType *proto, 1280b57cec5SDimitry Andric unsigned prefixArgs, 1290b57cec5SDimitry Andric unsigned totalArgs) { 1300b57cec5SDimitry Andric assert(proto->hasExtParameterInfos()); 1310b57cec5SDimitry Andric assert(paramInfos.size() <= prefixArgs); 1320b57cec5SDimitry Andric assert(proto->getNumParams() + prefixArgs <= totalArgs); 1330b57cec5SDimitry Andric 1340b57cec5SDimitry Andric paramInfos.reserve(totalArgs); 1350b57cec5SDimitry Andric 1360b57cec5SDimitry Andric // Add default infos for any prefix args that don't already have infos. 1370b57cec5SDimitry Andric paramInfos.resize(prefixArgs); 1380b57cec5SDimitry Andric 1390b57cec5SDimitry Andric // Add infos for the prototype. 1400b57cec5SDimitry Andric for (const auto &ParamInfo : proto->getExtParameterInfos()) { 1410b57cec5SDimitry Andric paramInfos.push_back(ParamInfo); 1420b57cec5SDimitry Andric // pass_object_size params have no parameter info. 1430b57cec5SDimitry Andric if (ParamInfo.hasPassObjectSize()) 1440b57cec5SDimitry Andric paramInfos.emplace_back(); 1450b57cec5SDimitry Andric } 1460b57cec5SDimitry Andric 1470b57cec5SDimitry Andric assert(paramInfos.size() <= totalArgs && 1480b57cec5SDimitry Andric "Did we forget to insert pass_object_size args?"); 1490b57cec5SDimitry Andric // Add default infos for the variadic and/or suffix arguments. 1500b57cec5SDimitry Andric paramInfos.resize(totalArgs); 1510b57cec5SDimitry Andric } 1520b57cec5SDimitry Andric 1530b57cec5SDimitry Andric /// Adds the formal parameters in FPT to the given prefix. If any parameter in 1540b57cec5SDimitry Andric /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 1550b57cec5SDimitry Andric static void appendParameterTypes(const CodeGenTypes &CGT, 1560b57cec5SDimitry Andric SmallVectorImpl<CanQualType> &prefix, 1570b57cec5SDimitry Andric SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 1580b57cec5SDimitry Andric CanQual<FunctionProtoType> FPT) { 1590b57cec5SDimitry Andric // Fast path: don't touch param info if we don't need to. 1600b57cec5SDimitry Andric if (!FPT->hasExtParameterInfos()) { 1610b57cec5SDimitry Andric assert(paramInfos.empty() && 1620b57cec5SDimitry Andric "We have paramInfos, but the prototype doesn't?"); 1630b57cec5SDimitry Andric prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 1640b57cec5SDimitry Andric return; 1650b57cec5SDimitry Andric } 1660b57cec5SDimitry Andric 1670b57cec5SDimitry Andric unsigned PrefixSize = prefix.size(); 1680b57cec5SDimitry Andric // In the vast majority of cases, we'll have precisely FPT->getNumParams() 1690b57cec5SDimitry Andric // parameters; the only thing that can change this is the presence of 1700b57cec5SDimitry Andric // pass_object_size. So, we preallocate for the common case. 1710b57cec5SDimitry Andric prefix.reserve(prefix.size() + FPT->getNumParams()); 1720b57cec5SDimitry Andric 1730b57cec5SDimitry Andric auto ExtInfos = FPT->getExtParameterInfos(); 1740b57cec5SDimitry Andric assert(ExtInfos.size() == FPT->getNumParams()); 1750b57cec5SDimitry Andric for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 1760b57cec5SDimitry Andric prefix.push_back(FPT->getParamType(I)); 1770b57cec5SDimitry Andric if (ExtInfos[I].hasPassObjectSize()) 1780b57cec5SDimitry Andric prefix.push_back(CGT.getContext().getSizeType()); 1790b57cec5SDimitry Andric } 1800b57cec5SDimitry Andric 1810b57cec5SDimitry Andric addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 1820b57cec5SDimitry Andric prefix.size()); 1830b57cec5SDimitry Andric } 1840b57cec5SDimitry Andric 1850b57cec5SDimitry Andric /// Arrange the LLVM function layout for a value of the given function 1860b57cec5SDimitry Andric /// type, on top of any implicit parameters already stored. 1870b57cec5SDimitry Andric static const CGFunctionInfo & 1880b57cec5SDimitry Andric arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 1890b57cec5SDimitry Andric SmallVectorImpl<CanQualType> &prefix, 1900b57cec5SDimitry Andric CanQual<FunctionProtoType> FTP) { 1910b57cec5SDimitry Andric SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 1920b57cec5SDimitry Andric RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 1930b57cec5SDimitry Andric // FIXME: Kill copy. 1940b57cec5SDimitry Andric appendParameterTypes(CGT, prefix, paramInfos, FTP); 1950b57cec5SDimitry Andric CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 1960b57cec5SDimitry Andric 1978a4dda33SDimitry Andric FnInfoOpts opts = 1988a4dda33SDimitry Andric instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None; 1998a4dda33SDimitry Andric return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix, 2008a4dda33SDimitry Andric FTP->getExtInfo(), paramInfos, Required); 2010b57cec5SDimitry Andric } 2020b57cec5SDimitry Andric 2030b57cec5SDimitry Andric /// Arrange the argument and result information for a value of the 2040b57cec5SDimitry Andric /// given freestanding function type. 2050b57cec5SDimitry Andric const CGFunctionInfo & 2060b57cec5SDimitry Andric CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 2070b57cec5SDimitry Andric SmallVector<CanQualType, 16> argTypes; 2080b57cec5SDimitry Andric return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 2090b57cec5SDimitry Andric FTP); 2100b57cec5SDimitry Andric } 2110b57cec5SDimitry Andric 212e8d8bef9SDimitry Andric static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 213e8d8bef9SDimitry Andric bool IsWindows) { 2140b57cec5SDimitry Andric // Set the appropriate calling convention for the Function. 2150b57cec5SDimitry Andric if (D->hasAttr<StdCallAttr>()) 2160b57cec5SDimitry Andric return CC_X86StdCall; 2170b57cec5SDimitry Andric 2180b57cec5SDimitry Andric if (D->hasAttr<FastCallAttr>()) 2190b57cec5SDimitry Andric return CC_X86FastCall; 2200b57cec5SDimitry Andric 2210b57cec5SDimitry Andric if (D->hasAttr<RegCallAttr>()) 2220b57cec5SDimitry Andric return CC_X86RegCall; 2230b57cec5SDimitry Andric 2240b57cec5SDimitry Andric if (D->hasAttr<ThisCallAttr>()) 2250b57cec5SDimitry Andric return CC_X86ThisCall; 2260b57cec5SDimitry Andric 2270b57cec5SDimitry Andric if (D->hasAttr<VectorCallAttr>()) 2280b57cec5SDimitry Andric return CC_X86VectorCall; 2290b57cec5SDimitry Andric 2300b57cec5SDimitry Andric if (D->hasAttr<PascalAttr>()) 2310b57cec5SDimitry Andric return CC_X86Pascal; 2320b57cec5SDimitry Andric 2330b57cec5SDimitry Andric if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 2340b57cec5SDimitry Andric return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 2350b57cec5SDimitry Andric 2360b57cec5SDimitry Andric if (D->hasAttr<AArch64VectorPcsAttr>()) 2370b57cec5SDimitry Andric return CC_AArch64VectorCall; 2380b57cec5SDimitry Andric 23981ad6265SDimitry Andric if (D->hasAttr<AArch64SVEPcsAttr>()) 24081ad6265SDimitry Andric return CC_AArch64SVEPCS; 24181ad6265SDimitry Andric 24281ad6265SDimitry Andric if (D->hasAttr<AMDGPUKernelCallAttr>()) 24381ad6265SDimitry Andric return CC_AMDGPUKernelCall; 24481ad6265SDimitry Andric 2450b57cec5SDimitry Andric if (D->hasAttr<IntelOclBiccAttr>()) 2460b57cec5SDimitry Andric return CC_IntelOclBicc; 2470b57cec5SDimitry Andric 2480b57cec5SDimitry Andric if (D->hasAttr<MSABIAttr>()) 2490b57cec5SDimitry Andric return IsWindows ? CC_C : CC_Win64; 2500b57cec5SDimitry Andric 2510b57cec5SDimitry Andric if (D->hasAttr<SysVABIAttr>()) 2520b57cec5SDimitry Andric return IsWindows ? CC_X86_64SysV : CC_C; 2530b57cec5SDimitry Andric 2540b57cec5SDimitry Andric if (D->hasAttr<PreserveMostAttr>()) 2550b57cec5SDimitry Andric return CC_PreserveMost; 2560b57cec5SDimitry Andric 2570b57cec5SDimitry Andric if (D->hasAttr<PreserveAllAttr>()) 2580b57cec5SDimitry Andric return CC_PreserveAll; 2590b57cec5SDimitry Andric 2605f757f3fSDimitry Andric if (D->hasAttr<M68kRTDAttr>()) 2615f757f3fSDimitry Andric return CC_M68kRTD; 2625f757f3fSDimitry Andric 2630fca6ea1SDimitry Andric if (D->hasAttr<PreserveNoneAttr>()) 2640fca6ea1SDimitry Andric return CC_PreserveNone; 2650fca6ea1SDimitry Andric 2660fca6ea1SDimitry Andric if (D->hasAttr<RISCVVectorCCAttr>()) 2670fca6ea1SDimitry Andric return CC_RISCVVectorCall; 2680fca6ea1SDimitry Andric 2690b57cec5SDimitry Andric return CC_C; 2700b57cec5SDimitry Andric } 2710b57cec5SDimitry Andric 2720b57cec5SDimitry Andric /// Arrange the argument and result information for a call to an 2730b57cec5SDimitry Andric /// unknown C++ non-static member function of the given abstract type. 2740b57cec5SDimitry Andric /// (A null RD means we don't have any meaningful "this" argument type, 2750b57cec5SDimitry Andric /// so fall back to a generic pointer type). 2760b57cec5SDimitry Andric /// The member function must be an ordinary function, i.e. not a 2770b57cec5SDimitry Andric /// constructor or destructor. 2780b57cec5SDimitry Andric const CGFunctionInfo & 2790b57cec5SDimitry Andric CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 2800b57cec5SDimitry Andric const FunctionProtoType *FTP, 2810b57cec5SDimitry Andric const CXXMethodDecl *MD) { 2820b57cec5SDimitry Andric SmallVector<CanQualType, 16> argTypes; 2830b57cec5SDimitry Andric 2840b57cec5SDimitry Andric // Add the 'this' pointer. 2850b57cec5SDimitry Andric argTypes.push_back(DeriveThisType(RD, MD)); 2860b57cec5SDimitry Andric 2870b57cec5SDimitry Andric return ::arrangeLLVMFunctionInfo( 2888a4dda33SDimitry Andric *this, /*instanceMethod=*/true, argTypes, 2890b57cec5SDimitry Andric FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 2900b57cec5SDimitry Andric } 2910b57cec5SDimitry Andric 2920b57cec5SDimitry Andric /// Set calling convention for CUDA/HIP kernel. 2930b57cec5SDimitry Andric static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 2940b57cec5SDimitry Andric const FunctionDecl *FD) { 2950b57cec5SDimitry Andric if (FD->hasAttr<CUDAGlobalAttr>()) { 2960b57cec5SDimitry Andric const FunctionType *FT = FTy->getAs<FunctionType>(); 2970b57cec5SDimitry Andric CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 2980b57cec5SDimitry Andric FTy = FT->getCanonicalTypeUnqualified(); 2990b57cec5SDimitry Andric } 3000b57cec5SDimitry Andric } 3010b57cec5SDimitry Andric 3020b57cec5SDimitry Andric /// Arrange the argument and result information for a declaration or 3030b57cec5SDimitry Andric /// definition of the given C++ non-static member function. The 3040b57cec5SDimitry Andric /// member function must be an ordinary function, i.e. not a 3050b57cec5SDimitry Andric /// constructor or destructor. 3060b57cec5SDimitry Andric const CGFunctionInfo & 3070b57cec5SDimitry Andric CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 3080b57cec5SDimitry Andric assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 3090b57cec5SDimitry Andric assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 3100b57cec5SDimitry Andric 3110b57cec5SDimitry Andric CanQualType FT = GetFormalType(MD).getAs<Type>(); 3120b57cec5SDimitry Andric setCUDAKernelCallingConvention(FT, CGM, MD); 3130b57cec5SDimitry Andric auto prototype = FT.getAs<FunctionProtoType>(); 3140b57cec5SDimitry Andric 3155f757f3fSDimitry Andric if (MD->isImplicitObjectMemberFunction()) { 3160b57cec5SDimitry Andric // The abstract case is perfectly fine. 317*5deeebd8SDimitry Andric const CXXRecordDecl *ThisType = 318*5deeebd8SDimitry Andric getCXXABI().getThisArgumentTypeForMethod(MD); 3190b57cec5SDimitry Andric return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 3200b57cec5SDimitry Andric } 3210b57cec5SDimitry Andric 3220b57cec5SDimitry Andric return arrangeFreeFunctionType(prototype); 3230b57cec5SDimitry Andric } 3240b57cec5SDimitry Andric 3250b57cec5SDimitry Andric bool CodeGenTypes::inheritingCtorHasParams( 3260b57cec5SDimitry Andric const InheritedConstructor &Inherited, CXXCtorType Type) { 3270b57cec5SDimitry Andric // Parameters are unnecessary if we're constructing a base class subobject 3280b57cec5SDimitry Andric // and the inherited constructor lives in a virtual base. 3290b57cec5SDimitry Andric return Type == Ctor_Complete || 3300b57cec5SDimitry Andric !Inherited.getShadowDecl()->constructsVirtualBase() || 3310b57cec5SDimitry Andric !Target.getCXXABI().hasConstructorVariants(); 3320b57cec5SDimitry Andric } 3330b57cec5SDimitry Andric 3340b57cec5SDimitry Andric const CGFunctionInfo & 3350b57cec5SDimitry Andric CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 3360b57cec5SDimitry Andric auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 3370b57cec5SDimitry Andric 3380b57cec5SDimitry Andric SmallVector<CanQualType, 16> argTypes; 3390b57cec5SDimitry Andric SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 3401ac55f4cSDimitry Andric 341*5deeebd8SDimitry Andric const CXXRecordDecl *ThisType = getCXXABI().getThisArgumentTypeForMethod(GD); 3421ac55f4cSDimitry Andric argTypes.push_back(DeriveThisType(ThisType, MD)); 3430b57cec5SDimitry Andric 3440b57cec5SDimitry Andric bool PassParams = true; 3450b57cec5SDimitry Andric 3460b57cec5SDimitry Andric if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 3470b57cec5SDimitry Andric // A base class inheriting constructor doesn't get forwarded arguments 3480b57cec5SDimitry Andric // needed to construct a virtual base (or base class thereof). 3490b57cec5SDimitry Andric if (auto Inherited = CD->getInheritedConstructor()) 3500b57cec5SDimitry Andric PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 3510b57cec5SDimitry Andric } 3520b57cec5SDimitry Andric 3530b57cec5SDimitry Andric CanQual<FunctionProtoType> FTP = GetFormalType(MD); 3540b57cec5SDimitry Andric 3550b57cec5SDimitry Andric // Add the formal parameters. 3560b57cec5SDimitry Andric if (PassParams) 3570b57cec5SDimitry Andric appendParameterTypes(*this, argTypes, paramInfos, FTP); 3580b57cec5SDimitry Andric 3595ffd83dbSDimitry Andric CGCXXABI::AddedStructorArgCounts AddedArgs = 360*5deeebd8SDimitry Andric getCXXABI().buildStructorSignature(GD, argTypes); 3610b57cec5SDimitry Andric if (!paramInfos.empty()) { 3620b57cec5SDimitry Andric // Note: prefix implies after the first param. 3630b57cec5SDimitry Andric if (AddedArgs.Prefix) 3640b57cec5SDimitry Andric paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 3650b57cec5SDimitry Andric FunctionProtoType::ExtParameterInfo{}); 3660b57cec5SDimitry Andric if (AddedArgs.Suffix) 3670b57cec5SDimitry Andric paramInfos.append(AddedArgs.Suffix, 3680b57cec5SDimitry Andric FunctionProtoType::ExtParameterInfo{}); 3690b57cec5SDimitry Andric } 3700b57cec5SDimitry Andric 3710b57cec5SDimitry Andric RequiredArgs required = 3720b57cec5SDimitry Andric (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 3730b57cec5SDimitry Andric : RequiredArgs::All); 3740b57cec5SDimitry Andric 3750b57cec5SDimitry Andric FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 376*5deeebd8SDimitry Andric CanQualType resultType = getCXXABI().HasThisReturn(GD) ? argTypes.front() 377*5deeebd8SDimitry Andric : getCXXABI().hasMostDerivedReturn(GD) 3780b57cec5SDimitry Andric ? CGM.getContext().VoidPtrTy 3790b57cec5SDimitry Andric : Context.VoidTy; 3808a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod, 3818a4dda33SDimitry Andric argTypes, extInfo, paramInfos, required); 3820b57cec5SDimitry Andric } 3830b57cec5SDimitry Andric 3840b57cec5SDimitry Andric static SmallVector<CanQualType, 16> 3850b57cec5SDimitry Andric getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 3860b57cec5SDimitry Andric SmallVector<CanQualType, 16> argTypes; 3870b57cec5SDimitry Andric for (auto &arg : args) 3880b57cec5SDimitry Andric argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 3890b57cec5SDimitry Andric return argTypes; 3900b57cec5SDimitry Andric } 3910b57cec5SDimitry Andric 3920b57cec5SDimitry Andric static SmallVector<CanQualType, 16> 3930b57cec5SDimitry Andric getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 3940b57cec5SDimitry Andric SmallVector<CanQualType, 16> argTypes; 3950b57cec5SDimitry Andric for (auto &arg : args) 3960b57cec5SDimitry Andric argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 3970b57cec5SDimitry Andric return argTypes; 3980b57cec5SDimitry Andric } 3990b57cec5SDimitry Andric 4000b57cec5SDimitry Andric static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 4010b57cec5SDimitry Andric getExtParameterInfosForCall(const FunctionProtoType *proto, 4020b57cec5SDimitry Andric unsigned prefixArgs, unsigned totalArgs) { 4030b57cec5SDimitry Andric llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 4040b57cec5SDimitry Andric if (proto->hasExtParameterInfos()) { 4050b57cec5SDimitry Andric addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 4060b57cec5SDimitry Andric } 4070b57cec5SDimitry Andric return result; 4080b57cec5SDimitry Andric } 4090b57cec5SDimitry Andric 4100b57cec5SDimitry Andric /// Arrange a call to a C++ method, passing the given arguments. 4110b57cec5SDimitry Andric /// 4120b57cec5SDimitry Andric /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 4130b57cec5SDimitry Andric /// parameter. 4140b57cec5SDimitry Andric /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 4150b57cec5SDimitry Andric /// args. 4160b57cec5SDimitry Andric /// PassProtoArgs indicates whether `args` has args for the parameters in the 4170b57cec5SDimitry Andric /// given CXXConstructorDecl. 4180b57cec5SDimitry Andric const CGFunctionInfo & 4190b57cec5SDimitry Andric CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 4200b57cec5SDimitry Andric const CXXConstructorDecl *D, 4210b57cec5SDimitry Andric CXXCtorType CtorKind, 4220b57cec5SDimitry Andric unsigned ExtraPrefixArgs, 4230b57cec5SDimitry Andric unsigned ExtraSuffixArgs, 4240b57cec5SDimitry Andric bool PassProtoArgs) { 4250b57cec5SDimitry Andric // FIXME: Kill copy. 4260b57cec5SDimitry Andric SmallVector<CanQualType, 16> ArgTypes; 4270b57cec5SDimitry Andric for (const auto &Arg : args) 4280b57cec5SDimitry Andric ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 4290b57cec5SDimitry Andric 4300b57cec5SDimitry Andric // +1 for implicit this, which should always be args[0]. 4310b57cec5SDimitry Andric unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 4320b57cec5SDimitry Andric 4330b57cec5SDimitry Andric CanQual<FunctionProtoType> FPT = GetFormalType(D); 4340b57cec5SDimitry Andric RequiredArgs Required = PassProtoArgs 4350b57cec5SDimitry Andric ? RequiredArgs::forPrototypePlus( 4360b57cec5SDimitry Andric FPT, TotalPrefixArgs + ExtraSuffixArgs) 4370b57cec5SDimitry Andric : RequiredArgs::All; 4380b57cec5SDimitry Andric 4390b57cec5SDimitry Andric GlobalDecl GD(D, CtorKind); 440*5deeebd8SDimitry Andric CanQualType ResultType = getCXXABI().HasThisReturn(GD) ? ArgTypes.front() 441*5deeebd8SDimitry Andric : getCXXABI().hasMostDerivedReturn(GD) 4420b57cec5SDimitry Andric ? CGM.getContext().VoidPtrTy 4430b57cec5SDimitry Andric : Context.VoidTy; 4440b57cec5SDimitry Andric 4450b57cec5SDimitry Andric FunctionType::ExtInfo Info = FPT->getExtInfo(); 4460b57cec5SDimitry Andric llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 4470b57cec5SDimitry Andric // If the prototype args are elided, we should only have ABI-specific args, 4480b57cec5SDimitry Andric // which never have param info. 4490b57cec5SDimitry Andric if (PassProtoArgs && FPT->hasExtParameterInfos()) { 4500b57cec5SDimitry Andric // ABI-specific suffix arguments are treated the same as variadic arguments. 4510b57cec5SDimitry Andric addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 4520b57cec5SDimitry Andric ArgTypes.size()); 4530b57cec5SDimitry Andric } 4548a4dda33SDimitry Andric 4558a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod, 4568a4dda33SDimitry Andric ArgTypes, Info, ParamInfos, Required); 4570b57cec5SDimitry Andric } 4580b57cec5SDimitry Andric 4590b57cec5SDimitry Andric /// Arrange the argument and result information for the declaration or 4600b57cec5SDimitry Andric /// definition of the given function. 4610b57cec5SDimitry Andric const CGFunctionInfo & 4620b57cec5SDimitry Andric CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 4630b57cec5SDimitry Andric if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 4645f757f3fSDimitry Andric if (MD->isImplicitObjectMemberFunction()) 4650b57cec5SDimitry Andric return arrangeCXXMethodDeclaration(MD); 4660b57cec5SDimitry Andric 4670b57cec5SDimitry Andric CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 4680b57cec5SDimitry Andric 4690b57cec5SDimitry Andric assert(isa<FunctionType>(FTy)); 4700b57cec5SDimitry Andric setCUDAKernelCallingConvention(FTy, CGM, FD); 4710b57cec5SDimitry Andric 4720b57cec5SDimitry Andric // When declaring a function without a prototype, always use a 4730b57cec5SDimitry Andric // non-variadic type. 4740b57cec5SDimitry Andric if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 4758a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None, 4768a4dda33SDimitry Andric std::nullopt, noProto->getExtInfo(), {}, 477bdd1243dSDimitry Andric RequiredArgs::All); 4780b57cec5SDimitry Andric } 4790b57cec5SDimitry Andric 4800b57cec5SDimitry Andric return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 4810b57cec5SDimitry Andric } 4820b57cec5SDimitry Andric 4830b57cec5SDimitry Andric /// Arrange the argument and result information for the declaration or 4840b57cec5SDimitry Andric /// definition of an Objective-C method. 4850b57cec5SDimitry Andric const CGFunctionInfo & 4860b57cec5SDimitry Andric CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 4870b57cec5SDimitry Andric // It happens that this is the same as a call with no optional 4880b57cec5SDimitry Andric // arguments, except also using the formal 'self' type. 4890b57cec5SDimitry Andric return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 4900b57cec5SDimitry Andric } 4910b57cec5SDimitry Andric 4920b57cec5SDimitry Andric /// Arrange the argument and result information for the function type 4930b57cec5SDimitry Andric /// through which to perform a send to the given Objective-C method, 4940b57cec5SDimitry Andric /// using the given receiver type. The receiver type is not always 4950b57cec5SDimitry Andric /// the 'self' type of the method or even an Objective-C pointer type. 4960b57cec5SDimitry Andric /// This is *not* the right method for actually performing such a 4970b57cec5SDimitry Andric /// message send, due to the possibility of optional arguments. 4980b57cec5SDimitry Andric const CGFunctionInfo & 4990b57cec5SDimitry Andric CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 5000b57cec5SDimitry Andric QualType receiverType) { 5010b57cec5SDimitry Andric SmallVector<CanQualType, 16> argTys; 502bdd1243dSDimitry Andric SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos( 503bdd1243dSDimitry Andric MD->isDirectMethod() ? 1 : 2); 5040b57cec5SDimitry Andric argTys.push_back(Context.getCanonicalParamType(receiverType)); 505bdd1243dSDimitry Andric if (!MD->isDirectMethod()) 5060b57cec5SDimitry Andric argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 5070b57cec5SDimitry Andric // FIXME: Kill copy? 5080b57cec5SDimitry Andric for (const auto *I : MD->parameters()) { 5090b57cec5SDimitry Andric argTys.push_back(Context.getCanonicalParamType(I->getType())); 5100b57cec5SDimitry Andric auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 5110b57cec5SDimitry Andric I->hasAttr<NoEscapeAttr>()); 5120b57cec5SDimitry Andric extParamInfos.push_back(extParamInfo); 5130b57cec5SDimitry Andric } 5140b57cec5SDimitry Andric 5150b57cec5SDimitry Andric FunctionType::ExtInfo einfo; 5160b57cec5SDimitry Andric bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 5170b57cec5SDimitry Andric einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 5180b57cec5SDimitry Andric 5190b57cec5SDimitry Andric if (getContext().getLangOpts().ObjCAutoRefCount && 5200b57cec5SDimitry Andric MD->hasAttr<NSReturnsRetainedAttr>()) 5210b57cec5SDimitry Andric einfo = einfo.withProducesResult(true); 5220b57cec5SDimitry Andric 5230b57cec5SDimitry Andric RequiredArgs required = 5240b57cec5SDimitry Andric (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 5250b57cec5SDimitry Andric 5268a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), 5278a4dda33SDimitry Andric FnInfoOpts::None, argTys, einfo, extParamInfos, 5288a4dda33SDimitry Andric required); 5290b57cec5SDimitry Andric } 5300b57cec5SDimitry Andric 5310b57cec5SDimitry Andric const CGFunctionInfo & 5320b57cec5SDimitry Andric CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 5330b57cec5SDimitry Andric const CallArgList &args) { 5340b57cec5SDimitry Andric auto argTypes = getArgTypesForCall(Context, args); 5350b57cec5SDimitry Andric FunctionType::ExtInfo einfo; 5360b57cec5SDimitry Andric 5378a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None, 5388a4dda33SDimitry Andric argTypes, einfo, {}, RequiredArgs::All); 5390b57cec5SDimitry Andric } 5400b57cec5SDimitry Andric 5410b57cec5SDimitry Andric const CGFunctionInfo & 5420b57cec5SDimitry Andric CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 5430b57cec5SDimitry Andric // FIXME: Do we need to handle ObjCMethodDecl? 5440b57cec5SDimitry Andric const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 5450b57cec5SDimitry Andric 5460b57cec5SDimitry Andric if (isa<CXXConstructorDecl>(GD.getDecl()) || 5470b57cec5SDimitry Andric isa<CXXDestructorDecl>(GD.getDecl())) 5480b57cec5SDimitry Andric return arrangeCXXStructorDeclaration(GD); 5490b57cec5SDimitry Andric 5500b57cec5SDimitry Andric return arrangeFunctionDeclaration(FD); 5510b57cec5SDimitry Andric } 5520b57cec5SDimitry Andric 5530b57cec5SDimitry Andric /// Arrange a thunk that takes 'this' as the first parameter followed by 5540b57cec5SDimitry Andric /// varargs. Return a void pointer, regardless of the actual return type. 5550b57cec5SDimitry Andric /// The body of the thunk will end in a musttail call to a function of the 5560b57cec5SDimitry Andric /// correct type, and the caller will bitcast the function to the correct 5570b57cec5SDimitry Andric /// prototype. 5580b57cec5SDimitry Andric const CGFunctionInfo & 5590b57cec5SDimitry Andric CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 5600b57cec5SDimitry Andric assert(MD->isVirtual() && "only methods have thunks"); 5610b57cec5SDimitry Andric CanQual<FunctionProtoType> FTP = GetFormalType(MD); 5620b57cec5SDimitry Andric CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 5638a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys, 5640b57cec5SDimitry Andric FTP->getExtInfo(), {}, RequiredArgs(1)); 5650b57cec5SDimitry Andric } 5660b57cec5SDimitry Andric 5670b57cec5SDimitry Andric const CGFunctionInfo & 5680b57cec5SDimitry Andric CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 5690b57cec5SDimitry Andric CXXCtorType CT) { 5700b57cec5SDimitry Andric assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 5710b57cec5SDimitry Andric 5720b57cec5SDimitry Andric CanQual<FunctionProtoType> FTP = GetFormalType(CD); 5730b57cec5SDimitry Andric SmallVector<CanQualType, 2> ArgTys; 5740b57cec5SDimitry Andric const CXXRecordDecl *RD = CD->getParent(); 5750b57cec5SDimitry Andric ArgTys.push_back(DeriveThisType(RD, CD)); 5760b57cec5SDimitry Andric if (CT == Ctor_CopyingClosure) 5770b57cec5SDimitry Andric ArgTys.push_back(*FTP->param_type_begin()); 5780b57cec5SDimitry Andric if (RD->getNumVBases() > 0) 5790b57cec5SDimitry Andric ArgTys.push_back(Context.IntTy); 5800b57cec5SDimitry Andric CallingConv CC = Context.getDefaultCallingConvention( 5810b57cec5SDimitry Andric /*IsVariadic=*/false, /*IsCXXMethod=*/true); 5828a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod, 5838a4dda33SDimitry Andric ArgTys, FunctionType::ExtInfo(CC), {}, 5840b57cec5SDimitry Andric RequiredArgs::All); 5850b57cec5SDimitry Andric } 5860b57cec5SDimitry Andric 5870b57cec5SDimitry Andric /// Arrange a call as unto a free function, except possibly with an 5880b57cec5SDimitry Andric /// additional number of formal parameters considered required. 5890b57cec5SDimitry Andric static const CGFunctionInfo & 5900b57cec5SDimitry Andric arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 5910b57cec5SDimitry Andric CodeGenModule &CGM, 5920b57cec5SDimitry Andric const CallArgList &args, 5930b57cec5SDimitry Andric const FunctionType *fnType, 5940b57cec5SDimitry Andric unsigned numExtraRequiredArgs, 5950b57cec5SDimitry Andric bool chainCall) { 5960b57cec5SDimitry Andric assert(args.size() >= numExtraRequiredArgs); 5970b57cec5SDimitry Andric 5980b57cec5SDimitry Andric llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 5990b57cec5SDimitry Andric 6000b57cec5SDimitry Andric // In most cases, there are no optional arguments. 6010b57cec5SDimitry Andric RequiredArgs required = RequiredArgs::All; 6020b57cec5SDimitry Andric 6030b57cec5SDimitry Andric // If we have a variadic prototype, the required arguments are the 6040b57cec5SDimitry Andric // extra prefix plus the arguments in the prototype. 6050b57cec5SDimitry Andric if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 6060b57cec5SDimitry Andric if (proto->isVariadic()) 6070b57cec5SDimitry Andric required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 6080b57cec5SDimitry Andric 6090b57cec5SDimitry Andric if (proto->hasExtParameterInfos()) 6100b57cec5SDimitry Andric addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 6110b57cec5SDimitry Andric args.size()); 6120b57cec5SDimitry Andric 6130b57cec5SDimitry Andric // If we don't have a prototype at all, but we're supposed to 6140b57cec5SDimitry Andric // explicitly use the variadic convention for unprototyped calls, 6150b57cec5SDimitry Andric // treat all of the arguments as required but preserve the nominal 6160b57cec5SDimitry Andric // possibility of variadics. 6170b57cec5SDimitry Andric } else if (CGM.getTargetCodeGenInfo() 6180b57cec5SDimitry Andric .isNoProtoCallVariadic(args, 6190b57cec5SDimitry Andric cast<FunctionNoProtoType>(fnType))) { 6200b57cec5SDimitry Andric required = RequiredArgs(args.size()); 6210b57cec5SDimitry Andric } 6220b57cec5SDimitry Andric 6230b57cec5SDimitry Andric // FIXME: Kill copy. 6240b57cec5SDimitry Andric SmallVector<CanQualType, 16> argTypes; 6250b57cec5SDimitry Andric for (const auto &arg : args) 6260b57cec5SDimitry Andric argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 6278a4dda33SDimitry Andric FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None; 6280b57cec5SDimitry Andric return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 6298a4dda33SDimitry Andric opts, argTypes, fnType->getExtInfo(), 6308a4dda33SDimitry Andric paramInfos, required); 6310b57cec5SDimitry Andric } 6320b57cec5SDimitry Andric 6330b57cec5SDimitry Andric /// Figure out the rules for calling a function with the given formal 6340b57cec5SDimitry Andric /// type using the given arguments. The arguments are necessary 6350b57cec5SDimitry Andric /// because the function might be unprototyped, in which case it's 6360b57cec5SDimitry Andric /// target-dependent in crazy ways. 6370b57cec5SDimitry Andric const CGFunctionInfo & 6380b57cec5SDimitry Andric CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 6390b57cec5SDimitry Andric const FunctionType *fnType, 6400b57cec5SDimitry Andric bool chainCall) { 6410b57cec5SDimitry Andric return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 6420b57cec5SDimitry Andric chainCall ? 1 : 0, chainCall); 6430b57cec5SDimitry Andric } 6440b57cec5SDimitry Andric 6450b57cec5SDimitry Andric /// A block function is essentially a free function with an 6460b57cec5SDimitry Andric /// extra implicit argument. 6470b57cec5SDimitry Andric const CGFunctionInfo & 6480b57cec5SDimitry Andric CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 6490b57cec5SDimitry Andric const FunctionType *fnType) { 6500b57cec5SDimitry Andric return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 6510b57cec5SDimitry Andric /*chainCall=*/false); 6520b57cec5SDimitry Andric } 6530b57cec5SDimitry Andric 6540b57cec5SDimitry Andric const CGFunctionInfo & 6550b57cec5SDimitry Andric CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 6560b57cec5SDimitry Andric const FunctionArgList ¶ms) { 6570b57cec5SDimitry Andric auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 6580b57cec5SDimitry Andric auto argTypes = getArgTypesForDeclaration(Context, params); 6590b57cec5SDimitry Andric 6600b57cec5SDimitry Andric return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 6618a4dda33SDimitry Andric FnInfoOpts::None, argTypes, 6628a4dda33SDimitry Andric proto->getExtInfo(), paramInfos, 6630b57cec5SDimitry Andric RequiredArgs::forPrototypePlus(proto, 1)); 6640b57cec5SDimitry Andric } 6650b57cec5SDimitry Andric 6660b57cec5SDimitry Andric const CGFunctionInfo & 6670b57cec5SDimitry Andric CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 6680b57cec5SDimitry Andric const CallArgList &args) { 6690b57cec5SDimitry Andric // FIXME: Kill copy. 6700b57cec5SDimitry Andric SmallVector<CanQualType, 16> argTypes; 6710b57cec5SDimitry Andric for (const auto &Arg : args) 6720b57cec5SDimitry Andric argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 6738a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 6748a4dda33SDimitry Andric argTypes, FunctionType::ExtInfo(), 6750b57cec5SDimitry Andric /*paramInfos=*/{}, RequiredArgs::All); 6760b57cec5SDimitry Andric } 6770b57cec5SDimitry Andric 6780b57cec5SDimitry Andric const CGFunctionInfo & 6790b57cec5SDimitry Andric CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 6800b57cec5SDimitry Andric const FunctionArgList &args) { 6810b57cec5SDimitry Andric auto argTypes = getArgTypesForDeclaration(Context, args); 6820b57cec5SDimitry Andric 6838a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None, 6848a4dda33SDimitry Andric argTypes, FunctionType::ExtInfo(), {}, 6858a4dda33SDimitry Andric RequiredArgs::All); 6860b57cec5SDimitry Andric } 6870b57cec5SDimitry Andric 6880b57cec5SDimitry Andric const CGFunctionInfo & 6890b57cec5SDimitry Andric CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 6900b57cec5SDimitry Andric ArrayRef<CanQualType> argTypes) { 6918a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes, 6928a4dda33SDimitry Andric FunctionType::ExtInfo(), {}, 6938a4dda33SDimitry Andric RequiredArgs::All); 6940b57cec5SDimitry Andric } 6950b57cec5SDimitry Andric 6960b57cec5SDimitry Andric /// Arrange a call to a C++ method, passing the given arguments. 6970b57cec5SDimitry Andric /// 6980b57cec5SDimitry Andric /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 6990b57cec5SDimitry Andric /// does not count `this`. 7000b57cec5SDimitry Andric const CGFunctionInfo & 7010b57cec5SDimitry Andric CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 7020b57cec5SDimitry Andric const FunctionProtoType *proto, 7030b57cec5SDimitry Andric RequiredArgs required, 7040b57cec5SDimitry Andric unsigned numPrefixArgs) { 7050b57cec5SDimitry Andric assert(numPrefixArgs + 1 <= args.size() && 7060b57cec5SDimitry Andric "Emitting a call with less args than the required prefix?"); 7070b57cec5SDimitry Andric // Add one to account for `this`. It's a bit awkward here, but we don't count 7080b57cec5SDimitry Andric // `this` in similar places elsewhere. 7090b57cec5SDimitry Andric auto paramInfos = 7100b57cec5SDimitry Andric getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 7110b57cec5SDimitry Andric 7120b57cec5SDimitry Andric // FIXME: Kill copy. 7130b57cec5SDimitry Andric auto argTypes = getArgTypesForCall(Context, args); 7140b57cec5SDimitry Andric 7150b57cec5SDimitry Andric FunctionType::ExtInfo info = proto->getExtInfo(); 7168a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 7178a4dda33SDimitry Andric FnInfoOpts::IsInstanceMethod, argTypes, info, 7188a4dda33SDimitry Andric paramInfos, required); 7190b57cec5SDimitry Andric } 7200b57cec5SDimitry Andric 7210b57cec5SDimitry Andric const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 7228a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None, 7238a4dda33SDimitry Andric std::nullopt, FunctionType::ExtInfo(), {}, 7248a4dda33SDimitry Andric RequiredArgs::All); 7250b57cec5SDimitry Andric } 7260b57cec5SDimitry Andric 7270b57cec5SDimitry Andric const CGFunctionInfo & 7280b57cec5SDimitry Andric CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 7290b57cec5SDimitry Andric const CallArgList &args) { 7300b57cec5SDimitry Andric assert(signature.arg_size() <= args.size()); 7310b57cec5SDimitry Andric if (signature.arg_size() == args.size()) 7320b57cec5SDimitry Andric return signature; 7330b57cec5SDimitry Andric 7340b57cec5SDimitry Andric SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 7350b57cec5SDimitry Andric auto sigParamInfos = signature.getExtParameterInfos(); 7360b57cec5SDimitry Andric if (!sigParamInfos.empty()) { 7370b57cec5SDimitry Andric paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 7380b57cec5SDimitry Andric paramInfos.resize(args.size()); 7390b57cec5SDimitry Andric } 7400b57cec5SDimitry Andric 7410b57cec5SDimitry Andric auto argTypes = getArgTypesForCall(Context, args); 7420b57cec5SDimitry Andric 7430b57cec5SDimitry Andric assert(signature.getRequiredArgs().allowsOptionalArgs()); 7448a4dda33SDimitry Andric FnInfoOpts opts = FnInfoOpts::None; 7458a4dda33SDimitry Andric if (signature.isInstanceMethod()) 7468a4dda33SDimitry Andric opts |= FnInfoOpts::IsInstanceMethod; 7478a4dda33SDimitry Andric if (signature.isChainCall()) 7488a4dda33SDimitry Andric opts |= FnInfoOpts::IsChainCall; 7498a4dda33SDimitry Andric if (signature.isDelegateCall()) 7508a4dda33SDimitry Andric opts |= FnInfoOpts::IsDelegateCall; 7518a4dda33SDimitry Andric return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes, 7528a4dda33SDimitry Andric signature.getExtInfo(), paramInfos, 7530b57cec5SDimitry Andric signature.getRequiredArgs()); 7540b57cec5SDimitry Andric } 7550b57cec5SDimitry Andric 7560b57cec5SDimitry Andric namespace clang { 7570b57cec5SDimitry Andric namespace CodeGen { 7580b57cec5SDimitry Andric void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 7590b57cec5SDimitry Andric } 7600b57cec5SDimitry Andric } 7610b57cec5SDimitry Andric 7620b57cec5SDimitry Andric /// Arrange the argument and result information for an abstract value 7630b57cec5SDimitry Andric /// of a given function type. This is the method which all of the 7640b57cec5SDimitry Andric /// above functions ultimately defer to. 7658a4dda33SDimitry Andric const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo( 7668a4dda33SDimitry Andric CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, 7670b57cec5SDimitry Andric FunctionType::ExtInfo info, 7680b57cec5SDimitry Andric ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 7690b57cec5SDimitry Andric RequiredArgs required) { 7700b57cec5SDimitry Andric assert(llvm::all_of(argTypes, 7710b57cec5SDimitry Andric [](CanQualType T) { return T.isCanonicalAsParam(); })); 7720b57cec5SDimitry Andric 7730b57cec5SDimitry Andric // Lookup or create unique function info. 7740b57cec5SDimitry Andric llvm::FoldingSetNodeID ID; 7758a4dda33SDimitry Andric bool isInstanceMethod = 7768a4dda33SDimitry Andric (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod; 7778a4dda33SDimitry Andric bool isChainCall = 7788a4dda33SDimitry Andric (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall; 7798a4dda33SDimitry Andric bool isDelegateCall = 7808a4dda33SDimitry Andric (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall; 7818a4dda33SDimitry Andric CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall, 7828a4dda33SDimitry Andric info, paramInfos, required, resultType, argTypes); 7830b57cec5SDimitry Andric 7840b57cec5SDimitry Andric void *insertPos = nullptr; 7850b57cec5SDimitry Andric CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 7860b57cec5SDimitry Andric if (FI) 7870b57cec5SDimitry Andric return *FI; 7880b57cec5SDimitry Andric 7890b57cec5SDimitry Andric unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 7900b57cec5SDimitry Andric 7910b57cec5SDimitry Andric // Construct the function info. We co-allocate the ArgInfos. 7928a4dda33SDimitry Andric FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall, 7938a4dda33SDimitry Andric info, paramInfos, resultType, argTypes, required); 7940b57cec5SDimitry Andric FunctionInfos.InsertNode(FI, insertPos); 7950b57cec5SDimitry Andric 7960b57cec5SDimitry Andric bool inserted = FunctionsBeingProcessed.insert(FI).second; 7970b57cec5SDimitry Andric (void)inserted; 7980b57cec5SDimitry Andric assert(inserted && "Recursively being processed?"); 7990b57cec5SDimitry Andric 8000b57cec5SDimitry Andric // Compute ABI information. 8010b57cec5SDimitry Andric if (CC == llvm::CallingConv::SPIR_KERNEL) { 8020b57cec5SDimitry Andric // Force target independent argument handling for the host visible 8030b57cec5SDimitry Andric // kernel functions. 8040b57cec5SDimitry Andric computeSPIRKernelABIInfo(CGM, *FI); 805fe6060f1SDimitry Andric } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 8060b57cec5SDimitry Andric swiftcall::computeABIInfo(CGM, *FI); 8070b57cec5SDimitry Andric } else { 808*5deeebd8SDimitry Andric CGM.getABIInfo().computeInfo(*FI); 8090b57cec5SDimitry Andric } 8100b57cec5SDimitry Andric 8110b57cec5SDimitry Andric // Loop over all of the computed argument and return value info. If any of 8120b57cec5SDimitry Andric // them are direct or extend without a specified coerce type, specify the 8130b57cec5SDimitry Andric // default now. 8140b57cec5SDimitry Andric ABIArgInfo &retInfo = FI->getReturnInfo(); 8150b57cec5SDimitry Andric if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 8160b57cec5SDimitry Andric retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 8170b57cec5SDimitry Andric 8180b57cec5SDimitry Andric for (auto &I : FI->arguments()) 8190b57cec5SDimitry Andric if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 8200b57cec5SDimitry Andric I.info.setCoerceToType(ConvertType(I.type)); 8210b57cec5SDimitry Andric 8220b57cec5SDimitry Andric bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 8230b57cec5SDimitry Andric assert(erased && "Not in set?"); 8240b57cec5SDimitry Andric 8250b57cec5SDimitry Andric return *FI; 8260b57cec5SDimitry Andric } 8270b57cec5SDimitry Andric 8288a4dda33SDimitry Andric CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod, 8298a4dda33SDimitry Andric bool chainCall, bool delegateCall, 8300b57cec5SDimitry Andric const FunctionType::ExtInfo &info, 8310b57cec5SDimitry Andric ArrayRef<ExtParameterInfo> paramInfos, 8320b57cec5SDimitry Andric CanQualType resultType, 8330b57cec5SDimitry Andric ArrayRef<CanQualType> argTypes, 8340b57cec5SDimitry Andric RequiredArgs required) { 8350b57cec5SDimitry Andric assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 8360b57cec5SDimitry Andric assert(!required.allowsOptionalArgs() || 8370b57cec5SDimitry Andric required.getNumRequiredArgs() <= argTypes.size()); 8380b57cec5SDimitry Andric 8390b57cec5SDimitry Andric void *buffer = 8400b57cec5SDimitry Andric operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 8410b57cec5SDimitry Andric argTypes.size() + 1, paramInfos.size())); 8420b57cec5SDimitry Andric 8430b57cec5SDimitry Andric CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 8440b57cec5SDimitry Andric FI->CallingConvention = llvmCC; 8450b57cec5SDimitry Andric FI->EffectiveCallingConvention = llvmCC; 8460b57cec5SDimitry Andric FI->ASTCallingConvention = info.getCC(); 8470b57cec5SDimitry Andric FI->InstanceMethod = instanceMethod; 8480b57cec5SDimitry Andric FI->ChainCall = chainCall; 8498a4dda33SDimitry Andric FI->DelegateCall = delegateCall; 8505ffd83dbSDimitry Andric FI->CmseNSCall = info.getCmseNSCall(); 8510b57cec5SDimitry Andric FI->NoReturn = info.getNoReturn(); 8520b57cec5SDimitry Andric FI->ReturnsRetained = info.getProducesResult(); 8530b57cec5SDimitry Andric FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 8540b57cec5SDimitry Andric FI->NoCfCheck = info.getNoCfCheck(); 8550b57cec5SDimitry Andric FI->Required = required; 8560b57cec5SDimitry Andric FI->HasRegParm = info.getHasRegParm(); 8570b57cec5SDimitry Andric FI->RegParm = info.getRegParm(); 8580b57cec5SDimitry Andric FI->ArgStruct = nullptr; 8590b57cec5SDimitry Andric FI->ArgStructAlign = 0; 8600b57cec5SDimitry Andric FI->NumArgs = argTypes.size(); 8610b57cec5SDimitry Andric FI->HasExtParameterInfos = !paramInfos.empty(); 8620b57cec5SDimitry Andric FI->getArgsBuffer()[0].type = resultType; 86381ad6265SDimitry Andric FI->MaxVectorWidth = 0; 8640b57cec5SDimitry Andric for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 8650b57cec5SDimitry Andric FI->getArgsBuffer()[i + 1].type = argTypes[i]; 8660b57cec5SDimitry Andric for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 8670b57cec5SDimitry Andric FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 8680b57cec5SDimitry Andric return FI; 8690b57cec5SDimitry Andric } 8700b57cec5SDimitry Andric 8710b57cec5SDimitry Andric /***/ 8720b57cec5SDimitry Andric 8730b57cec5SDimitry Andric namespace { 8740b57cec5SDimitry Andric // ABIArgInfo::Expand implementation. 8750b57cec5SDimitry Andric 8760b57cec5SDimitry Andric // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 8770b57cec5SDimitry Andric struct TypeExpansion { 8780b57cec5SDimitry Andric enum TypeExpansionKind { 8790b57cec5SDimitry Andric // Elements of constant arrays are expanded recursively. 8800b57cec5SDimitry Andric TEK_ConstantArray, 8810b57cec5SDimitry Andric // Record fields are expanded recursively (but if record is a union, only 8820b57cec5SDimitry Andric // the field with the largest size is expanded). 8830b57cec5SDimitry Andric TEK_Record, 8840b57cec5SDimitry Andric // For complex types, real and imaginary parts are expanded recursively. 8850b57cec5SDimitry Andric TEK_Complex, 8860b57cec5SDimitry Andric // All other types are not expandable. 8870b57cec5SDimitry Andric TEK_None 8880b57cec5SDimitry Andric }; 8890b57cec5SDimitry Andric 8900b57cec5SDimitry Andric const TypeExpansionKind Kind; 8910b57cec5SDimitry Andric 8920b57cec5SDimitry Andric TypeExpansion(TypeExpansionKind K) : Kind(K) {} 8930b57cec5SDimitry Andric virtual ~TypeExpansion() {} 8940b57cec5SDimitry Andric }; 8950b57cec5SDimitry Andric 8960b57cec5SDimitry Andric struct ConstantArrayExpansion : TypeExpansion { 8970b57cec5SDimitry Andric QualType EltTy; 8980b57cec5SDimitry Andric uint64_t NumElts; 8990b57cec5SDimitry Andric 9000b57cec5SDimitry Andric ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 9010b57cec5SDimitry Andric : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 9020b57cec5SDimitry Andric static bool classof(const TypeExpansion *TE) { 9030b57cec5SDimitry Andric return TE->Kind == TEK_ConstantArray; 9040b57cec5SDimitry Andric } 9050b57cec5SDimitry Andric }; 9060b57cec5SDimitry Andric 9070b57cec5SDimitry Andric struct RecordExpansion : TypeExpansion { 9080b57cec5SDimitry Andric SmallVector<const CXXBaseSpecifier *, 1> Bases; 9090b57cec5SDimitry Andric 9100b57cec5SDimitry Andric SmallVector<const FieldDecl *, 1> Fields; 9110b57cec5SDimitry Andric 9120b57cec5SDimitry Andric RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 9130b57cec5SDimitry Andric SmallVector<const FieldDecl *, 1> &&Fields) 9140b57cec5SDimitry Andric : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 9150b57cec5SDimitry Andric Fields(std::move(Fields)) {} 9160b57cec5SDimitry Andric static bool classof(const TypeExpansion *TE) { 9170b57cec5SDimitry Andric return TE->Kind == TEK_Record; 9180b57cec5SDimitry Andric } 9190b57cec5SDimitry Andric }; 9200b57cec5SDimitry Andric 9210b57cec5SDimitry Andric struct ComplexExpansion : TypeExpansion { 9220b57cec5SDimitry Andric QualType EltTy; 9230b57cec5SDimitry Andric 9240b57cec5SDimitry Andric ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 9250b57cec5SDimitry Andric static bool classof(const TypeExpansion *TE) { 9260b57cec5SDimitry Andric return TE->Kind == TEK_Complex; 9270b57cec5SDimitry Andric } 9280b57cec5SDimitry Andric }; 9290b57cec5SDimitry Andric 9300b57cec5SDimitry Andric struct NoExpansion : TypeExpansion { 9310b57cec5SDimitry Andric NoExpansion() : TypeExpansion(TEK_None) {} 9320b57cec5SDimitry Andric static bool classof(const TypeExpansion *TE) { 9330b57cec5SDimitry Andric return TE->Kind == TEK_None; 9340b57cec5SDimitry Andric } 9350b57cec5SDimitry Andric }; 9360b57cec5SDimitry Andric } // namespace 9370b57cec5SDimitry Andric 9380b57cec5SDimitry Andric static std::unique_ptr<TypeExpansion> 9390b57cec5SDimitry Andric getTypeExpansion(QualType Ty, const ASTContext &Context) { 9400b57cec5SDimitry Andric if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 9410fca6ea1SDimitry Andric return std::make_unique<ConstantArrayExpansion>(AT->getElementType(), 9420fca6ea1SDimitry Andric AT->getZExtSize()); 9430b57cec5SDimitry Andric } 9440b57cec5SDimitry Andric if (const RecordType *RT = Ty->getAs<RecordType>()) { 9450b57cec5SDimitry Andric SmallVector<const CXXBaseSpecifier *, 1> Bases; 9460b57cec5SDimitry Andric SmallVector<const FieldDecl *, 1> Fields; 9470b57cec5SDimitry Andric const RecordDecl *RD = RT->getDecl(); 9480b57cec5SDimitry Andric assert(!RD->hasFlexibleArrayMember() && 9490b57cec5SDimitry Andric "Cannot expand structure with flexible array."); 9500b57cec5SDimitry Andric if (RD->isUnion()) { 9510b57cec5SDimitry Andric // Unions can be here only in degenerative cases - all the fields are same 9520b57cec5SDimitry Andric // after flattening. Thus we have to use the "largest" field. 9530b57cec5SDimitry Andric const FieldDecl *LargestFD = nullptr; 9540b57cec5SDimitry Andric CharUnits UnionSize = CharUnits::Zero(); 9550b57cec5SDimitry Andric 9560b57cec5SDimitry Andric for (const auto *FD : RD->fields()) { 9570b57cec5SDimitry Andric if (FD->isZeroLengthBitField(Context)) 9580b57cec5SDimitry Andric continue; 9590b57cec5SDimitry Andric assert(!FD->isBitField() && 9600b57cec5SDimitry Andric "Cannot expand structure with bit-field members."); 9610b57cec5SDimitry Andric CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 9620b57cec5SDimitry Andric if (UnionSize < FieldSize) { 9630b57cec5SDimitry Andric UnionSize = FieldSize; 9640b57cec5SDimitry Andric LargestFD = FD; 9650b57cec5SDimitry Andric } 9660b57cec5SDimitry Andric } 9670b57cec5SDimitry Andric if (LargestFD) 9680b57cec5SDimitry Andric Fields.push_back(LargestFD); 9690b57cec5SDimitry Andric } else { 9700b57cec5SDimitry Andric if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 9710b57cec5SDimitry Andric assert(!CXXRD->isDynamicClass() && 9720b57cec5SDimitry Andric "cannot expand vtable pointers in dynamic classes"); 97381ad6265SDimitry Andric llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 9740b57cec5SDimitry Andric } 9750b57cec5SDimitry Andric 9760b57cec5SDimitry Andric for (const auto *FD : RD->fields()) { 9770b57cec5SDimitry Andric if (FD->isZeroLengthBitField(Context)) 9780b57cec5SDimitry Andric continue; 9790b57cec5SDimitry Andric assert(!FD->isBitField() && 9800b57cec5SDimitry Andric "Cannot expand structure with bit-field members."); 9810b57cec5SDimitry Andric Fields.push_back(FD); 9820b57cec5SDimitry Andric } 9830b57cec5SDimitry Andric } 984a7dea167SDimitry Andric return std::make_unique<RecordExpansion>(std::move(Bases), 9850b57cec5SDimitry Andric std::move(Fields)); 9860b57cec5SDimitry Andric } 9870b57cec5SDimitry Andric if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 988a7dea167SDimitry Andric return std::make_unique<ComplexExpansion>(CT->getElementType()); 9890b57cec5SDimitry Andric } 990a7dea167SDimitry Andric return std::make_unique<NoExpansion>(); 9910b57cec5SDimitry Andric } 9920b57cec5SDimitry Andric 9930b57cec5SDimitry Andric static int getExpansionSize(QualType Ty, const ASTContext &Context) { 9940b57cec5SDimitry Andric auto Exp = getTypeExpansion(Ty, Context); 9950b57cec5SDimitry Andric if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 9960b57cec5SDimitry Andric return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 9970b57cec5SDimitry Andric } 9980b57cec5SDimitry Andric if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 9990b57cec5SDimitry Andric int Res = 0; 10000b57cec5SDimitry Andric for (auto BS : RExp->Bases) 10010b57cec5SDimitry Andric Res += getExpansionSize(BS->getType(), Context); 10020b57cec5SDimitry Andric for (auto FD : RExp->Fields) 10030b57cec5SDimitry Andric Res += getExpansionSize(FD->getType(), Context); 10040b57cec5SDimitry Andric return Res; 10050b57cec5SDimitry Andric } 10060b57cec5SDimitry Andric if (isa<ComplexExpansion>(Exp.get())) 10070b57cec5SDimitry Andric return 2; 10080b57cec5SDimitry Andric assert(isa<NoExpansion>(Exp.get())); 10090b57cec5SDimitry Andric return 1; 10100b57cec5SDimitry Andric } 10110b57cec5SDimitry Andric 10120b57cec5SDimitry Andric void 10130b57cec5SDimitry Andric CodeGenTypes::getExpandedTypes(QualType Ty, 10140b57cec5SDimitry Andric SmallVectorImpl<llvm::Type *>::iterator &TI) { 10150b57cec5SDimitry Andric auto Exp = getTypeExpansion(Ty, Context); 10160b57cec5SDimitry Andric if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 10170b57cec5SDimitry Andric for (int i = 0, n = CAExp->NumElts; i < n; i++) { 10180b57cec5SDimitry Andric getExpandedTypes(CAExp->EltTy, TI); 10190b57cec5SDimitry Andric } 10200b57cec5SDimitry Andric } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 10210b57cec5SDimitry Andric for (auto BS : RExp->Bases) 10220b57cec5SDimitry Andric getExpandedTypes(BS->getType(), TI); 10230b57cec5SDimitry Andric for (auto FD : RExp->Fields) 10240b57cec5SDimitry Andric getExpandedTypes(FD->getType(), TI); 10250b57cec5SDimitry Andric } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 10260b57cec5SDimitry Andric llvm::Type *EltTy = ConvertType(CExp->EltTy); 10270b57cec5SDimitry Andric *TI++ = EltTy; 10280b57cec5SDimitry Andric *TI++ = EltTy; 10290b57cec5SDimitry Andric } else { 10300b57cec5SDimitry Andric assert(isa<NoExpansion>(Exp.get())); 10310b57cec5SDimitry Andric *TI++ = ConvertType(Ty); 10320b57cec5SDimitry Andric } 10330b57cec5SDimitry Andric } 10340b57cec5SDimitry Andric 10350b57cec5SDimitry Andric static void forConstantArrayExpansion(CodeGenFunction &CGF, 10360b57cec5SDimitry Andric ConstantArrayExpansion *CAE, 10370b57cec5SDimitry Andric Address BaseAddr, 10380b57cec5SDimitry Andric llvm::function_ref<void(Address)> Fn) { 10390b57cec5SDimitry Andric for (int i = 0, n = CAE->NumElts; i < n; i++) { 10400fca6ea1SDimitry Andric Address EltAddr = CGF.Builder.CreateConstGEP2_32(BaseAddr, 0, i); 10410fca6ea1SDimitry Andric Fn(EltAddr); 10420b57cec5SDimitry Andric } 10430b57cec5SDimitry Andric } 10440b57cec5SDimitry Andric 10455ffd83dbSDimitry Andric void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 10465ffd83dbSDimitry Andric llvm::Function::arg_iterator &AI) { 10470b57cec5SDimitry Andric assert(LV.isSimple() && 10480b57cec5SDimitry Andric "Unexpected non-simple lvalue during struct expansion."); 10490b57cec5SDimitry Andric 10500b57cec5SDimitry Andric auto Exp = getTypeExpansion(Ty, getContext()); 10510b57cec5SDimitry Andric if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1052480093f4SDimitry Andric forConstantArrayExpansion( 10530fca6ea1SDimitry Andric *this, CAExp, LV.getAddress(), [&](Address EltAddr) { 10540b57cec5SDimitry Andric LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 10550b57cec5SDimitry Andric ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 10560b57cec5SDimitry Andric }); 10570b57cec5SDimitry Andric } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 10580fca6ea1SDimitry Andric Address This = LV.getAddress(); 10590b57cec5SDimitry Andric for (const CXXBaseSpecifier *BS : RExp->Bases) { 10600b57cec5SDimitry Andric // Perform a single step derived-to-base conversion. 10610b57cec5SDimitry Andric Address Base = 10620b57cec5SDimitry Andric GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 10630b57cec5SDimitry Andric /*NullCheckValue=*/false, SourceLocation()); 10640b57cec5SDimitry Andric LValue SubLV = MakeAddrLValue(Base, BS->getType()); 10650b57cec5SDimitry Andric 10660b57cec5SDimitry Andric // Recurse onto bases. 10670b57cec5SDimitry Andric ExpandTypeFromArgs(BS->getType(), SubLV, AI); 10680b57cec5SDimitry Andric } 10690b57cec5SDimitry Andric for (auto FD : RExp->Fields) { 10700b57cec5SDimitry Andric // FIXME: What are the right qualifiers here? 10710b57cec5SDimitry Andric LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 10720b57cec5SDimitry Andric ExpandTypeFromArgs(FD->getType(), SubLV, AI); 10730b57cec5SDimitry Andric } 10740b57cec5SDimitry Andric } else if (isa<ComplexExpansion>(Exp.get())) { 10755ffd83dbSDimitry Andric auto realValue = &*AI++; 10765ffd83dbSDimitry Andric auto imagValue = &*AI++; 10770b57cec5SDimitry Andric EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 10780b57cec5SDimitry Andric } else { 1079480093f4SDimitry Andric // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1080480093f4SDimitry Andric // primitive store. 10810b57cec5SDimitry Andric assert(isa<NoExpansion>(Exp.get())); 10826a5eebc1SDimitry Andric llvm::Value *Arg = &*AI++; 10836a5eebc1SDimitry Andric if (LV.isBitField()) { 10846a5eebc1SDimitry Andric EmitStoreThroughLValue(RValue::get(Arg), LV); 10856a5eebc1SDimitry Andric } else { 10866a5eebc1SDimitry Andric // TODO: currently there are some places are inconsistent in what LLVM 10876a5eebc1SDimitry Andric // pointer type they use (see D118744). Once clang uses opaque pointers 10886a5eebc1SDimitry Andric // all LLVM pointer types will be the same and we can remove this check. 10896a5eebc1SDimitry Andric if (Arg->getType()->isPointerTy()) { 10900fca6ea1SDimitry Andric Address Addr = LV.getAddress(); 10916a5eebc1SDimitry Andric Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 10926a5eebc1SDimitry Andric } 10936a5eebc1SDimitry Andric EmitStoreOfScalar(Arg, LV); 10946a5eebc1SDimitry Andric } 10950b57cec5SDimitry Andric } 10960b57cec5SDimitry Andric } 10970b57cec5SDimitry Andric 10980b57cec5SDimitry Andric void CodeGenFunction::ExpandTypeToArgs( 10990b57cec5SDimitry Andric QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 11000b57cec5SDimitry Andric SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 11010b57cec5SDimitry Andric auto Exp = getTypeExpansion(Ty, getContext()); 11020b57cec5SDimitry Andric if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 11030fca6ea1SDimitry Andric Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 11040b57cec5SDimitry Andric : Arg.getKnownRValue().getAggregateAddress(); 11050b57cec5SDimitry Andric forConstantArrayExpansion( 11060b57cec5SDimitry Andric *this, CAExp, Addr, [&](Address EltAddr) { 11070b57cec5SDimitry Andric CallArg EltArg = CallArg( 11080b57cec5SDimitry Andric convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 11090b57cec5SDimitry Andric CAExp->EltTy); 11100b57cec5SDimitry Andric ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 11110b57cec5SDimitry Andric IRCallArgPos); 11120b57cec5SDimitry Andric }); 11130b57cec5SDimitry Andric } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 11140fca6ea1SDimitry Andric Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 11150b57cec5SDimitry Andric : Arg.getKnownRValue().getAggregateAddress(); 11160b57cec5SDimitry Andric for (const CXXBaseSpecifier *BS : RExp->Bases) { 11170b57cec5SDimitry Andric // Perform a single step derived-to-base conversion. 11180b57cec5SDimitry Andric Address Base = 11190b57cec5SDimitry Andric GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 11200b57cec5SDimitry Andric /*NullCheckValue=*/false, SourceLocation()); 11210b57cec5SDimitry Andric CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 11220b57cec5SDimitry Andric 11230b57cec5SDimitry Andric // Recurse onto bases. 11240b57cec5SDimitry Andric ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 11250b57cec5SDimitry Andric IRCallArgPos); 11260b57cec5SDimitry Andric } 11270b57cec5SDimitry Andric 11280b57cec5SDimitry Andric LValue LV = MakeAddrLValue(This, Ty); 11290b57cec5SDimitry Andric for (auto FD : RExp->Fields) { 11300b57cec5SDimitry Andric CallArg FldArg = 11310b57cec5SDimitry Andric CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 11320b57cec5SDimitry Andric ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 11330b57cec5SDimitry Andric IRCallArgPos); 11340b57cec5SDimitry Andric } 11350b57cec5SDimitry Andric } else if (isa<ComplexExpansion>(Exp.get())) { 11360b57cec5SDimitry Andric ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 11370b57cec5SDimitry Andric IRCallArgs[IRCallArgPos++] = CV.first; 11380b57cec5SDimitry Andric IRCallArgs[IRCallArgPos++] = CV.second; 11390b57cec5SDimitry Andric } else { 11400b57cec5SDimitry Andric assert(isa<NoExpansion>(Exp.get())); 11410b57cec5SDimitry Andric auto RV = Arg.getKnownRValue(); 11420b57cec5SDimitry Andric assert(RV.isScalar() && 11430b57cec5SDimitry Andric "Unexpected non-scalar rvalue during struct expansion."); 11440b57cec5SDimitry Andric 11450b57cec5SDimitry Andric // Insert a bitcast as needed. 11460b57cec5SDimitry Andric llvm::Value *V = RV.getScalarVal(); 11470b57cec5SDimitry Andric if (IRCallArgPos < IRFuncTy->getNumParams() && 11480b57cec5SDimitry Andric V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 11490b57cec5SDimitry Andric V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 11500b57cec5SDimitry Andric 11510b57cec5SDimitry Andric IRCallArgs[IRCallArgPos++] = V; 11520b57cec5SDimitry Andric } 11530b57cec5SDimitry Andric } 11540b57cec5SDimitry Andric 11550b57cec5SDimitry Andric /// Create a temporary allocation for the purposes of coercion. 11560fca6ea1SDimitry Andric static RawAddress CreateTempAllocaForCoercion(CodeGenFunction &CGF, 11570fca6ea1SDimitry Andric llvm::Type *Ty, 1158e8d8bef9SDimitry Andric CharUnits MinAlign, 1159e8d8bef9SDimitry Andric const Twine &Name = "tmp") { 11600b57cec5SDimitry Andric // Don't use an alignment that's worse than what LLVM would prefer. 1161bdd1243dSDimitry Andric auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty); 11620b57cec5SDimitry Andric CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 11630b57cec5SDimitry Andric 1164e8d8bef9SDimitry Andric return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 11650b57cec5SDimitry Andric } 11660b57cec5SDimitry Andric 11670b57cec5SDimitry Andric /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 11680b57cec5SDimitry Andric /// accessing some number of bytes out of it, try to gep into the struct to get 11690b57cec5SDimitry Andric /// at its inner goodness. Dive as deep as possible without entering an element 11700b57cec5SDimitry Andric /// with an in-memory size smaller than DstSize. 11710b57cec5SDimitry Andric static Address 11720b57cec5SDimitry Andric EnterStructPointerForCoercedAccess(Address SrcPtr, 11730b57cec5SDimitry Andric llvm::StructType *SrcSTy, 11740b57cec5SDimitry Andric uint64_t DstSize, CodeGenFunction &CGF) { 11750b57cec5SDimitry Andric // We can't dive into a zero-element struct. 11760b57cec5SDimitry Andric if (SrcSTy->getNumElements() == 0) return SrcPtr; 11770b57cec5SDimitry Andric 11780b57cec5SDimitry Andric llvm::Type *FirstElt = SrcSTy->getElementType(0); 11790b57cec5SDimitry Andric 11800b57cec5SDimitry Andric // If the first elt is at least as large as what we're looking for, or if the 11810b57cec5SDimitry Andric // first element is the same size as the whole struct, we can enter it. The 11820b57cec5SDimitry Andric // comparison must be made on the store size and not the alloca size. Using 11830b57cec5SDimitry Andric // the alloca size may overstate the size of the load. 11840b57cec5SDimitry Andric uint64_t FirstEltSize = 11850b57cec5SDimitry Andric CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 11860b57cec5SDimitry Andric if (FirstEltSize < DstSize && 11870b57cec5SDimitry Andric FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 11880b57cec5SDimitry Andric return SrcPtr; 11890b57cec5SDimitry Andric 11900b57cec5SDimitry Andric // GEP into the first element. 11910b57cec5SDimitry Andric SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 11920b57cec5SDimitry Andric 11930b57cec5SDimitry Andric // If the first element is a struct, recurse. 11940b57cec5SDimitry Andric llvm::Type *SrcTy = SrcPtr.getElementType(); 11950b57cec5SDimitry Andric if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 11960b57cec5SDimitry Andric return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 11970b57cec5SDimitry Andric 11980b57cec5SDimitry Andric return SrcPtr; 11990b57cec5SDimitry Andric } 12000b57cec5SDimitry Andric 12010b57cec5SDimitry Andric /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 12020b57cec5SDimitry Andric /// are either integers or pointers. This does a truncation of the value if it 12030b57cec5SDimitry Andric /// is too large or a zero extension if it is too small. 12040b57cec5SDimitry Andric /// 12050b57cec5SDimitry Andric /// This behaves as if the value were coerced through memory, so on big-endian 12060b57cec5SDimitry Andric /// targets the high bits are preserved in a truncation, while little-endian 12070b57cec5SDimitry Andric /// targets preserve the low bits. 12080b57cec5SDimitry Andric static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 12090b57cec5SDimitry Andric llvm::Type *Ty, 12100b57cec5SDimitry Andric CodeGenFunction &CGF) { 12110b57cec5SDimitry Andric if (Val->getType() == Ty) 12120b57cec5SDimitry Andric return Val; 12130b57cec5SDimitry Andric 12140b57cec5SDimitry Andric if (isa<llvm::PointerType>(Val->getType())) { 12150b57cec5SDimitry Andric // If this is Pointer->Pointer avoid conversion to and from int. 12160b57cec5SDimitry Andric if (isa<llvm::PointerType>(Ty)) 12170b57cec5SDimitry Andric return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 12180b57cec5SDimitry Andric 12190b57cec5SDimitry Andric // Convert the pointer to an integer so we can play with its width. 12200b57cec5SDimitry Andric Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 12210b57cec5SDimitry Andric } 12220b57cec5SDimitry Andric 12230b57cec5SDimitry Andric llvm::Type *DestIntTy = Ty; 12240b57cec5SDimitry Andric if (isa<llvm::PointerType>(DestIntTy)) 12250b57cec5SDimitry Andric DestIntTy = CGF.IntPtrTy; 12260b57cec5SDimitry Andric 12270b57cec5SDimitry Andric if (Val->getType() != DestIntTy) { 12280b57cec5SDimitry Andric const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 12290b57cec5SDimitry Andric if (DL.isBigEndian()) { 12300b57cec5SDimitry Andric // Preserve the high bits on big-endian targets. 12310b57cec5SDimitry Andric // That is what memory coercion does. 12320b57cec5SDimitry Andric uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 12330b57cec5SDimitry Andric uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 12340b57cec5SDimitry Andric 12350b57cec5SDimitry Andric if (SrcSize > DstSize) { 12360b57cec5SDimitry Andric Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 12370b57cec5SDimitry Andric Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 12380b57cec5SDimitry Andric } else { 12390b57cec5SDimitry Andric Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 12400b57cec5SDimitry Andric Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 12410b57cec5SDimitry Andric } 12420b57cec5SDimitry Andric } else { 12430b57cec5SDimitry Andric // Little-endian targets preserve the low bits. No shifts required. 12440b57cec5SDimitry Andric Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 12450b57cec5SDimitry Andric } 12460b57cec5SDimitry Andric } 12470b57cec5SDimitry Andric 12480b57cec5SDimitry Andric if (isa<llvm::PointerType>(Ty)) 12490b57cec5SDimitry Andric Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 12500b57cec5SDimitry Andric return Val; 12510b57cec5SDimitry Andric } 12520b57cec5SDimitry Andric 12530b57cec5SDimitry Andric 12540b57cec5SDimitry Andric 12550b57cec5SDimitry Andric /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 12560b57cec5SDimitry Andric /// a pointer to an object of type \arg Ty, known to be aligned to 12570b57cec5SDimitry Andric /// \arg SrcAlign bytes. 12580b57cec5SDimitry Andric /// 12590b57cec5SDimitry Andric /// This safely handles the case when the src type is smaller than the 12600b57cec5SDimitry Andric /// destination type; in this situation the values of bits which not 12610b57cec5SDimitry Andric /// present in the src are undefined. 12620b57cec5SDimitry Andric static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 12630b57cec5SDimitry Andric CodeGenFunction &CGF) { 12640b57cec5SDimitry Andric llvm::Type *SrcTy = Src.getElementType(); 12650b57cec5SDimitry Andric 12660b57cec5SDimitry Andric // If SrcTy and Ty are the same, just do a load. 12670b57cec5SDimitry Andric if (SrcTy == Ty) 12680b57cec5SDimitry Andric return CGF.Builder.CreateLoad(Src); 12690b57cec5SDimitry Andric 1270e8d8bef9SDimitry Andric llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 12710b57cec5SDimitry Andric 12720b57cec5SDimitry Andric if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1273e8d8bef9SDimitry Andric Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1274bdd1243dSDimitry Andric DstSize.getFixedValue(), CGF); 12755ffd83dbSDimitry Andric SrcTy = Src.getElementType(); 12760b57cec5SDimitry Andric } 12770b57cec5SDimitry Andric 1278e8d8bef9SDimitry Andric llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 12790b57cec5SDimitry Andric 12800b57cec5SDimitry Andric // If the source and destination are integer or pointer types, just do an 12810b57cec5SDimitry Andric // extension or truncation to the desired type. 12820b57cec5SDimitry Andric if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 12830b57cec5SDimitry Andric (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 12840b57cec5SDimitry Andric llvm::Value *Load = CGF.Builder.CreateLoad(Src); 12850b57cec5SDimitry Andric return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 12860b57cec5SDimitry Andric } 12870b57cec5SDimitry Andric 12880b57cec5SDimitry Andric // If load is legal, just bitcast the src pointer. 1289e8d8bef9SDimitry Andric if (!SrcSize.isScalable() && !DstSize.isScalable() && 1290bdd1243dSDimitry Andric SrcSize.getFixedValue() >= DstSize.getFixedValue()) { 12910b57cec5SDimitry Andric // Generally SrcSize is never greater than DstSize, since this means we are 12920b57cec5SDimitry Andric // losing bits. However, this can happen in cases where the structure has 12930b57cec5SDimitry Andric // additional padding, for example due to a user specified alignment. 12940b57cec5SDimitry Andric // 12950b57cec5SDimitry Andric // FIXME: Assert that we aren't truncating non-padding bits when have access 12960b57cec5SDimitry Andric // to that information. 129706c3fb27SDimitry Andric Src = Src.withElementType(Ty); 12980b57cec5SDimitry Andric return CGF.Builder.CreateLoad(Src); 12990b57cec5SDimitry Andric } 13000b57cec5SDimitry Andric 1301e8d8bef9SDimitry Andric // If coercing a fixed vector to a scalable vector for ABI compatibility, and 130281ad6265SDimitry Andric // the types match, use the llvm.vector.insert intrinsic to perform the 130381ad6265SDimitry Andric // conversion. 13040fca6ea1SDimitry Andric if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Ty)) { 13050fca6ea1SDimitry Andric if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 13060fca6ea1SDimitry Andric // If we are casting a fixed i8 vector to a scalable i1 predicate 1307349cc55cSDimitry Andric // vector, use a vector insert and bitcast the result. 13080fca6ea1SDimitry Andric if (ScalableDstTy->getElementType()->isIntegerTy(1) && 13090fca6ea1SDimitry Andric ScalableDstTy->getElementCount().isKnownMultipleOf(8) && 13100fca6ea1SDimitry Andric FixedSrcTy->getElementType()->isIntegerTy(8)) { 13110fca6ea1SDimitry Andric ScalableDstTy = llvm::ScalableVectorType::get( 13120fca6ea1SDimitry Andric FixedSrcTy->getElementType(), 13130fca6ea1SDimitry Andric ScalableDstTy->getElementCount().getKnownMinValue() / 8); 1314349cc55cSDimitry Andric } 13150fca6ea1SDimitry Andric if (ScalableDstTy->getElementType() == FixedSrcTy->getElementType()) { 1316e8d8bef9SDimitry Andric auto *Load = CGF.Builder.CreateLoad(Src); 13170fca6ea1SDimitry Andric auto *UndefVec = llvm::UndefValue::get(ScalableDstTy); 1318e8d8bef9SDimitry Andric auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1319349cc55cSDimitry Andric llvm::Value *Result = CGF.Builder.CreateInsertVector( 13200fca6ea1SDimitry Andric ScalableDstTy, UndefVec, Load, Zero, "cast.scalable"); 13210fca6ea1SDimitry Andric if (ScalableDstTy != Ty) 13220fca6ea1SDimitry Andric Result = CGF.Builder.CreateBitCast(Result, Ty); 1323349cc55cSDimitry Andric return Result; 1324e8d8bef9SDimitry Andric } 1325e8d8bef9SDimitry Andric } 1326e8d8bef9SDimitry Andric } 1327e8d8bef9SDimitry Andric 13280b57cec5SDimitry Andric // Otherwise do coercion through memory. This is stupid, but simple. 13290fca6ea1SDimitry Andric RawAddress Tmp = 1330e8d8bef9SDimitry Andric CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1331e8d8bef9SDimitry Andric CGF.Builder.CreateMemCpy( 13320fca6ea1SDimitry Andric Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 13330fca6ea1SDimitry Andric Src.emitRawPointer(CGF), Src.getAlignment().getAsAlign(), 1334bdd1243dSDimitry Andric llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue())); 13350b57cec5SDimitry Andric return CGF.Builder.CreateLoad(Tmp); 13360b57cec5SDimitry Andric } 13370b57cec5SDimitry Andric 1338c80e69b0SDimitry Andric void CodeGenFunction::CreateCoercedStore(llvm::Value *Src, Address Dst, 1339c80e69b0SDimitry Andric llvm::TypeSize DstSize, 1340c80e69b0SDimitry Andric bool DstIsVolatile) { 1341c80e69b0SDimitry Andric if (!DstSize) 1342c80e69b0SDimitry Andric return; 1343c80e69b0SDimitry Andric 1344c80e69b0SDimitry Andric llvm::Type *SrcTy = Src->getType(); 1345c80e69b0SDimitry Andric llvm::TypeSize SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 1346c80e69b0SDimitry Andric 1347c80e69b0SDimitry Andric // GEP into structs to try to make types match. 1348c80e69b0SDimitry Andric // FIXME: This isn't really that useful with opaque types, but it impacts a 1349c80e69b0SDimitry Andric // lot of regression tests. 1350c80e69b0SDimitry Andric if (SrcTy != Dst.getElementType()) { 1351c80e69b0SDimitry Andric if (llvm::StructType *DstSTy = 1352c80e69b0SDimitry Andric dyn_cast<llvm::StructType>(Dst.getElementType())) { 1353c80e69b0SDimitry Andric assert(!SrcSize.isScalable()); 1354c80e69b0SDimitry Andric Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1355c80e69b0SDimitry Andric SrcSize.getFixedValue(), *this); 1356c80e69b0SDimitry Andric } 1357c80e69b0SDimitry Andric } 1358c80e69b0SDimitry Andric 1359c80e69b0SDimitry Andric if (SrcSize.isScalable() || SrcSize <= DstSize) { 1360c80e69b0SDimitry Andric if (SrcTy->isIntegerTy() && Dst.getElementType()->isPointerTy() && 1361c80e69b0SDimitry Andric SrcSize == CGM.getDataLayout().getTypeAllocSize(Dst.getElementType())) { 1362c80e69b0SDimitry Andric // If the value is supposed to be a pointer, convert it before storing it. 1363c80e69b0SDimitry Andric Src = CoerceIntOrPtrToIntOrPtr(Src, Dst.getElementType(), *this); 1364c80e69b0SDimitry Andric Builder.CreateStore(Src, Dst, DstIsVolatile); 1365c80e69b0SDimitry Andric } else if (llvm::StructType *STy = 1366c80e69b0SDimitry Andric dyn_cast<llvm::StructType>(Src->getType())) { 13670b57cec5SDimitry Andric // Prefer scalar stores to first-class aggregate stores. 1368c80e69b0SDimitry Andric Dst = Dst.withElementType(SrcTy); 13690b57cec5SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1370c80e69b0SDimitry Andric Address EltPtr = Builder.CreateStructGEP(Dst, i); 1371c80e69b0SDimitry Andric llvm::Value *Elt = Builder.CreateExtractValue(Src, i); 1372c80e69b0SDimitry Andric Builder.CreateStore(Elt, EltPtr, DstIsVolatile); 13730b57cec5SDimitry Andric } 13740b57cec5SDimitry Andric } else { 1375c80e69b0SDimitry Andric Builder.CreateStore(Src, Dst.withElementType(SrcTy), DstIsVolatile); 13760b57cec5SDimitry Andric } 1377c80e69b0SDimitry Andric } else if (SrcTy->isIntegerTy()) { 1378c80e69b0SDimitry Andric // If the source is a simple integer, coerce it directly. 1379c80e69b0SDimitry Andric llvm::Type *DstIntTy = Builder.getIntNTy(DstSize.getFixedValue() * 8); 1380c80e69b0SDimitry Andric Src = CoerceIntOrPtrToIntOrPtr(Src, DstIntTy, *this); 1381c80e69b0SDimitry Andric Builder.CreateStore(Src, Dst.withElementType(DstIntTy), DstIsVolatile); 13820b57cec5SDimitry Andric } else { 13830b57cec5SDimitry Andric // Otherwise do coercion through memory. This is stupid, but 13840b57cec5SDimitry Andric // simple. 13850b57cec5SDimitry Andric 13860b57cec5SDimitry Andric // Generally SrcSize is never greater than DstSize, since this means we are 13870b57cec5SDimitry Andric // losing bits. However, this can happen in cases where the structure has 13880b57cec5SDimitry Andric // additional padding, for example due to a user specified alignment. 13890b57cec5SDimitry Andric // 13900b57cec5SDimitry Andric // FIXME: Assert that we aren't truncating non-padding bits when have access 13910b57cec5SDimitry Andric // to that information. 13920fca6ea1SDimitry Andric RawAddress Tmp = 1393c80e69b0SDimitry Andric CreateTempAllocaForCoercion(*this, SrcTy, Dst.getAlignment()); 1394c80e69b0SDimitry Andric Builder.CreateStore(Src, Tmp); 1395c80e69b0SDimitry Andric Builder.CreateMemCpy(Dst.emitRawPointer(*this), 1396c80e69b0SDimitry Andric Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1397c80e69b0SDimitry Andric Tmp.getAlignment().getAsAlign(), 1398c80e69b0SDimitry Andric Builder.CreateTypeSize(IntPtrTy, DstSize)); 13990b57cec5SDimitry Andric } 14000b57cec5SDimitry Andric } 14010b57cec5SDimitry Andric 14020b57cec5SDimitry Andric static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 14030b57cec5SDimitry Andric const ABIArgInfo &info) { 14040b57cec5SDimitry Andric if (unsigned offset = info.getDirectOffset()) { 140506c3fb27SDimitry Andric addr = addr.withElementType(CGF.Int8Ty); 14060b57cec5SDimitry Andric addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 14070b57cec5SDimitry Andric CharUnits::fromQuantity(offset)); 140806c3fb27SDimitry Andric addr = addr.withElementType(info.getCoerceToType()); 14090b57cec5SDimitry Andric } 14100b57cec5SDimitry Andric return addr; 14110b57cec5SDimitry Andric } 14120b57cec5SDimitry Andric 14130b57cec5SDimitry Andric namespace { 14140b57cec5SDimitry Andric 14150b57cec5SDimitry Andric /// Encapsulates information about the way function arguments from 14160b57cec5SDimitry Andric /// CGFunctionInfo should be passed to actual LLVM IR function. 14170b57cec5SDimitry Andric class ClangToLLVMArgMapping { 14180b57cec5SDimitry Andric static const unsigned InvalidIndex = ~0U; 14190b57cec5SDimitry Andric unsigned InallocaArgNo; 14200b57cec5SDimitry Andric unsigned SRetArgNo; 14210b57cec5SDimitry Andric unsigned TotalIRArgs; 14220b57cec5SDimitry Andric 14230b57cec5SDimitry Andric /// Arguments of LLVM IR function corresponding to single Clang argument. 14240b57cec5SDimitry Andric struct IRArgs { 14250b57cec5SDimitry Andric unsigned PaddingArgIndex; 14260b57cec5SDimitry Andric // Argument is expanded to IR arguments at positions 14270b57cec5SDimitry Andric // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 14280b57cec5SDimitry Andric unsigned FirstArgIndex; 14290b57cec5SDimitry Andric unsigned NumberOfArgs; 14300b57cec5SDimitry Andric 14310b57cec5SDimitry Andric IRArgs() 14320b57cec5SDimitry Andric : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 14330b57cec5SDimitry Andric NumberOfArgs(0) {} 14340b57cec5SDimitry Andric }; 14350b57cec5SDimitry Andric 14360b57cec5SDimitry Andric SmallVector<IRArgs, 8> ArgInfo; 14370b57cec5SDimitry Andric 14380b57cec5SDimitry Andric public: 14390b57cec5SDimitry Andric ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 14400b57cec5SDimitry Andric bool OnlyRequiredArgs = false) 14410b57cec5SDimitry Andric : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 14420b57cec5SDimitry Andric ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 14430b57cec5SDimitry Andric construct(Context, FI, OnlyRequiredArgs); 14440b57cec5SDimitry Andric } 14450b57cec5SDimitry Andric 14460b57cec5SDimitry Andric bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 14470b57cec5SDimitry Andric unsigned getInallocaArgNo() const { 14480b57cec5SDimitry Andric assert(hasInallocaArg()); 14490b57cec5SDimitry Andric return InallocaArgNo; 14500b57cec5SDimitry Andric } 14510b57cec5SDimitry Andric 14520b57cec5SDimitry Andric bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 14530b57cec5SDimitry Andric unsigned getSRetArgNo() const { 14540b57cec5SDimitry Andric assert(hasSRetArg()); 14550b57cec5SDimitry Andric return SRetArgNo; 14560b57cec5SDimitry Andric } 14570b57cec5SDimitry Andric 14580b57cec5SDimitry Andric unsigned totalIRArgs() const { return TotalIRArgs; } 14590b57cec5SDimitry Andric 14600b57cec5SDimitry Andric bool hasPaddingArg(unsigned ArgNo) const { 14610b57cec5SDimitry Andric assert(ArgNo < ArgInfo.size()); 14620b57cec5SDimitry Andric return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 14630b57cec5SDimitry Andric } 14640b57cec5SDimitry Andric unsigned getPaddingArgNo(unsigned ArgNo) const { 14650b57cec5SDimitry Andric assert(hasPaddingArg(ArgNo)); 14660b57cec5SDimitry Andric return ArgInfo[ArgNo].PaddingArgIndex; 14670b57cec5SDimitry Andric } 14680b57cec5SDimitry Andric 14690b57cec5SDimitry Andric /// Returns index of first IR argument corresponding to ArgNo, and their 14700b57cec5SDimitry Andric /// quantity. 14710b57cec5SDimitry Andric std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 14720b57cec5SDimitry Andric assert(ArgNo < ArgInfo.size()); 14730b57cec5SDimitry Andric return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 14740b57cec5SDimitry Andric ArgInfo[ArgNo].NumberOfArgs); 14750b57cec5SDimitry Andric } 14760b57cec5SDimitry Andric 14770b57cec5SDimitry Andric private: 14780b57cec5SDimitry Andric void construct(const ASTContext &Context, const CGFunctionInfo &FI, 14790b57cec5SDimitry Andric bool OnlyRequiredArgs); 14800b57cec5SDimitry Andric }; 14810b57cec5SDimitry Andric 14820b57cec5SDimitry Andric void ClangToLLVMArgMapping::construct(const ASTContext &Context, 14830b57cec5SDimitry Andric const CGFunctionInfo &FI, 14840b57cec5SDimitry Andric bool OnlyRequiredArgs) { 14850b57cec5SDimitry Andric unsigned IRArgNo = 0; 14860b57cec5SDimitry Andric bool SwapThisWithSRet = false; 14870b57cec5SDimitry Andric const ABIArgInfo &RetAI = FI.getReturnInfo(); 14880b57cec5SDimitry Andric 14890b57cec5SDimitry Andric if (RetAI.getKind() == ABIArgInfo::Indirect) { 14900b57cec5SDimitry Andric SwapThisWithSRet = RetAI.isSRetAfterThis(); 14910b57cec5SDimitry Andric SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 14920b57cec5SDimitry Andric } 14930b57cec5SDimitry Andric 14940b57cec5SDimitry Andric unsigned ArgNo = 0; 14950b57cec5SDimitry Andric unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 14960b57cec5SDimitry Andric for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 14970b57cec5SDimitry Andric ++I, ++ArgNo) { 14980b57cec5SDimitry Andric assert(I != FI.arg_end()); 14990b57cec5SDimitry Andric QualType ArgType = I->type; 15000b57cec5SDimitry Andric const ABIArgInfo &AI = I->info; 15010b57cec5SDimitry Andric // Collect data about IR arguments corresponding to Clang argument ArgNo. 15020b57cec5SDimitry Andric auto &IRArgs = ArgInfo[ArgNo]; 15030b57cec5SDimitry Andric 15040b57cec5SDimitry Andric if (AI.getPaddingType()) 15050b57cec5SDimitry Andric IRArgs.PaddingArgIndex = IRArgNo++; 15060b57cec5SDimitry Andric 15070b57cec5SDimitry Andric switch (AI.getKind()) { 15080b57cec5SDimitry Andric case ABIArgInfo::Extend: 15090b57cec5SDimitry Andric case ABIArgInfo::Direct: { 15100b57cec5SDimitry Andric // FIXME: handle sseregparm someday... 15110b57cec5SDimitry Andric llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 15120b57cec5SDimitry Andric if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 15130b57cec5SDimitry Andric IRArgs.NumberOfArgs = STy->getNumElements(); 15140b57cec5SDimitry Andric } else { 15150b57cec5SDimitry Andric IRArgs.NumberOfArgs = 1; 15160b57cec5SDimitry Andric } 15170b57cec5SDimitry Andric break; 15180b57cec5SDimitry Andric } 15190b57cec5SDimitry Andric case ABIArgInfo::Indirect: 1520e8d8bef9SDimitry Andric case ABIArgInfo::IndirectAliased: 15210b57cec5SDimitry Andric IRArgs.NumberOfArgs = 1; 15220b57cec5SDimitry Andric break; 15230b57cec5SDimitry Andric case ABIArgInfo::Ignore: 15240b57cec5SDimitry Andric case ABIArgInfo::InAlloca: 15250b57cec5SDimitry Andric // ignore and inalloca doesn't have matching LLVM parameters. 15260b57cec5SDimitry Andric IRArgs.NumberOfArgs = 0; 15270b57cec5SDimitry Andric break; 15280b57cec5SDimitry Andric case ABIArgInfo::CoerceAndExpand: 15290b57cec5SDimitry Andric IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 15300b57cec5SDimitry Andric break; 15310b57cec5SDimitry Andric case ABIArgInfo::Expand: 15320b57cec5SDimitry Andric IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 15330b57cec5SDimitry Andric break; 15340b57cec5SDimitry Andric } 15350b57cec5SDimitry Andric 15360b57cec5SDimitry Andric if (IRArgs.NumberOfArgs > 0) { 15370b57cec5SDimitry Andric IRArgs.FirstArgIndex = IRArgNo; 15380b57cec5SDimitry Andric IRArgNo += IRArgs.NumberOfArgs; 15390b57cec5SDimitry Andric } 15400b57cec5SDimitry Andric 15410b57cec5SDimitry Andric // Skip over the sret parameter when it comes second. We already handled it 15420b57cec5SDimitry Andric // above. 15430b57cec5SDimitry Andric if (IRArgNo == 1 && SwapThisWithSRet) 15440b57cec5SDimitry Andric IRArgNo++; 15450b57cec5SDimitry Andric } 15460b57cec5SDimitry Andric assert(ArgNo == ArgInfo.size()); 15470b57cec5SDimitry Andric 15480b57cec5SDimitry Andric if (FI.usesInAlloca()) 15490b57cec5SDimitry Andric InallocaArgNo = IRArgNo++; 15500b57cec5SDimitry Andric 15510b57cec5SDimitry Andric TotalIRArgs = IRArgNo; 15520b57cec5SDimitry Andric } 15530b57cec5SDimitry Andric } // namespace 15540b57cec5SDimitry Andric 15550b57cec5SDimitry Andric /***/ 15560b57cec5SDimitry Andric 15570b57cec5SDimitry Andric bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 15580b57cec5SDimitry Andric const auto &RI = FI.getReturnInfo(); 15590b57cec5SDimitry Andric return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 15600b57cec5SDimitry Andric } 15610b57cec5SDimitry Andric 15625678d1d9SDimitry Andric bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) { 15635678d1d9SDimitry Andric const auto &RI = FI.getReturnInfo(); 15645678d1d9SDimitry Andric return RI.getInReg(); 15655678d1d9SDimitry Andric } 15665678d1d9SDimitry Andric 15670b57cec5SDimitry Andric bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 15680b57cec5SDimitry Andric return ReturnTypeUsesSRet(FI) && 15690b57cec5SDimitry Andric getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 15700b57cec5SDimitry Andric } 15710b57cec5SDimitry Andric 15720b57cec5SDimitry Andric bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 15730b57cec5SDimitry Andric if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 15740b57cec5SDimitry Andric switch (BT->getKind()) { 15750b57cec5SDimitry Andric default: 15760b57cec5SDimitry Andric return false; 15770b57cec5SDimitry Andric case BuiltinType::Float: 1578349cc55cSDimitry Andric return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 15790b57cec5SDimitry Andric case BuiltinType::Double: 1580349cc55cSDimitry Andric return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 15810b57cec5SDimitry Andric case BuiltinType::LongDouble: 1582349cc55cSDimitry Andric return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 15830b57cec5SDimitry Andric } 15840b57cec5SDimitry Andric } 15850b57cec5SDimitry Andric 15860b57cec5SDimitry Andric return false; 15870b57cec5SDimitry Andric } 15880b57cec5SDimitry Andric 15890b57cec5SDimitry Andric bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 15900b57cec5SDimitry Andric if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 15910b57cec5SDimitry Andric if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 15920b57cec5SDimitry Andric if (BT->getKind() == BuiltinType::LongDouble) 15930b57cec5SDimitry Andric return getTarget().useObjCFP2RetForComplexLongDouble(); 15940b57cec5SDimitry Andric } 15950b57cec5SDimitry Andric } 15960b57cec5SDimitry Andric 15970b57cec5SDimitry Andric return false; 15980b57cec5SDimitry Andric } 15990b57cec5SDimitry Andric 16000b57cec5SDimitry Andric llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 16010b57cec5SDimitry Andric const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 16020b57cec5SDimitry Andric return GetFunctionType(FI); 16030b57cec5SDimitry Andric } 16040b57cec5SDimitry Andric 16050b57cec5SDimitry Andric llvm::FunctionType * 16060b57cec5SDimitry Andric CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 16070b57cec5SDimitry Andric 16080b57cec5SDimitry Andric bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 16090b57cec5SDimitry Andric (void)Inserted; 16100b57cec5SDimitry Andric assert(Inserted && "Recursively being processed?"); 16110b57cec5SDimitry Andric 16120b57cec5SDimitry Andric llvm::Type *resultType = nullptr; 16130b57cec5SDimitry Andric const ABIArgInfo &retAI = FI.getReturnInfo(); 16140b57cec5SDimitry Andric switch (retAI.getKind()) { 16150b57cec5SDimitry Andric case ABIArgInfo::Expand: 1616e8d8bef9SDimitry Andric case ABIArgInfo::IndirectAliased: 16170b57cec5SDimitry Andric llvm_unreachable("Invalid ABI kind for return argument"); 16180b57cec5SDimitry Andric 16190b57cec5SDimitry Andric case ABIArgInfo::Extend: 16200b57cec5SDimitry Andric case ABIArgInfo::Direct: 16210b57cec5SDimitry Andric resultType = retAI.getCoerceToType(); 16220b57cec5SDimitry Andric break; 16230b57cec5SDimitry Andric 16240b57cec5SDimitry Andric case ABIArgInfo::InAlloca: 16250b57cec5SDimitry Andric if (retAI.getInAllocaSRet()) { 16260b57cec5SDimitry Andric // sret things on win32 aren't void, they return the sret pointer. 16270b57cec5SDimitry Andric QualType ret = FI.getReturnType(); 1628bdd1243dSDimitry Andric unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret); 162906c3fb27SDimitry Andric resultType = llvm::PointerType::get(getLLVMContext(), addressSpace); 16300b57cec5SDimitry Andric } else { 16310b57cec5SDimitry Andric resultType = llvm::Type::getVoidTy(getLLVMContext()); 16320b57cec5SDimitry Andric } 16330b57cec5SDimitry Andric break; 16340b57cec5SDimitry Andric 16350b57cec5SDimitry Andric case ABIArgInfo::Indirect: 16360b57cec5SDimitry Andric case ABIArgInfo::Ignore: 16370b57cec5SDimitry Andric resultType = llvm::Type::getVoidTy(getLLVMContext()); 16380b57cec5SDimitry Andric break; 16390b57cec5SDimitry Andric 16400b57cec5SDimitry Andric case ABIArgInfo::CoerceAndExpand: 16410b57cec5SDimitry Andric resultType = retAI.getUnpaddedCoerceAndExpandType(); 16420b57cec5SDimitry Andric break; 16430b57cec5SDimitry Andric } 16440b57cec5SDimitry Andric 16450b57cec5SDimitry Andric ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 16460b57cec5SDimitry Andric SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 16470b57cec5SDimitry Andric 16480b57cec5SDimitry Andric // Add type for sret argument. 16490b57cec5SDimitry Andric if (IRFunctionArgs.hasSRetArg()) { 16500b57cec5SDimitry Andric QualType Ret = FI.getReturnType(); 1651bdd1243dSDimitry Andric unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret); 16520b57cec5SDimitry Andric ArgTypes[IRFunctionArgs.getSRetArgNo()] = 165306c3fb27SDimitry Andric llvm::PointerType::get(getLLVMContext(), AddressSpace); 16540b57cec5SDimitry Andric } 16550b57cec5SDimitry Andric 16560b57cec5SDimitry Andric // Add type for inalloca argument. 165706c3fb27SDimitry Andric if (IRFunctionArgs.hasInallocaArg()) 165806c3fb27SDimitry Andric ArgTypes[IRFunctionArgs.getInallocaArgNo()] = 165906c3fb27SDimitry Andric llvm::PointerType::getUnqual(getLLVMContext()); 16600b57cec5SDimitry Andric 16610b57cec5SDimitry Andric // Add in all of the required arguments. 16620b57cec5SDimitry Andric unsigned ArgNo = 0; 16630b57cec5SDimitry Andric CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 16640b57cec5SDimitry Andric ie = it + FI.getNumRequiredArgs(); 16650b57cec5SDimitry Andric for (; it != ie; ++it, ++ArgNo) { 16660b57cec5SDimitry Andric const ABIArgInfo &ArgInfo = it->info; 16670b57cec5SDimitry Andric 16680b57cec5SDimitry Andric // Insert a padding type to ensure proper alignment. 16690b57cec5SDimitry Andric if (IRFunctionArgs.hasPaddingArg(ArgNo)) 16700b57cec5SDimitry Andric ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 16710b57cec5SDimitry Andric ArgInfo.getPaddingType(); 16720b57cec5SDimitry Andric 16730b57cec5SDimitry Andric unsigned FirstIRArg, NumIRArgs; 16740b57cec5SDimitry Andric std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 16750b57cec5SDimitry Andric 16760b57cec5SDimitry Andric switch (ArgInfo.getKind()) { 16770b57cec5SDimitry Andric case ABIArgInfo::Ignore: 16780b57cec5SDimitry Andric case ABIArgInfo::InAlloca: 16790b57cec5SDimitry Andric assert(NumIRArgs == 0); 16800b57cec5SDimitry Andric break; 16810b57cec5SDimitry Andric 168206c3fb27SDimitry Andric case ABIArgInfo::Indirect: 16830b57cec5SDimitry Andric assert(NumIRArgs == 1); 16840b57cec5SDimitry Andric // indirect arguments are always on the stack, which is alloca addr space. 168506c3fb27SDimitry Andric ArgTypes[FirstIRArg] = llvm::PointerType::get( 168606c3fb27SDimitry Andric getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 16870b57cec5SDimitry Andric break; 168806c3fb27SDimitry Andric case ABIArgInfo::IndirectAliased: 1689e8d8bef9SDimitry Andric assert(NumIRArgs == 1); 169006c3fb27SDimitry Andric ArgTypes[FirstIRArg] = llvm::PointerType::get( 169106c3fb27SDimitry Andric getLLVMContext(), ArgInfo.getIndirectAddrSpace()); 1692e8d8bef9SDimitry Andric break; 16930b57cec5SDimitry Andric case ABIArgInfo::Extend: 16940b57cec5SDimitry Andric case ABIArgInfo::Direct: { 16950b57cec5SDimitry Andric // Fast-isel and the optimizer generally like scalar values better than 16960b57cec5SDimitry Andric // FCAs, so we flatten them if this is safe to do for this argument. 16970b57cec5SDimitry Andric llvm::Type *argType = ArgInfo.getCoerceToType(); 16980b57cec5SDimitry Andric llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 16990b57cec5SDimitry Andric if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 17000b57cec5SDimitry Andric assert(NumIRArgs == st->getNumElements()); 17010b57cec5SDimitry Andric for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 17020b57cec5SDimitry Andric ArgTypes[FirstIRArg + i] = st->getElementType(i); 17030b57cec5SDimitry Andric } else { 17040b57cec5SDimitry Andric assert(NumIRArgs == 1); 17050b57cec5SDimitry Andric ArgTypes[FirstIRArg] = argType; 17060b57cec5SDimitry Andric } 17070b57cec5SDimitry Andric break; 17080b57cec5SDimitry Andric } 17090b57cec5SDimitry Andric 17100b57cec5SDimitry Andric case ABIArgInfo::CoerceAndExpand: { 17110b57cec5SDimitry Andric auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1712bdd1243dSDimitry Andric for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 17130b57cec5SDimitry Andric *ArgTypesIter++ = EltTy; 17140b57cec5SDimitry Andric } 17150b57cec5SDimitry Andric assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 17160b57cec5SDimitry Andric break; 17170b57cec5SDimitry Andric } 17180b57cec5SDimitry Andric 17190b57cec5SDimitry Andric case ABIArgInfo::Expand: 17200b57cec5SDimitry Andric auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 17210b57cec5SDimitry Andric getExpandedTypes(it->type, ArgTypesIter); 17220b57cec5SDimitry Andric assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 17230b57cec5SDimitry Andric break; 17240b57cec5SDimitry Andric } 17250b57cec5SDimitry Andric } 17260b57cec5SDimitry Andric 17270b57cec5SDimitry Andric bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 17280b57cec5SDimitry Andric assert(Erased && "Not in set?"); 17290b57cec5SDimitry Andric 17300b57cec5SDimitry Andric return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 17310b57cec5SDimitry Andric } 17320b57cec5SDimitry Andric 17330b57cec5SDimitry Andric llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 17340b57cec5SDimitry Andric const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 173506c3fb27SDimitry Andric const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 17360b57cec5SDimitry Andric 17370b57cec5SDimitry Andric if (!isFuncTypeConvertible(FPT)) 17380b57cec5SDimitry Andric return llvm::StructType::get(getLLVMContext()); 17390b57cec5SDimitry Andric 17400b57cec5SDimitry Andric return GetFunctionType(GD); 17410b57cec5SDimitry Andric } 17420b57cec5SDimitry Andric 17430b57cec5SDimitry Andric static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 17440b57cec5SDimitry Andric llvm::AttrBuilder &FuncAttrs, 17450b57cec5SDimitry Andric const FunctionProtoType *FPT) { 17460b57cec5SDimitry Andric if (!FPT) 17470b57cec5SDimitry Andric return; 17480b57cec5SDimitry Andric 17490b57cec5SDimitry Andric if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 17500b57cec5SDimitry Andric FPT->isNothrow()) 17510b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 17525f757f3fSDimitry Andric 17537a6dacacSDimitry Andric unsigned SMEBits = FPT->getAArch64SMEAttributes(); 17547a6dacacSDimitry Andric if (SMEBits & FunctionType::SME_PStateSMEnabledMask) 17555f757f3fSDimitry Andric FuncAttrs.addAttribute("aarch64_pstate_sm_enabled"); 17567a6dacacSDimitry Andric if (SMEBits & FunctionType::SME_PStateSMCompatibleMask) 17575f757f3fSDimitry Andric FuncAttrs.addAttribute("aarch64_pstate_sm_compatible"); 17587a6dacacSDimitry Andric 17597a6dacacSDimitry Andric // ZA 17600fca6ea1SDimitry Andric if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves) 17610fca6ea1SDimitry Andric FuncAttrs.addAttribute("aarch64_preserves_za"); 17620fca6ea1SDimitry Andric if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In) 17630fca6ea1SDimitry Andric FuncAttrs.addAttribute("aarch64_in_za"); 17640fca6ea1SDimitry Andric if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out) 17650fca6ea1SDimitry Andric FuncAttrs.addAttribute("aarch64_out_za"); 17660fca6ea1SDimitry Andric if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut) 17670fca6ea1SDimitry Andric FuncAttrs.addAttribute("aarch64_inout_za"); 17680b57cec5SDimitry Andric 17697a6dacacSDimitry Andric // ZT0 17707a6dacacSDimitry Andric if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves) 17717a6dacacSDimitry Andric FuncAttrs.addAttribute("aarch64_preserves_zt0"); 17727a6dacacSDimitry Andric if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In) 17737a6dacacSDimitry Andric FuncAttrs.addAttribute("aarch64_in_zt0"); 17747a6dacacSDimitry Andric if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out) 17757a6dacacSDimitry Andric FuncAttrs.addAttribute("aarch64_out_zt0"); 17767a6dacacSDimitry Andric if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut) 17777a6dacacSDimitry Andric FuncAttrs.addAttribute("aarch64_inout_zt0"); 17787a6dacacSDimitry Andric } 17797a6dacacSDimitry Andric 17800fca6ea1SDimitry Andric static void AddAttributesFromOMPAssumes(llvm::AttrBuilder &FuncAttrs, 1781349cc55cSDimitry Andric const Decl *Callee) { 1782349cc55cSDimitry Andric if (!Callee) 1783349cc55cSDimitry Andric return; 1784349cc55cSDimitry Andric 1785349cc55cSDimitry Andric SmallVector<StringRef, 4> Attrs; 1786349cc55cSDimitry Andric 17870fca6ea1SDimitry Andric for (const OMPAssumeAttr *AA : Callee->specific_attrs<OMPAssumeAttr>()) 1788349cc55cSDimitry Andric AA->getAssumption().split(Attrs, ","); 1789349cc55cSDimitry Andric 1790349cc55cSDimitry Andric if (!Attrs.empty()) 1791349cc55cSDimitry Andric FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1792349cc55cSDimitry Andric llvm::join(Attrs.begin(), Attrs.end(), ",")); 1793349cc55cSDimitry Andric } 1794349cc55cSDimitry Andric 1795fe6060f1SDimitry Andric bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1796bdd1243dSDimitry Andric QualType ReturnType) const { 1797fe6060f1SDimitry Andric // We can't just discard the return value for a record type with a 1798fe6060f1SDimitry Andric // complex destructor or a non-trivially copyable type. 1799fe6060f1SDimitry Andric if (const RecordType *RT = 1800fe6060f1SDimitry Andric ReturnType.getCanonicalType()->getAs<RecordType>()) { 1801fe6060f1SDimitry Andric if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1802fe6060f1SDimitry Andric return ClassDecl->hasTrivialDestructor(); 1803fe6060f1SDimitry Andric } 1804fe6060f1SDimitry Andric return ReturnType.isTriviallyCopyableType(Context); 1805fe6060f1SDimitry Andric } 1806fe6060f1SDimitry Andric 1807bdd1243dSDimitry Andric static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy, 1808bdd1243dSDimitry Andric const Decl *TargetDecl) { 1809bdd1243dSDimitry Andric // As-is msan can not tolerate noundef mismatch between caller and 1810bdd1243dSDimitry Andric // implementation. Mismatch is possible for e.g. indirect calls from C-caller 1811bdd1243dSDimitry Andric // into C++. Such mismatches lead to confusing false reports. To avoid 1812bdd1243dSDimitry Andric // expensive workaround on msan we enforce initialization event in uncommon 1813bdd1243dSDimitry Andric // cases where it's allowed. 1814bdd1243dSDimitry Andric if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory)) 1815bdd1243dSDimitry Andric return true; 1816bdd1243dSDimitry Andric // C++ explicitly makes returning undefined values UB. C's rule only applies 1817bdd1243dSDimitry Andric // to used values, so we never mark them noundef for now. 1818bdd1243dSDimitry Andric if (!Module.getLangOpts().CPlusPlus) 1819bdd1243dSDimitry Andric return false; 1820bdd1243dSDimitry Andric if (TargetDecl) { 1821bdd1243dSDimitry Andric if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) { 1822bdd1243dSDimitry Andric if (FDecl->isExternC()) 1823bdd1243dSDimitry Andric return false; 1824bdd1243dSDimitry Andric } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) { 1825bdd1243dSDimitry Andric // Function pointer. 1826bdd1243dSDimitry Andric if (VDecl->isExternC()) 1827bdd1243dSDimitry Andric return false; 1828bdd1243dSDimitry Andric } 1829bdd1243dSDimitry Andric } 1830bdd1243dSDimitry Andric 1831bdd1243dSDimitry Andric // We don't want to be too aggressive with the return checking, unless 1832bdd1243dSDimitry Andric // it's explicit in the code opts or we're using an appropriate sanitizer. 1833bdd1243dSDimitry Andric // Try to respect what the programmer intended. 1834bdd1243dSDimitry Andric return Module.getCodeGenOpts().StrictReturn || 1835bdd1243dSDimitry Andric !Module.MayDropFunctionReturn(Module.getContext(), RetTy) || 1836bdd1243dSDimitry Andric Module.getLangOpts().Sanitize.has(SanitizerKind::Return); 1837bdd1243dSDimitry Andric } 1838bdd1243dSDimitry Andric 183906c3fb27SDimitry Andric /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the 184006c3fb27SDimitry Andric /// requested denormal behavior, accounting for the overriding behavior of the 184106c3fb27SDimitry Andric /// -f32 case. 184206c3fb27SDimitry Andric static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode, 184306c3fb27SDimitry Andric llvm::DenormalMode FP32DenormalMode, 184406c3fb27SDimitry Andric llvm::AttrBuilder &FuncAttrs) { 184506c3fb27SDimitry Andric if (FPDenormalMode != llvm::DenormalMode::getDefault()) 184606c3fb27SDimitry Andric FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str()); 184706c3fb27SDimitry Andric 184806c3fb27SDimitry Andric if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid()) 184906c3fb27SDimitry Andric FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str()); 185006c3fb27SDimitry Andric } 185106c3fb27SDimitry Andric 185206c3fb27SDimitry Andric /// Add default attributes to a function, which have merge semantics under 185306c3fb27SDimitry Andric /// -mlink-builtin-bitcode and should not simply overwrite any existing 185406c3fb27SDimitry Andric /// attributes in the linked library. 185506c3fb27SDimitry Andric static void 185606c3fb27SDimitry Andric addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts, 185706c3fb27SDimitry Andric llvm::AttrBuilder &FuncAttrs) { 185806c3fb27SDimitry Andric addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode, 185906c3fb27SDimitry Andric FuncAttrs); 186006c3fb27SDimitry Andric } 186106c3fb27SDimitry Andric 186206c3fb27SDimitry Andric static void getTrivialDefaultFunctionAttributes( 186306c3fb27SDimitry Andric StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts, 186406c3fb27SDimitry Andric const LangOptions &LangOpts, bool AttrOnCallSite, 18650b57cec5SDimitry Andric llvm::AttrBuilder &FuncAttrs) { 18660b57cec5SDimitry Andric // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 18670b57cec5SDimitry Andric if (!HasOptnone) { 18680b57cec5SDimitry Andric if (CodeGenOpts.OptimizeSize) 18690b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 18700b57cec5SDimitry Andric if (CodeGenOpts.OptimizeSize == 2) 18710b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::MinSize); 18720b57cec5SDimitry Andric } 18730b57cec5SDimitry Andric 18740b57cec5SDimitry Andric if (CodeGenOpts.DisableRedZone) 18750b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 18760b57cec5SDimitry Andric if (CodeGenOpts.IndirectTlsSegRefs) 18770b57cec5SDimitry Andric FuncAttrs.addAttribute("indirect-tls-seg-refs"); 18780b57cec5SDimitry Andric if (CodeGenOpts.NoImplicitFloat) 18790b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 18800b57cec5SDimitry Andric 18810b57cec5SDimitry Andric if (AttrOnCallSite) { 18820b57cec5SDimitry Andric // Attributes that should go on the call site only. 188381ad6265SDimitry Andric // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 188481ad6265SDimitry Andric // the -fno-builtin-foo list. 1885fe6060f1SDimitry Andric if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 18860b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 18870b57cec5SDimitry Andric if (!CodeGenOpts.TrapFuncName.empty()) 18880b57cec5SDimitry Andric FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 18890b57cec5SDimitry Andric } else { 1890a7dea167SDimitry Andric switch (CodeGenOpts.getFramePointer()) { 1891a7dea167SDimitry Andric case CodeGenOptions::FramePointerKind::None: 1892bdd1243dSDimitry Andric // This is the default behavior. 1893a7dea167SDimitry Andric break; 18940fca6ea1SDimitry Andric case CodeGenOptions::FramePointerKind::Reserved: 1895a7dea167SDimitry Andric case CodeGenOptions::FramePointerKind::NonLeaf: 1896a7dea167SDimitry Andric case CodeGenOptions::FramePointerKind::All: 1897bdd1243dSDimitry Andric FuncAttrs.addAttribute("frame-pointer", 1898bdd1243dSDimitry Andric CodeGenOptions::getFramePointerKindName( 1899bdd1243dSDimitry Andric CodeGenOpts.getFramePointer())); 19000b57cec5SDimitry Andric } 19010b57cec5SDimitry Andric 1902fe6060f1SDimitry Andric if (CodeGenOpts.LessPreciseFPMAD) 1903fe6060f1SDimitry Andric FuncAttrs.addAttribute("less-precise-fpmad", "true"); 19040b57cec5SDimitry Andric 19050b57cec5SDimitry Andric if (CodeGenOpts.NullPointerIsValid) 19065ffd83dbSDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 19075ffd83dbSDimitry Andric 190881ad6265SDimitry Andric if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) 1909fe6060f1SDimitry Andric FuncAttrs.addAttribute("no-trapping-math", "true"); 19100b57cec5SDimitry Andric 19110b57cec5SDimitry Andric // TODO: Are these all needed? 19120b57cec5SDimitry Andric // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1913fe6060f1SDimitry Andric if (LangOpts.NoHonorInfs) 1914fe6060f1SDimitry Andric FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1915fe6060f1SDimitry Andric if (LangOpts.NoHonorNaNs) 1916fe6060f1SDimitry Andric FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1917349cc55cSDimitry Andric if (LangOpts.ApproxFunc) 1918349cc55cSDimitry Andric FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1919bdd1243dSDimitry Andric if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 1920bdd1243dSDimitry Andric LangOpts.NoSignedZero && LangOpts.ApproxFunc && 1921bdd1243dSDimitry Andric (LangOpts.getDefaultFPContractMode() == 1922bdd1243dSDimitry Andric LangOptions::FPModeKind::FPM_Fast || 1923bdd1243dSDimitry Andric LangOpts.getDefaultFPContractMode() == 1924bdd1243dSDimitry Andric LangOptions::FPModeKind::FPM_FastHonorPragmas)) 1925fe6060f1SDimitry Andric FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1926fe6060f1SDimitry Andric if (CodeGenOpts.SoftFloat) 1927fe6060f1SDimitry Andric FuncAttrs.addAttribute("use-soft-float", "true"); 19280b57cec5SDimitry Andric FuncAttrs.addAttribute("stack-protector-buffer-size", 19290b57cec5SDimitry Andric llvm::utostr(CodeGenOpts.SSPBufferSize)); 1930fe6060f1SDimitry Andric if (LangOpts.NoSignedZero) 1931fe6060f1SDimitry Andric FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 19320b57cec5SDimitry Andric 19330b57cec5SDimitry Andric // TODO: Reciprocal estimate codegen options should apply to instructions? 19340b57cec5SDimitry Andric const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 19350b57cec5SDimitry Andric if (!Recips.empty()) 19360b57cec5SDimitry Andric FuncAttrs.addAttribute("reciprocal-estimates", 19370b57cec5SDimitry Andric llvm::join(Recips, ",")); 19380b57cec5SDimitry Andric 19390b57cec5SDimitry Andric if (!CodeGenOpts.PreferVectorWidth.empty() && 19400b57cec5SDimitry Andric CodeGenOpts.PreferVectorWidth != "none") 19410b57cec5SDimitry Andric FuncAttrs.addAttribute("prefer-vector-width", 19420b57cec5SDimitry Andric CodeGenOpts.PreferVectorWidth); 19430b57cec5SDimitry Andric 19440b57cec5SDimitry Andric if (CodeGenOpts.StackRealignment) 19450b57cec5SDimitry Andric FuncAttrs.addAttribute("stackrealign"); 19460b57cec5SDimitry Andric if (CodeGenOpts.Backchain) 19470b57cec5SDimitry Andric FuncAttrs.addAttribute("backchain"); 19485ffd83dbSDimitry Andric if (CodeGenOpts.EnableSegmentedStacks) 19495ffd83dbSDimitry Andric FuncAttrs.addAttribute("split-stack"); 19500b57cec5SDimitry Andric 19510b57cec5SDimitry Andric if (CodeGenOpts.SpeculativeLoadHardening) 19520b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 195381ad6265SDimitry Andric 195481ad6265SDimitry Andric // Add zero-call-used-regs attribute. 195581ad6265SDimitry Andric switch (CodeGenOpts.getZeroCallUsedRegs()) { 195681ad6265SDimitry Andric case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 195781ad6265SDimitry Andric FuncAttrs.removeAttribute("zero-call-used-regs"); 195881ad6265SDimitry Andric break; 195981ad6265SDimitry Andric case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 196081ad6265SDimitry Andric FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 196181ad6265SDimitry Andric break; 196281ad6265SDimitry Andric case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 196381ad6265SDimitry Andric FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 196481ad6265SDimitry Andric break; 196581ad6265SDimitry Andric case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 196681ad6265SDimitry Andric FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 196781ad6265SDimitry Andric break; 196881ad6265SDimitry Andric case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 196981ad6265SDimitry Andric FuncAttrs.addAttribute("zero-call-used-regs", "used"); 197081ad6265SDimitry Andric break; 197181ad6265SDimitry Andric case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 197281ad6265SDimitry Andric FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 197381ad6265SDimitry Andric break; 197481ad6265SDimitry Andric case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 197581ad6265SDimitry Andric FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 197681ad6265SDimitry Andric break; 197781ad6265SDimitry Andric case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 197881ad6265SDimitry Andric FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 197981ad6265SDimitry Andric break; 198081ad6265SDimitry Andric case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 198181ad6265SDimitry Andric FuncAttrs.addAttribute("zero-call-used-regs", "all"); 198281ad6265SDimitry Andric break; 198381ad6265SDimitry Andric } 19840b57cec5SDimitry Andric } 19850b57cec5SDimitry Andric 198606c3fb27SDimitry Andric if (LangOpts.assumeFunctionsAreConvergent()) { 19870b57cec5SDimitry Andric // Conservatively, mark all functions and calls in CUDA and OpenCL as 19880b57cec5SDimitry Andric // convergent (meaning, they may call an intrinsically convergent op, such 19890b57cec5SDimitry Andric // as __syncthreads() / barrier(), and so can't have certain optimizations 19900b57cec5SDimitry Andric // applied around them). LLVM will remove this attribute where it safely 19910b57cec5SDimitry Andric // can. 19920b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::Convergent); 19930b57cec5SDimitry Andric } 19940b57cec5SDimitry Andric 1995bdd1243dSDimitry Andric // TODO: NoUnwind attribute should be added for other GPU modes HIP, 199606c3fb27SDimitry Andric // OpenMP offload. AFAIK, neither of them support exceptions in device code. 199706c3fb27SDimitry Andric if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL || 199806c3fb27SDimitry Andric LangOpts.SYCLIsDevice) { 19990b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 20000b57cec5SDimitry Andric } 20010b57cec5SDimitry Andric 20020b57cec5SDimitry Andric for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 20030b57cec5SDimitry Andric StringRef Var, Value; 20040b57cec5SDimitry Andric std::tie(Var, Value) = Attr.split('='); 20050b57cec5SDimitry Andric FuncAttrs.addAttribute(Var, Value); 20060b57cec5SDimitry Andric } 20070fca6ea1SDimitry Andric 20080fca6ea1SDimitry Andric TargetInfo::BranchProtectionInfo BPI(LangOpts); 200962987288SDimitry Andric TargetCodeGenInfo::initBranchProtectionFnAttributes(BPI, FuncAttrs); 20100b57cec5SDimitry Andric } 20110b57cec5SDimitry Andric 20125f757f3fSDimitry Andric /// Merges `target-features` from \TargetOpts and \F, and sets the result in 20135f757f3fSDimitry Andric /// \FuncAttr 20145f757f3fSDimitry Andric /// * features from \F are always kept 20155f757f3fSDimitry Andric /// * a feature from \TargetOpts is kept if itself and its opposite are absent 20165f757f3fSDimitry Andric /// from \F 20175f757f3fSDimitry Andric static void 20185f757f3fSDimitry Andric overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr, 20195f757f3fSDimitry Andric const llvm::Function &F, 20205f757f3fSDimitry Andric const TargetOptions &TargetOpts) { 20215f757f3fSDimitry Andric auto FFeatures = F.getFnAttribute("target-features"); 20225f757f3fSDimitry Andric 20235f757f3fSDimitry Andric llvm::StringSet<> MergedNames; 20245f757f3fSDimitry Andric SmallVector<StringRef> MergedFeatures; 20255f757f3fSDimitry Andric MergedFeatures.reserve(TargetOpts.Features.size()); 20265f757f3fSDimitry Andric 20275f757f3fSDimitry Andric auto AddUnmergedFeatures = [&](auto &&FeatureRange) { 20285f757f3fSDimitry Andric for (StringRef Feature : FeatureRange) { 20295f757f3fSDimitry Andric if (Feature.empty()) 20305f757f3fSDimitry Andric continue; 20315f757f3fSDimitry Andric assert(Feature[0] == '+' || Feature[0] == '-'); 20325f757f3fSDimitry Andric StringRef Name = Feature.drop_front(1); 20335f757f3fSDimitry Andric bool Merged = !MergedNames.insert(Name).second; 20345f757f3fSDimitry Andric if (!Merged) 20355f757f3fSDimitry Andric MergedFeatures.push_back(Feature); 20365f757f3fSDimitry Andric } 20375f757f3fSDimitry Andric }; 20385f757f3fSDimitry Andric 20395f757f3fSDimitry Andric if (FFeatures.isValid()) 20405f757f3fSDimitry Andric AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ',')); 20415f757f3fSDimitry Andric AddUnmergedFeatures(TargetOpts.Features); 20425f757f3fSDimitry Andric 20435f757f3fSDimitry Andric if (!MergedFeatures.empty()) { 20445f757f3fSDimitry Andric llvm::sort(MergedFeatures); 20455f757f3fSDimitry Andric FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ",")); 20465f757f3fSDimitry Andric } 20475f757f3fSDimitry Andric } 20485f757f3fSDimitry Andric 20495f757f3fSDimitry Andric void CodeGen::mergeDefaultFunctionDefinitionAttributes( 20505f757f3fSDimitry Andric llvm::Function &F, const CodeGenOptions &CodeGenOpts, 205106c3fb27SDimitry Andric const LangOptions &LangOpts, const TargetOptions &TargetOpts, 205206c3fb27SDimitry Andric bool WillInternalize) { 205306c3fb27SDimitry Andric 205406c3fb27SDimitry Andric llvm::AttrBuilder FuncAttrs(F.getContext()); 205506c3fb27SDimitry Andric // Here we only extract the options that are relevant compared to the version 205606c3fb27SDimitry Andric // from GetCPUAndFeaturesAttributes. 205706c3fb27SDimitry Andric if (!TargetOpts.CPU.empty()) 205806c3fb27SDimitry Andric FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU); 205906c3fb27SDimitry Andric if (!TargetOpts.TuneCPU.empty()) 206006c3fb27SDimitry Andric FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU); 206106c3fb27SDimitry Andric 206206c3fb27SDimitry Andric ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 206306c3fb27SDimitry Andric CodeGenOpts, LangOpts, 206406c3fb27SDimitry Andric /*AttrOnCallSite=*/false, FuncAttrs); 206506c3fb27SDimitry Andric 206606c3fb27SDimitry Andric if (!WillInternalize && F.isInterposable()) { 206706c3fb27SDimitry Andric // Do not promote "dynamic" denormal-fp-math to this translation unit's 206806c3fb27SDimitry Andric // setting for weak functions that won't be internalized. The user has no 206906c3fb27SDimitry Andric // real control for how builtin bitcode is linked, so we shouldn't assume 207006c3fb27SDimitry Andric // later copies will use a consistent mode. 207106c3fb27SDimitry Andric F.addFnAttrs(FuncAttrs); 207206c3fb27SDimitry Andric return; 207306c3fb27SDimitry Andric } 207406c3fb27SDimitry Andric 207506c3fb27SDimitry Andric llvm::AttributeMask AttrsToRemove; 207606c3fb27SDimitry Andric 207706c3fb27SDimitry Andric llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw(); 207806c3fb27SDimitry Andric llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw(); 207906c3fb27SDimitry Andric llvm::DenormalMode Merged = 208006c3fb27SDimitry Andric CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge); 208106c3fb27SDimitry Andric llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode; 208206c3fb27SDimitry Andric 208306c3fb27SDimitry Andric if (DenormModeToMergeF32.isValid()) { 208406c3fb27SDimitry Andric MergedF32 = 208506c3fb27SDimitry Andric CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32); 208606c3fb27SDimitry Andric } 208706c3fb27SDimitry Andric 208806c3fb27SDimitry Andric if (Merged == llvm::DenormalMode::getDefault()) { 208906c3fb27SDimitry Andric AttrsToRemove.addAttribute("denormal-fp-math"); 209006c3fb27SDimitry Andric } else if (Merged != DenormModeToMerge) { 209106c3fb27SDimitry Andric // Overwrite existing attribute 209206c3fb27SDimitry Andric FuncAttrs.addAttribute("denormal-fp-math", 209306c3fb27SDimitry Andric CodeGenOpts.FPDenormalMode.str()); 209406c3fb27SDimitry Andric } 209506c3fb27SDimitry Andric 209606c3fb27SDimitry Andric if (MergedF32 == llvm::DenormalMode::getDefault()) { 209706c3fb27SDimitry Andric AttrsToRemove.addAttribute("denormal-fp-math-f32"); 209806c3fb27SDimitry Andric } else if (MergedF32 != DenormModeToMergeF32) { 209906c3fb27SDimitry Andric // Overwrite existing attribute 210006c3fb27SDimitry Andric FuncAttrs.addAttribute("denormal-fp-math-f32", 210106c3fb27SDimitry Andric CodeGenOpts.FP32DenormalMode.str()); 210206c3fb27SDimitry Andric } 210306c3fb27SDimitry Andric 210406c3fb27SDimitry Andric F.removeFnAttrs(AttrsToRemove); 210506c3fb27SDimitry Andric addDenormalModeAttrs(Merged, MergedF32, FuncAttrs); 21065f757f3fSDimitry Andric 21075f757f3fSDimitry Andric overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts); 21085f757f3fSDimitry Andric 210906c3fb27SDimitry Andric F.addFnAttrs(FuncAttrs); 211006c3fb27SDimitry Andric } 211106c3fb27SDimitry Andric 211206c3fb27SDimitry Andric void CodeGenModule::getTrivialDefaultFunctionAttributes( 211306c3fb27SDimitry Andric StringRef Name, bool HasOptnone, bool AttrOnCallSite, 211406c3fb27SDimitry Andric llvm::AttrBuilder &FuncAttrs) { 211506c3fb27SDimitry Andric ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(), 211606c3fb27SDimitry Andric getLangOpts(), AttrOnCallSite, 211706c3fb27SDimitry Andric FuncAttrs); 211806c3fb27SDimitry Andric } 211906c3fb27SDimitry Andric 212006c3fb27SDimitry Andric void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 212106c3fb27SDimitry Andric bool HasOptnone, 212206c3fb27SDimitry Andric bool AttrOnCallSite, 212306c3fb27SDimitry Andric llvm::AttrBuilder &FuncAttrs) { 212406c3fb27SDimitry Andric getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, 212506c3fb27SDimitry Andric FuncAttrs); 212606c3fb27SDimitry Andric // If we're just getting the default, get the default values for mergeable 212706c3fb27SDimitry Andric // attributes. 212806c3fb27SDimitry Andric if (!AttrOnCallSite) 212906c3fb27SDimitry Andric addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs); 213006c3fb27SDimitry Andric } 213106c3fb27SDimitry Andric 21325ffd83dbSDimitry Andric void CodeGenModule::addDefaultFunctionDefinitionAttributes( 21335ffd83dbSDimitry Andric llvm::AttrBuilder &attrs) { 21345ffd83dbSDimitry Andric getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 21355ffd83dbSDimitry Andric /*for call*/ false, attrs); 21365ffd83dbSDimitry Andric GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 21375ffd83dbSDimitry Andric } 21385ffd83dbSDimitry Andric 21395ffd83dbSDimitry Andric static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 21405ffd83dbSDimitry Andric const LangOptions &LangOpts, 21415ffd83dbSDimitry Andric const NoBuiltinAttr *NBA = nullptr) { 21425ffd83dbSDimitry Andric auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 21435ffd83dbSDimitry Andric SmallString<32> AttributeName; 21445ffd83dbSDimitry Andric AttributeName += "no-builtin-"; 21455ffd83dbSDimitry Andric AttributeName += BuiltinName; 21465ffd83dbSDimitry Andric FuncAttrs.addAttribute(AttributeName); 21475ffd83dbSDimitry Andric }; 21485ffd83dbSDimitry Andric 21495ffd83dbSDimitry Andric // First, handle the language options passed through -fno-builtin. 21505ffd83dbSDimitry Andric if (LangOpts.NoBuiltin) { 21515ffd83dbSDimitry Andric // -fno-builtin disables them all. 21525ffd83dbSDimitry Andric FuncAttrs.addAttribute("no-builtins"); 21535ffd83dbSDimitry Andric return; 21545ffd83dbSDimitry Andric } 21555ffd83dbSDimitry Andric 21565ffd83dbSDimitry Andric // Then, add attributes for builtins specified through -fno-builtin-<name>. 21575ffd83dbSDimitry Andric llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 21585ffd83dbSDimitry Andric 21595ffd83dbSDimitry Andric // Now, let's check the __attribute__((no_builtin("...")) attribute added to 21605ffd83dbSDimitry Andric // the source. 21615ffd83dbSDimitry Andric if (!NBA) 21625ffd83dbSDimitry Andric return; 21635ffd83dbSDimitry Andric 21645ffd83dbSDimitry Andric // If there is a wildcard in the builtin names specified through the 21655ffd83dbSDimitry Andric // attribute, disable them all. 21665ffd83dbSDimitry Andric if (llvm::is_contained(NBA->builtinNames(), "*")) { 21675ffd83dbSDimitry Andric FuncAttrs.addAttribute("no-builtins"); 21685ffd83dbSDimitry Andric return; 21695ffd83dbSDimitry Andric } 21705ffd83dbSDimitry Andric 21715ffd83dbSDimitry Andric // And last, add the rest of the builtin names. 21725ffd83dbSDimitry Andric llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 21735ffd83dbSDimitry Andric } 21745ffd83dbSDimitry Andric 2175fe6060f1SDimitry Andric static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 2176fe6060f1SDimitry Andric const llvm::DataLayout &DL, const ABIArgInfo &AI, 2177fe6060f1SDimitry Andric bool CheckCoerce = true) { 2178fe6060f1SDimitry Andric llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 21795f757f3fSDimitry Andric if (AI.getKind() == ABIArgInfo::Indirect || 21805f757f3fSDimitry Andric AI.getKind() == ABIArgInfo::IndirectAliased) 2181fe6060f1SDimitry Andric return true; 2182fe6060f1SDimitry Andric if (AI.getKind() == ABIArgInfo::Extend) 2183fe6060f1SDimitry Andric return true; 2184fe6060f1SDimitry Andric if (!DL.typeSizeEqualsStoreSize(Ty)) 2185fe6060f1SDimitry Andric // TODO: This will result in a modest amount of values not marked noundef 2186fe6060f1SDimitry Andric // when they could be. We care about values that *invisibly* contain undef 2187fe6060f1SDimitry Andric // bits from the perspective of LLVM IR. 2188fe6060f1SDimitry Andric return false; 2189fe6060f1SDimitry Andric if (CheckCoerce && AI.canHaveCoerceToType()) { 2190fe6060f1SDimitry Andric llvm::Type *CoerceTy = AI.getCoerceToType(); 2191fe6060f1SDimitry Andric if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2192fe6060f1SDimitry Andric DL.getTypeSizeInBits(Ty))) 2193fe6060f1SDimitry Andric // If we're coercing to a type with a greater size than the canonical one, 2194fe6060f1SDimitry Andric // we're introducing new undef bits. 2195fe6060f1SDimitry Andric // Coercing to a type of smaller or equal size is ok, as we know that 2196fe6060f1SDimitry Andric // there's no internal padding (typeSizeEqualsStoreSize). 2197fe6060f1SDimitry Andric return false; 2198fe6060f1SDimitry Andric } 21990eae32dcSDimitry Andric if (QTy->isBitIntType()) 2200fe6060f1SDimitry Andric return true; 2201fe6060f1SDimitry Andric if (QTy->isReferenceType()) 2202fe6060f1SDimitry Andric return true; 2203fe6060f1SDimitry Andric if (QTy->isNullPtrType()) 2204fe6060f1SDimitry Andric return false; 2205fe6060f1SDimitry Andric if (QTy->isMemberPointerType()) 2206fe6060f1SDimitry Andric // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2207fe6060f1SDimitry Andric // now, never mark them. 2208fe6060f1SDimitry Andric return false; 2209fe6060f1SDimitry Andric if (QTy->isScalarType()) { 2210fe6060f1SDimitry Andric if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2211fe6060f1SDimitry Andric return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2212fe6060f1SDimitry Andric return true; 2213fe6060f1SDimitry Andric } 2214fe6060f1SDimitry Andric if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2215fe6060f1SDimitry Andric return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2216fe6060f1SDimitry Andric if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2217fe6060f1SDimitry Andric return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2218fe6060f1SDimitry Andric if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2219fe6060f1SDimitry Andric return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2220fe6060f1SDimitry Andric 2221fe6060f1SDimitry Andric // TODO: Some structs may be `noundef`, in specific situations. 2222fe6060f1SDimitry Andric return false; 2223fe6060f1SDimitry Andric } 2224fe6060f1SDimitry Andric 2225bdd1243dSDimitry Andric /// Check if the argument of a function has maybe_undef attribute. 2226bdd1243dSDimitry Andric static bool IsArgumentMaybeUndef(const Decl *TargetDecl, 2227bdd1243dSDimitry Andric unsigned NumRequiredArgs, unsigned ArgNo) { 2228bdd1243dSDimitry Andric const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 2229bdd1243dSDimitry Andric if (!FD) 2230bdd1243dSDimitry Andric return false; 2231bdd1243dSDimitry Andric 2232bdd1243dSDimitry Andric // Assume variadic arguments do not have maybe_undef attribute. 2233bdd1243dSDimitry Andric if (ArgNo >= NumRequiredArgs) 2234bdd1243dSDimitry Andric return false; 2235bdd1243dSDimitry Andric 2236bdd1243dSDimitry Andric // Check if argument has maybe_undef attribute. 2237bdd1243dSDimitry Andric if (ArgNo < FD->getNumParams()) { 2238bdd1243dSDimitry Andric const ParmVarDecl *Param = FD->getParamDecl(ArgNo); 2239bdd1243dSDimitry Andric if (Param && Param->hasAttr<MaybeUndefAttr>()) 2240bdd1243dSDimitry Andric return true; 2241bdd1243dSDimitry Andric } 2242bdd1243dSDimitry Andric 2243bdd1243dSDimitry Andric return false; 2244bdd1243dSDimitry Andric } 2245bdd1243dSDimitry Andric 224606c3fb27SDimitry Andric /// Test if it's legal to apply nofpclass for the given parameter type and it's 224706c3fb27SDimitry Andric /// lowered IR type. 224806c3fb27SDimitry Andric static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType, 224906c3fb27SDimitry Andric bool IsReturn) { 225006c3fb27SDimitry Andric // Should only apply to FP types in the source, not ABI promoted. 225106c3fb27SDimitry Andric if (!ParamType->hasFloatingRepresentation()) 225206c3fb27SDimitry Andric return false; 225306c3fb27SDimitry Andric 225406c3fb27SDimitry Andric // The promoted-to IR type also needs to support nofpclass. 225506c3fb27SDimitry Andric llvm::Type *IRTy = AI.getCoerceToType(); 225606c3fb27SDimitry Andric if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy)) 225706c3fb27SDimitry Andric return true; 225806c3fb27SDimitry Andric 225906c3fb27SDimitry Andric if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) { 226006c3fb27SDimitry Andric return !IsReturn && AI.getCanBeFlattened() && 226106c3fb27SDimitry Andric llvm::all_of(ST->elements(), [](llvm::Type *Ty) { 226206c3fb27SDimitry Andric return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty); 226306c3fb27SDimitry Andric }); 226406c3fb27SDimitry Andric } 226506c3fb27SDimitry Andric 226606c3fb27SDimitry Andric return false; 226706c3fb27SDimitry Andric } 226806c3fb27SDimitry Andric 226906c3fb27SDimitry Andric /// Return the nofpclass mask that can be applied to floating-point parameters. 227006c3fb27SDimitry Andric static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) { 227106c3fb27SDimitry Andric llvm::FPClassTest Mask = llvm::fcNone; 227206c3fb27SDimitry Andric if (LangOpts.NoHonorInfs) 227306c3fb27SDimitry Andric Mask |= llvm::fcInf; 227406c3fb27SDimitry Andric if (LangOpts.NoHonorNaNs) 227506c3fb27SDimitry Andric Mask |= llvm::fcNan; 227606c3fb27SDimitry Andric return Mask; 227706c3fb27SDimitry Andric } 227806c3fb27SDimitry Andric 22795f757f3fSDimitry Andric void CodeGenModule::AdjustMemoryAttribute(StringRef Name, 22805f757f3fSDimitry Andric CGCalleeInfo CalleeInfo, 22815f757f3fSDimitry Andric llvm::AttributeList &Attrs) { 22825f757f3fSDimitry Andric if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) { 22835f757f3fSDimitry Andric Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory); 22845f757f3fSDimitry Andric llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects( 22855f757f3fSDimitry Andric getLLVMContext(), llvm::MemoryEffects::writeOnly()); 22865f757f3fSDimitry Andric Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr); 22875f757f3fSDimitry Andric } 22885f757f3fSDimitry Andric } 22895f757f3fSDimitry Andric 22905ffd83dbSDimitry Andric /// Construct the IR attribute list of a function or call. 22915ffd83dbSDimitry Andric /// 22925ffd83dbSDimitry Andric /// When adding an attribute, please consider where it should be handled: 22935ffd83dbSDimitry Andric /// 22945ffd83dbSDimitry Andric /// - getDefaultFunctionAttributes is for attributes that are essentially 22955ffd83dbSDimitry Andric /// part of the global target configuration (but perhaps can be 22965ffd83dbSDimitry Andric /// overridden on a per-function basis). Adding attributes there 22975ffd83dbSDimitry Andric /// will cause them to also be set in frontends that build on Clang's 22985ffd83dbSDimitry Andric /// target-configuration logic, as well as for code defined in library 22995ffd83dbSDimitry Andric /// modules such as CUDA's libdevice. 23005ffd83dbSDimitry Andric /// 23015ffd83dbSDimitry Andric /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 23025ffd83dbSDimitry Andric /// and adds declaration-specific, convention-specific, and 23035ffd83dbSDimitry Andric /// frontend-specific logic. The last is of particular importance: 23045ffd83dbSDimitry Andric /// attributes that restrict how the frontend generates code must be 23055ffd83dbSDimitry Andric /// added here rather than getDefaultFunctionAttributes. 23065ffd83dbSDimitry Andric /// 2307fe6060f1SDimitry Andric void CodeGenModule::ConstructAttributeList(StringRef Name, 2308fe6060f1SDimitry Andric const CGFunctionInfo &FI, 2309fe6060f1SDimitry Andric CGCalleeInfo CalleeInfo, 2310fe6060f1SDimitry Andric llvm::AttributeList &AttrList, 2311fe6060f1SDimitry Andric unsigned &CallingConv, 2312fe6060f1SDimitry Andric bool AttrOnCallSite, bool IsThunk) { 231304eeddc0SDimitry Andric llvm::AttrBuilder FuncAttrs(getLLVMContext()); 231404eeddc0SDimitry Andric llvm::AttrBuilder RetAttrs(getLLVMContext()); 23150b57cec5SDimitry Andric 23165ffd83dbSDimitry Andric // Collect function IR attributes from the CC lowering. 23175ffd83dbSDimitry Andric // We'll collect the paramete and result attributes later. 23180b57cec5SDimitry Andric CallingConv = FI.getEffectiveCallingConvention(); 23190b57cec5SDimitry Andric if (FI.isNoReturn()) 23200b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 23215ffd83dbSDimitry Andric if (FI.isCmseNSCall()) 23225ffd83dbSDimitry Andric FuncAttrs.addAttribute("cmse_nonsecure_call"); 23230b57cec5SDimitry Andric 23245ffd83dbSDimitry Andric // Collect function IR attributes from the callee prototype if we have one. 23250b57cec5SDimitry Andric AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 23260b57cec5SDimitry Andric CalleeInfo.getCalleeFunctionProtoType()); 23270b57cec5SDimitry Andric 23280b57cec5SDimitry Andric const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 23290b57cec5SDimitry Andric 2330349cc55cSDimitry Andric // Attach assumption attributes to the declaration. If this is a call 2331349cc55cSDimitry Andric // site, attach assumptions from the caller to the call as well. 23320fca6ea1SDimitry Andric AddAttributesFromOMPAssumes(FuncAttrs, TargetDecl); 2333349cc55cSDimitry Andric 23340b57cec5SDimitry Andric bool HasOptnone = false; 23355ffd83dbSDimitry Andric // The NoBuiltinAttr attached to the target FunctionDecl. 23365ffd83dbSDimitry Andric const NoBuiltinAttr *NBA = nullptr; 23375ffd83dbSDimitry Andric 2338bdd1243dSDimitry Andric // Some ABIs may result in additional accesses to arguments that may 2339bdd1243dSDimitry Andric // otherwise not be present. 2340bdd1243dSDimitry Andric auto AddPotentialArgAccess = [&]() { 2341bdd1243dSDimitry Andric llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory); 2342bdd1243dSDimitry Andric if (A.isValid()) 2343bdd1243dSDimitry Andric FuncAttrs.addMemoryAttr(A.getMemoryEffects() | 2344bdd1243dSDimitry Andric llvm::MemoryEffects::argMemOnly()); 2345bdd1243dSDimitry Andric }; 2346bdd1243dSDimitry Andric 23475ffd83dbSDimitry Andric // Collect function IR attributes based on declaration-specific 23485ffd83dbSDimitry Andric // information. 23490b57cec5SDimitry Andric // FIXME: handle sseregparm someday... 23500b57cec5SDimitry Andric if (TargetDecl) { 23510b57cec5SDimitry Andric if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 23520b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 23530b57cec5SDimitry Andric if (TargetDecl->hasAttr<NoThrowAttr>()) 23540b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 23550b57cec5SDimitry Andric if (TargetDecl->hasAttr<NoReturnAttr>()) 23560b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 23570b57cec5SDimitry Andric if (TargetDecl->hasAttr<ColdAttr>()) 23580b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::Cold); 2359e8d8bef9SDimitry Andric if (TargetDecl->hasAttr<HotAttr>()) 2360e8d8bef9SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::Hot); 23610b57cec5SDimitry Andric if (TargetDecl->hasAttr<NoDuplicateAttr>()) 23620b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 23630b57cec5SDimitry Andric if (TargetDecl->hasAttr<ConvergentAttr>()) 23640b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::Convergent); 23650b57cec5SDimitry Andric 23660b57cec5SDimitry Andric if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 23670b57cec5SDimitry Andric AddAttributesFromFunctionProtoType( 23680b57cec5SDimitry Andric getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 23695ffd83dbSDimitry Andric if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 23705ffd83dbSDimitry Andric // A sane operator new returns a non-aliasing pointer. 23715ffd83dbSDimitry Andric auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 23725ffd83dbSDimitry Andric if (getCodeGenOpts().AssumeSaneOperatorNew && 23735ffd83dbSDimitry Andric (Kind == OO_New || Kind == OO_Array_New)) 23745ffd83dbSDimitry Andric RetAttrs.addAttribute(llvm::Attribute::NoAlias); 23755ffd83dbSDimitry Andric } 23760b57cec5SDimitry Andric const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2377480093f4SDimitry Andric const bool IsVirtualCall = MD && MD->isVirtual(); 2378480093f4SDimitry Andric // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2379480093f4SDimitry Andric // virtual function. These attributes are not inherited by overloads. 2380480093f4SDimitry Andric if (!(AttrOnCallSite && IsVirtualCall)) { 2381480093f4SDimitry Andric if (Fn->isNoReturn()) 23820b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 23835ffd83dbSDimitry Andric NBA = Fn->getAttr<NoBuiltinAttr>(); 2384480093f4SDimitry Andric } 238506c3fb27SDimitry Andric } 238606c3fb27SDimitry Andric 238706c3fb27SDimitry Andric if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) { 2388e8d8bef9SDimitry Andric // Only place nomerge attribute on call sites, never functions. This 2389e8d8bef9SDimitry Andric // allows it to work on indirect virtual function calls. 2390e8d8bef9SDimitry Andric if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2391e8d8bef9SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 23920b57cec5SDimitry Andric } 23930b57cec5SDimitry Andric 23940b57cec5SDimitry Andric // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 23950b57cec5SDimitry Andric if (TargetDecl->hasAttr<ConstAttr>()) { 2396bdd1243dSDimitry Andric FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none()); 23970b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2398d409305fSDimitry Andric // gcc specifies that 'const' functions have greater restrictions than 2399d409305fSDimitry Andric // 'pure' functions, so they also cannot have infinite loops. 2400d409305fSDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 24010b57cec5SDimitry Andric } else if (TargetDecl->hasAttr<PureAttr>()) { 2402bdd1243dSDimitry Andric FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); 24030b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2404d409305fSDimitry Andric // gcc specifies that 'pure' functions cannot have infinite loops. 2405d409305fSDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 24060b57cec5SDimitry Andric } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 24075f757f3fSDimitry Andric FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly()); 24080b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 24090b57cec5SDimitry Andric } 24100b57cec5SDimitry Andric if (TargetDecl->hasAttr<RestrictAttr>()) 24110b57cec5SDimitry Andric RetAttrs.addAttribute(llvm::Attribute::NoAlias); 24120b57cec5SDimitry Andric if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 24130b57cec5SDimitry Andric !CodeGenOpts.NullPointerIsValid) 24140b57cec5SDimitry Andric RetAttrs.addAttribute(llvm::Attribute::NonNull); 24150b57cec5SDimitry Andric if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 24160b57cec5SDimitry Andric FuncAttrs.addAttribute("no_caller_saved_registers"); 24170b57cec5SDimitry Andric if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 24180b57cec5SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2419e8d8bef9SDimitry Andric if (TargetDecl->hasAttr<LeafAttr>()) 2420e8d8bef9SDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 24210b57cec5SDimitry Andric 24220b57cec5SDimitry Andric HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 24230b57cec5SDimitry Andric if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2424bdd1243dSDimitry Andric std::optional<unsigned> NumElemsParam; 24250b57cec5SDimitry Andric if (AllocSize->getNumElemsParam().isValid()) 24260b57cec5SDimitry Andric NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 24270b57cec5SDimitry Andric FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 24280b57cec5SDimitry Andric NumElemsParam); 24290b57cec5SDimitry Andric } 24300b57cec5SDimitry Andric 24315ffd83dbSDimitry Andric if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 24320b57cec5SDimitry Andric if (getLangOpts().OpenCLVersion <= 120) { 24330b57cec5SDimitry Andric // OpenCL v1.2 Work groups are always uniform 24340b57cec5SDimitry Andric FuncAttrs.addAttribute("uniform-work-group-size", "true"); 24350b57cec5SDimitry Andric } else { 24360b57cec5SDimitry Andric // OpenCL v2.0 Work groups may be whether uniform or not. 24370b57cec5SDimitry Andric // '-cl-uniform-work-group-size' compile option gets a hint 24380b57cec5SDimitry Andric // to the compiler that the global work-size be a multiple of 24390b57cec5SDimitry Andric // the work-group size specified to clEnqueueNDRangeKernel 24400b57cec5SDimitry Andric // (i.e. work groups are uniform). 24415f757f3fSDimitry Andric FuncAttrs.addAttribute( 24425f757f3fSDimitry Andric "uniform-work-group-size", 24435f757f3fSDimitry Andric llvm::toStringRef(getLangOpts().OffloadUniformBlock)); 24440b57cec5SDimitry Andric } 24450b57cec5SDimitry Andric } 24465f757f3fSDimitry Andric 24475f757f3fSDimitry Andric if (TargetDecl->hasAttr<CUDAGlobalAttr>() && 24485f757f3fSDimitry Andric getLangOpts().OffloadUniformBlock) 24495f757f3fSDimitry Andric FuncAttrs.addAttribute("uniform-work-group-size", "true"); 24505f757f3fSDimitry Andric 24515f757f3fSDimitry Andric if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>()) 24525f757f3fSDimitry Andric FuncAttrs.addAttribute("aarch64_pstate_sm_body"); 24535ffd83dbSDimitry Andric } 24540b57cec5SDimitry Andric 24555ffd83dbSDimitry Andric // Attach "no-builtins" attributes to: 24565ffd83dbSDimitry Andric // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 24575ffd83dbSDimitry Andric // * definitions: "no-builtins" or "no-builtin-<name>" only. 24585ffd83dbSDimitry Andric // The attributes can come from: 24595ffd83dbSDimitry Andric // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 24605ffd83dbSDimitry Andric // * FunctionDecl attributes: __attribute__((no_builtin(...))) 24615ffd83dbSDimitry Andric addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 24625ffd83dbSDimitry Andric 24635ffd83dbSDimitry Andric // Collect function IR attributes based on global settiings. 24645ffd83dbSDimitry Andric getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 24655ffd83dbSDimitry Andric 24665ffd83dbSDimitry Andric // Override some default IR attributes based on declaration-specific 24675ffd83dbSDimitry Andric // information. 24685ffd83dbSDimitry Andric if (TargetDecl) { 24695ffd83dbSDimitry Andric if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 24705ffd83dbSDimitry Andric FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 24715ffd83dbSDimitry Andric if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 24725ffd83dbSDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 24735ffd83dbSDimitry Andric if (TargetDecl->hasAttr<NoSplitStackAttr>()) 24745ffd83dbSDimitry Andric FuncAttrs.removeAttribute("split-stack"); 247581ad6265SDimitry Andric if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 247681ad6265SDimitry Andric // A function "__attribute__((...))" overrides the command-line flag. 247781ad6265SDimitry Andric auto Kind = 247881ad6265SDimitry Andric TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 247981ad6265SDimitry Andric FuncAttrs.removeAttribute("zero-call-used-regs"); 248081ad6265SDimitry Andric FuncAttrs.addAttribute( 248181ad6265SDimitry Andric "zero-call-used-regs", 248281ad6265SDimitry Andric ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 248381ad6265SDimitry Andric } 24845ffd83dbSDimitry Andric 24855ffd83dbSDimitry Andric // Add NonLazyBind attribute to function declarations when -fno-plt 24865ffd83dbSDimitry Andric // is used. 24875ffd83dbSDimitry Andric // FIXME: what if we just haven't processed the function definition 24885ffd83dbSDimitry Andric // yet, or if it's an external definition like C99 inline? 24895ffd83dbSDimitry Andric if (CodeGenOpts.NoPLT) { 24905ffd83dbSDimitry Andric if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 24915ffd83dbSDimitry Andric if (!Fn->isDefined() && !AttrOnCallSite) { 24925ffd83dbSDimitry Andric FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 24935ffd83dbSDimitry Andric } 24945ffd83dbSDimitry Andric } 24955ffd83dbSDimitry Andric } 24965ffd83dbSDimitry Andric } 24975ffd83dbSDimitry Andric 2498fe6060f1SDimitry Andric // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2499fe6060f1SDimitry Andric // functions with -funique-internal-linkage-names. 2500fe6060f1SDimitry Andric if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2501bdd1243dSDimitry Andric if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2502bdd1243dSDimitry Andric if (!FD->isExternallyVisible()) 2503fe6060f1SDimitry Andric FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2504fe6060f1SDimitry Andric "selected"); 2505fe6060f1SDimitry Andric } 2506fe6060f1SDimitry Andric } 2507fe6060f1SDimitry Andric 25085ffd83dbSDimitry Andric // Collect non-call-site function IR attributes from declaration-specific 25095ffd83dbSDimitry Andric // information. 25100b57cec5SDimitry Andric if (!AttrOnCallSite) { 25115ffd83dbSDimitry Andric if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 25125ffd83dbSDimitry Andric FuncAttrs.addAttribute("cmse_nonsecure_entry"); 25130b57cec5SDimitry Andric 25145ffd83dbSDimitry Andric // Whether tail calls are enabled. 25155ffd83dbSDimitry Andric auto shouldDisableTailCalls = [&] { 25165ffd83dbSDimitry Andric // Should this be honored in getDefaultFunctionAttributes? 25170b57cec5SDimitry Andric if (CodeGenOpts.DisableTailCalls) 25185ffd83dbSDimitry Andric return true; 25195ffd83dbSDimitry Andric 25205ffd83dbSDimitry Andric if (!TargetDecl) 25215ffd83dbSDimitry Andric return false; 25225ffd83dbSDimitry Andric 25230b57cec5SDimitry Andric if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 25240b57cec5SDimitry Andric TargetDecl->hasAttr<AnyX86InterruptAttr>()) 25255ffd83dbSDimitry Andric return true; 25265ffd83dbSDimitry Andric 25275ffd83dbSDimitry Andric if (CodeGenOpts.NoEscapingBlockTailCalls) { 25280b57cec5SDimitry Andric if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 25290b57cec5SDimitry Andric if (!BD->doesNotEscape()) 25305ffd83dbSDimitry Andric return true; 25310b57cec5SDimitry Andric } 25320b57cec5SDimitry Andric 25335ffd83dbSDimitry Andric return false; 25345ffd83dbSDimitry Andric }; 2535fe6060f1SDimitry Andric if (shouldDisableTailCalls()) 2536fe6060f1SDimitry Andric FuncAttrs.addAttribute("disable-tail-calls", "true"); 25375ffd83dbSDimitry Andric 25385ffd83dbSDimitry Andric // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 25395ffd83dbSDimitry Andric // handles these separately to set them based on the global defaults. 25400b57cec5SDimitry Andric GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 25410b57cec5SDimitry Andric } 25420b57cec5SDimitry Andric 25435ffd83dbSDimitry Andric // Collect attributes from arguments and return values. 25440b57cec5SDimitry Andric ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 25450b57cec5SDimitry Andric 25460b57cec5SDimitry Andric QualType RetTy = FI.getReturnType(); 25470b57cec5SDimitry Andric const ABIArgInfo &RetAI = FI.getReturnInfo(); 2548fe6060f1SDimitry Andric const llvm::DataLayout &DL = getDataLayout(); 2549fe6060f1SDimitry Andric 2550fe6060f1SDimitry Andric // Determine if the return type could be partially undef 2551bdd1243dSDimitry Andric if (CodeGenOpts.EnableNoundefAttrs && 2552bdd1243dSDimitry Andric HasStrictReturn(*this, RetTy, TargetDecl)) { 2553fe6060f1SDimitry Andric if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2554fe6060f1SDimitry Andric DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2555fe6060f1SDimitry Andric RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2556fe6060f1SDimitry Andric } 2557fe6060f1SDimitry Andric 25580b57cec5SDimitry Andric switch (RetAI.getKind()) { 25590b57cec5SDimitry Andric case ABIArgInfo::Extend: 25600b57cec5SDimitry Andric if (RetAI.isSignExt()) 25610b57cec5SDimitry Andric RetAttrs.addAttribute(llvm::Attribute::SExt); 25620b57cec5SDimitry Andric else 25630b57cec5SDimitry Andric RetAttrs.addAttribute(llvm::Attribute::ZExt); 2564bdd1243dSDimitry Andric [[fallthrough]]; 25650b57cec5SDimitry Andric case ABIArgInfo::Direct: 25660b57cec5SDimitry Andric if (RetAI.getInReg()) 25670b57cec5SDimitry Andric RetAttrs.addAttribute(llvm::Attribute::InReg); 256806c3fb27SDimitry Andric 256906c3fb27SDimitry Andric if (canApplyNoFPClass(RetAI, RetTy, true)) 257006c3fb27SDimitry Andric RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 257106c3fb27SDimitry Andric 25720b57cec5SDimitry Andric break; 25730b57cec5SDimitry Andric case ABIArgInfo::Ignore: 25740b57cec5SDimitry Andric break; 25750b57cec5SDimitry Andric 25760b57cec5SDimitry Andric case ABIArgInfo::InAlloca: 25770b57cec5SDimitry Andric case ABIArgInfo::Indirect: { 25780b57cec5SDimitry Andric // inalloca and sret disable readnone and readonly 2579bdd1243dSDimitry Andric AddPotentialArgAccess(); 25800b57cec5SDimitry Andric break; 25810b57cec5SDimitry Andric } 25820b57cec5SDimitry Andric 25830b57cec5SDimitry Andric case ABIArgInfo::CoerceAndExpand: 25840b57cec5SDimitry Andric break; 25850b57cec5SDimitry Andric 25860b57cec5SDimitry Andric case ABIArgInfo::Expand: 2587e8d8bef9SDimitry Andric case ABIArgInfo::IndirectAliased: 25880b57cec5SDimitry Andric llvm_unreachable("Invalid ABI kind for return argument"); 25890b57cec5SDimitry Andric } 25900b57cec5SDimitry Andric 2591fe6060f1SDimitry Andric if (!IsThunk) { 2592fe6060f1SDimitry Andric // FIXME: fix this properly, https://reviews.llvm.org/D100388 25930b57cec5SDimitry Andric if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 25940b57cec5SDimitry Andric QualType PTy = RefTy->getPointeeType(); 25950b57cec5SDimitry Andric if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 25965ffd83dbSDimitry Andric RetAttrs.addDereferenceableAttr( 25975ffd83dbSDimitry Andric getMinimumObjectSize(PTy).getQuantity()); 2598bdd1243dSDimitry Andric if (getTypes().getTargetAddressSpace(PTy) == 0 && 25990b57cec5SDimitry Andric !CodeGenOpts.NullPointerIsValid) 26000b57cec5SDimitry Andric RetAttrs.addAttribute(llvm::Attribute::NonNull); 26015ffd83dbSDimitry Andric if (PTy->isObjectType()) { 26025ffd83dbSDimitry Andric llvm::Align Alignment = 26035ffd83dbSDimitry Andric getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 26045ffd83dbSDimitry Andric RetAttrs.addAlignmentAttr(Alignment); 26055ffd83dbSDimitry Andric } 26060b57cec5SDimitry Andric } 2607fe6060f1SDimitry Andric } 26080b57cec5SDimitry Andric 26090b57cec5SDimitry Andric bool hasUsedSRet = false; 26100b57cec5SDimitry Andric SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 26110b57cec5SDimitry Andric 26120b57cec5SDimitry Andric // Attach attributes to sret. 26130b57cec5SDimitry Andric if (IRFunctionArgs.hasSRetArg()) { 261404eeddc0SDimitry Andric llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2615e8d8bef9SDimitry Andric SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2616297eecfbSDimitry Andric SRETAttrs.addAttribute(llvm::Attribute::Writable); 2617297eecfbSDimitry Andric SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind); 26180b57cec5SDimitry Andric hasUsedSRet = true; 26190b57cec5SDimitry Andric if (RetAI.getInReg()) 26200b57cec5SDimitry Andric SRETAttrs.addAttribute(llvm::Attribute::InReg); 26215ffd83dbSDimitry Andric SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 26220b57cec5SDimitry Andric ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 26230b57cec5SDimitry Andric llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 26240b57cec5SDimitry Andric } 26250b57cec5SDimitry Andric 26260b57cec5SDimitry Andric // Attach attributes to inalloca argument. 26270b57cec5SDimitry Andric if (IRFunctionArgs.hasInallocaArg()) { 262804eeddc0SDimitry Andric llvm::AttrBuilder Attrs(getLLVMContext()); 2629fe6060f1SDimitry Andric Attrs.addInAllocaAttr(FI.getArgStruct()); 26300b57cec5SDimitry Andric ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 26310b57cec5SDimitry Andric llvm::AttributeSet::get(getLLVMContext(), Attrs); 26320b57cec5SDimitry Andric } 26330b57cec5SDimitry Andric 2634fe6060f1SDimitry Andric // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2635fe6060f1SDimitry Andric // unless this is a thunk function. 2636fe6060f1SDimitry Andric // FIXME: fix this properly, https://reviews.llvm.org/D100388 2637e8d8bef9SDimitry Andric if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2638fe6060f1SDimitry Andric !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2639e8d8bef9SDimitry Andric auto IRArgs = IRFunctionArgs.getIRArgs(0); 2640e8d8bef9SDimitry Andric 2641e8d8bef9SDimitry Andric assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2642e8d8bef9SDimitry Andric 264304eeddc0SDimitry Andric llvm::AttrBuilder Attrs(getLLVMContext()); 2644e8d8bef9SDimitry Andric 2645fe6060f1SDimitry Andric QualType ThisTy = 26465f757f3fSDimitry Andric FI.arg_begin()->type.getTypePtr()->getPointeeType(); 2647fe6060f1SDimitry Andric 2648e8d8bef9SDimitry Andric if (!CodeGenOpts.NullPointerIsValid && 2649bdd1243dSDimitry Andric getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2650e8d8bef9SDimitry Andric Attrs.addAttribute(llvm::Attribute::NonNull); 2651fe6060f1SDimitry Andric Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2652e8d8bef9SDimitry Andric } else { 2653e8d8bef9SDimitry Andric // FIXME dereferenceable should be correct here, regardless of 2654e8d8bef9SDimitry Andric // NullPointerIsValid. However, dereferenceable currently does not always 2655e8d8bef9SDimitry Andric // respect NullPointerIsValid and may imply nonnull and break the program. 2656e8d8bef9SDimitry Andric // See https://reviews.llvm.org/D66618 for discussions. 2657e8d8bef9SDimitry Andric Attrs.addDereferenceableOrNullAttr( 2658e8d8bef9SDimitry Andric getMinimumObjectSize( 2659e8d8bef9SDimitry Andric FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2660e8d8bef9SDimitry Andric .getQuantity()); 2661e8d8bef9SDimitry Andric } 2662e8d8bef9SDimitry Andric 2663fe6060f1SDimitry Andric llvm::Align Alignment = 2664fe6060f1SDimitry Andric getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2665fe6060f1SDimitry Andric /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2666fe6060f1SDimitry Andric .getAsAlign(); 2667fe6060f1SDimitry Andric Attrs.addAlignmentAttr(Alignment); 2668fe6060f1SDimitry Andric 2669e8d8bef9SDimitry Andric ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2670e8d8bef9SDimitry Andric } 2671e8d8bef9SDimitry Andric 26720b57cec5SDimitry Andric unsigned ArgNo = 0; 26730b57cec5SDimitry Andric for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 26740b57cec5SDimitry Andric E = FI.arg_end(); 26750b57cec5SDimitry Andric I != E; ++I, ++ArgNo) { 26760b57cec5SDimitry Andric QualType ParamType = I->type; 26770b57cec5SDimitry Andric const ABIArgInfo &AI = I->info; 267804eeddc0SDimitry Andric llvm::AttrBuilder Attrs(getLLVMContext()); 26790b57cec5SDimitry Andric 26800b57cec5SDimitry Andric // Add attribute for padding argument, if necessary. 26810b57cec5SDimitry Andric if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 26820b57cec5SDimitry Andric if (AI.getPaddingInReg()) { 26830b57cec5SDimitry Andric ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 26840b57cec5SDimitry Andric llvm::AttributeSet::get( 26850b57cec5SDimitry Andric getLLVMContext(), 268604eeddc0SDimitry Andric llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 26870b57cec5SDimitry Andric } 26880b57cec5SDimitry Andric } 26890b57cec5SDimitry Andric 2690fe6060f1SDimitry Andric // Decide whether the argument we're handling could be partially undef 269181ad6265SDimitry Andric if (CodeGenOpts.EnableNoundefAttrs && 269204eeddc0SDimitry Andric DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2693fe6060f1SDimitry Andric Attrs.addAttribute(llvm::Attribute::NoUndef); 269404eeddc0SDimitry Andric } 2695fe6060f1SDimitry Andric 26960b57cec5SDimitry Andric // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 26970b57cec5SDimitry Andric // have the corresponding parameter variable. It doesn't make 26980b57cec5SDimitry Andric // sense to do it here because parameters are so messed up. 26990b57cec5SDimitry Andric switch (AI.getKind()) { 27000b57cec5SDimitry Andric case ABIArgInfo::Extend: 27010b57cec5SDimitry Andric if (AI.isSignExt()) 27020b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::SExt); 27030b57cec5SDimitry Andric else 27040b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::ZExt); 2705bdd1243dSDimitry Andric [[fallthrough]]; 27060b57cec5SDimitry Andric case ABIArgInfo::Direct: 27070b57cec5SDimitry Andric if (ArgNo == 0 && FI.isChainCall()) 27080b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::Nest); 27090b57cec5SDimitry Andric else if (AI.getInReg()) 27100b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::InReg); 2711fe6060f1SDimitry Andric Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 27120b57cec5SDimitry Andric 271306c3fb27SDimitry Andric if (canApplyNoFPClass(AI, ParamType, false)) 271406c3fb27SDimitry Andric Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts())); 271506c3fb27SDimitry Andric break; 27160b57cec5SDimitry Andric case ABIArgInfo::Indirect: { 27170b57cec5SDimitry Andric if (AI.getInReg()) 27180b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::InReg); 27190b57cec5SDimitry Andric 27200b57cec5SDimitry Andric if (AI.getIndirectByVal()) 27210b57cec5SDimitry Andric Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 27220b57cec5SDimitry Andric 2723e8d8bef9SDimitry Andric auto *Decl = ParamType->getAsRecordDecl(); 2724e8d8bef9SDimitry Andric if (CodeGenOpts.PassByValueIsNoAlias && Decl && 27255f757f3fSDimitry Andric Decl->getArgPassingRestrictions() == 27265f757f3fSDimitry Andric RecordArgPassingKind::CanPassInRegs) 2727e8d8bef9SDimitry Andric // When calling the function, the pointer passed in will be the only 2728e8d8bef9SDimitry Andric // reference to the underlying object. Mark it accordingly. 2729e8d8bef9SDimitry Andric Attrs.addAttribute(llvm::Attribute::NoAlias); 2730e8d8bef9SDimitry Andric 2731e8d8bef9SDimitry Andric // TODO: We could add the byref attribute if not byval, but it would 2732e8d8bef9SDimitry Andric // require updating many testcases. 2733e8d8bef9SDimitry Andric 27340b57cec5SDimitry Andric CharUnits Align = AI.getIndirectAlign(); 27350b57cec5SDimitry Andric 27360b57cec5SDimitry Andric // In a byval argument, it is important that the required 27370b57cec5SDimitry Andric // alignment of the type is honored, as LLVM might be creating a 27380b57cec5SDimitry Andric // *new* stack object, and needs to know what alignment to give 27390b57cec5SDimitry Andric // it. (Sometimes it can deduce a sensible alignment on its own, 27400b57cec5SDimitry Andric // but not if clang decides it must emit a packed struct, or the 27410b57cec5SDimitry Andric // user specifies increased alignment requirements.) 27420b57cec5SDimitry Andric // 27430b57cec5SDimitry Andric // This is different from indirect *not* byval, where the object 27440b57cec5SDimitry Andric // exists already, and the align attribute is purely 27450b57cec5SDimitry Andric // informative. 27460b57cec5SDimitry Andric assert(!Align.isZero()); 27470b57cec5SDimitry Andric 27480b57cec5SDimitry Andric // For now, only add this when we have a byval argument. 27490b57cec5SDimitry Andric // TODO: be less lazy about updating test cases. 27500b57cec5SDimitry Andric if (AI.getIndirectByVal()) 27510b57cec5SDimitry Andric Attrs.addAlignmentAttr(Align.getQuantity()); 27520b57cec5SDimitry Andric 27530b57cec5SDimitry Andric // byval disables readnone and readonly. 2754bdd1243dSDimitry Andric AddPotentialArgAccess(); 2755e8d8bef9SDimitry Andric break; 2756e8d8bef9SDimitry Andric } 2757e8d8bef9SDimitry Andric case ABIArgInfo::IndirectAliased: { 2758e8d8bef9SDimitry Andric CharUnits Align = AI.getIndirectAlign(); 2759e8d8bef9SDimitry Andric Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2760e8d8bef9SDimitry Andric Attrs.addAlignmentAttr(Align.getQuantity()); 27610b57cec5SDimitry Andric break; 27620b57cec5SDimitry Andric } 27630b57cec5SDimitry Andric case ABIArgInfo::Ignore: 27640b57cec5SDimitry Andric case ABIArgInfo::Expand: 27650b57cec5SDimitry Andric case ABIArgInfo::CoerceAndExpand: 27660b57cec5SDimitry Andric break; 27670b57cec5SDimitry Andric 27680b57cec5SDimitry Andric case ABIArgInfo::InAlloca: 27690b57cec5SDimitry Andric // inalloca disables readnone and readonly. 2770bdd1243dSDimitry Andric AddPotentialArgAccess(); 27710b57cec5SDimitry Andric continue; 27720b57cec5SDimitry Andric } 27730b57cec5SDimitry Andric 27740b57cec5SDimitry Andric if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 27750b57cec5SDimitry Andric QualType PTy = RefTy->getPointeeType(); 27760b57cec5SDimitry Andric if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 27775ffd83dbSDimitry Andric Attrs.addDereferenceableAttr( 27785ffd83dbSDimitry Andric getMinimumObjectSize(PTy).getQuantity()); 2779bdd1243dSDimitry Andric if (getTypes().getTargetAddressSpace(PTy) == 0 && 27800b57cec5SDimitry Andric !CodeGenOpts.NullPointerIsValid) 27810b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::NonNull); 27825ffd83dbSDimitry Andric if (PTy->isObjectType()) { 27835ffd83dbSDimitry Andric llvm::Align Alignment = 27845ffd83dbSDimitry Andric getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 27855ffd83dbSDimitry Andric Attrs.addAlignmentAttr(Alignment); 27865ffd83dbSDimitry Andric } 27870b57cec5SDimitry Andric } 27880b57cec5SDimitry Andric 278981ad6265SDimitry Andric // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 279081ad6265SDimitry Andric // > For arguments to a __kernel function declared to be a pointer to a 279181ad6265SDimitry Andric // > data type, the OpenCL compiler can assume that the pointee is always 279281ad6265SDimitry Andric // > appropriately aligned as required by the data type. 279381ad6265SDimitry Andric if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 279481ad6265SDimitry Andric ParamType->isPointerType()) { 279581ad6265SDimitry Andric QualType PTy = ParamType->getPointeeType(); 279681ad6265SDimitry Andric if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 279781ad6265SDimitry Andric llvm::Align Alignment = 279881ad6265SDimitry Andric getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 279981ad6265SDimitry Andric Attrs.addAlignmentAttr(Alignment); 280081ad6265SDimitry Andric } 280181ad6265SDimitry Andric } 280281ad6265SDimitry Andric 28030b57cec5SDimitry Andric switch (FI.getExtParameterInfo(ArgNo).getABI()) { 28040b57cec5SDimitry Andric case ParameterABI::Ordinary: 28050b57cec5SDimitry Andric break; 28060b57cec5SDimitry Andric 28070b57cec5SDimitry Andric case ParameterABI::SwiftIndirectResult: { 28080b57cec5SDimitry Andric // Add 'sret' if we haven't already used it for something, but 28090b57cec5SDimitry Andric // only if the result is void. 28100b57cec5SDimitry Andric if (!hasUsedSRet && RetTy->isVoidType()) { 2811e8d8bef9SDimitry Andric Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 28120b57cec5SDimitry Andric hasUsedSRet = true; 28130b57cec5SDimitry Andric } 28140b57cec5SDimitry Andric 28150b57cec5SDimitry Andric // Add 'noalias' in either case. 28160b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::NoAlias); 28170b57cec5SDimitry Andric 28180b57cec5SDimitry Andric // Add 'dereferenceable' and 'alignment'. 28190b57cec5SDimitry Andric auto PTy = ParamType->getPointeeType(); 28200b57cec5SDimitry Andric if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 28210b57cec5SDimitry Andric auto info = getContext().getTypeInfoInChars(PTy); 2822e8d8bef9SDimitry Andric Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2823e8d8bef9SDimitry Andric Attrs.addAlignmentAttr(info.Align.getAsAlign()); 28240b57cec5SDimitry Andric } 28250b57cec5SDimitry Andric break; 28260b57cec5SDimitry Andric } 28270b57cec5SDimitry Andric 28280b57cec5SDimitry Andric case ParameterABI::SwiftErrorResult: 28290b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::SwiftError); 28300b57cec5SDimitry Andric break; 28310b57cec5SDimitry Andric 28320b57cec5SDimitry Andric case ParameterABI::SwiftContext: 28330b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::SwiftSelf); 28340b57cec5SDimitry Andric break; 2835fe6060f1SDimitry Andric 2836fe6060f1SDimitry Andric case ParameterABI::SwiftAsyncContext: 2837fe6060f1SDimitry Andric Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2838fe6060f1SDimitry Andric break; 28390b57cec5SDimitry Andric } 28400b57cec5SDimitry Andric 28410b57cec5SDimitry Andric if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 28420b57cec5SDimitry Andric Attrs.addAttribute(llvm::Attribute::NoCapture); 28430b57cec5SDimitry Andric 28440b57cec5SDimitry Andric if (Attrs.hasAttributes()) { 28450b57cec5SDimitry Andric unsigned FirstIRArg, NumIRArgs; 28460b57cec5SDimitry Andric std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 28470b57cec5SDimitry Andric for (unsigned i = 0; i < NumIRArgs; i++) 284804eeddc0SDimitry Andric ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 284904eeddc0SDimitry Andric getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 28500b57cec5SDimitry Andric } 28510b57cec5SDimitry Andric } 28520b57cec5SDimitry Andric assert(ArgNo == FI.arg_size()); 28530b57cec5SDimitry Andric 28540b57cec5SDimitry Andric AttrList = llvm::AttributeList::get( 28550b57cec5SDimitry Andric getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 28560b57cec5SDimitry Andric llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 28570b57cec5SDimitry Andric } 28580b57cec5SDimitry Andric 28590b57cec5SDimitry Andric /// An argument came in as a promoted argument; demote it back to its 28600b57cec5SDimitry Andric /// declared type. 28610b57cec5SDimitry Andric static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 28620b57cec5SDimitry Andric const VarDecl *var, 28630b57cec5SDimitry Andric llvm::Value *value) { 28640b57cec5SDimitry Andric llvm::Type *varType = CGF.ConvertType(var->getType()); 28650b57cec5SDimitry Andric 28660b57cec5SDimitry Andric // This can happen with promotions that actually don't change the 28670b57cec5SDimitry Andric // underlying type, like the enum promotions. 28680b57cec5SDimitry Andric if (value->getType() == varType) return value; 28690b57cec5SDimitry Andric 28700b57cec5SDimitry Andric assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 28710b57cec5SDimitry Andric && "unexpected promotion type"); 28720b57cec5SDimitry Andric 28730b57cec5SDimitry Andric if (isa<llvm::IntegerType>(varType)) 28740b57cec5SDimitry Andric return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 28750b57cec5SDimitry Andric 28760b57cec5SDimitry Andric return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 28770b57cec5SDimitry Andric } 28780b57cec5SDimitry Andric 28790b57cec5SDimitry Andric /// Returns the attribute (either parameter attribute, or function 28800b57cec5SDimitry Andric /// attribute), which declares argument ArgNo to be non-null. 28810b57cec5SDimitry Andric static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 28820b57cec5SDimitry Andric QualType ArgType, unsigned ArgNo) { 28830b57cec5SDimitry Andric // FIXME: __attribute__((nonnull)) can also be applied to: 28840b57cec5SDimitry Andric // - references to pointers, where the pointee is known to be 28850b57cec5SDimitry Andric // nonnull (apparently a Clang extension) 28860b57cec5SDimitry Andric // - transparent unions containing pointers 28870b57cec5SDimitry Andric // In the former case, LLVM IR cannot represent the constraint. In 28880b57cec5SDimitry Andric // the latter case, we have no guarantee that the transparent union 28890b57cec5SDimitry Andric // is in fact passed as a pointer. 28900b57cec5SDimitry Andric if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 28910b57cec5SDimitry Andric return nullptr; 28920b57cec5SDimitry Andric // First, check attribute on parameter itself. 28930b57cec5SDimitry Andric if (PVD) { 28940b57cec5SDimitry Andric if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 28950b57cec5SDimitry Andric return ParmNNAttr; 28960b57cec5SDimitry Andric } 28970b57cec5SDimitry Andric // Check function attributes. 28980b57cec5SDimitry Andric if (!FD) 28990b57cec5SDimitry Andric return nullptr; 29000b57cec5SDimitry Andric for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 29010b57cec5SDimitry Andric if (NNAttr->isNonNull(ArgNo)) 29020b57cec5SDimitry Andric return NNAttr; 29030b57cec5SDimitry Andric } 29040b57cec5SDimitry Andric return nullptr; 29050b57cec5SDimitry Andric } 29060b57cec5SDimitry Andric 29070b57cec5SDimitry Andric namespace { 29080b57cec5SDimitry Andric struct CopyBackSwiftError final : EHScopeStack::Cleanup { 29090b57cec5SDimitry Andric Address Temp; 29100b57cec5SDimitry Andric Address Arg; 29110b57cec5SDimitry Andric CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 29120b57cec5SDimitry Andric void Emit(CodeGenFunction &CGF, Flags flags) override { 29130b57cec5SDimitry Andric llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 29140b57cec5SDimitry Andric CGF.Builder.CreateStore(errorValue, Arg); 29150b57cec5SDimitry Andric } 29160b57cec5SDimitry Andric }; 29170b57cec5SDimitry Andric } 29180b57cec5SDimitry Andric 29190b57cec5SDimitry Andric void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 29200b57cec5SDimitry Andric llvm::Function *Fn, 29210b57cec5SDimitry Andric const FunctionArgList &Args) { 29220b57cec5SDimitry Andric if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 29230b57cec5SDimitry Andric // Naked functions don't have prologues. 29240b57cec5SDimitry Andric return; 29250b57cec5SDimitry Andric 29260b57cec5SDimitry Andric // If this is an implicit-return-zero function, go ahead and 29270b57cec5SDimitry Andric // initialize the return value. TODO: it might be nice to have 29280b57cec5SDimitry Andric // a more general mechanism for this that didn't require synthesized 29290b57cec5SDimitry Andric // return statements. 29300b57cec5SDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 29310b57cec5SDimitry Andric if (FD->hasImplicitReturnZero()) { 29320b57cec5SDimitry Andric QualType RetTy = FD->getReturnType().getUnqualifiedType(); 29330b57cec5SDimitry Andric llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 29340b57cec5SDimitry Andric llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 29350b57cec5SDimitry Andric Builder.CreateStore(Zero, ReturnValue); 29360b57cec5SDimitry Andric } 29370b57cec5SDimitry Andric } 29380b57cec5SDimitry Andric 29390b57cec5SDimitry Andric // FIXME: We no longer need the types from FunctionArgList; lift up and 29400b57cec5SDimitry Andric // simplify. 29410b57cec5SDimitry Andric 29420b57cec5SDimitry Andric ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 29435ffd83dbSDimitry Andric assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 29440b57cec5SDimitry Andric 29450b57cec5SDimitry Andric // If we're using inalloca, all the memory arguments are GEPs off of the last 29460b57cec5SDimitry Andric // parameter, which is a pointer to the complete memory area. 29470b57cec5SDimitry Andric Address ArgStruct = Address::invalid(); 294806c3fb27SDimitry Andric if (IRFunctionArgs.hasInallocaArg()) 29495ffd83dbSDimitry Andric ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 295081ad6265SDimitry Andric FI.getArgStruct(), FI.getArgStructAlignment()); 29510b57cec5SDimitry Andric 29520b57cec5SDimitry Andric // Name the struct return parameter. 29530b57cec5SDimitry Andric if (IRFunctionArgs.hasSRetArg()) { 29545ffd83dbSDimitry Andric auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 29550b57cec5SDimitry Andric AI->setName("agg.result"); 29560b57cec5SDimitry Andric AI->addAttr(llvm::Attribute::NoAlias); 29570b57cec5SDimitry Andric } 29580b57cec5SDimitry Andric 29590b57cec5SDimitry Andric // Track if we received the parameter as a pointer (indirect, byval, or 29600b57cec5SDimitry Andric // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 29610b57cec5SDimitry Andric // into a local alloca for us. 29620b57cec5SDimitry Andric SmallVector<ParamValue, 16> ArgVals; 29630b57cec5SDimitry Andric ArgVals.reserve(Args.size()); 29640b57cec5SDimitry Andric 29650b57cec5SDimitry Andric // Create a pointer value for every parameter declaration. This usually 29660b57cec5SDimitry Andric // entails copying one or more LLVM IR arguments into an alloca. Don't push 29670b57cec5SDimitry Andric // any cleanups or do anything that might unwind. We do that separately, so 29680b57cec5SDimitry Andric // we can push the cleanups in the correct order for the ABI. 29690b57cec5SDimitry Andric assert(FI.arg_size() == Args.size() && 29700b57cec5SDimitry Andric "Mismatch between function signature & arguments."); 29710b57cec5SDimitry Andric unsigned ArgNo = 0; 29720b57cec5SDimitry Andric CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 29730b57cec5SDimitry Andric for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 29740b57cec5SDimitry Andric i != e; ++i, ++info_it, ++ArgNo) { 29750b57cec5SDimitry Andric const VarDecl *Arg = *i; 29760b57cec5SDimitry Andric const ABIArgInfo &ArgI = info_it->info; 29770b57cec5SDimitry Andric 29780b57cec5SDimitry Andric bool isPromoted = 29790b57cec5SDimitry Andric isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 29800b57cec5SDimitry Andric // We are converting from ABIArgInfo type to VarDecl type directly, unless 29810b57cec5SDimitry Andric // the parameter is promoted. In this case we convert to 29820b57cec5SDimitry Andric // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 29830b57cec5SDimitry Andric QualType Ty = isPromoted ? info_it->type : Arg->getType(); 29840b57cec5SDimitry Andric assert(hasScalarEvaluationKind(Ty) == 29850b57cec5SDimitry Andric hasScalarEvaluationKind(Arg->getType())); 29860b57cec5SDimitry Andric 29870b57cec5SDimitry Andric unsigned FirstIRArg, NumIRArgs; 29880b57cec5SDimitry Andric std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 29890b57cec5SDimitry Andric 29900b57cec5SDimitry Andric switch (ArgI.getKind()) { 29910b57cec5SDimitry Andric case ABIArgInfo::InAlloca: { 29920b57cec5SDimitry Andric assert(NumIRArgs == 0); 29930b57cec5SDimitry Andric auto FieldIndex = ArgI.getInAllocaFieldIndex(); 29940b57cec5SDimitry Andric Address V = 29950b57cec5SDimitry Andric Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 29965ffd83dbSDimitry Andric if (ArgI.getInAllocaIndirect()) 299781ad6265SDimitry Andric V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 29985ffd83dbSDimitry Andric getContext().getTypeAlignInChars(Ty)); 29990b57cec5SDimitry Andric ArgVals.push_back(ParamValue::forIndirect(V)); 30000b57cec5SDimitry Andric break; 30010b57cec5SDimitry Andric } 30020b57cec5SDimitry Andric 3003e8d8bef9SDimitry Andric case ABIArgInfo::Indirect: 3004e8d8bef9SDimitry Andric case ABIArgInfo::IndirectAliased: { 30050b57cec5SDimitry Andric assert(NumIRArgs == 1); 30060fca6ea1SDimitry Andric Address ParamAddr = makeNaturalAddressForPointer( 30070fca6ea1SDimitry Andric Fn->getArg(FirstIRArg), Ty, ArgI.getIndirectAlign(), false, nullptr, 30080fca6ea1SDimitry Andric nullptr, KnownNonNull); 30090b57cec5SDimitry Andric 30100b57cec5SDimitry Andric if (!hasScalarEvaluationKind(Ty)) { 30110b57cec5SDimitry Andric // Aggregates and complex variables are accessed by reference. All we 3012e8d8bef9SDimitry Andric // need to do is realign the value, if requested. Also, if the address 3013e8d8bef9SDimitry Andric // may be aliased, copy it to ensure that the parameter variable is 3014e8d8bef9SDimitry Andric // mutable and has a unique adress, as C requires. 3015e8d8bef9SDimitry Andric if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 30160fca6ea1SDimitry Andric RawAddress AlignedTemp = CreateMemTemp(Ty, "coerce"); 30170b57cec5SDimitry Andric 30180b57cec5SDimitry Andric // Copy from the incoming argument pointer to the temporary with the 30190b57cec5SDimitry Andric // appropriate alignment. 30200b57cec5SDimitry Andric // 30210b57cec5SDimitry Andric // FIXME: We should have a common utility for generating an aggregate 30220b57cec5SDimitry Andric // copy. 30230b57cec5SDimitry Andric CharUnits Size = getContext().getTypeSizeInChars(Ty); 30245ffd83dbSDimitry Andric Builder.CreateMemCpy( 30255ffd83dbSDimitry Andric AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 30260fca6ea1SDimitry Andric ParamAddr.emitRawPointer(*this), 30270fca6ea1SDimitry Andric ParamAddr.getAlignment().getAsAlign(), 30285ffd83dbSDimitry Andric llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 30290fca6ea1SDimitry Andric ParamAddr = AlignedTemp; 30300b57cec5SDimitry Andric } 30310fca6ea1SDimitry Andric ArgVals.push_back(ParamValue::forIndirect(ParamAddr)); 30320b57cec5SDimitry Andric } else { 30330b57cec5SDimitry Andric // Load scalar value from indirect argument. 30340b57cec5SDimitry Andric llvm::Value *V = 30350b57cec5SDimitry Andric EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 30360b57cec5SDimitry Andric 30370b57cec5SDimitry Andric if (isPromoted) 30380b57cec5SDimitry Andric V = emitArgumentDemotion(*this, Arg, V); 30390b57cec5SDimitry Andric ArgVals.push_back(ParamValue::forDirect(V)); 30400b57cec5SDimitry Andric } 30410b57cec5SDimitry Andric break; 30420b57cec5SDimitry Andric } 30430b57cec5SDimitry Andric 30440b57cec5SDimitry Andric case ABIArgInfo::Extend: 30450b57cec5SDimitry Andric case ABIArgInfo::Direct: { 30465ffd83dbSDimitry Andric auto AI = Fn->getArg(FirstIRArg); 30475ffd83dbSDimitry Andric llvm::Type *LTy = ConvertType(Arg->getType()); 30480b57cec5SDimitry Andric 30495ffd83dbSDimitry Andric // Prepare parameter attributes. So far, only attributes for pointer 30505ffd83dbSDimitry Andric // parameters are prepared. See 30515ffd83dbSDimitry Andric // http://llvm.org/docs/LangRef.html#paramattrs. 30525ffd83dbSDimitry Andric if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 30535ffd83dbSDimitry Andric ArgI.getCoerceToType()->isPointerTy()) { 30540b57cec5SDimitry Andric assert(NumIRArgs == 1); 30550b57cec5SDimitry Andric 30560b57cec5SDimitry Andric if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 30575ffd83dbSDimitry Andric // Set `nonnull` attribute if any. 30580b57cec5SDimitry Andric if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 30590b57cec5SDimitry Andric PVD->getFunctionScopeIndex()) && 30600b57cec5SDimitry Andric !CGM.getCodeGenOpts().NullPointerIsValid) 30610b57cec5SDimitry Andric AI->addAttr(llvm::Attribute::NonNull); 30620b57cec5SDimitry Andric 30630b57cec5SDimitry Andric QualType OTy = PVD->getOriginalType(); 30640b57cec5SDimitry Andric if (const auto *ArrTy = 30650b57cec5SDimitry Andric getContext().getAsConstantArrayType(OTy)) { 30660b57cec5SDimitry Andric // A C99 array parameter declaration with the static keyword also 30670b57cec5SDimitry Andric // indicates dereferenceability, and if the size is constant we can 30680b57cec5SDimitry Andric // use the dereferenceable attribute (which requires the size in 30690b57cec5SDimitry Andric // bytes). 30705f757f3fSDimitry Andric if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 30710b57cec5SDimitry Andric QualType ETy = ArrTy->getElementType(); 3072e8d8bef9SDimitry Andric llvm::Align Alignment = 3073e8d8bef9SDimitry Andric CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 307404eeddc0SDimitry Andric AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 30750fca6ea1SDimitry Andric uint64_t ArrSize = ArrTy->getZExtSize(); 30760b57cec5SDimitry Andric if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 30770b57cec5SDimitry Andric ArrSize) { 307804eeddc0SDimitry Andric llvm::AttrBuilder Attrs(getLLVMContext()); 30790b57cec5SDimitry Andric Attrs.addDereferenceableAttr( 30805ffd83dbSDimitry Andric getContext().getTypeSizeInChars(ETy).getQuantity() * 30815ffd83dbSDimitry Andric ArrSize); 30820b57cec5SDimitry Andric AI->addAttrs(Attrs); 30835ffd83dbSDimitry Andric } else if (getContext().getTargetInfo().getNullPointerValue( 30845ffd83dbSDimitry Andric ETy.getAddressSpace()) == 0 && 30850b57cec5SDimitry Andric !CGM.getCodeGenOpts().NullPointerIsValid) { 30860b57cec5SDimitry Andric AI->addAttr(llvm::Attribute::NonNull); 30870b57cec5SDimitry Andric } 30880b57cec5SDimitry Andric } 30890b57cec5SDimitry Andric } else if (const auto *ArrTy = 30900b57cec5SDimitry Andric getContext().getAsVariableArrayType(OTy)) { 30910b57cec5SDimitry Andric // For C99 VLAs with the static keyword, we don't know the size so 30920b57cec5SDimitry Andric // we can't use the dereferenceable attribute, but in addrspace(0) 30930b57cec5SDimitry Andric // we know that it must be nonnull. 30945f757f3fSDimitry Andric if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { 3095e8d8bef9SDimitry Andric QualType ETy = ArrTy->getElementType(); 3096e8d8bef9SDimitry Andric llvm::Align Alignment = 3097e8d8bef9SDimitry Andric CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 309804eeddc0SDimitry Andric AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 3099bdd1243dSDimitry Andric if (!getTypes().getTargetAddressSpace(ETy) && 31000b57cec5SDimitry Andric !CGM.getCodeGenOpts().NullPointerIsValid) 31010b57cec5SDimitry Andric AI->addAttr(llvm::Attribute::NonNull); 31020b57cec5SDimitry Andric } 3103e8d8bef9SDimitry Andric } 31040b57cec5SDimitry Andric 31055ffd83dbSDimitry Andric // Set `align` attribute if any. 31060b57cec5SDimitry Andric const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 31070b57cec5SDimitry Andric if (!AVAttr) 3108bdd1243dSDimitry Andric if (const auto *TOTy = OTy->getAs<TypedefType>()) 31090b57cec5SDimitry Andric AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 31100b57cec5SDimitry Andric if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 31110b57cec5SDimitry Andric // If alignment-assumption sanitizer is enabled, we do *not* add 31120b57cec5SDimitry Andric // alignment attribute here, but emit normal alignment assumption, 31130b57cec5SDimitry Andric // so the UBSAN check could function. 31140b57cec5SDimitry Andric llvm::ConstantInt *AlignmentCI = 31155ffd83dbSDimitry Andric cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 3116349cc55cSDimitry Andric uint64_t AlignmentInt = 31175ffd83dbSDimitry Andric AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 31185ffd83dbSDimitry Andric if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 31195ffd83dbSDimitry Andric AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 312004eeddc0SDimitry Andric AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 31215ffd83dbSDimitry Andric llvm::Align(AlignmentInt))); 31225ffd83dbSDimitry Andric } 31230b57cec5SDimitry Andric } 31240b57cec5SDimitry Andric } 31250b57cec5SDimitry Andric 31265ffd83dbSDimitry Andric // Set 'noalias' if an argument type has the `restrict` qualifier. 31270b57cec5SDimitry Andric if (Arg->getType().isRestrictQualified()) 31280b57cec5SDimitry Andric AI->addAttr(llvm::Attribute::NoAlias); 31295ffd83dbSDimitry Andric } 31305ffd83dbSDimitry Andric 31315ffd83dbSDimitry Andric // Prepare the argument value. If we have the trivial case, handle it 31325ffd83dbSDimitry Andric // with no muss and fuss. 31335ffd83dbSDimitry Andric if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 31345ffd83dbSDimitry Andric ArgI.getCoerceToType() == ConvertType(Ty) && 31355ffd83dbSDimitry Andric ArgI.getDirectOffset() == 0) { 31365ffd83dbSDimitry Andric assert(NumIRArgs == 1); 31370b57cec5SDimitry Andric 31380b57cec5SDimitry Andric // LLVM expects swifterror parameters to be used in very restricted 31390b57cec5SDimitry Andric // ways. Copy the value into a less-restricted temporary. 31405ffd83dbSDimitry Andric llvm::Value *V = AI; 31410b57cec5SDimitry Andric if (FI.getExtParameterInfo(ArgNo).getABI() 31420b57cec5SDimitry Andric == ParameterABI::SwiftErrorResult) { 31430b57cec5SDimitry Andric QualType pointeeTy = Ty->getPointeeType(); 31440b57cec5SDimitry Andric assert(pointeeTy->isPointerType()); 31450fca6ea1SDimitry Andric RawAddress temp = 31460b57cec5SDimitry Andric CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 31470fca6ea1SDimitry Andric Address arg = makeNaturalAddressForPointer( 31480fca6ea1SDimitry Andric V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 31490b57cec5SDimitry Andric llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 31500b57cec5SDimitry Andric Builder.CreateStore(incomingErrorValue, temp); 31510b57cec5SDimitry Andric V = temp.getPointer(); 31520b57cec5SDimitry Andric 31530b57cec5SDimitry Andric // Push a cleanup to copy the value back at the end of the function. 31540b57cec5SDimitry Andric // The convention does not guarantee that the value will be written 31550b57cec5SDimitry Andric // back if the function exits with an unwind exception. 31560b57cec5SDimitry Andric EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 31570b57cec5SDimitry Andric } 31580b57cec5SDimitry Andric 31590b57cec5SDimitry Andric // Ensure the argument is the correct type. 31600b57cec5SDimitry Andric if (V->getType() != ArgI.getCoerceToType()) 31610b57cec5SDimitry Andric V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 31620b57cec5SDimitry Andric 31630b57cec5SDimitry Andric if (isPromoted) 31640b57cec5SDimitry Andric V = emitArgumentDemotion(*this, Arg, V); 31650b57cec5SDimitry Andric 31660b57cec5SDimitry Andric // Because of merging of function types from multiple decls it is 31670b57cec5SDimitry Andric // possible for the type of an argument to not match the corresponding 31680b57cec5SDimitry Andric // type in the function type. Since we are codegening the callee 31690b57cec5SDimitry Andric // in here, add a cast to the argument type. 31700b57cec5SDimitry Andric llvm::Type *LTy = ConvertType(Arg->getType()); 31710b57cec5SDimitry Andric if (V->getType() != LTy) 31720b57cec5SDimitry Andric V = Builder.CreateBitCast(V, LTy); 31730b57cec5SDimitry Andric 31740b57cec5SDimitry Andric ArgVals.push_back(ParamValue::forDirect(V)); 31750b57cec5SDimitry Andric break; 31760b57cec5SDimitry Andric } 31770b57cec5SDimitry Andric 3178e8d8bef9SDimitry Andric // VLST arguments are coerced to VLATs at the function boundary for 3179e8d8bef9SDimitry Andric // ABI consistency. If this is a VLST that was coerced to 3180e8d8bef9SDimitry Andric // a VLAT at the function boundary and the types match up, use 318181ad6265SDimitry Andric // llvm.vector.extract to convert back to the original VLST. 3182e8d8bef9SDimitry Andric if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 3183349cc55cSDimitry Andric llvm::Value *Coerced = Fn->getArg(FirstIRArg); 3184e8d8bef9SDimitry Andric if (auto *VecTyFrom = 3185e8d8bef9SDimitry Andric dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 31860fca6ea1SDimitry Andric // If we are casting a scalable i1 predicate vector to a fixed i8 3187349cc55cSDimitry Andric // vector, bitcast the source and use a vector extract. 31880fca6ea1SDimitry Andric if (VecTyFrom->getElementType()->isIntegerTy(1) && 31890fca6ea1SDimitry Andric VecTyFrom->getElementCount().isKnownMultipleOf(8) && 3190349cc55cSDimitry Andric VecTyTo->getElementType() == Builder.getInt8Ty()) { 31910fca6ea1SDimitry Andric VecTyFrom = llvm::ScalableVectorType::get( 31920fca6ea1SDimitry Andric VecTyTo->getElementType(), 31930fca6ea1SDimitry Andric VecTyFrom->getElementCount().getKnownMinValue() / 8); 3194349cc55cSDimitry Andric Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 3195349cc55cSDimitry Andric } 3196e8d8bef9SDimitry Andric if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 3197e8d8bef9SDimitry Andric llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 3198e8d8bef9SDimitry Andric 3199e8d8bef9SDimitry Andric assert(NumIRArgs == 1); 3200e8d8bef9SDimitry Andric Coerced->setName(Arg->getName() + ".coerce"); 3201e8d8bef9SDimitry Andric ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 320206c3fb27SDimitry Andric VecTyTo, Coerced, Zero, "cast.fixed"))); 3203e8d8bef9SDimitry Andric break; 3204e8d8bef9SDimitry Andric } 3205e8d8bef9SDimitry Andric } 3206e8d8bef9SDimitry Andric } 3207e8d8bef9SDimitry Andric 32080fca6ea1SDimitry Andric llvm::StructType *STy = 32090fca6ea1SDimitry Andric dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 32100fca6ea1SDimitry Andric if (ArgI.isDirect() && !ArgI.getCanBeFlattened() && STy && 32110fca6ea1SDimitry Andric STy->getNumElements() > 1) { 32120fca6ea1SDimitry Andric [[maybe_unused]] llvm::TypeSize StructSize = 32130fca6ea1SDimitry Andric CGM.getDataLayout().getTypeAllocSize(STy); 32140fca6ea1SDimitry Andric [[maybe_unused]] llvm::TypeSize PtrElementSize = 32150fca6ea1SDimitry Andric CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(Ty)); 32160fca6ea1SDimitry Andric if (STy->containsHomogeneousScalableVectorTypes()) { 32170fca6ea1SDimitry Andric assert(StructSize == PtrElementSize && 32180fca6ea1SDimitry Andric "Only allow non-fractional movement of structure with" 32190fca6ea1SDimitry Andric "homogeneous scalable vector type"); 32200fca6ea1SDimitry Andric 32210fca6ea1SDimitry Andric ArgVals.push_back(ParamValue::forDirect(AI)); 32220fca6ea1SDimitry Andric break; 32230fca6ea1SDimitry Andric } 32240fca6ea1SDimitry Andric } 32250fca6ea1SDimitry Andric 32260b57cec5SDimitry Andric Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 32270b57cec5SDimitry Andric Arg->getName()); 32280b57cec5SDimitry Andric 32290b57cec5SDimitry Andric // Pointer to store into. 32300b57cec5SDimitry Andric Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 32310b57cec5SDimitry Andric 32320b57cec5SDimitry Andric // Fast-isel and the optimizer generally like scalar values better than 32330b57cec5SDimitry Andric // FCAs, so we flatten them if this is safe to do for this argument. 32340b57cec5SDimitry Andric if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 32350b57cec5SDimitry Andric STy->getNumElements() > 1) { 323606c3fb27SDimitry Andric llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy); 323706c3fb27SDimitry Andric llvm::TypeSize PtrElementSize = 323806c3fb27SDimitry Andric CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType()); 323906c3fb27SDimitry Andric if (StructSize.isScalable()) { 324006c3fb27SDimitry Andric assert(STy->containsHomogeneousScalableVectorTypes() && 324106c3fb27SDimitry Andric "ABI only supports structure with homogeneous scalable vector " 324206c3fb27SDimitry Andric "type"); 324306c3fb27SDimitry Andric assert(StructSize == PtrElementSize && 324406c3fb27SDimitry Andric "Only allow non-fractional movement of structure with" 324506c3fb27SDimitry Andric "homogeneous scalable vector type"); 324606c3fb27SDimitry Andric assert(STy->getNumElements() == NumIRArgs); 324706c3fb27SDimitry Andric 324806c3fb27SDimitry Andric llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy); 324906c3fb27SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 325006c3fb27SDimitry Andric auto *AI = Fn->getArg(FirstIRArg + i); 325106c3fb27SDimitry Andric AI->setName(Arg->getName() + ".coerce" + Twine(i)); 325206c3fb27SDimitry Andric LoadedStructValue = 325306c3fb27SDimitry Andric Builder.CreateInsertValue(LoadedStructValue, AI, i); 325406c3fb27SDimitry Andric } 325506c3fb27SDimitry Andric 325606c3fb27SDimitry Andric Builder.CreateStore(LoadedStructValue, Ptr); 325706c3fb27SDimitry Andric } else { 325806c3fb27SDimitry Andric uint64_t SrcSize = StructSize.getFixedValue(); 325906c3fb27SDimitry Andric uint64_t DstSize = PtrElementSize.getFixedValue(); 32600b57cec5SDimitry Andric 32610b57cec5SDimitry Andric Address AddrToStoreInto = Address::invalid(); 32620b57cec5SDimitry Andric if (SrcSize <= DstSize) { 326306c3fb27SDimitry Andric AddrToStoreInto = Ptr.withElementType(STy); 32640b57cec5SDimitry Andric } else { 32650b57cec5SDimitry Andric AddrToStoreInto = 32660b57cec5SDimitry Andric CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 32670b57cec5SDimitry Andric } 32680b57cec5SDimitry Andric 32690b57cec5SDimitry Andric assert(STy->getNumElements() == NumIRArgs); 32700b57cec5SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 32715ffd83dbSDimitry Andric auto AI = Fn->getArg(FirstIRArg + i); 32720b57cec5SDimitry Andric AI->setName(Arg->getName() + ".coerce" + Twine(i)); 32730b57cec5SDimitry Andric Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 32740b57cec5SDimitry Andric Builder.CreateStore(AI, EltPtr); 32750b57cec5SDimitry Andric } 32760b57cec5SDimitry Andric 32770b57cec5SDimitry Andric if (SrcSize > DstSize) { 32780b57cec5SDimitry Andric Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 32790b57cec5SDimitry Andric } 328006c3fb27SDimitry Andric } 32810b57cec5SDimitry Andric } else { 32820b57cec5SDimitry Andric // Simple case, just do a coerced store of the argument into the alloca. 32830b57cec5SDimitry Andric assert(NumIRArgs == 1); 32845ffd83dbSDimitry Andric auto AI = Fn->getArg(FirstIRArg); 32850b57cec5SDimitry Andric AI->setName(Arg->getName() + ".coerce"); 3286c80e69b0SDimitry Andric CreateCoercedStore( 3287c80e69b0SDimitry Andric AI, Ptr, 3288c80e69b0SDimitry Andric llvm::TypeSize::getFixed( 3289c80e69b0SDimitry Andric getContext().getTypeSizeInChars(Ty).getQuantity() - 3290c80e69b0SDimitry Andric ArgI.getDirectOffset()), 3291c80e69b0SDimitry Andric /*DstIsVolatile=*/false); 32920b57cec5SDimitry Andric } 32930b57cec5SDimitry Andric 32940b57cec5SDimitry Andric // Match to what EmitParmDecl is expecting for this type. 32950b57cec5SDimitry Andric if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 32960b57cec5SDimitry Andric llvm::Value *V = 32970b57cec5SDimitry Andric EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 32980b57cec5SDimitry Andric if (isPromoted) 32990b57cec5SDimitry Andric V = emitArgumentDemotion(*this, Arg, V); 33000b57cec5SDimitry Andric ArgVals.push_back(ParamValue::forDirect(V)); 33010b57cec5SDimitry Andric } else { 33020b57cec5SDimitry Andric ArgVals.push_back(ParamValue::forIndirect(Alloca)); 33030b57cec5SDimitry Andric } 33040b57cec5SDimitry Andric break; 33050b57cec5SDimitry Andric } 33060b57cec5SDimitry Andric 33070b57cec5SDimitry Andric case ABIArgInfo::CoerceAndExpand: { 33080b57cec5SDimitry Andric // Reconstruct into a temporary. 33090b57cec5SDimitry Andric Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 33100b57cec5SDimitry Andric ArgVals.push_back(ParamValue::forIndirect(alloca)); 33110b57cec5SDimitry Andric 33120b57cec5SDimitry Andric auto coercionType = ArgI.getCoerceAndExpandType(); 331306c3fb27SDimitry Andric alloca = alloca.withElementType(coercionType); 33140b57cec5SDimitry Andric 33150b57cec5SDimitry Andric unsigned argIndex = FirstIRArg; 33160b57cec5SDimitry Andric for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 33170b57cec5SDimitry Andric llvm::Type *eltType = coercionType->getElementType(i); 33180b57cec5SDimitry Andric if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 33190b57cec5SDimitry Andric continue; 33200b57cec5SDimitry Andric 33210b57cec5SDimitry Andric auto eltAddr = Builder.CreateStructGEP(alloca, i); 33225ffd83dbSDimitry Andric auto elt = Fn->getArg(argIndex++); 33230b57cec5SDimitry Andric Builder.CreateStore(elt, eltAddr); 33240b57cec5SDimitry Andric } 33250b57cec5SDimitry Andric assert(argIndex == FirstIRArg + NumIRArgs); 33260b57cec5SDimitry Andric break; 33270b57cec5SDimitry Andric } 33280b57cec5SDimitry Andric 33290b57cec5SDimitry Andric case ABIArgInfo::Expand: { 33300b57cec5SDimitry Andric // If this structure was expanded into multiple arguments then 33310b57cec5SDimitry Andric // we need to create a temporary and reconstruct it from the 33320b57cec5SDimitry Andric // arguments. 33330b57cec5SDimitry Andric Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 33340b57cec5SDimitry Andric LValue LV = MakeAddrLValue(Alloca, Ty); 33350b57cec5SDimitry Andric ArgVals.push_back(ParamValue::forIndirect(Alloca)); 33360b57cec5SDimitry Andric 33375ffd83dbSDimitry Andric auto FnArgIter = Fn->arg_begin() + FirstIRArg; 33380b57cec5SDimitry Andric ExpandTypeFromArgs(Ty, LV, FnArgIter); 33395ffd83dbSDimitry Andric assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 33400b57cec5SDimitry Andric for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 33415ffd83dbSDimitry Andric auto AI = Fn->getArg(FirstIRArg + i); 33420b57cec5SDimitry Andric AI->setName(Arg->getName() + "." + Twine(i)); 33430b57cec5SDimitry Andric } 33440b57cec5SDimitry Andric break; 33450b57cec5SDimitry Andric } 33460b57cec5SDimitry Andric 33470b57cec5SDimitry Andric case ABIArgInfo::Ignore: 33480b57cec5SDimitry Andric assert(NumIRArgs == 0); 33490b57cec5SDimitry Andric // Initialize the local variable appropriately. 33500b57cec5SDimitry Andric if (!hasScalarEvaluationKind(Ty)) { 33510b57cec5SDimitry Andric ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 33520b57cec5SDimitry Andric } else { 33530b57cec5SDimitry Andric llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 33540b57cec5SDimitry Andric ArgVals.push_back(ParamValue::forDirect(U)); 33550b57cec5SDimitry Andric } 33560b57cec5SDimitry Andric break; 33570b57cec5SDimitry Andric } 33580b57cec5SDimitry Andric } 33590b57cec5SDimitry Andric 33600b57cec5SDimitry Andric if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 33610b57cec5SDimitry Andric for (int I = Args.size() - 1; I >= 0; --I) 33620b57cec5SDimitry Andric EmitParmDecl(*Args[I], ArgVals[I], I + 1); 33630b57cec5SDimitry Andric } else { 33640b57cec5SDimitry Andric for (unsigned I = 0, E = Args.size(); I != E; ++I) 33650b57cec5SDimitry Andric EmitParmDecl(*Args[I], ArgVals[I], I + 1); 33660b57cec5SDimitry Andric } 33670b57cec5SDimitry Andric } 33680b57cec5SDimitry Andric 33690b57cec5SDimitry Andric static void eraseUnusedBitCasts(llvm::Instruction *insn) { 33700b57cec5SDimitry Andric while (insn->use_empty()) { 33710b57cec5SDimitry Andric llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 33720b57cec5SDimitry Andric if (!bitcast) return; 33730b57cec5SDimitry Andric 33740b57cec5SDimitry Andric // This is "safe" because we would have used a ConstantExpr otherwise. 33750b57cec5SDimitry Andric insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 33760b57cec5SDimitry Andric bitcast->eraseFromParent(); 33770b57cec5SDimitry Andric } 33780b57cec5SDimitry Andric } 33790b57cec5SDimitry Andric 33800b57cec5SDimitry Andric /// Try to emit a fused autorelease of a return result. 33810b57cec5SDimitry Andric static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 33820b57cec5SDimitry Andric llvm::Value *result) { 33830b57cec5SDimitry Andric // We must be immediately followed the cast. 33840b57cec5SDimitry Andric llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 33850b57cec5SDimitry Andric if (BB->empty()) return nullptr; 33860b57cec5SDimitry Andric if (&BB->back() != result) return nullptr; 33870b57cec5SDimitry Andric 33880b57cec5SDimitry Andric llvm::Type *resultType = result->getType(); 33890b57cec5SDimitry Andric 33900b57cec5SDimitry Andric // result is in a BasicBlock and is therefore an Instruction. 33910b57cec5SDimitry Andric llvm::Instruction *generator = cast<llvm::Instruction>(result); 33920b57cec5SDimitry Andric 33930b57cec5SDimitry Andric SmallVector<llvm::Instruction *, 4> InstsToKill; 33940b57cec5SDimitry Andric 33950b57cec5SDimitry Andric // Look for: 33960b57cec5SDimitry Andric // %generator = bitcast %type1* %generator2 to %type2* 33970b57cec5SDimitry Andric while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 33980b57cec5SDimitry Andric // We would have emitted this as a constant if the operand weren't 33990b57cec5SDimitry Andric // an Instruction. 34000b57cec5SDimitry Andric generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 34010b57cec5SDimitry Andric 34020b57cec5SDimitry Andric // Require the generator to be immediately followed by the cast. 34030b57cec5SDimitry Andric if (generator->getNextNode() != bitcast) 34040b57cec5SDimitry Andric return nullptr; 34050b57cec5SDimitry Andric 34060b57cec5SDimitry Andric InstsToKill.push_back(bitcast); 34070b57cec5SDimitry Andric } 34080b57cec5SDimitry Andric 34090b57cec5SDimitry Andric // Look for: 34100b57cec5SDimitry Andric // %generator = call i8* @objc_retain(i8* %originalResult) 34110b57cec5SDimitry Andric // or 34120b57cec5SDimitry Andric // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 34130b57cec5SDimitry Andric llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 34140b57cec5SDimitry Andric if (!call) return nullptr; 34150b57cec5SDimitry Andric 34160b57cec5SDimitry Andric bool doRetainAutorelease; 34170b57cec5SDimitry Andric 34185ffd83dbSDimitry Andric if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 34190b57cec5SDimitry Andric doRetainAutorelease = true; 34205ffd83dbSDimitry Andric } else if (call->getCalledOperand() == 34215ffd83dbSDimitry Andric CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 34220b57cec5SDimitry Andric doRetainAutorelease = false; 34230b57cec5SDimitry Andric 34240b57cec5SDimitry Andric // If we emitted an assembly marker for this call (and the 34250b57cec5SDimitry Andric // ARCEntrypoints field should have been set if so), go looking 34260b57cec5SDimitry Andric // for that call. If we can't find it, we can't do this 34270b57cec5SDimitry Andric // optimization. But it should always be the immediately previous 34280b57cec5SDimitry Andric // instruction, unless we needed bitcasts around the call. 34290b57cec5SDimitry Andric if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 34300b57cec5SDimitry Andric llvm::Instruction *prev = call->getPrevNode(); 34310b57cec5SDimitry Andric assert(prev); 34320b57cec5SDimitry Andric if (isa<llvm::BitCastInst>(prev)) { 34330b57cec5SDimitry Andric prev = prev->getPrevNode(); 34340b57cec5SDimitry Andric assert(prev); 34350b57cec5SDimitry Andric } 34360b57cec5SDimitry Andric assert(isa<llvm::CallInst>(prev)); 34375ffd83dbSDimitry Andric assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 34380b57cec5SDimitry Andric CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 34390b57cec5SDimitry Andric InstsToKill.push_back(prev); 34400b57cec5SDimitry Andric } 34410b57cec5SDimitry Andric } else { 34420b57cec5SDimitry Andric return nullptr; 34430b57cec5SDimitry Andric } 34440b57cec5SDimitry Andric 34450b57cec5SDimitry Andric result = call->getArgOperand(0); 34460b57cec5SDimitry Andric InstsToKill.push_back(call); 34470b57cec5SDimitry Andric 34480b57cec5SDimitry Andric // Keep killing bitcasts, for sanity. Note that we no longer care 34490b57cec5SDimitry Andric // about precise ordering as long as there's exactly one use. 34500b57cec5SDimitry Andric while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 34510b57cec5SDimitry Andric if (!bitcast->hasOneUse()) break; 34520b57cec5SDimitry Andric InstsToKill.push_back(bitcast); 34530b57cec5SDimitry Andric result = bitcast->getOperand(0); 34540b57cec5SDimitry Andric } 34550b57cec5SDimitry Andric 34560b57cec5SDimitry Andric // Delete all the unnecessary instructions, from latest to earliest. 34570b57cec5SDimitry Andric for (auto *I : InstsToKill) 34580b57cec5SDimitry Andric I->eraseFromParent(); 34590b57cec5SDimitry Andric 34600b57cec5SDimitry Andric // Do the fused retain/autorelease if we were asked to. 34610b57cec5SDimitry Andric if (doRetainAutorelease) 34620b57cec5SDimitry Andric result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 34630b57cec5SDimitry Andric 34640b57cec5SDimitry Andric // Cast back to the result type. 34650b57cec5SDimitry Andric return CGF.Builder.CreateBitCast(result, resultType); 34660b57cec5SDimitry Andric } 34670b57cec5SDimitry Andric 34680b57cec5SDimitry Andric /// If this is a +1 of the value of an immutable 'self', remove it. 34690b57cec5SDimitry Andric static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 34700b57cec5SDimitry Andric llvm::Value *result) { 34710b57cec5SDimitry Andric // This is only applicable to a method with an immutable 'self'. 34720b57cec5SDimitry Andric const ObjCMethodDecl *method = 34730b57cec5SDimitry Andric dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 34740b57cec5SDimitry Andric if (!method) return nullptr; 34750b57cec5SDimitry Andric const VarDecl *self = method->getSelfDecl(); 34760b57cec5SDimitry Andric if (!self->getType().isConstQualified()) return nullptr; 34770b57cec5SDimitry Andric 34785f757f3fSDimitry Andric // Look for a retain call. Note: stripPointerCasts looks through returned arg 34795f757f3fSDimitry Andric // functions, which would cause us to miss the retain. 34805f757f3fSDimitry Andric llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result); 34815ffd83dbSDimitry Andric if (!retainCall || retainCall->getCalledOperand() != 34825ffd83dbSDimitry Andric CGF.CGM.getObjCEntrypoints().objc_retain) 34830b57cec5SDimitry Andric return nullptr; 34840b57cec5SDimitry Andric 34850b57cec5SDimitry Andric // Look for an ordinary load of 'self'. 34860b57cec5SDimitry Andric llvm::Value *retainedValue = retainCall->getArgOperand(0); 34870b57cec5SDimitry Andric llvm::LoadInst *load = 34880b57cec5SDimitry Andric dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 34890b57cec5SDimitry Andric if (!load || load->isAtomic() || load->isVolatile() || 34900fca6ea1SDimitry Andric load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getBasePointer()) 34910b57cec5SDimitry Andric return nullptr; 34920b57cec5SDimitry Andric 34930b57cec5SDimitry Andric // Okay! Burn it all down. This relies for correctness on the 34940b57cec5SDimitry Andric // assumption that the retain is emitted as part of the return and 34950b57cec5SDimitry Andric // that thereafter everything is used "linearly". 34960b57cec5SDimitry Andric llvm::Type *resultType = result->getType(); 34970b57cec5SDimitry Andric eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 34980b57cec5SDimitry Andric assert(retainCall->use_empty()); 34990b57cec5SDimitry Andric retainCall->eraseFromParent(); 35000b57cec5SDimitry Andric eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 35010b57cec5SDimitry Andric 35020b57cec5SDimitry Andric return CGF.Builder.CreateBitCast(load, resultType); 35030b57cec5SDimitry Andric } 35040b57cec5SDimitry Andric 35050b57cec5SDimitry Andric /// Emit an ARC autorelease of the result of a function. 35060b57cec5SDimitry Andric /// 35070b57cec5SDimitry Andric /// \return the value to actually return from the function 35080b57cec5SDimitry Andric static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 35090b57cec5SDimitry Andric llvm::Value *result) { 35100b57cec5SDimitry Andric // If we're returning 'self', kill the initial retain. This is a 35110b57cec5SDimitry Andric // heuristic attempt to "encourage correctness" in the really unfortunate 35120b57cec5SDimitry Andric // case where we have a return of self during a dealloc and we desperately 35130b57cec5SDimitry Andric // need to avoid the possible autorelease. 35140b57cec5SDimitry Andric if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 35150b57cec5SDimitry Andric return self; 35160b57cec5SDimitry Andric 35170b57cec5SDimitry Andric // At -O0, try to emit a fused retain/autorelease. 35180b57cec5SDimitry Andric if (CGF.shouldUseFusedARCCalls()) 35190b57cec5SDimitry Andric if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 35200b57cec5SDimitry Andric return fused; 35210b57cec5SDimitry Andric 35220b57cec5SDimitry Andric return CGF.EmitARCAutoreleaseReturnValue(result); 35230b57cec5SDimitry Andric } 35240b57cec5SDimitry Andric 35250b57cec5SDimitry Andric /// Heuristically search for a dominating store to the return-value slot. 35260b57cec5SDimitry Andric static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 35270fca6ea1SDimitry Andric llvm::Value *ReturnValuePtr = CGF.ReturnValue.getBasePointer(); 35280fca6ea1SDimitry Andric 35290b57cec5SDimitry Andric // Check if a User is a store which pointerOperand is the ReturnValue. 35300b57cec5SDimitry Andric // We are looking for stores to the ReturnValue, not for stores of the 35310b57cec5SDimitry Andric // ReturnValue to some other location. 35320fca6ea1SDimitry Andric auto GetStoreIfValid = [&CGF, 35330fca6ea1SDimitry Andric ReturnValuePtr](llvm::User *U) -> llvm::StoreInst * { 35340b57cec5SDimitry Andric auto *SI = dyn_cast<llvm::StoreInst>(U); 35350fca6ea1SDimitry Andric if (!SI || SI->getPointerOperand() != ReturnValuePtr || 353681ad6265SDimitry Andric SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 35370b57cec5SDimitry Andric return nullptr; 35380b57cec5SDimitry Andric // These aren't actually possible for non-coerced returns, and we 35390b57cec5SDimitry Andric // only care about non-coerced returns on this code path. 35405f757f3fSDimitry Andric // All memory instructions inside __try block are volatile. 35415f757f3fSDimitry Andric assert(!SI->isAtomic() && 35425f757f3fSDimitry Andric (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry())); 35430b57cec5SDimitry Andric return SI; 35440b57cec5SDimitry Andric }; 35450b57cec5SDimitry Andric // If there are multiple uses of the return-value slot, just check 35460b57cec5SDimitry Andric // for something immediately preceding the IP. Sometimes this can 35470b57cec5SDimitry Andric // happen with how we generate implicit-returns; it can also happen 35480b57cec5SDimitry Andric // with noreturn cleanups. 35490fca6ea1SDimitry Andric if (!ReturnValuePtr->hasOneUse()) { 35500b57cec5SDimitry Andric llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 35510b57cec5SDimitry Andric if (IP->empty()) return nullptr; 35520b57cec5SDimitry Andric 355381ad6265SDimitry Andric // Look at directly preceding instruction, skipping bitcasts and lifetime 355481ad6265SDimitry Andric // markers. 355581ad6265SDimitry Andric for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 355681ad6265SDimitry Andric if (isa<llvm::BitCastInst>(&I)) 35570b57cec5SDimitry Andric continue; 355881ad6265SDimitry Andric if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 355981ad6265SDimitry Andric if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 356081ad6265SDimitry Andric continue; 35610b57cec5SDimitry Andric 356281ad6265SDimitry Andric return GetStoreIfValid(&I); 356381ad6265SDimitry Andric } 356481ad6265SDimitry Andric return nullptr; 35650b57cec5SDimitry Andric } 35660b57cec5SDimitry Andric 35670fca6ea1SDimitry Andric llvm::StoreInst *store = GetStoreIfValid(ReturnValuePtr->user_back()); 35680b57cec5SDimitry Andric if (!store) return nullptr; 35690b57cec5SDimitry Andric 35700b57cec5SDimitry Andric // Now do a first-and-dirty dominance check: just walk up the 35710b57cec5SDimitry Andric // single-predecessors chain from the current insertion point. 35720b57cec5SDimitry Andric llvm::BasicBlock *StoreBB = store->getParent(); 35730b57cec5SDimitry Andric llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 357406c3fb27SDimitry Andric llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs; 35750b57cec5SDimitry Andric while (IP != StoreBB) { 357606c3fb27SDimitry Andric if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor())) 35770b57cec5SDimitry Andric return nullptr; 35780b57cec5SDimitry Andric } 35790b57cec5SDimitry Andric 35800b57cec5SDimitry Andric // Okay, the store's basic block dominates the insertion point; we 35810b57cec5SDimitry Andric // can do our thing. 35820b57cec5SDimitry Andric return store; 35830b57cec5SDimitry Andric } 35840b57cec5SDimitry Andric 35855ffd83dbSDimitry Andric // Helper functions for EmitCMSEClearRecord 35865ffd83dbSDimitry Andric 35875ffd83dbSDimitry Andric // Set the bits corresponding to a field having width `BitWidth` and located at 35885ffd83dbSDimitry Andric // offset `BitOffset` (from the least significant bit) within a storage unit of 35895ffd83dbSDimitry Andric // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 35905ffd83dbSDimitry Andric // Use little-endian layout, i.e.`Bits[0]` is the LSB. 35915ffd83dbSDimitry Andric static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 35925ffd83dbSDimitry Andric int BitWidth, int CharWidth) { 35935ffd83dbSDimitry Andric assert(CharWidth <= 64); 35945ffd83dbSDimitry Andric assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 35955ffd83dbSDimitry Andric 35965ffd83dbSDimitry Andric int Pos = 0; 35975ffd83dbSDimitry Andric if (BitOffset >= CharWidth) { 35985ffd83dbSDimitry Andric Pos += BitOffset / CharWidth; 35995ffd83dbSDimitry Andric BitOffset = BitOffset % CharWidth; 36005ffd83dbSDimitry Andric } 36015ffd83dbSDimitry Andric 36025ffd83dbSDimitry Andric const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 36035ffd83dbSDimitry Andric if (BitOffset + BitWidth >= CharWidth) { 36045ffd83dbSDimitry Andric Bits[Pos++] |= (Used << BitOffset) & Used; 36055ffd83dbSDimitry Andric BitWidth -= CharWidth - BitOffset; 36065ffd83dbSDimitry Andric BitOffset = 0; 36075ffd83dbSDimitry Andric } 36085ffd83dbSDimitry Andric 36095ffd83dbSDimitry Andric while (BitWidth >= CharWidth) { 36105ffd83dbSDimitry Andric Bits[Pos++] = Used; 36115ffd83dbSDimitry Andric BitWidth -= CharWidth; 36125ffd83dbSDimitry Andric } 36135ffd83dbSDimitry Andric 36145ffd83dbSDimitry Andric if (BitWidth > 0) 36155ffd83dbSDimitry Andric Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 36165ffd83dbSDimitry Andric } 36175ffd83dbSDimitry Andric 36185ffd83dbSDimitry Andric // Set the bits corresponding to a field having width `BitWidth` and located at 36195ffd83dbSDimitry Andric // offset `BitOffset` (from the least significant bit) within a storage unit of 36205ffd83dbSDimitry Andric // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 36215ffd83dbSDimitry Andric // `Bits` corresponds to one target byte. Use target endian layout. 36225ffd83dbSDimitry Andric static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 36235ffd83dbSDimitry Andric int StorageSize, int BitOffset, int BitWidth, 36245ffd83dbSDimitry Andric int CharWidth, bool BigEndian) { 36255ffd83dbSDimitry Andric 36265ffd83dbSDimitry Andric SmallVector<uint64_t, 8> TmpBits(StorageSize); 36275ffd83dbSDimitry Andric setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 36285ffd83dbSDimitry Andric 36295ffd83dbSDimitry Andric if (BigEndian) 36305ffd83dbSDimitry Andric std::reverse(TmpBits.begin(), TmpBits.end()); 36315ffd83dbSDimitry Andric 36325ffd83dbSDimitry Andric for (uint64_t V : TmpBits) 36335ffd83dbSDimitry Andric Bits[StorageOffset++] |= V; 36345ffd83dbSDimitry Andric } 36355ffd83dbSDimitry Andric 36365ffd83dbSDimitry Andric static void setUsedBits(CodeGenModule &, QualType, int, 36375ffd83dbSDimitry Andric SmallVectorImpl<uint64_t> &); 36385ffd83dbSDimitry Andric 36395ffd83dbSDimitry Andric // Set the bits in `Bits`, which correspond to the value representations of 36405ffd83dbSDimitry Andric // the actual members of the record type `RTy`. Note that this function does 36415ffd83dbSDimitry Andric // not handle base classes, virtual tables, etc, since they cannot happen in 36425ffd83dbSDimitry Andric // CMSE function arguments or return. The bit mask corresponds to the target 36435ffd83dbSDimitry Andric // memory layout, i.e. it's endian dependent. 36445ffd83dbSDimitry Andric static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 36455ffd83dbSDimitry Andric SmallVectorImpl<uint64_t> &Bits) { 36465ffd83dbSDimitry Andric ASTContext &Context = CGM.getContext(); 36475ffd83dbSDimitry Andric int CharWidth = Context.getCharWidth(); 36485ffd83dbSDimitry Andric const RecordDecl *RD = RTy->getDecl()->getDefinition(); 36495ffd83dbSDimitry Andric const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 36505ffd83dbSDimitry Andric const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 36515ffd83dbSDimitry Andric 36525ffd83dbSDimitry Andric int Idx = 0; 36535ffd83dbSDimitry Andric for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 36545ffd83dbSDimitry Andric const FieldDecl *F = *I; 36555ffd83dbSDimitry Andric 36560fca6ea1SDimitry Andric if (F->isUnnamedBitField() || F->isZeroLengthBitField(Context) || 36575ffd83dbSDimitry Andric F->getType()->isIncompleteArrayType()) 36585ffd83dbSDimitry Andric continue; 36595ffd83dbSDimitry Andric 36605ffd83dbSDimitry Andric if (F->isBitField()) { 36615ffd83dbSDimitry Andric const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 36625ffd83dbSDimitry Andric setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 36635ffd83dbSDimitry Andric BFI.StorageSize / CharWidth, BFI.Offset, 36645ffd83dbSDimitry Andric BFI.Size, CharWidth, 36655ffd83dbSDimitry Andric CGM.getDataLayout().isBigEndian()); 36665ffd83dbSDimitry Andric continue; 36675ffd83dbSDimitry Andric } 36685ffd83dbSDimitry Andric 36695ffd83dbSDimitry Andric setUsedBits(CGM, F->getType(), 36705ffd83dbSDimitry Andric Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 36715ffd83dbSDimitry Andric } 36725ffd83dbSDimitry Andric } 36735ffd83dbSDimitry Andric 36745ffd83dbSDimitry Andric // Set the bits in `Bits`, which correspond to the value representations of 36755ffd83dbSDimitry Andric // the elements of an array type `ATy`. 36765ffd83dbSDimitry Andric static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 36775ffd83dbSDimitry Andric int Offset, SmallVectorImpl<uint64_t> &Bits) { 36785ffd83dbSDimitry Andric const ASTContext &Context = CGM.getContext(); 36795ffd83dbSDimitry Andric 36805ffd83dbSDimitry Andric QualType ETy = Context.getBaseElementType(ATy); 36815ffd83dbSDimitry Andric int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 36825ffd83dbSDimitry Andric SmallVector<uint64_t, 4> TmpBits(Size); 36835ffd83dbSDimitry Andric setUsedBits(CGM, ETy, 0, TmpBits); 36845ffd83dbSDimitry Andric 36855ffd83dbSDimitry Andric for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 36865ffd83dbSDimitry Andric auto Src = TmpBits.begin(); 36875ffd83dbSDimitry Andric auto Dst = Bits.begin() + Offset + I * Size; 36885ffd83dbSDimitry Andric for (int J = 0; J < Size; ++J) 36895ffd83dbSDimitry Andric *Dst++ |= *Src++; 36905ffd83dbSDimitry Andric } 36915ffd83dbSDimitry Andric } 36925ffd83dbSDimitry Andric 36935ffd83dbSDimitry Andric // Set the bits in `Bits`, which correspond to the value representations of 36945ffd83dbSDimitry Andric // the type `QTy`. 36955ffd83dbSDimitry Andric static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 36965ffd83dbSDimitry Andric SmallVectorImpl<uint64_t> &Bits) { 36975ffd83dbSDimitry Andric if (const auto *RTy = QTy->getAs<RecordType>()) 36985ffd83dbSDimitry Andric return setUsedBits(CGM, RTy, Offset, Bits); 36995ffd83dbSDimitry Andric 37005ffd83dbSDimitry Andric ASTContext &Context = CGM.getContext(); 37015ffd83dbSDimitry Andric if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 37025ffd83dbSDimitry Andric return setUsedBits(CGM, ATy, Offset, Bits); 37035ffd83dbSDimitry Andric 37045ffd83dbSDimitry Andric int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 37055ffd83dbSDimitry Andric if (Size <= 0) 37065ffd83dbSDimitry Andric return; 37075ffd83dbSDimitry Andric 37085ffd83dbSDimitry Andric std::fill_n(Bits.begin() + Offset, Size, 37095ffd83dbSDimitry Andric (uint64_t(1) << Context.getCharWidth()) - 1); 37105ffd83dbSDimitry Andric } 37115ffd83dbSDimitry Andric 37125ffd83dbSDimitry Andric static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 37135ffd83dbSDimitry Andric int Pos, int Size, int CharWidth, 37145ffd83dbSDimitry Andric bool BigEndian) { 37155ffd83dbSDimitry Andric assert(Size > 0); 37165ffd83dbSDimitry Andric uint64_t Mask = 0; 37175ffd83dbSDimitry Andric if (BigEndian) { 37185ffd83dbSDimitry Andric for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 37195ffd83dbSDimitry Andric ++P) 37205ffd83dbSDimitry Andric Mask = (Mask << CharWidth) | *P; 37215ffd83dbSDimitry Andric } else { 37225ffd83dbSDimitry Andric auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 37235ffd83dbSDimitry Andric do 37245ffd83dbSDimitry Andric Mask = (Mask << CharWidth) | *--P; 37255ffd83dbSDimitry Andric while (P != End); 37265ffd83dbSDimitry Andric } 37275ffd83dbSDimitry Andric return Mask; 37285ffd83dbSDimitry Andric } 37295ffd83dbSDimitry Andric 37305ffd83dbSDimitry Andric // Emit code to clear the bits in a record, which aren't a part of any user 37315ffd83dbSDimitry Andric // declared member, when the record is a function return. 37325ffd83dbSDimitry Andric llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 37335ffd83dbSDimitry Andric llvm::IntegerType *ITy, 37345ffd83dbSDimitry Andric QualType QTy) { 37355ffd83dbSDimitry Andric assert(Src->getType() == ITy); 37365ffd83dbSDimitry Andric assert(ITy->getScalarSizeInBits() <= 64); 37375ffd83dbSDimitry Andric 37385ffd83dbSDimitry Andric const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 37395ffd83dbSDimitry Andric int Size = DataLayout.getTypeStoreSize(ITy); 37405ffd83dbSDimitry Andric SmallVector<uint64_t, 4> Bits(Size); 3741e8d8bef9SDimitry Andric setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 37425ffd83dbSDimitry Andric 37435ffd83dbSDimitry Andric int CharWidth = CGM.getContext().getCharWidth(); 37445ffd83dbSDimitry Andric uint64_t Mask = 37455ffd83dbSDimitry Andric buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 37465ffd83dbSDimitry Andric 37475ffd83dbSDimitry Andric return Builder.CreateAnd(Src, Mask, "cmse.clear"); 37485ffd83dbSDimitry Andric } 37495ffd83dbSDimitry Andric 37505ffd83dbSDimitry Andric // Emit code to clear the bits in a record, which aren't a part of any user 37515ffd83dbSDimitry Andric // declared member, when the record is a function argument. 37525ffd83dbSDimitry Andric llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 37535ffd83dbSDimitry Andric llvm::ArrayType *ATy, 37545ffd83dbSDimitry Andric QualType QTy) { 37555ffd83dbSDimitry Andric const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 37565ffd83dbSDimitry Andric int Size = DataLayout.getTypeStoreSize(ATy); 37575ffd83dbSDimitry Andric SmallVector<uint64_t, 16> Bits(Size); 3758e8d8bef9SDimitry Andric setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 37595ffd83dbSDimitry Andric 37605ffd83dbSDimitry Andric // Clear each element of the LLVM array. 37615ffd83dbSDimitry Andric int CharWidth = CGM.getContext().getCharWidth(); 37625ffd83dbSDimitry Andric int CharsPerElt = 37635ffd83dbSDimitry Andric ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 37645ffd83dbSDimitry Andric int MaskIndex = 0; 376581ad6265SDimitry Andric llvm::Value *R = llvm::PoisonValue::get(ATy); 37665ffd83dbSDimitry Andric for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 37675ffd83dbSDimitry Andric uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 37685ffd83dbSDimitry Andric DataLayout.isBigEndian()); 37695ffd83dbSDimitry Andric MaskIndex += CharsPerElt; 37705ffd83dbSDimitry Andric llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 37715ffd83dbSDimitry Andric llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 37725ffd83dbSDimitry Andric R = Builder.CreateInsertValue(R, T1, I); 37735ffd83dbSDimitry Andric } 37745ffd83dbSDimitry Andric 37755ffd83dbSDimitry Andric return R; 37765ffd83dbSDimitry Andric } 37775ffd83dbSDimitry Andric 37780b57cec5SDimitry Andric void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 37790b57cec5SDimitry Andric bool EmitRetDbgLoc, 37800b57cec5SDimitry Andric SourceLocation EndLoc) { 37810b57cec5SDimitry Andric if (FI.isNoReturn()) { 37820b57cec5SDimitry Andric // Noreturn functions don't return. 37830b57cec5SDimitry Andric EmitUnreachable(EndLoc); 37840b57cec5SDimitry Andric return; 37850b57cec5SDimitry Andric } 37860b57cec5SDimitry Andric 37870b57cec5SDimitry Andric if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 37880b57cec5SDimitry Andric // Naked functions don't have epilogues. 37890b57cec5SDimitry Andric Builder.CreateUnreachable(); 37900b57cec5SDimitry Andric return; 37910b57cec5SDimitry Andric } 37920b57cec5SDimitry Andric 37930b57cec5SDimitry Andric // Functions with no result always return void. 37940b57cec5SDimitry Andric if (!ReturnValue.isValid()) { 37950b57cec5SDimitry Andric Builder.CreateRetVoid(); 37960b57cec5SDimitry Andric return; 37970b57cec5SDimitry Andric } 37980b57cec5SDimitry Andric 37990b57cec5SDimitry Andric llvm::DebugLoc RetDbgLoc; 38000b57cec5SDimitry Andric llvm::Value *RV = nullptr; 38010b57cec5SDimitry Andric QualType RetTy = FI.getReturnType(); 38020b57cec5SDimitry Andric const ABIArgInfo &RetAI = FI.getReturnInfo(); 38030b57cec5SDimitry Andric 38040b57cec5SDimitry Andric switch (RetAI.getKind()) { 38050b57cec5SDimitry Andric case ABIArgInfo::InAlloca: 3806bdd1243dSDimitry Andric // Aggregates get evaluated directly into the destination. Sometimes we 38070b57cec5SDimitry Andric // need to return the sret value in a register, though. 38080b57cec5SDimitry Andric assert(hasAggregateEvaluationKind(RetTy)); 38090b57cec5SDimitry Andric if (RetAI.getInAllocaSRet()) { 38100b57cec5SDimitry Andric llvm::Function::arg_iterator EI = CurFn->arg_end(); 38110b57cec5SDimitry Andric --EI; 38120b57cec5SDimitry Andric llvm::Value *ArgStruct = &*EI; 38130b57cec5SDimitry Andric llvm::Value *SRet = Builder.CreateStructGEP( 381481ad6265SDimitry Andric FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3815fe6060f1SDimitry Andric llvm::Type *Ty = 3816fe6060f1SDimitry Andric cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3817fe6060f1SDimitry Andric RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 38180b57cec5SDimitry Andric } 38190b57cec5SDimitry Andric break; 38200b57cec5SDimitry Andric 38210b57cec5SDimitry Andric case ABIArgInfo::Indirect: { 38220b57cec5SDimitry Andric auto AI = CurFn->arg_begin(); 38230b57cec5SDimitry Andric if (RetAI.isSRetAfterThis()) 38240b57cec5SDimitry Andric ++AI; 38250b57cec5SDimitry Andric switch (getEvaluationKind(RetTy)) { 38260b57cec5SDimitry Andric case TEK_Complex: { 38270b57cec5SDimitry Andric ComplexPairTy RT = 38280b57cec5SDimitry Andric EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 38290b57cec5SDimitry Andric EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 38300b57cec5SDimitry Andric /*isInit*/ true); 38310b57cec5SDimitry Andric break; 38320b57cec5SDimitry Andric } 38330b57cec5SDimitry Andric case TEK_Aggregate: 3834bdd1243dSDimitry Andric // Do nothing; aggregates get evaluated directly into the destination. 38350b57cec5SDimitry Andric break; 38360eae32dcSDimitry Andric case TEK_Scalar: { 38370eae32dcSDimitry Andric LValueBaseInfo BaseInfo; 38380eae32dcSDimitry Andric TBAAAccessInfo TBAAInfo; 38390eae32dcSDimitry Andric CharUnits Alignment = 38400eae32dcSDimitry Andric CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 38410eae32dcSDimitry Andric Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 38420eae32dcSDimitry Andric LValue ArgVal = 38430eae32dcSDimitry Andric LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 38440eae32dcSDimitry Andric EmitStoreOfScalar( 38450fca6ea1SDimitry Andric EmitLoadOfScalar(MakeAddrLValue(ReturnValue, RetTy), EndLoc), ArgVal, 38460fca6ea1SDimitry Andric /*isInit*/ true); 38470b57cec5SDimitry Andric break; 38480b57cec5SDimitry Andric } 38490eae32dcSDimitry Andric } 38500b57cec5SDimitry Andric break; 38510b57cec5SDimitry Andric } 38520b57cec5SDimitry Andric 38530b57cec5SDimitry Andric case ABIArgInfo::Extend: 38540b57cec5SDimitry Andric case ABIArgInfo::Direct: 38550b57cec5SDimitry Andric if (RetAI.getCoerceToType() == ConvertType(RetTy) && 38560b57cec5SDimitry Andric RetAI.getDirectOffset() == 0) { 38570b57cec5SDimitry Andric // The internal return value temp always will have pointer-to-return-type 38580b57cec5SDimitry Andric // type, just do a load. 38590b57cec5SDimitry Andric 38600b57cec5SDimitry Andric // If there is a dominating store to ReturnValue, we can elide 38610b57cec5SDimitry Andric // the load, zap the store, and usually zap the alloca. 38620b57cec5SDimitry Andric if (llvm::StoreInst *SI = 38630b57cec5SDimitry Andric findDominatingStoreToReturnValue(*this)) { 38640b57cec5SDimitry Andric // Reuse the debug location from the store unless there is 38650b57cec5SDimitry Andric // cleanup code to be emitted between the store and return 38660b57cec5SDimitry Andric // instruction. 38670b57cec5SDimitry Andric if (EmitRetDbgLoc && !AutoreleaseResult) 38680b57cec5SDimitry Andric RetDbgLoc = SI->getDebugLoc(); 38690b57cec5SDimitry Andric // Get the stored value and nuke the now-dead store. 38700b57cec5SDimitry Andric RV = SI->getValueOperand(); 38710b57cec5SDimitry Andric SI->eraseFromParent(); 38720b57cec5SDimitry Andric 38730b57cec5SDimitry Andric // Otherwise, we have to do a simple load. 38740b57cec5SDimitry Andric } else { 38750b57cec5SDimitry Andric RV = Builder.CreateLoad(ReturnValue); 38760b57cec5SDimitry Andric } 38770b57cec5SDimitry Andric } else { 38780b57cec5SDimitry Andric // If the value is offset in memory, apply the offset now. 38790b57cec5SDimitry Andric Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 38800b57cec5SDimitry Andric 38810b57cec5SDimitry Andric RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 38820b57cec5SDimitry Andric } 38830b57cec5SDimitry Andric 38840b57cec5SDimitry Andric // In ARC, end functions that return a retainable type with a call 38850b57cec5SDimitry Andric // to objc_autoreleaseReturnValue. 38860b57cec5SDimitry Andric if (AutoreleaseResult) { 38870b57cec5SDimitry Andric #ifndef NDEBUG 38880b57cec5SDimitry Andric // Type::isObjCRetainabletype has to be called on a QualType that hasn't 38890b57cec5SDimitry Andric // been stripped of the typedefs, so we cannot use RetTy here. Get the 38900b57cec5SDimitry Andric // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 38910b57cec5SDimitry Andric // CurCodeDecl or BlockInfo. 38920b57cec5SDimitry Andric QualType RT; 38930b57cec5SDimitry Andric 38940b57cec5SDimitry Andric if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 38950b57cec5SDimitry Andric RT = FD->getReturnType(); 38960b57cec5SDimitry Andric else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 38970b57cec5SDimitry Andric RT = MD->getReturnType(); 38980b57cec5SDimitry Andric else if (isa<BlockDecl>(CurCodeDecl)) 38990b57cec5SDimitry Andric RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 39000b57cec5SDimitry Andric else 39010b57cec5SDimitry Andric llvm_unreachable("Unexpected function/method type"); 39020b57cec5SDimitry Andric 39030b57cec5SDimitry Andric assert(getLangOpts().ObjCAutoRefCount && 39040b57cec5SDimitry Andric !FI.isReturnsRetained() && 39050b57cec5SDimitry Andric RT->isObjCRetainableType()); 39060b57cec5SDimitry Andric #endif 39070b57cec5SDimitry Andric RV = emitAutoreleaseOfResult(*this, RV); 39080b57cec5SDimitry Andric } 39090b57cec5SDimitry Andric 39100b57cec5SDimitry Andric break; 39110b57cec5SDimitry Andric 39120b57cec5SDimitry Andric case ABIArgInfo::Ignore: 39130b57cec5SDimitry Andric break; 39140b57cec5SDimitry Andric 39150b57cec5SDimitry Andric case ABIArgInfo::CoerceAndExpand: { 39160b57cec5SDimitry Andric auto coercionType = RetAI.getCoerceAndExpandType(); 39170b57cec5SDimitry Andric 39180b57cec5SDimitry Andric // Load all of the coerced elements out into results. 39190b57cec5SDimitry Andric llvm::SmallVector<llvm::Value*, 4> results; 392006c3fb27SDimitry Andric Address addr = ReturnValue.withElementType(coercionType); 39210b57cec5SDimitry Andric for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 39220b57cec5SDimitry Andric auto coercedEltType = coercionType->getElementType(i); 39230b57cec5SDimitry Andric if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 39240b57cec5SDimitry Andric continue; 39250b57cec5SDimitry Andric 39260b57cec5SDimitry Andric auto eltAddr = Builder.CreateStructGEP(addr, i); 39270b57cec5SDimitry Andric auto elt = Builder.CreateLoad(eltAddr); 39280b57cec5SDimitry Andric results.push_back(elt); 39290b57cec5SDimitry Andric } 39300b57cec5SDimitry Andric 39310b57cec5SDimitry Andric // If we have one result, it's the single direct result type. 39320b57cec5SDimitry Andric if (results.size() == 1) { 39330b57cec5SDimitry Andric RV = results[0]; 39340b57cec5SDimitry Andric 39350b57cec5SDimitry Andric // Otherwise, we need to make a first-class aggregate. 39360b57cec5SDimitry Andric } else { 39370b57cec5SDimitry Andric // Construct a return type that lacks padding elements. 39380b57cec5SDimitry Andric llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 39390b57cec5SDimitry Andric 394081ad6265SDimitry Andric RV = llvm::PoisonValue::get(returnType); 39410b57cec5SDimitry Andric for (unsigned i = 0, e = results.size(); i != e; ++i) { 39420b57cec5SDimitry Andric RV = Builder.CreateInsertValue(RV, results[i], i); 39430b57cec5SDimitry Andric } 39440b57cec5SDimitry Andric } 39450b57cec5SDimitry Andric break; 39460b57cec5SDimitry Andric } 39470b57cec5SDimitry Andric case ABIArgInfo::Expand: 3948e8d8bef9SDimitry Andric case ABIArgInfo::IndirectAliased: 39490b57cec5SDimitry Andric llvm_unreachable("Invalid ABI kind for return argument"); 39500b57cec5SDimitry Andric } 39510b57cec5SDimitry Andric 39520b57cec5SDimitry Andric llvm::Instruction *Ret; 39530b57cec5SDimitry Andric if (RV) { 39545ffd83dbSDimitry Andric if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 39555ffd83dbSDimitry Andric // For certain return types, clear padding bits, as they may reveal 39565ffd83dbSDimitry Andric // sensitive information. 39575ffd83dbSDimitry Andric // Small struct/union types are passed as integers. 39585ffd83dbSDimitry Andric auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 39595ffd83dbSDimitry Andric if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 39605ffd83dbSDimitry Andric RV = EmitCMSEClearRecord(RV, ITy, RetTy); 39615ffd83dbSDimitry Andric } 39620b57cec5SDimitry Andric EmitReturnValueCheck(RV); 39630b57cec5SDimitry Andric Ret = Builder.CreateRet(RV); 39640b57cec5SDimitry Andric } else { 39650b57cec5SDimitry Andric Ret = Builder.CreateRetVoid(); 39660b57cec5SDimitry Andric } 39670b57cec5SDimitry Andric 39680b57cec5SDimitry Andric if (RetDbgLoc) 39690b57cec5SDimitry Andric Ret->setDebugLoc(std::move(RetDbgLoc)); 39700b57cec5SDimitry Andric } 39710b57cec5SDimitry Andric 39720b57cec5SDimitry Andric void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 39730b57cec5SDimitry Andric // A current decl may not be available when emitting vtable thunks. 39740b57cec5SDimitry Andric if (!CurCodeDecl) 39750b57cec5SDimitry Andric return; 39760b57cec5SDimitry Andric 39775ffd83dbSDimitry Andric // If the return block isn't reachable, neither is this check, so don't emit 39785ffd83dbSDimitry Andric // it. 39795ffd83dbSDimitry Andric if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 39805ffd83dbSDimitry Andric return; 39815ffd83dbSDimitry Andric 39820b57cec5SDimitry Andric ReturnsNonNullAttr *RetNNAttr = nullptr; 39830b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 39840b57cec5SDimitry Andric RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 39850b57cec5SDimitry Andric 39860b57cec5SDimitry Andric if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 39870b57cec5SDimitry Andric return; 39880b57cec5SDimitry Andric 39890b57cec5SDimitry Andric // Prefer the returns_nonnull attribute if it's present. 39900b57cec5SDimitry Andric SourceLocation AttrLoc; 39910b57cec5SDimitry Andric SanitizerMask CheckKind; 39920b57cec5SDimitry Andric SanitizerHandler Handler; 39930b57cec5SDimitry Andric if (RetNNAttr) { 39940b57cec5SDimitry Andric assert(!requiresReturnValueNullabilityCheck() && 39950b57cec5SDimitry Andric "Cannot check nullability and the nonnull attribute"); 39960b57cec5SDimitry Andric AttrLoc = RetNNAttr->getLocation(); 39970b57cec5SDimitry Andric CheckKind = SanitizerKind::ReturnsNonnullAttribute; 39980b57cec5SDimitry Andric Handler = SanitizerHandler::NonnullReturn; 39990b57cec5SDimitry Andric } else { 40000b57cec5SDimitry Andric if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 40010b57cec5SDimitry Andric if (auto *TSI = DD->getTypeSourceInfo()) 40025ffd83dbSDimitry Andric if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 40030b57cec5SDimitry Andric AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 40040b57cec5SDimitry Andric CheckKind = SanitizerKind::NullabilityReturn; 40050b57cec5SDimitry Andric Handler = SanitizerHandler::NullabilityReturn; 40060b57cec5SDimitry Andric } 40070b57cec5SDimitry Andric 40080b57cec5SDimitry Andric SanitizerScope SanScope(this); 40090b57cec5SDimitry Andric 40100b57cec5SDimitry Andric // Make sure the "return" source location is valid. If we're checking a 40110b57cec5SDimitry Andric // nullability annotation, make sure the preconditions for the check are met. 40120b57cec5SDimitry Andric llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 40130b57cec5SDimitry Andric llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 40140b57cec5SDimitry Andric llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 40150b57cec5SDimitry Andric llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 40160b57cec5SDimitry Andric if (requiresReturnValueNullabilityCheck()) 40170b57cec5SDimitry Andric CanNullCheck = 40180b57cec5SDimitry Andric Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 40190b57cec5SDimitry Andric Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 40200b57cec5SDimitry Andric EmitBlock(Check); 40210b57cec5SDimitry Andric 40220b57cec5SDimitry Andric // Now do the null check. 40230b57cec5SDimitry Andric llvm::Value *Cond = Builder.CreateIsNotNull(RV); 40240b57cec5SDimitry Andric llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 40250b57cec5SDimitry Andric llvm::Value *DynamicData[] = {SLocPtr}; 40260b57cec5SDimitry Andric EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 40270b57cec5SDimitry Andric 40280b57cec5SDimitry Andric EmitBlock(NoCheck); 40290b57cec5SDimitry Andric 40300b57cec5SDimitry Andric #ifndef NDEBUG 40310b57cec5SDimitry Andric // The return location should not be used after the check has been emitted. 40320b57cec5SDimitry Andric ReturnLocation = Address::invalid(); 40330b57cec5SDimitry Andric #endif 40340b57cec5SDimitry Andric } 40350b57cec5SDimitry Andric 40360b57cec5SDimitry Andric static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 40370b57cec5SDimitry Andric const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 40380b57cec5SDimitry Andric return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 40390b57cec5SDimitry Andric } 40400b57cec5SDimitry Andric 40410b57cec5SDimitry Andric static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 40420b57cec5SDimitry Andric QualType Ty) { 40430b57cec5SDimitry Andric // FIXME: Generate IR in one pass, rather than going back and fixing up these 40440b57cec5SDimitry Andric // placeholders. 40450b57cec5SDimitry Andric llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 404606c3fb27SDimitry Andric llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext()); 404706c3fb27SDimitry Andric llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy); 40480b57cec5SDimitry Andric 40490b57cec5SDimitry Andric // FIXME: When we generate this IR in one pass, we shouldn't need 40500b57cec5SDimitry Andric // this win32-specific alignment hack. 40510b57cec5SDimitry Andric CharUnits Align = CharUnits::fromQuantity(4); 40520b57cec5SDimitry Andric Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 40530b57cec5SDimitry Andric 405481ad6265SDimitry Andric return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 40550b57cec5SDimitry Andric Ty.getQualifiers(), 40560b57cec5SDimitry Andric AggValueSlot::IsNotDestructed, 40570b57cec5SDimitry Andric AggValueSlot::DoesNotNeedGCBarriers, 40580b57cec5SDimitry Andric AggValueSlot::IsNotAliased, 40590b57cec5SDimitry Andric AggValueSlot::DoesNotOverlap); 40600b57cec5SDimitry Andric } 40610b57cec5SDimitry Andric 40620b57cec5SDimitry Andric void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 40630b57cec5SDimitry Andric const VarDecl *param, 40640b57cec5SDimitry Andric SourceLocation loc) { 40650b57cec5SDimitry Andric // StartFunction converted the ABI-lowered parameter(s) into a 40660b57cec5SDimitry Andric // local alloca. We need to turn that into an r-value suitable 40670b57cec5SDimitry Andric // for EmitCall. 40680b57cec5SDimitry Andric Address local = GetAddrOfLocalVar(param); 40690b57cec5SDimitry Andric 40700b57cec5SDimitry Andric QualType type = param->getType(); 40710b57cec5SDimitry Andric 40720b57cec5SDimitry Andric // GetAddrOfLocalVar returns a pointer-to-pointer for references, 40730b57cec5SDimitry Andric // but the argument needs to be the original pointer. 40740b57cec5SDimitry Andric if (type->isReferenceType()) { 40750b57cec5SDimitry Andric args.add(RValue::get(Builder.CreateLoad(local)), type); 40760b57cec5SDimitry Andric 40770b57cec5SDimitry Andric // In ARC, move out of consumed arguments so that the release cleanup 40780b57cec5SDimitry Andric // entered by StartFunction doesn't cause an over-release. This isn't 40790b57cec5SDimitry Andric // optimal -O0 code generation, but it should get cleaned up when 40800b57cec5SDimitry Andric // optimization is enabled. This also assumes that delegate calls are 40810b57cec5SDimitry Andric // performed exactly once for a set of arguments, but that should be safe. 40820b57cec5SDimitry Andric } else if (getLangOpts().ObjCAutoRefCount && 40830b57cec5SDimitry Andric param->hasAttr<NSConsumedAttr>() && 40840b57cec5SDimitry Andric type->isObjCRetainableType()) { 40850b57cec5SDimitry Andric llvm::Value *ptr = Builder.CreateLoad(local); 40860b57cec5SDimitry Andric auto null = 40870b57cec5SDimitry Andric llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 40880b57cec5SDimitry Andric Builder.CreateStore(null, local); 40890b57cec5SDimitry Andric args.add(RValue::get(ptr), type); 40900b57cec5SDimitry Andric 40910b57cec5SDimitry Andric // For the most part, we just need to load the alloca, except that 40920b57cec5SDimitry Andric // aggregate r-values are actually pointers to temporaries. 40930b57cec5SDimitry Andric } else { 40940b57cec5SDimitry Andric args.add(convertTempToRValue(local, type, loc), type); 40950b57cec5SDimitry Andric } 40960b57cec5SDimitry Andric 40970b57cec5SDimitry Andric // Deactivate the cleanup for the callee-destructed param that was pushed. 4098fe6060f1SDimitry Andric if (type->isRecordType() && !CurFuncIsThunk && 4099a7dea167SDimitry Andric type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 4100a7dea167SDimitry Andric param->needsDestruction(getContext())) { 41010b57cec5SDimitry Andric EHScopeStack::stable_iterator cleanup = 41020b57cec5SDimitry Andric CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 41030b57cec5SDimitry Andric assert(cleanup.isValid() && 41040b57cec5SDimitry Andric "cleanup for callee-destructed param not recorded"); 41050b57cec5SDimitry Andric // This unreachable is a temporary marker which will be removed later. 41060b57cec5SDimitry Andric llvm::Instruction *isActive = Builder.CreateUnreachable(); 41070b57cec5SDimitry Andric args.addArgCleanupDeactivation(cleanup, isActive); 41080b57cec5SDimitry Andric } 41090b57cec5SDimitry Andric } 41100b57cec5SDimitry Andric 41110b57cec5SDimitry Andric static bool isProvablyNull(llvm::Value *addr) { 41120fca6ea1SDimitry Andric return llvm::isa_and_nonnull<llvm::ConstantPointerNull>(addr); 41130fca6ea1SDimitry Andric } 41140fca6ea1SDimitry Andric 41150fca6ea1SDimitry Andric static bool isProvablyNonNull(Address Addr, CodeGenFunction &CGF) { 41160fca6ea1SDimitry Andric return llvm::isKnownNonZero(Addr.getBasePointer(), CGF.CGM.getDataLayout()); 41170b57cec5SDimitry Andric } 41180b57cec5SDimitry Andric 41190b57cec5SDimitry Andric /// Emit the actual writing-back of a writeback. 41200b57cec5SDimitry Andric static void emitWriteback(CodeGenFunction &CGF, 41210b57cec5SDimitry Andric const CallArgList::Writeback &writeback) { 41220b57cec5SDimitry Andric const LValue &srcLV = writeback.Source; 41230fca6ea1SDimitry Andric Address srcAddr = srcLV.getAddress(); 41240fca6ea1SDimitry Andric assert(!isProvablyNull(srcAddr.getBasePointer()) && 41250b57cec5SDimitry Andric "shouldn't have writeback for provably null argument"); 41260b57cec5SDimitry Andric 41270b57cec5SDimitry Andric llvm::BasicBlock *contBB = nullptr; 41280b57cec5SDimitry Andric 41290b57cec5SDimitry Andric // If the argument wasn't provably non-null, we need to null check 41300b57cec5SDimitry Andric // before doing the store. 41310fca6ea1SDimitry Andric bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 41320fca6ea1SDimitry Andric 41330b57cec5SDimitry Andric if (!provablyNonNull) { 41340b57cec5SDimitry Andric llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 41350b57cec5SDimitry Andric contBB = CGF.createBasicBlock("icr.done"); 41360b57cec5SDimitry Andric 41370fca6ea1SDimitry Andric llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 41380b57cec5SDimitry Andric CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 41390b57cec5SDimitry Andric CGF.EmitBlock(writebackBB); 41400b57cec5SDimitry Andric } 41410b57cec5SDimitry Andric 41420b57cec5SDimitry Andric // Load the value to writeback. 41430b57cec5SDimitry Andric llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 41440b57cec5SDimitry Andric 41450b57cec5SDimitry Andric // Cast it back, in case we're writing an id to a Foo* or something. 41460b57cec5SDimitry Andric value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 41470b57cec5SDimitry Andric "icr.writeback-cast"); 41480b57cec5SDimitry Andric 41490b57cec5SDimitry Andric // Perform the writeback. 41500b57cec5SDimitry Andric 41510b57cec5SDimitry Andric // If we have a "to use" value, it's something we need to emit a use 41520b57cec5SDimitry Andric // of. This has to be carefully threaded in: if it's done after the 41530b57cec5SDimitry Andric // release it's potentially undefined behavior (and the optimizer 41540b57cec5SDimitry Andric // will ignore it), and if it happens before the retain then the 41550b57cec5SDimitry Andric // optimizer could move the release there. 41560b57cec5SDimitry Andric if (writeback.ToUse) { 41570b57cec5SDimitry Andric assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 41580b57cec5SDimitry Andric 41590b57cec5SDimitry Andric // Retain the new value. No need to block-copy here: the block's 41600b57cec5SDimitry Andric // being passed up the stack. 41610b57cec5SDimitry Andric value = CGF.EmitARCRetainNonBlock(value); 41620b57cec5SDimitry Andric 41630b57cec5SDimitry Andric // Emit the intrinsic use here. 41640b57cec5SDimitry Andric CGF.EmitARCIntrinsicUse(writeback.ToUse); 41650b57cec5SDimitry Andric 41660b57cec5SDimitry Andric // Load the old value (primitively). 41670b57cec5SDimitry Andric llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 41680b57cec5SDimitry Andric 41690b57cec5SDimitry Andric // Put the new value in place (primitively). 41700b57cec5SDimitry Andric CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 41710b57cec5SDimitry Andric 41720b57cec5SDimitry Andric // Release the old value. 41730b57cec5SDimitry Andric CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 41740b57cec5SDimitry Andric 41750b57cec5SDimitry Andric // Otherwise, we can just do a normal lvalue store. 41760b57cec5SDimitry Andric } else { 41770b57cec5SDimitry Andric CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 41780b57cec5SDimitry Andric } 41790b57cec5SDimitry Andric 41800b57cec5SDimitry Andric // Jump to the continuation block. 41810b57cec5SDimitry Andric if (!provablyNonNull) 41820b57cec5SDimitry Andric CGF.EmitBlock(contBB); 41830b57cec5SDimitry Andric } 41840b57cec5SDimitry Andric 41850b57cec5SDimitry Andric static void emitWritebacks(CodeGenFunction &CGF, 41860b57cec5SDimitry Andric const CallArgList &args) { 41870b57cec5SDimitry Andric for (const auto &I : args.writebacks()) 41880b57cec5SDimitry Andric emitWriteback(CGF, I); 41890b57cec5SDimitry Andric } 41900b57cec5SDimitry Andric 41910b57cec5SDimitry Andric static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 41920b57cec5SDimitry Andric const CallArgList &CallArgs) { 41930b57cec5SDimitry Andric ArrayRef<CallArgList::CallArgCleanup> Cleanups = 41940b57cec5SDimitry Andric CallArgs.getCleanupsToDeactivate(); 41950b57cec5SDimitry Andric // Iterate in reverse to increase the likelihood of popping the cleanup. 41960b57cec5SDimitry Andric for (const auto &I : llvm::reverse(Cleanups)) { 41970b57cec5SDimitry Andric CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 41980b57cec5SDimitry Andric I.IsActiveIP->eraseFromParent(); 41990b57cec5SDimitry Andric } 42000b57cec5SDimitry Andric } 42010b57cec5SDimitry Andric 42020b57cec5SDimitry Andric static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 42030b57cec5SDimitry Andric if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 42040b57cec5SDimitry Andric if (uop->getOpcode() == UO_AddrOf) 42050b57cec5SDimitry Andric return uop->getSubExpr(); 42060b57cec5SDimitry Andric return nullptr; 42070b57cec5SDimitry Andric } 42080b57cec5SDimitry Andric 42090b57cec5SDimitry Andric /// Emit an argument that's being passed call-by-writeback. That is, 42100b57cec5SDimitry Andric /// we are passing the address of an __autoreleased temporary; it 42110b57cec5SDimitry Andric /// might be copy-initialized with the current value of the given 42120b57cec5SDimitry Andric /// address, but it will definitely be copied out of after the call. 42130b57cec5SDimitry Andric static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 42140b57cec5SDimitry Andric const ObjCIndirectCopyRestoreExpr *CRE) { 42150b57cec5SDimitry Andric LValue srcLV; 42160b57cec5SDimitry Andric 42170b57cec5SDimitry Andric // Make an optimistic effort to emit the address as an l-value. 42180b57cec5SDimitry Andric // This can fail if the argument expression is more complicated. 42190b57cec5SDimitry Andric if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 42200b57cec5SDimitry Andric srcLV = CGF.EmitLValue(lvExpr); 42210b57cec5SDimitry Andric 42220b57cec5SDimitry Andric // Otherwise, just emit it as a scalar. 42230b57cec5SDimitry Andric } else { 42240b57cec5SDimitry Andric Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 42250b57cec5SDimitry Andric 42260b57cec5SDimitry Andric QualType srcAddrType = 42270b57cec5SDimitry Andric CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 42280b57cec5SDimitry Andric srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 42290b57cec5SDimitry Andric } 42300fca6ea1SDimitry Andric Address srcAddr = srcLV.getAddress(); 42310b57cec5SDimitry Andric 42320b57cec5SDimitry Andric // The dest and src types don't necessarily match in LLVM terms 42330b57cec5SDimitry Andric // because of the crazy ObjC compatibility rules. 42340b57cec5SDimitry Andric 42350b57cec5SDimitry Andric llvm::PointerType *destType = 42360b57cec5SDimitry Andric cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 423781ad6265SDimitry Andric llvm::Type *destElemType = 423881ad6265SDimitry Andric CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 42390b57cec5SDimitry Andric 42400b57cec5SDimitry Andric // If the address is a constant null, just pass the appropriate null. 42410fca6ea1SDimitry Andric if (isProvablyNull(srcAddr.getBasePointer())) { 42420b57cec5SDimitry Andric args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 42430b57cec5SDimitry Andric CRE->getType()); 42440b57cec5SDimitry Andric return; 42450b57cec5SDimitry Andric } 42460b57cec5SDimitry Andric 42470b57cec5SDimitry Andric // Create the temporary. 424881ad6265SDimitry Andric Address temp = 424981ad6265SDimitry Andric CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 42500b57cec5SDimitry Andric // Loading an l-value can introduce a cleanup if the l-value is __weak, 42510b57cec5SDimitry Andric // and that cleanup will be conditional if we can't prove that the l-value 42520b57cec5SDimitry Andric // isn't null, so we need to register a dominating point so that the cleanups 42530b57cec5SDimitry Andric // system will make valid IR. 42540b57cec5SDimitry Andric CodeGenFunction::ConditionalEvaluation condEval(CGF); 42550b57cec5SDimitry Andric 42560b57cec5SDimitry Andric // Zero-initialize it if we're not doing a copy-initialization. 42570b57cec5SDimitry Andric bool shouldCopy = CRE->shouldCopy(); 42580b57cec5SDimitry Andric if (!shouldCopy) { 425981ad6265SDimitry Andric llvm::Value *null = 426081ad6265SDimitry Andric llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 42610b57cec5SDimitry Andric CGF.Builder.CreateStore(null, temp); 42620b57cec5SDimitry Andric } 42630b57cec5SDimitry Andric 42640b57cec5SDimitry Andric llvm::BasicBlock *contBB = nullptr; 42650b57cec5SDimitry Andric llvm::BasicBlock *originBB = nullptr; 42660b57cec5SDimitry Andric 42670b57cec5SDimitry Andric // If the address is *not* known to be non-null, we need to switch. 42680b57cec5SDimitry Andric llvm::Value *finalArgument; 42690b57cec5SDimitry Andric 42700fca6ea1SDimitry Andric bool provablyNonNull = isProvablyNonNull(srcAddr, CGF); 42710b57cec5SDimitry Andric 42720fca6ea1SDimitry Andric if (provablyNonNull) { 42730fca6ea1SDimitry Andric finalArgument = temp.emitRawPointer(CGF); 42740fca6ea1SDimitry Andric } else { 42750fca6ea1SDimitry Andric llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 42760fca6ea1SDimitry Andric 42770fca6ea1SDimitry Andric finalArgument = CGF.Builder.CreateSelect( 42780fca6ea1SDimitry Andric isNull, llvm::ConstantPointerNull::get(destType), 42790fca6ea1SDimitry Andric temp.emitRawPointer(CGF), "icr.argument"); 42800b57cec5SDimitry Andric 42810b57cec5SDimitry Andric // If we need to copy, then the load has to be conditional, which 42820b57cec5SDimitry Andric // means we need control flow. 42830b57cec5SDimitry Andric if (shouldCopy) { 42840b57cec5SDimitry Andric originBB = CGF.Builder.GetInsertBlock(); 42850b57cec5SDimitry Andric contBB = CGF.createBasicBlock("icr.cont"); 42860b57cec5SDimitry Andric llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 42870b57cec5SDimitry Andric CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 42880b57cec5SDimitry Andric CGF.EmitBlock(copyBB); 42890b57cec5SDimitry Andric condEval.begin(CGF); 42900b57cec5SDimitry Andric } 42910b57cec5SDimitry Andric } 42920b57cec5SDimitry Andric 42930b57cec5SDimitry Andric llvm::Value *valueToUse = nullptr; 42940b57cec5SDimitry Andric 42950b57cec5SDimitry Andric // Perform a copy if necessary. 42960b57cec5SDimitry Andric if (shouldCopy) { 42970b57cec5SDimitry Andric RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 42980b57cec5SDimitry Andric assert(srcRV.isScalar()); 42990b57cec5SDimitry Andric 43000b57cec5SDimitry Andric llvm::Value *src = srcRV.getScalarVal(); 430181ad6265SDimitry Andric src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 43020b57cec5SDimitry Andric 43030b57cec5SDimitry Andric // Use an ordinary store, not a store-to-lvalue. 43040b57cec5SDimitry Andric CGF.Builder.CreateStore(src, temp); 43050b57cec5SDimitry Andric 43060b57cec5SDimitry Andric // If optimization is enabled, and the value was held in a 43070b57cec5SDimitry Andric // __strong variable, we need to tell the optimizer that this 43080b57cec5SDimitry Andric // value has to stay alive until we're doing the store back. 43090b57cec5SDimitry Andric // This is because the temporary is effectively unretained, 43100b57cec5SDimitry Andric // and so otherwise we can violate the high-level semantics. 43110b57cec5SDimitry Andric if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 43120b57cec5SDimitry Andric srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 43130b57cec5SDimitry Andric valueToUse = src; 43140b57cec5SDimitry Andric } 43150b57cec5SDimitry Andric } 43160b57cec5SDimitry Andric 43170b57cec5SDimitry Andric // Finish the control flow if we needed it. 43180b57cec5SDimitry Andric if (shouldCopy && !provablyNonNull) { 43190b57cec5SDimitry Andric llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 43200b57cec5SDimitry Andric CGF.EmitBlock(contBB); 43210b57cec5SDimitry Andric 43220b57cec5SDimitry Andric // Make a phi for the value to intrinsically use. 43230b57cec5SDimitry Andric if (valueToUse) { 43240b57cec5SDimitry Andric llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 43250b57cec5SDimitry Andric "icr.to-use"); 43260b57cec5SDimitry Andric phiToUse->addIncoming(valueToUse, copyBB); 43270b57cec5SDimitry Andric phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 43280b57cec5SDimitry Andric originBB); 43290b57cec5SDimitry Andric valueToUse = phiToUse; 43300b57cec5SDimitry Andric } 43310b57cec5SDimitry Andric 43320b57cec5SDimitry Andric condEval.end(CGF); 43330b57cec5SDimitry Andric } 43340b57cec5SDimitry Andric 43350b57cec5SDimitry Andric args.addWriteback(srcLV, temp, valueToUse); 43360b57cec5SDimitry Andric args.add(RValue::get(finalArgument), CRE->getType()); 43370b57cec5SDimitry Andric } 43380b57cec5SDimitry Andric 43390b57cec5SDimitry Andric void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 43400b57cec5SDimitry Andric assert(!StackBase); 43410b57cec5SDimitry Andric 43420b57cec5SDimitry Andric // Save the stack. 43435f757f3fSDimitry Andric StackBase = CGF.Builder.CreateStackSave("inalloca.save"); 43440b57cec5SDimitry Andric } 43450b57cec5SDimitry Andric 43460b57cec5SDimitry Andric void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 43470b57cec5SDimitry Andric if (StackBase) { 43480b57cec5SDimitry Andric // Restore the stack after the call. 43495f757f3fSDimitry Andric CGF.Builder.CreateStackRestore(StackBase); 43500b57cec5SDimitry Andric } 43510b57cec5SDimitry Andric } 43520b57cec5SDimitry Andric 43530b57cec5SDimitry Andric void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 43540b57cec5SDimitry Andric SourceLocation ArgLoc, 43550b57cec5SDimitry Andric AbstractCallee AC, 43560b57cec5SDimitry Andric unsigned ParmNum) { 43570b57cec5SDimitry Andric if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 43580b57cec5SDimitry Andric SanOpts.has(SanitizerKind::NullabilityArg))) 43590b57cec5SDimitry Andric return; 43600b57cec5SDimitry Andric 43610b57cec5SDimitry Andric // The param decl may be missing in a variadic function. 43620b57cec5SDimitry Andric auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 43630b57cec5SDimitry Andric unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 43640b57cec5SDimitry Andric 43650b57cec5SDimitry Andric // Prefer the nonnull attribute if it's present. 43660b57cec5SDimitry Andric const NonNullAttr *NNAttr = nullptr; 43670b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::NonnullAttribute)) 43680b57cec5SDimitry Andric NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 43690b57cec5SDimitry Andric 43700b57cec5SDimitry Andric bool CanCheckNullability = false; 43710fca6ea1SDimitry Andric if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD && 43720fca6ea1SDimitry Andric !PVD->getType()->isRecordType()) { 4373bdd1243dSDimitry Andric auto Nullability = PVD->getType()->getNullability(); 43740b57cec5SDimitry Andric CanCheckNullability = Nullability && 43750b57cec5SDimitry Andric *Nullability == NullabilityKind::NonNull && 43760b57cec5SDimitry Andric PVD->getTypeSourceInfo(); 43770b57cec5SDimitry Andric } 43780b57cec5SDimitry Andric 43790b57cec5SDimitry Andric if (!NNAttr && !CanCheckNullability) 43800b57cec5SDimitry Andric return; 43810b57cec5SDimitry Andric 43820b57cec5SDimitry Andric SourceLocation AttrLoc; 43830b57cec5SDimitry Andric SanitizerMask CheckKind; 43840b57cec5SDimitry Andric SanitizerHandler Handler; 43850b57cec5SDimitry Andric if (NNAttr) { 43860b57cec5SDimitry Andric AttrLoc = NNAttr->getLocation(); 43870b57cec5SDimitry Andric CheckKind = SanitizerKind::NonnullAttribute; 43880b57cec5SDimitry Andric Handler = SanitizerHandler::NonnullArg; 43890b57cec5SDimitry Andric } else { 43900b57cec5SDimitry Andric AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 43910b57cec5SDimitry Andric CheckKind = SanitizerKind::NullabilityArg; 43920b57cec5SDimitry Andric Handler = SanitizerHandler::NullabilityArg; 43930b57cec5SDimitry Andric } 43940b57cec5SDimitry Andric 43950b57cec5SDimitry Andric SanitizerScope SanScope(this); 4396e8d8bef9SDimitry Andric llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 43970b57cec5SDimitry Andric llvm::Constant *StaticData[] = { 43980b57cec5SDimitry Andric EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 43990b57cec5SDimitry Andric llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 44000b57cec5SDimitry Andric }; 4401bdd1243dSDimitry Andric EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt); 44020b57cec5SDimitry Andric } 44030b57cec5SDimitry Andric 44040fca6ea1SDimitry Andric void CodeGenFunction::EmitNonNullArgCheck(Address Addr, QualType ArgType, 44050fca6ea1SDimitry Andric SourceLocation ArgLoc, 44060fca6ea1SDimitry Andric AbstractCallee AC, unsigned ParmNum) { 44070fca6ea1SDimitry Andric if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 44080fca6ea1SDimitry Andric SanOpts.has(SanitizerKind::NullabilityArg))) 44090fca6ea1SDimitry Andric return; 44100fca6ea1SDimitry Andric 44110fca6ea1SDimitry Andric EmitNonNullArgCheck(RValue::get(Addr, *this), ArgType, ArgLoc, AC, ParmNum); 44120fca6ea1SDimitry Andric } 44130fca6ea1SDimitry Andric 4414e8d8bef9SDimitry Andric // Check if the call is going to use the inalloca convention. This needs to 4415e8d8bef9SDimitry Andric // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4416e8d8bef9SDimitry Andric // later, so we can't check it directly. 4417e8d8bef9SDimitry Andric static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4418e8d8bef9SDimitry Andric ArrayRef<QualType> ArgTypes) { 4419fe6060f1SDimitry Andric // The Swift calling conventions don't go through the target-specific 4420fe6060f1SDimitry Andric // argument classification, they never use inalloca. 4421e8d8bef9SDimitry Andric // TODO: Consider limiting inalloca use to only calling conventions supported 4422e8d8bef9SDimitry Andric // by MSVC. 4423fe6060f1SDimitry Andric if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4424e8d8bef9SDimitry Andric return false; 4425e8d8bef9SDimitry Andric if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4426e8d8bef9SDimitry Andric return false; 4427e8d8bef9SDimitry Andric return llvm::any_of(ArgTypes, [&](QualType Ty) { 4428e8d8bef9SDimitry Andric return isInAllocaArgument(CGM.getCXXABI(), Ty); 4429e8d8bef9SDimitry Andric }); 4430e8d8bef9SDimitry Andric } 4431e8d8bef9SDimitry Andric 4432e8d8bef9SDimitry Andric #ifndef NDEBUG 4433e8d8bef9SDimitry Andric // Determine whether the given argument is an Objective-C method 4434e8d8bef9SDimitry Andric // that may have type parameters in its signature. 4435e8d8bef9SDimitry Andric static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4436e8d8bef9SDimitry Andric const DeclContext *dc = method->getDeclContext(); 4437e8d8bef9SDimitry Andric if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4438e8d8bef9SDimitry Andric return classDecl->getTypeParamListAsWritten(); 4439e8d8bef9SDimitry Andric } 4440e8d8bef9SDimitry Andric 4441e8d8bef9SDimitry Andric if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4442e8d8bef9SDimitry Andric return catDecl->getTypeParamList(); 4443e8d8bef9SDimitry Andric } 4444e8d8bef9SDimitry Andric 4445e8d8bef9SDimitry Andric return false; 4446e8d8bef9SDimitry Andric } 4447e8d8bef9SDimitry Andric #endif 4448e8d8bef9SDimitry Andric 4449e8d8bef9SDimitry Andric /// EmitCallArgs - Emit call arguments for a function. 44500b57cec5SDimitry Andric void CodeGenFunction::EmitCallArgs( 4451e8d8bef9SDimitry Andric CallArgList &Args, PrototypeWrapper Prototype, 44520b57cec5SDimitry Andric llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 44530b57cec5SDimitry Andric AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4454e8d8bef9SDimitry Andric SmallVector<QualType, 16> ArgTypes; 4455e8d8bef9SDimitry Andric 4456e8d8bef9SDimitry Andric assert((ParamsToSkip == 0 || Prototype.P) && 4457e8d8bef9SDimitry Andric "Can't skip parameters if type info is not provided"); 4458e8d8bef9SDimitry Andric 4459e8d8bef9SDimitry Andric // This variable only captures *explicitly* written conventions, not those 4460e8d8bef9SDimitry Andric // applied by default via command line flags or target defaults, such as 4461e8d8bef9SDimitry Andric // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4462e8d8bef9SDimitry Andric // require knowing if this is a C++ instance method or being able to see 4463e8d8bef9SDimitry Andric // unprototyped FunctionTypes. 4464e8d8bef9SDimitry Andric CallingConv ExplicitCC = CC_C; 4465e8d8bef9SDimitry Andric 4466e8d8bef9SDimitry Andric // First, if a prototype was provided, use those argument types. 4467e8d8bef9SDimitry Andric bool IsVariadic = false; 4468e8d8bef9SDimitry Andric if (Prototype.P) { 4469e8d8bef9SDimitry Andric const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4470e8d8bef9SDimitry Andric if (MD) { 4471e8d8bef9SDimitry Andric IsVariadic = MD->isVariadic(); 4472e8d8bef9SDimitry Andric ExplicitCC = getCallingConventionForDecl( 4473e8d8bef9SDimitry Andric MD, CGM.getTarget().getTriple().isOSWindows()); 4474e8d8bef9SDimitry Andric ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4475e8d8bef9SDimitry Andric MD->param_type_end()); 4476e8d8bef9SDimitry Andric } else { 4477e8d8bef9SDimitry Andric const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4478e8d8bef9SDimitry Andric IsVariadic = FPT->isVariadic(); 4479e8d8bef9SDimitry Andric ExplicitCC = FPT->getExtInfo().getCC(); 4480e8d8bef9SDimitry Andric ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4481e8d8bef9SDimitry Andric FPT->param_type_end()); 4482e8d8bef9SDimitry Andric } 4483e8d8bef9SDimitry Andric 4484e8d8bef9SDimitry Andric #ifndef NDEBUG 4485e8d8bef9SDimitry Andric // Check that the prototyped types match the argument expression types. 4486e8d8bef9SDimitry Andric bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4487e8d8bef9SDimitry Andric CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4488e8d8bef9SDimitry Andric for (QualType Ty : ArgTypes) { 4489e8d8bef9SDimitry Andric assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4490e8d8bef9SDimitry Andric assert( 4491e8d8bef9SDimitry Andric (isGenericMethod || Ty->isVariablyModifiedType() || 4492e8d8bef9SDimitry Andric Ty.getNonReferenceType()->isObjCRetainableType() || 4493e8d8bef9SDimitry Andric getContext() 4494e8d8bef9SDimitry Andric .getCanonicalType(Ty.getNonReferenceType()) 4495e8d8bef9SDimitry Andric .getTypePtr() == 4496e8d8bef9SDimitry Andric getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4497e8d8bef9SDimitry Andric "type mismatch in call argument!"); 4498e8d8bef9SDimitry Andric ++Arg; 4499e8d8bef9SDimitry Andric } 4500e8d8bef9SDimitry Andric 4501e8d8bef9SDimitry Andric // Either we've emitted all the call args, or we have a call to variadic 4502e8d8bef9SDimitry Andric // function. 4503e8d8bef9SDimitry Andric assert((Arg == ArgRange.end() || IsVariadic) && 4504e8d8bef9SDimitry Andric "Extra arguments in non-variadic function!"); 4505e8d8bef9SDimitry Andric #endif 4506e8d8bef9SDimitry Andric } 4507e8d8bef9SDimitry Andric 4508e8d8bef9SDimitry Andric // If we still have any arguments, emit them using the type of the argument. 45090eae32dcSDimitry Andric for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4510e8d8bef9SDimitry Andric ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 45110b57cec5SDimitry Andric assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 45120b57cec5SDimitry Andric 4513e8d8bef9SDimitry Andric // We must evaluate arguments from right to left in the MS C++ ABI, 45140b57cec5SDimitry Andric // because arguments are destroyed left to right in the callee. As a special 45150b57cec5SDimitry Andric // case, there are certain language constructs that require left-to-right 45160b57cec5SDimitry Andric // evaluation, and in those cases we consider the evaluation order requirement 45170b57cec5SDimitry Andric // to trump the "destruction order is reverse construction order" guarantee. 45180b57cec5SDimitry Andric bool LeftToRight = 45190b57cec5SDimitry Andric CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 45200b57cec5SDimitry Andric ? Order == EvaluationOrder::ForceLeftToRight 45210b57cec5SDimitry Andric : Order != EvaluationOrder::ForceRightToLeft; 45220b57cec5SDimitry Andric 45230b57cec5SDimitry Andric auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 45240b57cec5SDimitry Andric RValue EmittedArg) { 45250b57cec5SDimitry Andric if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 45260b57cec5SDimitry Andric return; 45270b57cec5SDimitry Andric auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 45280b57cec5SDimitry Andric if (PS == nullptr) 45290b57cec5SDimitry Andric return; 45300b57cec5SDimitry Andric 45310b57cec5SDimitry Andric const auto &Context = getContext(); 45320b57cec5SDimitry Andric auto SizeTy = Context.getSizeType(); 45330b57cec5SDimitry Andric auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 45340b57cec5SDimitry Andric assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 45350b57cec5SDimitry Andric llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 45360b57cec5SDimitry Andric EmittedArg.getScalarVal(), 45370b57cec5SDimitry Andric PS->isDynamic()); 45380b57cec5SDimitry Andric Args.add(RValue::get(V), SizeTy); 45390b57cec5SDimitry Andric // If we're emitting args in reverse, be sure to do so with 45400b57cec5SDimitry Andric // pass_object_size, as well. 45410b57cec5SDimitry Andric if (!LeftToRight) 45420b57cec5SDimitry Andric std::swap(Args.back(), *(&Args.back() - 1)); 45430b57cec5SDimitry Andric }; 45440b57cec5SDimitry Andric 45450b57cec5SDimitry Andric // Insert a stack save if we're going to need any inalloca args. 4546e8d8bef9SDimitry Andric if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4547e8d8bef9SDimitry Andric assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4548e8d8bef9SDimitry Andric "inalloca only supported on x86"); 45490b57cec5SDimitry Andric Args.allocateArgumentMemory(*this); 45500b57cec5SDimitry Andric } 45510b57cec5SDimitry Andric 45520b57cec5SDimitry Andric // Evaluate each argument in the appropriate order. 45530b57cec5SDimitry Andric size_t CallArgsStart = Args.size(); 45540b57cec5SDimitry Andric for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 45550b57cec5SDimitry Andric unsigned Idx = LeftToRight ? I : E - I - 1; 45560b57cec5SDimitry Andric CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 45570b57cec5SDimitry Andric unsigned InitialArgSize = Args.size(); 45580b57cec5SDimitry Andric // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 45590b57cec5SDimitry Andric // the argument and parameter match or the objc method is parameterized. 45600b57cec5SDimitry Andric assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 45610b57cec5SDimitry Andric getContext().hasSameUnqualifiedType((*Arg)->getType(), 45620b57cec5SDimitry Andric ArgTypes[Idx]) || 45630b57cec5SDimitry Andric (isa<ObjCMethodDecl>(AC.getDecl()) && 45640b57cec5SDimitry Andric isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 45650b57cec5SDimitry Andric "Argument and parameter types don't match"); 45660b57cec5SDimitry Andric EmitCallArg(Args, *Arg, ArgTypes[Idx]); 45670b57cec5SDimitry Andric // In particular, we depend on it being the last arg in Args, and the 45680b57cec5SDimitry Andric // objectsize bits depend on there only being one arg if !LeftToRight. 45690b57cec5SDimitry Andric assert(InitialArgSize + 1 == Args.size() && 45700b57cec5SDimitry Andric "The code below depends on only adding one arg per EmitCallArg"); 45710b57cec5SDimitry Andric (void)InitialArgSize; 45720b57cec5SDimitry Andric // Since pointer argument are never emitted as LValue, it is safe to emit 45730b57cec5SDimitry Andric // non-null argument check for r-value only. 45740b57cec5SDimitry Andric if (!Args.back().hasLValue()) { 45750b57cec5SDimitry Andric RValue RVArg = Args.back().getKnownRValue(); 45760b57cec5SDimitry Andric EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 45770b57cec5SDimitry Andric ParamsToSkip + Idx); 45780b57cec5SDimitry Andric // @llvm.objectsize should never have side-effects and shouldn't need 45790b57cec5SDimitry Andric // destruction/cleanups, so we can safely "emit" it after its arg, 45800b57cec5SDimitry Andric // regardless of right-to-leftness 45810b57cec5SDimitry Andric MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 45820b57cec5SDimitry Andric } 45830b57cec5SDimitry Andric } 45840b57cec5SDimitry Andric 45850b57cec5SDimitry Andric if (!LeftToRight) { 45860b57cec5SDimitry Andric // Un-reverse the arguments we just evaluated so they match up with the LLVM 45870b57cec5SDimitry Andric // IR function. 45880b57cec5SDimitry Andric std::reverse(Args.begin() + CallArgsStart, Args.end()); 45890b57cec5SDimitry Andric } 45900b57cec5SDimitry Andric } 45910b57cec5SDimitry Andric 45920b57cec5SDimitry Andric namespace { 45930b57cec5SDimitry Andric 45940b57cec5SDimitry Andric struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 45950b57cec5SDimitry Andric DestroyUnpassedArg(Address Addr, QualType Ty) 45960b57cec5SDimitry Andric : Addr(Addr), Ty(Ty) {} 45970b57cec5SDimitry Andric 45980b57cec5SDimitry Andric Address Addr; 45990b57cec5SDimitry Andric QualType Ty; 46000b57cec5SDimitry Andric 46010b57cec5SDimitry Andric void Emit(CodeGenFunction &CGF, Flags flags) override { 46020b57cec5SDimitry Andric QualType::DestructionKind DtorKind = Ty.isDestructedType(); 46030b57cec5SDimitry Andric if (DtorKind == QualType::DK_cxx_destructor) { 46040b57cec5SDimitry Andric const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 46050b57cec5SDimitry Andric assert(!Dtor->isTrivial()); 46060b57cec5SDimitry Andric CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 46070b57cec5SDimitry Andric /*Delegating=*/false, Addr, Ty); 46080b57cec5SDimitry Andric } else { 46090b57cec5SDimitry Andric CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 46100b57cec5SDimitry Andric } 46110b57cec5SDimitry Andric } 46120b57cec5SDimitry Andric }; 46130b57cec5SDimitry Andric 46140b57cec5SDimitry Andric struct DisableDebugLocationUpdates { 46150b57cec5SDimitry Andric CodeGenFunction &CGF; 46160b57cec5SDimitry Andric bool disabledDebugInfo; 46170b57cec5SDimitry Andric DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 46180b57cec5SDimitry Andric if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 46190b57cec5SDimitry Andric CGF.disableDebugInfo(); 46200b57cec5SDimitry Andric } 46210b57cec5SDimitry Andric ~DisableDebugLocationUpdates() { 46220b57cec5SDimitry Andric if (disabledDebugInfo) 46230b57cec5SDimitry Andric CGF.enableDebugInfo(); 46240b57cec5SDimitry Andric } 46250b57cec5SDimitry Andric }; 46260b57cec5SDimitry Andric 46270b57cec5SDimitry Andric } // end anonymous namespace 46280b57cec5SDimitry Andric 46290b57cec5SDimitry Andric RValue CallArg::getRValue(CodeGenFunction &CGF) const { 46300b57cec5SDimitry Andric if (!HasLV) 46310b57cec5SDimitry Andric return RV; 46320b57cec5SDimitry Andric LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 46330b57cec5SDimitry Andric CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 46340b57cec5SDimitry Andric LV.isVolatile()); 46350b57cec5SDimitry Andric IsUsed = true; 46360fca6ea1SDimitry Andric return RValue::getAggregate(Copy.getAddress()); 46370b57cec5SDimitry Andric } 46380b57cec5SDimitry Andric 46390b57cec5SDimitry Andric void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 46400b57cec5SDimitry Andric LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 46410b57cec5SDimitry Andric if (!HasLV && RV.isScalar()) 46420b57cec5SDimitry Andric CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 46430b57cec5SDimitry Andric else if (!HasLV && RV.isComplex()) 46440b57cec5SDimitry Andric CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 46450b57cec5SDimitry Andric else { 46460fca6ea1SDimitry Andric auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 46470b57cec5SDimitry Andric LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 46480b57cec5SDimitry Andric // We assume that call args are never copied into subobjects. 46490b57cec5SDimitry Andric CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 46500b57cec5SDimitry Andric HasLV ? LV.isVolatileQualified() 46510b57cec5SDimitry Andric : RV.isVolatileQualified()); 46520b57cec5SDimitry Andric } 46530b57cec5SDimitry Andric IsUsed = true; 46540b57cec5SDimitry Andric } 46550b57cec5SDimitry Andric 46560b57cec5SDimitry Andric void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 46570b57cec5SDimitry Andric QualType type) { 46580b57cec5SDimitry Andric DisableDebugLocationUpdates Dis(*this, E); 46590b57cec5SDimitry Andric if (const ObjCIndirectCopyRestoreExpr *CRE 46600b57cec5SDimitry Andric = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 46610b57cec5SDimitry Andric assert(getLangOpts().ObjCAutoRefCount); 46620b57cec5SDimitry Andric return emitWritebackArg(*this, args, CRE); 46630b57cec5SDimitry Andric } 46640b57cec5SDimitry Andric 46650b57cec5SDimitry Andric assert(type->isReferenceType() == E->isGLValue() && 46660b57cec5SDimitry Andric "reference binding to unmaterialized r-value!"); 46670b57cec5SDimitry Andric 46680b57cec5SDimitry Andric if (E->isGLValue()) { 46690b57cec5SDimitry Andric assert(E->getObjectKind() == OK_Ordinary); 46700b57cec5SDimitry Andric return args.add(EmitReferenceBindingToExpr(E), type); 46710b57cec5SDimitry Andric } 46720b57cec5SDimitry Andric 46730b57cec5SDimitry Andric bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 46740b57cec5SDimitry Andric 46750b57cec5SDimitry Andric // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 46760b57cec5SDimitry Andric // However, we still have to push an EH-only cleanup in case we unwind before 46770b57cec5SDimitry Andric // we make it to the call. 4678fe6060f1SDimitry Andric if (type->isRecordType() && 4679a7dea167SDimitry Andric type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 46800b57cec5SDimitry Andric // If we're using inalloca, use the argument memory. Otherwise, use a 46810b57cec5SDimitry Andric // temporary. 46820eae32dcSDimitry Andric AggValueSlot Slot = args.isUsingInAlloca() 46830eae32dcSDimitry Andric ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 46840b57cec5SDimitry Andric 46850fca6ea1SDimitry Andric bool DestroyedInCallee = true, NeedsCleanup = true; 46860b57cec5SDimitry Andric if (const auto *RD = type->getAsCXXRecordDecl()) 46870b57cec5SDimitry Andric DestroyedInCallee = RD->hasNonTrivialDestructor(); 46880b57cec5SDimitry Andric else 46890fca6ea1SDimitry Andric NeedsCleanup = type.isDestructedType(); 46900b57cec5SDimitry Andric 46910b57cec5SDimitry Andric if (DestroyedInCallee) 46920b57cec5SDimitry Andric Slot.setExternallyDestructed(); 46930b57cec5SDimitry Andric 46940b57cec5SDimitry Andric EmitAggExpr(E, Slot); 46950b57cec5SDimitry Andric RValue RV = Slot.asRValue(); 46960b57cec5SDimitry Andric args.add(RV, type); 46970b57cec5SDimitry Andric 46980fca6ea1SDimitry Andric if (DestroyedInCallee && NeedsCleanup) { 46990b57cec5SDimitry Andric // Create a no-op GEP between the placeholder and the cleanup so we can 47000b57cec5SDimitry Andric // RAUW it successfully. It also serves as a marker of the first 47010b57cec5SDimitry Andric // instruction where the cleanup is active. 47020fca6ea1SDimitry Andric pushFullExprCleanup<DestroyUnpassedArg>(NormalAndEHCleanup, 47030fca6ea1SDimitry Andric Slot.getAddress(), type); 47040b57cec5SDimitry Andric // This unreachable is a temporary marker which will be removed later. 47050fca6ea1SDimitry Andric llvm::Instruction *IsActive = 47060fca6ea1SDimitry Andric Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 470781ad6265SDimitry Andric args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 47080b57cec5SDimitry Andric } 47090b57cec5SDimitry Andric return; 47100b57cec5SDimitry Andric } 47110b57cec5SDimitry Andric 47120b57cec5SDimitry Andric if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 47130fca6ea1SDimitry Andric cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue && 47140fca6ea1SDimitry Andric !type->isArrayParameterType()) { 47150b57cec5SDimitry Andric LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 47160b57cec5SDimitry Andric assert(L.isSimple()); 47170b57cec5SDimitry Andric args.addUncopiedAggregate(L, type); 47180b57cec5SDimitry Andric return; 47190b57cec5SDimitry Andric } 47200b57cec5SDimitry Andric 47210b57cec5SDimitry Andric args.add(EmitAnyExprToTemp(E), type); 47220b57cec5SDimitry Andric } 47230b57cec5SDimitry Andric 47240b57cec5SDimitry Andric QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 47250b57cec5SDimitry Andric // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 47260b57cec5SDimitry Andric // implicitly widens null pointer constants that are arguments to varargs 47270b57cec5SDimitry Andric // functions to pointer-sized ints. 47280b57cec5SDimitry Andric if (!getTarget().getTriple().isOSWindows()) 47290b57cec5SDimitry Andric return Arg->getType(); 47300b57cec5SDimitry Andric 47310b57cec5SDimitry Andric if (Arg->getType()->isIntegerType() && 47320b57cec5SDimitry Andric getContext().getTypeSize(Arg->getType()) < 4733bdd1243dSDimitry Andric getContext().getTargetInfo().getPointerWidth(LangAS::Default) && 47340b57cec5SDimitry Andric Arg->isNullPointerConstant(getContext(), 47350b57cec5SDimitry Andric Expr::NPC_ValueDependentIsNotNull)) { 47360b57cec5SDimitry Andric return getContext().getIntPtrType(); 47370b57cec5SDimitry Andric } 47380b57cec5SDimitry Andric 47390b57cec5SDimitry Andric return Arg->getType(); 47400b57cec5SDimitry Andric } 47410b57cec5SDimitry Andric 47420b57cec5SDimitry Andric // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 47430b57cec5SDimitry Andric // optimizer it can aggressively ignore unwind edges. 47440b57cec5SDimitry Andric void 47450b57cec5SDimitry Andric CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 47460b57cec5SDimitry Andric if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 47470b57cec5SDimitry Andric !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 47480b57cec5SDimitry Andric Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 47490b57cec5SDimitry Andric CGM.getNoObjCARCExceptionsMetadata()); 47500b57cec5SDimitry Andric } 47510b57cec5SDimitry Andric 47520b57cec5SDimitry Andric /// Emits a call to the given no-arguments nounwind runtime function. 47530b57cec5SDimitry Andric llvm::CallInst * 47540b57cec5SDimitry Andric CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 47550b57cec5SDimitry Andric const llvm::Twine &name) { 47560fca6ea1SDimitry Andric return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value *>(), name); 47570b57cec5SDimitry Andric } 47580b57cec5SDimitry Andric 47590b57cec5SDimitry Andric /// Emits a call to the given nounwind runtime function. 47600b57cec5SDimitry Andric llvm::CallInst * 47610b57cec5SDimitry Andric CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 47620fca6ea1SDimitry Andric ArrayRef<Address> args, 47630fca6ea1SDimitry Andric const llvm::Twine &name) { 47640fca6ea1SDimitry Andric SmallVector<llvm::Value *, 3> values; 47650fca6ea1SDimitry Andric for (auto arg : args) 47660fca6ea1SDimitry Andric values.push_back(arg.emitRawPointer(*this)); 47670fca6ea1SDimitry Andric return EmitNounwindRuntimeCall(callee, values, name); 47680fca6ea1SDimitry Andric } 47690fca6ea1SDimitry Andric 47700fca6ea1SDimitry Andric llvm::CallInst * 47710fca6ea1SDimitry Andric CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 47720b57cec5SDimitry Andric ArrayRef<llvm::Value *> args, 47730b57cec5SDimitry Andric const llvm::Twine &name) { 47740b57cec5SDimitry Andric llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 47750b57cec5SDimitry Andric call->setDoesNotThrow(); 47760b57cec5SDimitry Andric return call; 47770b57cec5SDimitry Andric } 47780b57cec5SDimitry Andric 47790b57cec5SDimitry Andric /// Emits a simple call (never an invoke) to the given no-arguments 47800b57cec5SDimitry Andric /// runtime function. 47810b57cec5SDimitry Andric llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 47820b57cec5SDimitry Andric const llvm::Twine &name) { 4783bdd1243dSDimitry Andric return EmitRuntimeCall(callee, std::nullopt, name); 47840b57cec5SDimitry Andric } 47850b57cec5SDimitry Andric 47860b57cec5SDimitry Andric // Calls which may throw must have operand bundles indicating which funclet 47870b57cec5SDimitry Andric // they are nested within. 47880b57cec5SDimitry Andric SmallVector<llvm::OperandBundleDef, 1> 47890b57cec5SDimitry Andric CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 47900b57cec5SDimitry Andric // There is no need for a funclet operand bundle if we aren't inside a 47910b57cec5SDimitry Andric // funclet. 47920b57cec5SDimitry Andric if (!CurrentFuncletPad) 4793972a253aSDimitry Andric return (SmallVector<llvm::OperandBundleDef, 1>()); 47940b57cec5SDimitry Andric 4795972a253aSDimitry Andric // Skip intrinsics which cannot throw (as long as they don't lower into 4796972a253aSDimitry Andric // regular function calls in the course of IR transformations). 4797972a253aSDimitry Andric if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) { 4798972a253aSDimitry Andric if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { 4799972a253aSDimitry Andric auto IID = CalleeFn->getIntrinsicID(); 4800972a253aSDimitry Andric if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) 4801972a253aSDimitry Andric return (SmallVector<llvm::OperandBundleDef, 1>()); 4802972a253aSDimitry Andric } 4803972a253aSDimitry Andric } 48040b57cec5SDimitry Andric 4805972a253aSDimitry Andric SmallVector<llvm::OperandBundleDef, 1> BundleList; 48060b57cec5SDimitry Andric BundleList.emplace_back("funclet", CurrentFuncletPad); 48070b57cec5SDimitry Andric return BundleList; 48080b57cec5SDimitry Andric } 48090b57cec5SDimitry Andric 48100b57cec5SDimitry Andric /// Emits a simple call (never an invoke) to the given runtime function. 48110b57cec5SDimitry Andric llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 48120b57cec5SDimitry Andric ArrayRef<llvm::Value *> args, 48130b57cec5SDimitry Andric const llvm::Twine &name) { 48140b57cec5SDimitry Andric llvm::CallInst *call = Builder.CreateCall( 48150b57cec5SDimitry Andric callee, args, getBundlesForFunclet(callee.getCallee()), name); 48160b57cec5SDimitry Andric call->setCallingConv(getRuntimeCC()); 48170fca6ea1SDimitry Andric 48180fca6ea1SDimitry Andric if (CGM.shouldEmitConvergenceTokens() && call->isConvergent()) 48190fca6ea1SDimitry Andric return addControlledConvergenceToken(call); 48200b57cec5SDimitry Andric return call; 48210b57cec5SDimitry Andric } 48220b57cec5SDimitry Andric 48230b57cec5SDimitry Andric /// Emits a call or invoke to the given noreturn runtime function. 48240b57cec5SDimitry Andric void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 48250b57cec5SDimitry Andric llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 48260b57cec5SDimitry Andric SmallVector<llvm::OperandBundleDef, 1> BundleList = 48270b57cec5SDimitry Andric getBundlesForFunclet(callee.getCallee()); 48280b57cec5SDimitry Andric 48290b57cec5SDimitry Andric if (getInvokeDest()) { 48300b57cec5SDimitry Andric llvm::InvokeInst *invoke = 48310b57cec5SDimitry Andric Builder.CreateInvoke(callee, 48320b57cec5SDimitry Andric getUnreachableBlock(), 48330b57cec5SDimitry Andric getInvokeDest(), 48340b57cec5SDimitry Andric args, 48350b57cec5SDimitry Andric BundleList); 48360b57cec5SDimitry Andric invoke->setDoesNotReturn(); 48370b57cec5SDimitry Andric invoke->setCallingConv(getRuntimeCC()); 48380b57cec5SDimitry Andric } else { 48390b57cec5SDimitry Andric llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 48400b57cec5SDimitry Andric call->setDoesNotReturn(); 48410b57cec5SDimitry Andric call->setCallingConv(getRuntimeCC()); 48420b57cec5SDimitry Andric Builder.CreateUnreachable(); 48430b57cec5SDimitry Andric } 48440b57cec5SDimitry Andric } 48450b57cec5SDimitry Andric 48460b57cec5SDimitry Andric /// Emits a call or invoke instruction to the given nullary runtime function. 48470b57cec5SDimitry Andric llvm::CallBase * 48480b57cec5SDimitry Andric CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 48490b57cec5SDimitry Andric const Twine &name) { 4850bdd1243dSDimitry Andric return EmitRuntimeCallOrInvoke(callee, std::nullopt, name); 48510b57cec5SDimitry Andric } 48520b57cec5SDimitry Andric 48530b57cec5SDimitry Andric /// Emits a call or invoke instruction to the given runtime function. 48540b57cec5SDimitry Andric llvm::CallBase * 48550b57cec5SDimitry Andric CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 48560b57cec5SDimitry Andric ArrayRef<llvm::Value *> args, 48570b57cec5SDimitry Andric const Twine &name) { 48580b57cec5SDimitry Andric llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 48590b57cec5SDimitry Andric call->setCallingConv(getRuntimeCC()); 48600b57cec5SDimitry Andric return call; 48610b57cec5SDimitry Andric } 48620b57cec5SDimitry Andric 48630b57cec5SDimitry Andric /// Emits a call or invoke instruction to the given function, depending 48640b57cec5SDimitry Andric /// on the current state of the EH stack. 48650b57cec5SDimitry Andric llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 48660b57cec5SDimitry Andric ArrayRef<llvm::Value *> Args, 48670b57cec5SDimitry Andric const Twine &Name) { 48680b57cec5SDimitry Andric llvm::BasicBlock *InvokeDest = getInvokeDest(); 48690b57cec5SDimitry Andric SmallVector<llvm::OperandBundleDef, 1> BundleList = 48700b57cec5SDimitry Andric getBundlesForFunclet(Callee.getCallee()); 48710b57cec5SDimitry Andric 48720b57cec5SDimitry Andric llvm::CallBase *Inst; 48730b57cec5SDimitry Andric if (!InvokeDest) 48740b57cec5SDimitry Andric Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 48750b57cec5SDimitry Andric else { 48760b57cec5SDimitry Andric llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 48770b57cec5SDimitry Andric Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 48780b57cec5SDimitry Andric Name); 48790b57cec5SDimitry Andric EmitBlock(ContBB); 48800b57cec5SDimitry Andric } 48810b57cec5SDimitry Andric 48820b57cec5SDimitry Andric // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 48830b57cec5SDimitry Andric // optimizer it can aggressively ignore unwind edges. 48840b57cec5SDimitry Andric if (CGM.getLangOpts().ObjCAutoRefCount) 48850b57cec5SDimitry Andric AddObjCARCExceptionMetadata(Inst); 48860b57cec5SDimitry Andric 48870b57cec5SDimitry Andric return Inst; 48880b57cec5SDimitry Andric } 48890b57cec5SDimitry Andric 48900b57cec5SDimitry Andric void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 48910b57cec5SDimitry Andric llvm::Value *New) { 4892fe6060f1SDimitry Andric DeferredReplacements.push_back( 4893fe6060f1SDimitry Andric std::make_pair(llvm::WeakTrackingVH(Old), New)); 48940b57cec5SDimitry Andric } 48950b57cec5SDimitry Andric 48965ffd83dbSDimitry Andric namespace { 48975ffd83dbSDimitry Andric 48985ffd83dbSDimitry Andric /// Specify given \p NewAlign as the alignment of return value attribute. If 48995ffd83dbSDimitry Andric /// such attribute already exists, re-set it to the maximal one of two options. 4900bdd1243dSDimitry Andric [[nodiscard]] llvm::AttributeList 49015ffd83dbSDimitry Andric maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 49025ffd83dbSDimitry Andric const llvm::AttributeList &Attrs, 49035ffd83dbSDimitry Andric llvm::Align NewAlign) { 49045ffd83dbSDimitry Andric llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 49055ffd83dbSDimitry Andric if (CurAlign >= NewAlign) 49065ffd83dbSDimitry Andric return Attrs; 49075ffd83dbSDimitry Andric llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4908349cc55cSDimitry Andric return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4909349cc55cSDimitry Andric .addRetAttribute(Ctx, AlignAttr); 49105ffd83dbSDimitry Andric } 49115ffd83dbSDimitry Andric 49125ffd83dbSDimitry Andric template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 49135ffd83dbSDimitry Andric protected: 49145ffd83dbSDimitry Andric CodeGenFunction &CGF; 49155ffd83dbSDimitry Andric 49165ffd83dbSDimitry Andric /// We do nothing if this is, or becomes, nullptr. 49175ffd83dbSDimitry Andric const AlignedAttrTy *AA = nullptr; 49185ffd83dbSDimitry Andric 49195ffd83dbSDimitry Andric llvm::Value *Alignment = nullptr; // May or may not be a constant. 49205ffd83dbSDimitry Andric llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 49215ffd83dbSDimitry Andric 49225ffd83dbSDimitry Andric AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 49235ffd83dbSDimitry Andric : CGF(CGF_) { 49245ffd83dbSDimitry Andric if (!FuncDecl) 49255ffd83dbSDimitry Andric return; 49265ffd83dbSDimitry Andric AA = FuncDecl->getAttr<AlignedAttrTy>(); 49275ffd83dbSDimitry Andric } 49285ffd83dbSDimitry Andric 49295ffd83dbSDimitry Andric public: 49305ffd83dbSDimitry Andric /// If we can, materialize the alignment as an attribute on return value. 4931bdd1243dSDimitry Andric [[nodiscard]] llvm::AttributeList 49325ffd83dbSDimitry Andric TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 49335ffd83dbSDimitry Andric if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 49345ffd83dbSDimitry Andric return Attrs; 49355ffd83dbSDimitry Andric const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 49365ffd83dbSDimitry Andric if (!AlignmentCI) 49375ffd83dbSDimitry Andric return Attrs; 49385ffd83dbSDimitry Andric // We may legitimately have non-power-of-2 alignment here. 49395ffd83dbSDimitry Andric // If so, this is UB land, emit it via `@llvm.assume` instead. 49405ffd83dbSDimitry Andric if (!AlignmentCI->getValue().isPowerOf2()) 49415ffd83dbSDimitry Andric return Attrs; 49425ffd83dbSDimitry Andric llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 49435ffd83dbSDimitry Andric CGF.getLLVMContext(), Attrs, 49445ffd83dbSDimitry Andric llvm::Align( 49455ffd83dbSDimitry Andric AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 49465ffd83dbSDimitry Andric AA = nullptr; // We're done. Disallow doing anything else. 49475ffd83dbSDimitry Andric return NewAttrs; 49485ffd83dbSDimitry Andric } 49495ffd83dbSDimitry Andric 49505ffd83dbSDimitry Andric /// Emit alignment assumption. 49515ffd83dbSDimitry Andric /// This is a general fallback that we take if either there is an offset, 49525ffd83dbSDimitry Andric /// or the alignment is variable or we are sanitizing for alignment. 49535ffd83dbSDimitry Andric void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 49545ffd83dbSDimitry Andric if (!AA) 49555ffd83dbSDimitry Andric return; 49565ffd83dbSDimitry Andric CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 49575ffd83dbSDimitry Andric AA->getLocation(), Alignment, OffsetCI); 49585ffd83dbSDimitry Andric AA = nullptr; // We're done. Disallow doing anything else. 49595ffd83dbSDimitry Andric } 49605ffd83dbSDimitry Andric }; 49615ffd83dbSDimitry Andric 49625ffd83dbSDimitry Andric /// Helper data structure to emit `AssumeAlignedAttr`. 49635ffd83dbSDimitry Andric class AssumeAlignedAttrEmitter final 49645ffd83dbSDimitry Andric : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 49655ffd83dbSDimitry Andric public: 49665ffd83dbSDimitry Andric AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 49675ffd83dbSDimitry Andric : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 49685ffd83dbSDimitry Andric if (!AA) 49695ffd83dbSDimitry Andric return; 49705ffd83dbSDimitry Andric // It is guaranteed that the alignment/offset are constants. 49715ffd83dbSDimitry Andric Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 49725ffd83dbSDimitry Andric if (Expr *Offset = AA->getOffset()) { 49735ffd83dbSDimitry Andric OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 49745ffd83dbSDimitry Andric if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 49755ffd83dbSDimitry Andric OffsetCI = nullptr; 49765ffd83dbSDimitry Andric } 49775ffd83dbSDimitry Andric } 49785ffd83dbSDimitry Andric }; 49795ffd83dbSDimitry Andric 49805ffd83dbSDimitry Andric /// Helper data structure to emit `AllocAlignAttr`. 49815ffd83dbSDimitry Andric class AllocAlignAttrEmitter final 49825ffd83dbSDimitry Andric : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 49835ffd83dbSDimitry Andric public: 49845ffd83dbSDimitry Andric AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 49855ffd83dbSDimitry Andric const CallArgList &CallArgs) 49865ffd83dbSDimitry Andric : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 49875ffd83dbSDimitry Andric if (!AA) 49885ffd83dbSDimitry Andric return; 49895ffd83dbSDimitry Andric // Alignment may or may not be a constant, and that is okay. 49905ffd83dbSDimitry Andric Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 49915ffd83dbSDimitry Andric .getRValue(CGF) 49925ffd83dbSDimitry Andric .getScalarVal(); 49935ffd83dbSDimitry Andric } 49945ffd83dbSDimitry Andric }; 49955ffd83dbSDimitry Andric 49965ffd83dbSDimitry Andric } // namespace 49975ffd83dbSDimitry Andric 499881ad6265SDimitry Andric static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 499981ad6265SDimitry Andric if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 5000bdd1243dSDimitry Andric return VT->getPrimitiveSizeInBits().getKnownMinValue(); 500181ad6265SDimitry Andric if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 500281ad6265SDimitry Andric return getMaxVectorWidth(AT->getElementType()); 500381ad6265SDimitry Andric 500481ad6265SDimitry Andric unsigned MaxVectorWidth = 0; 500581ad6265SDimitry Andric if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 500681ad6265SDimitry Andric for (auto *I : ST->elements()) 500781ad6265SDimitry Andric MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 500881ad6265SDimitry Andric return MaxVectorWidth; 500981ad6265SDimitry Andric } 501081ad6265SDimitry Andric 50110b57cec5SDimitry Andric RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 50120b57cec5SDimitry Andric const CGCallee &Callee, 50130b57cec5SDimitry Andric ReturnValueSlot ReturnValue, 50140b57cec5SDimitry Andric const CallArgList &CallArgs, 5015fe6060f1SDimitry Andric llvm::CallBase **callOrInvoke, bool IsMustTail, 50160fca6ea1SDimitry Andric SourceLocation Loc, 50170fca6ea1SDimitry Andric bool IsVirtualFunctionPointerThunk) { 50180b57cec5SDimitry Andric // FIXME: We no longer need the types from CallArgs; lift up and simplify. 50190b57cec5SDimitry Andric 50200b57cec5SDimitry Andric assert(Callee.isOrdinary() || Callee.isVirtual()); 50210b57cec5SDimitry Andric 50220b57cec5SDimitry Andric // Handle struct-return functions by passing a pointer to the 50230b57cec5SDimitry Andric // location that we would like to return into. 50240b57cec5SDimitry Andric QualType RetTy = CallInfo.getReturnType(); 50250b57cec5SDimitry Andric const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 50260b57cec5SDimitry Andric 50270b57cec5SDimitry Andric llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 50280b57cec5SDimitry Andric 50290b57cec5SDimitry Andric const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 50305ffd83dbSDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 50310b57cec5SDimitry Andric // We can only guarantee that a function is called from the correct 50320b57cec5SDimitry Andric // context/function based on the appropriate target attributes, 50330b57cec5SDimitry Andric // so only check in the case where we have both always_inline and target 50340b57cec5SDimitry Andric // since otherwise we could be making a conditional call after a check for 50350b57cec5SDimitry Andric // the proper cpu features (and it won't cause code generation issues due to 50360b57cec5SDimitry Andric // function based code generation). 50370b57cec5SDimitry Andric if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 503806c3fb27SDimitry Andric (TargetDecl->hasAttr<TargetAttr>() || 503906c3fb27SDimitry Andric (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>()))) 50400b57cec5SDimitry Andric checkTargetFeatures(Loc, FD); 50410fca6ea1SDimitry Andric } 50420b57cec5SDimitry Andric 50435ffd83dbSDimitry Andric // Some architectures (such as x86-64) have the ABI changed based on 50445ffd83dbSDimitry Andric // attribute-target/features. Give them a chance to diagnose. 50455ffd83dbSDimitry Andric CGM.getTargetCodeGenInfo().checkFunctionCallABI( 50460fca6ea1SDimitry Andric CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), 50470fca6ea1SDimitry Andric dyn_cast_or_null<FunctionDecl>(TargetDecl), CallArgs, RetTy); 50485ffd83dbSDimitry Andric 50490b57cec5SDimitry Andric // 1. Set up the arguments. 50500b57cec5SDimitry Andric 50510b57cec5SDimitry Andric // If we're using inalloca, insert the allocation after the stack save. 50520b57cec5SDimitry Andric // FIXME: Do this earlier rather than hacking it in here! 50530fca6ea1SDimitry Andric RawAddress ArgMemory = RawAddress::invalid(); 50540b57cec5SDimitry Andric if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 50550b57cec5SDimitry Andric const llvm::DataLayout &DL = CGM.getDataLayout(); 50560b57cec5SDimitry Andric llvm::Instruction *IP = CallArgs.getStackBase(); 50570b57cec5SDimitry Andric llvm::AllocaInst *AI; 50580b57cec5SDimitry Andric if (IP) { 50590b57cec5SDimitry Andric IP = IP->getNextNode(); 50600b57cec5SDimitry Andric AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 50610b57cec5SDimitry Andric "argmem", IP); 50620b57cec5SDimitry Andric } else { 50630b57cec5SDimitry Andric AI = CreateTempAlloca(ArgStruct, "argmem"); 50640b57cec5SDimitry Andric } 50650b57cec5SDimitry Andric auto Align = CallInfo.getArgStructAlignment(); 5066a7dea167SDimitry Andric AI->setAlignment(Align.getAsAlign()); 50670b57cec5SDimitry Andric AI->setUsedWithInAlloca(true); 50680b57cec5SDimitry Andric assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 50690fca6ea1SDimitry Andric ArgMemory = RawAddress(AI, ArgStruct, Align); 50700b57cec5SDimitry Andric } 50710b57cec5SDimitry Andric 50720b57cec5SDimitry Andric ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 50730b57cec5SDimitry Andric SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 50740b57cec5SDimitry Andric 50750b57cec5SDimitry Andric // If the call returns a temporary with struct return, create a temporary 50760b57cec5SDimitry Andric // alloca to hold the result, unless one is given to us. 50770b57cec5SDimitry Andric Address SRetPtr = Address::invalid(); 50780fca6ea1SDimitry Andric RawAddress SRetAlloca = RawAddress::invalid(); 50790b57cec5SDimitry Andric llvm::Value *UnusedReturnSizePtr = nullptr; 50800b57cec5SDimitry Andric if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 50810fca6ea1SDimitry Andric if (IsVirtualFunctionPointerThunk && RetAI.isIndirect()) { 50820fca6ea1SDimitry Andric SRetPtr = makeNaturalAddressForPointer(CurFn->arg_begin() + 50830fca6ea1SDimitry Andric IRFunctionArgs.getSRetArgNo(), 50840fca6ea1SDimitry Andric RetTy, CharUnits::fromQuantity(1)); 50850fca6ea1SDimitry Andric } else if (!ReturnValue.isNull()) { 50860fca6ea1SDimitry Andric SRetPtr = ReturnValue.getAddress(); 50870b57cec5SDimitry Andric } else { 50880b57cec5SDimitry Andric SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 50890b57cec5SDimitry Andric if (HaveInsertPoint() && ReturnValue.isUnused()) { 5090fe6060f1SDimitry Andric llvm::TypeSize size = 50910b57cec5SDimitry Andric CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 50920b57cec5SDimitry Andric UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 50930b57cec5SDimitry Andric } 50940b57cec5SDimitry Andric } 50950b57cec5SDimitry Andric if (IRFunctionArgs.hasSRetArg()) { 50960fca6ea1SDimitry Andric IRCallArgs[IRFunctionArgs.getSRetArgNo()] = 50970fca6ea1SDimitry Andric getAsNaturalPointerTo(SRetPtr, RetTy); 50980b57cec5SDimitry Andric } else if (RetAI.isInAlloca()) { 50990b57cec5SDimitry Andric Address Addr = 51000b57cec5SDimitry Andric Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 51010fca6ea1SDimitry Andric Builder.CreateStore(getAsNaturalPointerTo(SRetPtr, RetTy), Addr); 51020b57cec5SDimitry Andric } 51030b57cec5SDimitry Andric } 51040b57cec5SDimitry Andric 51050fca6ea1SDimitry Andric RawAddress swiftErrorTemp = RawAddress::invalid(); 51060b57cec5SDimitry Andric Address swiftErrorArg = Address::invalid(); 51070b57cec5SDimitry Andric 5108a7dea167SDimitry Andric // When passing arguments using temporary allocas, we need to add the 5109a7dea167SDimitry Andric // appropriate lifetime markers. This vector keeps track of all the lifetime 5110a7dea167SDimitry Andric // markers that need to be ended right after the call. 5111a7dea167SDimitry Andric SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 5112a7dea167SDimitry Andric 51130b57cec5SDimitry Andric // Translate all of the arguments as necessary to match the IR lowering. 51140b57cec5SDimitry Andric assert(CallInfo.arg_size() == CallArgs.size() && 51150b57cec5SDimitry Andric "Mismatch between function signature & arguments."); 51160b57cec5SDimitry Andric unsigned ArgNo = 0; 51170b57cec5SDimitry Andric CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 51180b57cec5SDimitry Andric for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 51190b57cec5SDimitry Andric I != E; ++I, ++info_it, ++ArgNo) { 51200b57cec5SDimitry Andric const ABIArgInfo &ArgInfo = info_it->info; 51210b57cec5SDimitry Andric 51220b57cec5SDimitry Andric // Insert a padding argument to ensure proper alignment. 51230b57cec5SDimitry Andric if (IRFunctionArgs.hasPaddingArg(ArgNo)) 51240b57cec5SDimitry Andric IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 51250b57cec5SDimitry Andric llvm::UndefValue::get(ArgInfo.getPaddingType()); 51260b57cec5SDimitry Andric 51270b57cec5SDimitry Andric unsigned FirstIRArg, NumIRArgs; 51280b57cec5SDimitry Andric std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 51290b57cec5SDimitry Andric 5130bdd1243dSDimitry Andric bool ArgHasMaybeUndefAttr = 5131bdd1243dSDimitry Andric IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo); 5132bdd1243dSDimitry Andric 51330b57cec5SDimitry Andric switch (ArgInfo.getKind()) { 51340b57cec5SDimitry Andric case ABIArgInfo::InAlloca: { 51350b57cec5SDimitry Andric assert(NumIRArgs == 0); 51360b57cec5SDimitry Andric assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 51370b57cec5SDimitry Andric if (I->isAggregate()) { 51380fca6ea1SDimitry Andric RawAddress Addr = I->hasLValue() 51390fca6ea1SDimitry Andric ? I->getKnownLValue().getAddress() 51400b57cec5SDimitry Andric : I->getKnownRValue().getAggregateAddress(); 51410b57cec5SDimitry Andric llvm::Instruction *Placeholder = 51420b57cec5SDimitry Andric cast<llvm::Instruction>(Addr.getPointer()); 51435ffd83dbSDimitry Andric 51445ffd83dbSDimitry Andric if (!ArgInfo.getInAllocaIndirect()) { 51455ffd83dbSDimitry Andric // Replace the placeholder with the appropriate argument slot GEP. 51460b57cec5SDimitry Andric CGBuilderTy::InsertPoint IP = Builder.saveIP(); 51470b57cec5SDimitry Andric Builder.SetInsertPoint(Placeholder); 51485ffd83dbSDimitry Andric Addr = Builder.CreateStructGEP(ArgMemory, 51495ffd83dbSDimitry Andric ArgInfo.getInAllocaFieldIndex()); 51500b57cec5SDimitry Andric Builder.restoreIP(IP); 51515ffd83dbSDimitry Andric } else { 51525ffd83dbSDimitry Andric // For indirect things such as overaligned structs, replace the 51535ffd83dbSDimitry Andric // placeholder with a regular aggregate temporary alloca. Store the 51545ffd83dbSDimitry Andric // address of this alloca into the struct. 51555ffd83dbSDimitry Andric Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 51565ffd83dbSDimitry Andric Address ArgSlot = Builder.CreateStructGEP( 51575ffd83dbSDimitry Andric ArgMemory, ArgInfo.getInAllocaFieldIndex()); 51585ffd83dbSDimitry Andric Builder.CreateStore(Addr.getPointer(), ArgSlot); 51595ffd83dbSDimitry Andric } 51600b57cec5SDimitry Andric deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 51615ffd83dbSDimitry Andric } else if (ArgInfo.getInAllocaIndirect()) { 51625ffd83dbSDimitry Andric // Make a temporary alloca and store the address of it into the argument 51635ffd83dbSDimitry Andric // struct. 51640fca6ea1SDimitry Andric RawAddress Addr = CreateMemTempWithoutCast( 51655ffd83dbSDimitry Andric I->Ty, getContext().getTypeAlignInChars(I->Ty), 51665ffd83dbSDimitry Andric "indirect-arg-temp"); 51675ffd83dbSDimitry Andric I->copyInto(*this, Addr); 51685ffd83dbSDimitry Andric Address ArgSlot = 51695ffd83dbSDimitry Andric Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 51705ffd83dbSDimitry Andric Builder.CreateStore(Addr.getPointer(), ArgSlot); 51710b57cec5SDimitry Andric } else { 51720b57cec5SDimitry Andric // Store the RValue into the argument struct. 51730b57cec5SDimitry Andric Address Addr = 51740b57cec5SDimitry Andric Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 517506c3fb27SDimitry Andric Addr = Addr.withElementType(ConvertTypeForMem(I->Ty)); 51760b57cec5SDimitry Andric I->copyInto(*this, Addr); 51770b57cec5SDimitry Andric } 51780b57cec5SDimitry Andric break; 51790b57cec5SDimitry Andric } 51800b57cec5SDimitry Andric 5181e8d8bef9SDimitry Andric case ABIArgInfo::Indirect: 5182e8d8bef9SDimitry Andric case ABIArgInfo::IndirectAliased: { 51830b57cec5SDimitry Andric assert(NumIRArgs == 1); 51840fca6ea1SDimitry Andric if (I->isAggregate()) { 51850b57cec5SDimitry Andric // We want to avoid creating an unnecessary temporary+copy here; 51860b57cec5SDimitry Andric // however, we need one in three cases: 51870b57cec5SDimitry Andric // 1. If the argument is not byval, and we are required to copy the 51880b57cec5SDimitry Andric // source. (This case doesn't occur on any common architecture.) 51890b57cec5SDimitry Andric // 2. If the argument is byval, RV is not sufficiently aligned, and 51900b57cec5SDimitry Andric // we cannot force it to be sufficiently aligned. 51910b57cec5SDimitry Andric // 3. If the argument is byval, but RV is not located in default 51920b57cec5SDimitry Andric // or alloca address space. 51930b57cec5SDimitry Andric Address Addr = I->hasLValue() 51940fca6ea1SDimitry Andric ? I->getKnownLValue().getAddress() 51950b57cec5SDimitry Andric : I->getKnownRValue().getAggregateAddress(); 51960b57cec5SDimitry Andric CharUnits Align = ArgInfo.getIndirectAlign(); 51970b57cec5SDimitry Andric const llvm::DataLayout *TD = &CGM.getDataLayout(); 51980b57cec5SDimitry Andric 51990b57cec5SDimitry Andric assert((FirstIRArg >= IRFuncTy->getNumParams() || 52000b57cec5SDimitry Andric IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 52010b57cec5SDimitry Andric TD->getAllocaAddrSpace()) && 52020b57cec5SDimitry Andric "indirect argument must be in alloca address space"); 52030b57cec5SDimitry Andric 52040b57cec5SDimitry Andric bool NeedCopy = false; 52050b57cec5SDimitry Andric if (Addr.getAlignment() < Align && 52060fca6ea1SDimitry Andric llvm::getOrEnforceKnownAlignment(Addr.emitRawPointer(*this), 52070fca6ea1SDimitry Andric Align.getAsAlign(), 52080fca6ea1SDimitry Andric *TD) < Align.getAsAlign()) { 52090b57cec5SDimitry Andric NeedCopy = true; 52100b57cec5SDimitry Andric } else if (I->hasLValue()) { 52110b57cec5SDimitry Andric auto LV = I->getKnownLValue(); 52120b57cec5SDimitry Andric auto AS = LV.getAddressSpace(); 52130b57cec5SDimitry Andric 52145f757f3fSDimitry Andric bool isByValOrRef = 52155f757f3fSDimitry Andric ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal(); 52165f757f3fSDimitry Andric 52175f757f3fSDimitry Andric if (!isByValOrRef || 5218480093f4SDimitry Andric (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 52190b57cec5SDimitry Andric NeedCopy = true; 52200b57cec5SDimitry Andric } 52210b57cec5SDimitry Andric if (!getLangOpts().OpenCL) { 52225f757f3fSDimitry Andric if ((isByValOrRef && 52230b57cec5SDimitry Andric (AS != LangAS::Default && 52240b57cec5SDimitry Andric AS != CGM.getASTAllocaAddressSpace()))) { 52250b57cec5SDimitry Andric NeedCopy = true; 52260b57cec5SDimitry Andric } 52270b57cec5SDimitry Andric } 52280b57cec5SDimitry Andric // For OpenCL even if RV is located in default or alloca address space 52290b57cec5SDimitry Andric // we don't want to perform address space cast for it. 52305f757f3fSDimitry Andric else if ((isByValOrRef && 52310b57cec5SDimitry Andric Addr.getType()->getAddressSpace() != IRFuncTy-> 52320b57cec5SDimitry Andric getParamType(FirstIRArg)->getPointerAddressSpace())) { 52330b57cec5SDimitry Andric NeedCopy = true; 52340b57cec5SDimitry Andric } 52350b57cec5SDimitry Andric } 52360b57cec5SDimitry Andric 52370fca6ea1SDimitry Andric if (!NeedCopy) { 52380fca6ea1SDimitry Andric // Skip the extra memcpy call. 52390fca6ea1SDimitry Andric llvm::Value *V = getAsNaturalPointerTo(Addr, I->Ty); 52400fca6ea1SDimitry Andric auto *T = llvm::PointerType::get( 52410fca6ea1SDimitry Andric CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace()); 52420fca6ea1SDimitry Andric 52430fca6ea1SDimitry Andric llvm::Value *Val = getTargetHooks().performAddrSpaceCast( 52440fca6ea1SDimitry Andric *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 52450fca6ea1SDimitry Andric true); 5246bdd1243dSDimitry Andric if (ArgHasMaybeUndefAttr) 52470fca6ea1SDimitry Andric Val = Builder.CreateFreeze(Val); 52480fca6ea1SDimitry Andric IRCallArgs[FirstIRArg] = Val; 52490fca6ea1SDimitry Andric break; 52500fca6ea1SDimitry Andric } 52510fca6ea1SDimitry Andric } 52520fca6ea1SDimitry Andric 52530fca6ea1SDimitry Andric // For non-aggregate args and aggregate args meeting conditions above 52540fca6ea1SDimitry Andric // we need to create an aligned temporary, and copy to it. 52550fca6ea1SDimitry Andric RawAddress AI = CreateMemTempWithoutCast( 52560fca6ea1SDimitry Andric I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 52570fca6ea1SDimitry Andric llvm::Value *Val = getAsNaturalPointerTo(AI, I->Ty); 52580fca6ea1SDimitry Andric if (ArgHasMaybeUndefAttr) 52590fca6ea1SDimitry Andric Val = Builder.CreateFreeze(Val); 5260bdd1243dSDimitry Andric IRCallArgs[FirstIRArg] = Val; 5261a7dea167SDimitry Andric 5262a7dea167SDimitry Andric // Emit lifetime markers for the temporary alloca. 5263fe6060f1SDimitry Andric llvm::TypeSize ByvalTempElementSize = 5264a7dea167SDimitry Andric CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 5265a7dea167SDimitry Andric llvm::Value *LifetimeSize = 5266a7dea167SDimitry Andric EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 5267a7dea167SDimitry Andric 5268a7dea167SDimitry Andric // Add cleanup code to emit the end lifetime marker after the call. 5269a7dea167SDimitry Andric if (LifetimeSize) // In case we disabled lifetime markers. 5270a7dea167SDimitry Andric CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 5271a7dea167SDimitry Andric 5272a7dea167SDimitry Andric // Generate the copy. 52730b57cec5SDimitry Andric I->copyInto(*this, AI); 52740b57cec5SDimitry Andric break; 52750b57cec5SDimitry Andric } 52760b57cec5SDimitry Andric 52770b57cec5SDimitry Andric case ABIArgInfo::Ignore: 52780b57cec5SDimitry Andric assert(NumIRArgs == 0); 52790b57cec5SDimitry Andric break; 52800b57cec5SDimitry Andric 52810b57cec5SDimitry Andric case ABIArgInfo::Extend: 52820b57cec5SDimitry Andric case ABIArgInfo::Direct: { 52830b57cec5SDimitry Andric if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 52840b57cec5SDimitry Andric ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 52850b57cec5SDimitry Andric ArgInfo.getDirectOffset() == 0) { 52860b57cec5SDimitry Andric assert(NumIRArgs == 1); 52870b57cec5SDimitry Andric llvm::Value *V; 52880b57cec5SDimitry Andric if (!I->isAggregate()) 52890b57cec5SDimitry Andric V = I->getKnownRValue().getScalarVal(); 52900b57cec5SDimitry Andric else 52910b57cec5SDimitry Andric V = Builder.CreateLoad( 52920fca6ea1SDimitry Andric I->hasLValue() ? I->getKnownLValue().getAddress() 52930b57cec5SDimitry Andric : I->getKnownRValue().getAggregateAddress()); 52940b57cec5SDimitry Andric 52950b57cec5SDimitry Andric // Implement swifterror by copying into a new swifterror argument. 52960b57cec5SDimitry Andric // We'll write back in the normal path out of the call. 52970b57cec5SDimitry Andric if (CallInfo.getExtParameterInfo(ArgNo).getABI() 52980b57cec5SDimitry Andric == ParameterABI::SwiftErrorResult) { 52990b57cec5SDimitry Andric assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 53000b57cec5SDimitry Andric 53010b57cec5SDimitry Andric QualType pointeeTy = I->Ty->getPointeeType(); 53020fca6ea1SDimitry Andric swiftErrorArg = makeNaturalAddressForPointer( 53030fca6ea1SDimitry Andric V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy)); 53040b57cec5SDimitry Andric 53050b57cec5SDimitry Andric swiftErrorTemp = 53060b57cec5SDimitry Andric CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 53070b57cec5SDimitry Andric V = swiftErrorTemp.getPointer(); 53080b57cec5SDimitry Andric cast<llvm::AllocaInst>(V)->setSwiftError(true); 53090b57cec5SDimitry Andric 53100b57cec5SDimitry Andric llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 53110b57cec5SDimitry Andric Builder.CreateStore(errorValue, swiftErrorTemp); 53120b57cec5SDimitry Andric } 53130b57cec5SDimitry Andric 53140b57cec5SDimitry Andric // We might have to widen integers, but we should never truncate. 53150b57cec5SDimitry Andric if (ArgInfo.getCoerceToType() != V->getType() && 53160b57cec5SDimitry Andric V->getType()->isIntegerTy()) 53170b57cec5SDimitry Andric V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 53180b57cec5SDimitry Andric 53190b57cec5SDimitry Andric // If the argument doesn't match, perform a bitcast to coerce it. This 53200b57cec5SDimitry Andric // can happen due to trivial type mismatches. 53210b57cec5SDimitry Andric if (FirstIRArg < IRFuncTy->getNumParams() && 53220b57cec5SDimitry Andric V->getType() != IRFuncTy->getParamType(FirstIRArg)) 53230b57cec5SDimitry Andric V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 53240b57cec5SDimitry Andric 5325bdd1243dSDimitry Andric if (ArgHasMaybeUndefAttr) 5326bdd1243dSDimitry Andric V = Builder.CreateFreeze(V); 53270b57cec5SDimitry Andric IRCallArgs[FirstIRArg] = V; 53280b57cec5SDimitry Andric break; 53290b57cec5SDimitry Andric } 53300b57cec5SDimitry Andric 53310fca6ea1SDimitry Andric llvm::StructType *STy = 53320fca6ea1SDimitry Andric dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 53330fca6ea1SDimitry Andric if (STy && ArgInfo.isDirect() && !ArgInfo.getCanBeFlattened()) { 53340fca6ea1SDimitry Andric llvm::Type *SrcTy = ConvertTypeForMem(I->Ty); 53350fca6ea1SDimitry Andric [[maybe_unused]] llvm::TypeSize SrcTypeSize = 53360fca6ea1SDimitry Andric CGM.getDataLayout().getTypeAllocSize(SrcTy); 53370fca6ea1SDimitry Andric [[maybe_unused]] llvm::TypeSize DstTypeSize = 53380fca6ea1SDimitry Andric CGM.getDataLayout().getTypeAllocSize(STy); 53390fca6ea1SDimitry Andric if (STy->containsHomogeneousScalableVectorTypes()) { 53400fca6ea1SDimitry Andric assert(SrcTypeSize == DstTypeSize && 53410fca6ea1SDimitry Andric "Only allow non-fractional movement of structure with " 53420fca6ea1SDimitry Andric "homogeneous scalable vector type"); 53430fca6ea1SDimitry Andric 53440fca6ea1SDimitry Andric IRCallArgs[FirstIRArg] = I->getKnownRValue().getScalarVal(); 53450fca6ea1SDimitry Andric break; 53460fca6ea1SDimitry Andric } 53470fca6ea1SDimitry Andric } 53480fca6ea1SDimitry Andric 53490b57cec5SDimitry Andric // FIXME: Avoid the conversion through memory if possible. 53500b57cec5SDimitry Andric Address Src = Address::invalid(); 53510b57cec5SDimitry Andric if (!I->isAggregate()) { 53520b57cec5SDimitry Andric Src = CreateMemTemp(I->Ty, "coerce"); 53530b57cec5SDimitry Andric I->copyInto(*this, Src); 53540b57cec5SDimitry Andric } else { 53550fca6ea1SDimitry Andric Src = I->hasLValue() ? I->getKnownLValue().getAddress() 53560b57cec5SDimitry Andric : I->getKnownRValue().getAggregateAddress(); 53570b57cec5SDimitry Andric } 53580b57cec5SDimitry Andric 53590b57cec5SDimitry Andric // If the value is offset in memory, apply the offset now. 53600b57cec5SDimitry Andric Src = emitAddressAtOffset(*this, Src, ArgInfo); 53610b57cec5SDimitry Andric 53620b57cec5SDimitry Andric // Fast-isel and the optimizer generally like scalar values better than 53630b57cec5SDimitry Andric // FCAs, so we flatten them if this is safe to do for this argument. 53640b57cec5SDimitry Andric if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 53655ffd83dbSDimitry Andric llvm::Type *SrcTy = Src.getElementType(); 53668a4dda33SDimitry Andric llvm::TypeSize SrcTypeSize = 53678a4dda33SDimitry Andric CGM.getDataLayout().getTypeAllocSize(SrcTy); 53688a4dda33SDimitry Andric llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy); 53698a4dda33SDimitry Andric if (SrcTypeSize.isScalable()) { 53708a4dda33SDimitry Andric assert(STy->containsHomogeneousScalableVectorTypes() && 53718a4dda33SDimitry Andric "ABI only supports structure with homogeneous scalable vector " 53728a4dda33SDimitry Andric "type"); 53738a4dda33SDimitry Andric assert(SrcTypeSize == DstTypeSize && 53748a4dda33SDimitry Andric "Only allow non-fractional movement of structure with " 53758a4dda33SDimitry Andric "homogeneous scalable vector type"); 53768a4dda33SDimitry Andric assert(NumIRArgs == STy->getNumElements()); 53778a4dda33SDimitry Andric 53788a4dda33SDimitry Andric llvm::Value *StoredStructValue = 53798a4dda33SDimitry Andric Builder.CreateLoad(Src, Src.getName() + ".tuple"); 53808a4dda33SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 53818a4dda33SDimitry Andric llvm::Value *Extract = Builder.CreateExtractValue( 53828a4dda33SDimitry Andric StoredStructValue, i, Src.getName() + ".extract" + Twine(i)); 53838a4dda33SDimitry Andric IRCallArgs[FirstIRArg + i] = Extract; 53848a4dda33SDimitry Andric } 53858a4dda33SDimitry Andric } else { 53868a4dda33SDimitry Andric uint64_t SrcSize = SrcTypeSize.getFixedValue(); 53878a4dda33SDimitry Andric uint64_t DstSize = DstTypeSize.getFixedValue(); 53880b57cec5SDimitry Andric 53890b57cec5SDimitry Andric // If the source type is smaller than the destination type of the 53900b57cec5SDimitry Andric // coerce-to logic, copy the source value into a temp alloca the size 53910b57cec5SDimitry Andric // of the destination type to allow loading all of it. The bits past 53920b57cec5SDimitry Andric // the source value are left undef. 53930b57cec5SDimitry Andric if (SrcSize < DstSize) { 53948a4dda33SDimitry Andric Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(), 53950b57cec5SDimitry Andric Src.getName() + ".coerce"); 53960b57cec5SDimitry Andric Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 53970b57cec5SDimitry Andric Src = TempAlloca; 53980b57cec5SDimitry Andric } else { 539906c3fb27SDimitry Andric Src = Src.withElementType(STy); 54000b57cec5SDimitry Andric } 54010b57cec5SDimitry Andric 54020b57cec5SDimitry Andric assert(NumIRArgs == STy->getNumElements()); 54030b57cec5SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 54040b57cec5SDimitry Andric Address EltPtr = Builder.CreateStructGEP(Src, i); 54050b57cec5SDimitry Andric llvm::Value *LI = Builder.CreateLoad(EltPtr); 5406bdd1243dSDimitry Andric if (ArgHasMaybeUndefAttr) 5407bdd1243dSDimitry Andric LI = Builder.CreateFreeze(LI); 54080b57cec5SDimitry Andric IRCallArgs[FirstIRArg + i] = LI; 54090b57cec5SDimitry Andric } 54108a4dda33SDimitry Andric } 54110b57cec5SDimitry Andric } else { 54120b57cec5SDimitry Andric // In the simple case, just pass the coerced loaded value. 54130b57cec5SDimitry Andric assert(NumIRArgs == 1); 54145ffd83dbSDimitry Andric llvm::Value *Load = 54150b57cec5SDimitry Andric CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 54165ffd83dbSDimitry Andric 54175ffd83dbSDimitry Andric if (CallInfo.isCmseNSCall()) { 54185ffd83dbSDimitry Andric // For certain parameter types, clear padding bits, as they may reveal 54195ffd83dbSDimitry Andric // sensitive information. 54205ffd83dbSDimitry Andric // Small struct/union types are passed as integer arrays. 54215ffd83dbSDimitry Andric auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 54225ffd83dbSDimitry Andric if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 54235ffd83dbSDimitry Andric Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 54245ffd83dbSDimitry Andric } 5425bdd1243dSDimitry Andric 5426bdd1243dSDimitry Andric if (ArgHasMaybeUndefAttr) 5427bdd1243dSDimitry Andric Load = Builder.CreateFreeze(Load); 54285ffd83dbSDimitry Andric IRCallArgs[FirstIRArg] = Load; 54290b57cec5SDimitry Andric } 54300b57cec5SDimitry Andric 54310b57cec5SDimitry Andric break; 54320b57cec5SDimitry Andric } 54330b57cec5SDimitry Andric 54340b57cec5SDimitry Andric case ABIArgInfo::CoerceAndExpand: { 54350b57cec5SDimitry Andric auto coercionType = ArgInfo.getCoerceAndExpandType(); 54360b57cec5SDimitry Andric auto layout = CGM.getDataLayout().getStructLayout(coercionType); 54370b57cec5SDimitry Andric 54380b57cec5SDimitry Andric llvm::Value *tempSize = nullptr; 54390b57cec5SDimitry Andric Address addr = Address::invalid(); 54400fca6ea1SDimitry Andric RawAddress AllocaAddr = RawAddress::invalid(); 54410b57cec5SDimitry Andric if (I->isAggregate()) { 54420fca6ea1SDimitry Andric addr = I->hasLValue() ? I->getKnownLValue().getAddress() 54430b57cec5SDimitry Andric : I->getKnownRValue().getAggregateAddress(); 54440b57cec5SDimitry Andric 54450b57cec5SDimitry Andric } else { 54460b57cec5SDimitry Andric RValue RV = I->getKnownRValue(); 54470b57cec5SDimitry Andric assert(RV.isScalar()); // complex should always just be direct 54480b57cec5SDimitry Andric 54490b57cec5SDimitry Andric llvm::Type *scalarType = RV.getScalarVal()->getType(); 54500b57cec5SDimitry Andric auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5451bdd1243dSDimitry Andric auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType); 54520b57cec5SDimitry Andric 54530b57cec5SDimitry Andric // Materialize to a temporary. 5454bdd1243dSDimitry Andric addr = CreateTempAlloca( 5455bdd1243dSDimitry Andric RV.getScalarVal()->getType(), 5456bdd1243dSDimitry Andric CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)), 54570b57cec5SDimitry Andric "tmp", 54580b57cec5SDimitry Andric /*ArraySize=*/nullptr, &AllocaAddr); 54590b57cec5SDimitry Andric tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 54600b57cec5SDimitry Andric 54610b57cec5SDimitry Andric Builder.CreateStore(RV.getScalarVal(), addr); 54620b57cec5SDimitry Andric } 54630b57cec5SDimitry Andric 546406c3fb27SDimitry Andric addr = addr.withElementType(coercionType); 54650b57cec5SDimitry Andric 54660b57cec5SDimitry Andric unsigned IRArgPos = FirstIRArg; 54670b57cec5SDimitry Andric for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 54680b57cec5SDimitry Andric llvm::Type *eltType = coercionType->getElementType(i); 54690b57cec5SDimitry Andric if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 54700b57cec5SDimitry Andric Address eltAddr = Builder.CreateStructGEP(addr, i); 54710b57cec5SDimitry Andric llvm::Value *elt = Builder.CreateLoad(eltAddr); 5472bdd1243dSDimitry Andric if (ArgHasMaybeUndefAttr) 5473bdd1243dSDimitry Andric elt = Builder.CreateFreeze(elt); 54740b57cec5SDimitry Andric IRCallArgs[IRArgPos++] = elt; 54750b57cec5SDimitry Andric } 54760b57cec5SDimitry Andric assert(IRArgPos == FirstIRArg + NumIRArgs); 54770b57cec5SDimitry Andric 54780b57cec5SDimitry Andric if (tempSize) { 54790b57cec5SDimitry Andric EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 54800b57cec5SDimitry Andric } 54810b57cec5SDimitry Andric 54820b57cec5SDimitry Andric break; 54830b57cec5SDimitry Andric } 54840b57cec5SDimitry Andric 5485e8d8bef9SDimitry Andric case ABIArgInfo::Expand: { 54860b57cec5SDimitry Andric unsigned IRArgPos = FirstIRArg; 54870b57cec5SDimitry Andric ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 54880b57cec5SDimitry Andric assert(IRArgPos == FirstIRArg + NumIRArgs); 54890b57cec5SDimitry Andric break; 54900b57cec5SDimitry Andric } 54910b57cec5SDimitry Andric } 5492e8d8bef9SDimitry Andric } 54930b57cec5SDimitry Andric 54940b57cec5SDimitry Andric const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 54950b57cec5SDimitry Andric llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 54960b57cec5SDimitry Andric 54970b57cec5SDimitry Andric // If we're using inalloca, set up that argument. 54980b57cec5SDimitry Andric if (ArgMemory.isValid()) { 54990b57cec5SDimitry Andric llvm::Value *Arg = ArgMemory.getPointer(); 55000b57cec5SDimitry Andric assert(IRFunctionArgs.hasInallocaArg()); 55010b57cec5SDimitry Andric IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 55020b57cec5SDimitry Andric } 55030b57cec5SDimitry Andric 55040b57cec5SDimitry Andric // 2. Prepare the function pointer. 55050b57cec5SDimitry Andric 55060b57cec5SDimitry Andric // If the callee is a bitcast of a non-variadic function to have a 55070b57cec5SDimitry Andric // variadic function pointer type, check to see if we can remove the 55080b57cec5SDimitry Andric // bitcast. This comes up with unprototyped functions. 55090b57cec5SDimitry Andric // 55100b57cec5SDimitry Andric // This makes the IR nicer, but more importantly it ensures that we 55110b57cec5SDimitry Andric // can inline the function at -O0 if it is marked always_inline. 55120b57cec5SDimitry Andric auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 55130b57cec5SDimitry Andric llvm::Value *Ptr) -> llvm::Function * { 55140b57cec5SDimitry Andric if (!CalleeFT->isVarArg()) 55150b57cec5SDimitry Andric return nullptr; 55160b57cec5SDimitry Andric 55170b57cec5SDimitry Andric // Get underlying value if it's a bitcast 55180b57cec5SDimitry Andric if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 55190b57cec5SDimitry Andric if (CE->getOpcode() == llvm::Instruction::BitCast) 55200b57cec5SDimitry Andric Ptr = CE->getOperand(0); 55210b57cec5SDimitry Andric } 55220b57cec5SDimitry Andric 55230b57cec5SDimitry Andric llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 55240b57cec5SDimitry Andric if (!OrigFn) 55250b57cec5SDimitry Andric return nullptr; 55260b57cec5SDimitry Andric 55270b57cec5SDimitry Andric llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 55280b57cec5SDimitry Andric 55290b57cec5SDimitry Andric // If the original type is variadic, or if any of the component types 55300b57cec5SDimitry Andric // disagree, we cannot remove the cast. 55310b57cec5SDimitry Andric if (OrigFT->isVarArg() || 55320b57cec5SDimitry Andric OrigFT->getNumParams() != CalleeFT->getNumParams() || 55330b57cec5SDimitry Andric OrigFT->getReturnType() != CalleeFT->getReturnType()) 55340b57cec5SDimitry Andric return nullptr; 55350b57cec5SDimitry Andric 55360b57cec5SDimitry Andric for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 55370b57cec5SDimitry Andric if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 55380b57cec5SDimitry Andric return nullptr; 55390b57cec5SDimitry Andric 55400b57cec5SDimitry Andric return OrigFn; 55410b57cec5SDimitry Andric }; 55420b57cec5SDimitry Andric 55430b57cec5SDimitry Andric if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 55440b57cec5SDimitry Andric CalleePtr = OrigFn; 55450b57cec5SDimitry Andric IRFuncTy = OrigFn->getFunctionType(); 55460b57cec5SDimitry Andric } 55470b57cec5SDimitry Andric 55480b57cec5SDimitry Andric // 3. Perform the actual call. 55490b57cec5SDimitry Andric 55500b57cec5SDimitry Andric // Deactivate any cleanups that we're supposed to do immediately before 55510b57cec5SDimitry Andric // the call. 55520b57cec5SDimitry Andric if (!CallArgs.getCleanupsToDeactivate().empty()) 55530b57cec5SDimitry Andric deactivateArgCleanupsBeforeCall(*this, CallArgs); 55540b57cec5SDimitry Andric 55550b57cec5SDimitry Andric // Assert that the arguments we computed match up. The IR verifier 55560b57cec5SDimitry Andric // will catch this, but this is a common enough source of problems 55570b57cec5SDimitry Andric // during IRGen changes that it's way better for debugging to catch 55580b57cec5SDimitry Andric // it ourselves here. 55590b57cec5SDimitry Andric #ifndef NDEBUG 55600b57cec5SDimitry Andric assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 55610b57cec5SDimitry Andric for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 55620b57cec5SDimitry Andric // Inalloca argument can have different type. 55630b57cec5SDimitry Andric if (IRFunctionArgs.hasInallocaArg() && 55640b57cec5SDimitry Andric i == IRFunctionArgs.getInallocaArgNo()) 55650b57cec5SDimitry Andric continue; 55660b57cec5SDimitry Andric if (i < IRFuncTy->getNumParams()) 55670b57cec5SDimitry Andric assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 55680b57cec5SDimitry Andric } 55690b57cec5SDimitry Andric #endif 55700b57cec5SDimitry Andric 55710b57cec5SDimitry Andric // Update the largest vector width if any arguments have vector types. 557281ad6265SDimitry Andric for (unsigned i = 0; i < IRCallArgs.size(); ++i) 557381ad6265SDimitry Andric LargestVectorWidth = std::max(LargestVectorWidth, 557481ad6265SDimitry Andric getMaxVectorWidth(IRCallArgs[i]->getType())); 55750b57cec5SDimitry Andric 55760b57cec5SDimitry Andric // Compute the calling convention and attributes. 55770b57cec5SDimitry Andric unsigned CallingConv; 55780b57cec5SDimitry Andric llvm::AttributeList Attrs; 55790b57cec5SDimitry Andric CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 55800b57cec5SDimitry Andric Callee.getAbstractInfo(), Attrs, CallingConv, 5581fe6060f1SDimitry Andric /*AttrOnCallSite=*/true, 5582fe6060f1SDimitry Andric /*IsThunk=*/false); 55830b57cec5SDimitry Andric 55840fca6ea1SDimitry Andric if (CallingConv == llvm::CallingConv::X86_VectorCall && 55850fca6ea1SDimitry Andric getTarget().getTriple().isWindowsArm64EC()) { 55860fca6ea1SDimitry Andric CGM.Error(Loc, "__vectorcall calling convention is not currently " 55870fca6ea1SDimitry Andric "supported"); 55880fca6ea1SDimitry Andric } 55890fca6ea1SDimitry Andric 55905f757f3fSDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5591e8d8bef9SDimitry Andric if (FD->hasAttr<StrictFPAttr>()) 5592480093f4SDimitry Andric // All calls within a strictfp function are marked strictfp 5593349cc55cSDimitry Andric Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5594480093f4SDimitry Andric 55955f757f3fSDimitry Andric // If -ffast-math is enabled and the function is guarded by an 55965f757f3fSDimitry Andric // '__attribute__((optnone)) adjust the memory attribute so the BE emits the 55975f757f3fSDimitry Andric // library call instead of the intrinsic. 55985f757f3fSDimitry Andric if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath) 55995f757f3fSDimitry Andric CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(), 56005f757f3fSDimitry Andric Attrs); 56015f757f3fSDimitry Andric } 56025ffd83dbSDimitry Andric // Add call-site nomerge attribute if exists. 56035ffd83dbSDimitry Andric if (InNoMergeAttributedStmt) 5604349cc55cSDimitry Andric Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 56055ffd83dbSDimitry Andric 560681ad6265SDimitry Andric // Add call-site noinline attribute if exists. 560781ad6265SDimitry Andric if (InNoInlineAttributedStmt) 560881ad6265SDimitry Andric Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 560981ad6265SDimitry Andric 561081ad6265SDimitry Andric // Add call-site always_inline attribute if exists. 561181ad6265SDimitry Andric if (InAlwaysInlineAttributedStmt) 561281ad6265SDimitry Andric Attrs = 561381ad6265SDimitry Andric Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 561481ad6265SDimitry Andric 56150b57cec5SDimitry Andric // Apply some call-site-specific attributes. 56160b57cec5SDimitry Andric // TODO: work this into building the attribute set. 56170b57cec5SDimitry Andric 56180b57cec5SDimitry Andric // Apply always_inline to all calls within flatten functions. 56190b57cec5SDimitry Andric // FIXME: should this really take priority over __try, below? 56200b57cec5SDimitry Andric if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 562181ad6265SDimitry Andric !InNoInlineAttributedStmt && 56220b57cec5SDimitry Andric !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 56230b57cec5SDimitry Andric Attrs = 5624349cc55cSDimitry Andric Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 56250b57cec5SDimitry Andric } 56260b57cec5SDimitry Andric 56270b57cec5SDimitry Andric // Disable inlining inside SEH __try blocks. 56280b57cec5SDimitry Andric if (isSEHTryScope()) { 5629349cc55cSDimitry Andric Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 56300b57cec5SDimitry Andric } 56310b57cec5SDimitry Andric 56320b57cec5SDimitry Andric // Decide whether to use a call or an invoke. 56330b57cec5SDimitry Andric bool CannotThrow; 56340b57cec5SDimitry Andric if (currentFunctionUsesSEHTry()) { 56350b57cec5SDimitry Andric // SEH cares about asynchronous exceptions, so everything can "throw." 56360b57cec5SDimitry Andric CannotThrow = false; 56370b57cec5SDimitry Andric } else if (isCleanupPadScope() && 56380b57cec5SDimitry Andric EHPersonality::get(*this).isMSVCXXPersonality()) { 56390b57cec5SDimitry Andric // The MSVC++ personality will implicitly terminate the program if an 56400b57cec5SDimitry Andric // exception is thrown during a cleanup outside of a try/catch. 56410b57cec5SDimitry Andric // We don't need to model anything in IR to get this behavior. 56420b57cec5SDimitry Andric CannotThrow = true; 56430b57cec5SDimitry Andric } else { 56440b57cec5SDimitry Andric // Otherwise, nounwind call sites will never throw. 5645349cc55cSDimitry Andric CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5646e8d8bef9SDimitry Andric 5647e8d8bef9SDimitry Andric if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5648e8d8bef9SDimitry Andric if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5649e8d8bef9SDimitry Andric CannotThrow = true; 56500b57cec5SDimitry Andric } 56510b57cec5SDimitry Andric 56520b57cec5SDimitry Andric // If we made a temporary, be sure to clean up after ourselves. Note that we 56530b57cec5SDimitry Andric // can't depend on being inside of an ExprWithCleanups, so we need to manually 56540b57cec5SDimitry Andric // pop this cleanup later on. Being eager about this is OK, since this 56550b57cec5SDimitry Andric // temporary is 'invisible' outside of the callee. 56560b57cec5SDimitry Andric if (UnusedReturnSizePtr) 56570b57cec5SDimitry Andric pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 56580b57cec5SDimitry Andric UnusedReturnSizePtr); 56590b57cec5SDimitry Andric 56600b57cec5SDimitry Andric llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 56610b57cec5SDimitry Andric 56620b57cec5SDimitry Andric SmallVector<llvm::OperandBundleDef, 1> BundleList = 56630b57cec5SDimitry Andric getBundlesForFunclet(CalleePtr); 56640b57cec5SDimitry Andric 5665bdd1243dSDimitry Andric if (SanOpts.has(SanitizerKind::KCFI) && 5666bdd1243dSDimitry Andric !isa_and_nonnull<FunctionDecl>(TargetDecl)) 5667bdd1243dSDimitry Andric EmitKCFIOperandBundle(ConcreteCallee, BundleList); 5668bdd1243dSDimitry Andric 56690fca6ea1SDimitry Andric // Add the pointer-authentication bundle. 56700fca6ea1SDimitry Andric EmitPointerAuthOperandBundle(ConcreteCallee.getPointerAuthInfo(), BundleList); 56710fca6ea1SDimitry Andric 5672480093f4SDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5673e8d8bef9SDimitry Andric if (FD->hasAttr<StrictFPAttr>()) 5674480093f4SDimitry Andric // All calls within a strictfp function are marked strictfp 5675349cc55cSDimitry Andric Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5676480093f4SDimitry Andric 56775ffd83dbSDimitry Andric AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 56785ffd83dbSDimitry Andric Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 56795ffd83dbSDimitry Andric 56805ffd83dbSDimitry Andric AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 56815ffd83dbSDimitry Andric Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 56825ffd83dbSDimitry Andric 56830b57cec5SDimitry Andric // Emit the actual call/invoke instruction. 56840b57cec5SDimitry Andric llvm::CallBase *CI; 56850b57cec5SDimitry Andric if (!InvokeDest) { 56860b57cec5SDimitry Andric CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 56870b57cec5SDimitry Andric } else { 56880b57cec5SDimitry Andric llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 56890b57cec5SDimitry Andric CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 56900b57cec5SDimitry Andric BundleList); 56910b57cec5SDimitry Andric EmitBlock(Cont); 56920b57cec5SDimitry Andric } 56935f757f3fSDimitry Andric if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() && 56945f757f3fSDimitry Andric CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) { 56955f757f3fSDimitry Andric SetSqrtFPAccuracy(CI); 56965f757f3fSDimitry Andric } 56970b57cec5SDimitry Andric if (callOrInvoke) 56980b57cec5SDimitry Andric *callOrInvoke = CI; 56990b57cec5SDimitry Andric 5700480093f4SDimitry Andric // If this is within a function that has the guard(nocf) attribute and is an 5701480093f4SDimitry Andric // indirect call, add the "guard_nocf" attribute to this call to indicate that 5702480093f4SDimitry Andric // Control Flow Guard checks should not be added, even if the call is inlined. 5703480093f4SDimitry Andric if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5704480093f4SDimitry Andric if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5705480093f4SDimitry Andric if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5706349cc55cSDimitry Andric Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5707480093f4SDimitry Andric } 5708480093f4SDimitry Andric } 5709480093f4SDimitry Andric 57100b57cec5SDimitry Andric // Apply the attributes and calling convention. 57110b57cec5SDimitry Andric CI->setAttributes(Attrs); 57120b57cec5SDimitry Andric CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 57130b57cec5SDimitry Andric 57140b57cec5SDimitry Andric // Apply various metadata. 57150b57cec5SDimitry Andric 57160b57cec5SDimitry Andric if (!CI->getType()->isVoidTy()) 57170b57cec5SDimitry Andric CI->setName("call"); 57180b57cec5SDimitry Andric 57190fca6ea1SDimitry Andric if (CGM.shouldEmitConvergenceTokens() && CI->isConvergent()) 57200fca6ea1SDimitry Andric CI = addControlledConvergenceToken(CI); 57210fca6ea1SDimitry Andric 57220b57cec5SDimitry Andric // Update largest vector width from the return type. 57235ffd83dbSDimitry Andric LargestVectorWidth = 572481ad6265SDimitry Andric std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 57250b57cec5SDimitry Andric 57260b57cec5SDimitry Andric // Insert instrumentation or attach profile metadata at indirect call sites. 57270b57cec5SDimitry Andric // For more details, see the comment before the definition of 57280b57cec5SDimitry Andric // IPVK_IndirectCallTarget in InstrProfData.inc. 57290b57cec5SDimitry Andric if (!CI->getCalledFunction()) 57300b57cec5SDimitry Andric PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 57310b57cec5SDimitry Andric CI, CalleePtr); 57320b57cec5SDimitry Andric 57330b57cec5SDimitry Andric // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 57340b57cec5SDimitry Andric // optimizer it can aggressively ignore unwind edges. 57350b57cec5SDimitry Andric if (CGM.getLangOpts().ObjCAutoRefCount) 57360b57cec5SDimitry Andric AddObjCARCExceptionMetadata(CI); 57370b57cec5SDimitry Andric 5738fe6060f1SDimitry Andric // Set tail call kind if necessary. 57390b57cec5SDimitry Andric if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 57400b57cec5SDimitry Andric if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 57410b57cec5SDimitry Andric Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 57420fca6ea1SDimitry Andric else if (IsMustTail) { 57430fca6ea1SDimitry Andric if (getTarget().getTriple().isPPC()) { 57440fca6ea1SDimitry Andric if (getTarget().getTriple().isOSAIX()) 57450fca6ea1SDimitry Andric CGM.getDiags().Report(Loc, diag::err_aix_musttail_unsupported); 57460fca6ea1SDimitry Andric else if (!getTarget().hasFeature("pcrelative-memops")) { 57470fca6ea1SDimitry Andric if (getTarget().hasFeature("longcall")) 57480fca6ea1SDimitry Andric CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 0; 57490fca6ea1SDimitry Andric else if (Call->isIndirectCall()) 57500fca6ea1SDimitry Andric CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 1; 57510fca6ea1SDimitry Andric else if (isa_and_nonnull<FunctionDecl>(TargetDecl)) { 57520fca6ea1SDimitry Andric if (!cast<FunctionDecl>(TargetDecl)->isDefined()) 57530fca6ea1SDimitry Andric // The undefined callee may be a forward declaration. Without 57540fca6ea1SDimitry Andric // knowning all symbols in the module, we won't know the symbol is 57550fca6ea1SDimitry Andric // defined or not. Collect all these symbols for later diagnosing. 57560fca6ea1SDimitry Andric CGM.addUndefinedGlobalForTailCall( 57570fca6ea1SDimitry Andric {cast<FunctionDecl>(TargetDecl), Loc}); 57580fca6ea1SDimitry Andric else { 57590fca6ea1SDimitry Andric llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage( 57600fca6ea1SDimitry Andric GlobalDecl(cast<FunctionDecl>(TargetDecl))); 57610fca6ea1SDimitry Andric if (llvm::GlobalValue::isWeakForLinker(Linkage) || 57620fca6ea1SDimitry Andric llvm::GlobalValue::isDiscardableIfUnused(Linkage)) 57630fca6ea1SDimitry Andric CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) 57640fca6ea1SDimitry Andric << 2; 57650fca6ea1SDimitry Andric } 57660fca6ea1SDimitry Andric } 57670fca6ea1SDimitry Andric } 57680fca6ea1SDimitry Andric } 5769fe6060f1SDimitry Andric Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 57700b57cec5SDimitry Andric } 57710fca6ea1SDimitry Andric } 57720b57cec5SDimitry Andric 57730b57cec5SDimitry Andric // Add metadata for calls to MSAllocator functions 57740b57cec5SDimitry Andric if (getDebugInfo() && TargetDecl && 57750b57cec5SDimitry Andric TargetDecl->hasAttr<MSAllocatorAttr>()) 57765ffd83dbSDimitry Andric getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 57770b57cec5SDimitry Andric 5778349cc55cSDimitry Andric // Add metadata if calling an __attribute__((error(""))) or warning fn. 5779349cc55cSDimitry Andric if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5780349cc55cSDimitry Andric llvm::ConstantInt *Line = 57810fca6ea1SDimitry Andric llvm::ConstantInt::get(Int64Ty, Loc.getRawEncoding()); 5782349cc55cSDimitry Andric llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5783349cc55cSDimitry Andric llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5784349cc55cSDimitry Andric CI->setMetadata("srcloc", MDT); 5785349cc55cSDimitry Andric } 5786349cc55cSDimitry Andric 57870b57cec5SDimitry Andric // 4. Finish the call. 57880b57cec5SDimitry Andric 57890b57cec5SDimitry Andric // If the call doesn't return, finish the basic block and clear the 57900b57cec5SDimitry Andric // insertion point; this allows the rest of IRGen to discard 57910b57cec5SDimitry Andric // unreachable code. 57920b57cec5SDimitry Andric if (CI->doesNotReturn()) { 57930b57cec5SDimitry Andric if (UnusedReturnSizePtr) 57940b57cec5SDimitry Andric PopCleanupBlock(); 57950b57cec5SDimitry Andric 57960b57cec5SDimitry Andric // Strip away the noreturn attribute to better diagnose unreachable UB. 57970b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::Unreachable)) { 57980b57cec5SDimitry Andric // Also remove from function since CallBase::hasFnAttr additionally checks 57990b57cec5SDimitry Andric // attributes of the called function. 58000b57cec5SDimitry Andric if (auto *F = CI->getCalledFunction()) 58010b57cec5SDimitry Andric F->removeFnAttr(llvm::Attribute::NoReturn); 5802349cc55cSDimitry Andric CI->removeFnAttr(llvm::Attribute::NoReturn); 58030b57cec5SDimitry Andric 58040b57cec5SDimitry Andric // Avoid incompatibility with ASan which relies on the `noreturn` 58050b57cec5SDimitry Andric // attribute to insert handler calls. 58060b57cec5SDimitry Andric if (SanOpts.hasOneOf(SanitizerKind::Address | 58070b57cec5SDimitry Andric SanitizerKind::KernelAddress)) { 58080b57cec5SDimitry Andric SanitizerScope SanScope(this); 58090b57cec5SDimitry Andric llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 58100b57cec5SDimitry Andric Builder.SetInsertPoint(CI); 58110b57cec5SDimitry Andric auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 58120b57cec5SDimitry Andric llvm::FunctionCallee Fn = 58130b57cec5SDimitry Andric CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 58140b57cec5SDimitry Andric EmitNounwindRuntimeCall(Fn); 58150b57cec5SDimitry Andric } 58160b57cec5SDimitry Andric } 58170b57cec5SDimitry Andric 58180b57cec5SDimitry Andric EmitUnreachable(Loc); 58190b57cec5SDimitry Andric Builder.ClearInsertionPoint(); 58200b57cec5SDimitry Andric 58210b57cec5SDimitry Andric // FIXME: For now, emit a dummy basic block because expr emitters in 58220b57cec5SDimitry Andric // generally are not ready to handle emitting expressions at unreachable 58230b57cec5SDimitry Andric // points. 58240b57cec5SDimitry Andric EnsureInsertPoint(); 58250b57cec5SDimitry Andric 58260b57cec5SDimitry Andric // Return a reasonable RValue. 58270b57cec5SDimitry Andric return GetUndefRValue(RetTy); 58280b57cec5SDimitry Andric } 58290b57cec5SDimitry Andric 5830fe6060f1SDimitry Andric // If this is a musttail call, return immediately. We do not branch to the 5831fe6060f1SDimitry Andric // epilogue in this case. 5832fe6060f1SDimitry Andric if (IsMustTail) { 5833fe6060f1SDimitry Andric for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5834fe6060f1SDimitry Andric ++it) { 5835fe6060f1SDimitry Andric EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5836fe6060f1SDimitry Andric if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5837fe6060f1SDimitry Andric CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5838fe6060f1SDimitry Andric } 5839fe6060f1SDimitry Andric if (CI->getType()->isVoidTy()) 5840fe6060f1SDimitry Andric Builder.CreateRetVoid(); 5841fe6060f1SDimitry Andric else 5842fe6060f1SDimitry Andric Builder.CreateRet(CI); 5843fe6060f1SDimitry Andric Builder.ClearInsertionPoint(); 5844fe6060f1SDimitry Andric EnsureInsertPoint(); 5845fe6060f1SDimitry Andric return GetUndefRValue(RetTy); 5846fe6060f1SDimitry Andric } 5847fe6060f1SDimitry Andric 58480b57cec5SDimitry Andric // Perform the swifterror writeback. 58490b57cec5SDimitry Andric if (swiftErrorTemp.isValid()) { 58500b57cec5SDimitry Andric llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 58510b57cec5SDimitry Andric Builder.CreateStore(errorResult, swiftErrorArg); 58520b57cec5SDimitry Andric } 58530b57cec5SDimitry Andric 58540b57cec5SDimitry Andric // Emit any call-associated writebacks immediately. Arguably this 58550b57cec5SDimitry Andric // should happen after any return-value munging. 58560b57cec5SDimitry Andric if (CallArgs.hasWritebacks()) 58570b57cec5SDimitry Andric emitWritebacks(*this, CallArgs); 58580b57cec5SDimitry Andric 58590b57cec5SDimitry Andric // The stack cleanup for inalloca arguments has to run out of the normal 58600b57cec5SDimitry Andric // lexical order, so deactivate it and run it manually here. 58610b57cec5SDimitry Andric CallArgs.freeArgumentMemory(*this); 58620b57cec5SDimitry Andric 58630b57cec5SDimitry Andric // Extract the return value. 58640fca6ea1SDimitry Andric RValue Ret; 58650fca6ea1SDimitry Andric 58660fca6ea1SDimitry Andric // If the current function is a virtual function pointer thunk, avoid copying 58670fca6ea1SDimitry Andric // the return value of the musttail call to a temporary. 58680fca6ea1SDimitry Andric if (IsVirtualFunctionPointerThunk) { 58690fca6ea1SDimitry Andric Ret = RValue::get(CI); 58700fca6ea1SDimitry Andric } else { 58710fca6ea1SDimitry Andric Ret = [&] { 58720b57cec5SDimitry Andric switch (RetAI.getKind()) { 58730b57cec5SDimitry Andric case ABIArgInfo::CoerceAndExpand: { 58740b57cec5SDimitry Andric auto coercionType = RetAI.getCoerceAndExpandType(); 58750b57cec5SDimitry Andric 587606c3fb27SDimitry Andric Address addr = SRetPtr.withElementType(coercionType); 58770b57cec5SDimitry Andric 58780b57cec5SDimitry Andric assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 58790b57cec5SDimitry Andric bool requiresExtract = isa<llvm::StructType>(CI->getType()); 58800b57cec5SDimitry Andric 58810b57cec5SDimitry Andric unsigned unpaddedIndex = 0; 58820b57cec5SDimitry Andric for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 58830b57cec5SDimitry Andric llvm::Type *eltType = coercionType->getElementType(i); 58840fca6ea1SDimitry Andric if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 58850fca6ea1SDimitry Andric continue; 58860b57cec5SDimitry Andric Address eltAddr = Builder.CreateStructGEP(addr, i); 58870b57cec5SDimitry Andric llvm::Value *elt = CI; 58880b57cec5SDimitry Andric if (requiresExtract) 58890b57cec5SDimitry Andric elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 58900b57cec5SDimitry Andric else 58910b57cec5SDimitry Andric assert(unpaddedIndex == 0); 58920b57cec5SDimitry Andric Builder.CreateStore(elt, eltAddr); 58930b57cec5SDimitry Andric } 5894bdd1243dSDimitry Andric [[fallthrough]]; 58950b57cec5SDimitry Andric } 58960b57cec5SDimitry Andric 58970b57cec5SDimitry Andric case ABIArgInfo::InAlloca: 58980b57cec5SDimitry Andric case ABIArgInfo::Indirect: { 58990b57cec5SDimitry Andric RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 59000b57cec5SDimitry Andric if (UnusedReturnSizePtr) 59010b57cec5SDimitry Andric PopCleanupBlock(); 59020b57cec5SDimitry Andric return ret; 59030b57cec5SDimitry Andric } 59040b57cec5SDimitry Andric 59050b57cec5SDimitry Andric case ABIArgInfo::Ignore: 59060b57cec5SDimitry Andric // If we are ignoring an argument that had a result, make sure to 59070b57cec5SDimitry Andric // construct the appropriate return value for our caller. 59080b57cec5SDimitry Andric return GetUndefRValue(RetTy); 59090b57cec5SDimitry Andric 59100b57cec5SDimitry Andric case ABIArgInfo::Extend: 59110b57cec5SDimitry Andric case ABIArgInfo::Direct: { 59120b57cec5SDimitry Andric llvm::Type *RetIRTy = ConvertType(RetTy); 59130fca6ea1SDimitry Andric if (RetAI.getCoerceToType() == RetIRTy && 59140fca6ea1SDimitry Andric RetAI.getDirectOffset() == 0) { 59150b57cec5SDimitry Andric switch (getEvaluationKind(RetTy)) { 59160b57cec5SDimitry Andric case TEK_Complex: { 59170b57cec5SDimitry Andric llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 59180b57cec5SDimitry Andric llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 59190b57cec5SDimitry Andric return RValue::getComplex(std::make_pair(Real, Imag)); 59200b57cec5SDimitry Andric } 5921c80e69b0SDimitry Andric case TEK_Aggregate: 5922c80e69b0SDimitry Andric break; 59230b57cec5SDimitry Andric case TEK_Scalar: { 59240fca6ea1SDimitry Andric // If the argument doesn't match, perform a bitcast to coerce it. 59250fca6ea1SDimitry Andric // This can happen due to trivial type mismatches. 59260b57cec5SDimitry Andric llvm::Value *V = CI; 59270b57cec5SDimitry Andric if (V->getType() != RetIRTy) 59280b57cec5SDimitry Andric V = Builder.CreateBitCast(V, RetIRTy); 59290b57cec5SDimitry Andric return RValue::get(V); 59300b57cec5SDimitry Andric } 59310b57cec5SDimitry Andric } 59320b57cec5SDimitry Andric } 59330b57cec5SDimitry Andric 593406c3fb27SDimitry Andric // If coercing a fixed vector from a scalable vector for ABI 593506c3fb27SDimitry Andric // compatibility, and the types match, use the llvm.vector.extract 593606c3fb27SDimitry Andric // intrinsic to perform the conversion. 59370fca6ea1SDimitry Andric if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(RetIRTy)) { 593806c3fb27SDimitry Andric llvm::Value *V = CI; 59390fca6ea1SDimitry Andric if (auto *ScalableSrcTy = 59400fca6ea1SDimitry Andric dyn_cast<llvm::ScalableVectorType>(V->getType())) { 59410fca6ea1SDimitry Andric if (FixedDstTy->getElementType() == 59420fca6ea1SDimitry Andric ScalableSrcTy->getElementType()) { 594306c3fb27SDimitry Andric llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 59440fca6ea1SDimitry Andric V = Builder.CreateExtractVector(FixedDstTy, V, Zero, 59450fca6ea1SDimitry Andric "cast.fixed"); 594606c3fb27SDimitry Andric return RValue::get(V); 594706c3fb27SDimitry Andric } 594806c3fb27SDimitry Andric } 594906c3fb27SDimitry Andric } 595006c3fb27SDimitry Andric 59510b57cec5SDimitry Andric Address DestPtr = ReturnValue.getValue(); 59520b57cec5SDimitry Andric bool DestIsVolatile = ReturnValue.isVolatile(); 5953c80e69b0SDimitry Andric uint64_t DestSize = 5954c80e69b0SDimitry Andric getContext().getTypeInfoDataSizeInChars(RetTy).Width.getQuantity(); 59550b57cec5SDimitry Andric 59560b57cec5SDimitry Andric if (!DestPtr.isValid()) { 59570b57cec5SDimitry Andric DestPtr = CreateMemTemp(RetTy, "coerce"); 59580b57cec5SDimitry Andric DestIsVolatile = false; 5959c80e69b0SDimitry Andric DestSize = getContext().getTypeSizeInChars(RetTy).getQuantity(); 59600b57cec5SDimitry Andric } 59610b57cec5SDimitry Andric 59628a4dda33SDimitry Andric // An empty record can overlap other data (if declared with 59638a4dda33SDimitry Andric // no_unique_address); omit the store for such types - as there is no 59648a4dda33SDimitry Andric // actual data to store. 59658a4dda33SDimitry Andric if (!isEmptyRecord(getContext(), RetTy, true)) { 59660b57cec5SDimitry Andric // If the value is offset in memory, apply the offset now. 59670b57cec5SDimitry Andric Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5968c80e69b0SDimitry Andric CreateCoercedStore( 5969c80e69b0SDimitry Andric CI, StorePtr, 5970c80e69b0SDimitry Andric llvm::TypeSize::getFixed(DestSize - RetAI.getDirectOffset()), 5971c80e69b0SDimitry Andric DestIsVolatile); 59728a4dda33SDimitry Andric } 59730b57cec5SDimitry Andric 59740b57cec5SDimitry Andric return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 59750b57cec5SDimitry Andric } 59760b57cec5SDimitry Andric 59770b57cec5SDimitry Andric case ABIArgInfo::Expand: 5978e8d8bef9SDimitry Andric case ABIArgInfo::IndirectAliased: 59790b57cec5SDimitry Andric llvm_unreachable("Invalid ABI kind for return argument"); 59800b57cec5SDimitry Andric } 59810b57cec5SDimitry Andric 59820b57cec5SDimitry Andric llvm_unreachable("Unhandled ABIArgInfo::Kind"); 59830b57cec5SDimitry Andric }(); 59840fca6ea1SDimitry Andric } 59850b57cec5SDimitry Andric 59860b57cec5SDimitry Andric // Emit the assume_aligned check on the return value. 59870b57cec5SDimitry Andric if (Ret.isScalar() && TargetDecl) { 59885ffd83dbSDimitry Andric AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 59895ffd83dbSDimitry Andric AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 59900b57cec5SDimitry Andric } 59910b57cec5SDimitry Andric 5992a7dea167SDimitry Andric // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5993a7dea167SDimitry Andric // we can't use the full cleanup mechanism. 5994a7dea167SDimitry Andric for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5995a7dea167SDimitry Andric LifetimeEnd.Emit(*this, /*Flags=*/{}); 5996a7dea167SDimitry Andric 59975ffd83dbSDimitry Andric if (!ReturnValue.isExternallyDestructed() && 59985ffd83dbSDimitry Andric RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 59995ffd83dbSDimitry Andric pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 60005ffd83dbSDimitry Andric RetTy); 60015ffd83dbSDimitry Andric 60020b57cec5SDimitry Andric return Ret; 60030b57cec5SDimitry Andric } 60040b57cec5SDimitry Andric 60050b57cec5SDimitry Andric CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 60060b57cec5SDimitry Andric if (isVirtual()) { 60070b57cec5SDimitry Andric const CallExpr *CE = getVirtualCallExpr(); 60080b57cec5SDimitry Andric return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 60090b57cec5SDimitry Andric CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 60100b57cec5SDimitry Andric CE ? CE->getBeginLoc() : SourceLocation()); 60110b57cec5SDimitry Andric } 60120b57cec5SDimitry Andric 60130b57cec5SDimitry Andric return *this; 60140b57cec5SDimitry Andric } 60150b57cec5SDimitry Andric 60160b57cec5SDimitry Andric /* VarArg handling */ 60170b57cec5SDimitry Andric 60180fca6ea1SDimitry Andric RValue CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 60190fca6ea1SDimitry Andric AggValueSlot Slot) { 60200fca6ea1SDimitry Andric VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(VE->getSubExpr()) 60210b57cec5SDimitry Andric : EmitVAListRef(VE->getSubExpr()); 60220b57cec5SDimitry Andric QualType Ty = VE->getType(); 60230b57cec5SDimitry Andric if (VE->isMicrosoftABI()) 6024*5deeebd8SDimitry Andric return CGM.getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty, Slot); 6025*5deeebd8SDimitry Andric return CGM.getABIInfo().EmitVAArg(*this, VAListAddr, Ty, Slot); 60260b57cec5SDimitry Andric } 6027