xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp (revision 23408297fbf3089f0388a8873b02fa75ab3f5bb9)
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGOpenCLRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "PatternInit.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/OSLog.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsNVPTX.h"
41 #include "llvm/IR/IntrinsicsPowerPC.h"
42 #include "llvm/IR/IntrinsicsR600.h"
43 #include "llvm/IR/IntrinsicsS390.h"
44 #include "llvm/IR/IntrinsicsWebAssembly.h"
45 #include "llvm/IR/IntrinsicsX86.h"
46 #include "llvm/IR/MDBuilder.h"
47 #include "llvm/IR/MatrixBuilder.h"
48 #include "llvm/Support/ConvertUTF.h"
49 #include "llvm/Support/ScopedPrinter.h"
50 #include "llvm/Support/X86TargetParser.h"
51 #include <sstream>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 using namespace llvm;
56 
57 static
58 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
59   return std::min(High, std::max(Low, Value));
60 }
61 
62 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
63                              Align AlignmentInBytes) {
64   ConstantInt *Byte;
65   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
66   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
67     // Nothing to initialize.
68     return;
69   case LangOptions::TrivialAutoVarInitKind::Zero:
70     Byte = CGF.Builder.getInt8(0x00);
71     break;
72   case LangOptions::TrivialAutoVarInitKind::Pattern: {
73     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
74     Byte = llvm::dyn_cast<llvm::ConstantInt>(
75         initializationPatternFor(CGF.CGM, Int8));
76     break;
77   }
78   }
79   if (CGF.CGM.stopAutoInit())
80     return;
81   auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
82   I->addAnnotationMetadata("auto-init");
83 }
84 
85 /// getBuiltinLibFunction - Given a builtin id for a function like
86 /// "__builtin_fabsf", return a Function* for "fabsf".
87 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
88                                                      unsigned BuiltinID) {
89   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
90 
91   // Get the name, skip over the __builtin_ prefix (if necessary).
92   StringRef Name;
93   GlobalDecl D(FD);
94 
95   // If the builtin has been declared explicitly with an assembler label,
96   // use the mangled name. This differs from the plain label on platforms
97   // that prefix labels.
98   if (FD->hasAttr<AsmLabelAttr>())
99     Name = getMangledName(D);
100   else
101     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
102 
103   llvm::FunctionType *Ty =
104     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
105 
106   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
107 }
108 
109 /// Emit the conversions required to turn the given value into an
110 /// integer of the given size.
111 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
112                         QualType T, llvm::IntegerType *IntType) {
113   V = CGF.EmitToMemory(V, T);
114 
115   if (V->getType()->isPointerTy())
116     return CGF.Builder.CreatePtrToInt(V, IntType);
117 
118   assert(V->getType() == IntType);
119   return V;
120 }
121 
122 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
123                           QualType T, llvm::Type *ResultType) {
124   V = CGF.EmitFromMemory(V, T);
125 
126   if (ResultType->isPointerTy())
127     return CGF.Builder.CreateIntToPtr(V, ResultType);
128 
129   assert(V->getType() == ResultType);
130   return V;
131 }
132 
133 /// Utility to insert an atomic instruction based on Intrinsic::ID
134 /// and the expression node.
135 static Value *MakeBinaryAtomicValue(
136     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
137     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
138   QualType T = E->getType();
139   assert(E->getArg(0)->getType()->isPointerType());
140   assert(CGF.getContext().hasSameUnqualifiedType(T,
141                                   E->getArg(0)->getType()->getPointeeType()));
142   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
143 
144   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
145   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
146 
147   llvm::IntegerType *IntType =
148     llvm::IntegerType::get(CGF.getLLVMContext(),
149                            CGF.getContext().getTypeSize(T));
150   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
151 
152   llvm::Value *Args[2];
153   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
154   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
155   llvm::Type *ValueType = Args[1]->getType();
156   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
157 
158   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
159       Kind, Args[0], Args[1], Ordering);
160   return EmitFromInt(CGF, Result, T, ValueType);
161 }
162 
163 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
164   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
165   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
166 
167   // Convert the type of the pointer to a pointer to the stored type.
168   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
169   Value *BC = CGF.Builder.CreateBitCast(
170       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
171   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
172   LV.setNontemporal(true);
173   CGF.EmitStoreOfScalar(Val, LV, false);
174   return nullptr;
175 }
176 
177 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
178   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
179 
180   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
181   LV.setNontemporal(true);
182   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
183 }
184 
185 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
186                                llvm::AtomicRMWInst::BinOp Kind,
187                                const CallExpr *E) {
188   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
189 }
190 
191 /// Utility to insert an atomic instruction based Intrinsic::ID and
192 /// the expression node, where the return value is the result of the
193 /// operation.
194 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
195                                    llvm::AtomicRMWInst::BinOp Kind,
196                                    const CallExpr *E,
197                                    Instruction::BinaryOps Op,
198                                    bool Invert = false) {
199   QualType T = E->getType();
200   assert(E->getArg(0)->getType()->isPointerType());
201   assert(CGF.getContext().hasSameUnqualifiedType(T,
202                                   E->getArg(0)->getType()->getPointeeType()));
203   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
204 
205   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
206   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
207 
208   llvm::IntegerType *IntType =
209     llvm::IntegerType::get(CGF.getLLVMContext(),
210                            CGF.getContext().getTypeSize(T));
211   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
212 
213   llvm::Value *Args[2];
214   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
215   llvm::Type *ValueType = Args[1]->getType();
216   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
217   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
218 
219   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
220       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
221   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
222   if (Invert)
223     Result =
224         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
225                                 llvm::ConstantInt::getAllOnesValue(IntType));
226   Result = EmitFromInt(CGF, Result, T, ValueType);
227   return RValue::get(Result);
228 }
229 
230 /// Utility to insert an atomic cmpxchg instruction.
231 ///
232 /// @param CGF The current codegen function.
233 /// @param E   Builtin call expression to convert to cmpxchg.
234 ///            arg0 - address to operate on
235 ///            arg1 - value to compare with
236 ///            arg2 - new value
237 /// @param ReturnBool Specifies whether to return success flag of
238 ///                   cmpxchg result or the old value.
239 ///
240 /// @returns result of cmpxchg, according to ReturnBool
241 ///
242 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
243 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
244 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
245                                      bool ReturnBool) {
246   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
247   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
248   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
249 
250   llvm::IntegerType *IntType = llvm::IntegerType::get(
251       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
252   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
253 
254   Value *Args[3];
255   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
256   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
257   llvm::Type *ValueType = Args[1]->getType();
258   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
259   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
260 
261   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
262       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
263       llvm::AtomicOrdering::SequentiallyConsistent);
264   if (ReturnBool)
265     // Extract boolean success flag and zext it to int.
266     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
267                                   CGF.ConvertType(E->getType()));
268   else
269     // Extract old value and emit it using the same type as compare value.
270     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
271                        ValueType);
272 }
273 
274 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
275 /// _InterlockedCompareExchange* intrinsics which have the following signature:
276 /// T _InterlockedCompareExchange(T volatile *Destination,
277 ///                               T Exchange,
278 ///                               T Comparand);
279 ///
280 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
281 /// cmpxchg *Destination, Comparand, Exchange.
282 /// So we need to swap Comparand and Exchange when invoking
283 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
284 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
285 /// already swapped.
286 
287 static
288 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
289     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
290   assert(E->getArg(0)->getType()->isPointerType());
291   assert(CGF.getContext().hasSameUnqualifiedType(
292       E->getType(), E->getArg(0)->getType()->getPointeeType()));
293   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
294                                                  E->getArg(1)->getType()));
295   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
296                                                  E->getArg(2)->getType()));
297 
298   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
299   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
300   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
301 
302   // For Release ordering, the failure ordering should be Monotonic.
303   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
304                          AtomicOrdering::Monotonic :
305                          SuccessOrdering;
306 
307   // The atomic instruction is marked volatile for consistency with MSVC. This
308   // blocks the few atomics optimizations that LLVM has. If we want to optimize
309   // _Interlocked* operations in the future, we will have to remove the volatile
310   // marker.
311   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
312                    Destination, Comparand, Exchange,
313                    SuccessOrdering, FailureOrdering);
314   Result->setVolatile(true);
315   return CGF.Builder.CreateExtractValue(Result, 0);
316 }
317 
318 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
319 // prototyped like this:
320 //
321 // unsigned char _InterlockedCompareExchange128...(
322 //     __int64 volatile * _Destination,
323 //     __int64 _ExchangeHigh,
324 //     __int64 _ExchangeLow,
325 //     __int64 * _ComparandResult);
326 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
327                                               const CallExpr *E,
328                                               AtomicOrdering SuccessOrdering) {
329   assert(E->getNumArgs() == 4);
330   llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
331   llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
332   llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
333   llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
334 
335   assert(Destination->getType()->isPointerTy());
336   assert(!ExchangeHigh->getType()->isPointerTy());
337   assert(!ExchangeLow->getType()->isPointerTy());
338   assert(ComparandPtr->getType()->isPointerTy());
339 
340   // For Release ordering, the failure ordering should be Monotonic.
341   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
342                              ? AtomicOrdering::Monotonic
343                              : SuccessOrdering;
344 
345   // Convert to i128 pointers and values.
346   llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
347   llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
348   Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
349   Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
350                           CGF.getContext().toCharUnitsFromBits(128));
351 
352   // (((i128)hi) << 64) | ((i128)lo)
353   ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
354   ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
355   ExchangeHigh =
356       CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
357   llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
358 
359   // Load the comparand for the instruction.
360   llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
361 
362   auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
363                                               SuccessOrdering, FailureOrdering);
364 
365   // The atomic instruction is marked volatile for consistency with MSVC. This
366   // blocks the few atomics optimizations that LLVM has. If we want to optimize
367   // _Interlocked* operations in the future, we will have to remove the volatile
368   // marker.
369   CXI->setVolatile(true);
370 
371   // Store the result as an outparameter.
372   CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
373                           ComparandResult);
374 
375   // Get the success boolean and zero extend it to i8.
376   Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
377   return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
378 }
379 
380 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
381     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
382   assert(E->getArg(0)->getType()->isPointerType());
383 
384   auto *IntTy = CGF.ConvertType(E->getType());
385   auto *Result = CGF.Builder.CreateAtomicRMW(
386                    AtomicRMWInst::Add,
387                    CGF.EmitScalarExpr(E->getArg(0)),
388                    ConstantInt::get(IntTy, 1),
389                    Ordering);
390   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
391 }
392 
393 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
394     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
395   assert(E->getArg(0)->getType()->isPointerType());
396 
397   auto *IntTy = CGF.ConvertType(E->getType());
398   auto *Result = CGF.Builder.CreateAtomicRMW(
399                    AtomicRMWInst::Sub,
400                    CGF.EmitScalarExpr(E->getArg(0)),
401                    ConstantInt::get(IntTy, 1),
402                    Ordering);
403   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
404 }
405 
406 // Build a plain volatile load.
407 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
408   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
409   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
410   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
411   llvm::Type *ITy =
412       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
413   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
414   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
415   Load->setVolatile(true);
416   return Load;
417 }
418 
419 // Build a plain volatile store.
420 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
421   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
422   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
423   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
424   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
425   llvm::Type *ITy =
426       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
427   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
428   llvm::StoreInst *Store =
429       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
430   Store->setVolatile(true);
431   return Store;
432 }
433 
434 // Emit a simple mangled intrinsic that has 1 argument and a return type
435 // matching the argument type. Depending on mode, this may be a constrained
436 // floating-point intrinsic.
437 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
438                                 const CallExpr *E, unsigned IntrinsicID,
439                                 unsigned ConstrainedIntrinsicID) {
440   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
441 
442   if (CGF.Builder.getIsFPConstrained()) {
443     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
444     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
445     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
446   } else {
447     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
448     return CGF.Builder.CreateCall(F, Src0);
449   }
450 }
451 
452 // Emit an intrinsic that has 2 operands of the same type as its result.
453 // Depending on mode, this may be a constrained floating-point intrinsic.
454 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
455                                 const CallExpr *E, unsigned IntrinsicID,
456                                 unsigned ConstrainedIntrinsicID) {
457   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
458   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
459 
460   if (CGF.Builder.getIsFPConstrained()) {
461     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
462     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
463     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
464   } else {
465     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
466     return CGF.Builder.CreateCall(F, { Src0, Src1 });
467   }
468 }
469 
470 // Emit an intrinsic that has 3 operands of the same type as its result.
471 // Depending on mode, this may be a constrained floating-point intrinsic.
472 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
473                                  const CallExpr *E, unsigned IntrinsicID,
474                                  unsigned ConstrainedIntrinsicID) {
475   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
476   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
477   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
478 
479   if (CGF.Builder.getIsFPConstrained()) {
480     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
481     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
482     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
483   } else {
484     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
485     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
486   }
487 }
488 
489 // Emit an intrinsic where all operands are of the same type as the result.
490 // Depending on mode, this may be a constrained floating-point intrinsic.
491 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
492                                                 unsigned IntrinsicID,
493                                                 unsigned ConstrainedIntrinsicID,
494                                                 llvm::Type *Ty,
495                                                 ArrayRef<Value *> Args) {
496   Function *F;
497   if (CGF.Builder.getIsFPConstrained())
498     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
499   else
500     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
501 
502   if (CGF.Builder.getIsFPConstrained())
503     return CGF.Builder.CreateConstrainedFPCall(F, Args);
504   else
505     return CGF.Builder.CreateCall(F, Args);
506 }
507 
508 // Emit a simple mangled intrinsic that has 1 argument and a return type
509 // matching the argument type.
510 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
511                                const CallExpr *E,
512                                unsigned IntrinsicID) {
513   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
514 
515   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
516   return CGF.Builder.CreateCall(F, Src0);
517 }
518 
519 // Emit an intrinsic that has 2 operands of the same type as its result.
520 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
521                                 const CallExpr *E,
522                                 unsigned IntrinsicID) {
523   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
524   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
525 
526   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
527   return CGF.Builder.CreateCall(F, { Src0, Src1 });
528 }
529 
530 // Emit an intrinsic that has 3 operands of the same type as its result.
531 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
532                                  const CallExpr *E,
533                                  unsigned IntrinsicID) {
534   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
535   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
536   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
537 
538   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
539   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
540 }
541 
542 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
543 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
544                                const CallExpr *E,
545                                unsigned IntrinsicID) {
546   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
547   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
548 
549   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
550   return CGF.Builder.CreateCall(F, {Src0, Src1});
551 }
552 
553 // Emit an intrinsic that has overloaded integer result and fp operand.
554 static Value *
555 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
556                                         unsigned IntrinsicID,
557                                         unsigned ConstrainedIntrinsicID) {
558   llvm::Type *ResultType = CGF.ConvertType(E->getType());
559   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
560 
561   if (CGF.Builder.getIsFPConstrained()) {
562     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
563     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
564                                        {ResultType, Src0->getType()});
565     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
566   } else {
567     Function *F =
568         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
569     return CGF.Builder.CreateCall(F, Src0);
570   }
571 }
572 
573 /// EmitFAbs - Emit a call to @llvm.fabs().
574 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
575   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
576   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
577   Call->setDoesNotAccessMemory();
578   return Call;
579 }
580 
581 /// Emit the computation of the sign bit for a floating point value. Returns
582 /// the i1 sign bit value.
583 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
584   LLVMContext &C = CGF.CGM.getLLVMContext();
585 
586   llvm::Type *Ty = V->getType();
587   int Width = Ty->getPrimitiveSizeInBits();
588   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
589   V = CGF.Builder.CreateBitCast(V, IntTy);
590   if (Ty->isPPC_FP128Ty()) {
591     // We want the sign bit of the higher-order double. The bitcast we just
592     // did works as if the double-double was stored to memory and then
593     // read as an i128. The "store" will put the higher-order double in the
594     // lower address in both little- and big-Endian modes, but the "load"
595     // will treat those bits as a different part of the i128: the low bits in
596     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
597     // we need to shift the high bits down to the low before truncating.
598     Width >>= 1;
599     if (CGF.getTarget().isBigEndian()) {
600       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
601       V = CGF.Builder.CreateLShr(V, ShiftCst);
602     }
603     // We are truncating value in order to extract the higher-order
604     // double, which we will be using to extract the sign from.
605     IntTy = llvm::IntegerType::get(C, Width);
606     V = CGF.Builder.CreateTrunc(V, IntTy);
607   }
608   Value *Zero = llvm::Constant::getNullValue(IntTy);
609   return CGF.Builder.CreateICmpSLT(V, Zero);
610 }
611 
612 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
613                               const CallExpr *E, llvm::Constant *calleeValue) {
614   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
615   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
616 }
617 
618 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
619 /// depending on IntrinsicID.
620 ///
621 /// \arg CGF The current codegen function.
622 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
623 /// \arg X The first argument to the llvm.*.with.overflow.*.
624 /// \arg Y The second argument to the llvm.*.with.overflow.*.
625 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
626 /// \returns The result (i.e. sum/product) returned by the intrinsic.
627 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
628                                           const llvm::Intrinsic::ID IntrinsicID,
629                                           llvm::Value *X, llvm::Value *Y,
630                                           llvm::Value *&Carry) {
631   // Make sure we have integers of the same width.
632   assert(X->getType() == Y->getType() &&
633          "Arguments must be the same type. (Did you forget to make sure both "
634          "arguments have the same integer width?)");
635 
636   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
637   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
638   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
639   return CGF.Builder.CreateExtractValue(Tmp, 0);
640 }
641 
642 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
643                                 unsigned IntrinsicID,
644                                 int low, int high) {
645     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
646     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
647     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
648     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
649     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
650     return Call;
651 }
652 
653 namespace {
654   struct WidthAndSignedness {
655     unsigned Width;
656     bool Signed;
657   };
658 }
659 
660 static WidthAndSignedness
661 getIntegerWidthAndSignedness(const clang::ASTContext &context,
662                              const clang::QualType Type) {
663   assert(Type->isIntegerType() && "Given type is not an integer.");
664   unsigned Width = Type->isBooleanType()  ? 1
665                    : Type->isExtIntType() ? context.getIntWidth(Type)
666                                           : context.getTypeInfo(Type).Width;
667   bool Signed = Type->isSignedIntegerType();
668   return {Width, Signed};
669 }
670 
671 // Given one or more integer types, this function produces an integer type that
672 // encompasses them: any value in one of the given types could be expressed in
673 // the encompassing type.
674 static struct WidthAndSignedness
675 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
676   assert(Types.size() > 0 && "Empty list of types.");
677 
678   // If any of the given types is signed, we must return a signed type.
679   bool Signed = false;
680   for (const auto &Type : Types) {
681     Signed |= Type.Signed;
682   }
683 
684   // The encompassing type must have a width greater than or equal to the width
685   // of the specified types.  Additionally, if the encompassing type is signed,
686   // its width must be strictly greater than the width of any unsigned types
687   // given.
688   unsigned Width = 0;
689   for (const auto &Type : Types) {
690     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
691     if (Width < MinWidth) {
692       Width = MinWidth;
693     }
694   }
695 
696   return {Width, Signed};
697 }
698 
699 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
700   llvm::Type *DestType = Int8PtrTy;
701   if (ArgValue->getType() != DestType)
702     ArgValue =
703         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
704 
705   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
706   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
707 }
708 
709 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
710 /// __builtin_object_size(p, @p To) is correct
711 static bool areBOSTypesCompatible(int From, int To) {
712   // Note: Our __builtin_object_size implementation currently treats Type=0 and
713   // Type=2 identically. Encoding this implementation detail here may make
714   // improving __builtin_object_size difficult in the future, so it's omitted.
715   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
716 }
717 
718 static llvm::Value *
719 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
720   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
721 }
722 
723 llvm::Value *
724 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
725                                                  llvm::IntegerType *ResType,
726                                                  llvm::Value *EmittedE,
727                                                  bool IsDynamic) {
728   uint64_t ObjectSize;
729   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
730     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
731   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
732 }
733 
734 /// Returns a Value corresponding to the size of the given expression.
735 /// This Value may be either of the following:
736 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
737 ///     it)
738 ///   - A call to the @llvm.objectsize intrinsic
739 ///
740 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
741 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
742 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
743 llvm::Value *
744 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
745                                        llvm::IntegerType *ResType,
746                                        llvm::Value *EmittedE, bool IsDynamic) {
747   // We need to reference an argument if the pointer is a parameter with the
748   // pass_object_size attribute.
749   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
750     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
751     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
752     if (Param != nullptr && PS != nullptr &&
753         areBOSTypesCompatible(PS->getType(), Type)) {
754       auto Iter = SizeArguments.find(Param);
755       assert(Iter != SizeArguments.end());
756 
757       const ImplicitParamDecl *D = Iter->second;
758       auto DIter = LocalDeclMap.find(D);
759       assert(DIter != LocalDeclMap.end());
760 
761       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
762                               getContext().getSizeType(), E->getBeginLoc());
763     }
764   }
765 
766   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
767   // evaluate E for side-effects. In either case, we shouldn't lower to
768   // @llvm.objectsize.
769   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
770     return getDefaultBuiltinObjectSizeResult(Type, ResType);
771 
772   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
773   assert(Ptr->getType()->isPointerTy() &&
774          "Non-pointer passed to __builtin_object_size?");
775 
776   Function *F =
777       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
778 
779   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
780   Value *Min = Builder.getInt1((Type & 2) != 0);
781   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
782   Value *NullIsUnknown = Builder.getTrue();
783   Value *Dynamic = Builder.getInt1(IsDynamic);
784   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
785 }
786 
787 namespace {
788 /// A struct to generically describe a bit test intrinsic.
789 struct BitTest {
790   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
791   enum InterlockingKind : uint8_t {
792     Unlocked,
793     Sequential,
794     Acquire,
795     Release,
796     NoFence
797   };
798 
799   ActionKind Action;
800   InterlockingKind Interlocking;
801   bool Is64Bit;
802 
803   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
804 };
805 } // namespace
806 
807 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
808   switch (BuiltinID) {
809     // Main portable variants.
810   case Builtin::BI_bittest:
811     return {TestOnly, Unlocked, false};
812   case Builtin::BI_bittestandcomplement:
813     return {Complement, Unlocked, false};
814   case Builtin::BI_bittestandreset:
815     return {Reset, Unlocked, false};
816   case Builtin::BI_bittestandset:
817     return {Set, Unlocked, false};
818   case Builtin::BI_interlockedbittestandreset:
819     return {Reset, Sequential, false};
820   case Builtin::BI_interlockedbittestandset:
821     return {Set, Sequential, false};
822 
823     // X86-specific 64-bit variants.
824   case Builtin::BI_bittest64:
825     return {TestOnly, Unlocked, true};
826   case Builtin::BI_bittestandcomplement64:
827     return {Complement, Unlocked, true};
828   case Builtin::BI_bittestandreset64:
829     return {Reset, Unlocked, true};
830   case Builtin::BI_bittestandset64:
831     return {Set, Unlocked, true};
832   case Builtin::BI_interlockedbittestandreset64:
833     return {Reset, Sequential, true};
834   case Builtin::BI_interlockedbittestandset64:
835     return {Set, Sequential, true};
836 
837     // ARM/AArch64-specific ordering variants.
838   case Builtin::BI_interlockedbittestandset_acq:
839     return {Set, Acquire, false};
840   case Builtin::BI_interlockedbittestandset_rel:
841     return {Set, Release, false};
842   case Builtin::BI_interlockedbittestandset_nf:
843     return {Set, NoFence, false};
844   case Builtin::BI_interlockedbittestandreset_acq:
845     return {Reset, Acquire, false};
846   case Builtin::BI_interlockedbittestandreset_rel:
847     return {Reset, Release, false};
848   case Builtin::BI_interlockedbittestandreset_nf:
849     return {Reset, NoFence, false};
850   }
851   llvm_unreachable("expected only bittest intrinsics");
852 }
853 
854 static char bitActionToX86BTCode(BitTest::ActionKind A) {
855   switch (A) {
856   case BitTest::TestOnly:   return '\0';
857   case BitTest::Complement: return 'c';
858   case BitTest::Reset:      return 'r';
859   case BitTest::Set:        return 's';
860   }
861   llvm_unreachable("invalid action");
862 }
863 
864 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
865                                             BitTest BT,
866                                             const CallExpr *E, Value *BitBase,
867                                             Value *BitPos) {
868   char Action = bitActionToX86BTCode(BT.Action);
869   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
870 
871   // Build the assembly.
872   SmallString<64> Asm;
873   raw_svector_ostream AsmOS(Asm);
874   if (BT.Interlocking != BitTest::Unlocked)
875     AsmOS << "lock ";
876   AsmOS << "bt";
877   if (Action)
878     AsmOS << Action;
879   AsmOS << SizeSuffix << " $2, ($1)";
880 
881   // Build the constraints. FIXME: We should support immediates when possible.
882   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
883   std::string MachineClobbers = CGF.getTarget().getClobbers();
884   if (!MachineClobbers.empty()) {
885     Constraints += ',';
886     Constraints += MachineClobbers;
887   }
888   llvm::IntegerType *IntType = llvm::IntegerType::get(
889       CGF.getLLVMContext(),
890       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
891   llvm::Type *IntPtrType = IntType->getPointerTo();
892   llvm::FunctionType *FTy =
893       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
894 
895   llvm::InlineAsm *IA =
896       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
897   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
898 }
899 
900 static llvm::AtomicOrdering
901 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
902   switch (I) {
903   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
904   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
905   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
906   case BitTest::Release:    return llvm::AtomicOrdering::Release;
907   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
908   }
909   llvm_unreachable("invalid interlocking");
910 }
911 
912 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
913 /// bits and a bit position and read and optionally modify the bit at that
914 /// position. The position index can be arbitrarily large, i.e. it can be larger
915 /// than 31 or 63, so we need an indexed load in the general case.
916 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
917                                          unsigned BuiltinID,
918                                          const CallExpr *E) {
919   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
920   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
921 
922   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
923 
924   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
925   // indexing operation internally. Use them if possible.
926   if (CGF.getTarget().getTriple().isX86())
927     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
928 
929   // Otherwise, use generic code to load one byte and test the bit. Use all but
930   // the bottom three bits as the array index, and the bottom three bits to form
931   // a mask.
932   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
933   Value *ByteIndex = CGF.Builder.CreateAShr(
934       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
935   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
936   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
937                                                  ByteIndex, "bittest.byteaddr"),
938                    CharUnits::One());
939   Value *PosLow =
940       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
941                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
942 
943   // The updating instructions will need a mask.
944   Value *Mask = nullptr;
945   if (BT.Action != BitTest::TestOnly) {
946     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
947                                  "bittest.mask");
948   }
949 
950   // Check the action and ordering of the interlocked intrinsics.
951   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
952 
953   Value *OldByte = nullptr;
954   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
955     // Emit a combined atomicrmw load/store operation for the interlocked
956     // intrinsics.
957     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
958     if (BT.Action == BitTest::Reset) {
959       Mask = CGF.Builder.CreateNot(Mask);
960       RMWOp = llvm::AtomicRMWInst::And;
961     }
962     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
963                                           Ordering);
964   } else {
965     // Emit a plain load for the non-interlocked intrinsics.
966     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
967     Value *NewByte = nullptr;
968     switch (BT.Action) {
969     case BitTest::TestOnly:
970       // Don't store anything.
971       break;
972     case BitTest::Complement:
973       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
974       break;
975     case BitTest::Reset:
976       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
977       break;
978     case BitTest::Set:
979       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
980       break;
981     }
982     if (NewByte)
983       CGF.Builder.CreateStore(NewByte, ByteAddr);
984   }
985 
986   // However we loaded the old byte, either by plain load or atomicrmw, shift
987   // the bit into the low position and mask it to 0 or 1.
988   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
989   return CGF.Builder.CreateAnd(
990       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
991 }
992 
993 namespace {
994 enum class MSVCSetJmpKind {
995   _setjmpex,
996   _setjmp3,
997   _setjmp
998 };
999 }
1000 
1001 /// MSVC handles setjmp a bit differently on different platforms. On every
1002 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1003 /// parameters can be passed as variadic arguments, but we always pass none.
1004 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1005                                const CallExpr *E) {
1006   llvm::Value *Arg1 = nullptr;
1007   llvm::Type *Arg1Ty = nullptr;
1008   StringRef Name;
1009   bool IsVarArg = false;
1010   if (SJKind == MSVCSetJmpKind::_setjmp3) {
1011     Name = "_setjmp3";
1012     Arg1Ty = CGF.Int32Ty;
1013     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1014     IsVarArg = true;
1015   } else {
1016     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1017     Arg1Ty = CGF.Int8PtrTy;
1018     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1019       Arg1 = CGF.Builder.CreateCall(
1020           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1021     } else
1022       Arg1 = CGF.Builder.CreateCall(
1023           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1024           llvm::ConstantInt::get(CGF.Int32Ty, 0));
1025   }
1026 
1027   // Mark the call site and declaration with ReturnsTwice.
1028   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1029   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1030       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1031       llvm::Attribute::ReturnsTwice);
1032   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1033       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1034       ReturnsTwiceAttr, /*Local=*/true);
1035 
1036   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1037       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1038   llvm::Value *Args[] = {Buf, Arg1};
1039   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1040   CB->setAttributes(ReturnsTwiceAttr);
1041   return RValue::get(CB);
1042 }
1043 
1044 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1045 // we handle them here.
1046 enum class CodeGenFunction::MSVCIntrin {
1047   _BitScanForward,
1048   _BitScanReverse,
1049   _InterlockedAnd,
1050   _InterlockedDecrement,
1051   _InterlockedExchange,
1052   _InterlockedExchangeAdd,
1053   _InterlockedExchangeSub,
1054   _InterlockedIncrement,
1055   _InterlockedOr,
1056   _InterlockedXor,
1057   _InterlockedExchangeAdd_acq,
1058   _InterlockedExchangeAdd_rel,
1059   _InterlockedExchangeAdd_nf,
1060   _InterlockedExchange_acq,
1061   _InterlockedExchange_rel,
1062   _InterlockedExchange_nf,
1063   _InterlockedCompareExchange_acq,
1064   _InterlockedCompareExchange_rel,
1065   _InterlockedCompareExchange_nf,
1066   _InterlockedCompareExchange128,
1067   _InterlockedCompareExchange128_acq,
1068   _InterlockedCompareExchange128_rel,
1069   _InterlockedCompareExchange128_nf,
1070   _InterlockedOr_acq,
1071   _InterlockedOr_rel,
1072   _InterlockedOr_nf,
1073   _InterlockedXor_acq,
1074   _InterlockedXor_rel,
1075   _InterlockedXor_nf,
1076   _InterlockedAnd_acq,
1077   _InterlockedAnd_rel,
1078   _InterlockedAnd_nf,
1079   _InterlockedIncrement_acq,
1080   _InterlockedIncrement_rel,
1081   _InterlockedIncrement_nf,
1082   _InterlockedDecrement_acq,
1083   _InterlockedDecrement_rel,
1084   _InterlockedDecrement_nf,
1085   __fastfail,
1086 };
1087 
1088 static Optional<CodeGenFunction::MSVCIntrin>
1089 translateArmToMsvcIntrin(unsigned BuiltinID) {
1090   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1091   switch (BuiltinID) {
1092   default:
1093     return None;
1094   case ARM::BI_BitScanForward:
1095   case ARM::BI_BitScanForward64:
1096     return MSVCIntrin::_BitScanForward;
1097   case ARM::BI_BitScanReverse:
1098   case ARM::BI_BitScanReverse64:
1099     return MSVCIntrin::_BitScanReverse;
1100   case ARM::BI_InterlockedAnd64:
1101     return MSVCIntrin::_InterlockedAnd;
1102   case ARM::BI_InterlockedExchange64:
1103     return MSVCIntrin::_InterlockedExchange;
1104   case ARM::BI_InterlockedExchangeAdd64:
1105     return MSVCIntrin::_InterlockedExchangeAdd;
1106   case ARM::BI_InterlockedExchangeSub64:
1107     return MSVCIntrin::_InterlockedExchangeSub;
1108   case ARM::BI_InterlockedOr64:
1109     return MSVCIntrin::_InterlockedOr;
1110   case ARM::BI_InterlockedXor64:
1111     return MSVCIntrin::_InterlockedXor;
1112   case ARM::BI_InterlockedDecrement64:
1113     return MSVCIntrin::_InterlockedDecrement;
1114   case ARM::BI_InterlockedIncrement64:
1115     return MSVCIntrin::_InterlockedIncrement;
1116   case ARM::BI_InterlockedExchangeAdd8_acq:
1117   case ARM::BI_InterlockedExchangeAdd16_acq:
1118   case ARM::BI_InterlockedExchangeAdd_acq:
1119   case ARM::BI_InterlockedExchangeAdd64_acq:
1120     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1121   case ARM::BI_InterlockedExchangeAdd8_rel:
1122   case ARM::BI_InterlockedExchangeAdd16_rel:
1123   case ARM::BI_InterlockedExchangeAdd_rel:
1124   case ARM::BI_InterlockedExchangeAdd64_rel:
1125     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1126   case ARM::BI_InterlockedExchangeAdd8_nf:
1127   case ARM::BI_InterlockedExchangeAdd16_nf:
1128   case ARM::BI_InterlockedExchangeAdd_nf:
1129   case ARM::BI_InterlockedExchangeAdd64_nf:
1130     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1131   case ARM::BI_InterlockedExchange8_acq:
1132   case ARM::BI_InterlockedExchange16_acq:
1133   case ARM::BI_InterlockedExchange_acq:
1134   case ARM::BI_InterlockedExchange64_acq:
1135     return MSVCIntrin::_InterlockedExchange_acq;
1136   case ARM::BI_InterlockedExchange8_rel:
1137   case ARM::BI_InterlockedExchange16_rel:
1138   case ARM::BI_InterlockedExchange_rel:
1139   case ARM::BI_InterlockedExchange64_rel:
1140     return MSVCIntrin::_InterlockedExchange_rel;
1141   case ARM::BI_InterlockedExchange8_nf:
1142   case ARM::BI_InterlockedExchange16_nf:
1143   case ARM::BI_InterlockedExchange_nf:
1144   case ARM::BI_InterlockedExchange64_nf:
1145     return MSVCIntrin::_InterlockedExchange_nf;
1146   case ARM::BI_InterlockedCompareExchange8_acq:
1147   case ARM::BI_InterlockedCompareExchange16_acq:
1148   case ARM::BI_InterlockedCompareExchange_acq:
1149   case ARM::BI_InterlockedCompareExchange64_acq:
1150     return MSVCIntrin::_InterlockedCompareExchange_acq;
1151   case ARM::BI_InterlockedCompareExchange8_rel:
1152   case ARM::BI_InterlockedCompareExchange16_rel:
1153   case ARM::BI_InterlockedCompareExchange_rel:
1154   case ARM::BI_InterlockedCompareExchange64_rel:
1155     return MSVCIntrin::_InterlockedCompareExchange_rel;
1156   case ARM::BI_InterlockedCompareExchange8_nf:
1157   case ARM::BI_InterlockedCompareExchange16_nf:
1158   case ARM::BI_InterlockedCompareExchange_nf:
1159   case ARM::BI_InterlockedCompareExchange64_nf:
1160     return MSVCIntrin::_InterlockedCompareExchange_nf;
1161   case ARM::BI_InterlockedOr8_acq:
1162   case ARM::BI_InterlockedOr16_acq:
1163   case ARM::BI_InterlockedOr_acq:
1164   case ARM::BI_InterlockedOr64_acq:
1165     return MSVCIntrin::_InterlockedOr_acq;
1166   case ARM::BI_InterlockedOr8_rel:
1167   case ARM::BI_InterlockedOr16_rel:
1168   case ARM::BI_InterlockedOr_rel:
1169   case ARM::BI_InterlockedOr64_rel:
1170     return MSVCIntrin::_InterlockedOr_rel;
1171   case ARM::BI_InterlockedOr8_nf:
1172   case ARM::BI_InterlockedOr16_nf:
1173   case ARM::BI_InterlockedOr_nf:
1174   case ARM::BI_InterlockedOr64_nf:
1175     return MSVCIntrin::_InterlockedOr_nf;
1176   case ARM::BI_InterlockedXor8_acq:
1177   case ARM::BI_InterlockedXor16_acq:
1178   case ARM::BI_InterlockedXor_acq:
1179   case ARM::BI_InterlockedXor64_acq:
1180     return MSVCIntrin::_InterlockedXor_acq;
1181   case ARM::BI_InterlockedXor8_rel:
1182   case ARM::BI_InterlockedXor16_rel:
1183   case ARM::BI_InterlockedXor_rel:
1184   case ARM::BI_InterlockedXor64_rel:
1185     return MSVCIntrin::_InterlockedXor_rel;
1186   case ARM::BI_InterlockedXor8_nf:
1187   case ARM::BI_InterlockedXor16_nf:
1188   case ARM::BI_InterlockedXor_nf:
1189   case ARM::BI_InterlockedXor64_nf:
1190     return MSVCIntrin::_InterlockedXor_nf;
1191   case ARM::BI_InterlockedAnd8_acq:
1192   case ARM::BI_InterlockedAnd16_acq:
1193   case ARM::BI_InterlockedAnd_acq:
1194   case ARM::BI_InterlockedAnd64_acq:
1195     return MSVCIntrin::_InterlockedAnd_acq;
1196   case ARM::BI_InterlockedAnd8_rel:
1197   case ARM::BI_InterlockedAnd16_rel:
1198   case ARM::BI_InterlockedAnd_rel:
1199   case ARM::BI_InterlockedAnd64_rel:
1200     return MSVCIntrin::_InterlockedAnd_rel;
1201   case ARM::BI_InterlockedAnd8_nf:
1202   case ARM::BI_InterlockedAnd16_nf:
1203   case ARM::BI_InterlockedAnd_nf:
1204   case ARM::BI_InterlockedAnd64_nf:
1205     return MSVCIntrin::_InterlockedAnd_nf;
1206   case ARM::BI_InterlockedIncrement16_acq:
1207   case ARM::BI_InterlockedIncrement_acq:
1208   case ARM::BI_InterlockedIncrement64_acq:
1209     return MSVCIntrin::_InterlockedIncrement_acq;
1210   case ARM::BI_InterlockedIncrement16_rel:
1211   case ARM::BI_InterlockedIncrement_rel:
1212   case ARM::BI_InterlockedIncrement64_rel:
1213     return MSVCIntrin::_InterlockedIncrement_rel;
1214   case ARM::BI_InterlockedIncrement16_nf:
1215   case ARM::BI_InterlockedIncrement_nf:
1216   case ARM::BI_InterlockedIncrement64_nf:
1217     return MSVCIntrin::_InterlockedIncrement_nf;
1218   case ARM::BI_InterlockedDecrement16_acq:
1219   case ARM::BI_InterlockedDecrement_acq:
1220   case ARM::BI_InterlockedDecrement64_acq:
1221     return MSVCIntrin::_InterlockedDecrement_acq;
1222   case ARM::BI_InterlockedDecrement16_rel:
1223   case ARM::BI_InterlockedDecrement_rel:
1224   case ARM::BI_InterlockedDecrement64_rel:
1225     return MSVCIntrin::_InterlockedDecrement_rel;
1226   case ARM::BI_InterlockedDecrement16_nf:
1227   case ARM::BI_InterlockedDecrement_nf:
1228   case ARM::BI_InterlockedDecrement64_nf:
1229     return MSVCIntrin::_InterlockedDecrement_nf;
1230   }
1231   llvm_unreachable("must return from switch");
1232 }
1233 
1234 static Optional<CodeGenFunction::MSVCIntrin>
1235 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1236   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1237   switch (BuiltinID) {
1238   default:
1239     return None;
1240   case AArch64::BI_BitScanForward:
1241   case AArch64::BI_BitScanForward64:
1242     return MSVCIntrin::_BitScanForward;
1243   case AArch64::BI_BitScanReverse:
1244   case AArch64::BI_BitScanReverse64:
1245     return MSVCIntrin::_BitScanReverse;
1246   case AArch64::BI_InterlockedAnd64:
1247     return MSVCIntrin::_InterlockedAnd;
1248   case AArch64::BI_InterlockedExchange64:
1249     return MSVCIntrin::_InterlockedExchange;
1250   case AArch64::BI_InterlockedExchangeAdd64:
1251     return MSVCIntrin::_InterlockedExchangeAdd;
1252   case AArch64::BI_InterlockedExchangeSub64:
1253     return MSVCIntrin::_InterlockedExchangeSub;
1254   case AArch64::BI_InterlockedOr64:
1255     return MSVCIntrin::_InterlockedOr;
1256   case AArch64::BI_InterlockedXor64:
1257     return MSVCIntrin::_InterlockedXor;
1258   case AArch64::BI_InterlockedDecrement64:
1259     return MSVCIntrin::_InterlockedDecrement;
1260   case AArch64::BI_InterlockedIncrement64:
1261     return MSVCIntrin::_InterlockedIncrement;
1262   case AArch64::BI_InterlockedExchangeAdd8_acq:
1263   case AArch64::BI_InterlockedExchangeAdd16_acq:
1264   case AArch64::BI_InterlockedExchangeAdd_acq:
1265   case AArch64::BI_InterlockedExchangeAdd64_acq:
1266     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1267   case AArch64::BI_InterlockedExchangeAdd8_rel:
1268   case AArch64::BI_InterlockedExchangeAdd16_rel:
1269   case AArch64::BI_InterlockedExchangeAdd_rel:
1270   case AArch64::BI_InterlockedExchangeAdd64_rel:
1271     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1272   case AArch64::BI_InterlockedExchangeAdd8_nf:
1273   case AArch64::BI_InterlockedExchangeAdd16_nf:
1274   case AArch64::BI_InterlockedExchangeAdd_nf:
1275   case AArch64::BI_InterlockedExchangeAdd64_nf:
1276     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1277   case AArch64::BI_InterlockedExchange8_acq:
1278   case AArch64::BI_InterlockedExchange16_acq:
1279   case AArch64::BI_InterlockedExchange_acq:
1280   case AArch64::BI_InterlockedExchange64_acq:
1281     return MSVCIntrin::_InterlockedExchange_acq;
1282   case AArch64::BI_InterlockedExchange8_rel:
1283   case AArch64::BI_InterlockedExchange16_rel:
1284   case AArch64::BI_InterlockedExchange_rel:
1285   case AArch64::BI_InterlockedExchange64_rel:
1286     return MSVCIntrin::_InterlockedExchange_rel;
1287   case AArch64::BI_InterlockedExchange8_nf:
1288   case AArch64::BI_InterlockedExchange16_nf:
1289   case AArch64::BI_InterlockedExchange_nf:
1290   case AArch64::BI_InterlockedExchange64_nf:
1291     return MSVCIntrin::_InterlockedExchange_nf;
1292   case AArch64::BI_InterlockedCompareExchange8_acq:
1293   case AArch64::BI_InterlockedCompareExchange16_acq:
1294   case AArch64::BI_InterlockedCompareExchange_acq:
1295   case AArch64::BI_InterlockedCompareExchange64_acq:
1296     return MSVCIntrin::_InterlockedCompareExchange_acq;
1297   case AArch64::BI_InterlockedCompareExchange8_rel:
1298   case AArch64::BI_InterlockedCompareExchange16_rel:
1299   case AArch64::BI_InterlockedCompareExchange_rel:
1300   case AArch64::BI_InterlockedCompareExchange64_rel:
1301     return MSVCIntrin::_InterlockedCompareExchange_rel;
1302   case AArch64::BI_InterlockedCompareExchange8_nf:
1303   case AArch64::BI_InterlockedCompareExchange16_nf:
1304   case AArch64::BI_InterlockedCompareExchange_nf:
1305   case AArch64::BI_InterlockedCompareExchange64_nf:
1306     return MSVCIntrin::_InterlockedCompareExchange_nf;
1307   case AArch64::BI_InterlockedCompareExchange128:
1308     return MSVCIntrin::_InterlockedCompareExchange128;
1309   case AArch64::BI_InterlockedCompareExchange128_acq:
1310     return MSVCIntrin::_InterlockedCompareExchange128_acq;
1311   case AArch64::BI_InterlockedCompareExchange128_nf:
1312     return MSVCIntrin::_InterlockedCompareExchange128_nf;
1313   case AArch64::BI_InterlockedCompareExchange128_rel:
1314     return MSVCIntrin::_InterlockedCompareExchange128_rel;
1315   case AArch64::BI_InterlockedOr8_acq:
1316   case AArch64::BI_InterlockedOr16_acq:
1317   case AArch64::BI_InterlockedOr_acq:
1318   case AArch64::BI_InterlockedOr64_acq:
1319     return MSVCIntrin::_InterlockedOr_acq;
1320   case AArch64::BI_InterlockedOr8_rel:
1321   case AArch64::BI_InterlockedOr16_rel:
1322   case AArch64::BI_InterlockedOr_rel:
1323   case AArch64::BI_InterlockedOr64_rel:
1324     return MSVCIntrin::_InterlockedOr_rel;
1325   case AArch64::BI_InterlockedOr8_nf:
1326   case AArch64::BI_InterlockedOr16_nf:
1327   case AArch64::BI_InterlockedOr_nf:
1328   case AArch64::BI_InterlockedOr64_nf:
1329     return MSVCIntrin::_InterlockedOr_nf;
1330   case AArch64::BI_InterlockedXor8_acq:
1331   case AArch64::BI_InterlockedXor16_acq:
1332   case AArch64::BI_InterlockedXor_acq:
1333   case AArch64::BI_InterlockedXor64_acq:
1334     return MSVCIntrin::_InterlockedXor_acq;
1335   case AArch64::BI_InterlockedXor8_rel:
1336   case AArch64::BI_InterlockedXor16_rel:
1337   case AArch64::BI_InterlockedXor_rel:
1338   case AArch64::BI_InterlockedXor64_rel:
1339     return MSVCIntrin::_InterlockedXor_rel;
1340   case AArch64::BI_InterlockedXor8_nf:
1341   case AArch64::BI_InterlockedXor16_nf:
1342   case AArch64::BI_InterlockedXor_nf:
1343   case AArch64::BI_InterlockedXor64_nf:
1344     return MSVCIntrin::_InterlockedXor_nf;
1345   case AArch64::BI_InterlockedAnd8_acq:
1346   case AArch64::BI_InterlockedAnd16_acq:
1347   case AArch64::BI_InterlockedAnd_acq:
1348   case AArch64::BI_InterlockedAnd64_acq:
1349     return MSVCIntrin::_InterlockedAnd_acq;
1350   case AArch64::BI_InterlockedAnd8_rel:
1351   case AArch64::BI_InterlockedAnd16_rel:
1352   case AArch64::BI_InterlockedAnd_rel:
1353   case AArch64::BI_InterlockedAnd64_rel:
1354     return MSVCIntrin::_InterlockedAnd_rel;
1355   case AArch64::BI_InterlockedAnd8_nf:
1356   case AArch64::BI_InterlockedAnd16_nf:
1357   case AArch64::BI_InterlockedAnd_nf:
1358   case AArch64::BI_InterlockedAnd64_nf:
1359     return MSVCIntrin::_InterlockedAnd_nf;
1360   case AArch64::BI_InterlockedIncrement16_acq:
1361   case AArch64::BI_InterlockedIncrement_acq:
1362   case AArch64::BI_InterlockedIncrement64_acq:
1363     return MSVCIntrin::_InterlockedIncrement_acq;
1364   case AArch64::BI_InterlockedIncrement16_rel:
1365   case AArch64::BI_InterlockedIncrement_rel:
1366   case AArch64::BI_InterlockedIncrement64_rel:
1367     return MSVCIntrin::_InterlockedIncrement_rel;
1368   case AArch64::BI_InterlockedIncrement16_nf:
1369   case AArch64::BI_InterlockedIncrement_nf:
1370   case AArch64::BI_InterlockedIncrement64_nf:
1371     return MSVCIntrin::_InterlockedIncrement_nf;
1372   case AArch64::BI_InterlockedDecrement16_acq:
1373   case AArch64::BI_InterlockedDecrement_acq:
1374   case AArch64::BI_InterlockedDecrement64_acq:
1375     return MSVCIntrin::_InterlockedDecrement_acq;
1376   case AArch64::BI_InterlockedDecrement16_rel:
1377   case AArch64::BI_InterlockedDecrement_rel:
1378   case AArch64::BI_InterlockedDecrement64_rel:
1379     return MSVCIntrin::_InterlockedDecrement_rel;
1380   case AArch64::BI_InterlockedDecrement16_nf:
1381   case AArch64::BI_InterlockedDecrement_nf:
1382   case AArch64::BI_InterlockedDecrement64_nf:
1383     return MSVCIntrin::_InterlockedDecrement_nf;
1384   }
1385   llvm_unreachable("must return from switch");
1386 }
1387 
1388 static Optional<CodeGenFunction::MSVCIntrin>
1389 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1390   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1391   switch (BuiltinID) {
1392   default:
1393     return None;
1394   case clang::X86::BI_BitScanForward:
1395   case clang::X86::BI_BitScanForward64:
1396     return MSVCIntrin::_BitScanForward;
1397   case clang::X86::BI_BitScanReverse:
1398   case clang::X86::BI_BitScanReverse64:
1399     return MSVCIntrin::_BitScanReverse;
1400   case clang::X86::BI_InterlockedAnd64:
1401     return MSVCIntrin::_InterlockedAnd;
1402   case clang::X86::BI_InterlockedCompareExchange128:
1403     return MSVCIntrin::_InterlockedCompareExchange128;
1404   case clang::X86::BI_InterlockedExchange64:
1405     return MSVCIntrin::_InterlockedExchange;
1406   case clang::X86::BI_InterlockedExchangeAdd64:
1407     return MSVCIntrin::_InterlockedExchangeAdd;
1408   case clang::X86::BI_InterlockedExchangeSub64:
1409     return MSVCIntrin::_InterlockedExchangeSub;
1410   case clang::X86::BI_InterlockedOr64:
1411     return MSVCIntrin::_InterlockedOr;
1412   case clang::X86::BI_InterlockedXor64:
1413     return MSVCIntrin::_InterlockedXor;
1414   case clang::X86::BI_InterlockedDecrement64:
1415     return MSVCIntrin::_InterlockedDecrement;
1416   case clang::X86::BI_InterlockedIncrement64:
1417     return MSVCIntrin::_InterlockedIncrement;
1418   }
1419   llvm_unreachable("must return from switch");
1420 }
1421 
1422 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1423 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1424                                             const CallExpr *E) {
1425   switch (BuiltinID) {
1426   case MSVCIntrin::_BitScanForward:
1427   case MSVCIntrin::_BitScanReverse: {
1428     Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1429     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1430 
1431     llvm::Type *ArgType = ArgValue->getType();
1432     llvm::Type *IndexType =
1433         IndexAddress.getPointer()->getType()->getPointerElementType();
1434     llvm::Type *ResultType = ConvertType(E->getType());
1435 
1436     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1437     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1438     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1439 
1440     BasicBlock *Begin = Builder.GetInsertBlock();
1441     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1442     Builder.SetInsertPoint(End);
1443     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1444 
1445     Builder.SetInsertPoint(Begin);
1446     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1447     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1448     Builder.CreateCondBr(IsZero, End, NotZero);
1449     Result->addIncoming(ResZero, Begin);
1450 
1451     Builder.SetInsertPoint(NotZero);
1452 
1453     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1454       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1455       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1456       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1457       Builder.CreateStore(ZeroCount, IndexAddress, false);
1458     } else {
1459       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1460       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1461 
1462       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1463       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1464       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1465       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1466       Builder.CreateStore(Index, IndexAddress, false);
1467     }
1468     Builder.CreateBr(End);
1469     Result->addIncoming(ResOne, NotZero);
1470 
1471     Builder.SetInsertPoint(End);
1472     return Result;
1473   }
1474   case MSVCIntrin::_InterlockedAnd:
1475     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1476   case MSVCIntrin::_InterlockedExchange:
1477     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1478   case MSVCIntrin::_InterlockedExchangeAdd:
1479     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1480   case MSVCIntrin::_InterlockedExchangeSub:
1481     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1482   case MSVCIntrin::_InterlockedOr:
1483     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1484   case MSVCIntrin::_InterlockedXor:
1485     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1486   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1487     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1488                                  AtomicOrdering::Acquire);
1489   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1490     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1491                                  AtomicOrdering::Release);
1492   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1493     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1494                                  AtomicOrdering::Monotonic);
1495   case MSVCIntrin::_InterlockedExchange_acq:
1496     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1497                                  AtomicOrdering::Acquire);
1498   case MSVCIntrin::_InterlockedExchange_rel:
1499     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1500                                  AtomicOrdering::Release);
1501   case MSVCIntrin::_InterlockedExchange_nf:
1502     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1503                                  AtomicOrdering::Monotonic);
1504   case MSVCIntrin::_InterlockedCompareExchange_acq:
1505     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1506   case MSVCIntrin::_InterlockedCompareExchange_rel:
1507     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1508   case MSVCIntrin::_InterlockedCompareExchange_nf:
1509     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1510   case MSVCIntrin::_InterlockedCompareExchange128:
1511     return EmitAtomicCmpXchg128ForMSIntrin(
1512         *this, E, AtomicOrdering::SequentiallyConsistent);
1513   case MSVCIntrin::_InterlockedCompareExchange128_acq:
1514     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1515   case MSVCIntrin::_InterlockedCompareExchange128_rel:
1516     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1517   case MSVCIntrin::_InterlockedCompareExchange128_nf:
1518     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1519   case MSVCIntrin::_InterlockedOr_acq:
1520     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1521                                  AtomicOrdering::Acquire);
1522   case MSVCIntrin::_InterlockedOr_rel:
1523     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1524                                  AtomicOrdering::Release);
1525   case MSVCIntrin::_InterlockedOr_nf:
1526     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1527                                  AtomicOrdering::Monotonic);
1528   case MSVCIntrin::_InterlockedXor_acq:
1529     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1530                                  AtomicOrdering::Acquire);
1531   case MSVCIntrin::_InterlockedXor_rel:
1532     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1533                                  AtomicOrdering::Release);
1534   case MSVCIntrin::_InterlockedXor_nf:
1535     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1536                                  AtomicOrdering::Monotonic);
1537   case MSVCIntrin::_InterlockedAnd_acq:
1538     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1539                                  AtomicOrdering::Acquire);
1540   case MSVCIntrin::_InterlockedAnd_rel:
1541     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1542                                  AtomicOrdering::Release);
1543   case MSVCIntrin::_InterlockedAnd_nf:
1544     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1545                                  AtomicOrdering::Monotonic);
1546   case MSVCIntrin::_InterlockedIncrement_acq:
1547     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1548   case MSVCIntrin::_InterlockedIncrement_rel:
1549     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1550   case MSVCIntrin::_InterlockedIncrement_nf:
1551     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1552   case MSVCIntrin::_InterlockedDecrement_acq:
1553     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1554   case MSVCIntrin::_InterlockedDecrement_rel:
1555     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1556   case MSVCIntrin::_InterlockedDecrement_nf:
1557     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1558 
1559   case MSVCIntrin::_InterlockedDecrement:
1560     return EmitAtomicDecrementValue(*this, E);
1561   case MSVCIntrin::_InterlockedIncrement:
1562     return EmitAtomicIncrementValue(*this, E);
1563 
1564   case MSVCIntrin::__fastfail: {
1565     // Request immediate process termination from the kernel. The instruction
1566     // sequences to do this are documented on MSDN:
1567     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1568     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1569     StringRef Asm, Constraints;
1570     switch (ISA) {
1571     default:
1572       ErrorUnsupported(E, "__fastfail call for this architecture");
1573       break;
1574     case llvm::Triple::x86:
1575     case llvm::Triple::x86_64:
1576       Asm = "int $$0x29";
1577       Constraints = "{cx}";
1578       break;
1579     case llvm::Triple::thumb:
1580       Asm = "udf #251";
1581       Constraints = "{r0}";
1582       break;
1583     case llvm::Triple::aarch64:
1584       Asm = "brk #0xF003";
1585       Constraints = "{w0}";
1586     }
1587     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1588     llvm::InlineAsm *IA =
1589         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1590     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1591         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1592         llvm::Attribute::NoReturn);
1593     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1594     CI->setAttributes(NoReturnAttr);
1595     return CI;
1596   }
1597   }
1598   llvm_unreachable("Incorrect MSVC intrinsic!");
1599 }
1600 
1601 namespace {
1602 // ARC cleanup for __builtin_os_log_format
1603 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1604   CallObjCArcUse(llvm::Value *object) : object(object) {}
1605   llvm::Value *object;
1606 
1607   void Emit(CodeGenFunction &CGF, Flags flags) override {
1608     CGF.EmitARCIntrinsicUse(object);
1609   }
1610 };
1611 }
1612 
1613 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1614                                                  BuiltinCheckKind Kind) {
1615   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1616           && "Unsupported builtin check kind");
1617 
1618   Value *ArgValue = EmitScalarExpr(E);
1619   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1620     return ArgValue;
1621 
1622   SanitizerScope SanScope(this);
1623   Value *Cond = Builder.CreateICmpNE(
1624       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1625   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1626             SanitizerHandler::InvalidBuiltin,
1627             {EmitCheckSourceLocation(E->getExprLoc()),
1628              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1629             None);
1630   return ArgValue;
1631 }
1632 
1633 /// Get the argument type for arguments to os_log_helper.
1634 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1635   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1636   return C.getCanonicalType(UnsignedTy);
1637 }
1638 
1639 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1640     const analyze_os_log::OSLogBufferLayout &Layout,
1641     CharUnits BufferAlignment) {
1642   ASTContext &Ctx = getContext();
1643 
1644   llvm::SmallString<64> Name;
1645   {
1646     raw_svector_ostream OS(Name);
1647     OS << "__os_log_helper";
1648     OS << "_" << BufferAlignment.getQuantity();
1649     OS << "_" << int(Layout.getSummaryByte());
1650     OS << "_" << int(Layout.getNumArgsByte());
1651     for (const auto &Item : Layout.Items)
1652       OS << "_" << int(Item.getSizeByte()) << "_"
1653          << int(Item.getDescriptorByte());
1654   }
1655 
1656   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1657     return F;
1658 
1659   llvm::SmallVector<QualType, 4> ArgTys;
1660   FunctionArgList Args;
1661   Args.push_back(ImplicitParamDecl::Create(
1662       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1663       ImplicitParamDecl::Other));
1664   ArgTys.emplace_back(Ctx.VoidPtrTy);
1665 
1666   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1667     char Size = Layout.Items[I].getSizeByte();
1668     if (!Size)
1669       continue;
1670 
1671     QualType ArgTy = getOSLogArgType(Ctx, Size);
1672     Args.push_back(ImplicitParamDecl::Create(
1673         Ctx, nullptr, SourceLocation(),
1674         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1675         ImplicitParamDecl::Other));
1676     ArgTys.emplace_back(ArgTy);
1677   }
1678 
1679   QualType ReturnTy = Ctx.VoidTy;
1680   QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1681 
1682   // The helper function has linkonce_odr linkage to enable the linker to merge
1683   // identical functions. To ensure the merging always happens, 'noinline' is
1684   // attached to the function when compiling with -Oz.
1685   const CGFunctionInfo &FI =
1686       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1687   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1688   llvm::Function *Fn = llvm::Function::Create(
1689       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1690   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1691   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1692   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1693   Fn->setDoesNotThrow();
1694 
1695   // Attach 'noinline' at -Oz.
1696   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1697     Fn->addFnAttr(llvm::Attribute::NoInline);
1698 
1699   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1700   IdentifierInfo *II = &Ctx.Idents.get(Name);
1701   FunctionDecl *FD = FunctionDecl::Create(
1702       Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1703       FuncionTy, nullptr, SC_PrivateExtern, false, false);
1704   // Avoid generating debug location info for the function.
1705   FD->setImplicit();
1706 
1707   StartFunction(FD, ReturnTy, Fn, FI, Args);
1708 
1709   // Create a scope with an artificial location for the body of this function.
1710   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1711 
1712   CharUnits Offset;
1713   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1714                   BufferAlignment);
1715   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1716                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1717   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1718                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1719 
1720   unsigned I = 1;
1721   for (const auto &Item : Layout.Items) {
1722     Builder.CreateStore(
1723         Builder.getInt8(Item.getDescriptorByte()),
1724         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1725     Builder.CreateStore(
1726         Builder.getInt8(Item.getSizeByte()),
1727         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1728 
1729     CharUnits Size = Item.size();
1730     if (!Size.getQuantity())
1731       continue;
1732 
1733     Address Arg = GetAddrOfLocalVar(Args[I]);
1734     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1735     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1736                                  "argDataCast");
1737     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1738     Offset += Size;
1739     ++I;
1740   }
1741 
1742   FinishFunction();
1743 
1744   return Fn;
1745 }
1746 
1747 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1748   assert(E.getNumArgs() >= 2 &&
1749          "__builtin_os_log_format takes at least 2 arguments");
1750   ASTContext &Ctx = getContext();
1751   analyze_os_log::OSLogBufferLayout Layout;
1752   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1753   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1754   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1755 
1756   // Ignore argument 1, the format string. It is not currently used.
1757   CallArgList Args;
1758   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1759 
1760   for (const auto &Item : Layout.Items) {
1761     int Size = Item.getSizeByte();
1762     if (!Size)
1763       continue;
1764 
1765     llvm::Value *ArgVal;
1766 
1767     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1768       uint64_t Val = 0;
1769       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1770         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1771       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1772     } else if (const Expr *TheExpr = Item.getExpr()) {
1773       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1774 
1775       // If a temporary object that requires destruction after the full
1776       // expression is passed, push a lifetime-extended cleanup to extend its
1777       // lifetime to the end of the enclosing block scope.
1778       auto LifetimeExtendObject = [&](const Expr *E) {
1779         E = E->IgnoreParenCasts();
1780         // Extend lifetimes of objects returned by function calls and message
1781         // sends.
1782 
1783         // FIXME: We should do this in other cases in which temporaries are
1784         //        created including arguments of non-ARC types (e.g., C++
1785         //        temporaries).
1786         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1787           return true;
1788         return false;
1789       };
1790 
1791       if (TheExpr->getType()->isObjCRetainableType() &&
1792           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1793         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1794                "Only scalar can be a ObjC retainable type");
1795         if (!isa<Constant>(ArgVal)) {
1796           CleanupKind Cleanup = getARCCleanupKind();
1797           QualType Ty = TheExpr->getType();
1798           Address Alloca = Address::invalid();
1799           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1800           ArgVal = EmitARCRetain(Ty, ArgVal);
1801           Builder.CreateStore(ArgVal, Addr);
1802           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1803                                       CodeGenFunction::destroyARCStrongPrecise,
1804                                       Cleanup & EHCleanup);
1805 
1806           // Push a clang.arc.use call to ensure ARC optimizer knows that the
1807           // argument has to be alive.
1808           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1809             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1810         }
1811       }
1812     } else {
1813       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1814     }
1815 
1816     unsigned ArgValSize =
1817         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1818     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1819                                                      ArgValSize);
1820     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1821     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1822     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1823     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1824     Args.add(RValue::get(ArgVal), ArgTy);
1825   }
1826 
1827   const CGFunctionInfo &FI =
1828       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1829   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1830       Layout, BufAddr.getAlignment());
1831   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1832   return RValue::get(BufAddr.getPointer());
1833 }
1834 
1835 static bool isSpecialUnsignedMultiplySignedResult(
1836     unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1837     WidthAndSignedness ResultInfo) {
1838   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1839          Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1840          !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1841 }
1842 
1843 static RValue EmitCheckedUnsignedMultiplySignedResult(
1844     CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1845     const clang::Expr *Op2, WidthAndSignedness Op2Info,
1846     const clang::Expr *ResultArg, QualType ResultQTy,
1847     WidthAndSignedness ResultInfo) {
1848   assert(isSpecialUnsignedMultiplySignedResult(
1849              Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
1850          "Cannot specialize this multiply");
1851 
1852   llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1853   llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1854 
1855   llvm::Value *HasOverflow;
1856   llvm::Value *Result = EmitOverflowIntrinsic(
1857       CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1858 
1859   // The intrinsic call will detect overflow when the value is > UINT_MAX,
1860   // however, since the original builtin had a signed result, we need to report
1861   // an overflow when the result is greater than INT_MAX.
1862   auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1863   llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1864 
1865   llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1866   HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1867 
1868   bool isVolatile =
1869       ResultArg->getType()->getPointeeType().isVolatileQualified();
1870   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1871   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1872                           isVolatile);
1873   return RValue::get(HasOverflow);
1874 }
1875 
1876 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
1877 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1878                                        WidthAndSignedness Op1Info,
1879                                        WidthAndSignedness Op2Info,
1880                                        WidthAndSignedness ResultInfo) {
1881   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1882          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1883          Op1Info.Signed != Op2Info.Signed;
1884 }
1885 
1886 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1887 /// the generic checked-binop irgen.
1888 static RValue
1889 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1890                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1891                              WidthAndSignedness Op2Info,
1892                              const clang::Expr *ResultArg, QualType ResultQTy,
1893                              WidthAndSignedness ResultInfo) {
1894   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1895                                     Op2Info, ResultInfo) &&
1896          "Not a mixed-sign multipliction we can specialize");
1897 
1898   // Emit the signed and unsigned operands.
1899   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1900   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1901   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1902   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1903   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1904   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1905 
1906   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1907   if (SignedOpWidth < UnsignedOpWidth)
1908     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1909   if (UnsignedOpWidth < SignedOpWidth)
1910     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1911 
1912   llvm::Type *OpTy = Signed->getType();
1913   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1914   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1915   llvm::Type *ResTy = ResultPtr.getElementType();
1916   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1917 
1918   // Take the absolute value of the signed operand.
1919   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1920   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1921   llvm::Value *AbsSigned =
1922       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1923 
1924   // Perform a checked unsigned multiplication.
1925   llvm::Value *UnsignedOverflow;
1926   llvm::Value *UnsignedResult =
1927       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1928                             Unsigned, UnsignedOverflow);
1929 
1930   llvm::Value *Overflow, *Result;
1931   if (ResultInfo.Signed) {
1932     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1933     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1934     auto IntMax =
1935         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1936     llvm::Value *MaxResult =
1937         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1938                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1939     llvm::Value *SignedOverflow =
1940         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1941     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1942 
1943     // Prepare the signed result (possibly by negating it).
1944     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1945     llvm::Value *SignedResult =
1946         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1947     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1948   } else {
1949     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1950     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1951         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1952     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1953     if (ResultInfo.Width < OpWidth) {
1954       auto IntMax =
1955           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1956       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1957           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1958       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1959     }
1960 
1961     // Negate the product if it would be negative in infinite precision.
1962     Result = CGF.Builder.CreateSelect(
1963         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1964 
1965     Result = CGF.Builder.CreateTrunc(Result, ResTy);
1966   }
1967   assert(Overflow && Result && "Missing overflow or result");
1968 
1969   bool isVolatile =
1970       ResultArg->getType()->getPointeeType().isVolatileQualified();
1971   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1972                           isVolatile);
1973   return RValue::get(Overflow);
1974 }
1975 
1976 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1977                                Value *&RecordPtr, CharUnits Align,
1978                                llvm::FunctionCallee Func, int Lvl) {
1979   ASTContext &Context = CGF.getContext();
1980   RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1981   std::string Pad = std::string(Lvl * 4, ' ');
1982 
1983   Value *GString =
1984       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1985   Value *Res = CGF.Builder.CreateCall(Func, {GString});
1986 
1987   static llvm::DenseMap<QualType, const char *> Types;
1988   if (Types.empty()) {
1989     Types[Context.CharTy] = "%c";
1990     Types[Context.BoolTy] = "%d";
1991     Types[Context.SignedCharTy] = "%hhd";
1992     Types[Context.UnsignedCharTy] = "%hhu";
1993     Types[Context.IntTy] = "%d";
1994     Types[Context.UnsignedIntTy] = "%u";
1995     Types[Context.LongTy] = "%ld";
1996     Types[Context.UnsignedLongTy] = "%lu";
1997     Types[Context.LongLongTy] = "%lld";
1998     Types[Context.UnsignedLongLongTy] = "%llu";
1999     Types[Context.ShortTy] = "%hd";
2000     Types[Context.UnsignedShortTy] = "%hu";
2001     Types[Context.VoidPtrTy] = "%p";
2002     Types[Context.FloatTy] = "%f";
2003     Types[Context.DoubleTy] = "%f";
2004     Types[Context.LongDoubleTy] = "%Lf";
2005     Types[Context.getPointerType(Context.CharTy)] = "%s";
2006     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
2007   }
2008 
2009   for (const auto *FD : RD->fields()) {
2010     Value *FieldPtr = RecordPtr;
2011     if (RD->isUnion())
2012       FieldPtr = CGF.Builder.CreatePointerCast(
2013           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
2014     else
2015       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
2016                                              FD->getFieldIndex());
2017 
2018     GString = CGF.Builder.CreateGlobalStringPtr(
2019         llvm::Twine(Pad)
2020             .concat(FD->getType().getAsString())
2021             .concat(llvm::Twine(' '))
2022             .concat(FD->getNameAsString())
2023             .concat(" : ")
2024             .str());
2025     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2026     Res = CGF.Builder.CreateAdd(Res, TmpRes);
2027 
2028     QualType CanonicalType =
2029         FD->getType().getUnqualifiedType().getCanonicalType();
2030 
2031     // We check whether we are in a recursive type
2032     if (CanonicalType->isRecordType()) {
2033       TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
2034       Res = CGF.Builder.CreateAdd(TmpRes, Res);
2035       continue;
2036     }
2037 
2038     // We try to determine the best format to print the current field
2039     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
2040                              ? Types[Context.VoidPtrTy]
2041                              : Types[CanonicalType];
2042 
2043     Address FieldAddress = Address(FieldPtr, Align);
2044     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
2045 
2046     // FIXME Need to handle bitfield here
2047     GString = CGF.Builder.CreateGlobalStringPtr(
2048         Format.concat(llvm::Twine('\n')).str());
2049     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
2050     Res = CGF.Builder.CreateAdd(Res, TmpRes);
2051   }
2052 
2053   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2054   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2055   Res = CGF.Builder.CreateAdd(Res, TmpRes);
2056   return Res;
2057 }
2058 
2059 static bool
2060 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2061                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2062   if (const auto *Arr = Ctx.getAsArrayType(Ty))
2063     Ty = Ctx.getBaseElementType(Arr);
2064 
2065   const auto *Record = Ty->getAsCXXRecordDecl();
2066   if (!Record)
2067     return false;
2068 
2069   // We've already checked this type, or are in the process of checking it.
2070   if (!Seen.insert(Record).second)
2071     return false;
2072 
2073   assert(Record->hasDefinition() &&
2074          "Incomplete types should already be diagnosed");
2075 
2076   if (Record->isDynamicClass())
2077     return true;
2078 
2079   for (FieldDecl *F : Record->fields()) {
2080     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2081       return true;
2082   }
2083   return false;
2084 }
2085 
2086 /// Determine if the specified type requires laundering by checking if it is a
2087 /// dynamic class type or contains a subobject which is a dynamic class type.
2088 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2089   if (!CGM.getCodeGenOpts().StrictVTablePointers)
2090     return false;
2091   llvm::SmallPtrSet<const Decl *, 16> Seen;
2092   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2093 }
2094 
2095 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2096   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2097   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2098 
2099   // The builtin's shift arg may have a different type than the source arg and
2100   // result, but the LLVM intrinsic uses the same type for all values.
2101   llvm::Type *Ty = Src->getType();
2102   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2103 
2104   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2105   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2106   Function *F = CGM.getIntrinsic(IID, Ty);
2107   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2108 }
2109 
2110 // Map math builtins for long-double to f128 version.
2111 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2112   switch (BuiltinID) {
2113 #define MUTATE_LDBL(func) \
2114   case Builtin::BI__builtin_##func##l: \
2115     return Builtin::BI__builtin_##func##f128;
2116   MUTATE_LDBL(sqrt)
2117   MUTATE_LDBL(cbrt)
2118   MUTATE_LDBL(fabs)
2119   MUTATE_LDBL(log)
2120   MUTATE_LDBL(log2)
2121   MUTATE_LDBL(log10)
2122   MUTATE_LDBL(log1p)
2123   MUTATE_LDBL(logb)
2124   MUTATE_LDBL(exp)
2125   MUTATE_LDBL(exp2)
2126   MUTATE_LDBL(expm1)
2127   MUTATE_LDBL(fdim)
2128   MUTATE_LDBL(hypot)
2129   MUTATE_LDBL(ilogb)
2130   MUTATE_LDBL(pow)
2131   MUTATE_LDBL(fmin)
2132   MUTATE_LDBL(fmax)
2133   MUTATE_LDBL(ceil)
2134   MUTATE_LDBL(trunc)
2135   MUTATE_LDBL(rint)
2136   MUTATE_LDBL(nearbyint)
2137   MUTATE_LDBL(round)
2138   MUTATE_LDBL(floor)
2139   MUTATE_LDBL(lround)
2140   MUTATE_LDBL(llround)
2141   MUTATE_LDBL(lrint)
2142   MUTATE_LDBL(llrint)
2143   MUTATE_LDBL(fmod)
2144   MUTATE_LDBL(modf)
2145   MUTATE_LDBL(nan)
2146   MUTATE_LDBL(nans)
2147   MUTATE_LDBL(inf)
2148   MUTATE_LDBL(fma)
2149   MUTATE_LDBL(sin)
2150   MUTATE_LDBL(cos)
2151   MUTATE_LDBL(tan)
2152   MUTATE_LDBL(sinh)
2153   MUTATE_LDBL(cosh)
2154   MUTATE_LDBL(tanh)
2155   MUTATE_LDBL(asin)
2156   MUTATE_LDBL(acos)
2157   MUTATE_LDBL(atan)
2158   MUTATE_LDBL(asinh)
2159   MUTATE_LDBL(acosh)
2160   MUTATE_LDBL(atanh)
2161   MUTATE_LDBL(atan2)
2162   MUTATE_LDBL(erf)
2163   MUTATE_LDBL(erfc)
2164   MUTATE_LDBL(ldexp)
2165   MUTATE_LDBL(frexp)
2166   MUTATE_LDBL(huge_val)
2167   MUTATE_LDBL(copysign)
2168   MUTATE_LDBL(nextafter)
2169   MUTATE_LDBL(nexttoward)
2170   MUTATE_LDBL(remainder)
2171   MUTATE_LDBL(remquo)
2172   MUTATE_LDBL(scalbln)
2173   MUTATE_LDBL(scalbn)
2174   MUTATE_LDBL(tgamma)
2175   MUTATE_LDBL(lgamma)
2176 #undef MUTATE_LDBL
2177   default:
2178     return BuiltinID;
2179   }
2180 }
2181 
2182 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2183                                         const CallExpr *E,
2184                                         ReturnValueSlot ReturnValue) {
2185   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2186   // See if we can constant fold this builtin.  If so, don't emit it at all.
2187   Expr::EvalResult Result;
2188   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
2189       !Result.hasSideEffects()) {
2190     if (Result.Val.isInt())
2191       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2192                                                 Result.Val.getInt()));
2193     if (Result.Val.isFloat())
2194       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2195                                                Result.Val.getFloat()));
2196   }
2197 
2198   // If current long-double semantics is IEEE 128-bit, replace math builtins
2199   // of long-double with f128 equivalent.
2200   // TODO: This mutation should also be applied to other targets other than PPC,
2201   // after backend supports IEEE 128-bit style libcalls.
2202   if (getTarget().getTriple().isPPC64() &&
2203       &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2204     BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2205 
2206   // If the builtin has been declared explicitly with an assembler label,
2207   // disable the specialized emitting below. Ideally we should communicate the
2208   // rename in IR, or at least avoid generating the intrinsic calls that are
2209   // likely to get lowered to the renamed library functions.
2210   const unsigned BuiltinIDIfNoAsmLabel =
2211       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2212 
2213   // There are LLVM math intrinsics/instructions corresponding to math library
2214   // functions except the LLVM op will never set errno while the math library
2215   // might. Also, math builtins have the same semantics as their math library
2216   // twins. Thus, we can transform math library and builtin calls to their
2217   // LLVM counterparts if the call is marked 'const' (known to never set errno).
2218   if (FD->hasAttr<ConstAttr>()) {
2219     switch (BuiltinIDIfNoAsmLabel) {
2220     case Builtin::BIceil:
2221     case Builtin::BIceilf:
2222     case Builtin::BIceill:
2223     case Builtin::BI__builtin_ceil:
2224     case Builtin::BI__builtin_ceilf:
2225     case Builtin::BI__builtin_ceilf16:
2226     case Builtin::BI__builtin_ceill:
2227     case Builtin::BI__builtin_ceilf128:
2228       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2229                                    Intrinsic::ceil,
2230                                    Intrinsic::experimental_constrained_ceil));
2231 
2232     case Builtin::BIcopysign:
2233     case Builtin::BIcopysignf:
2234     case Builtin::BIcopysignl:
2235     case Builtin::BI__builtin_copysign:
2236     case Builtin::BI__builtin_copysignf:
2237     case Builtin::BI__builtin_copysignf16:
2238     case Builtin::BI__builtin_copysignl:
2239     case Builtin::BI__builtin_copysignf128:
2240       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2241 
2242     case Builtin::BIcos:
2243     case Builtin::BIcosf:
2244     case Builtin::BIcosl:
2245     case Builtin::BI__builtin_cos:
2246     case Builtin::BI__builtin_cosf:
2247     case Builtin::BI__builtin_cosf16:
2248     case Builtin::BI__builtin_cosl:
2249     case Builtin::BI__builtin_cosf128:
2250       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2251                                    Intrinsic::cos,
2252                                    Intrinsic::experimental_constrained_cos));
2253 
2254     case Builtin::BIexp:
2255     case Builtin::BIexpf:
2256     case Builtin::BIexpl:
2257     case Builtin::BI__builtin_exp:
2258     case Builtin::BI__builtin_expf:
2259     case Builtin::BI__builtin_expf16:
2260     case Builtin::BI__builtin_expl:
2261     case Builtin::BI__builtin_expf128:
2262       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2263                                    Intrinsic::exp,
2264                                    Intrinsic::experimental_constrained_exp));
2265 
2266     case Builtin::BIexp2:
2267     case Builtin::BIexp2f:
2268     case Builtin::BIexp2l:
2269     case Builtin::BI__builtin_exp2:
2270     case Builtin::BI__builtin_exp2f:
2271     case Builtin::BI__builtin_exp2f16:
2272     case Builtin::BI__builtin_exp2l:
2273     case Builtin::BI__builtin_exp2f128:
2274       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2275                                    Intrinsic::exp2,
2276                                    Intrinsic::experimental_constrained_exp2));
2277 
2278     case Builtin::BIfabs:
2279     case Builtin::BIfabsf:
2280     case Builtin::BIfabsl:
2281     case Builtin::BI__builtin_fabs:
2282     case Builtin::BI__builtin_fabsf:
2283     case Builtin::BI__builtin_fabsf16:
2284     case Builtin::BI__builtin_fabsl:
2285     case Builtin::BI__builtin_fabsf128:
2286       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2287 
2288     case Builtin::BIfloor:
2289     case Builtin::BIfloorf:
2290     case Builtin::BIfloorl:
2291     case Builtin::BI__builtin_floor:
2292     case Builtin::BI__builtin_floorf:
2293     case Builtin::BI__builtin_floorf16:
2294     case Builtin::BI__builtin_floorl:
2295     case Builtin::BI__builtin_floorf128:
2296       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2297                                    Intrinsic::floor,
2298                                    Intrinsic::experimental_constrained_floor));
2299 
2300     case Builtin::BIfma:
2301     case Builtin::BIfmaf:
2302     case Builtin::BIfmal:
2303     case Builtin::BI__builtin_fma:
2304     case Builtin::BI__builtin_fmaf:
2305     case Builtin::BI__builtin_fmaf16:
2306     case Builtin::BI__builtin_fmal:
2307     case Builtin::BI__builtin_fmaf128:
2308       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2309                                    Intrinsic::fma,
2310                                    Intrinsic::experimental_constrained_fma));
2311 
2312     case Builtin::BIfmax:
2313     case Builtin::BIfmaxf:
2314     case Builtin::BIfmaxl:
2315     case Builtin::BI__builtin_fmax:
2316     case Builtin::BI__builtin_fmaxf:
2317     case Builtin::BI__builtin_fmaxf16:
2318     case Builtin::BI__builtin_fmaxl:
2319     case Builtin::BI__builtin_fmaxf128:
2320       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2321                                    Intrinsic::maxnum,
2322                                    Intrinsic::experimental_constrained_maxnum));
2323 
2324     case Builtin::BIfmin:
2325     case Builtin::BIfminf:
2326     case Builtin::BIfminl:
2327     case Builtin::BI__builtin_fmin:
2328     case Builtin::BI__builtin_fminf:
2329     case Builtin::BI__builtin_fminf16:
2330     case Builtin::BI__builtin_fminl:
2331     case Builtin::BI__builtin_fminf128:
2332       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2333                                    Intrinsic::minnum,
2334                                    Intrinsic::experimental_constrained_minnum));
2335 
2336     // fmod() is a special-case. It maps to the frem instruction rather than an
2337     // LLVM intrinsic.
2338     case Builtin::BIfmod:
2339     case Builtin::BIfmodf:
2340     case Builtin::BIfmodl:
2341     case Builtin::BI__builtin_fmod:
2342     case Builtin::BI__builtin_fmodf:
2343     case Builtin::BI__builtin_fmodf16:
2344     case Builtin::BI__builtin_fmodl:
2345     case Builtin::BI__builtin_fmodf128: {
2346       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2347       Value *Arg1 = EmitScalarExpr(E->getArg(0));
2348       Value *Arg2 = EmitScalarExpr(E->getArg(1));
2349       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2350     }
2351 
2352     case Builtin::BIlog:
2353     case Builtin::BIlogf:
2354     case Builtin::BIlogl:
2355     case Builtin::BI__builtin_log:
2356     case Builtin::BI__builtin_logf:
2357     case Builtin::BI__builtin_logf16:
2358     case Builtin::BI__builtin_logl:
2359     case Builtin::BI__builtin_logf128:
2360       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2361                                    Intrinsic::log,
2362                                    Intrinsic::experimental_constrained_log));
2363 
2364     case Builtin::BIlog10:
2365     case Builtin::BIlog10f:
2366     case Builtin::BIlog10l:
2367     case Builtin::BI__builtin_log10:
2368     case Builtin::BI__builtin_log10f:
2369     case Builtin::BI__builtin_log10f16:
2370     case Builtin::BI__builtin_log10l:
2371     case Builtin::BI__builtin_log10f128:
2372       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2373                                    Intrinsic::log10,
2374                                    Intrinsic::experimental_constrained_log10));
2375 
2376     case Builtin::BIlog2:
2377     case Builtin::BIlog2f:
2378     case Builtin::BIlog2l:
2379     case Builtin::BI__builtin_log2:
2380     case Builtin::BI__builtin_log2f:
2381     case Builtin::BI__builtin_log2f16:
2382     case Builtin::BI__builtin_log2l:
2383     case Builtin::BI__builtin_log2f128:
2384       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2385                                    Intrinsic::log2,
2386                                    Intrinsic::experimental_constrained_log2));
2387 
2388     case Builtin::BInearbyint:
2389     case Builtin::BInearbyintf:
2390     case Builtin::BInearbyintl:
2391     case Builtin::BI__builtin_nearbyint:
2392     case Builtin::BI__builtin_nearbyintf:
2393     case Builtin::BI__builtin_nearbyintl:
2394     case Builtin::BI__builtin_nearbyintf128:
2395       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2396                                 Intrinsic::nearbyint,
2397                                 Intrinsic::experimental_constrained_nearbyint));
2398 
2399     case Builtin::BIpow:
2400     case Builtin::BIpowf:
2401     case Builtin::BIpowl:
2402     case Builtin::BI__builtin_pow:
2403     case Builtin::BI__builtin_powf:
2404     case Builtin::BI__builtin_powf16:
2405     case Builtin::BI__builtin_powl:
2406     case Builtin::BI__builtin_powf128:
2407       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2408                                    Intrinsic::pow,
2409                                    Intrinsic::experimental_constrained_pow));
2410 
2411     case Builtin::BIrint:
2412     case Builtin::BIrintf:
2413     case Builtin::BIrintl:
2414     case Builtin::BI__builtin_rint:
2415     case Builtin::BI__builtin_rintf:
2416     case Builtin::BI__builtin_rintf16:
2417     case Builtin::BI__builtin_rintl:
2418     case Builtin::BI__builtin_rintf128:
2419       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2420                                    Intrinsic::rint,
2421                                    Intrinsic::experimental_constrained_rint));
2422 
2423     case Builtin::BIround:
2424     case Builtin::BIroundf:
2425     case Builtin::BIroundl:
2426     case Builtin::BI__builtin_round:
2427     case Builtin::BI__builtin_roundf:
2428     case Builtin::BI__builtin_roundf16:
2429     case Builtin::BI__builtin_roundl:
2430     case Builtin::BI__builtin_roundf128:
2431       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2432                                    Intrinsic::round,
2433                                    Intrinsic::experimental_constrained_round));
2434 
2435     case Builtin::BIsin:
2436     case Builtin::BIsinf:
2437     case Builtin::BIsinl:
2438     case Builtin::BI__builtin_sin:
2439     case Builtin::BI__builtin_sinf:
2440     case Builtin::BI__builtin_sinf16:
2441     case Builtin::BI__builtin_sinl:
2442     case Builtin::BI__builtin_sinf128:
2443       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2444                                    Intrinsic::sin,
2445                                    Intrinsic::experimental_constrained_sin));
2446 
2447     case Builtin::BIsqrt:
2448     case Builtin::BIsqrtf:
2449     case Builtin::BIsqrtl:
2450     case Builtin::BI__builtin_sqrt:
2451     case Builtin::BI__builtin_sqrtf:
2452     case Builtin::BI__builtin_sqrtf16:
2453     case Builtin::BI__builtin_sqrtl:
2454     case Builtin::BI__builtin_sqrtf128:
2455       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2456                                    Intrinsic::sqrt,
2457                                    Intrinsic::experimental_constrained_sqrt));
2458 
2459     case Builtin::BItrunc:
2460     case Builtin::BItruncf:
2461     case Builtin::BItruncl:
2462     case Builtin::BI__builtin_trunc:
2463     case Builtin::BI__builtin_truncf:
2464     case Builtin::BI__builtin_truncf16:
2465     case Builtin::BI__builtin_truncl:
2466     case Builtin::BI__builtin_truncf128:
2467       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2468                                    Intrinsic::trunc,
2469                                    Intrinsic::experimental_constrained_trunc));
2470 
2471     case Builtin::BIlround:
2472     case Builtin::BIlroundf:
2473     case Builtin::BIlroundl:
2474     case Builtin::BI__builtin_lround:
2475     case Builtin::BI__builtin_lroundf:
2476     case Builtin::BI__builtin_lroundl:
2477     case Builtin::BI__builtin_lroundf128:
2478       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2479           *this, E, Intrinsic::lround,
2480           Intrinsic::experimental_constrained_lround));
2481 
2482     case Builtin::BIllround:
2483     case Builtin::BIllroundf:
2484     case Builtin::BIllroundl:
2485     case Builtin::BI__builtin_llround:
2486     case Builtin::BI__builtin_llroundf:
2487     case Builtin::BI__builtin_llroundl:
2488     case Builtin::BI__builtin_llroundf128:
2489       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2490           *this, E, Intrinsic::llround,
2491           Intrinsic::experimental_constrained_llround));
2492 
2493     case Builtin::BIlrint:
2494     case Builtin::BIlrintf:
2495     case Builtin::BIlrintl:
2496     case Builtin::BI__builtin_lrint:
2497     case Builtin::BI__builtin_lrintf:
2498     case Builtin::BI__builtin_lrintl:
2499     case Builtin::BI__builtin_lrintf128:
2500       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2501           *this, E, Intrinsic::lrint,
2502           Intrinsic::experimental_constrained_lrint));
2503 
2504     case Builtin::BIllrint:
2505     case Builtin::BIllrintf:
2506     case Builtin::BIllrintl:
2507     case Builtin::BI__builtin_llrint:
2508     case Builtin::BI__builtin_llrintf:
2509     case Builtin::BI__builtin_llrintl:
2510     case Builtin::BI__builtin_llrintf128:
2511       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2512           *this, E, Intrinsic::llrint,
2513           Intrinsic::experimental_constrained_llrint));
2514 
2515     default:
2516       break;
2517     }
2518   }
2519 
2520   switch (BuiltinIDIfNoAsmLabel) {
2521   default: break;
2522   case Builtin::BI__builtin___CFStringMakeConstantString:
2523   case Builtin::BI__builtin___NSStringMakeConstantString:
2524     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2525   case Builtin::BI__builtin_stdarg_start:
2526   case Builtin::BI__builtin_va_start:
2527   case Builtin::BI__va_start:
2528   case Builtin::BI__builtin_va_end:
2529     return RValue::get(
2530         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2531                            ? EmitScalarExpr(E->getArg(0))
2532                            : EmitVAListRef(E->getArg(0)).getPointer(),
2533                        BuiltinID != Builtin::BI__builtin_va_end));
2534   case Builtin::BI__builtin_va_copy: {
2535     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2536     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2537 
2538     llvm::Type *Type = Int8PtrTy;
2539 
2540     DstPtr = Builder.CreateBitCast(DstPtr, Type);
2541     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2542     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2543                                           {DstPtr, SrcPtr}));
2544   }
2545   case Builtin::BI__builtin_abs:
2546   case Builtin::BI__builtin_labs:
2547   case Builtin::BI__builtin_llabs: {
2548     // X < 0 ? -X : X
2549     // The negation has 'nsw' because abs of INT_MIN is undefined.
2550     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2551     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2552     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2553     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2554     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2555     return RValue::get(Result);
2556   }
2557   case Builtin::BI__builtin_complex: {
2558     Value *Real = EmitScalarExpr(E->getArg(0));
2559     Value *Imag = EmitScalarExpr(E->getArg(1));
2560     return RValue::getComplex({Real, Imag});
2561   }
2562   case Builtin::BI__builtin_conj:
2563   case Builtin::BI__builtin_conjf:
2564   case Builtin::BI__builtin_conjl:
2565   case Builtin::BIconj:
2566   case Builtin::BIconjf:
2567   case Builtin::BIconjl: {
2568     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2569     Value *Real = ComplexVal.first;
2570     Value *Imag = ComplexVal.second;
2571     Imag = Builder.CreateFNeg(Imag, "neg");
2572     return RValue::getComplex(std::make_pair(Real, Imag));
2573   }
2574   case Builtin::BI__builtin_creal:
2575   case Builtin::BI__builtin_crealf:
2576   case Builtin::BI__builtin_creall:
2577   case Builtin::BIcreal:
2578   case Builtin::BIcrealf:
2579   case Builtin::BIcreall: {
2580     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2581     return RValue::get(ComplexVal.first);
2582   }
2583 
2584   case Builtin::BI__builtin_dump_struct: {
2585     llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2586     llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2587         LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2588 
2589     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2590     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2591 
2592     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2593     QualType Arg0Type = Arg0->getType()->getPointeeType();
2594 
2595     Value *RecordPtr = EmitScalarExpr(Arg0);
2596     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2597                             {LLVMFuncType, Func}, 0);
2598     return RValue::get(Res);
2599   }
2600 
2601   case Builtin::BI__builtin_preserve_access_index: {
2602     // Only enabled preserved access index region when debuginfo
2603     // is available as debuginfo is needed to preserve user-level
2604     // access pattern.
2605     if (!getDebugInfo()) {
2606       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2607       return RValue::get(EmitScalarExpr(E->getArg(0)));
2608     }
2609 
2610     // Nested builtin_preserve_access_index() not supported
2611     if (IsInPreservedAIRegion) {
2612       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2613       return RValue::get(EmitScalarExpr(E->getArg(0)));
2614     }
2615 
2616     IsInPreservedAIRegion = true;
2617     Value *Res = EmitScalarExpr(E->getArg(0));
2618     IsInPreservedAIRegion = false;
2619     return RValue::get(Res);
2620   }
2621 
2622   case Builtin::BI__builtin_cimag:
2623   case Builtin::BI__builtin_cimagf:
2624   case Builtin::BI__builtin_cimagl:
2625   case Builtin::BIcimag:
2626   case Builtin::BIcimagf:
2627   case Builtin::BIcimagl: {
2628     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2629     return RValue::get(ComplexVal.second);
2630   }
2631 
2632   case Builtin::BI__builtin_clrsb:
2633   case Builtin::BI__builtin_clrsbl:
2634   case Builtin::BI__builtin_clrsbll: {
2635     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2636     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2637 
2638     llvm::Type *ArgType = ArgValue->getType();
2639     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2640 
2641     llvm::Type *ResultType = ConvertType(E->getType());
2642     Value *Zero = llvm::Constant::getNullValue(ArgType);
2643     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2644     Value *Inverse = Builder.CreateNot(ArgValue, "not");
2645     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2646     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2647     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2648     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2649                                    "cast");
2650     return RValue::get(Result);
2651   }
2652   case Builtin::BI__builtin_ctzs:
2653   case Builtin::BI__builtin_ctz:
2654   case Builtin::BI__builtin_ctzl:
2655   case Builtin::BI__builtin_ctzll: {
2656     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2657 
2658     llvm::Type *ArgType = ArgValue->getType();
2659     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2660 
2661     llvm::Type *ResultType = ConvertType(E->getType());
2662     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2663     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2664     if (Result->getType() != ResultType)
2665       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2666                                      "cast");
2667     return RValue::get(Result);
2668   }
2669   case Builtin::BI__builtin_clzs:
2670   case Builtin::BI__builtin_clz:
2671   case Builtin::BI__builtin_clzl:
2672   case Builtin::BI__builtin_clzll: {
2673     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2674 
2675     llvm::Type *ArgType = ArgValue->getType();
2676     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2677 
2678     llvm::Type *ResultType = ConvertType(E->getType());
2679     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2680     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2681     if (Result->getType() != ResultType)
2682       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2683                                      "cast");
2684     return RValue::get(Result);
2685   }
2686   case Builtin::BI__builtin_ffs:
2687   case Builtin::BI__builtin_ffsl:
2688   case Builtin::BI__builtin_ffsll: {
2689     // ffs(x) -> x ? cttz(x) + 1 : 0
2690     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2691 
2692     llvm::Type *ArgType = ArgValue->getType();
2693     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2694 
2695     llvm::Type *ResultType = ConvertType(E->getType());
2696     Value *Tmp =
2697         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2698                           llvm::ConstantInt::get(ArgType, 1));
2699     Value *Zero = llvm::Constant::getNullValue(ArgType);
2700     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2701     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2702     if (Result->getType() != ResultType)
2703       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2704                                      "cast");
2705     return RValue::get(Result);
2706   }
2707   case Builtin::BI__builtin_parity:
2708   case Builtin::BI__builtin_parityl:
2709   case Builtin::BI__builtin_parityll: {
2710     // parity(x) -> ctpop(x) & 1
2711     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2712 
2713     llvm::Type *ArgType = ArgValue->getType();
2714     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2715 
2716     llvm::Type *ResultType = ConvertType(E->getType());
2717     Value *Tmp = Builder.CreateCall(F, ArgValue);
2718     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2719     if (Result->getType() != ResultType)
2720       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2721                                      "cast");
2722     return RValue::get(Result);
2723   }
2724   case Builtin::BI__lzcnt16:
2725   case Builtin::BI__lzcnt:
2726   case Builtin::BI__lzcnt64: {
2727     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2728 
2729     llvm::Type *ArgType = ArgValue->getType();
2730     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2731 
2732     llvm::Type *ResultType = ConvertType(E->getType());
2733     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2734     if (Result->getType() != ResultType)
2735       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2736                                      "cast");
2737     return RValue::get(Result);
2738   }
2739   case Builtin::BI__popcnt16:
2740   case Builtin::BI__popcnt:
2741   case Builtin::BI__popcnt64:
2742   case Builtin::BI__builtin_popcount:
2743   case Builtin::BI__builtin_popcountl:
2744   case Builtin::BI__builtin_popcountll: {
2745     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2746 
2747     llvm::Type *ArgType = ArgValue->getType();
2748     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2749 
2750     llvm::Type *ResultType = ConvertType(E->getType());
2751     Value *Result = Builder.CreateCall(F, ArgValue);
2752     if (Result->getType() != ResultType)
2753       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2754                                      "cast");
2755     return RValue::get(Result);
2756   }
2757   case Builtin::BI__builtin_unpredictable: {
2758     // Always return the argument of __builtin_unpredictable. LLVM does not
2759     // handle this builtin. Metadata for this builtin should be added directly
2760     // to instructions such as branches or switches that use it.
2761     return RValue::get(EmitScalarExpr(E->getArg(0)));
2762   }
2763   case Builtin::BI__builtin_expect: {
2764     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2765     llvm::Type *ArgType = ArgValue->getType();
2766 
2767     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2768     // Don't generate llvm.expect on -O0 as the backend won't use it for
2769     // anything.
2770     // Note, we still IRGen ExpectedValue because it could have side-effects.
2771     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2772       return RValue::get(ArgValue);
2773 
2774     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2775     Value *Result =
2776         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2777     return RValue::get(Result);
2778   }
2779   case Builtin::BI__builtin_expect_with_probability: {
2780     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2781     llvm::Type *ArgType = ArgValue->getType();
2782 
2783     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2784     llvm::APFloat Probability(0.0);
2785     const Expr *ProbArg = E->getArg(2);
2786     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2787     assert(EvalSucceed && "probability should be able to evaluate as float");
2788     (void)EvalSucceed;
2789     bool LoseInfo = false;
2790     Probability.convert(llvm::APFloat::IEEEdouble(),
2791                         llvm::RoundingMode::Dynamic, &LoseInfo);
2792     llvm::Type *Ty = ConvertType(ProbArg->getType());
2793     Constant *Confidence = ConstantFP::get(Ty, Probability);
2794     // Don't generate llvm.expect.with.probability on -O0 as the backend
2795     // won't use it for anything.
2796     // Note, we still IRGen ExpectedValue because it could have side-effects.
2797     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2798       return RValue::get(ArgValue);
2799 
2800     Function *FnExpect =
2801         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2802     Value *Result = Builder.CreateCall(
2803         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2804     return RValue::get(Result);
2805   }
2806   case Builtin::BI__builtin_assume_aligned: {
2807     const Expr *Ptr = E->getArg(0);
2808     Value *PtrValue = EmitScalarExpr(Ptr);
2809     Value *OffsetValue =
2810       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2811 
2812     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2813     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2814     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2815       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2816                                      llvm::Value::MaximumAlignment);
2817 
2818     emitAlignmentAssumption(PtrValue, Ptr,
2819                             /*The expr loc is sufficient.*/ SourceLocation(),
2820                             AlignmentCI, OffsetValue);
2821     return RValue::get(PtrValue);
2822   }
2823   case Builtin::BI__assume:
2824   case Builtin::BI__builtin_assume: {
2825     if (E->getArg(0)->HasSideEffects(getContext()))
2826       return RValue::get(nullptr);
2827 
2828     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2829     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2830     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2831   }
2832   case Builtin::BI__builtin_bswap16:
2833   case Builtin::BI__builtin_bswap32:
2834   case Builtin::BI__builtin_bswap64: {
2835     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2836   }
2837   case Builtin::BI__builtin_bitreverse8:
2838   case Builtin::BI__builtin_bitreverse16:
2839   case Builtin::BI__builtin_bitreverse32:
2840   case Builtin::BI__builtin_bitreverse64: {
2841     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2842   }
2843   case Builtin::BI__builtin_rotateleft8:
2844   case Builtin::BI__builtin_rotateleft16:
2845   case Builtin::BI__builtin_rotateleft32:
2846   case Builtin::BI__builtin_rotateleft64:
2847   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2848   case Builtin::BI_rotl16:
2849   case Builtin::BI_rotl:
2850   case Builtin::BI_lrotl:
2851   case Builtin::BI_rotl64:
2852     return emitRotate(E, false);
2853 
2854   case Builtin::BI__builtin_rotateright8:
2855   case Builtin::BI__builtin_rotateright16:
2856   case Builtin::BI__builtin_rotateright32:
2857   case Builtin::BI__builtin_rotateright64:
2858   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2859   case Builtin::BI_rotr16:
2860   case Builtin::BI_rotr:
2861   case Builtin::BI_lrotr:
2862   case Builtin::BI_rotr64:
2863     return emitRotate(E, true);
2864 
2865   case Builtin::BI__builtin_constant_p: {
2866     llvm::Type *ResultType = ConvertType(E->getType());
2867 
2868     const Expr *Arg = E->getArg(0);
2869     QualType ArgType = Arg->getType();
2870     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2871     // and likely a mistake.
2872     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2873         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2874       // Per the GCC documentation, only numeric constants are recognized after
2875       // inlining.
2876       return RValue::get(ConstantInt::get(ResultType, 0));
2877 
2878     if (Arg->HasSideEffects(getContext()))
2879       // The argument is unevaluated, so be conservative if it might have
2880       // side-effects.
2881       return RValue::get(ConstantInt::get(ResultType, 0));
2882 
2883     Value *ArgValue = EmitScalarExpr(Arg);
2884     if (ArgType->isObjCObjectPointerType()) {
2885       // Convert Objective-C objects to id because we cannot distinguish between
2886       // LLVM types for Obj-C classes as they are opaque.
2887       ArgType = CGM.getContext().getObjCIdType();
2888       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2889     }
2890     Function *F =
2891         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2892     Value *Result = Builder.CreateCall(F, ArgValue);
2893     if (Result->getType() != ResultType)
2894       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2895     return RValue::get(Result);
2896   }
2897   case Builtin::BI__builtin_dynamic_object_size:
2898   case Builtin::BI__builtin_object_size: {
2899     unsigned Type =
2900         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2901     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2902 
2903     // We pass this builtin onto the optimizer so that it can figure out the
2904     // object size in more complex cases.
2905     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2906     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2907                                              /*EmittedE=*/nullptr, IsDynamic));
2908   }
2909   case Builtin::BI__builtin_prefetch: {
2910     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2911     // FIXME: Technically these constants should of type 'int', yes?
2912     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2913       llvm::ConstantInt::get(Int32Ty, 0);
2914     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2915       llvm::ConstantInt::get(Int32Ty, 3);
2916     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2917     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2918     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2919   }
2920   case Builtin::BI__builtin_readcyclecounter: {
2921     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2922     return RValue::get(Builder.CreateCall(F));
2923   }
2924   case Builtin::BI__builtin___clear_cache: {
2925     Value *Begin = EmitScalarExpr(E->getArg(0));
2926     Value *End = EmitScalarExpr(E->getArg(1));
2927     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2928     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2929   }
2930   case Builtin::BI__builtin_trap:
2931     return RValue::get(EmitTrapCall(Intrinsic::trap));
2932   case Builtin::BI__debugbreak:
2933     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2934   case Builtin::BI__builtin_unreachable: {
2935     EmitUnreachable(E->getExprLoc());
2936 
2937     // We do need to preserve an insertion point.
2938     EmitBlock(createBasicBlock("unreachable.cont"));
2939 
2940     return RValue::get(nullptr);
2941   }
2942 
2943   case Builtin::BI__builtin_powi:
2944   case Builtin::BI__builtin_powif:
2945   case Builtin::BI__builtin_powil:
2946     return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(
2947         *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi));
2948 
2949   case Builtin::BI__builtin_isgreater:
2950   case Builtin::BI__builtin_isgreaterequal:
2951   case Builtin::BI__builtin_isless:
2952   case Builtin::BI__builtin_islessequal:
2953   case Builtin::BI__builtin_islessgreater:
2954   case Builtin::BI__builtin_isunordered: {
2955     // Ordered comparisons: we know the arguments to these are matching scalar
2956     // floating point values.
2957     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2958     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2959     Value *LHS = EmitScalarExpr(E->getArg(0));
2960     Value *RHS = EmitScalarExpr(E->getArg(1));
2961 
2962     switch (BuiltinID) {
2963     default: llvm_unreachable("Unknown ordered comparison");
2964     case Builtin::BI__builtin_isgreater:
2965       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2966       break;
2967     case Builtin::BI__builtin_isgreaterequal:
2968       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2969       break;
2970     case Builtin::BI__builtin_isless:
2971       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2972       break;
2973     case Builtin::BI__builtin_islessequal:
2974       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2975       break;
2976     case Builtin::BI__builtin_islessgreater:
2977       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2978       break;
2979     case Builtin::BI__builtin_isunordered:
2980       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2981       break;
2982     }
2983     // ZExt bool to int type.
2984     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2985   }
2986   case Builtin::BI__builtin_isnan: {
2987     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2988     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2989     Value *V = EmitScalarExpr(E->getArg(0));
2990     V = Builder.CreateFCmpUNO(V, V, "cmp");
2991     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2992   }
2993 
2994   case Builtin::BI__builtin_matrix_transpose: {
2995     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
2996     Value *MatValue = EmitScalarExpr(E->getArg(0));
2997     MatrixBuilder<CGBuilderTy> MB(Builder);
2998     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
2999                                              MatrixTy->getNumColumns());
3000     return RValue::get(Result);
3001   }
3002 
3003   case Builtin::BI__builtin_matrix_column_major_load: {
3004     MatrixBuilder<CGBuilderTy> MB(Builder);
3005     // Emit everything that isn't dependent on the first parameter type
3006     Value *Stride = EmitScalarExpr(E->getArg(3));
3007     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3008     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3009     assert(PtrTy && "arg0 must be of pointer type");
3010     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3011 
3012     Address Src = EmitPointerWithAlignment(E->getArg(0));
3013     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3014                         E->getArg(0)->getExprLoc(), FD, 0);
3015     Value *Result = MB.CreateColumnMajorLoad(
3016         Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
3017         IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
3018         "matrix");
3019     return RValue::get(Result);
3020   }
3021 
3022   case Builtin::BI__builtin_matrix_column_major_store: {
3023     MatrixBuilder<CGBuilderTy> MB(Builder);
3024     Value *Matrix = EmitScalarExpr(E->getArg(0));
3025     Address Dst = EmitPointerWithAlignment(E->getArg(1));
3026     Value *Stride = EmitScalarExpr(E->getArg(2));
3027 
3028     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3029     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3030     assert(PtrTy && "arg1 must be of pointer type");
3031     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3032 
3033     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3034                         E->getArg(1)->getExprLoc(), FD, 0);
3035     Value *Result = MB.CreateColumnMajorStore(
3036         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3037         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3038     return RValue::get(Result);
3039   }
3040 
3041   case Builtin::BIfinite:
3042   case Builtin::BI__finite:
3043   case Builtin::BIfinitef:
3044   case Builtin::BI__finitef:
3045   case Builtin::BIfinitel:
3046   case Builtin::BI__finitel:
3047   case Builtin::BI__builtin_isinf:
3048   case Builtin::BI__builtin_isfinite: {
3049     // isinf(x)    --> fabs(x) == infinity
3050     // isfinite(x) --> fabs(x) != infinity
3051     // x != NaN via the ordered compare in either case.
3052     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3053     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3054     Value *V = EmitScalarExpr(E->getArg(0));
3055     Value *Fabs = EmitFAbs(*this, V);
3056     Constant *Infinity = ConstantFP::getInfinity(V->getType());
3057     CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3058                                   ? CmpInst::FCMP_OEQ
3059                                   : CmpInst::FCMP_ONE;
3060     Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3061     return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3062   }
3063 
3064   case Builtin::BI__builtin_isinf_sign: {
3065     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3066     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3067     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3068     Value *Arg = EmitScalarExpr(E->getArg(0));
3069     Value *AbsArg = EmitFAbs(*this, Arg);
3070     Value *IsInf = Builder.CreateFCmpOEQ(
3071         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3072     Value *IsNeg = EmitSignBit(*this, Arg);
3073 
3074     llvm::Type *IntTy = ConvertType(E->getType());
3075     Value *Zero = Constant::getNullValue(IntTy);
3076     Value *One = ConstantInt::get(IntTy, 1);
3077     Value *NegativeOne = ConstantInt::get(IntTy, -1);
3078     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3079     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3080     return RValue::get(Result);
3081   }
3082 
3083   case Builtin::BI__builtin_isnormal: {
3084     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3085     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3086     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3087     Value *V = EmitScalarExpr(E->getArg(0));
3088     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3089 
3090     Value *Abs = EmitFAbs(*this, V);
3091     Value *IsLessThanInf =
3092       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3093     APFloat Smallest = APFloat::getSmallestNormalized(
3094                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3095     Value *IsNormal =
3096       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3097                             "isnormal");
3098     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3099     V = Builder.CreateAnd(V, IsNormal, "and");
3100     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3101   }
3102 
3103   case Builtin::BI__builtin_flt_rounds: {
3104     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3105 
3106     llvm::Type *ResultType = ConvertType(E->getType());
3107     Value *Result = Builder.CreateCall(F);
3108     if (Result->getType() != ResultType)
3109       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3110                                      "cast");
3111     return RValue::get(Result);
3112   }
3113 
3114   case Builtin::BI__builtin_fpclassify: {
3115     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3116     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3117     Value *V = EmitScalarExpr(E->getArg(5));
3118     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3119 
3120     // Create Result
3121     BasicBlock *Begin = Builder.GetInsertBlock();
3122     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3123     Builder.SetInsertPoint(End);
3124     PHINode *Result =
3125       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3126                         "fpclassify_result");
3127 
3128     // if (V==0) return FP_ZERO
3129     Builder.SetInsertPoint(Begin);
3130     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3131                                           "iszero");
3132     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3133     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3134     Builder.CreateCondBr(IsZero, End, NotZero);
3135     Result->addIncoming(ZeroLiteral, Begin);
3136 
3137     // if (V != V) return FP_NAN
3138     Builder.SetInsertPoint(NotZero);
3139     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3140     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3141     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3142     Builder.CreateCondBr(IsNan, End, NotNan);
3143     Result->addIncoming(NanLiteral, NotZero);
3144 
3145     // if (fabs(V) == infinity) return FP_INFINITY
3146     Builder.SetInsertPoint(NotNan);
3147     Value *VAbs = EmitFAbs(*this, V);
3148     Value *IsInf =
3149       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3150                             "isinf");
3151     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3152     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3153     Builder.CreateCondBr(IsInf, End, NotInf);
3154     Result->addIncoming(InfLiteral, NotNan);
3155 
3156     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3157     Builder.SetInsertPoint(NotInf);
3158     APFloat Smallest = APFloat::getSmallestNormalized(
3159         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3160     Value *IsNormal =
3161       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3162                             "isnormal");
3163     Value *NormalResult =
3164       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3165                            EmitScalarExpr(E->getArg(3)));
3166     Builder.CreateBr(End);
3167     Result->addIncoming(NormalResult, NotInf);
3168 
3169     // return Result
3170     Builder.SetInsertPoint(End);
3171     return RValue::get(Result);
3172   }
3173 
3174   case Builtin::BIalloca:
3175   case Builtin::BI_alloca:
3176   case Builtin::BI__builtin_alloca: {
3177     Value *Size = EmitScalarExpr(E->getArg(0));
3178     const TargetInfo &TI = getContext().getTargetInfo();
3179     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3180     const Align SuitableAlignmentInBytes =
3181         CGM.getContext()
3182             .toCharUnitsFromBits(TI.getSuitableAlign())
3183             .getAsAlign();
3184     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3185     AI->setAlignment(SuitableAlignmentInBytes);
3186     initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3187     return RValue::get(AI);
3188   }
3189 
3190   case Builtin::BI__builtin_alloca_with_align: {
3191     Value *Size = EmitScalarExpr(E->getArg(0));
3192     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3193     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3194     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3195     const Align AlignmentInBytes =
3196         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3197     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3198     AI->setAlignment(AlignmentInBytes);
3199     initializeAlloca(*this, AI, Size, AlignmentInBytes);
3200     return RValue::get(AI);
3201   }
3202 
3203   case Builtin::BIbzero:
3204   case Builtin::BI__builtin_bzero: {
3205     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3206     Value *SizeVal = EmitScalarExpr(E->getArg(1));
3207     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3208                         E->getArg(0)->getExprLoc(), FD, 0);
3209     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3210     return RValue::get(nullptr);
3211   }
3212   case Builtin::BImemcpy:
3213   case Builtin::BI__builtin_memcpy:
3214   case Builtin::BImempcpy:
3215   case Builtin::BI__builtin_mempcpy: {
3216     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3217     Address Src = EmitPointerWithAlignment(E->getArg(1));
3218     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3219     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3220                         E->getArg(0)->getExprLoc(), FD, 0);
3221     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3222                         E->getArg(1)->getExprLoc(), FD, 1);
3223     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3224     if (BuiltinID == Builtin::BImempcpy ||
3225         BuiltinID == Builtin::BI__builtin_mempcpy)
3226       return RValue::get(Builder.CreateInBoundsGEP(Dest.getPointer(), SizeVal));
3227     else
3228       return RValue::get(Dest.getPointer());
3229   }
3230 
3231   case Builtin::BI__builtin_memcpy_inline: {
3232     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3233     Address Src = EmitPointerWithAlignment(E->getArg(1));
3234     uint64_t Size =
3235         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3236     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3237                         E->getArg(0)->getExprLoc(), FD, 0);
3238     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3239                         E->getArg(1)->getExprLoc(), FD, 1);
3240     Builder.CreateMemCpyInline(Dest, Src, Size);
3241     return RValue::get(nullptr);
3242   }
3243 
3244   case Builtin::BI__builtin_char_memchr:
3245     BuiltinID = Builtin::BI__builtin_memchr;
3246     break;
3247 
3248   case Builtin::BI__builtin___memcpy_chk: {
3249     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3250     Expr::EvalResult SizeResult, DstSizeResult;
3251     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3252         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3253       break;
3254     llvm::APSInt Size = SizeResult.Val.getInt();
3255     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3256     if (Size.ugt(DstSize))
3257       break;
3258     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3259     Address Src = EmitPointerWithAlignment(E->getArg(1));
3260     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3261     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3262     return RValue::get(Dest.getPointer());
3263   }
3264 
3265   case Builtin::BI__builtin_objc_memmove_collectable: {
3266     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3267     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3268     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3269     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3270                                                   DestAddr, SrcAddr, SizeVal);
3271     return RValue::get(DestAddr.getPointer());
3272   }
3273 
3274   case Builtin::BI__builtin___memmove_chk: {
3275     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3276     Expr::EvalResult SizeResult, DstSizeResult;
3277     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3278         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3279       break;
3280     llvm::APSInt Size = SizeResult.Val.getInt();
3281     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3282     if (Size.ugt(DstSize))
3283       break;
3284     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3285     Address Src = EmitPointerWithAlignment(E->getArg(1));
3286     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3287     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3288     return RValue::get(Dest.getPointer());
3289   }
3290 
3291   case Builtin::BImemmove:
3292   case Builtin::BI__builtin_memmove: {
3293     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3294     Address Src = EmitPointerWithAlignment(E->getArg(1));
3295     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3296     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3297                         E->getArg(0)->getExprLoc(), FD, 0);
3298     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3299                         E->getArg(1)->getExprLoc(), FD, 1);
3300     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3301     return RValue::get(Dest.getPointer());
3302   }
3303   case Builtin::BImemset:
3304   case Builtin::BI__builtin_memset: {
3305     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3306     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3307                                          Builder.getInt8Ty());
3308     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3309     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3310                         E->getArg(0)->getExprLoc(), FD, 0);
3311     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3312     return RValue::get(Dest.getPointer());
3313   }
3314   case Builtin::BI__builtin___memset_chk: {
3315     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3316     Expr::EvalResult SizeResult, DstSizeResult;
3317     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3318         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3319       break;
3320     llvm::APSInt Size = SizeResult.Val.getInt();
3321     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3322     if (Size.ugt(DstSize))
3323       break;
3324     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3325     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3326                                          Builder.getInt8Ty());
3327     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3328     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3329     return RValue::get(Dest.getPointer());
3330   }
3331   case Builtin::BI__builtin_wmemcmp: {
3332     // The MSVC runtime library does not provide a definition of wmemcmp, so we
3333     // need an inline implementation.
3334     if (!getTarget().getTriple().isOSMSVCRT())
3335       break;
3336 
3337     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3338 
3339     Value *Dst = EmitScalarExpr(E->getArg(0));
3340     Value *Src = EmitScalarExpr(E->getArg(1));
3341     Value *Size = EmitScalarExpr(E->getArg(2));
3342 
3343     BasicBlock *Entry = Builder.GetInsertBlock();
3344     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3345     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3346     BasicBlock *Next = createBasicBlock("wmemcmp.next");
3347     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3348     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3349     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3350 
3351     EmitBlock(CmpGT);
3352     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3353     DstPhi->addIncoming(Dst, Entry);
3354     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3355     SrcPhi->addIncoming(Src, Entry);
3356     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3357     SizePhi->addIncoming(Size, Entry);
3358     CharUnits WCharAlign =
3359         getContext().getTypeAlignInChars(getContext().WCharTy);
3360     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3361     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3362     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3363     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3364 
3365     EmitBlock(CmpLT);
3366     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3367     Builder.CreateCondBr(DstLtSrc, Exit, Next);
3368 
3369     EmitBlock(Next);
3370     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3371     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3372     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3373     Value *NextSizeEq0 =
3374         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3375     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3376     DstPhi->addIncoming(NextDst, Next);
3377     SrcPhi->addIncoming(NextSrc, Next);
3378     SizePhi->addIncoming(NextSize, Next);
3379 
3380     EmitBlock(Exit);
3381     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3382     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3383     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3384     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3385     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3386     return RValue::get(Ret);
3387   }
3388   case Builtin::BI__builtin_dwarf_cfa: {
3389     // The offset in bytes from the first argument to the CFA.
3390     //
3391     // Why on earth is this in the frontend?  Is there any reason at
3392     // all that the backend can't reasonably determine this while
3393     // lowering llvm.eh.dwarf.cfa()?
3394     //
3395     // TODO: If there's a satisfactory reason, add a target hook for
3396     // this instead of hard-coding 0, which is correct for most targets.
3397     int32_t Offset = 0;
3398 
3399     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3400     return RValue::get(Builder.CreateCall(F,
3401                                       llvm::ConstantInt::get(Int32Ty, Offset)));
3402   }
3403   case Builtin::BI__builtin_return_address: {
3404     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3405                                                    getContext().UnsignedIntTy);
3406     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3407     return RValue::get(Builder.CreateCall(F, Depth));
3408   }
3409   case Builtin::BI_ReturnAddress: {
3410     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3411     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3412   }
3413   case Builtin::BI__builtin_frame_address: {
3414     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3415                                                    getContext().UnsignedIntTy);
3416     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3417     return RValue::get(Builder.CreateCall(F, Depth));
3418   }
3419   case Builtin::BI__builtin_extract_return_addr: {
3420     Value *Address = EmitScalarExpr(E->getArg(0));
3421     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3422     return RValue::get(Result);
3423   }
3424   case Builtin::BI__builtin_frob_return_addr: {
3425     Value *Address = EmitScalarExpr(E->getArg(0));
3426     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3427     return RValue::get(Result);
3428   }
3429   case Builtin::BI__builtin_dwarf_sp_column: {
3430     llvm::IntegerType *Ty
3431       = cast<llvm::IntegerType>(ConvertType(E->getType()));
3432     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3433     if (Column == -1) {
3434       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3435       return RValue::get(llvm::UndefValue::get(Ty));
3436     }
3437     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3438   }
3439   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3440     Value *Address = EmitScalarExpr(E->getArg(0));
3441     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3442       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3443     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3444   }
3445   case Builtin::BI__builtin_eh_return: {
3446     Value *Int = EmitScalarExpr(E->getArg(0));
3447     Value *Ptr = EmitScalarExpr(E->getArg(1));
3448 
3449     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3450     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
3451            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
3452     Function *F =
3453         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3454                                                     : Intrinsic::eh_return_i64);
3455     Builder.CreateCall(F, {Int, Ptr});
3456     Builder.CreateUnreachable();
3457 
3458     // We do need to preserve an insertion point.
3459     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3460 
3461     return RValue::get(nullptr);
3462   }
3463   case Builtin::BI__builtin_unwind_init: {
3464     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3465     return RValue::get(Builder.CreateCall(F));
3466   }
3467   case Builtin::BI__builtin_extend_pointer: {
3468     // Extends a pointer to the size of an _Unwind_Word, which is
3469     // uint64_t on all platforms.  Generally this gets poked into a
3470     // register and eventually used as an address, so if the
3471     // addressing registers are wider than pointers and the platform
3472     // doesn't implicitly ignore high-order bits when doing
3473     // addressing, we need to make sure we zext / sext based on
3474     // the platform's expectations.
3475     //
3476     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3477 
3478     // Cast the pointer to intptr_t.
3479     Value *Ptr = EmitScalarExpr(E->getArg(0));
3480     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3481 
3482     // If that's 64 bits, we're done.
3483     if (IntPtrTy->getBitWidth() == 64)
3484       return RValue::get(Result);
3485 
3486     // Otherwise, ask the codegen data what to do.
3487     if (getTargetHooks().extendPointerWithSExt())
3488       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3489     else
3490       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3491   }
3492   case Builtin::BI__builtin_setjmp: {
3493     // Buffer is a void**.
3494     Address Buf = EmitPointerWithAlignment(E->getArg(0));
3495 
3496     // Store the frame pointer to the setjmp buffer.
3497     Value *FrameAddr = Builder.CreateCall(
3498         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3499         ConstantInt::get(Int32Ty, 0));
3500     Builder.CreateStore(FrameAddr, Buf);
3501 
3502     // Store the stack pointer to the setjmp buffer.
3503     Value *StackAddr =
3504         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3505     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3506     Builder.CreateStore(StackAddr, StackSaveSlot);
3507 
3508     // Call LLVM's EH setjmp, which is lightweight.
3509     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3510     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3511     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3512   }
3513   case Builtin::BI__builtin_longjmp: {
3514     Value *Buf = EmitScalarExpr(E->getArg(0));
3515     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3516 
3517     // Call LLVM's EH longjmp, which is lightweight.
3518     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3519 
3520     // longjmp doesn't return; mark this as unreachable.
3521     Builder.CreateUnreachable();
3522 
3523     // We do need to preserve an insertion point.
3524     EmitBlock(createBasicBlock("longjmp.cont"));
3525 
3526     return RValue::get(nullptr);
3527   }
3528   case Builtin::BI__builtin_launder: {
3529     const Expr *Arg = E->getArg(0);
3530     QualType ArgTy = Arg->getType()->getPointeeType();
3531     Value *Ptr = EmitScalarExpr(Arg);
3532     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3533       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3534 
3535     return RValue::get(Ptr);
3536   }
3537   case Builtin::BI__sync_fetch_and_add:
3538   case Builtin::BI__sync_fetch_and_sub:
3539   case Builtin::BI__sync_fetch_and_or:
3540   case Builtin::BI__sync_fetch_and_and:
3541   case Builtin::BI__sync_fetch_and_xor:
3542   case Builtin::BI__sync_fetch_and_nand:
3543   case Builtin::BI__sync_add_and_fetch:
3544   case Builtin::BI__sync_sub_and_fetch:
3545   case Builtin::BI__sync_and_and_fetch:
3546   case Builtin::BI__sync_or_and_fetch:
3547   case Builtin::BI__sync_xor_and_fetch:
3548   case Builtin::BI__sync_nand_and_fetch:
3549   case Builtin::BI__sync_val_compare_and_swap:
3550   case Builtin::BI__sync_bool_compare_and_swap:
3551   case Builtin::BI__sync_lock_test_and_set:
3552   case Builtin::BI__sync_lock_release:
3553   case Builtin::BI__sync_swap:
3554     llvm_unreachable("Shouldn't make it through sema");
3555   case Builtin::BI__sync_fetch_and_add_1:
3556   case Builtin::BI__sync_fetch_and_add_2:
3557   case Builtin::BI__sync_fetch_and_add_4:
3558   case Builtin::BI__sync_fetch_and_add_8:
3559   case Builtin::BI__sync_fetch_and_add_16:
3560     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3561   case Builtin::BI__sync_fetch_and_sub_1:
3562   case Builtin::BI__sync_fetch_and_sub_2:
3563   case Builtin::BI__sync_fetch_and_sub_4:
3564   case Builtin::BI__sync_fetch_and_sub_8:
3565   case Builtin::BI__sync_fetch_and_sub_16:
3566     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3567   case Builtin::BI__sync_fetch_and_or_1:
3568   case Builtin::BI__sync_fetch_and_or_2:
3569   case Builtin::BI__sync_fetch_and_or_4:
3570   case Builtin::BI__sync_fetch_and_or_8:
3571   case Builtin::BI__sync_fetch_and_or_16:
3572     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3573   case Builtin::BI__sync_fetch_and_and_1:
3574   case Builtin::BI__sync_fetch_and_and_2:
3575   case Builtin::BI__sync_fetch_and_and_4:
3576   case Builtin::BI__sync_fetch_and_and_8:
3577   case Builtin::BI__sync_fetch_and_and_16:
3578     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3579   case Builtin::BI__sync_fetch_and_xor_1:
3580   case Builtin::BI__sync_fetch_and_xor_2:
3581   case Builtin::BI__sync_fetch_and_xor_4:
3582   case Builtin::BI__sync_fetch_and_xor_8:
3583   case Builtin::BI__sync_fetch_and_xor_16:
3584     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3585   case Builtin::BI__sync_fetch_and_nand_1:
3586   case Builtin::BI__sync_fetch_and_nand_2:
3587   case Builtin::BI__sync_fetch_and_nand_4:
3588   case Builtin::BI__sync_fetch_and_nand_8:
3589   case Builtin::BI__sync_fetch_and_nand_16:
3590     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3591 
3592   // Clang extensions: not overloaded yet.
3593   case Builtin::BI__sync_fetch_and_min:
3594     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3595   case Builtin::BI__sync_fetch_and_max:
3596     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3597   case Builtin::BI__sync_fetch_and_umin:
3598     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3599   case Builtin::BI__sync_fetch_and_umax:
3600     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3601 
3602   case Builtin::BI__sync_add_and_fetch_1:
3603   case Builtin::BI__sync_add_and_fetch_2:
3604   case Builtin::BI__sync_add_and_fetch_4:
3605   case Builtin::BI__sync_add_and_fetch_8:
3606   case Builtin::BI__sync_add_and_fetch_16:
3607     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3608                                 llvm::Instruction::Add);
3609   case Builtin::BI__sync_sub_and_fetch_1:
3610   case Builtin::BI__sync_sub_and_fetch_2:
3611   case Builtin::BI__sync_sub_and_fetch_4:
3612   case Builtin::BI__sync_sub_and_fetch_8:
3613   case Builtin::BI__sync_sub_and_fetch_16:
3614     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3615                                 llvm::Instruction::Sub);
3616   case Builtin::BI__sync_and_and_fetch_1:
3617   case Builtin::BI__sync_and_and_fetch_2:
3618   case Builtin::BI__sync_and_and_fetch_4:
3619   case Builtin::BI__sync_and_and_fetch_8:
3620   case Builtin::BI__sync_and_and_fetch_16:
3621     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3622                                 llvm::Instruction::And);
3623   case Builtin::BI__sync_or_and_fetch_1:
3624   case Builtin::BI__sync_or_and_fetch_2:
3625   case Builtin::BI__sync_or_and_fetch_4:
3626   case Builtin::BI__sync_or_and_fetch_8:
3627   case Builtin::BI__sync_or_and_fetch_16:
3628     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3629                                 llvm::Instruction::Or);
3630   case Builtin::BI__sync_xor_and_fetch_1:
3631   case Builtin::BI__sync_xor_and_fetch_2:
3632   case Builtin::BI__sync_xor_and_fetch_4:
3633   case Builtin::BI__sync_xor_and_fetch_8:
3634   case Builtin::BI__sync_xor_and_fetch_16:
3635     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3636                                 llvm::Instruction::Xor);
3637   case Builtin::BI__sync_nand_and_fetch_1:
3638   case Builtin::BI__sync_nand_and_fetch_2:
3639   case Builtin::BI__sync_nand_and_fetch_4:
3640   case Builtin::BI__sync_nand_and_fetch_8:
3641   case Builtin::BI__sync_nand_and_fetch_16:
3642     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3643                                 llvm::Instruction::And, true);
3644 
3645   case Builtin::BI__sync_val_compare_and_swap_1:
3646   case Builtin::BI__sync_val_compare_and_swap_2:
3647   case Builtin::BI__sync_val_compare_and_swap_4:
3648   case Builtin::BI__sync_val_compare_and_swap_8:
3649   case Builtin::BI__sync_val_compare_and_swap_16:
3650     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3651 
3652   case Builtin::BI__sync_bool_compare_and_swap_1:
3653   case Builtin::BI__sync_bool_compare_and_swap_2:
3654   case Builtin::BI__sync_bool_compare_and_swap_4:
3655   case Builtin::BI__sync_bool_compare_and_swap_8:
3656   case Builtin::BI__sync_bool_compare_and_swap_16:
3657     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3658 
3659   case Builtin::BI__sync_swap_1:
3660   case Builtin::BI__sync_swap_2:
3661   case Builtin::BI__sync_swap_4:
3662   case Builtin::BI__sync_swap_8:
3663   case Builtin::BI__sync_swap_16:
3664     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3665 
3666   case Builtin::BI__sync_lock_test_and_set_1:
3667   case Builtin::BI__sync_lock_test_and_set_2:
3668   case Builtin::BI__sync_lock_test_and_set_4:
3669   case Builtin::BI__sync_lock_test_and_set_8:
3670   case Builtin::BI__sync_lock_test_and_set_16:
3671     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3672 
3673   case Builtin::BI__sync_lock_release_1:
3674   case Builtin::BI__sync_lock_release_2:
3675   case Builtin::BI__sync_lock_release_4:
3676   case Builtin::BI__sync_lock_release_8:
3677   case Builtin::BI__sync_lock_release_16: {
3678     Value *Ptr = EmitScalarExpr(E->getArg(0));
3679     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3680     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3681     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3682                                              StoreSize.getQuantity() * 8);
3683     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3684     llvm::StoreInst *Store =
3685       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3686                                  StoreSize);
3687     Store->setAtomic(llvm::AtomicOrdering::Release);
3688     return RValue::get(nullptr);
3689   }
3690 
3691   case Builtin::BI__sync_synchronize: {
3692     // We assume this is supposed to correspond to a C++0x-style
3693     // sequentially-consistent fence (i.e. this is only usable for
3694     // synchronization, not device I/O or anything like that). This intrinsic
3695     // is really badly designed in the sense that in theory, there isn't
3696     // any way to safely use it... but in practice, it mostly works
3697     // to use it with non-atomic loads and stores to get acquire/release
3698     // semantics.
3699     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3700     return RValue::get(nullptr);
3701   }
3702 
3703   case Builtin::BI__builtin_nontemporal_load:
3704     return RValue::get(EmitNontemporalLoad(*this, E));
3705   case Builtin::BI__builtin_nontemporal_store:
3706     return RValue::get(EmitNontemporalStore(*this, E));
3707   case Builtin::BI__c11_atomic_is_lock_free:
3708   case Builtin::BI__atomic_is_lock_free: {
3709     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3710     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3711     // _Atomic(T) is always properly-aligned.
3712     const char *LibCallName = "__atomic_is_lock_free";
3713     CallArgList Args;
3714     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3715              getContext().getSizeType());
3716     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3717       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3718                getContext().VoidPtrTy);
3719     else
3720       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3721                getContext().VoidPtrTy);
3722     const CGFunctionInfo &FuncInfo =
3723         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3724     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3725     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3726     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3727                     ReturnValueSlot(), Args);
3728   }
3729 
3730   case Builtin::BI__atomic_test_and_set: {
3731     // Look at the argument type to determine whether this is a volatile
3732     // operation. The parameter type is always volatile.
3733     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3734     bool Volatile =
3735         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3736 
3737     Value *Ptr = EmitScalarExpr(E->getArg(0));
3738     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3739     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3740     Value *NewVal = Builder.getInt8(1);
3741     Value *Order = EmitScalarExpr(E->getArg(1));
3742     if (isa<llvm::ConstantInt>(Order)) {
3743       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3744       AtomicRMWInst *Result = nullptr;
3745       switch (ord) {
3746       case 0:  // memory_order_relaxed
3747       default: // invalid order
3748         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3749                                          llvm::AtomicOrdering::Monotonic);
3750         break;
3751       case 1: // memory_order_consume
3752       case 2: // memory_order_acquire
3753         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3754                                          llvm::AtomicOrdering::Acquire);
3755         break;
3756       case 3: // memory_order_release
3757         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3758                                          llvm::AtomicOrdering::Release);
3759         break;
3760       case 4: // memory_order_acq_rel
3761 
3762         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3763                                          llvm::AtomicOrdering::AcquireRelease);
3764         break;
3765       case 5: // memory_order_seq_cst
3766         Result = Builder.CreateAtomicRMW(
3767             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3768             llvm::AtomicOrdering::SequentiallyConsistent);
3769         break;
3770       }
3771       Result->setVolatile(Volatile);
3772       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3773     }
3774 
3775     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3776 
3777     llvm::BasicBlock *BBs[5] = {
3778       createBasicBlock("monotonic", CurFn),
3779       createBasicBlock("acquire", CurFn),
3780       createBasicBlock("release", CurFn),
3781       createBasicBlock("acqrel", CurFn),
3782       createBasicBlock("seqcst", CurFn)
3783     };
3784     llvm::AtomicOrdering Orders[5] = {
3785         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3786         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3787         llvm::AtomicOrdering::SequentiallyConsistent};
3788 
3789     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3790     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3791 
3792     Builder.SetInsertPoint(ContBB);
3793     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3794 
3795     for (unsigned i = 0; i < 5; ++i) {
3796       Builder.SetInsertPoint(BBs[i]);
3797       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3798                                                    Ptr, NewVal, Orders[i]);
3799       RMW->setVolatile(Volatile);
3800       Result->addIncoming(RMW, BBs[i]);
3801       Builder.CreateBr(ContBB);
3802     }
3803 
3804     SI->addCase(Builder.getInt32(0), BBs[0]);
3805     SI->addCase(Builder.getInt32(1), BBs[1]);
3806     SI->addCase(Builder.getInt32(2), BBs[1]);
3807     SI->addCase(Builder.getInt32(3), BBs[2]);
3808     SI->addCase(Builder.getInt32(4), BBs[3]);
3809     SI->addCase(Builder.getInt32(5), BBs[4]);
3810 
3811     Builder.SetInsertPoint(ContBB);
3812     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3813   }
3814 
3815   case Builtin::BI__atomic_clear: {
3816     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3817     bool Volatile =
3818         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3819 
3820     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
3821     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
3822     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3823     Value *NewVal = Builder.getInt8(0);
3824     Value *Order = EmitScalarExpr(E->getArg(1));
3825     if (isa<llvm::ConstantInt>(Order)) {
3826       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3827       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3828       switch (ord) {
3829       case 0:  // memory_order_relaxed
3830       default: // invalid order
3831         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
3832         break;
3833       case 3:  // memory_order_release
3834         Store->setOrdering(llvm::AtomicOrdering::Release);
3835         break;
3836       case 5:  // memory_order_seq_cst
3837         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3838         break;
3839       }
3840       return RValue::get(nullptr);
3841     }
3842 
3843     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3844 
3845     llvm::BasicBlock *BBs[3] = {
3846       createBasicBlock("monotonic", CurFn),
3847       createBasicBlock("release", CurFn),
3848       createBasicBlock("seqcst", CurFn)
3849     };
3850     llvm::AtomicOrdering Orders[3] = {
3851         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3852         llvm::AtomicOrdering::SequentiallyConsistent};
3853 
3854     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3855     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3856 
3857     for (unsigned i = 0; i < 3; ++i) {
3858       Builder.SetInsertPoint(BBs[i]);
3859       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3860       Store->setOrdering(Orders[i]);
3861       Builder.CreateBr(ContBB);
3862     }
3863 
3864     SI->addCase(Builder.getInt32(0), BBs[0]);
3865     SI->addCase(Builder.getInt32(3), BBs[1]);
3866     SI->addCase(Builder.getInt32(5), BBs[2]);
3867 
3868     Builder.SetInsertPoint(ContBB);
3869     return RValue::get(nullptr);
3870   }
3871 
3872   case Builtin::BI__atomic_thread_fence:
3873   case Builtin::BI__atomic_signal_fence:
3874   case Builtin::BI__c11_atomic_thread_fence:
3875   case Builtin::BI__c11_atomic_signal_fence: {
3876     llvm::SyncScope::ID SSID;
3877     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3878         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3879       SSID = llvm::SyncScope::SingleThread;
3880     else
3881       SSID = llvm::SyncScope::System;
3882     Value *Order = EmitScalarExpr(E->getArg(0));
3883     if (isa<llvm::ConstantInt>(Order)) {
3884       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3885       switch (ord) {
3886       case 0:  // memory_order_relaxed
3887       default: // invalid order
3888         break;
3889       case 1:  // memory_order_consume
3890       case 2:  // memory_order_acquire
3891         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3892         break;
3893       case 3:  // memory_order_release
3894         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3895         break;
3896       case 4:  // memory_order_acq_rel
3897         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3898         break;
3899       case 5:  // memory_order_seq_cst
3900         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3901         break;
3902       }
3903       return RValue::get(nullptr);
3904     }
3905 
3906     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3907     AcquireBB = createBasicBlock("acquire", CurFn);
3908     ReleaseBB = createBasicBlock("release", CurFn);
3909     AcqRelBB = createBasicBlock("acqrel", CurFn);
3910     SeqCstBB = createBasicBlock("seqcst", CurFn);
3911     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3912 
3913     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3914     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3915 
3916     Builder.SetInsertPoint(AcquireBB);
3917     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3918     Builder.CreateBr(ContBB);
3919     SI->addCase(Builder.getInt32(1), AcquireBB);
3920     SI->addCase(Builder.getInt32(2), AcquireBB);
3921 
3922     Builder.SetInsertPoint(ReleaseBB);
3923     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3924     Builder.CreateBr(ContBB);
3925     SI->addCase(Builder.getInt32(3), ReleaseBB);
3926 
3927     Builder.SetInsertPoint(AcqRelBB);
3928     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3929     Builder.CreateBr(ContBB);
3930     SI->addCase(Builder.getInt32(4), AcqRelBB);
3931 
3932     Builder.SetInsertPoint(SeqCstBB);
3933     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3934     Builder.CreateBr(ContBB);
3935     SI->addCase(Builder.getInt32(5), SeqCstBB);
3936 
3937     Builder.SetInsertPoint(ContBB);
3938     return RValue::get(nullptr);
3939   }
3940 
3941   case Builtin::BI__builtin_signbit:
3942   case Builtin::BI__builtin_signbitf:
3943   case Builtin::BI__builtin_signbitl: {
3944     return RValue::get(
3945         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3946                            ConvertType(E->getType())));
3947   }
3948   case Builtin::BI__warn_memset_zero_len:
3949     return RValue::getIgnored();
3950   case Builtin::BI__annotation: {
3951     // Re-encode each wide string to UTF8 and make an MDString.
3952     SmallVector<Metadata *, 1> Strings;
3953     for (const Expr *Arg : E->arguments()) {
3954       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3955       assert(Str->getCharByteWidth() == 2);
3956       StringRef WideBytes = Str->getBytes();
3957       std::string StrUtf8;
3958       if (!convertUTF16ToUTF8String(
3959               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3960         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3961         continue;
3962       }
3963       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3964     }
3965 
3966     // Build and MDTuple of MDStrings and emit the intrinsic call.
3967     llvm::Function *F =
3968         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3969     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3970     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3971     return RValue::getIgnored();
3972   }
3973   case Builtin::BI__builtin_annotation: {
3974     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3975     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3976                                       AnnVal->getType());
3977 
3978     // Get the annotation string, go through casts. Sema requires this to be a
3979     // non-wide string literal, potentially casted, so the cast<> is safe.
3980     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3981     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3982     return RValue::get(
3983         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
3984   }
3985   case Builtin::BI__builtin_addcb:
3986   case Builtin::BI__builtin_addcs:
3987   case Builtin::BI__builtin_addc:
3988   case Builtin::BI__builtin_addcl:
3989   case Builtin::BI__builtin_addcll:
3990   case Builtin::BI__builtin_subcb:
3991   case Builtin::BI__builtin_subcs:
3992   case Builtin::BI__builtin_subc:
3993   case Builtin::BI__builtin_subcl:
3994   case Builtin::BI__builtin_subcll: {
3995 
3996     // We translate all of these builtins from expressions of the form:
3997     //   int x = ..., y = ..., carryin = ..., carryout, result;
3998     //   result = __builtin_addc(x, y, carryin, &carryout);
3999     //
4000     // to LLVM IR of the form:
4001     //
4002     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4003     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4004     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
4005     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4006     //                                                       i32 %carryin)
4007     //   %result = extractvalue {i32, i1} %tmp2, 0
4008     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
4009     //   %tmp3 = or i1 %carry1, %carry2
4010     //   %tmp4 = zext i1 %tmp3 to i32
4011     //   store i32 %tmp4, i32* %carryout
4012 
4013     // Scalarize our inputs.
4014     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4015     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4016     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4017     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4018 
4019     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4020     llvm::Intrinsic::ID IntrinsicId;
4021     switch (BuiltinID) {
4022     default: llvm_unreachable("Unknown multiprecision builtin id.");
4023     case Builtin::BI__builtin_addcb:
4024     case Builtin::BI__builtin_addcs:
4025     case Builtin::BI__builtin_addc:
4026     case Builtin::BI__builtin_addcl:
4027     case Builtin::BI__builtin_addcll:
4028       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4029       break;
4030     case Builtin::BI__builtin_subcb:
4031     case Builtin::BI__builtin_subcs:
4032     case Builtin::BI__builtin_subc:
4033     case Builtin::BI__builtin_subcl:
4034     case Builtin::BI__builtin_subcll:
4035       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4036       break;
4037     }
4038 
4039     // Construct our resulting LLVM IR expression.
4040     llvm::Value *Carry1;
4041     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4042                                               X, Y, Carry1);
4043     llvm::Value *Carry2;
4044     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4045                                               Sum1, Carryin, Carry2);
4046     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4047                                                X->getType());
4048     Builder.CreateStore(CarryOut, CarryOutPtr);
4049     return RValue::get(Sum2);
4050   }
4051 
4052   case Builtin::BI__builtin_add_overflow:
4053   case Builtin::BI__builtin_sub_overflow:
4054   case Builtin::BI__builtin_mul_overflow: {
4055     const clang::Expr *LeftArg = E->getArg(0);
4056     const clang::Expr *RightArg = E->getArg(1);
4057     const clang::Expr *ResultArg = E->getArg(2);
4058 
4059     clang::QualType ResultQTy =
4060         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4061 
4062     WidthAndSignedness LeftInfo =
4063         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4064     WidthAndSignedness RightInfo =
4065         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4066     WidthAndSignedness ResultInfo =
4067         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4068 
4069     // Handle mixed-sign multiplication as a special case, because adding
4070     // runtime or backend support for our generic irgen would be too expensive.
4071     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4072       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4073                                           RightInfo, ResultArg, ResultQTy,
4074                                           ResultInfo);
4075 
4076     if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4077                                               ResultInfo))
4078       return EmitCheckedUnsignedMultiplySignedResult(
4079           *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4080           ResultInfo);
4081 
4082     WidthAndSignedness EncompassingInfo =
4083         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4084 
4085     llvm::Type *EncompassingLLVMTy =
4086         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4087 
4088     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4089 
4090     llvm::Intrinsic::ID IntrinsicId;
4091     switch (BuiltinID) {
4092     default:
4093       llvm_unreachable("Unknown overflow builtin id.");
4094     case Builtin::BI__builtin_add_overflow:
4095       IntrinsicId = EncompassingInfo.Signed
4096                         ? llvm::Intrinsic::sadd_with_overflow
4097                         : llvm::Intrinsic::uadd_with_overflow;
4098       break;
4099     case Builtin::BI__builtin_sub_overflow:
4100       IntrinsicId = EncompassingInfo.Signed
4101                         ? llvm::Intrinsic::ssub_with_overflow
4102                         : llvm::Intrinsic::usub_with_overflow;
4103       break;
4104     case Builtin::BI__builtin_mul_overflow:
4105       IntrinsicId = EncompassingInfo.Signed
4106                         ? llvm::Intrinsic::smul_with_overflow
4107                         : llvm::Intrinsic::umul_with_overflow;
4108       break;
4109     }
4110 
4111     llvm::Value *Left = EmitScalarExpr(LeftArg);
4112     llvm::Value *Right = EmitScalarExpr(RightArg);
4113     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4114 
4115     // Extend each operand to the encompassing type.
4116     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4117     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4118 
4119     // Perform the operation on the extended values.
4120     llvm::Value *Overflow, *Result;
4121     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4122 
4123     if (EncompassingInfo.Width > ResultInfo.Width) {
4124       // The encompassing type is wider than the result type, so we need to
4125       // truncate it.
4126       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4127 
4128       // To see if the truncation caused an overflow, we will extend
4129       // the result and then compare it to the original result.
4130       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4131           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4132       llvm::Value *TruncationOverflow =
4133           Builder.CreateICmpNE(Result, ResultTruncExt);
4134 
4135       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4136       Result = ResultTrunc;
4137     }
4138 
4139     // Finally, store the result using the pointer.
4140     bool isVolatile =
4141       ResultArg->getType()->getPointeeType().isVolatileQualified();
4142     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4143 
4144     return RValue::get(Overflow);
4145   }
4146 
4147   case Builtin::BI__builtin_uadd_overflow:
4148   case Builtin::BI__builtin_uaddl_overflow:
4149   case Builtin::BI__builtin_uaddll_overflow:
4150   case Builtin::BI__builtin_usub_overflow:
4151   case Builtin::BI__builtin_usubl_overflow:
4152   case Builtin::BI__builtin_usubll_overflow:
4153   case Builtin::BI__builtin_umul_overflow:
4154   case Builtin::BI__builtin_umull_overflow:
4155   case Builtin::BI__builtin_umulll_overflow:
4156   case Builtin::BI__builtin_sadd_overflow:
4157   case Builtin::BI__builtin_saddl_overflow:
4158   case Builtin::BI__builtin_saddll_overflow:
4159   case Builtin::BI__builtin_ssub_overflow:
4160   case Builtin::BI__builtin_ssubl_overflow:
4161   case Builtin::BI__builtin_ssubll_overflow:
4162   case Builtin::BI__builtin_smul_overflow:
4163   case Builtin::BI__builtin_smull_overflow:
4164   case Builtin::BI__builtin_smulll_overflow: {
4165 
4166     // We translate all of these builtins directly to the relevant llvm IR node.
4167 
4168     // Scalarize our inputs.
4169     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4170     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4171     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4172 
4173     // Decide which of the overflow intrinsics we are lowering to:
4174     llvm::Intrinsic::ID IntrinsicId;
4175     switch (BuiltinID) {
4176     default: llvm_unreachable("Unknown overflow builtin id.");
4177     case Builtin::BI__builtin_uadd_overflow:
4178     case Builtin::BI__builtin_uaddl_overflow:
4179     case Builtin::BI__builtin_uaddll_overflow:
4180       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4181       break;
4182     case Builtin::BI__builtin_usub_overflow:
4183     case Builtin::BI__builtin_usubl_overflow:
4184     case Builtin::BI__builtin_usubll_overflow:
4185       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4186       break;
4187     case Builtin::BI__builtin_umul_overflow:
4188     case Builtin::BI__builtin_umull_overflow:
4189     case Builtin::BI__builtin_umulll_overflow:
4190       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4191       break;
4192     case Builtin::BI__builtin_sadd_overflow:
4193     case Builtin::BI__builtin_saddl_overflow:
4194     case Builtin::BI__builtin_saddll_overflow:
4195       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4196       break;
4197     case Builtin::BI__builtin_ssub_overflow:
4198     case Builtin::BI__builtin_ssubl_overflow:
4199     case Builtin::BI__builtin_ssubll_overflow:
4200       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4201       break;
4202     case Builtin::BI__builtin_smul_overflow:
4203     case Builtin::BI__builtin_smull_overflow:
4204     case Builtin::BI__builtin_smulll_overflow:
4205       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4206       break;
4207     }
4208 
4209 
4210     llvm::Value *Carry;
4211     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4212     Builder.CreateStore(Sum, SumOutPtr);
4213 
4214     return RValue::get(Carry);
4215   }
4216   case Builtin::BI__builtin_addressof:
4217     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4218   case Builtin::BI__builtin_operator_new:
4219     return EmitBuiltinNewDeleteCall(
4220         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4221   case Builtin::BI__builtin_operator_delete:
4222     return EmitBuiltinNewDeleteCall(
4223         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4224 
4225   case Builtin::BI__builtin_is_aligned:
4226     return EmitBuiltinIsAligned(E);
4227   case Builtin::BI__builtin_align_up:
4228     return EmitBuiltinAlignTo(E, true);
4229   case Builtin::BI__builtin_align_down:
4230     return EmitBuiltinAlignTo(E, false);
4231 
4232   case Builtin::BI__noop:
4233     // __noop always evaluates to an integer literal zero.
4234     return RValue::get(ConstantInt::get(IntTy, 0));
4235   case Builtin::BI__builtin_call_with_static_chain: {
4236     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4237     const Expr *Chain = E->getArg(1);
4238     return EmitCall(Call->getCallee()->getType(),
4239                     EmitCallee(Call->getCallee()), Call, ReturnValue,
4240                     EmitScalarExpr(Chain));
4241   }
4242   case Builtin::BI_InterlockedExchange8:
4243   case Builtin::BI_InterlockedExchange16:
4244   case Builtin::BI_InterlockedExchange:
4245   case Builtin::BI_InterlockedExchangePointer:
4246     return RValue::get(
4247         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4248   case Builtin::BI_InterlockedCompareExchangePointer:
4249   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4250     llvm::Type *RTy;
4251     llvm::IntegerType *IntType =
4252       IntegerType::get(getLLVMContext(),
4253                        getContext().getTypeSize(E->getType()));
4254     llvm::Type *IntPtrType = IntType->getPointerTo();
4255 
4256     llvm::Value *Destination =
4257       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4258 
4259     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4260     RTy = Exchange->getType();
4261     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4262 
4263     llvm::Value *Comparand =
4264       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4265 
4266     auto Ordering =
4267       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4268       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4269 
4270     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4271                                               Ordering, Ordering);
4272     Result->setVolatile(true);
4273 
4274     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4275                                                                          0),
4276                                               RTy));
4277   }
4278   case Builtin::BI_InterlockedCompareExchange8:
4279   case Builtin::BI_InterlockedCompareExchange16:
4280   case Builtin::BI_InterlockedCompareExchange:
4281   case Builtin::BI_InterlockedCompareExchange64:
4282     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4283   case Builtin::BI_InterlockedIncrement16:
4284   case Builtin::BI_InterlockedIncrement:
4285     return RValue::get(
4286         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4287   case Builtin::BI_InterlockedDecrement16:
4288   case Builtin::BI_InterlockedDecrement:
4289     return RValue::get(
4290         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4291   case Builtin::BI_InterlockedAnd8:
4292   case Builtin::BI_InterlockedAnd16:
4293   case Builtin::BI_InterlockedAnd:
4294     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4295   case Builtin::BI_InterlockedExchangeAdd8:
4296   case Builtin::BI_InterlockedExchangeAdd16:
4297   case Builtin::BI_InterlockedExchangeAdd:
4298     return RValue::get(
4299         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4300   case Builtin::BI_InterlockedExchangeSub8:
4301   case Builtin::BI_InterlockedExchangeSub16:
4302   case Builtin::BI_InterlockedExchangeSub:
4303     return RValue::get(
4304         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4305   case Builtin::BI_InterlockedOr8:
4306   case Builtin::BI_InterlockedOr16:
4307   case Builtin::BI_InterlockedOr:
4308     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4309   case Builtin::BI_InterlockedXor8:
4310   case Builtin::BI_InterlockedXor16:
4311   case Builtin::BI_InterlockedXor:
4312     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4313 
4314   case Builtin::BI_bittest64:
4315   case Builtin::BI_bittest:
4316   case Builtin::BI_bittestandcomplement64:
4317   case Builtin::BI_bittestandcomplement:
4318   case Builtin::BI_bittestandreset64:
4319   case Builtin::BI_bittestandreset:
4320   case Builtin::BI_bittestandset64:
4321   case Builtin::BI_bittestandset:
4322   case Builtin::BI_interlockedbittestandreset:
4323   case Builtin::BI_interlockedbittestandreset64:
4324   case Builtin::BI_interlockedbittestandset64:
4325   case Builtin::BI_interlockedbittestandset:
4326   case Builtin::BI_interlockedbittestandset_acq:
4327   case Builtin::BI_interlockedbittestandset_rel:
4328   case Builtin::BI_interlockedbittestandset_nf:
4329   case Builtin::BI_interlockedbittestandreset_acq:
4330   case Builtin::BI_interlockedbittestandreset_rel:
4331   case Builtin::BI_interlockedbittestandreset_nf:
4332     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4333 
4334     // These builtins exist to emit regular volatile loads and stores not
4335     // affected by the -fms-volatile setting.
4336   case Builtin::BI__iso_volatile_load8:
4337   case Builtin::BI__iso_volatile_load16:
4338   case Builtin::BI__iso_volatile_load32:
4339   case Builtin::BI__iso_volatile_load64:
4340     return RValue::get(EmitISOVolatileLoad(*this, E));
4341   case Builtin::BI__iso_volatile_store8:
4342   case Builtin::BI__iso_volatile_store16:
4343   case Builtin::BI__iso_volatile_store32:
4344   case Builtin::BI__iso_volatile_store64:
4345     return RValue::get(EmitISOVolatileStore(*this, E));
4346 
4347   case Builtin::BI__exception_code:
4348   case Builtin::BI_exception_code:
4349     return RValue::get(EmitSEHExceptionCode());
4350   case Builtin::BI__exception_info:
4351   case Builtin::BI_exception_info:
4352     return RValue::get(EmitSEHExceptionInfo());
4353   case Builtin::BI__abnormal_termination:
4354   case Builtin::BI_abnormal_termination:
4355     return RValue::get(EmitSEHAbnormalTermination());
4356   case Builtin::BI_setjmpex:
4357     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4358         E->getArg(0)->getType()->isPointerType())
4359       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4360     break;
4361   case Builtin::BI_setjmp:
4362     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4363         E->getArg(0)->getType()->isPointerType()) {
4364       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4365         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4366       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4367         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4368       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4369     }
4370     break;
4371 
4372   case Builtin::BI__GetExceptionInfo: {
4373     if (llvm::GlobalVariable *GV =
4374             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4375       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4376     break;
4377   }
4378 
4379   case Builtin::BI__fastfail:
4380     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4381 
4382   case Builtin::BI__builtin_coro_size: {
4383     auto & Context = getContext();
4384     auto SizeTy = Context.getSizeType();
4385     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4386     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4387     return RValue::get(Builder.CreateCall(F));
4388   }
4389 
4390   case Builtin::BI__builtin_coro_id:
4391     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4392   case Builtin::BI__builtin_coro_promise:
4393     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4394   case Builtin::BI__builtin_coro_resume:
4395     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4396   case Builtin::BI__builtin_coro_frame:
4397     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4398   case Builtin::BI__builtin_coro_noop:
4399     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4400   case Builtin::BI__builtin_coro_free:
4401     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4402   case Builtin::BI__builtin_coro_destroy:
4403     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4404   case Builtin::BI__builtin_coro_done:
4405     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4406   case Builtin::BI__builtin_coro_alloc:
4407     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4408   case Builtin::BI__builtin_coro_begin:
4409     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4410   case Builtin::BI__builtin_coro_end:
4411     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4412   case Builtin::BI__builtin_coro_suspend:
4413     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4414   case Builtin::BI__builtin_coro_param:
4415     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
4416 
4417   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4418   case Builtin::BIread_pipe:
4419   case Builtin::BIwrite_pipe: {
4420     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4421           *Arg1 = EmitScalarExpr(E->getArg(1));
4422     CGOpenCLRuntime OpenCLRT(CGM);
4423     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4424     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4425 
4426     // Type of the generic packet parameter.
4427     unsigned GenericAS =
4428         getContext().getTargetAddressSpace(LangAS::opencl_generic);
4429     llvm::Type *I8PTy = llvm::PointerType::get(
4430         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4431 
4432     // Testing which overloaded version we should generate the call for.
4433     if (2U == E->getNumArgs()) {
4434       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4435                                                              : "__write_pipe_2";
4436       // Creating a generic function type to be able to call with any builtin or
4437       // user defined type.
4438       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4439       llvm::FunctionType *FTy = llvm::FunctionType::get(
4440           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4441       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4442       return RValue::get(
4443           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4444                           {Arg0, BCast, PacketSize, PacketAlign}));
4445     } else {
4446       assert(4 == E->getNumArgs() &&
4447              "Illegal number of parameters to pipe function");
4448       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4449                                                              : "__write_pipe_4";
4450 
4451       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4452                               Int32Ty, Int32Ty};
4453       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4454             *Arg3 = EmitScalarExpr(E->getArg(3));
4455       llvm::FunctionType *FTy = llvm::FunctionType::get(
4456           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4457       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4458       // We know the third argument is an integer type, but we may need to cast
4459       // it to i32.
4460       if (Arg2->getType() != Int32Ty)
4461         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4462       return RValue::get(
4463           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4464                           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4465     }
4466   }
4467   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4468   // functions
4469   case Builtin::BIreserve_read_pipe:
4470   case Builtin::BIreserve_write_pipe:
4471   case Builtin::BIwork_group_reserve_read_pipe:
4472   case Builtin::BIwork_group_reserve_write_pipe:
4473   case Builtin::BIsub_group_reserve_read_pipe:
4474   case Builtin::BIsub_group_reserve_write_pipe: {
4475     // Composing the mangled name for the function.
4476     const char *Name;
4477     if (BuiltinID == Builtin::BIreserve_read_pipe)
4478       Name = "__reserve_read_pipe";
4479     else if (BuiltinID == Builtin::BIreserve_write_pipe)
4480       Name = "__reserve_write_pipe";
4481     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4482       Name = "__work_group_reserve_read_pipe";
4483     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4484       Name = "__work_group_reserve_write_pipe";
4485     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4486       Name = "__sub_group_reserve_read_pipe";
4487     else
4488       Name = "__sub_group_reserve_write_pipe";
4489 
4490     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4491           *Arg1 = EmitScalarExpr(E->getArg(1));
4492     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4493     CGOpenCLRuntime OpenCLRT(CGM);
4494     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4495     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4496 
4497     // Building the generic function prototype.
4498     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4499     llvm::FunctionType *FTy = llvm::FunctionType::get(
4500         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4501     // We know the second argument is an integer type, but we may need to cast
4502     // it to i32.
4503     if (Arg1->getType() != Int32Ty)
4504       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4505     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4506                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4507   }
4508   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4509   // functions
4510   case Builtin::BIcommit_read_pipe:
4511   case Builtin::BIcommit_write_pipe:
4512   case Builtin::BIwork_group_commit_read_pipe:
4513   case Builtin::BIwork_group_commit_write_pipe:
4514   case Builtin::BIsub_group_commit_read_pipe:
4515   case Builtin::BIsub_group_commit_write_pipe: {
4516     const char *Name;
4517     if (BuiltinID == Builtin::BIcommit_read_pipe)
4518       Name = "__commit_read_pipe";
4519     else if (BuiltinID == Builtin::BIcommit_write_pipe)
4520       Name = "__commit_write_pipe";
4521     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4522       Name = "__work_group_commit_read_pipe";
4523     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4524       Name = "__work_group_commit_write_pipe";
4525     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4526       Name = "__sub_group_commit_read_pipe";
4527     else
4528       Name = "__sub_group_commit_write_pipe";
4529 
4530     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4531           *Arg1 = EmitScalarExpr(E->getArg(1));
4532     CGOpenCLRuntime OpenCLRT(CGM);
4533     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4534     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4535 
4536     // Building the generic function prototype.
4537     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4538     llvm::FunctionType *FTy =
4539         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4540                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4541 
4542     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4543                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4544   }
4545   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4546   case Builtin::BIget_pipe_num_packets:
4547   case Builtin::BIget_pipe_max_packets: {
4548     const char *BaseName;
4549     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4550     if (BuiltinID == Builtin::BIget_pipe_num_packets)
4551       BaseName = "__get_pipe_num_packets";
4552     else
4553       BaseName = "__get_pipe_max_packets";
4554     std::string Name = std::string(BaseName) +
4555                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4556 
4557     // Building the generic function prototype.
4558     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4559     CGOpenCLRuntime OpenCLRT(CGM);
4560     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4561     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4562     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4563     llvm::FunctionType *FTy = llvm::FunctionType::get(
4564         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4565 
4566     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4567                                        {Arg0, PacketSize, PacketAlign}));
4568   }
4569 
4570   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4571   case Builtin::BIto_global:
4572   case Builtin::BIto_local:
4573   case Builtin::BIto_private: {
4574     auto Arg0 = EmitScalarExpr(E->getArg(0));
4575     auto NewArgT = llvm::PointerType::get(Int8Ty,
4576       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4577     auto NewRetT = llvm::PointerType::get(Int8Ty,
4578       CGM.getContext().getTargetAddressSpace(
4579         E->getType()->getPointeeType().getAddressSpace()));
4580     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4581     llvm::Value *NewArg;
4582     if (Arg0->getType()->getPointerAddressSpace() !=
4583         NewArgT->getPointerAddressSpace())
4584       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4585     else
4586       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4587     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4588     auto NewCall =
4589         EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4590     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4591       ConvertType(E->getType())));
4592   }
4593 
4594   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4595   // It contains four different overload formats specified in Table 6.13.17.1.
4596   case Builtin::BIenqueue_kernel: {
4597     StringRef Name; // Generated function call name
4598     unsigned NumArgs = E->getNumArgs();
4599 
4600     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4601     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4602         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4603 
4604     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4605     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4606     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4607     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4608     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4609 
4610     if (NumArgs == 4) {
4611       // The most basic form of the call with parameters:
4612       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4613       Name = "__enqueue_kernel_basic";
4614       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4615                               GenericVoidPtrTy};
4616       llvm::FunctionType *FTy = llvm::FunctionType::get(
4617           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4618 
4619       auto Info =
4620           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4621       llvm::Value *Kernel =
4622           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4623       llvm::Value *Block =
4624           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4625 
4626       AttrBuilder B;
4627       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4628       llvm::AttributeList ByValAttrSet =
4629           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4630 
4631       auto RTCall =
4632           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4633                           {Queue, Flags, Range, Kernel, Block});
4634       RTCall->setAttributes(ByValAttrSet);
4635       return RValue::get(RTCall);
4636     }
4637     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4638 
4639     // Create a temporary array to hold the sizes of local pointer arguments
4640     // for the block. \p First is the position of the first size argument.
4641     auto CreateArrayForSizeVar = [=](unsigned First)
4642         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4643       llvm::APInt ArraySize(32, NumArgs - First);
4644       QualType SizeArrayTy = getContext().getConstantArrayType(
4645           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4646           /*IndexTypeQuals=*/0);
4647       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4648       llvm::Value *TmpPtr = Tmp.getPointer();
4649       llvm::Value *TmpSize = EmitLifetimeStart(
4650           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4651       llvm::Value *ElemPtr;
4652       // Each of the following arguments specifies the size of the corresponding
4653       // argument passed to the enqueued block.
4654       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4655       for (unsigned I = First; I < NumArgs; ++I) {
4656         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4657         auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
4658         if (I == First)
4659           ElemPtr = GEP;
4660         auto *V =
4661             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4662         Builder.CreateAlignedStore(
4663             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4664       }
4665       return std::tie(ElemPtr, TmpSize, TmpPtr);
4666     };
4667 
4668     // Could have events and/or varargs.
4669     if (E->getArg(3)->getType()->isBlockPointerType()) {
4670       // No events passed, but has variadic arguments.
4671       Name = "__enqueue_kernel_varargs";
4672       auto Info =
4673           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4674       llvm::Value *Kernel =
4675           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4676       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4677       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4678       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4679 
4680       // Create a vector of the arguments, as well as a constant value to
4681       // express to the runtime the number of variadic arguments.
4682       llvm::Value *const Args[] = {Queue,  Flags,
4683                                    Range,  Kernel,
4684                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
4685                                    ElemPtr};
4686       llvm::Type *const ArgTys[] = {
4687           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4688           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4689 
4690       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4691       auto Call = RValue::get(
4692           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4693       if (TmpSize)
4694         EmitLifetimeEnd(TmpSize, TmpPtr);
4695       return Call;
4696     }
4697     // Any calls now have event arguments passed.
4698     if (NumArgs >= 7) {
4699       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4700       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4701           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4702 
4703       llvm::Value *NumEvents =
4704           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4705 
4706       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4707       // to be a null pointer constant (including `0` literal), we can take it
4708       // into account and emit null pointer directly.
4709       llvm::Value *EventWaitList = nullptr;
4710       if (E->getArg(4)->isNullPointerConstant(
4711               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4712         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4713       } else {
4714         EventWaitList = E->getArg(4)->getType()->isArrayType()
4715                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4716                         : EmitScalarExpr(E->getArg(4));
4717         // Convert to generic address space.
4718         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4719       }
4720       llvm::Value *EventRet = nullptr;
4721       if (E->getArg(5)->isNullPointerConstant(
4722               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4723         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4724       } else {
4725         EventRet =
4726             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4727       }
4728 
4729       auto Info =
4730           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4731       llvm::Value *Kernel =
4732           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4733       llvm::Value *Block =
4734           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4735 
4736       std::vector<llvm::Type *> ArgTys = {
4737           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
4738           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4739 
4740       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
4741                                          NumEvents, EventWaitList, EventRet,
4742                                          Kernel,    Block};
4743 
4744       if (NumArgs == 7) {
4745         // Has events but no variadics.
4746         Name = "__enqueue_kernel_basic_events";
4747         llvm::FunctionType *FTy = llvm::FunctionType::get(
4748             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4749         return RValue::get(
4750             EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4751                             llvm::ArrayRef<llvm::Value *>(Args)));
4752       }
4753       // Has event info and variadics
4754       // Pass the number of variadics to the runtime function too.
4755       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4756       ArgTys.push_back(Int32Ty);
4757       Name = "__enqueue_kernel_events_varargs";
4758 
4759       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4760       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4761       Args.push_back(ElemPtr);
4762       ArgTys.push_back(ElemPtr->getType());
4763 
4764       llvm::FunctionType *FTy = llvm::FunctionType::get(
4765           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4766       auto Call =
4767           RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4768                                       llvm::ArrayRef<llvm::Value *>(Args)));
4769       if (TmpSize)
4770         EmitLifetimeEnd(TmpSize, TmpPtr);
4771       return Call;
4772     }
4773     LLVM_FALLTHROUGH;
4774   }
4775   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4776   // parameter.
4777   case Builtin::BIget_kernel_work_group_size: {
4778     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4779         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4780     auto Info =
4781         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4782     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4783     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4784     return RValue::get(EmitRuntimeCall(
4785         CGM.CreateRuntimeFunction(
4786             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4787                                     false),
4788             "__get_kernel_work_group_size_impl"),
4789         {Kernel, Arg}));
4790   }
4791   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4792     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4793         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4794     auto Info =
4795         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4796     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4797     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4798     return RValue::get(EmitRuntimeCall(
4799         CGM.CreateRuntimeFunction(
4800             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4801                                     false),
4802             "__get_kernel_preferred_work_group_size_multiple_impl"),
4803         {Kernel, Arg}));
4804   }
4805   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4806   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4807     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4808         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4809     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4810     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4811     auto Info =
4812         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4813     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4814     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4815     const char *Name =
4816         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4817             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4818             : "__get_kernel_sub_group_count_for_ndrange_impl";
4819     return RValue::get(EmitRuntimeCall(
4820         CGM.CreateRuntimeFunction(
4821             llvm::FunctionType::get(
4822                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
4823                 false),
4824             Name),
4825         {NDRange, Kernel, Block}));
4826   }
4827 
4828   case Builtin::BI__builtin_store_half:
4829   case Builtin::BI__builtin_store_halff: {
4830     Value *Val = EmitScalarExpr(E->getArg(0));
4831     Address Address = EmitPointerWithAlignment(E->getArg(1));
4832     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
4833     return RValue::get(Builder.CreateStore(HalfVal, Address));
4834   }
4835   case Builtin::BI__builtin_load_half: {
4836     Address Address = EmitPointerWithAlignment(E->getArg(0));
4837     Value *HalfVal = Builder.CreateLoad(Address);
4838     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
4839   }
4840   case Builtin::BI__builtin_load_halff: {
4841     Address Address = EmitPointerWithAlignment(E->getArg(0));
4842     Value *HalfVal = Builder.CreateLoad(Address);
4843     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
4844   }
4845   case Builtin::BIprintf:
4846     if (getTarget().getTriple().isNVPTX())
4847       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
4848     if (getTarget().getTriple().getArch() == Triple::amdgcn &&
4849         getLangOpts().HIP)
4850       return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
4851     break;
4852   case Builtin::BI__builtin_canonicalize:
4853   case Builtin::BI__builtin_canonicalizef:
4854   case Builtin::BI__builtin_canonicalizef16:
4855   case Builtin::BI__builtin_canonicalizel:
4856     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4857 
4858   case Builtin::BI__builtin_thread_pointer: {
4859     if (!getContext().getTargetInfo().isTLSSupported())
4860       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4861     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4862     break;
4863   }
4864   case Builtin::BI__builtin_os_log_format:
4865     return emitBuiltinOSLogFormat(*E);
4866 
4867   case Builtin::BI__xray_customevent: {
4868     if (!ShouldXRayInstrumentFunction())
4869       return RValue::getIgnored();
4870 
4871     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4872             XRayInstrKind::Custom))
4873       return RValue::getIgnored();
4874 
4875     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4876       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4877         return RValue::getIgnored();
4878 
4879     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4880     auto FTy = F->getFunctionType();
4881     auto Arg0 = E->getArg(0);
4882     auto Arg0Val = EmitScalarExpr(Arg0);
4883     auto Arg0Ty = Arg0->getType();
4884     auto PTy0 = FTy->getParamType(0);
4885     if (PTy0 != Arg0Val->getType()) {
4886       if (Arg0Ty->isArrayType())
4887         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4888       else
4889         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4890     }
4891     auto Arg1 = EmitScalarExpr(E->getArg(1));
4892     auto PTy1 = FTy->getParamType(1);
4893     if (PTy1 != Arg1->getType())
4894       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4895     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4896   }
4897 
4898   case Builtin::BI__xray_typedevent: {
4899     // TODO: There should be a way to always emit events even if the current
4900     // function is not instrumented. Losing events in a stream can cripple
4901     // a trace.
4902     if (!ShouldXRayInstrumentFunction())
4903       return RValue::getIgnored();
4904 
4905     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4906             XRayInstrKind::Typed))
4907       return RValue::getIgnored();
4908 
4909     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4910       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4911         return RValue::getIgnored();
4912 
4913     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4914     auto FTy = F->getFunctionType();
4915     auto Arg0 = EmitScalarExpr(E->getArg(0));
4916     auto PTy0 = FTy->getParamType(0);
4917     if (PTy0 != Arg0->getType())
4918       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4919     auto Arg1 = E->getArg(1);
4920     auto Arg1Val = EmitScalarExpr(Arg1);
4921     auto Arg1Ty = Arg1->getType();
4922     auto PTy1 = FTy->getParamType(1);
4923     if (PTy1 != Arg1Val->getType()) {
4924       if (Arg1Ty->isArrayType())
4925         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4926       else
4927         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4928     }
4929     auto Arg2 = EmitScalarExpr(E->getArg(2));
4930     auto PTy2 = FTy->getParamType(2);
4931     if (PTy2 != Arg2->getType())
4932       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4933     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4934   }
4935 
4936   case Builtin::BI__builtin_ms_va_start:
4937   case Builtin::BI__builtin_ms_va_end:
4938     return RValue::get(
4939         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4940                        BuiltinID == Builtin::BI__builtin_ms_va_start));
4941 
4942   case Builtin::BI__builtin_ms_va_copy: {
4943     // Lower this manually. We can't reliably determine whether or not any
4944     // given va_copy() is for a Win64 va_list from the calling convention
4945     // alone, because it's legal to do this from a System V ABI function.
4946     // With opaque pointer types, we won't have enough information in LLVM
4947     // IR to determine this from the argument types, either. Best to do it
4948     // now, while we have enough information.
4949     Address DestAddr = EmitMSVAListRef(E->getArg(0));
4950     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4951 
4952     llvm::Type *BPP = Int8PtrPtrTy;
4953 
4954     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4955                        DestAddr.getAlignment());
4956     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4957                       SrcAddr.getAlignment());
4958 
4959     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4960     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4961   }
4962   }
4963 
4964   // If this is an alias for a lib function (e.g. __builtin_sin), emit
4965   // the call using the normal call path, but using the unmangled
4966   // version of the function name.
4967   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4968     return emitLibraryCall(*this, FD, E,
4969                            CGM.getBuiltinLibFunction(FD, BuiltinID));
4970 
4971   // If this is a predefined lib function (e.g. malloc), emit the call
4972   // using exactly the normal call path.
4973   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4974     return emitLibraryCall(*this, FD, E,
4975                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4976 
4977   // Check that a call to a target specific builtin has the correct target
4978   // features.
4979   // This is down here to avoid non-target specific builtins, however, if
4980   // generic builtins start to require generic target features then we
4981   // can move this up to the beginning of the function.
4982   checkTargetFeatures(E, FD);
4983 
4984   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4985     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4986 
4987   // See if we have a target specific intrinsic.
4988   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4989   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4990   StringRef Prefix =
4991       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4992   if (!Prefix.empty()) {
4993     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4994     // NOTE we don't need to perform a compatibility flag check here since the
4995     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4996     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4997     if (IntrinsicID == Intrinsic::not_intrinsic)
4998       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4999   }
5000 
5001   if (IntrinsicID != Intrinsic::not_intrinsic) {
5002     SmallVector<Value*, 16> Args;
5003 
5004     // Find out if any arguments are required to be integer constant
5005     // expressions.
5006     unsigned ICEArguments = 0;
5007     ASTContext::GetBuiltinTypeError Error;
5008     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5009     assert(Error == ASTContext::GE_None && "Should not codegen an error");
5010 
5011     Function *F = CGM.getIntrinsic(IntrinsicID);
5012     llvm::FunctionType *FTy = F->getFunctionType();
5013 
5014     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5015       Value *ArgValue;
5016       // If this is a normal argument, just emit it as a scalar.
5017       if ((ICEArguments & (1 << i)) == 0) {
5018         ArgValue = EmitScalarExpr(E->getArg(i));
5019       } else {
5020         // If this is required to be a constant, constant fold it so that we
5021         // know that the generated intrinsic gets a ConstantInt.
5022         ArgValue = llvm::ConstantInt::get(
5023             getLLVMContext(),
5024             *E->getArg(i)->getIntegerConstantExpr(getContext()));
5025       }
5026 
5027       // If the intrinsic arg type is different from the builtin arg type
5028       // we need to do a bit cast.
5029       llvm::Type *PTy = FTy->getParamType(i);
5030       if (PTy != ArgValue->getType()) {
5031         // XXX - vector of pointers?
5032         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5033           if (PtrTy->getAddressSpace() !=
5034               ArgValue->getType()->getPointerAddressSpace()) {
5035             ArgValue = Builder.CreateAddrSpaceCast(
5036               ArgValue,
5037               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5038           }
5039         }
5040 
5041         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
5042                "Must be able to losslessly bit cast to param");
5043         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5044       }
5045 
5046       Args.push_back(ArgValue);
5047     }
5048 
5049     Value *V = Builder.CreateCall(F, Args);
5050     QualType BuiltinRetType = E->getType();
5051 
5052     llvm::Type *RetTy = VoidTy;
5053     if (!BuiltinRetType->isVoidType())
5054       RetTy = ConvertType(BuiltinRetType);
5055 
5056     if (RetTy != V->getType()) {
5057       // XXX - vector of pointers?
5058       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5059         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5060           V = Builder.CreateAddrSpaceCast(
5061             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5062         }
5063       }
5064 
5065       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
5066              "Must be able to losslessly bit cast result type");
5067       V = Builder.CreateBitCast(V, RetTy);
5068     }
5069 
5070     return RValue::get(V);
5071   }
5072 
5073   // Some target-specific builtins can have aggregate return values, e.g.
5074   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5075   // ReturnValue to be non-null, so that the target-specific emission code can
5076   // always just emit into it.
5077   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5078   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5079     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5080     ReturnValue = ReturnValueSlot(DestPtr, false);
5081   }
5082 
5083   // Now see if we can emit a target-specific builtin.
5084   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5085     switch (EvalKind) {
5086     case TEK_Scalar:
5087       return RValue::get(V);
5088     case TEK_Aggregate:
5089       return RValue::getAggregate(ReturnValue.getValue(),
5090                                   ReturnValue.isVolatile());
5091     case TEK_Complex:
5092       llvm_unreachable("No current target builtin returns complex");
5093     }
5094     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
5095   }
5096 
5097   ErrorUnsupported(E, "builtin function");
5098 
5099   // Unknown builtin, for now just dump it out and return undef.
5100   return GetUndefRValue(E->getType());
5101 }
5102 
5103 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5104                                         unsigned BuiltinID, const CallExpr *E,
5105                                         ReturnValueSlot ReturnValue,
5106                                         llvm::Triple::ArchType Arch) {
5107   switch (Arch) {
5108   case llvm::Triple::arm:
5109   case llvm::Triple::armeb:
5110   case llvm::Triple::thumb:
5111   case llvm::Triple::thumbeb:
5112     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5113   case llvm::Triple::aarch64:
5114   case llvm::Triple::aarch64_32:
5115   case llvm::Triple::aarch64_be:
5116     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5117   case llvm::Triple::bpfeb:
5118   case llvm::Triple::bpfel:
5119     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5120   case llvm::Triple::x86:
5121   case llvm::Triple::x86_64:
5122     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5123   case llvm::Triple::ppc:
5124   case llvm::Triple::ppcle:
5125   case llvm::Triple::ppc64:
5126   case llvm::Triple::ppc64le:
5127     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5128   case llvm::Triple::r600:
5129   case llvm::Triple::amdgcn:
5130     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5131   case llvm::Triple::systemz:
5132     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5133   case llvm::Triple::nvptx:
5134   case llvm::Triple::nvptx64:
5135     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5136   case llvm::Triple::wasm32:
5137   case llvm::Triple::wasm64:
5138     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5139   case llvm::Triple::hexagon:
5140     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5141   default:
5142     return nullptr;
5143   }
5144 }
5145 
5146 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5147                                               const CallExpr *E,
5148                                               ReturnValueSlot ReturnValue) {
5149   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5150     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
5151     return EmitTargetArchBuiltinExpr(
5152         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5153         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5154   }
5155 
5156   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5157                                    getTarget().getTriple().getArch());
5158 }
5159 
5160 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5161                                           NeonTypeFlags TypeFlags,
5162                                           bool HasLegalHalfType = true,
5163                                           bool V1Ty = false,
5164                                           bool AllowBFloatArgsAndRet = true) {
5165   int IsQuad = TypeFlags.isQuad();
5166   switch (TypeFlags.getEltType()) {
5167   case NeonTypeFlags::Int8:
5168   case NeonTypeFlags::Poly8:
5169     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5170   case NeonTypeFlags::Int16:
5171   case NeonTypeFlags::Poly16:
5172     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5173   case NeonTypeFlags::BFloat16:
5174     if (AllowBFloatArgsAndRet)
5175       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5176     else
5177       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5178   case NeonTypeFlags::Float16:
5179     if (HasLegalHalfType)
5180       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5181     else
5182       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5183   case NeonTypeFlags::Int32:
5184     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5185   case NeonTypeFlags::Int64:
5186   case NeonTypeFlags::Poly64:
5187     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5188   case NeonTypeFlags::Poly128:
5189     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5190     // There is a lot of i128 and f128 API missing.
5191     // so we use v16i8 to represent poly128 and get pattern matched.
5192     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5193   case NeonTypeFlags::Float32:
5194     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5195   case NeonTypeFlags::Float64:
5196     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5197   }
5198   llvm_unreachable("Unknown vector element type!");
5199 }
5200 
5201 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5202                                           NeonTypeFlags IntTypeFlags) {
5203   int IsQuad = IntTypeFlags.isQuad();
5204   switch (IntTypeFlags.getEltType()) {
5205   case NeonTypeFlags::Int16:
5206     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5207   case NeonTypeFlags::Int32:
5208     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5209   case NeonTypeFlags::Int64:
5210     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5211   default:
5212     llvm_unreachable("Type can't be converted to floating-point!");
5213   }
5214 }
5215 
5216 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5217                                       const ElementCount &Count) {
5218   Value *SV = llvm::ConstantVector::getSplat(Count, C);
5219   return Builder.CreateShuffleVector(V, V, SV, "lane");
5220 }
5221 
5222 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5223   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5224   return EmitNeonSplat(V, C, EC);
5225 }
5226 
5227 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5228                                      const char *name,
5229                                      unsigned shift, bool rightshift) {
5230   unsigned j = 0;
5231   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5232        ai != ae; ++ai, ++j) {
5233     if (F->isConstrainedFPIntrinsic())
5234       if (ai->getType()->isMetadataTy())
5235         continue;
5236     if (shift > 0 && shift == j)
5237       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5238     else
5239       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5240   }
5241 
5242   if (F->isConstrainedFPIntrinsic())
5243     return Builder.CreateConstrainedFPCall(F, Ops, name);
5244   else
5245     return Builder.CreateCall(F, Ops, name);
5246 }
5247 
5248 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5249                                             bool neg) {
5250   int SV = cast<ConstantInt>(V)->getSExtValue();
5251   return ConstantInt::get(Ty, neg ? -SV : SV);
5252 }
5253 
5254 // Right-shift a vector by a constant.
5255 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5256                                           llvm::Type *Ty, bool usgn,
5257                                           const char *name) {
5258   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5259 
5260   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5261   int EltSize = VTy->getScalarSizeInBits();
5262 
5263   Vec = Builder.CreateBitCast(Vec, Ty);
5264 
5265   // lshr/ashr are undefined when the shift amount is equal to the vector
5266   // element size.
5267   if (ShiftAmt == EltSize) {
5268     if (usgn) {
5269       // Right-shifting an unsigned value by its size yields 0.
5270       return llvm::ConstantAggregateZero::get(VTy);
5271     } else {
5272       // Right-shifting a signed value by its size is equivalent
5273       // to a shift of size-1.
5274       --ShiftAmt;
5275       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5276     }
5277   }
5278 
5279   Shift = EmitNeonShiftVector(Shift, Ty, false);
5280   if (usgn)
5281     return Builder.CreateLShr(Vec, Shift, name);
5282   else
5283     return Builder.CreateAShr(Vec, Shift, name);
5284 }
5285 
5286 enum {
5287   AddRetType = (1 << 0),
5288   Add1ArgType = (1 << 1),
5289   Add2ArgTypes = (1 << 2),
5290 
5291   VectorizeRetType = (1 << 3),
5292   VectorizeArgTypes = (1 << 4),
5293 
5294   InventFloatType = (1 << 5),
5295   UnsignedAlts = (1 << 6),
5296 
5297   Use64BitVectors = (1 << 7),
5298   Use128BitVectors = (1 << 8),
5299 
5300   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5301   VectorRet = AddRetType | VectorizeRetType,
5302   VectorRetGetArgs01 =
5303       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5304   FpCmpzModifiers =
5305       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5306 };
5307 
5308 namespace {
5309 struct ARMVectorIntrinsicInfo {
5310   const char *NameHint;
5311   unsigned BuiltinID;
5312   unsigned LLVMIntrinsic;
5313   unsigned AltLLVMIntrinsic;
5314   uint64_t TypeModifier;
5315 
5316   bool operator<(unsigned RHSBuiltinID) const {
5317     return BuiltinID < RHSBuiltinID;
5318   }
5319   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5320     return BuiltinID < TE.BuiltinID;
5321   }
5322 };
5323 } // end anonymous namespace
5324 
5325 #define NEONMAP0(NameBase) \
5326   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5327 
5328 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5329   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5330       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5331 
5332 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5333   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5334       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5335       TypeModifier }
5336 
5337 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5338   NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5339   NEONMAP0(splat_lane_v),
5340   NEONMAP0(splat_laneq_v),
5341   NEONMAP0(splatq_lane_v),
5342   NEONMAP0(splatq_laneq_v),
5343   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5344   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5345   NEONMAP1(vabs_v, arm_neon_vabs, 0),
5346   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5347   NEONMAP0(vaddhn_v),
5348   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5349   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5350   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5351   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5352   NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5353   NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5354   NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5355   NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5356   NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5357   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5358   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5359   NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5360   NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5361   NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5362   NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5363   NEONMAP1(vcage_v, arm_neon_vacge, 0),
5364   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5365   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5366   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5367   NEONMAP1(vcale_v, arm_neon_vacge, 0),
5368   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5369   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5370   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5371   NEONMAP0(vceqz_v),
5372   NEONMAP0(vceqzq_v),
5373   NEONMAP0(vcgez_v),
5374   NEONMAP0(vcgezq_v),
5375   NEONMAP0(vcgtz_v),
5376   NEONMAP0(vcgtzq_v),
5377   NEONMAP0(vclez_v),
5378   NEONMAP0(vclezq_v),
5379   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5380   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5381   NEONMAP0(vcltz_v),
5382   NEONMAP0(vcltzq_v),
5383   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5384   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5385   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5386   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5387   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5388   NEONMAP0(vcvt_f16_v),
5389   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5390   NEONMAP0(vcvt_f32_v),
5391   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5392   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5393   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5394   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5395   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5396   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5397   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5398   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5399   NEONMAP0(vcvt_s16_v),
5400   NEONMAP0(vcvt_s32_v),
5401   NEONMAP0(vcvt_s64_v),
5402   NEONMAP0(vcvt_u16_v),
5403   NEONMAP0(vcvt_u32_v),
5404   NEONMAP0(vcvt_u64_v),
5405   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5406   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5407   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5408   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5409   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5410   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5411   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5412   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5413   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5414   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5415   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5416   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5417   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5418   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5419   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5420   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5421   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5422   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5423   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5424   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5425   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5426   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5427   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5428   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5429   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5430   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5431   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5432   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5433   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5434   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5435   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5436   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5437   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5438   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5439   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5440   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5441   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5442   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5443   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5444   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5445   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5446   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5447   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5448   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5449   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5450   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5451   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5452   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5453   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5454   NEONMAP0(vcvtq_f16_v),
5455   NEONMAP0(vcvtq_f32_v),
5456   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5457   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5458   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5459   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5460   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5461   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5462   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5463   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5464   NEONMAP0(vcvtq_s16_v),
5465   NEONMAP0(vcvtq_s32_v),
5466   NEONMAP0(vcvtq_s64_v),
5467   NEONMAP0(vcvtq_u16_v),
5468   NEONMAP0(vcvtq_u32_v),
5469   NEONMAP0(vcvtq_u64_v),
5470   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5471   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5472   NEONMAP0(vext_v),
5473   NEONMAP0(vextq_v),
5474   NEONMAP0(vfma_v),
5475   NEONMAP0(vfmaq_v),
5476   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5477   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5478   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5479   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5480   NEONMAP0(vld1_dup_v),
5481   NEONMAP1(vld1_v, arm_neon_vld1, 0),
5482   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5483   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5484   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5485   NEONMAP0(vld1q_dup_v),
5486   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5487   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5488   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5489   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5490   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5491   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5492   NEONMAP1(vld2_v, arm_neon_vld2, 0),
5493   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5494   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5495   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5496   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5497   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5498   NEONMAP1(vld3_v, arm_neon_vld3, 0),
5499   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5500   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5501   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5502   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5503   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5504   NEONMAP1(vld4_v, arm_neon_vld4, 0),
5505   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5506   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5507   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5508   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5509   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5510   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5511   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5512   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5513   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5514   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5515   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5516   NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5517   NEONMAP0(vmovl_v),
5518   NEONMAP0(vmovn_v),
5519   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5520   NEONMAP0(vmull_v),
5521   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5522   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5523   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5524   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5525   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5526   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5527   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5528   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5529   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5530   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5531   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5532   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5533   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5534   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5535   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5536   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5537   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5538   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5539   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5540   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5541   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5542   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5543   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5544   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5545   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5546   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5547   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5548   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5549   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5550   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5551   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5552   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5553   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5554   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5555   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5556   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5557   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5558   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5559   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5560   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5561   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5562   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5563   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5564   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5565   NEONMAP0(vrndi_v),
5566   NEONMAP0(vrndiq_v),
5567   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5568   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5569   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5570   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5571   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5572   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5573   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5574   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5575   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5576   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5577   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5578   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5579   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5580   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5581   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5582   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5583   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5584   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5585   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5586   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5587   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5588   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5589   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5590   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5591   NEONMAP0(vshl_n_v),
5592   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5593   NEONMAP0(vshll_n_v),
5594   NEONMAP0(vshlq_n_v),
5595   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5596   NEONMAP0(vshr_n_v),
5597   NEONMAP0(vshrn_n_v),
5598   NEONMAP0(vshrq_n_v),
5599   NEONMAP1(vst1_v, arm_neon_vst1, 0),
5600   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5601   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5602   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5603   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5604   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5605   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5606   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5607   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5608   NEONMAP1(vst2_v, arm_neon_vst2, 0),
5609   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5610   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5611   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5612   NEONMAP1(vst3_v, arm_neon_vst3, 0),
5613   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5614   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5615   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5616   NEONMAP1(vst4_v, arm_neon_vst4, 0),
5617   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5618   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5619   NEONMAP0(vsubhn_v),
5620   NEONMAP0(vtrn_v),
5621   NEONMAP0(vtrnq_v),
5622   NEONMAP0(vtst_v),
5623   NEONMAP0(vtstq_v),
5624   NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5625   NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5626   NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5627   NEONMAP0(vuzp_v),
5628   NEONMAP0(vuzpq_v),
5629   NEONMAP0(vzip_v),
5630   NEONMAP0(vzipq_v)
5631 };
5632 
5633 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5634   NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5635   NEONMAP0(splat_lane_v),
5636   NEONMAP0(splat_laneq_v),
5637   NEONMAP0(splatq_lane_v),
5638   NEONMAP0(splatq_laneq_v),
5639   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5640   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5641   NEONMAP0(vaddhn_v),
5642   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5643   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5644   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5645   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5646   NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5647   NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5648   NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5649   NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5650   NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5651   NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5652   NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5653   NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5654   NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5655   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5656   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5657   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5658   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5659   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5660   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5661   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5662   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5663   NEONMAP0(vceqz_v),
5664   NEONMAP0(vceqzq_v),
5665   NEONMAP0(vcgez_v),
5666   NEONMAP0(vcgezq_v),
5667   NEONMAP0(vcgtz_v),
5668   NEONMAP0(vcgtzq_v),
5669   NEONMAP0(vclez_v),
5670   NEONMAP0(vclezq_v),
5671   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5672   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5673   NEONMAP0(vcltz_v),
5674   NEONMAP0(vcltzq_v),
5675   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5676   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5677   NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5678   NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5679   NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5680   NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5681   NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5682   NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5683   NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5684   NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5685   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5686   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5687   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5688   NEONMAP0(vcvt_f16_v),
5689   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5690   NEONMAP0(vcvt_f32_v),
5691   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5692   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5693   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5694   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5695   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5696   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5697   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5698   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5699   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5700   NEONMAP0(vcvtq_f16_v),
5701   NEONMAP0(vcvtq_f32_v),
5702   NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5703   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5704   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5705   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5706   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5707   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5708   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5709   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5710   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5711   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5712   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5713   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5714   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5715   NEONMAP0(vext_v),
5716   NEONMAP0(vextq_v),
5717   NEONMAP0(vfma_v),
5718   NEONMAP0(vfmaq_v),
5719   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5720   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5721   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5722   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5723   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5724   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5725   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5726   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5727   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5728   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5729   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5730   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5731   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5732   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5733   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5734   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5735   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5736   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5737   NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5738   NEONMAP0(vmovl_v),
5739   NEONMAP0(vmovn_v),
5740   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5741   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5742   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5743   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5744   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5745   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5746   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5747   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5748   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5749   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5750   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5751   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5752   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5753   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5754   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5755   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5756   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5757   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5758   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5759   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5760   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5761   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5762   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5763   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5764   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5765   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5766   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5767   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5768   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5769   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5770   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5771   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5772   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5773   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5774   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5775   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5776   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5777   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5778   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5779   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5780   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5781   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5782   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5783   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5784   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5785   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5786   NEONMAP0(vrndi_v),
5787   NEONMAP0(vrndiq_v),
5788   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5789   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5790   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5791   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5792   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5793   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5794   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
5795   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
5796   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
5797   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
5798   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
5799   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
5800   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
5801   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
5802   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
5803   NEONMAP0(vshl_n_v),
5804   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5805   NEONMAP0(vshll_n_v),
5806   NEONMAP0(vshlq_n_v),
5807   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5808   NEONMAP0(vshr_n_v),
5809   NEONMAP0(vshrn_n_v),
5810   NEONMAP0(vshrq_n_v),
5811   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
5812   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
5813   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
5814   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
5815   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
5816   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
5817   NEONMAP0(vsubhn_v),
5818   NEONMAP0(vtst_v),
5819   NEONMAP0(vtstq_v),
5820   NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
5821   NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
5822   NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
5823 };
5824 
5825 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
5826   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
5827   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
5828   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
5829   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5830   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5831   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5832   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5833   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5834   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5835   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5836   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5837   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
5838   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5839   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
5840   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5841   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5842   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5843   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5844   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5845   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5846   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5847   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5848   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5849   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5850   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5851   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5852   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5853   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5854   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5855   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5856   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5857   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5858   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5859   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5860   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
5861   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5862   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5863   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5864   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5865   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5866   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5867   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5868   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5869   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5870   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5871   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5872   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5873   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5874   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5875   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5876   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5877   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5878   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5879   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
5880   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5881   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5882   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5883   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5884   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5885   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5886   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5887   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5888   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5889   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5890   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5891   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5892   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5893   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5894   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5895   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5896   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5897   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5898   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5899   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5900   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
5901   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
5902   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
5903   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5904   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5905   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5906   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5907   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5908   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5909   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5910   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5911   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5912   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5913   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5914   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
5915   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5916   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
5917   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5918   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5919   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
5920   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
5921   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5922   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5923   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
5924   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
5925   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
5926   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
5927   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
5928   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
5929   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
5930   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
5931   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5932   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5933   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5934   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5935   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
5936   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5937   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5938   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5939   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
5940   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5941   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
5942   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
5943   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
5944   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5945   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5946   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
5947   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
5948   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5949   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5950   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
5951   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
5952   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
5953   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
5954   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5955   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5956   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5957   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5958   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
5959   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5960   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5961   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5962   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5963   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5964   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5965   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
5966   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
5967   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5968   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5969   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5970   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5971   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
5972   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
5973   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
5974   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
5975   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5976   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5977   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
5978   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
5979   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
5980   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5981   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5982   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5983   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5984   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
5985   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5986   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5987   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5988   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5989   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
5990   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
5991   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5992   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5993   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
5994   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
5995   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
5996   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
5997   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5998   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5999   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6000   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6001   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6002   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6003   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6004   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6005   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6006   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6007   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6008   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6009   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6010   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6011   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6012   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6013   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6014   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6015   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6016   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6017   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6018   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6019   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6020   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6021   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6022   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6023   // FP16 scalar intrinisics go here.
6024   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6025   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6026   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6027   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6028   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6029   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6030   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6031   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6032   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6033   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6034   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6035   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6036   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6037   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6038   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6039   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6040   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6041   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6042   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6043   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6044   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6045   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6046   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6047   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6048   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6049   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6050   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6051   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6052   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6053   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6054   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6055   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6056   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6057   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6058 };
6059 
6060 #undef NEONMAP0
6061 #undef NEONMAP1
6062 #undef NEONMAP2
6063 
6064 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
6065   {                                                                            \
6066     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
6067         TypeModifier                                                           \
6068   }
6069 
6070 #define SVEMAP2(NameBase, TypeModifier)                                        \
6071   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6072 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6073 #define GET_SVE_LLVM_INTRINSIC_MAP
6074 #include "clang/Basic/arm_sve_builtin_cg.inc"
6075 #undef GET_SVE_LLVM_INTRINSIC_MAP
6076 };
6077 
6078 #undef SVEMAP1
6079 #undef SVEMAP2
6080 
6081 static bool NEONSIMDIntrinsicsProvenSorted = false;
6082 
6083 static bool AArch64SIMDIntrinsicsProvenSorted = false;
6084 static bool AArch64SISDIntrinsicsProvenSorted = false;
6085 static bool AArch64SVEIntrinsicsProvenSorted = false;
6086 
6087 static const ARMVectorIntrinsicInfo *
6088 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6089                             unsigned BuiltinID, bool &MapProvenSorted) {
6090 
6091 #ifndef NDEBUG
6092   if (!MapProvenSorted) {
6093     assert(llvm::is_sorted(IntrinsicMap));
6094     MapProvenSorted = true;
6095   }
6096 #endif
6097 
6098   const ARMVectorIntrinsicInfo *Builtin =
6099       llvm::lower_bound(IntrinsicMap, BuiltinID);
6100 
6101   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6102     return Builtin;
6103 
6104   return nullptr;
6105 }
6106 
6107 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6108                                                    unsigned Modifier,
6109                                                    llvm::Type *ArgType,
6110                                                    const CallExpr *E) {
6111   int VectorSize = 0;
6112   if (Modifier & Use64BitVectors)
6113     VectorSize = 64;
6114   else if (Modifier & Use128BitVectors)
6115     VectorSize = 128;
6116 
6117   // Return type.
6118   SmallVector<llvm::Type *, 3> Tys;
6119   if (Modifier & AddRetType) {
6120     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6121     if (Modifier & VectorizeRetType)
6122       Ty = llvm::FixedVectorType::get(
6123           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6124 
6125     Tys.push_back(Ty);
6126   }
6127 
6128   // Arguments.
6129   if (Modifier & VectorizeArgTypes) {
6130     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6131     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6132   }
6133 
6134   if (Modifier & (Add1ArgType | Add2ArgTypes))
6135     Tys.push_back(ArgType);
6136 
6137   if (Modifier & Add2ArgTypes)
6138     Tys.push_back(ArgType);
6139 
6140   if (Modifier & InventFloatType)
6141     Tys.push_back(FloatTy);
6142 
6143   return CGM.getIntrinsic(IntrinsicID, Tys);
6144 }
6145 
6146 static Value *EmitCommonNeonSISDBuiltinExpr(
6147     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6148     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6149   unsigned BuiltinID = SISDInfo.BuiltinID;
6150   unsigned int Int = SISDInfo.LLVMIntrinsic;
6151   unsigned Modifier = SISDInfo.TypeModifier;
6152   const char *s = SISDInfo.NameHint;
6153 
6154   switch (BuiltinID) {
6155   case NEON::BI__builtin_neon_vcled_s64:
6156   case NEON::BI__builtin_neon_vcled_u64:
6157   case NEON::BI__builtin_neon_vcles_f32:
6158   case NEON::BI__builtin_neon_vcled_f64:
6159   case NEON::BI__builtin_neon_vcltd_s64:
6160   case NEON::BI__builtin_neon_vcltd_u64:
6161   case NEON::BI__builtin_neon_vclts_f32:
6162   case NEON::BI__builtin_neon_vcltd_f64:
6163   case NEON::BI__builtin_neon_vcales_f32:
6164   case NEON::BI__builtin_neon_vcaled_f64:
6165   case NEON::BI__builtin_neon_vcalts_f32:
6166   case NEON::BI__builtin_neon_vcaltd_f64:
6167     // Only one direction of comparisons actually exist, cmle is actually a cmge
6168     // with swapped operands. The table gives us the right intrinsic but we
6169     // still need to do the swap.
6170     std::swap(Ops[0], Ops[1]);
6171     break;
6172   }
6173 
6174   assert(Int && "Generic code assumes a valid intrinsic");
6175 
6176   // Determine the type(s) of this overloaded AArch64 intrinsic.
6177   const Expr *Arg = E->getArg(0);
6178   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6179   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6180 
6181   int j = 0;
6182   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6183   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6184        ai != ae; ++ai, ++j) {
6185     llvm::Type *ArgTy = ai->getType();
6186     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6187              ArgTy->getPrimitiveSizeInBits())
6188       continue;
6189 
6190     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
6191     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6192     // it before inserting.
6193     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6194         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6195     Ops[j] =
6196         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6197   }
6198 
6199   Value *Result = CGF.EmitNeonCall(F, Ops, s);
6200   llvm::Type *ResultType = CGF.ConvertType(E->getType());
6201   if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6202       Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6203     return CGF.Builder.CreateExtractElement(Result, C0);
6204 
6205   return CGF.Builder.CreateBitCast(Result, ResultType, s);
6206 }
6207 
6208 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6209     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6210     const char *NameHint, unsigned Modifier, const CallExpr *E,
6211     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6212     llvm::Triple::ArchType Arch) {
6213   // Get the last argument, which specifies the vector type.
6214   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6215   Optional<llvm::APSInt> NeonTypeConst =
6216       Arg->getIntegerConstantExpr(getContext());
6217   if (!NeonTypeConst)
6218     return nullptr;
6219 
6220   // Determine the type of this overloaded NEON intrinsic.
6221   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6222   bool Usgn = Type.isUnsigned();
6223   bool Quad = Type.isQuad();
6224   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6225   const bool AllowBFloatArgsAndRet =
6226       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6227 
6228   llvm::FixedVectorType *VTy =
6229       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6230   llvm::Type *Ty = VTy;
6231   if (!Ty)
6232     return nullptr;
6233 
6234   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6235     return Builder.getInt32(addr.getAlignment().getQuantity());
6236   };
6237 
6238   unsigned Int = LLVMIntrinsic;
6239   if ((Modifier & UnsignedAlts) && !Usgn)
6240     Int = AltLLVMIntrinsic;
6241 
6242   switch (BuiltinID) {
6243   default: break;
6244   case NEON::BI__builtin_neon_splat_lane_v:
6245   case NEON::BI__builtin_neon_splat_laneq_v:
6246   case NEON::BI__builtin_neon_splatq_lane_v:
6247   case NEON::BI__builtin_neon_splatq_laneq_v: {
6248     auto NumElements = VTy->getElementCount();
6249     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6250       NumElements = NumElements * 2;
6251     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6252       NumElements = NumElements.divideCoefficientBy(2);
6253 
6254     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6255     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6256   }
6257   case NEON::BI__builtin_neon_vpadd_v:
6258   case NEON::BI__builtin_neon_vpaddq_v:
6259     // We don't allow fp/int overloading of intrinsics.
6260     if (VTy->getElementType()->isFloatingPointTy() &&
6261         Int == Intrinsic::aarch64_neon_addp)
6262       Int = Intrinsic::aarch64_neon_faddp;
6263     break;
6264   case NEON::BI__builtin_neon_vabs_v:
6265   case NEON::BI__builtin_neon_vabsq_v:
6266     if (VTy->getElementType()->isFloatingPointTy())
6267       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6268     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6269   case NEON::BI__builtin_neon_vaddhn_v: {
6270     llvm::FixedVectorType *SrcTy =
6271         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6272 
6273     // %sum = add <4 x i32> %lhs, %rhs
6274     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6275     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6276     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6277 
6278     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6279     Constant *ShiftAmt =
6280         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6281     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6282 
6283     // %res = trunc <4 x i32> %high to <4 x i16>
6284     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6285   }
6286   case NEON::BI__builtin_neon_vcale_v:
6287   case NEON::BI__builtin_neon_vcaleq_v:
6288   case NEON::BI__builtin_neon_vcalt_v:
6289   case NEON::BI__builtin_neon_vcaltq_v:
6290     std::swap(Ops[0], Ops[1]);
6291     LLVM_FALLTHROUGH;
6292   case NEON::BI__builtin_neon_vcage_v:
6293   case NEON::BI__builtin_neon_vcageq_v:
6294   case NEON::BI__builtin_neon_vcagt_v:
6295   case NEON::BI__builtin_neon_vcagtq_v: {
6296     llvm::Type *Ty;
6297     switch (VTy->getScalarSizeInBits()) {
6298     default: llvm_unreachable("unexpected type");
6299     case 32:
6300       Ty = FloatTy;
6301       break;
6302     case 64:
6303       Ty = DoubleTy;
6304       break;
6305     case 16:
6306       Ty = HalfTy;
6307       break;
6308     }
6309     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6310     llvm::Type *Tys[] = { VTy, VecFlt };
6311     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6312     return EmitNeonCall(F, Ops, NameHint);
6313   }
6314   case NEON::BI__builtin_neon_vceqz_v:
6315   case NEON::BI__builtin_neon_vceqzq_v:
6316     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6317                                          ICmpInst::ICMP_EQ, "vceqz");
6318   case NEON::BI__builtin_neon_vcgez_v:
6319   case NEON::BI__builtin_neon_vcgezq_v:
6320     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6321                                          ICmpInst::ICMP_SGE, "vcgez");
6322   case NEON::BI__builtin_neon_vclez_v:
6323   case NEON::BI__builtin_neon_vclezq_v:
6324     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6325                                          ICmpInst::ICMP_SLE, "vclez");
6326   case NEON::BI__builtin_neon_vcgtz_v:
6327   case NEON::BI__builtin_neon_vcgtzq_v:
6328     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6329                                          ICmpInst::ICMP_SGT, "vcgtz");
6330   case NEON::BI__builtin_neon_vcltz_v:
6331   case NEON::BI__builtin_neon_vcltzq_v:
6332     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6333                                          ICmpInst::ICMP_SLT, "vcltz");
6334   case NEON::BI__builtin_neon_vclz_v:
6335   case NEON::BI__builtin_neon_vclzq_v:
6336     // We generate target-independent intrinsic, which needs a second argument
6337     // for whether or not clz of zero is undefined; on ARM it isn't.
6338     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6339     break;
6340   case NEON::BI__builtin_neon_vcvt_f32_v:
6341   case NEON::BI__builtin_neon_vcvtq_f32_v:
6342     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6343     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6344                      HasLegalHalfType);
6345     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6346                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6347   case NEON::BI__builtin_neon_vcvt_f16_v:
6348   case NEON::BI__builtin_neon_vcvtq_f16_v:
6349     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6350     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6351                      HasLegalHalfType);
6352     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6353                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6354   case NEON::BI__builtin_neon_vcvt_n_f16_v:
6355   case NEON::BI__builtin_neon_vcvt_n_f32_v:
6356   case NEON::BI__builtin_neon_vcvt_n_f64_v:
6357   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6358   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6359   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6360     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6361     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6362     Function *F = CGM.getIntrinsic(Int, Tys);
6363     return EmitNeonCall(F, Ops, "vcvt_n");
6364   }
6365   case NEON::BI__builtin_neon_vcvt_n_s16_v:
6366   case NEON::BI__builtin_neon_vcvt_n_s32_v:
6367   case NEON::BI__builtin_neon_vcvt_n_u16_v:
6368   case NEON::BI__builtin_neon_vcvt_n_u32_v:
6369   case NEON::BI__builtin_neon_vcvt_n_s64_v:
6370   case NEON::BI__builtin_neon_vcvt_n_u64_v:
6371   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6372   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6373   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6374   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6375   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6376   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6377     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6378     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6379     return EmitNeonCall(F, Ops, "vcvt_n");
6380   }
6381   case NEON::BI__builtin_neon_vcvt_s32_v:
6382   case NEON::BI__builtin_neon_vcvt_u32_v:
6383   case NEON::BI__builtin_neon_vcvt_s64_v:
6384   case NEON::BI__builtin_neon_vcvt_u64_v:
6385   case NEON::BI__builtin_neon_vcvt_s16_v:
6386   case NEON::BI__builtin_neon_vcvt_u16_v:
6387   case NEON::BI__builtin_neon_vcvtq_s32_v:
6388   case NEON::BI__builtin_neon_vcvtq_u32_v:
6389   case NEON::BI__builtin_neon_vcvtq_s64_v:
6390   case NEON::BI__builtin_neon_vcvtq_u64_v:
6391   case NEON::BI__builtin_neon_vcvtq_s16_v:
6392   case NEON::BI__builtin_neon_vcvtq_u16_v: {
6393     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6394     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6395                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6396   }
6397   case NEON::BI__builtin_neon_vcvta_s16_v:
6398   case NEON::BI__builtin_neon_vcvta_s32_v:
6399   case NEON::BI__builtin_neon_vcvta_s64_v:
6400   case NEON::BI__builtin_neon_vcvta_u16_v:
6401   case NEON::BI__builtin_neon_vcvta_u32_v:
6402   case NEON::BI__builtin_neon_vcvta_u64_v:
6403   case NEON::BI__builtin_neon_vcvtaq_s16_v:
6404   case NEON::BI__builtin_neon_vcvtaq_s32_v:
6405   case NEON::BI__builtin_neon_vcvtaq_s64_v:
6406   case NEON::BI__builtin_neon_vcvtaq_u16_v:
6407   case NEON::BI__builtin_neon_vcvtaq_u32_v:
6408   case NEON::BI__builtin_neon_vcvtaq_u64_v:
6409   case NEON::BI__builtin_neon_vcvtn_s16_v:
6410   case NEON::BI__builtin_neon_vcvtn_s32_v:
6411   case NEON::BI__builtin_neon_vcvtn_s64_v:
6412   case NEON::BI__builtin_neon_vcvtn_u16_v:
6413   case NEON::BI__builtin_neon_vcvtn_u32_v:
6414   case NEON::BI__builtin_neon_vcvtn_u64_v:
6415   case NEON::BI__builtin_neon_vcvtnq_s16_v:
6416   case NEON::BI__builtin_neon_vcvtnq_s32_v:
6417   case NEON::BI__builtin_neon_vcvtnq_s64_v:
6418   case NEON::BI__builtin_neon_vcvtnq_u16_v:
6419   case NEON::BI__builtin_neon_vcvtnq_u32_v:
6420   case NEON::BI__builtin_neon_vcvtnq_u64_v:
6421   case NEON::BI__builtin_neon_vcvtp_s16_v:
6422   case NEON::BI__builtin_neon_vcvtp_s32_v:
6423   case NEON::BI__builtin_neon_vcvtp_s64_v:
6424   case NEON::BI__builtin_neon_vcvtp_u16_v:
6425   case NEON::BI__builtin_neon_vcvtp_u32_v:
6426   case NEON::BI__builtin_neon_vcvtp_u64_v:
6427   case NEON::BI__builtin_neon_vcvtpq_s16_v:
6428   case NEON::BI__builtin_neon_vcvtpq_s32_v:
6429   case NEON::BI__builtin_neon_vcvtpq_s64_v:
6430   case NEON::BI__builtin_neon_vcvtpq_u16_v:
6431   case NEON::BI__builtin_neon_vcvtpq_u32_v:
6432   case NEON::BI__builtin_neon_vcvtpq_u64_v:
6433   case NEON::BI__builtin_neon_vcvtm_s16_v:
6434   case NEON::BI__builtin_neon_vcvtm_s32_v:
6435   case NEON::BI__builtin_neon_vcvtm_s64_v:
6436   case NEON::BI__builtin_neon_vcvtm_u16_v:
6437   case NEON::BI__builtin_neon_vcvtm_u32_v:
6438   case NEON::BI__builtin_neon_vcvtm_u64_v:
6439   case NEON::BI__builtin_neon_vcvtmq_s16_v:
6440   case NEON::BI__builtin_neon_vcvtmq_s32_v:
6441   case NEON::BI__builtin_neon_vcvtmq_s64_v:
6442   case NEON::BI__builtin_neon_vcvtmq_u16_v:
6443   case NEON::BI__builtin_neon_vcvtmq_u32_v:
6444   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6445     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6446     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6447   }
6448   case NEON::BI__builtin_neon_vcvtx_f32_v: {
6449     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6450     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6451 
6452   }
6453   case NEON::BI__builtin_neon_vext_v:
6454   case NEON::BI__builtin_neon_vextq_v: {
6455     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6456     SmallVector<int, 16> Indices;
6457     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6458       Indices.push_back(i+CV);
6459 
6460     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6461     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6462     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6463   }
6464   case NEON::BI__builtin_neon_vfma_v:
6465   case NEON::BI__builtin_neon_vfmaq_v: {
6466     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6467     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6468     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6469 
6470     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6471     return emitCallMaybeConstrainedFPBuiltin(
6472         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6473         {Ops[1], Ops[2], Ops[0]});
6474   }
6475   case NEON::BI__builtin_neon_vld1_v:
6476   case NEON::BI__builtin_neon_vld1q_v: {
6477     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6478     Ops.push_back(getAlignmentValue32(PtrOp0));
6479     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6480   }
6481   case NEON::BI__builtin_neon_vld1_x2_v:
6482   case NEON::BI__builtin_neon_vld1q_x2_v:
6483   case NEON::BI__builtin_neon_vld1_x3_v:
6484   case NEON::BI__builtin_neon_vld1q_x3_v:
6485   case NEON::BI__builtin_neon_vld1_x4_v:
6486   case NEON::BI__builtin_neon_vld1q_x4_v: {
6487     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6488     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6489     llvm::Type *Tys[2] = { VTy, PTy };
6490     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6491     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6492     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6493     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6494     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6495   }
6496   case NEON::BI__builtin_neon_vld2_v:
6497   case NEON::BI__builtin_neon_vld2q_v:
6498   case NEON::BI__builtin_neon_vld3_v:
6499   case NEON::BI__builtin_neon_vld3q_v:
6500   case NEON::BI__builtin_neon_vld4_v:
6501   case NEON::BI__builtin_neon_vld4q_v:
6502   case NEON::BI__builtin_neon_vld2_dup_v:
6503   case NEON::BI__builtin_neon_vld2q_dup_v:
6504   case NEON::BI__builtin_neon_vld3_dup_v:
6505   case NEON::BI__builtin_neon_vld3q_dup_v:
6506   case NEON::BI__builtin_neon_vld4_dup_v:
6507   case NEON::BI__builtin_neon_vld4q_dup_v: {
6508     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6509     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6510     Value *Align = getAlignmentValue32(PtrOp1);
6511     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6512     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6513     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6514     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6515   }
6516   case NEON::BI__builtin_neon_vld1_dup_v:
6517   case NEON::BI__builtin_neon_vld1q_dup_v: {
6518     Value *V = UndefValue::get(Ty);
6519     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
6520     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
6521     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6522     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6523     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6524     return EmitNeonSplat(Ops[0], CI);
6525   }
6526   case NEON::BI__builtin_neon_vld2_lane_v:
6527   case NEON::BI__builtin_neon_vld2q_lane_v:
6528   case NEON::BI__builtin_neon_vld3_lane_v:
6529   case NEON::BI__builtin_neon_vld3q_lane_v:
6530   case NEON::BI__builtin_neon_vld4_lane_v:
6531   case NEON::BI__builtin_neon_vld4q_lane_v: {
6532     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6533     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6534     for (unsigned I = 2; I < Ops.size() - 1; ++I)
6535       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6536     Ops.push_back(getAlignmentValue32(PtrOp1));
6537     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6538     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6539     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6540     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6541   }
6542   case NEON::BI__builtin_neon_vmovl_v: {
6543     llvm::FixedVectorType *DTy =
6544         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6545     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6546     if (Usgn)
6547       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6548     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6549   }
6550   case NEON::BI__builtin_neon_vmovn_v: {
6551     llvm::FixedVectorType *QTy =
6552         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6553     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6554     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6555   }
6556   case NEON::BI__builtin_neon_vmull_v:
6557     // FIXME: the integer vmull operations could be emitted in terms of pure
6558     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6559     // hoisting the exts outside loops. Until global ISel comes along that can
6560     // see through such movement this leads to bad CodeGen. So we need an
6561     // intrinsic for now.
6562     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6563     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
6564     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6565   case NEON::BI__builtin_neon_vpadal_v:
6566   case NEON::BI__builtin_neon_vpadalq_v: {
6567     // The source operand type has twice as many elements of half the size.
6568     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6569     llvm::Type *EltTy =
6570       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6571     auto *NarrowTy =
6572         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6573     llvm::Type *Tys[2] = { Ty, NarrowTy };
6574     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6575   }
6576   case NEON::BI__builtin_neon_vpaddl_v:
6577   case NEON::BI__builtin_neon_vpaddlq_v: {
6578     // The source operand type has twice as many elements of half the size.
6579     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6580     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6581     auto *NarrowTy =
6582         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6583     llvm::Type *Tys[2] = { Ty, NarrowTy };
6584     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6585   }
6586   case NEON::BI__builtin_neon_vqdmlal_v:
6587   case NEON::BI__builtin_neon_vqdmlsl_v: {
6588     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6589     Ops[1] =
6590         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6591     Ops.resize(2);
6592     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6593   }
6594   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6595   case NEON::BI__builtin_neon_vqdmulh_lane_v:
6596   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6597   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6598     auto *RTy = cast<llvm::FixedVectorType>(Ty);
6599     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
6600         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
6601       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
6602                                        RTy->getNumElements() * 2);
6603     llvm::Type *Tys[2] = {
6604         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6605                                              /*isQuad*/ false))};
6606     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6607   }
6608   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
6609   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
6610   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
6611   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
6612     llvm::Type *Tys[2] = {
6613         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6614                                             /*isQuad*/ true))};
6615     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6616   }
6617   case NEON::BI__builtin_neon_vqshl_n_v:
6618   case NEON::BI__builtin_neon_vqshlq_n_v:
6619     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6620                         1, false);
6621   case NEON::BI__builtin_neon_vqshlu_n_v:
6622   case NEON::BI__builtin_neon_vqshluq_n_v:
6623     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6624                         1, false);
6625   case NEON::BI__builtin_neon_vrecpe_v:
6626   case NEON::BI__builtin_neon_vrecpeq_v:
6627   case NEON::BI__builtin_neon_vrsqrte_v:
6628   case NEON::BI__builtin_neon_vrsqrteq_v:
6629     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6630     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6631   case NEON::BI__builtin_neon_vrndi_v:
6632   case NEON::BI__builtin_neon_vrndiq_v:
6633     Int = Builder.getIsFPConstrained()
6634               ? Intrinsic::experimental_constrained_nearbyint
6635               : Intrinsic::nearbyint;
6636     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6637   case NEON::BI__builtin_neon_vrshr_n_v:
6638   case NEON::BI__builtin_neon_vrshrq_n_v:
6639     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6640                         1, true);
6641   case NEON::BI__builtin_neon_vshl_n_v:
6642   case NEON::BI__builtin_neon_vshlq_n_v:
6643     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6644     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6645                              "vshl_n");
6646   case NEON::BI__builtin_neon_vshll_n_v: {
6647     llvm::FixedVectorType *SrcTy =
6648         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6649     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6650     if (Usgn)
6651       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6652     else
6653       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6654     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6655     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6656   }
6657   case NEON::BI__builtin_neon_vshrn_n_v: {
6658     llvm::FixedVectorType *SrcTy =
6659         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6660     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6661     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6662     if (Usgn)
6663       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6664     else
6665       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6666     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6667   }
6668   case NEON::BI__builtin_neon_vshr_n_v:
6669   case NEON::BI__builtin_neon_vshrq_n_v:
6670     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6671   case NEON::BI__builtin_neon_vst1_v:
6672   case NEON::BI__builtin_neon_vst1q_v:
6673   case NEON::BI__builtin_neon_vst2_v:
6674   case NEON::BI__builtin_neon_vst2q_v:
6675   case NEON::BI__builtin_neon_vst3_v:
6676   case NEON::BI__builtin_neon_vst3q_v:
6677   case NEON::BI__builtin_neon_vst4_v:
6678   case NEON::BI__builtin_neon_vst4q_v:
6679   case NEON::BI__builtin_neon_vst2_lane_v:
6680   case NEON::BI__builtin_neon_vst2q_lane_v:
6681   case NEON::BI__builtin_neon_vst3_lane_v:
6682   case NEON::BI__builtin_neon_vst3q_lane_v:
6683   case NEON::BI__builtin_neon_vst4_lane_v:
6684   case NEON::BI__builtin_neon_vst4q_lane_v: {
6685     llvm::Type *Tys[] = {Int8PtrTy, Ty};
6686     Ops.push_back(getAlignmentValue32(PtrOp0));
6687     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6688   }
6689   case NEON::BI__builtin_neon_vst1_x2_v:
6690   case NEON::BI__builtin_neon_vst1q_x2_v:
6691   case NEON::BI__builtin_neon_vst1_x3_v:
6692   case NEON::BI__builtin_neon_vst1q_x3_v:
6693   case NEON::BI__builtin_neon_vst1_x4_v:
6694   case NEON::BI__builtin_neon_vst1q_x4_v: {
6695     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6696     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6697     // in AArch64 it comes last. We may want to stick to one or another.
6698     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6699         Arch == llvm::Triple::aarch64_32) {
6700       llvm::Type *Tys[2] = { VTy, PTy };
6701       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6702       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6703     }
6704     llvm::Type *Tys[2] = { PTy, VTy };
6705     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6706   }
6707   case NEON::BI__builtin_neon_vsubhn_v: {
6708     llvm::FixedVectorType *SrcTy =
6709         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6710 
6711     // %sum = add <4 x i32> %lhs, %rhs
6712     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6713     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6714     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6715 
6716     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6717     Constant *ShiftAmt =
6718         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6719     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6720 
6721     // %res = trunc <4 x i32> %high to <4 x i16>
6722     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6723   }
6724   case NEON::BI__builtin_neon_vtrn_v:
6725   case NEON::BI__builtin_neon_vtrnq_v: {
6726     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6727     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6728     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6729     Value *SV = nullptr;
6730 
6731     for (unsigned vi = 0; vi != 2; ++vi) {
6732       SmallVector<int, 16> Indices;
6733       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6734         Indices.push_back(i+vi);
6735         Indices.push_back(i+e+vi);
6736       }
6737       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6738       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6739       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6740     }
6741     return SV;
6742   }
6743   case NEON::BI__builtin_neon_vtst_v:
6744   case NEON::BI__builtin_neon_vtstq_v: {
6745     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6746     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6747     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6748     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6749                                 ConstantAggregateZero::get(Ty));
6750     return Builder.CreateSExt(Ops[0], Ty, "vtst");
6751   }
6752   case NEON::BI__builtin_neon_vuzp_v:
6753   case NEON::BI__builtin_neon_vuzpq_v: {
6754     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6755     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6756     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6757     Value *SV = nullptr;
6758 
6759     for (unsigned vi = 0; vi != 2; ++vi) {
6760       SmallVector<int, 16> Indices;
6761       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6762         Indices.push_back(2*i+vi);
6763 
6764       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6765       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
6766       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6767     }
6768     return SV;
6769   }
6770   case NEON::BI__builtin_neon_vzip_v:
6771   case NEON::BI__builtin_neon_vzipq_v: {
6772     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6773     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6774     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6775     Value *SV = nullptr;
6776 
6777     for (unsigned vi = 0; vi != 2; ++vi) {
6778       SmallVector<int, 16> Indices;
6779       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6780         Indices.push_back((i + vi*e) >> 1);
6781         Indices.push_back(((i + vi*e) >> 1)+e);
6782       }
6783       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6784       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
6785       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6786     }
6787     return SV;
6788   }
6789   case NEON::BI__builtin_neon_vdot_v:
6790   case NEON::BI__builtin_neon_vdotq_v: {
6791     auto *InputTy =
6792         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6793     llvm::Type *Tys[2] = { Ty, InputTy };
6794     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6795     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
6796   }
6797   case NEON::BI__builtin_neon_vfmlal_low_v:
6798   case NEON::BI__builtin_neon_vfmlalq_low_v: {
6799     auto *InputTy =
6800         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6801     llvm::Type *Tys[2] = { Ty, InputTy };
6802     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
6803   }
6804   case NEON::BI__builtin_neon_vfmlsl_low_v:
6805   case NEON::BI__builtin_neon_vfmlslq_low_v: {
6806     auto *InputTy =
6807         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6808     llvm::Type *Tys[2] = { Ty, InputTy };
6809     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
6810   }
6811   case NEON::BI__builtin_neon_vfmlal_high_v:
6812   case NEON::BI__builtin_neon_vfmlalq_high_v: {
6813     auto *InputTy =
6814         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6815     llvm::Type *Tys[2] = { Ty, InputTy };
6816     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
6817   }
6818   case NEON::BI__builtin_neon_vfmlsl_high_v:
6819   case NEON::BI__builtin_neon_vfmlslq_high_v: {
6820     auto *InputTy =
6821         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6822     llvm::Type *Tys[2] = { Ty, InputTy };
6823     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
6824   }
6825   case NEON::BI__builtin_neon_vmmlaq_v: {
6826     auto *InputTy =
6827         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6828     llvm::Type *Tys[2] = { Ty, InputTy };
6829     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6830     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
6831   }
6832   case NEON::BI__builtin_neon_vusmmlaq_v: {
6833     auto *InputTy =
6834         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6835     llvm::Type *Tys[2] = { Ty, InputTy };
6836     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
6837   }
6838   case NEON::BI__builtin_neon_vusdot_v:
6839   case NEON::BI__builtin_neon_vusdotq_v: {
6840     auto *InputTy =
6841         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6842     llvm::Type *Tys[2] = { Ty, InputTy };
6843     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
6844   }
6845   case NEON::BI__builtin_neon_vbfdot_v:
6846   case NEON::BI__builtin_neon_vbfdotq_v: {
6847     llvm::Type *InputTy =
6848         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
6849     llvm::Type *Tys[2] = { Ty, InputTy };
6850     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
6851   }
6852   case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
6853     llvm::Type *Tys[1] = { Ty };
6854     Function *F = CGM.getIntrinsic(Int, Tys);
6855     return EmitNeonCall(F, Ops, "vcvtfp2bf");
6856   }
6857 
6858   }
6859 
6860   assert(Int && "Expected valid intrinsic number");
6861 
6862   // Determine the type(s) of this overloaded AArch64 intrinsic.
6863   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
6864 
6865   Value *Result = EmitNeonCall(F, Ops, NameHint);
6866   llvm::Type *ResultType = ConvertType(E->getType());
6867   // AArch64 intrinsic one-element vector type cast to
6868   // scalar type expected by the builtin
6869   return Builder.CreateBitCast(Result, ResultType, NameHint);
6870 }
6871 
6872 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
6873     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
6874     const CmpInst::Predicate Ip, const Twine &Name) {
6875   llvm::Type *OTy = Op->getType();
6876 
6877   // FIXME: this is utterly horrific. We should not be looking at previous
6878   // codegen context to find out what needs doing. Unfortunately TableGen
6879   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
6880   // (etc).
6881   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
6882     OTy = BI->getOperand(0)->getType();
6883 
6884   Op = Builder.CreateBitCast(Op, OTy);
6885   if (OTy->getScalarType()->isFloatingPointTy()) {
6886     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
6887   } else {
6888     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
6889   }
6890   return Builder.CreateSExt(Op, Ty, Name);
6891 }
6892 
6893 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
6894                                  Value *ExtOp, Value *IndexOp,
6895                                  llvm::Type *ResTy, unsigned IntID,
6896                                  const char *Name) {
6897   SmallVector<Value *, 2> TblOps;
6898   if (ExtOp)
6899     TblOps.push_back(ExtOp);
6900 
6901   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
6902   SmallVector<int, 16> Indices;
6903   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
6904   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
6905     Indices.push_back(2*i);
6906     Indices.push_back(2*i+1);
6907   }
6908 
6909   int PairPos = 0, End = Ops.size() - 1;
6910   while (PairPos < End) {
6911     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6912                                                      Ops[PairPos+1], Indices,
6913                                                      Name));
6914     PairPos += 2;
6915   }
6916 
6917   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
6918   // of the 128-bit lookup table with zero.
6919   if (PairPos == End) {
6920     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
6921     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6922                                                      ZeroTbl, Indices, Name));
6923   }
6924 
6925   Function *TblF;
6926   TblOps.push_back(IndexOp);
6927   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
6928 
6929   return CGF.EmitNeonCall(TblF, TblOps, Name);
6930 }
6931 
6932 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
6933   unsigned Value;
6934   switch (BuiltinID) {
6935   default:
6936     return nullptr;
6937   case ARM::BI__builtin_arm_nop:
6938     Value = 0;
6939     break;
6940   case ARM::BI__builtin_arm_yield:
6941   case ARM::BI__yield:
6942     Value = 1;
6943     break;
6944   case ARM::BI__builtin_arm_wfe:
6945   case ARM::BI__wfe:
6946     Value = 2;
6947     break;
6948   case ARM::BI__builtin_arm_wfi:
6949   case ARM::BI__wfi:
6950     Value = 3;
6951     break;
6952   case ARM::BI__builtin_arm_sev:
6953   case ARM::BI__sev:
6954     Value = 4;
6955     break;
6956   case ARM::BI__builtin_arm_sevl:
6957   case ARM::BI__sevl:
6958     Value = 5;
6959     break;
6960   }
6961 
6962   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
6963                             llvm::ConstantInt::get(Int32Ty, Value));
6964 }
6965 
6966 enum SpecialRegisterAccessKind {
6967   NormalRead,
6968   VolatileRead,
6969   Write,
6970 };
6971 
6972 // Generates the IR for the read/write special register builtin,
6973 // ValueType is the type of the value that is to be written or read,
6974 // RegisterType is the type of the register being written to or read from.
6975 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
6976                                          const CallExpr *E,
6977                                          llvm::Type *RegisterType,
6978                                          llvm::Type *ValueType,
6979                                          SpecialRegisterAccessKind AccessKind,
6980                                          StringRef SysReg = "") {
6981   // write and register intrinsics only support 32 and 64 bit operations.
6982   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
6983           && "Unsupported size for register.");
6984 
6985   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6986   CodeGen::CodeGenModule &CGM = CGF.CGM;
6987   LLVMContext &Context = CGM.getLLVMContext();
6988 
6989   if (SysReg.empty()) {
6990     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
6991     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
6992   }
6993 
6994   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
6995   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
6996   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
6997 
6998   llvm::Type *Types[] = { RegisterType };
6999 
7000   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7001   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
7002             && "Can't fit 64-bit value in 32-bit register");
7003 
7004   if (AccessKind != Write) {
7005     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
7006     llvm::Function *F = CGM.getIntrinsic(
7007         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7008                                    : llvm::Intrinsic::read_register,
7009         Types);
7010     llvm::Value *Call = Builder.CreateCall(F, Metadata);
7011 
7012     if (MixedTypes)
7013       // Read into 64 bit register and then truncate result to 32 bit.
7014       return Builder.CreateTrunc(Call, ValueType);
7015 
7016     if (ValueType->isPointerTy())
7017       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7018       return Builder.CreateIntToPtr(Call, ValueType);
7019 
7020     return Call;
7021   }
7022 
7023   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7024   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7025   if (MixedTypes) {
7026     // Extend 32 bit write value to 64 bit to pass to write.
7027     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7028     return Builder.CreateCall(F, { Metadata, ArgValue });
7029   }
7030 
7031   if (ValueType->isPointerTy()) {
7032     // Have VoidPtrTy ArgValue but want to return an i32/i64.
7033     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7034     return Builder.CreateCall(F, { Metadata, ArgValue });
7035   }
7036 
7037   return Builder.CreateCall(F, { Metadata, ArgValue });
7038 }
7039 
7040 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7041 /// argument that specifies the vector type.
7042 static bool HasExtraNeonArgument(unsigned BuiltinID) {
7043   switch (BuiltinID) {
7044   default: break;
7045   case NEON::BI__builtin_neon_vget_lane_i8:
7046   case NEON::BI__builtin_neon_vget_lane_i16:
7047   case NEON::BI__builtin_neon_vget_lane_bf16:
7048   case NEON::BI__builtin_neon_vget_lane_i32:
7049   case NEON::BI__builtin_neon_vget_lane_i64:
7050   case NEON::BI__builtin_neon_vget_lane_f32:
7051   case NEON::BI__builtin_neon_vgetq_lane_i8:
7052   case NEON::BI__builtin_neon_vgetq_lane_i16:
7053   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7054   case NEON::BI__builtin_neon_vgetq_lane_i32:
7055   case NEON::BI__builtin_neon_vgetq_lane_i64:
7056   case NEON::BI__builtin_neon_vgetq_lane_f32:
7057   case NEON::BI__builtin_neon_vduph_lane_bf16:
7058   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7059   case NEON::BI__builtin_neon_vset_lane_i8:
7060   case NEON::BI__builtin_neon_vset_lane_i16:
7061   case NEON::BI__builtin_neon_vset_lane_bf16:
7062   case NEON::BI__builtin_neon_vset_lane_i32:
7063   case NEON::BI__builtin_neon_vset_lane_i64:
7064   case NEON::BI__builtin_neon_vset_lane_f32:
7065   case NEON::BI__builtin_neon_vsetq_lane_i8:
7066   case NEON::BI__builtin_neon_vsetq_lane_i16:
7067   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7068   case NEON::BI__builtin_neon_vsetq_lane_i32:
7069   case NEON::BI__builtin_neon_vsetq_lane_i64:
7070   case NEON::BI__builtin_neon_vsetq_lane_f32:
7071   case NEON::BI__builtin_neon_vsha1h_u32:
7072   case NEON::BI__builtin_neon_vsha1cq_u32:
7073   case NEON::BI__builtin_neon_vsha1pq_u32:
7074   case NEON::BI__builtin_neon_vsha1mq_u32:
7075   case NEON::BI__builtin_neon_vcvth_bf16_f32:
7076   case clang::ARM::BI_MoveToCoprocessor:
7077   case clang::ARM::BI_MoveToCoprocessor2:
7078     return false;
7079   }
7080   return true;
7081 }
7082 
7083 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7084                                            const CallExpr *E,
7085                                            ReturnValueSlot ReturnValue,
7086                                            llvm::Triple::ArchType Arch) {
7087   if (auto Hint = GetValueForARMHint(BuiltinID))
7088     return Hint;
7089 
7090   if (BuiltinID == ARM::BI__emit) {
7091     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7092     llvm::FunctionType *FTy =
7093         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7094 
7095     Expr::EvalResult Result;
7096     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7097       llvm_unreachable("Sema will ensure that the parameter is constant");
7098 
7099     llvm::APSInt Value = Result.Val.getInt();
7100     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7101 
7102     llvm::InlineAsm *Emit =
7103         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7104                                  /*hasSideEffects=*/true)
7105                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7106                                  /*hasSideEffects=*/true);
7107 
7108     return Builder.CreateCall(Emit);
7109   }
7110 
7111   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
7112     Value *Option = EmitScalarExpr(E->getArg(0));
7113     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7114   }
7115 
7116   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
7117     Value *Address = EmitScalarExpr(E->getArg(0));
7118     Value *RW      = EmitScalarExpr(E->getArg(1));
7119     Value *IsData  = EmitScalarExpr(E->getArg(2));
7120 
7121     // Locality is not supported on ARM target
7122     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7123 
7124     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7125     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7126   }
7127 
7128   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
7129     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7130     return Builder.CreateCall(
7131         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7132   }
7133 
7134   if (BuiltinID == ARM::BI__builtin_arm_cls) {
7135     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7136     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7137   }
7138   if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7139     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7140     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7141                               "cls");
7142   }
7143 
7144   if (BuiltinID == ARM::BI__clear_cache) {
7145     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7146     const FunctionDecl *FD = E->getDirectCallee();
7147     Value *Ops[2];
7148     for (unsigned i = 0; i < 2; i++)
7149       Ops[i] = EmitScalarExpr(E->getArg(i));
7150     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7151     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7152     StringRef Name = FD->getName();
7153     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7154   }
7155 
7156   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7157       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7158     Function *F;
7159 
7160     switch (BuiltinID) {
7161     default: llvm_unreachable("unexpected builtin");
7162     case ARM::BI__builtin_arm_mcrr:
7163       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7164       break;
7165     case ARM::BI__builtin_arm_mcrr2:
7166       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7167       break;
7168     }
7169 
7170     // MCRR{2} instruction has 5 operands but
7171     // the intrinsic has 4 because Rt and Rt2
7172     // are represented as a single unsigned 64
7173     // bit integer in the intrinsic definition
7174     // but internally it's represented as 2 32
7175     // bit integers.
7176 
7177     Value *Coproc = EmitScalarExpr(E->getArg(0));
7178     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7179     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7180     Value *CRm = EmitScalarExpr(E->getArg(3));
7181 
7182     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7183     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7184     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7185     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7186 
7187     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7188   }
7189 
7190   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7191       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7192     Function *F;
7193 
7194     switch (BuiltinID) {
7195     default: llvm_unreachable("unexpected builtin");
7196     case ARM::BI__builtin_arm_mrrc:
7197       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7198       break;
7199     case ARM::BI__builtin_arm_mrrc2:
7200       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7201       break;
7202     }
7203 
7204     Value *Coproc = EmitScalarExpr(E->getArg(0));
7205     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7206     Value *CRm  = EmitScalarExpr(E->getArg(2));
7207     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7208 
7209     // Returns an unsigned 64 bit integer, represented
7210     // as two 32 bit integers.
7211 
7212     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7213     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7214     Rt = Builder.CreateZExt(Rt, Int64Ty);
7215     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7216 
7217     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7218     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7219     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7220 
7221     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7222   }
7223 
7224   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7225       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7226         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7227        getContext().getTypeSize(E->getType()) == 64) ||
7228       BuiltinID == ARM::BI__ldrexd) {
7229     Function *F;
7230 
7231     switch (BuiltinID) {
7232     default: llvm_unreachable("unexpected builtin");
7233     case ARM::BI__builtin_arm_ldaex:
7234       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7235       break;
7236     case ARM::BI__builtin_arm_ldrexd:
7237     case ARM::BI__builtin_arm_ldrex:
7238     case ARM::BI__ldrexd:
7239       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7240       break;
7241     }
7242 
7243     Value *LdPtr = EmitScalarExpr(E->getArg(0));
7244     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7245                                     "ldrexd");
7246 
7247     Value *Val0 = Builder.CreateExtractValue(Val, 1);
7248     Value *Val1 = Builder.CreateExtractValue(Val, 0);
7249     Val0 = Builder.CreateZExt(Val0, Int64Ty);
7250     Val1 = Builder.CreateZExt(Val1, Int64Ty);
7251 
7252     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7253     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7254     Val = Builder.CreateOr(Val, Val1);
7255     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7256   }
7257 
7258   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7259       BuiltinID == ARM::BI__builtin_arm_ldaex) {
7260     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7261 
7262     QualType Ty = E->getType();
7263     llvm::Type *RealResTy = ConvertType(Ty);
7264     llvm::Type *PtrTy = llvm::IntegerType::get(
7265         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7266     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7267 
7268     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7269                                        ? Intrinsic::arm_ldaex
7270                                        : Intrinsic::arm_ldrex,
7271                                    PtrTy);
7272     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7273 
7274     if (RealResTy->isPointerTy())
7275       return Builder.CreateIntToPtr(Val, RealResTy);
7276     else {
7277       llvm::Type *IntResTy = llvm::IntegerType::get(
7278           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7279       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7280       return Builder.CreateBitCast(Val, RealResTy);
7281     }
7282   }
7283 
7284   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7285       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7286         BuiltinID == ARM::BI__builtin_arm_strex) &&
7287        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7288     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7289                                        ? Intrinsic::arm_stlexd
7290                                        : Intrinsic::arm_strexd);
7291     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7292 
7293     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7294     Value *Val = EmitScalarExpr(E->getArg(0));
7295     Builder.CreateStore(Val, Tmp);
7296 
7297     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
7298     Val = Builder.CreateLoad(LdPtr);
7299 
7300     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7301     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7302     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7303     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7304   }
7305 
7306   if (BuiltinID == ARM::BI__builtin_arm_strex ||
7307       BuiltinID == ARM::BI__builtin_arm_stlex) {
7308     Value *StoreVal = EmitScalarExpr(E->getArg(0));
7309     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7310 
7311     QualType Ty = E->getArg(0)->getType();
7312     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7313                                                  getContext().getTypeSize(Ty));
7314     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7315 
7316     if (StoreVal->getType()->isPointerTy())
7317       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7318     else {
7319       llvm::Type *IntTy = llvm::IntegerType::get(
7320           getLLVMContext(),
7321           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7322       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7323       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7324     }
7325 
7326     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7327                                        ? Intrinsic::arm_stlex
7328                                        : Intrinsic::arm_strex,
7329                                    StoreAddr->getType());
7330     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7331   }
7332 
7333   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7334     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7335     return Builder.CreateCall(F);
7336   }
7337 
7338   // CRC32
7339   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7340   switch (BuiltinID) {
7341   case ARM::BI__builtin_arm_crc32b:
7342     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7343   case ARM::BI__builtin_arm_crc32cb:
7344     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7345   case ARM::BI__builtin_arm_crc32h:
7346     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7347   case ARM::BI__builtin_arm_crc32ch:
7348     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7349   case ARM::BI__builtin_arm_crc32w:
7350   case ARM::BI__builtin_arm_crc32d:
7351     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7352   case ARM::BI__builtin_arm_crc32cw:
7353   case ARM::BI__builtin_arm_crc32cd:
7354     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7355   }
7356 
7357   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7358     Value *Arg0 = EmitScalarExpr(E->getArg(0));
7359     Value *Arg1 = EmitScalarExpr(E->getArg(1));
7360 
7361     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7362     // intrinsics, hence we need different codegen for these cases.
7363     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7364         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7365       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7366       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7367       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7368       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7369 
7370       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7371       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7372       return Builder.CreateCall(F, {Res, Arg1b});
7373     } else {
7374       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7375 
7376       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7377       return Builder.CreateCall(F, {Arg0, Arg1});
7378     }
7379   }
7380 
7381   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7382       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7383       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7384       BuiltinID == ARM::BI__builtin_arm_wsr ||
7385       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7386       BuiltinID == ARM::BI__builtin_arm_wsrp) {
7387 
7388     SpecialRegisterAccessKind AccessKind = Write;
7389     if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7390         BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7391         BuiltinID == ARM::BI__builtin_arm_rsrp)
7392       AccessKind = VolatileRead;
7393 
7394     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7395                             BuiltinID == ARM::BI__builtin_arm_wsrp;
7396 
7397     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7398                    BuiltinID == ARM::BI__builtin_arm_wsr64;
7399 
7400     llvm::Type *ValueType;
7401     llvm::Type *RegisterType;
7402     if (IsPointerBuiltin) {
7403       ValueType = VoidPtrTy;
7404       RegisterType = Int32Ty;
7405     } else if (Is64Bit) {
7406       ValueType = RegisterType = Int64Ty;
7407     } else {
7408       ValueType = RegisterType = Int32Ty;
7409     }
7410 
7411     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7412                                       AccessKind);
7413   }
7414 
7415   // Handle MSVC intrinsics before argument evaluation to prevent double
7416   // evaluation.
7417   if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7418     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7419 
7420   // Deal with MVE builtins
7421   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7422     return Result;
7423   // Handle CDE builtins
7424   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7425     return Result;
7426 
7427   // Find out if any arguments are required to be integer constant
7428   // expressions.
7429   unsigned ICEArguments = 0;
7430   ASTContext::GetBuiltinTypeError Error;
7431   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7432   assert(Error == ASTContext::GE_None && "Should not codegen an error");
7433 
7434   auto getAlignmentValue32 = [&](Address addr) -> Value* {
7435     return Builder.getInt32(addr.getAlignment().getQuantity());
7436   };
7437 
7438   Address PtrOp0 = Address::invalid();
7439   Address PtrOp1 = Address::invalid();
7440   SmallVector<Value*, 4> Ops;
7441   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7442   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7443   for (unsigned i = 0, e = NumArgs; i != e; i++) {
7444     if (i == 0) {
7445       switch (BuiltinID) {
7446       case NEON::BI__builtin_neon_vld1_v:
7447       case NEON::BI__builtin_neon_vld1q_v:
7448       case NEON::BI__builtin_neon_vld1q_lane_v:
7449       case NEON::BI__builtin_neon_vld1_lane_v:
7450       case NEON::BI__builtin_neon_vld1_dup_v:
7451       case NEON::BI__builtin_neon_vld1q_dup_v:
7452       case NEON::BI__builtin_neon_vst1_v:
7453       case NEON::BI__builtin_neon_vst1q_v:
7454       case NEON::BI__builtin_neon_vst1q_lane_v:
7455       case NEON::BI__builtin_neon_vst1_lane_v:
7456       case NEON::BI__builtin_neon_vst2_v:
7457       case NEON::BI__builtin_neon_vst2q_v:
7458       case NEON::BI__builtin_neon_vst2_lane_v:
7459       case NEON::BI__builtin_neon_vst2q_lane_v:
7460       case NEON::BI__builtin_neon_vst3_v:
7461       case NEON::BI__builtin_neon_vst3q_v:
7462       case NEON::BI__builtin_neon_vst3_lane_v:
7463       case NEON::BI__builtin_neon_vst3q_lane_v:
7464       case NEON::BI__builtin_neon_vst4_v:
7465       case NEON::BI__builtin_neon_vst4q_v:
7466       case NEON::BI__builtin_neon_vst4_lane_v:
7467       case NEON::BI__builtin_neon_vst4q_lane_v:
7468         // Get the alignment for the argument in addition to the value;
7469         // we'll use it later.
7470         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7471         Ops.push_back(PtrOp0.getPointer());
7472         continue;
7473       }
7474     }
7475     if (i == 1) {
7476       switch (BuiltinID) {
7477       case NEON::BI__builtin_neon_vld2_v:
7478       case NEON::BI__builtin_neon_vld2q_v:
7479       case NEON::BI__builtin_neon_vld3_v:
7480       case NEON::BI__builtin_neon_vld3q_v:
7481       case NEON::BI__builtin_neon_vld4_v:
7482       case NEON::BI__builtin_neon_vld4q_v:
7483       case NEON::BI__builtin_neon_vld2_lane_v:
7484       case NEON::BI__builtin_neon_vld2q_lane_v:
7485       case NEON::BI__builtin_neon_vld3_lane_v:
7486       case NEON::BI__builtin_neon_vld3q_lane_v:
7487       case NEON::BI__builtin_neon_vld4_lane_v:
7488       case NEON::BI__builtin_neon_vld4q_lane_v:
7489       case NEON::BI__builtin_neon_vld2_dup_v:
7490       case NEON::BI__builtin_neon_vld2q_dup_v:
7491       case NEON::BI__builtin_neon_vld3_dup_v:
7492       case NEON::BI__builtin_neon_vld3q_dup_v:
7493       case NEON::BI__builtin_neon_vld4_dup_v:
7494       case NEON::BI__builtin_neon_vld4q_dup_v:
7495         // Get the alignment for the argument in addition to the value;
7496         // we'll use it later.
7497         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7498         Ops.push_back(PtrOp1.getPointer());
7499         continue;
7500       }
7501     }
7502 
7503     if ((ICEArguments & (1 << i)) == 0) {
7504       Ops.push_back(EmitScalarExpr(E->getArg(i)));
7505     } else {
7506       // If this is required to be a constant, constant fold it so that we know
7507       // that the generated intrinsic gets a ConstantInt.
7508       Ops.push_back(llvm::ConstantInt::get(
7509           getLLVMContext(),
7510           *E->getArg(i)->getIntegerConstantExpr(getContext())));
7511     }
7512   }
7513 
7514   switch (BuiltinID) {
7515   default: break;
7516 
7517   case NEON::BI__builtin_neon_vget_lane_i8:
7518   case NEON::BI__builtin_neon_vget_lane_i16:
7519   case NEON::BI__builtin_neon_vget_lane_i32:
7520   case NEON::BI__builtin_neon_vget_lane_i64:
7521   case NEON::BI__builtin_neon_vget_lane_bf16:
7522   case NEON::BI__builtin_neon_vget_lane_f32:
7523   case NEON::BI__builtin_neon_vgetq_lane_i8:
7524   case NEON::BI__builtin_neon_vgetq_lane_i16:
7525   case NEON::BI__builtin_neon_vgetq_lane_i32:
7526   case NEON::BI__builtin_neon_vgetq_lane_i64:
7527   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7528   case NEON::BI__builtin_neon_vgetq_lane_f32:
7529   case NEON::BI__builtin_neon_vduph_lane_bf16:
7530   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7531     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
7532 
7533   case NEON::BI__builtin_neon_vrndns_f32: {
7534     Value *Arg = EmitScalarExpr(E->getArg(0));
7535     llvm::Type *Tys[] = {Arg->getType()};
7536     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
7537     return Builder.CreateCall(F, {Arg}, "vrndn"); }
7538 
7539   case NEON::BI__builtin_neon_vset_lane_i8:
7540   case NEON::BI__builtin_neon_vset_lane_i16:
7541   case NEON::BI__builtin_neon_vset_lane_i32:
7542   case NEON::BI__builtin_neon_vset_lane_i64:
7543   case NEON::BI__builtin_neon_vset_lane_bf16:
7544   case NEON::BI__builtin_neon_vset_lane_f32:
7545   case NEON::BI__builtin_neon_vsetq_lane_i8:
7546   case NEON::BI__builtin_neon_vsetq_lane_i16:
7547   case NEON::BI__builtin_neon_vsetq_lane_i32:
7548   case NEON::BI__builtin_neon_vsetq_lane_i64:
7549   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7550   case NEON::BI__builtin_neon_vsetq_lane_f32:
7551     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7552 
7553   case NEON::BI__builtin_neon_vsha1h_u32:
7554     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
7555                         "vsha1h");
7556   case NEON::BI__builtin_neon_vsha1cq_u32:
7557     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
7558                         "vsha1h");
7559   case NEON::BI__builtin_neon_vsha1pq_u32:
7560     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
7561                         "vsha1h");
7562   case NEON::BI__builtin_neon_vsha1mq_u32:
7563     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
7564                         "vsha1h");
7565 
7566   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
7567     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
7568                         "vcvtbfp2bf");
7569   }
7570 
7571   // The ARM _MoveToCoprocessor builtins put the input register value as
7572   // the first argument, but the LLVM intrinsic expects it as the third one.
7573   case ARM::BI_MoveToCoprocessor:
7574   case ARM::BI_MoveToCoprocessor2: {
7575     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
7576                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
7577     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
7578                                   Ops[3], Ops[4], Ops[5]});
7579   }
7580   }
7581 
7582   // Get the last argument, which specifies the vector type.
7583   assert(HasExtraArg);
7584   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7585   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
7586   if (!Result)
7587     return nullptr;
7588 
7589   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7590       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7591     // Determine the overloaded type of this builtin.
7592     llvm::Type *Ty;
7593     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7594       Ty = FloatTy;
7595     else
7596       Ty = DoubleTy;
7597 
7598     // Determine whether this is an unsigned conversion or not.
7599     bool usgn = Result->getZExtValue() == 1;
7600     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7601 
7602     // Call the appropriate intrinsic.
7603     Function *F = CGM.getIntrinsic(Int, Ty);
7604     return Builder.CreateCall(F, Ops, "vcvtr");
7605   }
7606 
7607   // Determine the type of this overloaded NEON intrinsic.
7608   NeonTypeFlags Type = Result->getZExtValue();
7609   bool usgn = Type.isUnsigned();
7610   bool rightShift = false;
7611 
7612   llvm::FixedVectorType *VTy =
7613       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
7614                   getTarget().hasBFloat16Type());
7615   llvm::Type *Ty = VTy;
7616   if (!Ty)
7617     return nullptr;
7618 
7619   // Many NEON builtins have identical semantics and uses in ARM and
7620   // AArch64. Emit these in a single function.
7621   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7622   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7623       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7624   if (Builtin)
7625     return EmitCommonNeonBuiltinExpr(
7626         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7627         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7628 
7629   unsigned Int;
7630   switch (BuiltinID) {
7631   default: return nullptr;
7632   case NEON::BI__builtin_neon_vld1q_lane_v:
7633     // Handle 64-bit integer elements as a special case.  Use shuffles of
7634     // one-element vectors to avoid poor code for i64 in the backend.
7635     if (VTy->getElementType()->isIntegerTy(64)) {
7636       // Extract the other lane.
7637       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7638       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7639       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7640       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7641       // Load the value as a one-element vector.
7642       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7643       llvm::Type *Tys[] = {Ty, Int8PtrTy};
7644       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7645       Value *Align = getAlignmentValue32(PtrOp0);
7646       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7647       // Combine them.
7648       int Indices[] = {1 - Lane, Lane};
7649       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7650     }
7651     LLVM_FALLTHROUGH;
7652   case NEON::BI__builtin_neon_vld1_lane_v: {
7653     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7654     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7655     Value *Ld = Builder.CreateLoad(PtrOp0);
7656     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7657   }
7658   case NEON::BI__builtin_neon_vqrshrn_n_v:
7659     Int =
7660       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7661     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7662                         1, true);
7663   case NEON::BI__builtin_neon_vqrshrun_n_v:
7664     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7665                         Ops, "vqrshrun_n", 1, true);
7666   case NEON::BI__builtin_neon_vqshrn_n_v:
7667     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7668     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7669                         1, true);
7670   case NEON::BI__builtin_neon_vqshrun_n_v:
7671     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7672                         Ops, "vqshrun_n", 1, true);
7673   case NEON::BI__builtin_neon_vrecpe_v:
7674   case NEON::BI__builtin_neon_vrecpeq_v:
7675     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7676                         Ops, "vrecpe");
7677   case NEON::BI__builtin_neon_vrshrn_n_v:
7678     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7679                         Ops, "vrshrn_n", 1, true);
7680   case NEON::BI__builtin_neon_vrsra_n_v:
7681   case NEON::BI__builtin_neon_vrsraq_n_v:
7682     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7683     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7684     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7685     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7686     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7687     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7688   case NEON::BI__builtin_neon_vsri_n_v:
7689   case NEON::BI__builtin_neon_vsriq_n_v:
7690     rightShift = true;
7691     LLVM_FALLTHROUGH;
7692   case NEON::BI__builtin_neon_vsli_n_v:
7693   case NEON::BI__builtin_neon_vsliq_n_v:
7694     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7695     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7696                         Ops, "vsli_n");
7697   case NEON::BI__builtin_neon_vsra_n_v:
7698   case NEON::BI__builtin_neon_vsraq_n_v:
7699     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7700     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7701     return Builder.CreateAdd(Ops[0], Ops[1]);
7702   case NEON::BI__builtin_neon_vst1q_lane_v:
7703     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
7704     // a one-element vector and avoid poor code for i64 in the backend.
7705     if (VTy->getElementType()->isIntegerTy(64)) {
7706       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7707       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7708       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7709       Ops[2] = getAlignmentValue32(PtrOp0);
7710       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7711       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7712                                                  Tys), Ops);
7713     }
7714     LLVM_FALLTHROUGH;
7715   case NEON::BI__builtin_neon_vst1_lane_v: {
7716     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7717     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7718     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7719     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7720     return St;
7721   }
7722   case NEON::BI__builtin_neon_vtbl1_v:
7723     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7724                         Ops, "vtbl1");
7725   case NEON::BI__builtin_neon_vtbl2_v:
7726     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7727                         Ops, "vtbl2");
7728   case NEON::BI__builtin_neon_vtbl3_v:
7729     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7730                         Ops, "vtbl3");
7731   case NEON::BI__builtin_neon_vtbl4_v:
7732     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7733                         Ops, "vtbl4");
7734   case NEON::BI__builtin_neon_vtbx1_v:
7735     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7736                         Ops, "vtbx1");
7737   case NEON::BI__builtin_neon_vtbx2_v:
7738     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
7739                         Ops, "vtbx2");
7740   case NEON::BI__builtin_neon_vtbx3_v:
7741     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
7742                         Ops, "vtbx3");
7743   case NEON::BI__builtin_neon_vtbx4_v:
7744     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
7745                         Ops, "vtbx4");
7746   }
7747 }
7748 
7749 template<typename Integer>
7750 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
7751   return E->getIntegerConstantExpr(Context)->getExtValue();
7752 }
7753 
7754 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
7755                                      llvm::Type *T, bool Unsigned) {
7756   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
7757   // which finds it convenient to specify signed/unsigned as a boolean flag.
7758   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
7759 }
7760 
7761 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
7762                                     uint32_t Shift, bool Unsigned) {
7763   // MVE helper function for integer shift right. This must handle signed vs
7764   // unsigned, and also deal specially with the case where the shift count is
7765   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
7766   // undefined behavior, but in MVE it's legal, so we must convert it to code
7767   // that is not undefined in IR.
7768   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
7769                           ->getElementType()
7770                           ->getPrimitiveSizeInBits();
7771   if (Shift == LaneBits) {
7772     // An unsigned shift of the full lane size always generates zero, so we can
7773     // simply emit a zero vector. A signed shift of the full lane size does the
7774     // same thing as shifting by one bit fewer.
7775     if (Unsigned)
7776       return llvm::Constant::getNullValue(V->getType());
7777     else
7778       --Shift;
7779   }
7780   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
7781 }
7782 
7783 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
7784   // MVE-specific helper function for a vector splat, which infers the element
7785   // count of the output vector by knowing that MVE vectors are all 128 bits
7786   // wide.
7787   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
7788   return Builder.CreateVectorSplat(Elements, V);
7789 }
7790 
7791 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
7792                                             CodeGenFunction *CGF,
7793                                             llvm::Value *V,
7794                                             llvm::Type *DestType) {
7795   // Convert one MVE vector type into another by reinterpreting its in-register
7796   // format.
7797   //
7798   // Little-endian, this is identical to a bitcast (which reinterprets the
7799   // memory format). But big-endian, they're not necessarily the same, because
7800   // the register and memory formats map to each other differently depending on
7801   // the lane size.
7802   //
7803   // We generate a bitcast whenever we can (if we're little-endian, or if the
7804   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
7805   // that performs the different kind of reinterpretation.
7806   if (CGF->getTarget().isBigEndian() &&
7807       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
7808     return Builder.CreateCall(
7809         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
7810                               {DestType, V->getType()}),
7811         V);
7812   } else {
7813     return Builder.CreateBitCast(V, DestType);
7814   }
7815 }
7816 
7817 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
7818   // Make a shufflevector that extracts every other element of a vector (evens
7819   // or odds, as desired).
7820   SmallVector<int, 16> Indices;
7821   unsigned InputElements =
7822       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
7823   for (unsigned i = 0; i < InputElements; i += 2)
7824     Indices.push_back(i + Odd);
7825   return Builder.CreateShuffleVector(V, Indices);
7826 }
7827 
7828 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
7829                               llvm::Value *V1) {
7830   // Make a shufflevector that interleaves two vectors element by element.
7831   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
7832   SmallVector<int, 16> Indices;
7833   unsigned InputElements =
7834       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
7835   for (unsigned i = 0; i < InputElements; i++) {
7836     Indices.push_back(i);
7837     Indices.push_back(i + InputElements);
7838   }
7839   return Builder.CreateShuffleVector(V0, V1, Indices);
7840 }
7841 
7842 template<unsigned HighBit, unsigned OtherBits>
7843 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
7844   // MVE-specific helper function to make a vector splat of a constant such as
7845   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
7846   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
7847   unsigned LaneBits = T->getPrimitiveSizeInBits();
7848   uint32_t Value = HighBit << (LaneBits - 1);
7849   if (OtherBits)
7850     Value |= (1UL << (LaneBits - 1)) - 1;
7851   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
7852   return ARMMVEVectorSplat(Builder, Lane);
7853 }
7854 
7855 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
7856                                                llvm::Value *V,
7857                                                unsigned ReverseWidth) {
7858   // MVE-specific helper function which reverses the elements of a
7859   // vector within every (ReverseWidth)-bit collection of lanes.
7860   SmallVector<int, 16> Indices;
7861   unsigned LaneSize = V->getType()->getScalarSizeInBits();
7862   unsigned Elements = 128 / LaneSize;
7863   unsigned Mask = ReverseWidth / LaneSize - 1;
7864   for (unsigned i = 0; i < Elements; i++)
7865     Indices.push_back(i ^ Mask);
7866   return Builder.CreateShuffleVector(V, Indices);
7867 }
7868 
7869 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
7870                                               const CallExpr *E,
7871                                               ReturnValueSlot ReturnValue,
7872                                               llvm::Triple::ArchType Arch) {
7873   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
7874   Intrinsic::ID IRIntr;
7875   unsigned NumVectors;
7876 
7877   // Code autogenerated by Tablegen will handle all the simple builtins.
7878   switch (BuiltinID) {
7879     #include "clang/Basic/arm_mve_builtin_cg.inc"
7880 
7881     // If we didn't match an MVE builtin id at all, go back to the
7882     // main EmitARMBuiltinExpr.
7883   default:
7884     return nullptr;
7885   }
7886 
7887   // Anything that breaks from that switch is an MVE builtin that
7888   // needs handwritten code to generate.
7889 
7890   switch (CustomCodeGenType) {
7891 
7892   case CustomCodeGen::VLD24: {
7893     llvm::SmallVector<Value *, 4> Ops;
7894     llvm::SmallVector<llvm::Type *, 4> Tys;
7895 
7896     auto MvecCType = E->getType();
7897     auto MvecLType = ConvertType(MvecCType);
7898     assert(MvecLType->isStructTy() &&
7899            "Return type for vld[24]q should be a struct");
7900     assert(MvecLType->getStructNumElements() == 1 &&
7901            "Return-type struct for vld[24]q should have one element");
7902     auto MvecLTypeInner = MvecLType->getStructElementType(0);
7903     assert(MvecLTypeInner->isArrayTy() &&
7904            "Return-type struct for vld[24]q should contain an array");
7905     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7906            "Array member of return-type struct vld[24]q has wrong length");
7907     auto VecLType = MvecLTypeInner->getArrayElementType();
7908 
7909     Tys.push_back(VecLType);
7910 
7911     auto Addr = E->getArg(0);
7912     Ops.push_back(EmitScalarExpr(Addr));
7913     Tys.push_back(ConvertType(Addr->getType()));
7914 
7915     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7916     Value *LoadResult = Builder.CreateCall(F, Ops);
7917     Value *MvecOut = UndefValue::get(MvecLType);
7918     for (unsigned i = 0; i < NumVectors; ++i) {
7919       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
7920       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
7921     }
7922 
7923     if (ReturnValue.isNull())
7924       return MvecOut;
7925     else
7926       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
7927   }
7928 
7929   case CustomCodeGen::VST24: {
7930     llvm::SmallVector<Value *, 4> Ops;
7931     llvm::SmallVector<llvm::Type *, 4> Tys;
7932 
7933     auto Addr = E->getArg(0);
7934     Ops.push_back(EmitScalarExpr(Addr));
7935     Tys.push_back(ConvertType(Addr->getType()));
7936 
7937     auto MvecCType = E->getArg(1)->getType();
7938     auto MvecLType = ConvertType(MvecCType);
7939     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
7940     assert(MvecLType->getStructNumElements() == 1 &&
7941            "Data-type struct for vst2q should have one element");
7942     auto MvecLTypeInner = MvecLType->getStructElementType(0);
7943     assert(MvecLTypeInner->isArrayTy() &&
7944            "Data-type struct for vst2q should contain an array");
7945     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7946            "Array member of return-type struct vld[24]q has wrong length");
7947     auto VecLType = MvecLTypeInner->getArrayElementType();
7948 
7949     Tys.push_back(VecLType);
7950 
7951     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
7952     EmitAggExpr(E->getArg(1), MvecSlot);
7953     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
7954     for (unsigned i = 0; i < NumVectors; i++)
7955       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
7956 
7957     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7958     Value *ToReturn = nullptr;
7959     for (unsigned i = 0; i < NumVectors; i++) {
7960       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
7961       ToReturn = Builder.CreateCall(F, Ops);
7962       Ops.pop_back();
7963     }
7964     return ToReturn;
7965   }
7966   }
7967   llvm_unreachable("unknown custom codegen type.");
7968 }
7969 
7970 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
7971                                               const CallExpr *E,
7972                                               ReturnValueSlot ReturnValue,
7973                                               llvm::Triple::ArchType Arch) {
7974   switch (BuiltinID) {
7975   default:
7976     return nullptr;
7977 #include "clang/Basic/arm_cde_builtin_cg.inc"
7978   }
7979 }
7980 
7981 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
7982                                       const CallExpr *E,
7983                                       SmallVectorImpl<Value *> &Ops,
7984                                       llvm::Triple::ArchType Arch) {
7985   unsigned int Int = 0;
7986   const char *s = nullptr;
7987 
7988   switch (BuiltinID) {
7989   default:
7990     return nullptr;
7991   case NEON::BI__builtin_neon_vtbl1_v:
7992   case NEON::BI__builtin_neon_vqtbl1_v:
7993   case NEON::BI__builtin_neon_vqtbl1q_v:
7994   case NEON::BI__builtin_neon_vtbl2_v:
7995   case NEON::BI__builtin_neon_vqtbl2_v:
7996   case NEON::BI__builtin_neon_vqtbl2q_v:
7997   case NEON::BI__builtin_neon_vtbl3_v:
7998   case NEON::BI__builtin_neon_vqtbl3_v:
7999   case NEON::BI__builtin_neon_vqtbl3q_v:
8000   case NEON::BI__builtin_neon_vtbl4_v:
8001   case NEON::BI__builtin_neon_vqtbl4_v:
8002   case NEON::BI__builtin_neon_vqtbl4q_v:
8003     break;
8004   case NEON::BI__builtin_neon_vtbx1_v:
8005   case NEON::BI__builtin_neon_vqtbx1_v:
8006   case NEON::BI__builtin_neon_vqtbx1q_v:
8007   case NEON::BI__builtin_neon_vtbx2_v:
8008   case NEON::BI__builtin_neon_vqtbx2_v:
8009   case NEON::BI__builtin_neon_vqtbx2q_v:
8010   case NEON::BI__builtin_neon_vtbx3_v:
8011   case NEON::BI__builtin_neon_vqtbx3_v:
8012   case NEON::BI__builtin_neon_vqtbx3q_v:
8013   case NEON::BI__builtin_neon_vtbx4_v:
8014   case NEON::BI__builtin_neon_vqtbx4_v:
8015   case NEON::BI__builtin_neon_vqtbx4q_v:
8016     break;
8017   }
8018 
8019   assert(E->getNumArgs() >= 3);
8020 
8021   // Get the last argument, which specifies the vector type.
8022   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8023   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8024   if (!Result)
8025     return nullptr;
8026 
8027   // Determine the type of this overloaded NEON intrinsic.
8028   NeonTypeFlags Type = Result->getZExtValue();
8029   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8030   if (!Ty)
8031     return nullptr;
8032 
8033   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8034 
8035   // AArch64 scalar builtins are not overloaded, they do not have an extra
8036   // argument that specifies the vector type, need to handle each case.
8037   switch (BuiltinID) {
8038   case NEON::BI__builtin_neon_vtbl1_v: {
8039     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8040                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8041                               "vtbl1");
8042   }
8043   case NEON::BI__builtin_neon_vtbl2_v: {
8044     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8045                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8046                               "vtbl1");
8047   }
8048   case NEON::BI__builtin_neon_vtbl3_v: {
8049     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8050                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8051                               "vtbl2");
8052   }
8053   case NEON::BI__builtin_neon_vtbl4_v: {
8054     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8055                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8056                               "vtbl2");
8057   }
8058   case NEON::BI__builtin_neon_vtbx1_v: {
8059     Value *TblRes =
8060         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8061                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8062 
8063     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8064     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8065     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8066 
8067     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8068     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8069     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8070   }
8071   case NEON::BI__builtin_neon_vtbx2_v: {
8072     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8073                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8074                               "vtbx1");
8075   }
8076   case NEON::BI__builtin_neon_vtbx3_v: {
8077     Value *TblRes =
8078         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8079                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8080 
8081     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8082     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8083                                            TwentyFourV);
8084     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8085 
8086     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8087     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8088     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8089   }
8090   case NEON::BI__builtin_neon_vtbx4_v: {
8091     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8092                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8093                               "vtbx2");
8094   }
8095   case NEON::BI__builtin_neon_vqtbl1_v:
8096   case NEON::BI__builtin_neon_vqtbl1q_v:
8097     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8098   case NEON::BI__builtin_neon_vqtbl2_v:
8099   case NEON::BI__builtin_neon_vqtbl2q_v: {
8100     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8101   case NEON::BI__builtin_neon_vqtbl3_v:
8102   case NEON::BI__builtin_neon_vqtbl3q_v:
8103     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8104   case NEON::BI__builtin_neon_vqtbl4_v:
8105   case NEON::BI__builtin_neon_vqtbl4q_v:
8106     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8107   case NEON::BI__builtin_neon_vqtbx1_v:
8108   case NEON::BI__builtin_neon_vqtbx1q_v:
8109     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8110   case NEON::BI__builtin_neon_vqtbx2_v:
8111   case NEON::BI__builtin_neon_vqtbx2q_v:
8112     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8113   case NEON::BI__builtin_neon_vqtbx3_v:
8114   case NEON::BI__builtin_neon_vqtbx3q_v:
8115     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8116   case NEON::BI__builtin_neon_vqtbx4_v:
8117   case NEON::BI__builtin_neon_vqtbx4q_v:
8118     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8119   }
8120   }
8121 
8122   if (!Int)
8123     return nullptr;
8124 
8125   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8126   return CGF.EmitNeonCall(F, Ops, s);
8127 }
8128 
8129 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8130   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8131   Op = Builder.CreateBitCast(Op, Int16Ty);
8132   Value *V = UndefValue::get(VTy);
8133   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8134   Op = Builder.CreateInsertElement(V, Op, CI);
8135   return Op;
8136 }
8137 
8138 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8139 /// access builtin.  Only required if it can't be inferred from the base pointer
8140 /// operand.
8141 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) {
8142   switch (TypeFlags.getMemEltType()) {
8143   case SVETypeFlags::MemEltTyDefault:
8144     return getEltType(TypeFlags);
8145   case SVETypeFlags::MemEltTyInt8:
8146     return Builder.getInt8Ty();
8147   case SVETypeFlags::MemEltTyInt16:
8148     return Builder.getInt16Ty();
8149   case SVETypeFlags::MemEltTyInt32:
8150     return Builder.getInt32Ty();
8151   case SVETypeFlags::MemEltTyInt64:
8152     return Builder.getInt64Ty();
8153   }
8154   llvm_unreachable("Unknown MemEltType");
8155 }
8156 
8157 llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) {
8158   switch (TypeFlags.getEltType()) {
8159   default:
8160     llvm_unreachable("Invalid SVETypeFlag!");
8161 
8162   case SVETypeFlags::EltTyInt8:
8163     return Builder.getInt8Ty();
8164   case SVETypeFlags::EltTyInt16:
8165     return Builder.getInt16Ty();
8166   case SVETypeFlags::EltTyInt32:
8167     return Builder.getInt32Ty();
8168   case SVETypeFlags::EltTyInt64:
8169     return Builder.getInt64Ty();
8170 
8171   case SVETypeFlags::EltTyFloat16:
8172     return Builder.getHalfTy();
8173   case SVETypeFlags::EltTyFloat32:
8174     return Builder.getFloatTy();
8175   case SVETypeFlags::EltTyFloat64:
8176     return Builder.getDoubleTy();
8177 
8178   case SVETypeFlags::EltTyBFloat16:
8179     return Builder.getBFloatTy();
8180 
8181   case SVETypeFlags::EltTyBool8:
8182   case SVETypeFlags::EltTyBool16:
8183   case SVETypeFlags::EltTyBool32:
8184   case SVETypeFlags::EltTyBool64:
8185     return Builder.getInt1Ty();
8186   }
8187 }
8188 
8189 // Return the llvm predicate vector type corresponding to the specified element
8190 // TypeFlags.
8191 llvm::ScalableVectorType *
8192 CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) {
8193   switch (TypeFlags.getEltType()) {
8194   default: llvm_unreachable("Unhandled SVETypeFlag!");
8195 
8196   case SVETypeFlags::EltTyInt8:
8197     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8198   case SVETypeFlags::EltTyInt16:
8199     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8200   case SVETypeFlags::EltTyInt32:
8201     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8202   case SVETypeFlags::EltTyInt64:
8203     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8204 
8205   case SVETypeFlags::EltTyBFloat16:
8206     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8207   case SVETypeFlags::EltTyFloat16:
8208     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8209   case SVETypeFlags::EltTyFloat32:
8210     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8211   case SVETypeFlags::EltTyFloat64:
8212     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8213 
8214   case SVETypeFlags::EltTyBool8:
8215     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8216   case SVETypeFlags::EltTyBool16:
8217     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8218   case SVETypeFlags::EltTyBool32:
8219     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8220   case SVETypeFlags::EltTyBool64:
8221     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8222   }
8223 }
8224 
8225 // Return the llvm vector type corresponding to the specified element TypeFlags.
8226 llvm::ScalableVectorType *
8227 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8228   switch (TypeFlags.getEltType()) {
8229   default:
8230     llvm_unreachable("Invalid SVETypeFlag!");
8231 
8232   case SVETypeFlags::EltTyInt8:
8233     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8234   case SVETypeFlags::EltTyInt16:
8235     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8236   case SVETypeFlags::EltTyInt32:
8237     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8238   case SVETypeFlags::EltTyInt64:
8239     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8240 
8241   case SVETypeFlags::EltTyFloat16:
8242     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8243   case SVETypeFlags::EltTyBFloat16:
8244     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8245   case SVETypeFlags::EltTyFloat32:
8246     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8247   case SVETypeFlags::EltTyFloat64:
8248     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8249 
8250   case SVETypeFlags::EltTyBool8:
8251     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8252   case SVETypeFlags::EltTyBool16:
8253     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8254   case SVETypeFlags::EltTyBool32:
8255     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8256   case SVETypeFlags::EltTyBool64:
8257     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8258   }
8259 }
8260 
8261 llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) {
8262   Function *Ptrue =
8263       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8264   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8265 }
8266 
8267 constexpr unsigned SVEBitsPerBlock = 128;
8268 
8269 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8270   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8271   return llvm::ScalableVectorType::get(EltTy, NumElts);
8272 }
8273 
8274 // Reinterpret the input predicate so that it can be used to correctly isolate
8275 // the elements of the specified datatype.
8276 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8277                                              llvm::ScalableVectorType *VTy) {
8278   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8279   if (Pred->getType() == RTy)
8280     return Pred;
8281 
8282   unsigned IntID;
8283   llvm::Type *IntrinsicTy;
8284   switch (VTy->getMinNumElements()) {
8285   default:
8286     llvm_unreachable("unsupported element count!");
8287   case 2:
8288   case 4:
8289   case 8:
8290     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8291     IntrinsicTy = RTy;
8292     break;
8293   case 16:
8294     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8295     IntrinsicTy = Pred->getType();
8296     break;
8297   }
8298 
8299   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8300   Value *C = Builder.CreateCall(F, Pred);
8301   assert(C->getType() == RTy && "Unexpected return type!");
8302   return C;
8303 }
8304 
8305 Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags,
8306                                           SmallVectorImpl<Value *> &Ops,
8307                                           unsigned IntID) {
8308   auto *ResultTy = getSVEType(TypeFlags);
8309   auto *OverloadedTy =
8310       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8311 
8312   // At the ACLE level there's only one predicate type, svbool_t, which is
8313   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8314   // actual type being loaded. For example, when loading doubles (i64) the
8315   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8316   // the predicate and the data being loaded must match. Cast accordingly.
8317   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8318 
8319   Function *F = nullptr;
8320   if (Ops[1]->getType()->isVectorTy())
8321     // This is the "vector base, scalar offset" case. In order to uniquely
8322     // map this built-in to an LLVM IR intrinsic, we need both the return type
8323     // and the type of the vector base.
8324     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8325   else
8326     // This is the "scalar base, vector offset case". The type of the offset
8327     // is encoded in the name of the intrinsic. We only need to specify the
8328     // return type in order to uniquely map this built-in to an LLVM IR
8329     // intrinsic.
8330     F = CGM.getIntrinsic(IntID, OverloadedTy);
8331 
8332   // Pass 0 when the offset is missing. This can only be applied when using
8333   // the "vector base" addressing mode for which ACLE allows no offset. The
8334   // corresponding LLVM IR always requires an offset.
8335   if (Ops.size() == 2) {
8336     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8337     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8338   }
8339 
8340   // For "vector base, scalar index" scale the index so that it becomes a
8341   // scalar offset.
8342   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8343     unsigned BytesPerElt =
8344         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8345     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8346     Ops[2] = Builder.CreateMul(Ops[2], Scale);
8347   }
8348 
8349   Value *Call = Builder.CreateCall(F, Ops);
8350 
8351   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8352   // other cases it's folded into a nop.
8353   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8354                                   : Builder.CreateSExt(Call, ResultTy);
8355 }
8356 
8357 Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags,
8358                                             SmallVectorImpl<Value *> &Ops,
8359                                             unsigned IntID) {
8360   auto *SrcDataTy = getSVEType(TypeFlags);
8361   auto *OverloadedTy =
8362       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8363 
8364   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8365   // it's the first argument. Move it accordingly.
8366   Ops.insert(Ops.begin(), Ops.pop_back_val());
8367 
8368   Function *F = nullptr;
8369   if (Ops[2]->getType()->isVectorTy())
8370     // This is the "vector base, scalar offset" case. In order to uniquely
8371     // map this built-in to an LLVM IR intrinsic, we need both the return type
8372     // and the type of the vector base.
8373     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8374   else
8375     // This is the "scalar base, vector offset case". The type of the offset
8376     // is encoded in the name of the intrinsic. We only need to specify the
8377     // return type in order to uniquely map this built-in to an LLVM IR
8378     // intrinsic.
8379     F = CGM.getIntrinsic(IntID, OverloadedTy);
8380 
8381   // Pass 0 when the offset is missing. This can only be applied when using
8382   // the "vector base" addressing mode for which ACLE allows no offset. The
8383   // corresponding LLVM IR always requires an offset.
8384   if (Ops.size() == 3) {
8385     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8386     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8387   }
8388 
8389   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8390   // folded into a nop.
8391   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8392 
8393   // At the ACLE level there's only one predicate type, svbool_t, which is
8394   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8395   // actual type being stored. For example, when storing doubles (i64) the
8396   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8397   // the predicate and the data being stored must match. Cast accordingly.
8398   Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8399 
8400   // For "vector base, scalar index" scale the index so that it becomes a
8401   // scalar offset.
8402   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8403     unsigned BytesPerElt =
8404         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8405     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8406     Ops[3] = Builder.CreateMul(Ops[3], Scale);
8407   }
8408 
8409   return Builder.CreateCall(F, Ops);
8410 }
8411 
8412 Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
8413                                               SmallVectorImpl<Value *> &Ops,
8414                                               unsigned IntID) {
8415   // The gather prefetches are overloaded on the vector input - this can either
8416   // be the vector of base addresses or vector of offsets.
8417   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8418   if (!OverloadedTy)
8419     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8420 
8421   // Cast the predicate from svbool_t to the right number of elements.
8422   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8423 
8424   // vector + imm addressing modes
8425   if (Ops[1]->getType()->isVectorTy()) {
8426     if (Ops.size() == 3) {
8427       // Pass 0 for 'vector+imm' when the index is omitted.
8428       Ops.push_back(ConstantInt::get(Int64Ty, 0));
8429 
8430       // The sv_prfop is the last operand in the builtin and IR intrinsic.
8431       std::swap(Ops[2], Ops[3]);
8432     } else {
8433       // Index needs to be passed as scaled offset.
8434       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8435       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8436       Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8437       Ops[2] = Builder.CreateMul(Ops[2], Scale);
8438     }
8439   }
8440 
8441   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8442   return Builder.CreateCall(F, Ops);
8443 }
8444 
8445 Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags,
8446                                           SmallVectorImpl<Value*> &Ops,
8447                                           unsigned IntID) {
8448   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8449   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8450   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8451 
8452   unsigned N;
8453   switch (IntID) {
8454   case Intrinsic::aarch64_sve_ld2:
8455     N = 2;
8456     break;
8457   case Intrinsic::aarch64_sve_ld3:
8458     N = 3;
8459     break;
8460   case Intrinsic::aarch64_sve_ld4:
8461     N = 4;
8462     break;
8463   default:
8464     llvm_unreachable("unknown intrinsic!");
8465   }
8466   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8467                                      VTy->getElementCount() * N);
8468 
8469 	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8470   Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8471   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8472   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8473   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8474 
8475   Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8476   return Builder.CreateCall(F, { Predicate, BasePtr });
8477 }
8478 
8479 Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags,
8480                                            SmallVectorImpl<Value*> &Ops,
8481                                            unsigned IntID) {
8482   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8483   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8484   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8485 
8486   unsigned N;
8487   switch (IntID) {
8488   case Intrinsic::aarch64_sve_st2:
8489     N = 2;
8490     break;
8491   case Intrinsic::aarch64_sve_st3:
8492     N = 3;
8493     break;
8494   case Intrinsic::aarch64_sve_st4:
8495     N = 4;
8496     break;
8497   default:
8498     llvm_unreachable("unknown intrinsic!");
8499   }
8500   auto TupleTy =
8501       llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8502 
8503   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8504   Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8505   Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8506   Value *Val = Ops.back();
8507   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8508   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8509 
8510   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8511   // need to break up the tuple vector.
8512   SmallVector<llvm::Value*, 5> Operands;
8513   Function *FExtr =
8514       CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8515   for (unsigned I = 0; I < N; ++I)
8516     Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8517   Operands.append({Predicate, BasePtr});
8518 
8519   Function *F = CGM.getIntrinsic(IntID, { VTy });
8520   return Builder.CreateCall(F, Operands);
8521 }
8522 
8523 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8524 // svpmullt_pair intrinsics, with the exception that their results are bitcast
8525 // to a wider type.
8526 Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags,
8527                                      SmallVectorImpl<Value *> &Ops,
8528                                      unsigned BuiltinID) {
8529   // Splat scalar operand to vector (intrinsics with _n infix)
8530   if (TypeFlags.hasSplatOperand()) {
8531     unsigned OpNo = TypeFlags.getSplatOperand();
8532     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8533   }
8534 
8535   // The pair-wise function has a narrower overloaded type.
8536   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8537   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8538 
8539   // Now bitcast to the wider result type.
8540   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8541   return EmitSVEReinterpret(Call, Ty);
8542 }
8543 
8544 Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags,
8545                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
8546   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8547   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8548   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8549 }
8550 
8551 Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
8552                                             SmallVectorImpl<Value *> &Ops,
8553                                             unsigned BuiltinID) {
8554   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8555   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8556   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8557 
8558   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8559   Value *BasePtr = Ops[1];
8560 
8561   // Implement the index operand if not omitted.
8562   if (Ops.size() > 3) {
8563     BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8564     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8565   }
8566 
8567   // Prefetch intriniscs always expect an i8*
8568   BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8569   Value *PrfOp = Ops.back();
8570 
8571   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8572   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8573 }
8574 
8575 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8576                                           llvm::Type *ReturnTy,
8577                                           SmallVectorImpl<Value *> &Ops,
8578                                           unsigned BuiltinID,
8579                                           bool IsZExtReturn) {
8580   QualType LangPTy = E->getArg(1)->getType();
8581   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8582       LangPTy->getAs<PointerType>()->getPointeeType());
8583 
8584   // The vector type that is returned may be different from the
8585   // eventual type loaded from memory.
8586   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8587   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8588 
8589   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8590   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8591   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8592   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8593 
8594   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8595   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8596   Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8597 
8598   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8599                      : Builder.CreateSExt(Load, VectorTy);
8600 }
8601 
8602 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8603                                            SmallVectorImpl<Value *> &Ops,
8604                                            unsigned BuiltinID) {
8605   QualType LangPTy = E->getArg(1)->getType();
8606   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8607       LangPTy->getAs<PointerType>()->getPointeeType());
8608 
8609   // The vector type that is stored may be different from the
8610   // eventual type stored to memory.
8611   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8612   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8613 
8614   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8615   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8616   Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8617   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8618 
8619   // Last value is always the data
8620   llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8621 
8622   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8623   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8624   return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8625 }
8626 
8627 // Limit the usage of scalable llvm IR generated by the ACLE by using the
8628 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
8629 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8630   auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8631   return Builder.CreateCall(F, Scalar);
8632 }
8633 
8634 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8635   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8636 }
8637 
8638 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8639   // FIXME: For big endian this needs an additional REV, or needs a separate
8640   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8641   // instruction is defined as 'bitwise' equivalent from memory point of
8642   // view (when storing/reloading), whereas the svreinterpret builtin
8643   // implements bitwise equivalent cast from register point of view.
8644   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8645   return Builder.CreateBitCast(Val, Ty);
8646 }
8647 
8648 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8649                                       SmallVectorImpl<Value *> &Ops) {
8650   auto *SplatZero = Constant::getNullValue(Ty);
8651   Ops.insert(Ops.begin(), SplatZero);
8652 }
8653 
8654 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8655                                        SmallVectorImpl<Value *> &Ops) {
8656   auto *SplatUndef = UndefValue::get(Ty);
8657   Ops.insert(Ops.begin(), SplatUndef);
8658 }
8659 
8660 SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes(
8661     SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) {
8662   if (TypeFlags.isOverloadNone())
8663     return {};
8664 
8665   llvm::Type *DefaultType = getSVEType(TypeFlags);
8666 
8667   if (TypeFlags.isOverloadWhile())
8668     return {DefaultType, Ops[1]->getType()};
8669 
8670   if (TypeFlags.isOverloadWhileRW())
8671     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8672 
8673   if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8674     return {Ops[0]->getType(), Ops.back()->getType()};
8675 
8676   if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8677     return {ResultType, Ops[0]->getType()};
8678 
8679   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
8680   return {DefaultType};
8681 }
8682 
8683 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8684                                                   const CallExpr *E) {
8685   // Find out if any arguments are required to be integer constant expressions.
8686   unsigned ICEArguments = 0;
8687   ASTContext::GetBuiltinTypeError Error;
8688   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8689   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8690 
8691   llvm::Type *Ty = ConvertType(E->getType());
8692   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8693       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8694     Value *Val = EmitScalarExpr(E->getArg(0));
8695     return EmitSVEReinterpret(Val, Ty);
8696   }
8697 
8698   llvm::SmallVector<Value *, 4> Ops;
8699   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8700     if ((ICEArguments & (1 << i)) == 0)
8701       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8702     else {
8703       // If this is required to be a constant, constant fold it so that we know
8704       // that the generated intrinsic gets a ConstantInt.
8705       Optional<llvm::APSInt> Result =
8706           E->getArg(i)->getIntegerConstantExpr(getContext());
8707       assert(Result && "Expected argument to be a constant");
8708 
8709       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
8710       // truncate because the immediate has been range checked and no valid
8711       // immediate requires more than a handful of bits.
8712       *Result = Result->extOrTrunc(32);
8713       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
8714     }
8715   }
8716 
8717   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8718                                               AArch64SVEIntrinsicsProvenSorted);
8719   SVETypeFlags TypeFlags(Builtin->TypeModifier);
8720   if (TypeFlags.isLoad())
8721     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8722                              TypeFlags.isZExtReturn());
8723   else if (TypeFlags.isStore())
8724     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8725   else if (TypeFlags.isGatherLoad())
8726     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8727   else if (TypeFlags.isScatterStore())
8728     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8729   else if (TypeFlags.isPrefetch())
8730     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8731   else if (TypeFlags.isGatherPrefetch())
8732     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8733 	else if (TypeFlags.isStructLoad())
8734 		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8735 	else if (TypeFlags.isStructStore())
8736 		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8737   else if (TypeFlags.isUndef())
8738     return UndefValue::get(Ty);
8739   else if (Builtin->LLVMIntrinsic != 0) {
8740     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
8741       InsertExplicitZeroOperand(Builder, Ty, Ops);
8742 
8743     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
8744       InsertExplicitUndefOperand(Builder, Ty, Ops);
8745 
8746     // Some ACLE builtins leave out the argument to specify the predicate
8747     // pattern, which is expected to be expanded to an SV_ALL pattern.
8748     if (TypeFlags.isAppendSVALL())
8749       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
8750     if (TypeFlags.isInsertOp1SVALL())
8751       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
8752 
8753     // Predicates must match the main datatype.
8754     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
8755       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
8756         if (PredTy->getElementType()->isIntegerTy(1))
8757           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
8758 
8759     // Splat scalar operand to vector (intrinsics with _n infix)
8760     if (TypeFlags.hasSplatOperand()) {
8761       unsigned OpNo = TypeFlags.getSplatOperand();
8762       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8763     }
8764 
8765     if (TypeFlags.isReverseCompare())
8766       std::swap(Ops[1], Ops[2]);
8767 
8768     if (TypeFlags.isReverseUSDOT())
8769       std::swap(Ops[1], Ops[2]);
8770 
8771     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
8772     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
8773       llvm::Type *OpndTy = Ops[1]->getType();
8774       auto *SplatZero = Constant::getNullValue(OpndTy);
8775       Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
8776       Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
8777     }
8778 
8779     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
8780                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
8781     Value *Call = Builder.CreateCall(F, Ops);
8782 
8783     // Predicate results must be converted to svbool_t.
8784     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
8785       if (PredTy->getScalarType()->isIntegerTy(1))
8786         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8787 
8788     return Call;
8789   }
8790 
8791   switch (BuiltinID) {
8792   default:
8793     return nullptr;
8794 
8795   case SVE::BI__builtin_sve_svmov_b_z: {
8796     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
8797     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8798     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8799     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
8800     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
8801   }
8802 
8803   case SVE::BI__builtin_sve_svnot_b_z: {
8804     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
8805     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8806     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8807     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
8808     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
8809   }
8810 
8811   case SVE::BI__builtin_sve_svmovlb_u16:
8812   case SVE::BI__builtin_sve_svmovlb_u32:
8813   case SVE::BI__builtin_sve_svmovlb_u64:
8814     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
8815 
8816   case SVE::BI__builtin_sve_svmovlb_s16:
8817   case SVE::BI__builtin_sve_svmovlb_s32:
8818   case SVE::BI__builtin_sve_svmovlb_s64:
8819     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
8820 
8821   case SVE::BI__builtin_sve_svmovlt_u16:
8822   case SVE::BI__builtin_sve_svmovlt_u32:
8823   case SVE::BI__builtin_sve_svmovlt_u64:
8824     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
8825 
8826   case SVE::BI__builtin_sve_svmovlt_s16:
8827   case SVE::BI__builtin_sve_svmovlt_s32:
8828   case SVE::BI__builtin_sve_svmovlt_s64:
8829     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
8830 
8831   case SVE::BI__builtin_sve_svpmullt_u16:
8832   case SVE::BI__builtin_sve_svpmullt_u64:
8833   case SVE::BI__builtin_sve_svpmullt_n_u16:
8834   case SVE::BI__builtin_sve_svpmullt_n_u64:
8835     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
8836 
8837   case SVE::BI__builtin_sve_svpmullb_u16:
8838   case SVE::BI__builtin_sve_svpmullb_u64:
8839   case SVE::BI__builtin_sve_svpmullb_n_u16:
8840   case SVE::BI__builtin_sve_svpmullb_n_u64:
8841     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
8842 
8843   case SVE::BI__builtin_sve_svdup_n_b8:
8844   case SVE::BI__builtin_sve_svdup_n_b16:
8845   case SVE::BI__builtin_sve_svdup_n_b32:
8846   case SVE::BI__builtin_sve_svdup_n_b64: {
8847     Value *CmpNE =
8848         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
8849     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
8850     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
8851     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
8852   }
8853 
8854   case SVE::BI__builtin_sve_svdupq_n_b8:
8855   case SVE::BI__builtin_sve_svdupq_n_b16:
8856   case SVE::BI__builtin_sve_svdupq_n_b32:
8857   case SVE::BI__builtin_sve_svdupq_n_b64:
8858   case SVE::BI__builtin_sve_svdupq_n_u8:
8859   case SVE::BI__builtin_sve_svdupq_n_s8:
8860   case SVE::BI__builtin_sve_svdupq_n_u64:
8861   case SVE::BI__builtin_sve_svdupq_n_f64:
8862   case SVE::BI__builtin_sve_svdupq_n_s64:
8863   case SVE::BI__builtin_sve_svdupq_n_u16:
8864   case SVE::BI__builtin_sve_svdupq_n_f16:
8865   case SVE::BI__builtin_sve_svdupq_n_bf16:
8866   case SVE::BI__builtin_sve_svdupq_n_s16:
8867   case SVE::BI__builtin_sve_svdupq_n_u32:
8868   case SVE::BI__builtin_sve_svdupq_n_f32:
8869   case SVE::BI__builtin_sve_svdupq_n_s32: {
8870     // These builtins are implemented by storing each element to an array and using
8871     // ld1rq to materialize a vector.
8872     unsigned NumOpnds = Ops.size();
8873 
8874     bool IsBoolTy =
8875         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
8876 
8877     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
8878     // so that the compare can use the width that is natural for the expected
8879     // number of predicate lanes.
8880     llvm::Type *EltTy = Ops[0]->getType();
8881     if (IsBoolTy)
8882       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
8883 
8884     Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds),
8885                                      CharUnits::fromQuantity(16));
8886     for (unsigned I = 0; I < NumOpnds; ++I)
8887       Builder.CreateDefaultAlignedStore(
8888           IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I],
8889           Builder.CreateGEP(Alloca.getPointer(),
8890                             {Builder.getInt64(0), Builder.getInt64(I)}));
8891 
8892     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8893     Value *Pred = EmitSVEAllTruePred(TypeFlags);
8894 
8895     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
8896     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy);
8897     Value *Alloca0 = Builder.CreateGEP(
8898         Alloca.getPointer(), {Builder.getInt64(0), Builder.getInt64(0)});
8899     Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0});
8900 
8901     if (!IsBoolTy)
8902       return LD1RQ;
8903 
8904     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
8905     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
8906                                        : Intrinsic::aarch64_sve_cmpne_wide,
8907                          OverloadedTy);
8908     Value *Call =
8909         Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))});
8910     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8911   }
8912 
8913   case SVE::BI__builtin_sve_svpfalse_b:
8914     return ConstantInt::getFalse(Ty);
8915 
8916   case SVE::BI__builtin_sve_svlen_bf16:
8917   case SVE::BI__builtin_sve_svlen_f16:
8918   case SVE::BI__builtin_sve_svlen_f32:
8919   case SVE::BI__builtin_sve_svlen_f64:
8920   case SVE::BI__builtin_sve_svlen_s8:
8921   case SVE::BI__builtin_sve_svlen_s16:
8922   case SVE::BI__builtin_sve_svlen_s32:
8923   case SVE::BI__builtin_sve_svlen_s64:
8924   case SVE::BI__builtin_sve_svlen_u8:
8925   case SVE::BI__builtin_sve_svlen_u16:
8926   case SVE::BI__builtin_sve_svlen_u32:
8927   case SVE::BI__builtin_sve_svlen_u64: {
8928     SVETypeFlags TF(Builtin->TypeModifier);
8929     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8930     auto *NumEls =
8931         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
8932 
8933     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
8934     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
8935   }
8936 
8937   case SVE::BI__builtin_sve_svtbl2_u8:
8938   case SVE::BI__builtin_sve_svtbl2_s8:
8939   case SVE::BI__builtin_sve_svtbl2_u16:
8940   case SVE::BI__builtin_sve_svtbl2_s16:
8941   case SVE::BI__builtin_sve_svtbl2_u32:
8942   case SVE::BI__builtin_sve_svtbl2_s32:
8943   case SVE::BI__builtin_sve_svtbl2_u64:
8944   case SVE::BI__builtin_sve_svtbl2_s64:
8945   case SVE::BI__builtin_sve_svtbl2_f16:
8946   case SVE::BI__builtin_sve_svtbl2_bf16:
8947   case SVE::BI__builtin_sve_svtbl2_f32:
8948   case SVE::BI__builtin_sve_svtbl2_f64: {
8949     SVETypeFlags TF(Builtin->TypeModifier);
8950     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8951     auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
8952     Function *FExtr =
8953         CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8954     Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
8955     Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
8956     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
8957     return Builder.CreateCall(F, {V0, V1, Ops[1]});
8958   }
8959   }
8960 
8961   /// Should not happen
8962   return nullptr;
8963 }
8964 
8965 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
8966                                                const CallExpr *E,
8967                                                llvm::Triple::ArchType Arch) {
8968   if (BuiltinID >= AArch64::FirstSVEBuiltin &&
8969       BuiltinID <= AArch64::LastSVEBuiltin)
8970     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
8971 
8972   unsigned HintID = static_cast<unsigned>(-1);
8973   switch (BuiltinID) {
8974   default: break;
8975   case AArch64::BI__builtin_arm_nop:
8976     HintID = 0;
8977     break;
8978   case AArch64::BI__builtin_arm_yield:
8979   case AArch64::BI__yield:
8980     HintID = 1;
8981     break;
8982   case AArch64::BI__builtin_arm_wfe:
8983   case AArch64::BI__wfe:
8984     HintID = 2;
8985     break;
8986   case AArch64::BI__builtin_arm_wfi:
8987   case AArch64::BI__wfi:
8988     HintID = 3;
8989     break;
8990   case AArch64::BI__builtin_arm_sev:
8991   case AArch64::BI__sev:
8992     HintID = 4;
8993     break;
8994   case AArch64::BI__builtin_arm_sevl:
8995   case AArch64::BI__sevl:
8996     HintID = 5;
8997     break;
8998   }
8999 
9000   if (HintID != static_cast<unsigned>(-1)) {
9001     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9002     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9003   }
9004 
9005   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
9006     Value *Address         = EmitScalarExpr(E->getArg(0));
9007     Value *RW              = EmitScalarExpr(E->getArg(1));
9008     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
9009     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9010     Value *IsData          = EmitScalarExpr(E->getArg(4));
9011 
9012     Value *Locality = nullptr;
9013     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9014       // Temporal fetch, needs to convert cache level to locality.
9015       Locality = llvm::ConstantInt::get(Int32Ty,
9016         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9017     } else {
9018       // Streaming fetch.
9019       Locality = llvm::ConstantInt::get(Int32Ty, 0);
9020     }
9021 
9022     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9023     // PLDL3STRM or PLDL2STRM.
9024     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9025     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9026   }
9027 
9028   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
9029     assert((getContext().getTypeSize(E->getType()) == 32) &&
9030            "rbit of unusual size!");
9031     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9032     return Builder.CreateCall(
9033         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9034   }
9035   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
9036     assert((getContext().getTypeSize(E->getType()) == 64) &&
9037            "rbit of unusual size!");
9038     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9039     return Builder.CreateCall(
9040         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9041   }
9042 
9043   if (BuiltinID == AArch64::BI__builtin_arm_cls) {
9044     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9045     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9046                               "cls");
9047   }
9048   if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
9049     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9050     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9051                               "cls");
9052   }
9053 
9054   if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
9055     assert((getContext().getTypeSize(E->getType()) == 32) &&
9056            "__jcvt of unusual size!");
9057     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9058     return Builder.CreateCall(
9059         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9060   }
9061 
9062   if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
9063       BuiltinID == AArch64::BI__builtin_arm_st64b ||
9064       BuiltinID == AArch64::BI__builtin_arm_st64bv ||
9065       BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
9066     llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9067     llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9068 
9069     if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
9070       // Load from the address via an LLVM intrinsic, receiving a
9071       // tuple of 8 i64 words, and store each one to ValPtr.
9072       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9073       llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9074       llvm::Value *ToRet;
9075       for (size_t i = 0; i < 8; i++) {
9076         llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i));
9077         Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9078         ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9079       }
9080       return ToRet;
9081     } else {
9082       // Load 8 i64 words from ValPtr, and store them to the address
9083       // via an LLVM intrinsic.
9084       SmallVector<llvm::Value *, 9> Args;
9085       Args.push_back(MemAddr);
9086       for (size_t i = 0; i < 8; i++) {
9087         llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i));
9088         Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9089         Args.push_back(Builder.CreateLoad(Addr));
9090       }
9091 
9092       auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
9093                        ? Intrinsic::aarch64_st64b
9094                        : BuiltinID == AArch64::BI__builtin_arm_st64bv
9095                              ? Intrinsic::aarch64_st64bv
9096                              : Intrinsic::aarch64_st64bv0);
9097       Function *F = CGM.getIntrinsic(Intr);
9098       return Builder.CreateCall(F, Args);
9099     }
9100   }
9101 
9102   if (BuiltinID == AArch64::BI__clear_cache) {
9103     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
9104     const FunctionDecl *FD = E->getDirectCallee();
9105     Value *Ops[2];
9106     for (unsigned i = 0; i < 2; i++)
9107       Ops[i] = EmitScalarExpr(E->getArg(i));
9108     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9109     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9110     StringRef Name = FD->getName();
9111     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9112   }
9113 
9114   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9115       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
9116       getContext().getTypeSize(E->getType()) == 128) {
9117     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9118                                        ? Intrinsic::aarch64_ldaxp
9119                                        : Intrinsic::aarch64_ldxp);
9120 
9121     Value *LdPtr = EmitScalarExpr(E->getArg(0));
9122     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9123                                     "ldxp");
9124 
9125     Value *Val0 = Builder.CreateExtractValue(Val, 1);
9126     Value *Val1 = Builder.CreateExtractValue(Val, 0);
9127     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9128     Val0 = Builder.CreateZExt(Val0, Int128Ty);
9129     Val1 = Builder.CreateZExt(Val1, Int128Ty);
9130 
9131     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9132     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9133     Val = Builder.CreateOr(Val, Val1);
9134     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9135   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9136              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
9137     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9138 
9139     QualType Ty = E->getType();
9140     llvm::Type *RealResTy = ConvertType(Ty);
9141     llvm::Type *PtrTy = llvm::IntegerType::get(
9142         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
9143     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9144 
9145     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9146                                        ? Intrinsic::aarch64_ldaxr
9147                                        : Intrinsic::aarch64_ldxr,
9148                                    PtrTy);
9149     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9150 
9151     if (RealResTy->isPointerTy())
9152       return Builder.CreateIntToPtr(Val, RealResTy);
9153 
9154     llvm::Type *IntResTy = llvm::IntegerType::get(
9155         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9156     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
9157     return Builder.CreateBitCast(Val, RealResTy);
9158   }
9159 
9160   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
9161        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
9162       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9163     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9164                                        ? Intrinsic::aarch64_stlxp
9165                                        : Intrinsic::aarch64_stxp);
9166     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9167 
9168     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9169     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9170 
9171     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
9172     llvm::Value *Val = Builder.CreateLoad(Tmp);
9173 
9174     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9175     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9176     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9177                                          Int8PtrTy);
9178     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9179   }
9180 
9181   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9182       BuiltinID == AArch64::BI__builtin_arm_stlex) {
9183     Value *StoreVal = EmitScalarExpr(E->getArg(0));
9184     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9185 
9186     QualType Ty = E->getArg(0)->getType();
9187     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9188                                                  getContext().getTypeSize(Ty));
9189     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9190 
9191     if (StoreVal->getType()->isPointerTy())
9192       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9193     else {
9194       llvm::Type *IntTy = llvm::IntegerType::get(
9195           getLLVMContext(),
9196           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9197       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9198       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9199     }
9200 
9201     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9202                                        ? Intrinsic::aarch64_stlxr
9203                                        : Intrinsic::aarch64_stxr,
9204                                    StoreAddr->getType());
9205     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9206   }
9207 
9208   if (BuiltinID == AArch64::BI__getReg) {
9209     Expr::EvalResult Result;
9210     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9211       llvm_unreachable("Sema will ensure that the parameter is constant");
9212 
9213     llvm::APSInt Value = Result.Val.getInt();
9214     LLVMContext &Context = CGM.getLLVMContext();
9215     std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
9216 
9217     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9218     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9219     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9220 
9221     llvm::Function *F =
9222         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9223     return Builder.CreateCall(F, Metadata);
9224   }
9225 
9226   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9227     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9228     return Builder.CreateCall(F);
9229   }
9230 
9231   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9232     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9233                                llvm::SyncScope::SingleThread);
9234 
9235   // CRC32
9236   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9237   switch (BuiltinID) {
9238   case AArch64::BI__builtin_arm_crc32b:
9239     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9240   case AArch64::BI__builtin_arm_crc32cb:
9241     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9242   case AArch64::BI__builtin_arm_crc32h:
9243     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9244   case AArch64::BI__builtin_arm_crc32ch:
9245     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9246   case AArch64::BI__builtin_arm_crc32w:
9247     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9248   case AArch64::BI__builtin_arm_crc32cw:
9249     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9250   case AArch64::BI__builtin_arm_crc32d:
9251     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9252   case AArch64::BI__builtin_arm_crc32cd:
9253     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9254   }
9255 
9256   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9257     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9258     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9259     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9260 
9261     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9262     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9263 
9264     return Builder.CreateCall(F, {Arg0, Arg1});
9265   }
9266 
9267   // Memory Tagging Extensions (MTE) Intrinsics
9268   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9269   switch (BuiltinID) {
9270   case AArch64::BI__builtin_arm_irg:
9271     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9272   case  AArch64::BI__builtin_arm_addg:
9273     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9274   case  AArch64::BI__builtin_arm_gmi:
9275     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9276   case  AArch64::BI__builtin_arm_ldg:
9277     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9278   case AArch64::BI__builtin_arm_stg:
9279     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9280   case AArch64::BI__builtin_arm_subp:
9281     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9282   }
9283 
9284   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9285     llvm::Type *T = ConvertType(E->getType());
9286 
9287     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9288       Value *Pointer = EmitScalarExpr(E->getArg(0));
9289       Value *Mask = EmitScalarExpr(E->getArg(1));
9290 
9291       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9292       Mask = Builder.CreateZExt(Mask, Int64Ty);
9293       Value *RV = Builder.CreateCall(
9294                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9295        return Builder.CreatePointerCast(RV, T);
9296     }
9297     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9298       Value *Pointer = EmitScalarExpr(E->getArg(0));
9299       Value *TagOffset = EmitScalarExpr(E->getArg(1));
9300 
9301       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9302       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9303       Value *RV = Builder.CreateCall(
9304                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9305       return Builder.CreatePointerCast(RV, T);
9306     }
9307     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9308       Value *Pointer = EmitScalarExpr(E->getArg(0));
9309       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9310 
9311       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9312       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9313       return Builder.CreateCall(
9314                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9315     }
9316     // Although it is possible to supply a different return
9317     // address (first arg) to this intrinsic, for now we set
9318     // return address same as input address.
9319     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9320       Value *TagAddress = EmitScalarExpr(E->getArg(0));
9321       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9322       Value *RV = Builder.CreateCall(
9323                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9324       return Builder.CreatePointerCast(RV, T);
9325     }
9326     // Although it is possible to supply a different tag (to set)
9327     // to this intrinsic (as first arg), for now we supply
9328     // the tag that is in input address arg (common use case).
9329     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9330         Value *TagAddress = EmitScalarExpr(E->getArg(0));
9331         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9332         return Builder.CreateCall(
9333                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9334     }
9335     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9336       Value *PointerA = EmitScalarExpr(E->getArg(0));
9337       Value *PointerB = EmitScalarExpr(E->getArg(1));
9338       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9339       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9340       return Builder.CreateCall(
9341                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9342     }
9343   }
9344 
9345   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9346       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9347       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9348       BuiltinID == AArch64::BI__builtin_arm_wsr ||
9349       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9350       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9351 
9352     SpecialRegisterAccessKind AccessKind = Write;
9353     if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9354         BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9355         BuiltinID == AArch64::BI__builtin_arm_rsrp)
9356       AccessKind = VolatileRead;
9357 
9358     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9359                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
9360 
9361     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9362                    BuiltinID != AArch64::BI__builtin_arm_wsr;
9363 
9364     llvm::Type *ValueType;
9365     llvm::Type *RegisterType = Int64Ty;
9366     if (IsPointerBuiltin) {
9367       ValueType = VoidPtrTy;
9368     } else if (Is64Bit) {
9369       ValueType = Int64Ty;
9370     } else {
9371       ValueType = Int32Ty;
9372     }
9373 
9374     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9375                                       AccessKind);
9376   }
9377 
9378   if (BuiltinID == AArch64::BI_ReadStatusReg ||
9379       BuiltinID == AArch64::BI_WriteStatusReg) {
9380     LLVMContext &Context = CGM.getLLVMContext();
9381 
9382     unsigned SysReg =
9383       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9384 
9385     std::string SysRegStr;
9386     llvm::raw_string_ostream(SysRegStr) <<
9387                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
9388                        ((SysReg >> 11) & 7)               << ":" <<
9389                        ((SysReg >> 7)  & 15)              << ":" <<
9390                        ((SysReg >> 3)  & 15)              << ":" <<
9391                        ( SysReg        & 7);
9392 
9393     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9394     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9395     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9396 
9397     llvm::Type *RegisterType = Int64Ty;
9398     llvm::Type *Types[] = { RegisterType };
9399 
9400     if (BuiltinID == AArch64::BI_ReadStatusReg) {
9401       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
9402 
9403       return Builder.CreateCall(F, Metadata);
9404     }
9405 
9406     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
9407     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
9408 
9409     return Builder.CreateCall(F, { Metadata, ArgValue });
9410   }
9411 
9412   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
9413     llvm::Function *F =
9414         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
9415     return Builder.CreateCall(F);
9416   }
9417 
9418   if (BuiltinID == AArch64::BI__builtin_sponentry) {
9419     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
9420     return Builder.CreateCall(F);
9421   }
9422 
9423   // Handle MSVC intrinsics before argument evaluation to prevent double
9424   // evaluation.
9425   if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
9426     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
9427 
9428   // Find out if any arguments are required to be integer constant
9429   // expressions.
9430   unsigned ICEArguments = 0;
9431   ASTContext::GetBuiltinTypeError Error;
9432   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9433   assert(Error == ASTContext::GE_None && "Should not codegen an error");
9434 
9435   llvm::SmallVector<Value*, 4> Ops;
9436   Address PtrOp0 = Address::invalid();
9437   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
9438     if (i == 0) {
9439       switch (BuiltinID) {
9440       case NEON::BI__builtin_neon_vld1_v:
9441       case NEON::BI__builtin_neon_vld1q_v:
9442       case NEON::BI__builtin_neon_vld1_dup_v:
9443       case NEON::BI__builtin_neon_vld1q_dup_v:
9444       case NEON::BI__builtin_neon_vld1_lane_v:
9445       case NEON::BI__builtin_neon_vld1q_lane_v:
9446       case NEON::BI__builtin_neon_vst1_v:
9447       case NEON::BI__builtin_neon_vst1q_v:
9448       case NEON::BI__builtin_neon_vst1_lane_v:
9449       case NEON::BI__builtin_neon_vst1q_lane_v:
9450         // Get the alignment for the argument in addition to the value;
9451         // we'll use it later.
9452         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9453         Ops.push_back(PtrOp0.getPointer());
9454         continue;
9455       }
9456     }
9457     if ((ICEArguments & (1 << i)) == 0) {
9458       Ops.push_back(EmitScalarExpr(E->getArg(i)));
9459     } else {
9460       // If this is required to be a constant, constant fold it so that we know
9461       // that the generated intrinsic gets a ConstantInt.
9462       Ops.push_back(llvm::ConstantInt::get(
9463           getLLVMContext(),
9464           *E->getArg(i)->getIntegerConstantExpr(getContext())));
9465     }
9466   }
9467 
9468   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
9469   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9470       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
9471 
9472   if (Builtin) {
9473     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
9474     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
9475     assert(Result && "SISD intrinsic should have been handled");
9476     return Result;
9477   }
9478 
9479   const Expr *Arg = E->getArg(E->getNumArgs()-1);
9480   NeonTypeFlags Type(0);
9481   if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
9482     // Determine the type of this overloaded NEON intrinsic.
9483     Type = NeonTypeFlags(Result->getZExtValue());
9484 
9485   bool usgn = Type.isUnsigned();
9486   bool quad = Type.isQuad();
9487 
9488   // Handle non-overloaded intrinsics first.
9489   switch (BuiltinID) {
9490   default: break;
9491   case NEON::BI__builtin_neon_vabsh_f16:
9492     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9493     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
9494   case NEON::BI__builtin_neon_vldrq_p128: {
9495     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9496     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
9497     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
9498     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
9499                                      CharUnits::fromQuantity(16));
9500   }
9501   case NEON::BI__builtin_neon_vstrq_p128: {
9502     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
9503     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9504     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9505   }
9506   case NEON::BI__builtin_neon_vcvts_f32_u32:
9507   case NEON::BI__builtin_neon_vcvtd_f64_u64:
9508     usgn = true;
9509     LLVM_FALLTHROUGH;
9510   case NEON::BI__builtin_neon_vcvts_f32_s32:
9511   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9512     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9513     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9514     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9515     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9516     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9517     if (usgn)
9518       return Builder.CreateUIToFP(Ops[0], FTy);
9519     return Builder.CreateSIToFP(Ops[0], FTy);
9520   }
9521   case NEON::BI__builtin_neon_vcvth_f16_u16:
9522   case NEON::BI__builtin_neon_vcvth_f16_u32:
9523   case NEON::BI__builtin_neon_vcvth_f16_u64:
9524     usgn = true;
9525     LLVM_FALLTHROUGH;
9526   case NEON::BI__builtin_neon_vcvth_f16_s16:
9527   case NEON::BI__builtin_neon_vcvth_f16_s32:
9528   case NEON::BI__builtin_neon_vcvth_f16_s64: {
9529     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9530     llvm::Type *FTy = HalfTy;
9531     llvm::Type *InTy;
9532     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9533       InTy = Int64Ty;
9534     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9535       InTy = Int32Ty;
9536     else
9537       InTy = Int16Ty;
9538     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9539     if (usgn)
9540       return Builder.CreateUIToFP(Ops[0], FTy);
9541     return Builder.CreateSIToFP(Ops[0], FTy);
9542   }
9543   case NEON::BI__builtin_neon_vcvtah_u16_f16:
9544   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9545   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9546   case NEON::BI__builtin_neon_vcvtph_u16_f16:
9547   case NEON::BI__builtin_neon_vcvth_u16_f16:
9548   case NEON::BI__builtin_neon_vcvtah_s16_f16:
9549   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9550   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9551   case NEON::BI__builtin_neon_vcvtph_s16_f16:
9552   case NEON::BI__builtin_neon_vcvth_s16_f16: {
9553     unsigned Int;
9554     llvm::Type* InTy = Int32Ty;
9555     llvm::Type* FTy  = HalfTy;
9556     llvm::Type *Tys[2] = {InTy, FTy};
9557     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9558     switch (BuiltinID) {
9559     default: llvm_unreachable("missing builtin ID in switch!");
9560     case NEON::BI__builtin_neon_vcvtah_u16_f16:
9561       Int = Intrinsic::aarch64_neon_fcvtau; break;
9562     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9563       Int = Intrinsic::aarch64_neon_fcvtmu; break;
9564     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9565       Int = Intrinsic::aarch64_neon_fcvtnu; break;
9566     case NEON::BI__builtin_neon_vcvtph_u16_f16:
9567       Int = Intrinsic::aarch64_neon_fcvtpu; break;
9568     case NEON::BI__builtin_neon_vcvth_u16_f16:
9569       Int = Intrinsic::aarch64_neon_fcvtzu; break;
9570     case NEON::BI__builtin_neon_vcvtah_s16_f16:
9571       Int = Intrinsic::aarch64_neon_fcvtas; break;
9572     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9573       Int = Intrinsic::aarch64_neon_fcvtms; break;
9574     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9575       Int = Intrinsic::aarch64_neon_fcvtns; break;
9576     case NEON::BI__builtin_neon_vcvtph_s16_f16:
9577       Int = Intrinsic::aarch64_neon_fcvtps; break;
9578     case NEON::BI__builtin_neon_vcvth_s16_f16:
9579       Int = Intrinsic::aarch64_neon_fcvtzs; break;
9580     }
9581     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9582     return Builder.CreateTrunc(Ops[0], Int16Ty);
9583   }
9584   case NEON::BI__builtin_neon_vcaleh_f16:
9585   case NEON::BI__builtin_neon_vcalth_f16:
9586   case NEON::BI__builtin_neon_vcageh_f16:
9587   case NEON::BI__builtin_neon_vcagth_f16: {
9588     unsigned Int;
9589     llvm::Type* InTy = Int32Ty;
9590     llvm::Type* FTy  = HalfTy;
9591     llvm::Type *Tys[2] = {InTy, FTy};
9592     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9593     switch (BuiltinID) {
9594     default: llvm_unreachable("missing builtin ID in switch!");
9595     case NEON::BI__builtin_neon_vcageh_f16:
9596       Int = Intrinsic::aarch64_neon_facge; break;
9597     case NEON::BI__builtin_neon_vcagth_f16:
9598       Int = Intrinsic::aarch64_neon_facgt; break;
9599     case NEON::BI__builtin_neon_vcaleh_f16:
9600       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9601     case NEON::BI__builtin_neon_vcalth_f16:
9602       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9603     }
9604     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9605     return Builder.CreateTrunc(Ops[0], Int16Ty);
9606   }
9607   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9608   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9609     unsigned Int;
9610     llvm::Type* InTy = Int32Ty;
9611     llvm::Type* FTy  = HalfTy;
9612     llvm::Type *Tys[2] = {InTy, FTy};
9613     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9614     switch (BuiltinID) {
9615     default: llvm_unreachable("missing builtin ID in switch!");
9616     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9617       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9618     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9619       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9620     }
9621     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9622     return Builder.CreateTrunc(Ops[0], Int16Ty);
9623   }
9624   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9625   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9626     unsigned Int;
9627     llvm::Type* FTy  = HalfTy;
9628     llvm::Type* InTy = Int32Ty;
9629     llvm::Type *Tys[2] = {FTy, InTy};
9630     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9631     switch (BuiltinID) {
9632     default: llvm_unreachable("missing builtin ID in switch!");
9633     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9634       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9635       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9636       break;
9637     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9638       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9639       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9640       break;
9641     }
9642     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9643   }
9644   case NEON::BI__builtin_neon_vpaddd_s64: {
9645     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9646     Value *Vec = EmitScalarExpr(E->getArg(0));
9647     // The vector is v2f64, so make sure it's bitcast to that.
9648     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9649     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9650     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9651     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9652     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9653     // Pairwise addition of a v2f64 into a scalar f64.
9654     return Builder.CreateAdd(Op0, Op1, "vpaddd");
9655   }
9656   case NEON::BI__builtin_neon_vpaddd_f64: {
9657     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
9658     Value *Vec = EmitScalarExpr(E->getArg(0));
9659     // The vector is v2f64, so make sure it's bitcast to that.
9660     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
9661     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9662     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9663     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9664     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9665     // Pairwise addition of a v2f64 into a scalar f64.
9666     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9667   }
9668   case NEON::BI__builtin_neon_vpadds_f32: {
9669     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
9670     Value *Vec = EmitScalarExpr(E->getArg(0));
9671     // The vector is v2f32, so make sure it's bitcast to that.
9672     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
9673     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9674     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9675     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9676     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9677     // Pairwise addition of a v2f32 into a scalar f32.
9678     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9679   }
9680   case NEON::BI__builtin_neon_vceqzd_s64:
9681   case NEON::BI__builtin_neon_vceqzd_f64:
9682   case NEON::BI__builtin_neon_vceqzs_f32:
9683   case NEON::BI__builtin_neon_vceqzh_f16:
9684     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9685     return EmitAArch64CompareBuiltinExpr(
9686         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9687         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
9688   case NEON::BI__builtin_neon_vcgezd_s64:
9689   case NEON::BI__builtin_neon_vcgezd_f64:
9690   case NEON::BI__builtin_neon_vcgezs_f32:
9691   case NEON::BI__builtin_neon_vcgezh_f16:
9692     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9693     return EmitAArch64CompareBuiltinExpr(
9694         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9695         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
9696   case NEON::BI__builtin_neon_vclezd_s64:
9697   case NEON::BI__builtin_neon_vclezd_f64:
9698   case NEON::BI__builtin_neon_vclezs_f32:
9699   case NEON::BI__builtin_neon_vclezh_f16:
9700     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9701     return EmitAArch64CompareBuiltinExpr(
9702         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9703         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
9704   case NEON::BI__builtin_neon_vcgtzd_s64:
9705   case NEON::BI__builtin_neon_vcgtzd_f64:
9706   case NEON::BI__builtin_neon_vcgtzs_f32:
9707   case NEON::BI__builtin_neon_vcgtzh_f16:
9708     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9709     return EmitAArch64CompareBuiltinExpr(
9710         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9711         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
9712   case NEON::BI__builtin_neon_vcltzd_s64:
9713   case NEON::BI__builtin_neon_vcltzd_f64:
9714   case NEON::BI__builtin_neon_vcltzs_f32:
9715   case NEON::BI__builtin_neon_vcltzh_f16:
9716     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9717     return EmitAArch64CompareBuiltinExpr(
9718         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9719         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
9720 
9721   case NEON::BI__builtin_neon_vceqzd_u64: {
9722     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9723     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9724     Ops[0] =
9725         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
9726     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
9727   }
9728   case NEON::BI__builtin_neon_vceqd_f64:
9729   case NEON::BI__builtin_neon_vcled_f64:
9730   case NEON::BI__builtin_neon_vcltd_f64:
9731   case NEON::BI__builtin_neon_vcged_f64:
9732   case NEON::BI__builtin_neon_vcgtd_f64: {
9733     llvm::CmpInst::Predicate P;
9734     switch (BuiltinID) {
9735     default: llvm_unreachable("missing builtin ID in switch!");
9736     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
9737     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
9738     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
9739     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
9740     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
9741     }
9742     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9743     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9744     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9745     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9746     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
9747   }
9748   case NEON::BI__builtin_neon_vceqs_f32:
9749   case NEON::BI__builtin_neon_vcles_f32:
9750   case NEON::BI__builtin_neon_vclts_f32:
9751   case NEON::BI__builtin_neon_vcges_f32:
9752   case NEON::BI__builtin_neon_vcgts_f32: {
9753     llvm::CmpInst::Predicate P;
9754     switch (BuiltinID) {
9755     default: llvm_unreachable("missing builtin ID in switch!");
9756     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
9757     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
9758     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
9759     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
9760     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
9761     }
9762     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9763     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
9764     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
9765     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9766     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
9767   }
9768   case NEON::BI__builtin_neon_vceqh_f16:
9769   case NEON::BI__builtin_neon_vcleh_f16:
9770   case NEON::BI__builtin_neon_vclth_f16:
9771   case NEON::BI__builtin_neon_vcgeh_f16:
9772   case NEON::BI__builtin_neon_vcgth_f16: {
9773     llvm::CmpInst::Predicate P;
9774     switch (BuiltinID) {
9775     default: llvm_unreachable("missing builtin ID in switch!");
9776     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
9777     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
9778     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
9779     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
9780     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
9781     }
9782     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9783     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9784     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
9785     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9786     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
9787   }
9788   case NEON::BI__builtin_neon_vceqd_s64:
9789   case NEON::BI__builtin_neon_vceqd_u64:
9790   case NEON::BI__builtin_neon_vcgtd_s64:
9791   case NEON::BI__builtin_neon_vcgtd_u64:
9792   case NEON::BI__builtin_neon_vcltd_s64:
9793   case NEON::BI__builtin_neon_vcltd_u64:
9794   case NEON::BI__builtin_neon_vcged_u64:
9795   case NEON::BI__builtin_neon_vcged_s64:
9796   case NEON::BI__builtin_neon_vcled_u64:
9797   case NEON::BI__builtin_neon_vcled_s64: {
9798     llvm::CmpInst::Predicate P;
9799     switch (BuiltinID) {
9800     default: llvm_unreachable("missing builtin ID in switch!");
9801     case NEON::BI__builtin_neon_vceqd_s64:
9802     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
9803     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
9804     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
9805     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
9806     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
9807     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
9808     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
9809     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
9810     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
9811     }
9812     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9813     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9814     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9815     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
9816     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
9817   }
9818   case NEON::BI__builtin_neon_vtstd_s64:
9819   case NEON::BI__builtin_neon_vtstd_u64: {
9820     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9821     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9822     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9823     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
9824     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
9825                                 llvm::Constant::getNullValue(Int64Ty));
9826     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
9827   }
9828   case NEON::BI__builtin_neon_vset_lane_i8:
9829   case NEON::BI__builtin_neon_vset_lane_i16:
9830   case NEON::BI__builtin_neon_vset_lane_i32:
9831   case NEON::BI__builtin_neon_vset_lane_i64:
9832   case NEON::BI__builtin_neon_vset_lane_bf16:
9833   case NEON::BI__builtin_neon_vset_lane_f32:
9834   case NEON::BI__builtin_neon_vsetq_lane_i8:
9835   case NEON::BI__builtin_neon_vsetq_lane_i16:
9836   case NEON::BI__builtin_neon_vsetq_lane_i32:
9837   case NEON::BI__builtin_neon_vsetq_lane_i64:
9838   case NEON::BI__builtin_neon_vsetq_lane_bf16:
9839   case NEON::BI__builtin_neon_vsetq_lane_f32:
9840     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9841     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9842   case NEON::BI__builtin_neon_vset_lane_f64:
9843     // The vector type needs a cast for the v1f64 variant.
9844     Ops[1] =
9845         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
9846     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9847     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9848   case NEON::BI__builtin_neon_vsetq_lane_f64:
9849     // The vector type needs a cast for the v2f64 variant.
9850     Ops[1] =
9851         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
9852     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9853     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9854 
9855   case NEON::BI__builtin_neon_vget_lane_i8:
9856   case NEON::BI__builtin_neon_vdupb_lane_i8:
9857     Ops[0] =
9858         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
9859     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9860                                         "vget_lane");
9861   case NEON::BI__builtin_neon_vgetq_lane_i8:
9862   case NEON::BI__builtin_neon_vdupb_laneq_i8:
9863     Ops[0] =
9864         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
9865     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9866                                         "vgetq_lane");
9867   case NEON::BI__builtin_neon_vget_lane_i16:
9868   case NEON::BI__builtin_neon_vduph_lane_i16:
9869     Ops[0] =
9870         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
9871     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9872                                         "vget_lane");
9873   case NEON::BI__builtin_neon_vgetq_lane_i16:
9874   case NEON::BI__builtin_neon_vduph_laneq_i16:
9875     Ops[0] =
9876         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
9877     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9878                                         "vgetq_lane");
9879   case NEON::BI__builtin_neon_vget_lane_i32:
9880   case NEON::BI__builtin_neon_vdups_lane_i32:
9881     Ops[0] =
9882         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
9883     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9884                                         "vget_lane");
9885   case NEON::BI__builtin_neon_vdups_lane_f32:
9886     Ops[0] =
9887         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9888     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9889                                         "vdups_lane");
9890   case NEON::BI__builtin_neon_vgetq_lane_i32:
9891   case NEON::BI__builtin_neon_vdups_laneq_i32:
9892     Ops[0] =
9893         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
9894     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9895                                         "vgetq_lane");
9896   case NEON::BI__builtin_neon_vget_lane_i64:
9897   case NEON::BI__builtin_neon_vdupd_lane_i64:
9898     Ops[0] =
9899         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
9900     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9901                                         "vget_lane");
9902   case NEON::BI__builtin_neon_vdupd_lane_f64:
9903     Ops[0] =
9904         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9905     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9906                                         "vdupd_lane");
9907   case NEON::BI__builtin_neon_vgetq_lane_i64:
9908   case NEON::BI__builtin_neon_vdupd_laneq_i64:
9909     Ops[0] =
9910         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
9911     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9912                                         "vgetq_lane");
9913   case NEON::BI__builtin_neon_vget_lane_f32:
9914     Ops[0] =
9915         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9916     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9917                                         "vget_lane");
9918   case NEON::BI__builtin_neon_vget_lane_f64:
9919     Ops[0] =
9920         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9921     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9922                                         "vget_lane");
9923   case NEON::BI__builtin_neon_vgetq_lane_f32:
9924   case NEON::BI__builtin_neon_vdups_laneq_f32:
9925     Ops[0] =
9926         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
9927     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9928                                         "vgetq_lane");
9929   case NEON::BI__builtin_neon_vgetq_lane_f64:
9930   case NEON::BI__builtin_neon_vdupd_laneq_f64:
9931     Ops[0] =
9932         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
9933     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9934                                         "vgetq_lane");
9935   case NEON::BI__builtin_neon_vaddh_f16:
9936     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9937     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
9938   case NEON::BI__builtin_neon_vsubh_f16:
9939     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9940     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
9941   case NEON::BI__builtin_neon_vmulh_f16:
9942     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9943     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
9944   case NEON::BI__builtin_neon_vdivh_f16:
9945     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9946     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
9947   case NEON::BI__builtin_neon_vfmah_f16:
9948     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9949     return emitCallMaybeConstrainedFPBuiltin(
9950         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9951         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
9952   case NEON::BI__builtin_neon_vfmsh_f16: {
9953     // FIXME: This should be an fneg instruction:
9954     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
9955     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
9956 
9957     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9958     return emitCallMaybeConstrainedFPBuiltin(
9959         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9960         {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
9961   }
9962   case NEON::BI__builtin_neon_vaddd_s64:
9963   case NEON::BI__builtin_neon_vaddd_u64:
9964     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
9965   case NEON::BI__builtin_neon_vsubd_s64:
9966   case NEON::BI__builtin_neon_vsubd_u64:
9967     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
9968   case NEON::BI__builtin_neon_vqdmlalh_s16:
9969   case NEON::BI__builtin_neon_vqdmlslh_s16: {
9970     SmallVector<Value *, 2> ProductOps;
9971     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
9972     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
9973     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
9974     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
9975                           ProductOps, "vqdmlXl");
9976     Constant *CI = ConstantInt::get(SizeTy, 0);
9977     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
9978 
9979     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
9980                                         ? Intrinsic::aarch64_neon_sqadd
9981                                         : Intrinsic::aarch64_neon_sqsub;
9982     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
9983   }
9984   case NEON::BI__builtin_neon_vqshlud_n_s64: {
9985     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9986     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9987     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
9988                         Ops, "vqshlu_n");
9989   }
9990   case NEON::BI__builtin_neon_vqshld_n_u64:
9991   case NEON::BI__builtin_neon_vqshld_n_s64: {
9992     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
9993                                    ? Intrinsic::aarch64_neon_uqshl
9994                                    : Intrinsic::aarch64_neon_sqshl;
9995     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9996     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9997     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
9998   }
9999   case NEON::BI__builtin_neon_vrshrd_n_u64:
10000   case NEON::BI__builtin_neon_vrshrd_n_s64: {
10001     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10002                                    ? Intrinsic::aarch64_neon_urshl
10003                                    : Intrinsic::aarch64_neon_srshl;
10004     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10005     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10006     Ops[1] = ConstantInt::get(Int64Ty, -SV);
10007     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10008   }
10009   case NEON::BI__builtin_neon_vrsrad_n_u64:
10010   case NEON::BI__builtin_neon_vrsrad_n_s64: {
10011     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10012                                    ? Intrinsic::aarch64_neon_urshl
10013                                    : Intrinsic::aarch64_neon_srshl;
10014     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10015     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10016     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10017                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10018     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10019   }
10020   case NEON::BI__builtin_neon_vshld_n_s64:
10021   case NEON::BI__builtin_neon_vshld_n_u64: {
10022     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10023     return Builder.CreateShl(
10024         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10025   }
10026   case NEON::BI__builtin_neon_vshrd_n_s64: {
10027     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10028     return Builder.CreateAShr(
10029         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10030                                                    Amt->getZExtValue())),
10031         "shrd_n");
10032   }
10033   case NEON::BI__builtin_neon_vshrd_n_u64: {
10034     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10035     uint64_t ShiftAmt = Amt->getZExtValue();
10036     // Right-shifting an unsigned value by its size yields 0.
10037     if (ShiftAmt == 64)
10038       return ConstantInt::get(Int64Ty, 0);
10039     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10040                               "shrd_n");
10041   }
10042   case NEON::BI__builtin_neon_vsrad_n_s64: {
10043     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10044     Ops[1] = Builder.CreateAShr(
10045         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10046                                                    Amt->getZExtValue())),
10047         "shrd_n");
10048     return Builder.CreateAdd(Ops[0], Ops[1]);
10049   }
10050   case NEON::BI__builtin_neon_vsrad_n_u64: {
10051     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10052     uint64_t ShiftAmt = Amt->getZExtValue();
10053     // Right-shifting an unsigned value by its size yields 0.
10054     // As Op + 0 = Op, return Ops[0] directly.
10055     if (ShiftAmt == 64)
10056       return Ops[0];
10057     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10058                                 "shrd_n");
10059     return Builder.CreateAdd(Ops[0], Ops[1]);
10060   }
10061   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10062   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10063   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10064   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10065     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10066                                           "lane");
10067     SmallVector<Value *, 2> ProductOps;
10068     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10069     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10070     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10071     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10072                           ProductOps, "vqdmlXl");
10073     Constant *CI = ConstantInt::get(SizeTy, 0);
10074     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10075     Ops.pop_back();
10076 
10077     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10078                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10079                           ? Intrinsic::aarch64_neon_sqadd
10080                           : Intrinsic::aarch64_neon_sqsub;
10081     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10082   }
10083   case NEON::BI__builtin_neon_vqdmlals_s32:
10084   case NEON::BI__builtin_neon_vqdmlsls_s32: {
10085     SmallVector<Value *, 2> ProductOps;
10086     ProductOps.push_back(Ops[1]);
10087     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10088     Ops[1] =
10089         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10090                      ProductOps, "vqdmlXl");
10091 
10092     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10093                                         ? Intrinsic::aarch64_neon_sqadd
10094                                         : Intrinsic::aarch64_neon_sqsub;
10095     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10096   }
10097   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10098   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10099   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10100   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10101     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10102                                           "lane");
10103     SmallVector<Value *, 2> ProductOps;
10104     ProductOps.push_back(Ops[1]);
10105     ProductOps.push_back(Ops[2]);
10106     Ops[1] =
10107         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10108                      ProductOps, "vqdmlXl");
10109     Ops.pop_back();
10110 
10111     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10112                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10113                           ? Intrinsic::aarch64_neon_sqadd
10114                           : Intrinsic::aarch64_neon_sqsub;
10115     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10116   }
10117   case NEON::BI__builtin_neon_vget_lane_bf16:
10118   case NEON::BI__builtin_neon_vduph_lane_bf16:
10119   case NEON::BI__builtin_neon_vduph_lane_f16: {
10120     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10121                                         "vget_lane");
10122   }
10123   case NEON::BI__builtin_neon_vgetq_lane_bf16:
10124   case NEON::BI__builtin_neon_vduph_laneq_bf16:
10125   case NEON::BI__builtin_neon_vduph_laneq_f16: {
10126     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10127                                         "vgetq_lane");
10128   }
10129 
10130   case AArch64::BI_InterlockedAdd: {
10131     Value *Arg0 = EmitScalarExpr(E->getArg(0));
10132     Value *Arg1 = EmitScalarExpr(E->getArg(1));
10133     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10134       AtomicRMWInst::Add, Arg0, Arg1,
10135       llvm::AtomicOrdering::SequentiallyConsistent);
10136     return Builder.CreateAdd(RMWI, Arg1);
10137   }
10138   }
10139 
10140   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10141   llvm::Type *Ty = VTy;
10142   if (!Ty)
10143     return nullptr;
10144 
10145   // Not all intrinsics handled by the common case work for AArch64 yet, so only
10146   // defer to common code if it's been added to our special map.
10147   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10148                                         AArch64SIMDIntrinsicsProvenSorted);
10149 
10150   if (Builtin)
10151     return EmitCommonNeonBuiltinExpr(
10152         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10153         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10154         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10155 
10156   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10157     return V;
10158 
10159   unsigned Int;
10160   switch (BuiltinID) {
10161   default: return nullptr;
10162   case NEON::BI__builtin_neon_vbsl_v:
10163   case NEON::BI__builtin_neon_vbslq_v: {
10164     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10165     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10166     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10167     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10168 
10169     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10170     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10171     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10172     return Builder.CreateBitCast(Ops[0], Ty);
10173   }
10174   case NEON::BI__builtin_neon_vfma_lane_v:
10175   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10176     // The ARM builtins (and instructions) have the addend as the first
10177     // operand, but the 'fma' intrinsics have it last. Swap it around here.
10178     Value *Addend = Ops[0];
10179     Value *Multiplicand = Ops[1];
10180     Value *LaneSource = Ops[2];
10181     Ops[0] = Multiplicand;
10182     Ops[1] = LaneSource;
10183     Ops[2] = Addend;
10184 
10185     // Now adjust things to handle the lane access.
10186     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10187                          ? llvm::FixedVectorType::get(VTy->getElementType(),
10188                                                       VTy->getNumElements() / 2)
10189                          : VTy;
10190     llvm::Constant *cst = cast<Constant>(Ops[3]);
10191     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10192     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10193     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10194 
10195     Ops.pop_back();
10196     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10197                                        : Intrinsic::fma;
10198     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10199   }
10200   case NEON::BI__builtin_neon_vfma_laneq_v: {
10201     auto *VTy = cast<llvm::FixedVectorType>(Ty);
10202     // v1f64 fma should be mapped to Neon scalar f64 fma
10203     if (VTy && VTy->getElementType() == DoubleTy) {
10204       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10205       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10206       llvm::FixedVectorType *VTy =
10207           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10208       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10209       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10210       Value *Result;
10211       Result = emitCallMaybeConstrainedFPBuiltin(
10212           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10213           DoubleTy, {Ops[1], Ops[2], Ops[0]});
10214       return Builder.CreateBitCast(Result, Ty);
10215     }
10216     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10217     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10218 
10219     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10220                                            VTy->getNumElements() * 2);
10221     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10222     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10223                                                cast<ConstantInt>(Ops[3]));
10224     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10225 
10226     return emitCallMaybeConstrainedFPBuiltin(
10227         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10228         {Ops[2], Ops[1], Ops[0]});
10229   }
10230   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10231     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10232     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10233 
10234     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10235     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10236     return emitCallMaybeConstrainedFPBuiltin(
10237         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10238         {Ops[2], Ops[1], Ops[0]});
10239   }
10240   case NEON::BI__builtin_neon_vfmah_lane_f16:
10241   case NEON::BI__builtin_neon_vfmas_lane_f32:
10242   case NEON::BI__builtin_neon_vfmah_laneq_f16:
10243   case NEON::BI__builtin_neon_vfmas_laneq_f32:
10244   case NEON::BI__builtin_neon_vfmad_lane_f64:
10245   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10246     Ops.push_back(EmitScalarExpr(E->getArg(3)));
10247     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10248     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10249     return emitCallMaybeConstrainedFPBuiltin(
10250         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10251         {Ops[1], Ops[2], Ops[0]});
10252   }
10253   case NEON::BI__builtin_neon_vmull_v:
10254     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10255     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10256     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10257     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10258   case NEON::BI__builtin_neon_vmax_v:
10259   case NEON::BI__builtin_neon_vmaxq_v:
10260     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10261     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10262     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10263     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10264   case NEON::BI__builtin_neon_vmaxh_f16: {
10265     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10266     Int = Intrinsic::aarch64_neon_fmax;
10267     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10268   }
10269   case NEON::BI__builtin_neon_vmin_v:
10270   case NEON::BI__builtin_neon_vminq_v:
10271     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10272     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10273     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10274     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10275   case NEON::BI__builtin_neon_vminh_f16: {
10276     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10277     Int = Intrinsic::aarch64_neon_fmin;
10278     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10279   }
10280   case NEON::BI__builtin_neon_vabd_v:
10281   case NEON::BI__builtin_neon_vabdq_v:
10282     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10283     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10284     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10285     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10286   case NEON::BI__builtin_neon_vpadal_v:
10287   case NEON::BI__builtin_neon_vpadalq_v: {
10288     unsigned ArgElts = VTy->getNumElements();
10289     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10290     unsigned BitWidth = EltTy->getBitWidth();
10291     auto *ArgTy = llvm::FixedVectorType::get(
10292         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10293     llvm::Type* Tys[2] = { VTy, ArgTy };
10294     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10295     SmallVector<llvm::Value*, 1> TmpOps;
10296     TmpOps.push_back(Ops[1]);
10297     Function *F = CGM.getIntrinsic(Int, Tys);
10298     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10299     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10300     return Builder.CreateAdd(tmp, addend);
10301   }
10302   case NEON::BI__builtin_neon_vpmin_v:
10303   case NEON::BI__builtin_neon_vpminq_v:
10304     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10305     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10306     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10307     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10308   case NEON::BI__builtin_neon_vpmax_v:
10309   case NEON::BI__builtin_neon_vpmaxq_v:
10310     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10311     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10312     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10313     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10314   case NEON::BI__builtin_neon_vminnm_v:
10315   case NEON::BI__builtin_neon_vminnmq_v:
10316     Int = Intrinsic::aarch64_neon_fminnm;
10317     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10318   case NEON::BI__builtin_neon_vminnmh_f16:
10319     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10320     Int = Intrinsic::aarch64_neon_fminnm;
10321     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10322   case NEON::BI__builtin_neon_vmaxnm_v:
10323   case NEON::BI__builtin_neon_vmaxnmq_v:
10324     Int = Intrinsic::aarch64_neon_fmaxnm;
10325     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10326   case NEON::BI__builtin_neon_vmaxnmh_f16:
10327     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10328     Int = Intrinsic::aarch64_neon_fmaxnm;
10329     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10330   case NEON::BI__builtin_neon_vrecpss_f32: {
10331     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10332     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10333                         Ops, "vrecps");
10334   }
10335   case NEON::BI__builtin_neon_vrecpsd_f64:
10336     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10337     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10338                         Ops, "vrecps");
10339   case NEON::BI__builtin_neon_vrecpsh_f16:
10340     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10341     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10342                         Ops, "vrecps");
10343   case NEON::BI__builtin_neon_vqshrun_n_v:
10344     Int = Intrinsic::aarch64_neon_sqshrun;
10345     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10346   case NEON::BI__builtin_neon_vqrshrun_n_v:
10347     Int = Intrinsic::aarch64_neon_sqrshrun;
10348     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10349   case NEON::BI__builtin_neon_vqshrn_n_v:
10350     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10351     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10352   case NEON::BI__builtin_neon_vrshrn_n_v:
10353     Int = Intrinsic::aarch64_neon_rshrn;
10354     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10355   case NEON::BI__builtin_neon_vqrshrn_n_v:
10356     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10357     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10358   case NEON::BI__builtin_neon_vrndah_f16: {
10359     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10360     Int = Builder.getIsFPConstrained()
10361               ? Intrinsic::experimental_constrained_round
10362               : Intrinsic::round;
10363     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10364   }
10365   case NEON::BI__builtin_neon_vrnda_v:
10366   case NEON::BI__builtin_neon_vrndaq_v: {
10367     Int = Builder.getIsFPConstrained()
10368               ? Intrinsic::experimental_constrained_round
10369               : Intrinsic::round;
10370     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10371   }
10372   case NEON::BI__builtin_neon_vrndih_f16: {
10373     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10374     Int = Builder.getIsFPConstrained()
10375               ? Intrinsic::experimental_constrained_nearbyint
10376               : Intrinsic::nearbyint;
10377     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10378   }
10379   case NEON::BI__builtin_neon_vrndmh_f16: {
10380     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10381     Int = Builder.getIsFPConstrained()
10382               ? Intrinsic::experimental_constrained_floor
10383               : Intrinsic::floor;
10384     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10385   }
10386   case NEON::BI__builtin_neon_vrndm_v:
10387   case NEON::BI__builtin_neon_vrndmq_v: {
10388     Int = Builder.getIsFPConstrained()
10389               ? Intrinsic::experimental_constrained_floor
10390               : Intrinsic::floor;
10391     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10392   }
10393   case NEON::BI__builtin_neon_vrndnh_f16: {
10394     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10395     Int = Intrinsic::aarch64_neon_frintn;
10396     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10397   }
10398   case NEON::BI__builtin_neon_vrndn_v:
10399   case NEON::BI__builtin_neon_vrndnq_v: {
10400     Int = Intrinsic::aarch64_neon_frintn;
10401     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10402   }
10403   case NEON::BI__builtin_neon_vrndns_f32: {
10404     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10405     Int = Intrinsic::aarch64_neon_frintn;
10406     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10407   }
10408   case NEON::BI__builtin_neon_vrndph_f16: {
10409     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10410     Int = Builder.getIsFPConstrained()
10411               ? Intrinsic::experimental_constrained_ceil
10412               : Intrinsic::ceil;
10413     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10414   }
10415   case NEON::BI__builtin_neon_vrndp_v:
10416   case NEON::BI__builtin_neon_vrndpq_v: {
10417     Int = Builder.getIsFPConstrained()
10418               ? Intrinsic::experimental_constrained_ceil
10419               : Intrinsic::ceil;
10420     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10421   }
10422   case NEON::BI__builtin_neon_vrndxh_f16: {
10423     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10424     Int = Builder.getIsFPConstrained()
10425               ? Intrinsic::experimental_constrained_rint
10426               : Intrinsic::rint;
10427     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10428   }
10429   case NEON::BI__builtin_neon_vrndx_v:
10430   case NEON::BI__builtin_neon_vrndxq_v: {
10431     Int = Builder.getIsFPConstrained()
10432               ? Intrinsic::experimental_constrained_rint
10433               : Intrinsic::rint;
10434     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10435   }
10436   case NEON::BI__builtin_neon_vrndh_f16: {
10437     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10438     Int = Builder.getIsFPConstrained()
10439               ? Intrinsic::experimental_constrained_trunc
10440               : Intrinsic::trunc;
10441     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10442   }
10443   case NEON::BI__builtin_neon_vrnd_v:
10444   case NEON::BI__builtin_neon_vrndq_v: {
10445     Int = Builder.getIsFPConstrained()
10446               ? Intrinsic::experimental_constrained_trunc
10447               : Intrinsic::trunc;
10448     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10449   }
10450   case NEON::BI__builtin_neon_vcvt_f64_v:
10451   case NEON::BI__builtin_neon_vcvtq_f64_v:
10452     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10453     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10454     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10455                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10456   case NEON::BI__builtin_neon_vcvt_f64_f32: {
10457     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
10458            "unexpected vcvt_f64_f32 builtin");
10459     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10460     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10461 
10462     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10463   }
10464   case NEON::BI__builtin_neon_vcvt_f32_f64: {
10465     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
10466            "unexpected vcvt_f32_f64 builtin");
10467     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10468     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10469 
10470     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10471   }
10472   case NEON::BI__builtin_neon_vcvt_s32_v:
10473   case NEON::BI__builtin_neon_vcvt_u32_v:
10474   case NEON::BI__builtin_neon_vcvt_s64_v:
10475   case NEON::BI__builtin_neon_vcvt_u64_v:
10476   case NEON::BI__builtin_neon_vcvt_s16_v:
10477   case NEON::BI__builtin_neon_vcvt_u16_v:
10478   case NEON::BI__builtin_neon_vcvtq_s32_v:
10479   case NEON::BI__builtin_neon_vcvtq_u32_v:
10480   case NEON::BI__builtin_neon_vcvtq_s64_v:
10481   case NEON::BI__builtin_neon_vcvtq_u64_v:
10482   case NEON::BI__builtin_neon_vcvtq_s16_v:
10483   case NEON::BI__builtin_neon_vcvtq_u16_v: {
10484     Int =
10485         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
10486     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
10487     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
10488   }
10489   case NEON::BI__builtin_neon_vcvta_s16_v:
10490   case NEON::BI__builtin_neon_vcvta_u16_v:
10491   case NEON::BI__builtin_neon_vcvta_s32_v:
10492   case NEON::BI__builtin_neon_vcvtaq_s16_v:
10493   case NEON::BI__builtin_neon_vcvtaq_s32_v:
10494   case NEON::BI__builtin_neon_vcvta_u32_v:
10495   case NEON::BI__builtin_neon_vcvtaq_u16_v:
10496   case NEON::BI__builtin_neon_vcvtaq_u32_v:
10497   case NEON::BI__builtin_neon_vcvta_s64_v:
10498   case NEON::BI__builtin_neon_vcvtaq_s64_v:
10499   case NEON::BI__builtin_neon_vcvta_u64_v:
10500   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10501     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10502     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10503     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10504   }
10505   case NEON::BI__builtin_neon_vcvtm_s16_v:
10506   case NEON::BI__builtin_neon_vcvtm_s32_v:
10507   case NEON::BI__builtin_neon_vcvtmq_s16_v:
10508   case NEON::BI__builtin_neon_vcvtmq_s32_v:
10509   case NEON::BI__builtin_neon_vcvtm_u16_v:
10510   case NEON::BI__builtin_neon_vcvtm_u32_v:
10511   case NEON::BI__builtin_neon_vcvtmq_u16_v:
10512   case NEON::BI__builtin_neon_vcvtmq_u32_v:
10513   case NEON::BI__builtin_neon_vcvtm_s64_v:
10514   case NEON::BI__builtin_neon_vcvtmq_s64_v:
10515   case NEON::BI__builtin_neon_vcvtm_u64_v:
10516   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10517     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10518     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10519     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10520   }
10521   case NEON::BI__builtin_neon_vcvtn_s16_v:
10522   case NEON::BI__builtin_neon_vcvtn_s32_v:
10523   case NEON::BI__builtin_neon_vcvtnq_s16_v:
10524   case NEON::BI__builtin_neon_vcvtnq_s32_v:
10525   case NEON::BI__builtin_neon_vcvtn_u16_v:
10526   case NEON::BI__builtin_neon_vcvtn_u32_v:
10527   case NEON::BI__builtin_neon_vcvtnq_u16_v:
10528   case NEON::BI__builtin_neon_vcvtnq_u32_v:
10529   case NEON::BI__builtin_neon_vcvtn_s64_v:
10530   case NEON::BI__builtin_neon_vcvtnq_s64_v:
10531   case NEON::BI__builtin_neon_vcvtn_u64_v:
10532   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10533     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10534     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10535     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10536   }
10537   case NEON::BI__builtin_neon_vcvtp_s16_v:
10538   case NEON::BI__builtin_neon_vcvtp_s32_v:
10539   case NEON::BI__builtin_neon_vcvtpq_s16_v:
10540   case NEON::BI__builtin_neon_vcvtpq_s32_v:
10541   case NEON::BI__builtin_neon_vcvtp_u16_v:
10542   case NEON::BI__builtin_neon_vcvtp_u32_v:
10543   case NEON::BI__builtin_neon_vcvtpq_u16_v:
10544   case NEON::BI__builtin_neon_vcvtpq_u32_v:
10545   case NEON::BI__builtin_neon_vcvtp_s64_v:
10546   case NEON::BI__builtin_neon_vcvtpq_s64_v:
10547   case NEON::BI__builtin_neon_vcvtp_u64_v:
10548   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10549     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10550     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10551     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10552   }
10553   case NEON::BI__builtin_neon_vmulx_v:
10554   case NEON::BI__builtin_neon_vmulxq_v: {
10555     Int = Intrinsic::aarch64_neon_fmulx;
10556     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10557   }
10558   case NEON::BI__builtin_neon_vmulxh_lane_f16:
10559   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10560     // vmulx_lane should be mapped to Neon scalar mulx after
10561     // extracting the scalar element
10562     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10563     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10564     Ops.pop_back();
10565     Int = Intrinsic::aarch64_neon_fmulx;
10566     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10567   }
10568   case NEON::BI__builtin_neon_vmul_lane_v:
10569   case NEON::BI__builtin_neon_vmul_laneq_v: {
10570     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10571     bool Quad = false;
10572     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10573       Quad = true;
10574     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10575     llvm::FixedVectorType *VTy =
10576         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10577     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10578     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10579     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10580     return Builder.CreateBitCast(Result, Ty);
10581   }
10582   case NEON::BI__builtin_neon_vnegd_s64:
10583     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10584   case NEON::BI__builtin_neon_vnegh_f16:
10585     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10586   case NEON::BI__builtin_neon_vpmaxnm_v:
10587   case NEON::BI__builtin_neon_vpmaxnmq_v: {
10588     Int = Intrinsic::aarch64_neon_fmaxnmp;
10589     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10590   }
10591   case NEON::BI__builtin_neon_vpminnm_v:
10592   case NEON::BI__builtin_neon_vpminnmq_v: {
10593     Int = Intrinsic::aarch64_neon_fminnmp;
10594     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10595   }
10596   case NEON::BI__builtin_neon_vsqrth_f16: {
10597     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10598     Int = Builder.getIsFPConstrained()
10599               ? Intrinsic::experimental_constrained_sqrt
10600               : Intrinsic::sqrt;
10601     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10602   }
10603   case NEON::BI__builtin_neon_vsqrt_v:
10604   case NEON::BI__builtin_neon_vsqrtq_v: {
10605     Int = Builder.getIsFPConstrained()
10606               ? Intrinsic::experimental_constrained_sqrt
10607               : Intrinsic::sqrt;
10608     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10609     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10610   }
10611   case NEON::BI__builtin_neon_vrbit_v:
10612   case NEON::BI__builtin_neon_vrbitq_v: {
10613     Int = Intrinsic::aarch64_neon_rbit;
10614     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10615   }
10616   case NEON::BI__builtin_neon_vaddv_u8:
10617     // FIXME: These are handled by the AArch64 scalar code.
10618     usgn = true;
10619     LLVM_FALLTHROUGH;
10620   case NEON::BI__builtin_neon_vaddv_s8: {
10621     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10622     Ty = Int32Ty;
10623     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10624     llvm::Type *Tys[2] = { Ty, VTy };
10625     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10626     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10627     return Builder.CreateTrunc(Ops[0], Int8Ty);
10628   }
10629   case NEON::BI__builtin_neon_vaddv_u16:
10630     usgn = true;
10631     LLVM_FALLTHROUGH;
10632   case NEON::BI__builtin_neon_vaddv_s16: {
10633     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10634     Ty = Int32Ty;
10635     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10636     llvm::Type *Tys[2] = { Ty, VTy };
10637     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10638     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10639     return Builder.CreateTrunc(Ops[0], Int16Ty);
10640   }
10641   case NEON::BI__builtin_neon_vaddvq_u8:
10642     usgn = true;
10643     LLVM_FALLTHROUGH;
10644   case NEON::BI__builtin_neon_vaddvq_s8: {
10645     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10646     Ty = Int32Ty;
10647     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10648     llvm::Type *Tys[2] = { Ty, VTy };
10649     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10650     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10651     return Builder.CreateTrunc(Ops[0], Int8Ty);
10652   }
10653   case NEON::BI__builtin_neon_vaddvq_u16:
10654     usgn = true;
10655     LLVM_FALLTHROUGH;
10656   case NEON::BI__builtin_neon_vaddvq_s16: {
10657     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10658     Ty = Int32Ty;
10659     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10660     llvm::Type *Tys[2] = { Ty, VTy };
10661     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10662     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10663     return Builder.CreateTrunc(Ops[0], Int16Ty);
10664   }
10665   case NEON::BI__builtin_neon_vmaxv_u8: {
10666     Int = Intrinsic::aarch64_neon_umaxv;
10667     Ty = Int32Ty;
10668     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10669     llvm::Type *Tys[2] = { Ty, VTy };
10670     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10671     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10672     return Builder.CreateTrunc(Ops[0], Int8Ty);
10673   }
10674   case NEON::BI__builtin_neon_vmaxv_u16: {
10675     Int = Intrinsic::aarch64_neon_umaxv;
10676     Ty = Int32Ty;
10677     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10678     llvm::Type *Tys[2] = { Ty, VTy };
10679     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10680     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10681     return Builder.CreateTrunc(Ops[0], Int16Ty);
10682   }
10683   case NEON::BI__builtin_neon_vmaxvq_u8: {
10684     Int = Intrinsic::aarch64_neon_umaxv;
10685     Ty = Int32Ty;
10686     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10687     llvm::Type *Tys[2] = { Ty, VTy };
10688     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10689     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10690     return Builder.CreateTrunc(Ops[0], Int8Ty);
10691   }
10692   case NEON::BI__builtin_neon_vmaxvq_u16: {
10693     Int = Intrinsic::aarch64_neon_umaxv;
10694     Ty = Int32Ty;
10695     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10696     llvm::Type *Tys[2] = { Ty, VTy };
10697     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10698     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10699     return Builder.CreateTrunc(Ops[0], Int16Ty);
10700   }
10701   case NEON::BI__builtin_neon_vmaxv_s8: {
10702     Int = Intrinsic::aarch64_neon_smaxv;
10703     Ty = Int32Ty;
10704     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10705     llvm::Type *Tys[2] = { Ty, VTy };
10706     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10707     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10708     return Builder.CreateTrunc(Ops[0], Int8Ty);
10709   }
10710   case NEON::BI__builtin_neon_vmaxv_s16: {
10711     Int = Intrinsic::aarch64_neon_smaxv;
10712     Ty = Int32Ty;
10713     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10714     llvm::Type *Tys[2] = { Ty, VTy };
10715     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10716     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10717     return Builder.CreateTrunc(Ops[0], Int16Ty);
10718   }
10719   case NEON::BI__builtin_neon_vmaxvq_s8: {
10720     Int = Intrinsic::aarch64_neon_smaxv;
10721     Ty = Int32Ty;
10722     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10723     llvm::Type *Tys[2] = { Ty, VTy };
10724     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10725     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10726     return Builder.CreateTrunc(Ops[0], Int8Ty);
10727   }
10728   case NEON::BI__builtin_neon_vmaxvq_s16: {
10729     Int = Intrinsic::aarch64_neon_smaxv;
10730     Ty = Int32Ty;
10731     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10732     llvm::Type *Tys[2] = { Ty, VTy };
10733     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10734     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10735     return Builder.CreateTrunc(Ops[0], Int16Ty);
10736   }
10737   case NEON::BI__builtin_neon_vmaxv_f16: {
10738     Int = Intrinsic::aarch64_neon_fmaxv;
10739     Ty = HalfTy;
10740     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10741     llvm::Type *Tys[2] = { Ty, VTy };
10742     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10743     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10744     return Builder.CreateTrunc(Ops[0], HalfTy);
10745   }
10746   case NEON::BI__builtin_neon_vmaxvq_f16: {
10747     Int = Intrinsic::aarch64_neon_fmaxv;
10748     Ty = HalfTy;
10749     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10750     llvm::Type *Tys[2] = { Ty, VTy };
10751     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10752     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10753     return Builder.CreateTrunc(Ops[0], HalfTy);
10754   }
10755   case NEON::BI__builtin_neon_vminv_u8: {
10756     Int = Intrinsic::aarch64_neon_uminv;
10757     Ty = Int32Ty;
10758     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10759     llvm::Type *Tys[2] = { Ty, VTy };
10760     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10761     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10762     return Builder.CreateTrunc(Ops[0], Int8Ty);
10763   }
10764   case NEON::BI__builtin_neon_vminv_u16: {
10765     Int = Intrinsic::aarch64_neon_uminv;
10766     Ty = Int32Ty;
10767     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10768     llvm::Type *Tys[2] = { Ty, VTy };
10769     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10770     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10771     return Builder.CreateTrunc(Ops[0], Int16Ty);
10772   }
10773   case NEON::BI__builtin_neon_vminvq_u8: {
10774     Int = Intrinsic::aarch64_neon_uminv;
10775     Ty = Int32Ty;
10776     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10777     llvm::Type *Tys[2] = { Ty, VTy };
10778     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10779     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10780     return Builder.CreateTrunc(Ops[0], Int8Ty);
10781   }
10782   case NEON::BI__builtin_neon_vminvq_u16: {
10783     Int = Intrinsic::aarch64_neon_uminv;
10784     Ty = Int32Ty;
10785     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10786     llvm::Type *Tys[2] = { Ty, VTy };
10787     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10788     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10789     return Builder.CreateTrunc(Ops[0], Int16Ty);
10790   }
10791   case NEON::BI__builtin_neon_vminv_s8: {
10792     Int = Intrinsic::aarch64_neon_sminv;
10793     Ty = Int32Ty;
10794     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10795     llvm::Type *Tys[2] = { Ty, VTy };
10796     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10797     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10798     return Builder.CreateTrunc(Ops[0], Int8Ty);
10799   }
10800   case NEON::BI__builtin_neon_vminv_s16: {
10801     Int = Intrinsic::aarch64_neon_sminv;
10802     Ty = Int32Ty;
10803     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10804     llvm::Type *Tys[2] = { Ty, VTy };
10805     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10806     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10807     return Builder.CreateTrunc(Ops[0], Int16Ty);
10808   }
10809   case NEON::BI__builtin_neon_vminvq_s8: {
10810     Int = Intrinsic::aarch64_neon_sminv;
10811     Ty = Int32Ty;
10812     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10813     llvm::Type *Tys[2] = { Ty, VTy };
10814     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10815     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10816     return Builder.CreateTrunc(Ops[0], Int8Ty);
10817   }
10818   case NEON::BI__builtin_neon_vminvq_s16: {
10819     Int = Intrinsic::aarch64_neon_sminv;
10820     Ty = Int32Ty;
10821     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10822     llvm::Type *Tys[2] = { Ty, VTy };
10823     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10824     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10825     return Builder.CreateTrunc(Ops[0], Int16Ty);
10826   }
10827   case NEON::BI__builtin_neon_vminv_f16: {
10828     Int = Intrinsic::aarch64_neon_fminv;
10829     Ty = HalfTy;
10830     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10831     llvm::Type *Tys[2] = { Ty, VTy };
10832     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10833     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10834     return Builder.CreateTrunc(Ops[0], HalfTy);
10835   }
10836   case NEON::BI__builtin_neon_vminvq_f16: {
10837     Int = Intrinsic::aarch64_neon_fminv;
10838     Ty = HalfTy;
10839     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10840     llvm::Type *Tys[2] = { Ty, VTy };
10841     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10842     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10843     return Builder.CreateTrunc(Ops[0], HalfTy);
10844   }
10845   case NEON::BI__builtin_neon_vmaxnmv_f16: {
10846     Int = Intrinsic::aarch64_neon_fmaxnmv;
10847     Ty = HalfTy;
10848     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10849     llvm::Type *Tys[2] = { Ty, VTy };
10850     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10851     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10852     return Builder.CreateTrunc(Ops[0], HalfTy);
10853   }
10854   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
10855     Int = Intrinsic::aarch64_neon_fmaxnmv;
10856     Ty = HalfTy;
10857     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10858     llvm::Type *Tys[2] = { Ty, VTy };
10859     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10860     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10861     return Builder.CreateTrunc(Ops[0], HalfTy);
10862   }
10863   case NEON::BI__builtin_neon_vminnmv_f16: {
10864     Int = Intrinsic::aarch64_neon_fminnmv;
10865     Ty = HalfTy;
10866     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10867     llvm::Type *Tys[2] = { Ty, VTy };
10868     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10869     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10870     return Builder.CreateTrunc(Ops[0], HalfTy);
10871   }
10872   case NEON::BI__builtin_neon_vminnmvq_f16: {
10873     Int = Intrinsic::aarch64_neon_fminnmv;
10874     Ty = HalfTy;
10875     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10876     llvm::Type *Tys[2] = { Ty, VTy };
10877     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10878     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10879     return Builder.CreateTrunc(Ops[0], HalfTy);
10880   }
10881   case NEON::BI__builtin_neon_vmul_n_f64: {
10882     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10883     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
10884     return Builder.CreateFMul(Ops[0], RHS);
10885   }
10886   case NEON::BI__builtin_neon_vaddlv_u8: {
10887     Int = Intrinsic::aarch64_neon_uaddlv;
10888     Ty = Int32Ty;
10889     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10890     llvm::Type *Tys[2] = { Ty, VTy };
10891     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10892     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10893     return Builder.CreateTrunc(Ops[0], Int16Ty);
10894   }
10895   case NEON::BI__builtin_neon_vaddlv_u16: {
10896     Int = Intrinsic::aarch64_neon_uaddlv;
10897     Ty = Int32Ty;
10898     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10899     llvm::Type *Tys[2] = { Ty, VTy };
10900     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10901     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10902   }
10903   case NEON::BI__builtin_neon_vaddlvq_u8: {
10904     Int = Intrinsic::aarch64_neon_uaddlv;
10905     Ty = Int32Ty;
10906     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10907     llvm::Type *Tys[2] = { Ty, VTy };
10908     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10909     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10910     return Builder.CreateTrunc(Ops[0], Int16Ty);
10911   }
10912   case NEON::BI__builtin_neon_vaddlvq_u16: {
10913     Int = Intrinsic::aarch64_neon_uaddlv;
10914     Ty = Int32Ty;
10915     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10916     llvm::Type *Tys[2] = { Ty, VTy };
10917     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10918     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10919   }
10920   case NEON::BI__builtin_neon_vaddlv_s8: {
10921     Int = Intrinsic::aarch64_neon_saddlv;
10922     Ty = Int32Ty;
10923     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10924     llvm::Type *Tys[2] = { Ty, VTy };
10925     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10926     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10927     return Builder.CreateTrunc(Ops[0], Int16Ty);
10928   }
10929   case NEON::BI__builtin_neon_vaddlv_s16: {
10930     Int = Intrinsic::aarch64_neon_saddlv;
10931     Ty = Int32Ty;
10932     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10933     llvm::Type *Tys[2] = { Ty, VTy };
10934     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10935     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10936   }
10937   case NEON::BI__builtin_neon_vaddlvq_s8: {
10938     Int = Intrinsic::aarch64_neon_saddlv;
10939     Ty = Int32Ty;
10940     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10941     llvm::Type *Tys[2] = { Ty, VTy };
10942     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10943     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10944     return Builder.CreateTrunc(Ops[0], Int16Ty);
10945   }
10946   case NEON::BI__builtin_neon_vaddlvq_s16: {
10947     Int = Intrinsic::aarch64_neon_saddlv;
10948     Ty = Int32Ty;
10949     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10950     llvm::Type *Tys[2] = { Ty, VTy };
10951     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10952     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10953   }
10954   case NEON::BI__builtin_neon_vsri_n_v:
10955   case NEON::BI__builtin_neon_vsriq_n_v: {
10956     Int = Intrinsic::aarch64_neon_vsri;
10957     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10958     return EmitNeonCall(Intrin, Ops, "vsri_n");
10959   }
10960   case NEON::BI__builtin_neon_vsli_n_v:
10961   case NEON::BI__builtin_neon_vsliq_n_v: {
10962     Int = Intrinsic::aarch64_neon_vsli;
10963     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10964     return EmitNeonCall(Intrin, Ops, "vsli_n");
10965   }
10966   case NEON::BI__builtin_neon_vsra_n_v:
10967   case NEON::BI__builtin_neon_vsraq_n_v:
10968     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10969     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
10970     return Builder.CreateAdd(Ops[0], Ops[1]);
10971   case NEON::BI__builtin_neon_vrsra_n_v:
10972   case NEON::BI__builtin_neon_vrsraq_n_v: {
10973     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
10974     SmallVector<llvm::Value*,2> TmpOps;
10975     TmpOps.push_back(Ops[1]);
10976     TmpOps.push_back(Ops[2]);
10977     Function* F = CGM.getIntrinsic(Int, Ty);
10978     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
10979     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
10980     return Builder.CreateAdd(Ops[0], tmp);
10981   }
10982   case NEON::BI__builtin_neon_vld1_v:
10983   case NEON::BI__builtin_neon_vld1q_v: {
10984     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10985     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
10986   }
10987   case NEON::BI__builtin_neon_vst1_v:
10988   case NEON::BI__builtin_neon_vst1q_v:
10989     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10990     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10991     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
10992   case NEON::BI__builtin_neon_vld1_lane_v:
10993   case NEON::BI__builtin_neon_vld1q_lane_v: {
10994     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10995     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
10996     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10997     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
10998                                        PtrOp0.getAlignment());
10999     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11000   }
11001   case NEON::BI__builtin_neon_vld1_dup_v:
11002   case NEON::BI__builtin_neon_vld1q_dup_v: {
11003     Value *V = UndefValue::get(Ty);
11004     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11005     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11006     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11007                                        PtrOp0.getAlignment());
11008     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11009     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11010     return EmitNeonSplat(Ops[0], CI);
11011   }
11012   case NEON::BI__builtin_neon_vst1_lane_v:
11013   case NEON::BI__builtin_neon_vst1q_lane_v:
11014     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11015     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11016     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11017     return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11018                                       PtrOp0.getAlignment());
11019   case NEON::BI__builtin_neon_vld2_v:
11020   case NEON::BI__builtin_neon_vld2q_v: {
11021     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11022     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11023     llvm::Type *Tys[2] = { VTy, PTy };
11024     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11025     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11026     Ops[0] = Builder.CreateBitCast(Ops[0],
11027                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11028     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11029   }
11030   case NEON::BI__builtin_neon_vld3_v:
11031   case NEON::BI__builtin_neon_vld3q_v: {
11032     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11033     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11034     llvm::Type *Tys[2] = { VTy, PTy };
11035     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11036     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11037     Ops[0] = Builder.CreateBitCast(Ops[0],
11038                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11039     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11040   }
11041   case NEON::BI__builtin_neon_vld4_v:
11042   case NEON::BI__builtin_neon_vld4q_v: {
11043     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11044     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11045     llvm::Type *Tys[2] = { VTy, PTy };
11046     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11047     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11048     Ops[0] = Builder.CreateBitCast(Ops[0],
11049                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11050     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11051   }
11052   case NEON::BI__builtin_neon_vld2_dup_v:
11053   case NEON::BI__builtin_neon_vld2q_dup_v: {
11054     llvm::Type *PTy =
11055       llvm::PointerType::getUnqual(VTy->getElementType());
11056     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11057     llvm::Type *Tys[2] = { VTy, PTy };
11058     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11059     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11060     Ops[0] = Builder.CreateBitCast(Ops[0],
11061                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11062     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11063   }
11064   case NEON::BI__builtin_neon_vld3_dup_v:
11065   case NEON::BI__builtin_neon_vld3q_dup_v: {
11066     llvm::Type *PTy =
11067       llvm::PointerType::getUnqual(VTy->getElementType());
11068     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11069     llvm::Type *Tys[2] = { VTy, PTy };
11070     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11071     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11072     Ops[0] = Builder.CreateBitCast(Ops[0],
11073                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11074     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11075   }
11076   case NEON::BI__builtin_neon_vld4_dup_v:
11077   case NEON::BI__builtin_neon_vld4q_dup_v: {
11078     llvm::Type *PTy =
11079       llvm::PointerType::getUnqual(VTy->getElementType());
11080     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11081     llvm::Type *Tys[2] = { VTy, PTy };
11082     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11083     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11084     Ops[0] = Builder.CreateBitCast(Ops[0],
11085                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11086     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11087   }
11088   case NEON::BI__builtin_neon_vld2_lane_v:
11089   case NEON::BI__builtin_neon_vld2q_lane_v: {
11090     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11091     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11092     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11093     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11094     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11095     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11096     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11097     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11098     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11099     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11100   }
11101   case NEON::BI__builtin_neon_vld3_lane_v:
11102   case NEON::BI__builtin_neon_vld3q_lane_v: {
11103     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11104     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11105     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11106     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11107     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11108     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11109     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11110     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11111     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11112     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11113     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11114   }
11115   case NEON::BI__builtin_neon_vld4_lane_v:
11116   case NEON::BI__builtin_neon_vld4q_lane_v: {
11117     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11118     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11119     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11120     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11121     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11122     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11123     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11124     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11125     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11126     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11127     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11128     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11129   }
11130   case NEON::BI__builtin_neon_vst2_v:
11131   case NEON::BI__builtin_neon_vst2q_v: {
11132     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11133     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11134     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11135                         Ops, "");
11136   }
11137   case NEON::BI__builtin_neon_vst2_lane_v:
11138   case NEON::BI__builtin_neon_vst2q_lane_v: {
11139     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11140     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11141     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11142     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11143                         Ops, "");
11144   }
11145   case NEON::BI__builtin_neon_vst3_v:
11146   case NEON::BI__builtin_neon_vst3q_v: {
11147     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11148     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11149     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11150                         Ops, "");
11151   }
11152   case NEON::BI__builtin_neon_vst3_lane_v:
11153   case NEON::BI__builtin_neon_vst3q_lane_v: {
11154     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11155     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11156     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11157     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11158                         Ops, "");
11159   }
11160   case NEON::BI__builtin_neon_vst4_v:
11161   case NEON::BI__builtin_neon_vst4q_v: {
11162     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11163     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11164     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11165                         Ops, "");
11166   }
11167   case NEON::BI__builtin_neon_vst4_lane_v:
11168   case NEON::BI__builtin_neon_vst4q_lane_v: {
11169     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11170     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11171     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11172     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11173                         Ops, "");
11174   }
11175   case NEON::BI__builtin_neon_vtrn_v:
11176   case NEON::BI__builtin_neon_vtrnq_v: {
11177     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11178     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11179     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11180     Value *SV = nullptr;
11181 
11182     for (unsigned vi = 0; vi != 2; ++vi) {
11183       SmallVector<int, 16> Indices;
11184       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11185         Indices.push_back(i+vi);
11186         Indices.push_back(i+e+vi);
11187       }
11188       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11189       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11190       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11191     }
11192     return SV;
11193   }
11194   case NEON::BI__builtin_neon_vuzp_v:
11195   case NEON::BI__builtin_neon_vuzpq_v: {
11196     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11197     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11198     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11199     Value *SV = nullptr;
11200 
11201     for (unsigned vi = 0; vi != 2; ++vi) {
11202       SmallVector<int, 16> Indices;
11203       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11204         Indices.push_back(2*i+vi);
11205 
11206       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11207       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11208       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11209     }
11210     return SV;
11211   }
11212   case NEON::BI__builtin_neon_vzip_v:
11213   case NEON::BI__builtin_neon_vzipq_v: {
11214     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11215     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11216     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11217     Value *SV = nullptr;
11218 
11219     for (unsigned vi = 0; vi != 2; ++vi) {
11220       SmallVector<int, 16> Indices;
11221       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11222         Indices.push_back((i + vi*e) >> 1);
11223         Indices.push_back(((i + vi*e) >> 1)+e);
11224       }
11225       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11226       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11227       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11228     }
11229     return SV;
11230   }
11231   case NEON::BI__builtin_neon_vqtbl1q_v: {
11232     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11233                         Ops, "vtbl1");
11234   }
11235   case NEON::BI__builtin_neon_vqtbl2q_v: {
11236     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11237                         Ops, "vtbl2");
11238   }
11239   case NEON::BI__builtin_neon_vqtbl3q_v: {
11240     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11241                         Ops, "vtbl3");
11242   }
11243   case NEON::BI__builtin_neon_vqtbl4q_v: {
11244     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11245                         Ops, "vtbl4");
11246   }
11247   case NEON::BI__builtin_neon_vqtbx1q_v: {
11248     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11249                         Ops, "vtbx1");
11250   }
11251   case NEON::BI__builtin_neon_vqtbx2q_v: {
11252     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11253                         Ops, "vtbx2");
11254   }
11255   case NEON::BI__builtin_neon_vqtbx3q_v: {
11256     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11257                         Ops, "vtbx3");
11258   }
11259   case NEON::BI__builtin_neon_vqtbx4q_v: {
11260     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11261                         Ops, "vtbx4");
11262   }
11263   case NEON::BI__builtin_neon_vsqadd_v:
11264   case NEON::BI__builtin_neon_vsqaddq_v: {
11265     Int = Intrinsic::aarch64_neon_usqadd;
11266     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11267   }
11268   case NEON::BI__builtin_neon_vuqadd_v:
11269   case NEON::BI__builtin_neon_vuqaddq_v: {
11270     Int = Intrinsic::aarch64_neon_suqadd;
11271     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11272   }
11273   }
11274 }
11275 
11276 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11277                                            const CallExpr *E) {
11278   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
11279           BuiltinID == BPF::BI__builtin_btf_type_id ||
11280           BuiltinID == BPF::BI__builtin_preserve_type_info ||
11281           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
11282          "unexpected BPF builtin");
11283 
11284   // A sequence number, injected into IR builtin functions, to
11285   // prevent CSE given the only difference of the funciton
11286   // may just be the debuginfo metadata.
11287   static uint32_t BuiltinSeqNum;
11288 
11289   switch (BuiltinID) {
11290   default:
11291     llvm_unreachable("Unexpected BPF builtin");
11292   case BPF::BI__builtin_preserve_field_info: {
11293     const Expr *Arg = E->getArg(0);
11294     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11295 
11296     if (!getDebugInfo()) {
11297       CGM.Error(E->getExprLoc(),
11298                 "using __builtin_preserve_field_info() without -g");
11299       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11300                         : EmitLValue(Arg).getPointer(*this);
11301     }
11302 
11303     // Enable underlying preserve_*_access_index() generation.
11304     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11305     IsInPreservedAIRegion = true;
11306     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11307                                   : EmitLValue(Arg).getPointer(*this);
11308     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11309 
11310     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11311     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11312 
11313     // Built the IR for the preserve_field_info intrinsic.
11314     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11315         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11316         {FieldAddr->getType()});
11317     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11318   }
11319   case BPF::BI__builtin_btf_type_id:
11320   case BPF::BI__builtin_preserve_type_info: {
11321     if (!getDebugInfo()) {
11322       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11323       return nullptr;
11324     }
11325 
11326     const Expr *Arg0 = E->getArg(0);
11327     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11328         Arg0->getType(), Arg0->getExprLoc());
11329 
11330     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11331     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11332     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11333 
11334     llvm::Function *FnDecl;
11335     if (BuiltinID == BPF::BI__builtin_btf_type_id)
11336       FnDecl = llvm::Intrinsic::getDeclaration(
11337           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11338     else
11339       FnDecl = llvm::Intrinsic::getDeclaration(
11340           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11341     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11342     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11343     return Fn;
11344   }
11345   case BPF::BI__builtin_preserve_enum_value: {
11346     if (!getDebugInfo()) {
11347       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11348       return nullptr;
11349     }
11350 
11351     const Expr *Arg0 = E->getArg(0);
11352     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11353         Arg0->getType(), Arg0->getExprLoc());
11354 
11355     // Find enumerator
11356     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
11357     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
11358     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
11359     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
11360 
11361     auto &InitVal = Enumerator->getInitVal();
11362     std::string InitValStr;
11363     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
11364       InitValStr = std::to_string(InitVal.getSExtValue());
11365     else
11366       InitValStr = std::to_string(InitVal.getZExtValue());
11367     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
11368     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
11369 
11370     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11371     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11372     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11373 
11374     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
11375         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
11376     CallInst *Fn =
11377         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
11378     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11379     return Fn;
11380   }
11381   }
11382 }
11383 
11384 llvm::Value *CodeGenFunction::
11385 BuildVector(ArrayRef<llvm::Value*> Ops) {
11386   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
11387          "Not a power-of-two sized vector!");
11388   bool AllConstants = true;
11389   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11390     AllConstants &= isa<Constant>(Ops[i]);
11391 
11392   // If this is a constant vector, create a ConstantVector.
11393   if (AllConstants) {
11394     SmallVector<llvm::Constant*, 16> CstOps;
11395     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11396       CstOps.push_back(cast<Constant>(Ops[i]));
11397     return llvm::ConstantVector::get(CstOps);
11398   }
11399 
11400   // Otherwise, insertelement the values to build the vector.
11401   Value *Result = llvm::UndefValue::get(
11402       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11403 
11404   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11405     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11406 
11407   return Result;
11408 }
11409 
11410 // Convert the mask from an integer type to a vector of i1.
11411 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11412                               unsigned NumElts) {
11413 
11414   auto *MaskTy = llvm::FixedVectorType::get(
11415       CGF.Builder.getInt1Ty(),
11416       cast<IntegerType>(Mask->getType())->getBitWidth());
11417   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11418 
11419   // If we have less than 8 elements, then the starting mask was an i8 and
11420   // we need to extract down to the right number of elements.
11421   if (NumElts < 8) {
11422     int Indices[4];
11423     for (unsigned i = 0; i != NumElts; ++i)
11424       Indices[i] = i;
11425     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11426                                              makeArrayRef(Indices, NumElts),
11427                                              "extract");
11428   }
11429   return MaskVec;
11430 }
11431 
11432 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11433                                  Align Alignment) {
11434   // Cast the pointer to right type.
11435   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11436                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11437 
11438   Value *MaskVec = getMaskVecValue(
11439       CGF, Ops[2],
11440       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11441 
11442   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11443 }
11444 
11445 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11446                                 Align Alignment) {
11447   // Cast the pointer to right type.
11448   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11449                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11450 
11451   Value *MaskVec = getMaskVecValue(
11452       CGF, Ops[2],
11453       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11454 
11455   return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]);
11456 }
11457 
11458 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11459                                 ArrayRef<Value *> Ops) {
11460   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11461   llvm::Type *PtrTy = ResultTy->getElementType();
11462 
11463   // Cast the pointer to element type.
11464   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11465                                          llvm::PointerType::getUnqual(PtrTy));
11466 
11467   Value *MaskVec = getMaskVecValue(
11468       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
11469 
11470   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11471                                            ResultTy);
11472   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11473 }
11474 
11475 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11476                                     ArrayRef<Value *> Ops,
11477                                     bool IsCompress) {
11478   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11479 
11480   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11481 
11482   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11483                                  : Intrinsic::x86_avx512_mask_expand;
11484   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11485   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11486 }
11487 
11488 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11489                                    ArrayRef<Value *> Ops) {
11490   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11491   llvm::Type *PtrTy = ResultTy->getElementType();
11492 
11493   // Cast the pointer to element type.
11494   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11495                                          llvm::PointerType::getUnqual(PtrTy));
11496 
11497   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11498 
11499   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11500                                            ResultTy);
11501   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11502 }
11503 
11504 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11505                               ArrayRef<Value *> Ops,
11506                               bool InvertLHS = false) {
11507   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11508   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11509   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11510 
11511   if (InvertLHS)
11512     LHS = CGF.Builder.CreateNot(LHS);
11513 
11514   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11515                                    Ops[0]->getType());
11516 }
11517 
11518 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11519                                  Value *Amt, bool IsRight) {
11520   llvm::Type *Ty = Op0->getType();
11521 
11522   // Amount may be scalar immediate, in which case create a splat vector.
11523   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11524   // we only care about the lowest log2 bits anyway.
11525   if (Amt->getType() != Ty) {
11526     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
11527     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11528     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11529   }
11530 
11531   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11532   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11533   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11534 }
11535 
11536 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11537                            bool IsSigned) {
11538   Value *Op0 = Ops[0];
11539   Value *Op1 = Ops[1];
11540   llvm::Type *Ty = Op0->getType();
11541   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11542 
11543   CmpInst::Predicate Pred;
11544   switch (Imm) {
11545   case 0x0:
11546     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11547     break;
11548   case 0x1:
11549     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11550     break;
11551   case 0x2:
11552     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11553     break;
11554   case 0x3:
11555     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11556     break;
11557   case 0x4:
11558     Pred = ICmpInst::ICMP_EQ;
11559     break;
11560   case 0x5:
11561     Pred = ICmpInst::ICMP_NE;
11562     break;
11563   case 0x6:
11564     return llvm::Constant::getNullValue(Ty); // FALSE
11565   case 0x7:
11566     return llvm::Constant::getAllOnesValue(Ty); // TRUE
11567   default:
11568     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
11569   }
11570 
11571   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11572   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11573   return Res;
11574 }
11575 
11576 static Value *EmitX86Select(CodeGenFunction &CGF,
11577                             Value *Mask, Value *Op0, Value *Op1) {
11578 
11579   // If the mask is all ones just return first argument.
11580   if (const auto *C = dyn_cast<Constant>(Mask))
11581     if (C->isAllOnesValue())
11582       return Op0;
11583 
11584   Mask = getMaskVecValue(
11585       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
11586 
11587   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11588 }
11589 
11590 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11591                                   Value *Mask, Value *Op0, Value *Op1) {
11592   // If the mask is all ones just return first argument.
11593   if (const auto *C = dyn_cast<Constant>(Mask))
11594     if (C->isAllOnesValue())
11595       return Op0;
11596 
11597   auto *MaskTy = llvm::FixedVectorType::get(
11598       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11599   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11600   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11601   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11602 }
11603 
11604 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11605                                          unsigned NumElts, Value *MaskIn) {
11606   if (MaskIn) {
11607     const auto *C = dyn_cast<Constant>(MaskIn);
11608     if (!C || !C->isAllOnesValue())
11609       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11610   }
11611 
11612   if (NumElts < 8) {
11613     int Indices[8];
11614     for (unsigned i = 0; i != NumElts; ++i)
11615       Indices[i] = i;
11616     for (unsigned i = NumElts; i != 8; ++i)
11617       Indices[i] = i % NumElts + NumElts;
11618     Cmp = CGF.Builder.CreateShuffleVector(
11619         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11620   }
11621 
11622   return CGF.Builder.CreateBitCast(Cmp,
11623                                    IntegerType::get(CGF.getLLVMContext(),
11624                                                     std::max(NumElts, 8U)));
11625 }
11626 
11627 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
11628                                    bool Signed, ArrayRef<Value *> Ops) {
11629   assert((Ops.size() == 2 || Ops.size() == 4) &&
11630          "Unexpected number of arguments");
11631   unsigned NumElts =
11632       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
11633   Value *Cmp;
11634 
11635   if (CC == 3) {
11636     Cmp = Constant::getNullValue(
11637         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11638   } else if (CC == 7) {
11639     Cmp = Constant::getAllOnesValue(
11640         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11641   } else {
11642     ICmpInst::Predicate Pred;
11643     switch (CC) {
11644     default: llvm_unreachable("Unknown condition code");
11645     case 0: Pred = ICmpInst::ICMP_EQ;  break;
11646     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
11647     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
11648     case 4: Pred = ICmpInst::ICMP_NE;  break;
11649     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
11650     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
11651     }
11652     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11653   }
11654 
11655   Value *MaskIn = nullptr;
11656   if (Ops.size() == 4)
11657     MaskIn = Ops[3];
11658 
11659   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
11660 }
11661 
11662 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
11663   Value *Zero = Constant::getNullValue(In->getType());
11664   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
11665 }
11666 
11667 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
11668                                     ArrayRef<Value *> Ops, bool IsSigned) {
11669   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
11670   llvm::Type *Ty = Ops[1]->getType();
11671 
11672   Value *Res;
11673   if (Rnd != 4) {
11674     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
11675                                  : Intrinsic::x86_avx512_uitofp_round;
11676     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
11677     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
11678   } else {
11679     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
11680                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
11681   }
11682 
11683   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11684 }
11685 
11686 // Lowers X86 FMA intrinsics to IR.
11687 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11688                              unsigned BuiltinID, bool IsAddSub) {
11689 
11690   bool Subtract = false;
11691   Intrinsic::ID IID = Intrinsic::not_intrinsic;
11692   switch (BuiltinID) {
11693   default: break;
11694   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11695     Subtract = true;
11696     LLVM_FALLTHROUGH;
11697   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11698   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11699   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11700     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
11701   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11702     Subtract = true;
11703     LLVM_FALLTHROUGH;
11704   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11705   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11706   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11707     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
11708   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11709     Subtract = true;
11710     LLVM_FALLTHROUGH;
11711   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11712   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11713   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11714     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
11715     break;
11716   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11717     Subtract = true;
11718     LLVM_FALLTHROUGH;
11719   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11720   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11721   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11722     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
11723     break;
11724   }
11725 
11726   Value *A = Ops[0];
11727   Value *B = Ops[1];
11728   Value *C = Ops[2];
11729 
11730   if (Subtract)
11731     C = CGF.Builder.CreateFNeg(C);
11732 
11733   Value *Res;
11734 
11735   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
11736   if (IID != Intrinsic::not_intrinsic &&
11737       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
11738        IsAddSub)) {
11739     Function *Intr = CGF.CGM.getIntrinsic(IID);
11740     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
11741   } else {
11742     llvm::Type *Ty = A->getType();
11743     Function *FMA;
11744     if (CGF.Builder.getIsFPConstrained()) {
11745       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
11746       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
11747     } else {
11748       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
11749       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
11750     }
11751   }
11752 
11753   // Handle any required masking.
11754   Value *MaskFalseVal = nullptr;
11755   switch (BuiltinID) {
11756   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11757   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11758   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11759   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11760     MaskFalseVal = Ops[0];
11761     break;
11762   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11763   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11764   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11765   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11766     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
11767     break;
11768   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11769   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11770   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11771   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11772   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11773   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11774   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11775   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11776     MaskFalseVal = Ops[2];
11777     break;
11778   }
11779 
11780   if (MaskFalseVal)
11781     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
11782 
11783   return Res;
11784 }
11785 
11786 static Value *
11787 EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
11788                   Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
11789                   bool NegAcc = false) {
11790   unsigned Rnd = 4;
11791   if (Ops.size() > 4)
11792     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11793 
11794   if (NegAcc)
11795     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
11796 
11797   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11798   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11799   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11800   Value *Res;
11801   if (Rnd != 4) {
11802     Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
11803                         Intrinsic::x86_avx512_vfmadd_f32 :
11804                         Intrinsic::x86_avx512_vfmadd_f64;
11805     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11806                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
11807   } else if (CGF.Builder.getIsFPConstrained()) {
11808     Function *FMA = CGF.CGM.getIntrinsic(
11809         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
11810     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
11811   } else {
11812     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
11813     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
11814   }
11815   // If we have more than 3 arguments, we need to do masking.
11816   if (Ops.size() > 3) {
11817     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
11818                                : Ops[PTIdx];
11819 
11820     // If we negated the accumulator and the its the PassThru value we need to
11821     // bypass the negate. Conveniently Upper should be the same thing in this
11822     // case.
11823     if (NegAcc && PTIdx == 2)
11824       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
11825 
11826     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
11827   }
11828   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
11829 }
11830 
11831 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
11832                            ArrayRef<Value *> Ops) {
11833   llvm::Type *Ty = Ops[0]->getType();
11834   // Arguments have a vXi32 type so cast to vXi64.
11835   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
11836                                   Ty->getPrimitiveSizeInBits() / 64);
11837   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
11838   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
11839 
11840   if (IsSigned) {
11841     // Shift left then arithmetic shift right.
11842     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
11843     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
11844     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
11845     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
11846     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
11847   } else {
11848     // Clear the upper bits.
11849     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
11850     LHS = CGF.Builder.CreateAnd(LHS, Mask);
11851     RHS = CGF.Builder.CreateAnd(RHS, Mask);
11852   }
11853 
11854   return CGF.Builder.CreateMul(LHS, RHS);
11855 }
11856 
11857 // Emit a masked pternlog intrinsic. This only exists because the header has to
11858 // use a macro and we aren't able to pass the input argument to a pternlog
11859 // builtin and a select builtin without evaluating it twice.
11860 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
11861                              ArrayRef<Value *> Ops) {
11862   llvm::Type *Ty = Ops[0]->getType();
11863 
11864   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
11865   unsigned EltWidth = Ty->getScalarSizeInBits();
11866   Intrinsic::ID IID;
11867   if (VecWidth == 128 && EltWidth == 32)
11868     IID = Intrinsic::x86_avx512_pternlog_d_128;
11869   else if (VecWidth == 256 && EltWidth == 32)
11870     IID = Intrinsic::x86_avx512_pternlog_d_256;
11871   else if (VecWidth == 512 && EltWidth == 32)
11872     IID = Intrinsic::x86_avx512_pternlog_d_512;
11873   else if (VecWidth == 128 && EltWidth == 64)
11874     IID = Intrinsic::x86_avx512_pternlog_q_128;
11875   else if (VecWidth == 256 && EltWidth == 64)
11876     IID = Intrinsic::x86_avx512_pternlog_q_256;
11877   else if (VecWidth == 512 && EltWidth == 64)
11878     IID = Intrinsic::x86_avx512_pternlog_q_512;
11879   else
11880     llvm_unreachable("Unexpected intrinsic");
11881 
11882   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11883                                           Ops.drop_back());
11884   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
11885   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
11886 }
11887 
11888 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
11889                               llvm::Type *DstTy) {
11890   unsigned NumberOfElements =
11891       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
11892   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
11893   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
11894 }
11895 
11896 // Emit binary intrinsic with the same type used in result/args.
11897 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF,
11898                                      ArrayRef<Value *> Ops, Intrinsic::ID IID) {
11899   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
11900   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
11901 }
11902 
11903 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
11904   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
11905   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
11906   return EmitX86CpuIs(CPUStr);
11907 }
11908 
11909 // Convert F16 halfs to floats.
11910 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
11911                                        ArrayRef<Value *> Ops,
11912                                        llvm::Type *DstTy) {
11913   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
11914          "Unknown cvtph2ps intrinsic");
11915 
11916   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
11917   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
11918     Function *F =
11919         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
11920     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
11921   }
11922 
11923   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
11924   Value *Src = Ops[0];
11925 
11926   // Extract the subvector.
11927   if (NumDstElts !=
11928       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
11929     assert(NumDstElts == 4 && "Unexpected vector size");
11930     Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
11931   }
11932 
11933   // Bitcast from vXi16 to vXf16.
11934   auto *HalfTy = llvm::FixedVectorType::get(
11935       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
11936   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
11937 
11938   // Perform the fp-extension.
11939   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
11940 
11941   if (Ops.size() >= 3)
11942     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11943   return Res;
11944 }
11945 
11946 // Convert a BF16 to a float.
11947 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
11948                                         const CallExpr *E,
11949                                         ArrayRef<Value *> Ops) {
11950   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
11951   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
11952   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
11953   llvm::Type *ResultType = CGF.ConvertType(E->getType());
11954   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
11955   return BitCast;
11956 }
11957 
11958 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
11959 
11960   llvm::Type *Int32Ty = Builder.getInt32Ty();
11961 
11962   // Matching the struct layout from the compiler-rt/libgcc structure that is
11963   // filled in:
11964   // unsigned int __cpu_vendor;
11965   // unsigned int __cpu_type;
11966   // unsigned int __cpu_subtype;
11967   // unsigned int __cpu_features[1];
11968   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
11969                                           llvm::ArrayType::get(Int32Ty, 1));
11970 
11971   // Grab the global __cpu_model.
11972   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
11973   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
11974 
11975   // Calculate the index needed to access the correct field based on the
11976   // range. Also adjust the expected value.
11977   unsigned Index;
11978   unsigned Value;
11979   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
11980 #define X86_VENDOR(ENUM, STRING)                                               \
11981   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
11982 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
11983   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11984 #define X86_CPU_TYPE(ENUM, STR)                                                \
11985   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11986 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
11987   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
11988 #include "llvm/Support/X86TargetParser.def"
11989                                .Default({0, 0});
11990   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
11991 
11992   // Grab the appropriate field from __cpu_model.
11993   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
11994                          ConstantInt::get(Int32Ty, Index)};
11995   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
11996   CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
11997 
11998   // Check the value of the field against the requested value.
11999   return Builder.CreateICmpEQ(CpuValue,
12000                                   llvm::ConstantInt::get(Int32Ty, Value));
12001 }
12002 
12003 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12004   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12005   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12006   return EmitX86CpuSupports(FeatureStr);
12007 }
12008 
12009 uint64_t
12010 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
12011   // Processor features and mapping to processor feature value.
12012   uint64_t FeaturesMask = 0;
12013   for (const StringRef &FeatureStr : FeatureStrs) {
12014     unsigned Feature =
12015         StringSwitch<unsigned>(FeatureStr)
12016 #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM)
12017 #include "llvm/Support/X86TargetParser.def"
12018         ;
12019     FeaturesMask |= (1ULL << Feature);
12020   }
12021   return FeaturesMask;
12022 }
12023 
12024 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12025   return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
12026 }
12027 
12028 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12029   uint32_t Features1 = Lo_32(FeaturesMask);
12030   uint32_t Features2 = Hi_32(FeaturesMask);
12031 
12032   Value *Result = Builder.getTrue();
12033 
12034   if (Features1 != 0) {
12035     // Matching the struct layout from the compiler-rt/libgcc structure that is
12036     // filled in:
12037     // unsigned int __cpu_vendor;
12038     // unsigned int __cpu_type;
12039     // unsigned int __cpu_subtype;
12040     // unsigned int __cpu_features[1];
12041     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12042                                             llvm::ArrayType::get(Int32Ty, 1));
12043 
12044     // Grab the global __cpu_model.
12045     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12046     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12047 
12048     // Grab the first (0th) element from the field __cpu_features off of the
12049     // global in the struct STy.
12050     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12051                      Builder.getInt32(0)};
12052     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12053     Value *Features =
12054         Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
12055 
12056     // Check the value of the bit corresponding to the feature requested.
12057     Value *Mask = Builder.getInt32(Features1);
12058     Value *Bitset = Builder.CreateAnd(Features, Mask);
12059     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12060     Result = Builder.CreateAnd(Result, Cmp);
12061   }
12062 
12063   if (Features2 != 0) {
12064     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12065                                                              "__cpu_features2");
12066     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12067 
12068     Value *Features =
12069         Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
12070 
12071     // Check the value of the bit corresponding to the feature requested.
12072     Value *Mask = Builder.getInt32(Features2);
12073     Value *Bitset = Builder.CreateAnd(Features, Mask);
12074     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12075     Result = Builder.CreateAnd(Result, Cmp);
12076   }
12077 
12078   return Result;
12079 }
12080 
12081 Value *CodeGenFunction::EmitX86CpuInit() {
12082   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12083                                                     /*Variadic*/ false);
12084   llvm::FunctionCallee Func =
12085       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12086   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12087   cast<llvm::GlobalValue>(Func.getCallee())
12088       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12089   return Builder.CreateCall(Func);
12090 }
12091 
12092 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12093                                            const CallExpr *E) {
12094   if (BuiltinID == X86::BI__builtin_cpu_is)
12095     return EmitX86CpuIs(E);
12096   if (BuiltinID == X86::BI__builtin_cpu_supports)
12097     return EmitX86CpuSupports(E);
12098   if (BuiltinID == X86::BI__builtin_cpu_init)
12099     return EmitX86CpuInit();
12100 
12101   // Handle MSVC intrinsics before argument evaluation to prevent double
12102   // evaluation.
12103   if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
12104     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12105 
12106   SmallVector<Value*, 4> Ops;
12107   bool IsMaskFCmp = false;
12108 
12109   // Find out if any arguments are required to be integer constant expressions.
12110   unsigned ICEArguments = 0;
12111   ASTContext::GetBuiltinTypeError Error;
12112   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12113   assert(Error == ASTContext::GE_None && "Should not codegen an error");
12114 
12115   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
12116     // If this is a normal argument, just emit it as a scalar.
12117     if ((ICEArguments & (1 << i)) == 0) {
12118       Ops.push_back(EmitScalarExpr(E->getArg(i)));
12119       continue;
12120     }
12121 
12122     // If this is required to be a constant, constant fold it so that we know
12123     // that the generated intrinsic gets a ConstantInt.
12124     Ops.push_back(llvm::ConstantInt::get(
12125         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12126   }
12127 
12128   // These exist so that the builtin that takes an immediate can be bounds
12129   // checked by clang to avoid passing bad immediates to the backend. Since
12130   // AVX has a larger immediate than SSE we would need separate builtins to
12131   // do the different bounds checking. Rather than create a clang specific
12132   // SSE only builtin, this implements eight separate builtins to match gcc
12133   // implementation.
12134   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12135     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12136     llvm::Function *F = CGM.getIntrinsic(ID);
12137     return Builder.CreateCall(F, Ops);
12138   };
12139 
12140   // For the vector forms of FP comparisons, translate the builtins directly to
12141   // IR.
12142   // TODO: The builtins could be removed if the SSE header files used vector
12143   // extension comparisons directly (vector ordered/unordered may need
12144   // additional support via __builtin_isnan()).
12145   auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred,
12146                                       bool IsSignaling) {
12147     Value *Cmp;
12148     if (IsSignaling)
12149       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12150     else
12151       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12152     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12153     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12154     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12155     return Builder.CreateBitCast(Sext, FPVecTy);
12156   };
12157 
12158   switch (BuiltinID) {
12159   default: return nullptr;
12160   case X86::BI_mm_prefetch: {
12161     Value *Address = Ops[0];
12162     ConstantInt *C = cast<ConstantInt>(Ops[1]);
12163     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12164     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12165     Value *Data = ConstantInt::get(Int32Ty, 1);
12166     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12167     return Builder.CreateCall(F, {Address, RW, Locality, Data});
12168   }
12169   case X86::BI_mm_clflush: {
12170     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12171                               Ops[0]);
12172   }
12173   case X86::BI_mm_lfence: {
12174     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12175   }
12176   case X86::BI_mm_mfence: {
12177     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12178   }
12179   case X86::BI_mm_sfence: {
12180     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12181   }
12182   case X86::BI_mm_pause: {
12183     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12184   }
12185   case X86::BI__rdtsc: {
12186     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12187   }
12188   case X86::BI__builtin_ia32_rdtscp: {
12189     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12190     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12191                                       Ops[0]);
12192     return Builder.CreateExtractValue(Call, 0);
12193   }
12194   case X86::BI__builtin_ia32_lzcnt_u16:
12195   case X86::BI__builtin_ia32_lzcnt_u32:
12196   case X86::BI__builtin_ia32_lzcnt_u64: {
12197     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12198     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12199   }
12200   case X86::BI__builtin_ia32_tzcnt_u16:
12201   case X86::BI__builtin_ia32_tzcnt_u32:
12202   case X86::BI__builtin_ia32_tzcnt_u64: {
12203     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12204     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12205   }
12206   case X86::BI__builtin_ia32_undef128:
12207   case X86::BI__builtin_ia32_undef256:
12208   case X86::BI__builtin_ia32_undef512:
12209     // The x86 definition of "undef" is not the same as the LLVM definition
12210     // (PR32176). We leave optimizing away an unnecessary zero constant to the
12211     // IR optimizer and backend.
12212     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12213     // value, we should use that here instead of a zero.
12214     return llvm::Constant::getNullValue(ConvertType(E->getType()));
12215   case X86::BI__builtin_ia32_vec_init_v8qi:
12216   case X86::BI__builtin_ia32_vec_init_v4hi:
12217   case X86::BI__builtin_ia32_vec_init_v2si:
12218     return Builder.CreateBitCast(BuildVector(Ops),
12219                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
12220   case X86::BI__builtin_ia32_vec_ext_v2si:
12221   case X86::BI__builtin_ia32_vec_ext_v16qi:
12222   case X86::BI__builtin_ia32_vec_ext_v8hi:
12223   case X86::BI__builtin_ia32_vec_ext_v4si:
12224   case X86::BI__builtin_ia32_vec_ext_v4sf:
12225   case X86::BI__builtin_ia32_vec_ext_v2di:
12226   case X86::BI__builtin_ia32_vec_ext_v32qi:
12227   case X86::BI__builtin_ia32_vec_ext_v16hi:
12228   case X86::BI__builtin_ia32_vec_ext_v8si:
12229   case X86::BI__builtin_ia32_vec_ext_v4di: {
12230     unsigned NumElts =
12231         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12232     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12233     Index &= NumElts - 1;
12234     // These builtins exist so we can ensure the index is an ICE and in range.
12235     // Otherwise we could just do this in the header file.
12236     return Builder.CreateExtractElement(Ops[0], Index);
12237   }
12238   case X86::BI__builtin_ia32_vec_set_v16qi:
12239   case X86::BI__builtin_ia32_vec_set_v8hi:
12240   case X86::BI__builtin_ia32_vec_set_v4si:
12241   case X86::BI__builtin_ia32_vec_set_v2di:
12242   case X86::BI__builtin_ia32_vec_set_v32qi:
12243   case X86::BI__builtin_ia32_vec_set_v16hi:
12244   case X86::BI__builtin_ia32_vec_set_v8si:
12245   case X86::BI__builtin_ia32_vec_set_v4di: {
12246     unsigned NumElts =
12247         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12248     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12249     Index &= NumElts - 1;
12250     // These builtins exist so we can ensure the index is an ICE and in range.
12251     // Otherwise we could just do this in the header file.
12252     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12253   }
12254   case X86::BI_mm_setcsr:
12255   case X86::BI__builtin_ia32_ldmxcsr: {
12256     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12257     Builder.CreateStore(Ops[0], Tmp);
12258     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12259                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12260   }
12261   case X86::BI_mm_getcsr:
12262   case X86::BI__builtin_ia32_stmxcsr: {
12263     Address Tmp = CreateMemTemp(E->getType());
12264     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12265                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12266     return Builder.CreateLoad(Tmp, "stmxcsr");
12267   }
12268   case X86::BI__builtin_ia32_xsave:
12269   case X86::BI__builtin_ia32_xsave64:
12270   case X86::BI__builtin_ia32_xrstor:
12271   case X86::BI__builtin_ia32_xrstor64:
12272   case X86::BI__builtin_ia32_xsaveopt:
12273   case X86::BI__builtin_ia32_xsaveopt64:
12274   case X86::BI__builtin_ia32_xrstors:
12275   case X86::BI__builtin_ia32_xrstors64:
12276   case X86::BI__builtin_ia32_xsavec:
12277   case X86::BI__builtin_ia32_xsavec64:
12278   case X86::BI__builtin_ia32_xsaves:
12279   case X86::BI__builtin_ia32_xsaves64:
12280   case X86::BI__builtin_ia32_xsetbv:
12281   case X86::BI_xsetbv: {
12282     Intrinsic::ID ID;
12283 #define INTRINSIC_X86_XSAVE_ID(NAME) \
12284     case X86::BI__builtin_ia32_##NAME: \
12285       ID = Intrinsic::x86_##NAME; \
12286       break
12287     switch (BuiltinID) {
12288     default: llvm_unreachable("Unsupported intrinsic!");
12289     INTRINSIC_X86_XSAVE_ID(xsave);
12290     INTRINSIC_X86_XSAVE_ID(xsave64);
12291     INTRINSIC_X86_XSAVE_ID(xrstor);
12292     INTRINSIC_X86_XSAVE_ID(xrstor64);
12293     INTRINSIC_X86_XSAVE_ID(xsaveopt);
12294     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12295     INTRINSIC_X86_XSAVE_ID(xrstors);
12296     INTRINSIC_X86_XSAVE_ID(xrstors64);
12297     INTRINSIC_X86_XSAVE_ID(xsavec);
12298     INTRINSIC_X86_XSAVE_ID(xsavec64);
12299     INTRINSIC_X86_XSAVE_ID(xsaves);
12300     INTRINSIC_X86_XSAVE_ID(xsaves64);
12301     INTRINSIC_X86_XSAVE_ID(xsetbv);
12302     case X86::BI_xsetbv:
12303       ID = Intrinsic::x86_xsetbv;
12304       break;
12305     }
12306 #undef INTRINSIC_X86_XSAVE_ID
12307     Value *Mhi = Builder.CreateTrunc(
12308       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
12309     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12310     Ops[1] = Mhi;
12311     Ops.push_back(Mlo);
12312     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12313   }
12314   case X86::BI__builtin_ia32_xgetbv:
12315   case X86::BI_xgetbv:
12316     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12317   case X86::BI__builtin_ia32_storedqudi128_mask:
12318   case X86::BI__builtin_ia32_storedqusi128_mask:
12319   case X86::BI__builtin_ia32_storedquhi128_mask:
12320   case X86::BI__builtin_ia32_storedquqi128_mask:
12321   case X86::BI__builtin_ia32_storeupd128_mask:
12322   case X86::BI__builtin_ia32_storeups128_mask:
12323   case X86::BI__builtin_ia32_storedqudi256_mask:
12324   case X86::BI__builtin_ia32_storedqusi256_mask:
12325   case X86::BI__builtin_ia32_storedquhi256_mask:
12326   case X86::BI__builtin_ia32_storedquqi256_mask:
12327   case X86::BI__builtin_ia32_storeupd256_mask:
12328   case X86::BI__builtin_ia32_storeups256_mask:
12329   case X86::BI__builtin_ia32_storedqudi512_mask:
12330   case X86::BI__builtin_ia32_storedqusi512_mask:
12331   case X86::BI__builtin_ia32_storedquhi512_mask:
12332   case X86::BI__builtin_ia32_storedquqi512_mask:
12333   case X86::BI__builtin_ia32_storeupd512_mask:
12334   case X86::BI__builtin_ia32_storeups512_mask:
12335     return EmitX86MaskedStore(*this, Ops, Align(1));
12336 
12337   case X86::BI__builtin_ia32_storess128_mask:
12338   case X86::BI__builtin_ia32_storesd128_mask:
12339     return EmitX86MaskedStore(*this, Ops, Align(1));
12340 
12341   case X86::BI__builtin_ia32_vpopcntb_128:
12342   case X86::BI__builtin_ia32_vpopcntd_128:
12343   case X86::BI__builtin_ia32_vpopcntq_128:
12344   case X86::BI__builtin_ia32_vpopcntw_128:
12345   case X86::BI__builtin_ia32_vpopcntb_256:
12346   case X86::BI__builtin_ia32_vpopcntd_256:
12347   case X86::BI__builtin_ia32_vpopcntq_256:
12348   case X86::BI__builtin_ia32_vpopcntw_256:
12349   case X86::BI__builtin_ia32_vpopcntb_512:
12350   case X86::BI__builtin_ia32_vpopcntd_512:
12351   case X86::BI__builtin_ia32_vpopcntq_512:
12352   case X86::BI__builtin_ia32_vpopcntw_512: {
12353     llvm::Type *ResultType = ConvertType(E->getType());
12354     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12355     return Builder.CreateCall(F, Ops);
12356   }
12357   case X86::BI__builtin_ia32_cvtmask2b128:
12358   case X86::BI__builtin_ia32_cvtmask2b256:
12359   case X86::BI__builtin_ia32_cvtmask2b512:
12360   case X86::BI__builtin_ia32_cvtmask2w128:
12361   case X86::BI__builtin_ia32_cvtmask2w256:
12362   case X86::BI__builtin_ia32_cvtmask2w512:
12363   case X86::BI__builtin_ia32_cvtmask2d128:
12364   case X86::BI__builtin_ia32_cvtmask2d256:
12365   case X86::BI__builtin_ia32_cvtmask2d512:
12366   case X86::BI__builtin_ia32_cvtmask2q128:
12367   case X86::BI__builtin_ia32_cvtmask2q256:
12368   case X86::BI__builtin_ia32_cvtmask2q512:
12369     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12370 
12371   case X86::BI__builtin_ia32_cvtb2mask128:
12372   case X86::BI__builtin_ia32_cvtb2mask256:
12373   case X86::BI__builtin_ia32_cvtb2mask512:
12374   case X86::BI__builtin_ia32_cvtw2mask128:
12375   case X86::BI__builtin_ia32_cvtw2mask256:
12376   case X86::BI__builtin_ia32_cvtw2mask512:
12377   case X86::BI__builtin_ia32_cvtd2mask128:
12378   case X86::BI__builtin_ia32_cvtd2mask256:
12379   case X86::BI__builtin_ia32_cvtd2mask512:
12380   case X86::BI__builtin_ia32_cvtq2mask128:
12381   case X86::BI__builtin_ia32_cvtq2mask256:
12382   case X86::BI__builtin_ia32_cvtq2mask512:
12383     return EmitX86ConvertToMask(*this, Ops[0]);
12384 
12385   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12386   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12387   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12388     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
12389   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12390   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12391   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12392     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
12393 
12394   case X86::BI__builtin_ia32_vfmaddss3:
12395   case X86::BI__builtin_ia32_vfmaddsd3:
12396   case X86::BI__builtin_ia32_vfmaddss3_mask:
12397   case X86::BI__builtin_ia32_vfmaddsd3_mask:
12398     return EmitScalarFMAExpr(*this, Ops, Ops[0]);
12399   case X86::BI__builtin_ia32_vfmaddss:
12400   case X86::BI__builtin_ia32_vfmaddsd:
12401     return EmitScalarFMAExpr(*this, Ops,
12402                              Constant::getNullValue(Ops[0]->getType()));
12403   case X86::BI__builtin_ia32_vfmaddss3_maskz:
12404   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12405     return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
12406   case X86::BI__builtin_ia32_vfmaddss3_mask3:
12407   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12408     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
12409   case X86::BI__builtin_ia32_vfmsubss3_mask3:
12410   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12411     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
12412                              /*NegAcc*/true);
12413   case X86::BI__builtin_ia32_vfmaddps:
12414   case X86::BI__builtin_ia32_vfmaddpd:
12415   case X86::BI__builtin_ia32_vfmaddps256:
12416   case X86::BI__builtin_ia32_vfmaddpd256:
12417   case X86::BI__builtin_ia32_vfmaddps512_mask:
12418   case X86::BI__builtin_ia32_vfmaddps512_maskz:
12419   case X86::BI__builtin_ia32_vfmaddps512_mask3:
12420   case X86::BI__builtin_ia32_vfmsubps512_mask3:
12421   case X86::BI__builtin_ia32_vfmaddpd512_mask:
12422   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12423   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12424   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12425     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
12426   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12427   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12428   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12429   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12430   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12431   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12432   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12433   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12434     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
12435 
12436   case X86::BI__builtin_ia32_movdqa32store128_mask:
12437   case X86::BI__builtin_ia32_movdqa64store128_mask:
12438   case X86::BI__builtin_ia32_storeaps128_mask:
12439   case X86::BI__builtin_ia32_storeapd128_mask:
12440   case X86::BI__builtin_ia32_movdqa32store256_mask:
12441   case X86::BI__builtin_ia32_movdqa64store256_mask:
12442   case X86::BI__builtin_ia32_storeaps256_mask:
12443   case X86::BI__builtin_ia32_storeapd256_mask:
12444   case X86::BI__builtin_ia32_movdqa32store512_mask:
12445   case X86::BI__builtin_ia32_movdqa64store512_mask:
12446   case X86::BI__builtin_ia32_storeaps512_mask:
12447   case X86::BI__builtin_ia32_storeapd512_mask:
12448     return EmitX86MaskedStore(
12449         *this, Ops,
12450         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12451 
12452   case X86::BI__builtin_ia32_loadups128_mask:
12453   case X86::BI__builtin_ia32_loadups256_mask:
12454   case X86::BI__builtin_ia32_loadups512_mask:
12455   case X86::BI__builtin_ia32_loadupd128_mask:
12456   case X86::BI__builtin_ia32_loadupd256_mask:
12457   case X86::BI__builtin_ia32_loadupd512_mask:
12458   case X86::BI__builtin_ia32_loaddquqi128_mask:
12459   case X86::BI__builtin_ia32_loaddquqi256_mask:
12460   case X86::BI__builtin_ia32_loaddquqi512_mask:
12461   case X86::BI__builtin_ia32_loaddquhi128_mask:
12462   case X86::BI__builtin_ia32_loaddquhi256_mask:
12463   case X86::BI__builtin_ia32_loaddquhi512_mask:
12464   case X86::BI__builtin_ia32_loaddqusi128_mask:
12465   case X86::BI__builtin_ia32_loaddqusi256_mask:
12466   case X86::BI__builtin_ia32_loaddqusi512_mask:
12467   case X86::BI__builtin_ia32_loaddqudi128_mask:
12468   case X86::BI__builtin_ia32_loaddqudi256_mask:
12469   case X86::BI__builtin_ia32_loaddqudi512_mask:
12470     return EmitX86MaskedLoad(*this, Ops, Align(1));
12471 
12472   case X86::BI__builtin_ia32_loadss128_mask:
12473   case X86::BI__builtin_ia32_loadsd128_mask:
12474     return EmitX86MaskedLoad(*this, Ops, Align(1));
12475 
12476   case X86::BI__builtin_ia32_loadaps128_mask:
12477   case X86::BI__builtin_ia32_loadaps256_mask:
12478   case X86::BI__builtin_ia32_loadaps512_mask:
12479   case X86::BI__builtin_ia32_loadapd128_mask:
12480   case X86::BI__builtin_ia32_loadapd256_mask:
12481   case X86::BI__builtin_ia32_loadapd512_mask:
12482   case X86::BI__builtin_ia32_movdqa32load128_mask:
12483   case X86::BI__builtin_ia32_movdqa32load256_mask:
12484   case X86::BI__builtin_ia32_movdqa32load512_mask:
12485   case X86::BI__builtin_ia32_movdqa64load128_mask:
12486   case X86::BI__builtin_ia32_movdqa64load256_mask:
12487   case X86::BI__builtin_ia32_movdqa64load512_mask:
12488     return EmitX86MaskedLoad(
12489         *this, Ops,
12490         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12491 
12492   case X86::BI__builtin_ia32_expandloaddf128_mask:
12493   case X86::BI__builtin_ia32_expandloaddf256_mask:
12494   case X86::BI__builtin_ia32_expandloaddf512_mask:
12495   case X86::BI__builtin_ia32_expandloadsf128_mask:
12496   case X86::BI__builtin_ia32_expandloadsf256_mask:
12497   case X86::BI__builtin_ia32_expandloadsf512_mask:
12498   case X86::BI__builtin_ia32_expandloaddi128_mask:
12499   case X86::BI__builtin_ia32_expandloaddi256_mask:
12500   case X86::BI__builtin_ia32_expandloaddi512_mask:
12501   case X86::BI__builtin_ia32_expandloadsi128_mask:
12502   case X86::BI__builtin_ia32_expandloadsi256_mask:
12503   case X86::BI__builtin_ia32_expandloadsi512_mask:
12504   case X86::BI__builtin_ia32_expandloadhi128_mask:
12505   case X86::BI__builtin_ia32_expandloadhi256_mask:
12506   case X86::BI__builtin_ia32_expandloadhi512_mask:
12507   case X86::BI__builtin_ia32_expandloadqi128_mask:
12508   case X86::BI__builtin_ia32_expandloadqi256_mask:
12509   case X86::BI__builtin_ia32_expandloadqi512_mask:
12510     return EmitX86ExpandLoad(*this, Ops);
12511 
12512   case X86::BI__builtin_ia32_compressstoredf128_mask:
12513   case X86::BI__builtin_ia32_compressstoredf256_mask:
12514   case X86::BI__builtin_ia32_compressstoredf512_mask:
12515   case X86::BI__builtin_ia32_compressstoresf128_mask:
12516   case X86::BI__builtin_ia32_compressstoresf256_mask:
12517   case X86::BI__builtin_ia32_compressstoresf512_mask:
12518   case X86::BI__builtin_ia32_compressstoredi128_mask:
12519   case X86::BI__builtin_ia32_compressstoredi256_mask:
12520   case X86::BI__builtin_ia32_compressstoredi512_mask:
12521   case X86::BI__builtin_ia32_compressstoresi128_mask:
12522   case X86::BI__builtin_ia32_compressstoresi256_mask:
12523   case X86::BI__builtin_ia32_compressstoresi512_mask:
12524   case X86::BI__builtin_ia32_compressstorehi128_mask:
12525   case X86::BI__builtin_ia32_compressstorehi256_mask:
12526   case X86::BI__builtin_ia32_compressstorehi512_mask:
12527   case X86::BI__builtin_ia32_compressstoreqi128_mask:
12528   case X86::BI__builtin_ia32_compressstoreqi256_mask:
12529   case X86::BI__builtin_ia32_compressstoreqi512_mask:
12530     return EmitX86CompressStore(*this, Ops);
12531 
12532   case X86::BI__builtin_ia32_expanddf128_mask:
12533   case X86::BI__builtin_ia32_expanddf256_mask:
12534   case X86::BI__builtin_ia32_expanddf512_mask:
12535   case X86::BI__builtin_ia32_expandsf128_mask:
12536   case X86::BI__builtin_ia32_expandsf256_mask:
12537   case X86::BI__builtin_ia32_expandsf512_mask:
12538   case X86::BI__builtin_ia32_expanddi128_mask:
12539   case X86::BI__builtin_ia32_expanddi256_mask:
12540   case X86::BI__builtin_ia32_expanddi512_mask:
12541   case X86::BI__builtin_ia32_expandsi128_mask:
12542   case X86::BI__builtin_ia32_expandsi256_mask:
12543   case X86::BI__builtin_ia32_expandsi512_mask:
12544   case X86::BI__builtin_ia32_expandhi128_mask:
12545   case X86::BI__builtin_ia32_expandhi256_mask:
12546   case X86::BI__builtin_ia32_expandhi512_mask:
12547   case X86::BI__builtin_ia32_expandqi128_mask:
12548   case X86::BI__builtin_ia32_expandqi256_mask:
12549   case X86::BI__builtin_ia32_expandqi512_mask:
12550     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12551 
12552   case X86::BI__builtin_ia32_compressdf128_mask:
12553   case X86::BI__builtin_ia32_compressdf256_mask:
12554   case X86::BI__builtin_ia32_compressdf512_mask:
12555   case X86::BI__builtin_ia32_compresssf128_mask:
12556   case X86::BI__builtin_ia32_compresssf256_mask:
12557   case X86::BI__builtin_ia32_compresssf512_mask:
12558   case X86::BI__builtin_ia32_compressdi128_mask:
12559   case X86::BI__builtin_ia32_compressdi256_mask:
12560   case X86::BI__builtin_ia32_compressdi512_mask:
12561   case X86::BI__builtin_ia32_compresssi128_mask:
12562   case X86::BI__builtin_ia32_compresssi256_mask:
12563   case X86::BI__builtin_ia32_compresssi512_mask:
12564   case X86::BI__builtin_ia32_compresshi128_mask:
12565   case X86::BI__builtin_ia32_compresshi256_mask:
12566   case X86::BI__builtin_ia32_compresshi512_mask:
12567   case X86::BI__builtin_ia32_compressqi128_mask:
12568   case X86::BI__builtin_ia32_compressqi256_mask:
12569   case X86::BI__builtin_ia32_compressqi512_mask:
12570     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12571 
12572   case X86::BI__builtin_ia32_gather3div2df:
12573   case X86::BI__builtin_ia32_gather3div2di:
12574   case X86::BI__builtin_ia32_gather3div4df:
12575   case X86::BI__builtin_ia32_gather3div4di:
12576   case X86::BI__builtin_ia32_gather3div4sf:
12577   case X86::BI__builtin_ia32_gather3div4si:
12578   case X86::BI__builtin_ia32_gather3div8sf:
12579   case X86::BI__builtin_ia32_gather3div8si:
12580   case X86::BI__builtin_ia32_gather3siv2df:
12581   case X86::BI__builtin_ia32_gather3siv2di:
12582   case X86::BI__builtin_ia32_gather3siv4df:
12583   case X86::BI__builtin_ia32_gather3siv4di:
12584   case X86::BI__builtin_ia32_gather3siv4sf:
12585   case X86::BI__builtin_ia32_gather3siv4si:
12586   case X86::BI__builtin_ia32_gather3siv8sf:
12587   case X86::BI__builtin_ia32_gather3siv8si:
12588   case X86::BI__builtin_ia32_gathersiv8df:
12589   case X86::BI__builtin_ia32_gathersiv16sf:
12590   case X86::BI__builtin_ia32_gatherdiv8df:
12591   case X86::BI__builtin_ia32_gatherdiv16sf:
12592   case X86::BI__builtin_ia32_gathersiv8di:
12593   case X86::BI__builtin_ia32_gathersiv16si:
12594   case X86::BI__builtin_ia32_gatherdiv8di:
12595   case X86::BI__builtin_ia32_gatherdiv16si: {
12596     Intrinsic::ID IID;
12597     switch (BuiltinID) {
12598     default: llvm_unreachable("Unexpected builtin");
12599     case X86::BI__builtin_ia32_gather3div2df:
12600       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
12601       break;
12602     case X86::BI__builtin_ia32_gather3div2di:
12603       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
12604       break;
12605     case X86::BI__builtin_ia32_gather3div4df:
12606       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
12607       break;
12608     case X86::BI__builtin_ia32_gather3div4di:
12609       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
12610       break;
12611     case X86::BI__builtin_ia32_gather3div4sf:
12612       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
12613       break;
12614     case X86::BI__builtin_ia32_gather3div4si:
12615       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
12616       break;
12617     case X86::BI__builtin_ia32_gather3div8sf:
12618       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
12619       break;
12620     case X86::BI__builtin_ia32_gather3div8si:
12621       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
12622       break;
12623     case X86::BI__builtin_ia32_gather3siv2df:
12624       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
12625       break;
12626     case X86::BI__builtin_ia32_gather3siv2di:
12627       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
12628       break;
12629     case X86::BI__builtin_ia32_gather3siv4df:
12630       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
12631       break;
12632     case X86::BI__builtin_ia32_gather3siv4di:
12633       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
12634       break;
12635     case X86::BI__builtin_ia32_gather3siv4sf:
12636       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
12637       break;
12638     case X86::BI__builtin_ia32_gather3siv4si:
12639       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
12640       break;
12641     case X86::BI__builtin_ia32_gather3siv8sf:
12642       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
12643       break;
12644     case X86::BI__builtin_ia32_gather3siv8si:
12645       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
12646       break;
12647     case X86::BI__builtin_ia32_gathersiv8df:
12648       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
12649       break;
12650     case X86::BI__builtin_ia32_gathersiv16sf:
12651       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
12652       break;
12653     case X86::BI__builtin_ia32_gatherdiv8df:
12654       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
12655       break;
12656     case X86::BI__builtin_ia32_gatherdiv16sf:
12657       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
12658       break;
12659     case X86::BI__builtin_ia32_gathersiv8di:
12660       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
12661       break;
12662     case X86::BI__builtin_ia32_gathersiv16si:
12663       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
12664       break;
12665     case X86::BI__builtin_ia32_gatherdiv8di:
12666       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
12667       break;
12668     case X86::BI__builtin_ia32_gatherdiv16si:
12669       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
12670       break;
12671     }
12672 
12673     unsigned MinElts = std::min(
12674         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
12675         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
12676     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
12677     Function *Intr = CGM.getIntrinsic(IID);
12678     return Builder.CreateCall(Intr, Ops);
12679   }
12680 
12681   case X86::BI__builtin_ia32_scattersiv8df:
12682   case X86::BI__builtin_ia32_scattersiv16sf:
12683   case X86::BI__builtin_ia32_scatterdiv8df:
12684   case X86::BI__builtin_ia32_scatterdiv16sf:
12685   case X86::BI__builtin_ia32_scattersiv8di:
12686   case X86::BI__builtin_ia32_scattersiv16si:
12687   case X86::BI__builtin_ia32_scatterdiv8di:
12688   case X86::BI__builtin_ia32_scatterdiv16si:
12689   case X86::BI__builtin_ia32_scatterdiv2df:
12690   case X86::BI__builtin_ia32_scatterdiv2di:
12691   case X86::BI__builtin_ia32_scatterdiv4df:
12692   case X86::BI__builtin_ia32_scatterdiv4di:
12693   case X86::BI__builtin_ia32_scatterdiv4sf:
12694   case X86::BI__builtin_ia32_scatterdiv4si:
12695   case X86::BI__builtin_ia32_scatterdiv8sf:
12696   case X86::BI__builtin_ia32_scatterdiv8si:
12697   case X86::BI__builtin_ia32_scattersiv2df:
12698   case X86::BI__builtin_ia32_scattersiv2di:
12699   case X86::BI__builtin_ia32_scattersiv4df:
12700   case X86::BI__builtin_ia32_scattersiv4di:
12701   case X86::BI__builtin_ia32_scattersiv4sf:
12702   case X86::BI__builtin_ia32_scattersiv4si:
12703   case X86::BI__builtin_ia32_scattersiv8sf:
12704   case X86::BI__builtin_ia32_scattersiv8si: {
12705     Intrinsic::ID IID;
12706     switch (BuiltinID) {
12707     default: llvm_unreachable("Unexpected builtin");
12708     case X86::BI__builtin_ia32_scattersiv8df:
12709       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
12710       break;
12711     case X86::BI__builtin_ia32_scattersiv16sf:
12712       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
12713       break;
12714     case X86::BI__builtin_ia32_scatterdiv8df:
12715       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
12716       break;
12717     case X86::BI__builtin_ia32_scatterdiv16sf:
12718       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
12719       break;
12720     case X86::BI__builtin_ia32_scattersiv8di:
12721       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
12722       break;
12723     case X86::BI__builtin_ia32_scattersiv16si:
12724       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
12725       break;
12726     case X86::BI__builtin_ia32_scatterdiv8di:
12727       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
12728       break;
12729     case X86::BI__builtin_ia32_scatterdiv16si:
12730       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
12731       break;
12732     case X86::BI__builtin_ia32_scatterdiv2df:
12733       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
12734       break;
12735     case X86::BI__builtin_ia32_scatterdiv2di:
12736       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
12737       break;
12738     case X86::BI__builtin_ia32_scatterdiv4df:
12739       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
12740       break;
12741     case X86::BI__builtin_ia32_scatterdiv4di:
12742       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
12743       break;
12744     case X86::BI__builtin_ia32_scatterdiv4sf:
12745       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
12746       break;
12747     case X86::BI__builtin_ia32_scatterdiv4si:
12748       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
12749       break;
12750     case X86::BI__builtin_ia32_scatterdiv8sf:
12751       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
12752       break;
12753     case X86::BI__builtin_ia32_scatterdiv8si:
12754       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
12755       break;
12756     case X86::BI__builtin_ia32_scattersiv2df:
12757       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
12758       break;
12759     case X86::BI__builtin_ia32_scattersiv2di:
12760       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
12761       break;
12762     case X86::BI__builtin_ia32_scattersiv4df:
12763       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
12764       break;
12765     case X86::BI__builtin_ia32_scattersiv4di:
12766       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
12767       break;
12768     case X86::BI__builtin_ia32_scattersiv4sf:
12769       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
12770       break;
12771     case X86::BI__builtin_ia32_scattersiv4si:
12772       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
12773       break;
12774     case X86::BI__builtin_ia32_scattersiv8sf:
12775       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
12776       break;
12777     case X86::BI__builtin_ia32_scattersiv8si:
12778       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
12779       break;
12780     }
12781 
12782     unsigned MinElts = std::min(
12783         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
12784         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
12785     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
12786     Function *Intr = CGM.getIntrinsic(IID);
12787     return Builder.CreateCall(Intr, Ops);
12788   }
12789 
12790   case X86::BI__builtin_ia32_vextractf128_pd256:
12791   case X86::BI__builtin_ia32_vextractf128_ps256:
12792   case X86::BI__builtin_ia32_vextractf128_si256:
12793   case X86::BI__builtin_ia32_extract128i256:
12794   case X86::BI__builtin_ia32_extractf64x4_mask:
12795   case X86::BI__builtin_ia32_extractf32x4_mask:
12796   case X86::BI__builtin_ia32_extracti64x4_mask:
12797   case X86::BI__builtin_ia32_extracti32x4_mask:
12798   case X86::BI__builtin_ia32_extractf32x8_mask:
12799   case X86::BI__builtin_ia32_extracti32x8_mask:
12800   case X86::BI__builtin_ia32_extractf32x4_256_mask:
12801   case X86::BI__builtin_ia32_extracti32x4_256_mask:
12802   case X86::BI__builtin_ia32_extractf64x2_256_mask:
12803   case X86::BI__builtin_ia32_extracti64x2_256_mask:
12804   case X86::BI__builtin_ia32_extractf64x2_512_mask:
12805   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
12806     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
12807     unsigned NumElts = DstTy->getNumElements();
12808     unsigned SrcNumElts =
12809         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12810     unsigned SubVectors = SrcNumElts / NumElts;
12811     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12812     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12813     Index &= SubVectors - 1; // Remove any extra bits.
12814     Index *= NumElts;
12815 
12816     int Indices[16];
12817     for (unsigned i = 0; i != NumElts; ++i)
12818       Indices[i] = i + Index;
12819 
12820     Value *Res = Builder.CreateShuffleVector(Ops[0],
12821                                              makeArrayRef(Indices, NumElts),
12822                                              "extract");
12823 
12824     if (Ops.size() == 4)
12825       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
12826 
12827     return Res;
12828   }
12829   case X86::BI__builtin_ia32_vinsertf128_pd256:
12830   case X86::BI__builtin_ia32_vinsertf128_ps256:
12831   case X86::BI__builtin_ia32_vinsertf128_si256:
12832   case X86::BI__builtin_ia32_insert128i256:
12833   case X86::BI__builtin_ia32_insertf64x4:
12834   case X86::BI__builtin_ia32_insertf32x4:
12835   case X86::BI__builtin_ia32_inserti64x4:
12836   case X86::BI__builtin_ia32_inserti32x4:
12837   case X86::BI__builtin_ia32_insertf32x8:
12838   case X86::BI__builtin_ia32_inserti32x8:
12839   case X86::BI__builtin_ia32_insertf32x4_256:
12840   case X86::BI__builtin_ia32_inserti32x4_256:
12841   case X86::BI__builtin_ia32_insertf64x2_256:
12842   case X86::BI__builtin_ia32_inserti64x2_256:
12843   case X86::BI__builtin_ia32_insertf64x2_512:
12844   case X86::BI__builtin_ia32_inserti64x2_512: {
12845     unsigned DstNumElts =
12846         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12847     unsigned SrcNumElts =
12848         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
12849     unsigned SubVectors = DstNumElts / SrcNumElts;
12850     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12851     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12852     Index &= SubVectors - 1; // Remove any extra bits.
12853     Index *= SrcNumElts;
12854 
12855     int Indices[16];
12856     for (unsigned i = 0; i != DstNumElts; ++i)
12857       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
12858 
12859     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
12860                                              makeArrayRef(Indices, DstNumElts),
12861                                              "widen");
12862 
12863     for (unsigned i = 0; i != DstNumElts; ++i) {
12864       if (i >= Index && i < (Index + SrcNumElts))
12865         Indices[i] = (i - Index) + DstNumElts;
12866       else
12867         Indices[i] = i;
12868     }
12869 
12870     return Builder.CreateShuffleVector(Ops[0], Op1,
12871                                        makeArrayRef(Indices, DstNumElts),
12872                                        "insert");
12873   }
12874   case X86::BI__builtin_ia32_pmovqd512_mask:
12875   case X86::BI__builtin_ia32_pmovwb512_mask: {
12876     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12877     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
12878   }
12879   case X86::BI__builtin_ia32_pmovdb512_mask:
12880   case X86::BI__builtin_ia32_pmovdw512_mask:
12881   case X86::BI__builtin_ia32_pmovqw512_mask: {
12882     if (const auto *C = dyn_cast<Constant>(Ops[2]))
12883       if (C->isAllOnesValue())
12884         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12885 
12886     Intrinsic::ID IID;
12887     switch (BuiltinID) {
12888     default: llvm_unreachable("Unsupported intrinsic!");
12889     case X86::BI__builtin_ia32_pmovdb512_mask:
12890       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
12891       break;
12892     case X86::BI__builtin_ia32_pmovdw512_mask:
12893       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
12894       break;
12895     case X86::BI__builtin_ia32_pmovqw512_mask:
12896       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
12897       break;
12898     }
12899 
12900     Function *Intr = CGM.getIntrinsic(IID);
12901     return Builder.CreateCall(Intr, Ops);
12902   }
12903   case X86::BI__builtin_ia32_pblendw128:
12904   case X86::BI__builtin_ia32_blendpd:
12905   case X86::BI__builtin_ia32_blendps:
12906   case X86::BI__builtin_ia32_blendpd256:
12907   case X86::BI__builtin_ia32_blendps256:
12908   case X86::BI__builtin_ia32_pblendw256:
12909   case X86::BI__builtin_ia32_pblendd128:
12910   case X86::BI__builtin_ia32_pblendd256: {
12911     unsigned NumElts =
12912         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12913     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12914 
12915     int Indices[16];
12916     // If there are more than 8 elements, the immediate is used twice so make
12917     // sure we handle that.
12918     for (unsigned i = 0; i != NumElts; ++i)
12919       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
12920 
12921     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12922                                        makeArrayRef(Indices, NumElts),
12923                                        "blend");
12924   }
12925   case X86::BI__builtin_ia32_pshuflw:
12926   case X86::BI__builtin_ia32_pshuflw256:
12927   case X86::BI__builtin_ia32_pshuflw512: {
12928     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12929     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12930     unsigned NumElts = Ty->getNumElements();
12931 
12932     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12933     Imm = (Imm & 0xff) * 0x01010101;
12934 
12935     int Indices[32];
12936     for (unsigned l = 0; l != NumElts; l += 8) {
12937       for (unsigned i = 0; i != 4; ++i) {
12938         Indices[l + i] = l + (Imm & 3);
12939         Imm >>= 2;
12940       }
12941       for (unsigned i = 4; i != 8; ++i)
12942         Indices[l + i] = l + i;
12943     }
12944 
12945     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
12946                                        "pshuflw");
12947   }
12948   case X86::BI__builtin_ia32_pshufhw:
12949   case X86::BI__builtin_ia32_pshufhw256:
12950   case X86::BI__builtin_ia32_pshufhw512: {
12951     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12952     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12953     unsigned NumElts = Ty->getNumElements();
12954 
12955     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12956     Imm = (Imm & 0xff) * 0x01010101;
12957 
12958     int Indices[32];
12959     for (unsigned l = 0; l != NumElts; l += 8) {
12960       for (unsigned i = 0; i != 4; ++i)
12961         Indices[l + i] = l + i;
12962       for (unsigned i = 4; i != 8; ++i) {
12963         Indices[l + i] = l + 4 + (Imm & 3);
12964         Imm >>= 2;
12965       }
12966     }
12967 
12968     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
12969                                        "pshufhw");
12970   }
12971   case X86::BI__builtin_ia32_pshufd:
12972   case X86::BI__builtin_ia32_pshufd256:
12973   case X86::BI__builtin_ia32_pshufd512:
12974   case X86::BI__builtin_ia32_vpermilpd:
12975   case X86::BI__builtin_ia32_vpermilps:
12976   case X86::BI__builtin_ia32_vpermilpd256:
12977   case X86::BI__builtin_ia32_vpermilps256:
12978   case X86::BI__builtin_ia32_vpermilpd512:
12979   case X86::BI__builtin_ia32_vpermilps512: {
12980     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12981     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12982     unsigned NumElts = Ty->getNumElements();
12983     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
12984     unsigned NumLaneElts = NumElts / NumLanes;
12985 
12986     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12987     Imm = (Imm & 0xff) * 0x01010101;
12988 
12989     int Indices[16];
12990     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12991       for (unsigned i = 0; i != NumLaneElts; ++i) {
12992         Indices[i + l] = (Imm % NumLaneElts) + l;
12993         Imm /= NumLaneElts;
12994       }
12995     }
12996 
12997     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
12998                                        "permil");
12999   }
13000   case X86::BI__builtin_ia32_shufpd:
13001   case X86::BI__builtin_ia32_shufpd256:
13002   case X86::BI__builtin_ia32_shufpd512:
13003   case X86::BI__builtin_ia32_shufps:
13004   case X86::BI__builtin_ia32_shufps256:
13005   case X86::BI__builtin_ia32_shufps512: {
13006     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13007     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13008     unsigned NumElts = Ty->getNumElements();
13009     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13010     unsigned NumLaneElts = NumElts / NumLanes;
13011 
13012     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13013     Imm = (Imm & 0xff) * 0x01010101;
13014 
13015     int Indices[16];
13016     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13017       for (unsigned i = 0; i != NumLaneElts; ++i) {
13018         unsigned Index = Imm % NumLaneElts;
13019         Imm /= NumLaneElts;
13020         if (i >= (NumLaneElts / 2))
13021           Index += NumElts;
13022         Indices[l + i] = l + Index;
13023       }
13024     }
13025 
13026     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13027                                        makeArrayRef(Indices, NumElts),
13028                                        "shufp");
13029   }
13030   case X86::BI__builtin_ia32_permdi256:
13031   case X86::BI__builtin_ia32_permdf256:
13032   case X86::BI__builtin_ia32_permdi512:
13033   case X86::BI__builtin_ia32_permdf512: {
13034     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13035     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13036     unsigned NumElts = Ty->getNumElements();
13037 
13038     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13039     int Indices[8];
13040     for (unsigned l = 0; l != NumElts; l += 4)
13041       for (unsigned i = 0; i != 4; ++i)
13042         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13043 
13044     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13045                                        "perm");
13046   }
13047   case X86::BI__builtin_ia32_palignr128:
13048   case X86::BI__builtin_ia32_palignr256:
13049   case X86::BI__builtin_ia32_palignr512: {
13050     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13051 
13052     unsigned NumElts =
13053         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13054     assert(NumElts % 16 == 0);
13055 
13056     // If palignr is shifting the pair of vectors more than the size of two
13057     // lanes, emit zero.
13058     if (ShiftVal >= 32)
13059       return llvm::Constant::getNullValue(ConvertType(E->getType()));
13060 
13061     // If palignr is shifting the pair of input vectors more than one lane,
13062     // but less than two lanes, convert to shifting in zeroes.
13063     if (ShiftVal > 16) {
13064       ShiftVal -= 16;
13065       Ops[1] = Ops[0];
13066       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13067     }
13068 
13069     int Indices[64];
13070     // 256-bit palignr operates on 128-bit lanes so we need to handle that
13071     for (unsigned l = 0; l != NumElts; l += 16) {
13072       for (unsigned i = 0; i != 16; ++i) {
13073         unsigned Idx = ShiftVal + i;
13074         if (Idx >= 16)
13075           Idx += NumElts - 16; // End of lane, switch operand.
13076         Indices[l + i] = Idx + l;
13077       }
13078     }
13079 
13080     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13081                                        makeArrayRef(Indices, NumElts),
13082                                        "palignr");
13083   }
13084   case X86::BI__builtin_ia32_alignd128:
13085   case X86::BI__builtin_ia32_alignd256:
13086   case X86::BI__builtin_ia32_alignd512:
13087   case X86::BI__builtin_ia32_alignq128:
13088   case X86::BI__builtin_ia32_alignq256:
13089   case X86::BI__builtin_ia32_alignq512: {
13090     unsigned NumElts =
13091         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13092     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13093 
13094     // Mask the shift amount to width of two vectors.
13095     ShiftVal &= (2 * NumElts) - 1;
13096 
13097     int Indices[16];
13098     for (unsigned i = 0; i != NumElts; ++i)
13099       Indices[i] = i + ShiftVal;
13100 
13101     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13102                                        makeArrayRef(Indices, NumElts),
13103                                        "valign");
13104   }
13105   case X86::BI__builtin_ia32_shuf_f32x4_256:
13106   case X86::BI__builtin_ia32_shuf_f64x2_256:
13107   case X86::BI__builtin_ia32_shuf_i32x4_256:
13108   case X86::BI__builtin_ia32_shuf_i64x2_256:
13109   case X86::BI__builtin_ia32_shuf_f32x4:
13110   case X86::BI__builtin_ia32_shuf_f64x2:
13111   case X86::BI__builtin_ia32_shuf_i32x4:
13112   case X86::BI__builtin_ia32_shuf_i64x2: {
13113     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13114     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13115     unsigned NumElts = Ty->getNumElements();
13116     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13117     unsigned NumLaneElts = NumElts / NumLanes;
13118 
13119     int Indices[16];
13120     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13121       unsigned Index = (Imm % NumLanes) * NumLaneElts;
13122       Imm /= NumLanes; // Discard the bits we just used.
13123       if (l >= (NumElts / 2))
13124         Index += NumElts; // Switch to other source.
13125       for (unsigned i = 0; i != NumLaneElts; ++i) {
13126         Indices[l + i] = Index + i;
13127       }
13128     }
13129 
13130     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13131                                        makeArrayRef(Indices, NumElts),
13132                                        "shuf");
13133   }
13134 
13135   case X86::BI__builtin_ia32_vperm2f128_pd256:
13136   case X86::BI__builtin_ia32_vperm2f128_ps256:
13137   case X86::BI__builtin_ia32_vperm2f128_si256:
13138   case X86::BI__builtin_ia32_permti256: {
13139     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13140     unsigned NumElts =
13141         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13142 
13143     // This takes a very simple approach since there are two lanes and a
13144     // shuffle can have 2 inputs. So we reserve the first input for the first
13145     // lane and the second input for the second lane. This may result in
13146     // duplicate sources, but this can be dealt with in the backend.
13147 
13148     Value *OutOps[2];
13149     int Indices[8];
13150     for (unsigned l = 0; l != 2; ++l) {
13151       // Determine the source for this lane.
13152       if (Imm & (1 << ((l * 4) + 3)))
13153         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13154       else if (Imm & (1 << ((l * 4) + 1)))
13155         OutOps[l] = Ops[1];
13156       else
13157         OutOps[l] = Ops[0];
13158 
13159       for (unsigned i = 0; i != NumElts/2; ++i) {
13160         // Start with ith element of the source for this lane.
13161         unsigned Idx = (l * NumElts) + i;
13162         // If bit 0 of the immediate half is set, switch to the high half of
13163         // the source.
13164         if (Imm & (1 << (l * 4)))
13165           Idx += NumElts/2;
13166         Indices[(l * (NumElts/2)) + i] = Idx;
13167       }
13168     }
13169 
13170     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13171                                        makeArrayRef(Indices, NumElts),
13172                                        "vperm");
13173   }
13174 
13175   case X86::BI__builtin_ia32_pslldqi128_byteshift:
13176   case X86::BI__builtin_ia32_pslldqi256_byteshift:
13177   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13178     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13179     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13180     // Builtin type is vXi64 so multiply by 8 to get bytes.
13181     unsigned NumElts = ResultType->getNumElements() * 8;
13182 
13183     // If pslldq is shifting the vector more than 15 bytes, emit zero.
13184     if (ShiftVal >= 16)
13185       return llvm::Constant::getNullValue(ResultType);
13186 
13187     int Indices[64];
13188     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13189     for (unsigned l = 0; l != NumElts; l += 16) {
13190       for (unsigned i = 0; i != 16; ++i) {
13191         unsigned Idx = NumElts + i - ShiftVal;
13192         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13193         Indices[l + i] = Idx + l;
13194       }
13195     }
13196 
13197     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13198     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13199     Value *Zero = llvm::Constant::getNullValue(VecTy);
13200     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13201                                             makeArrayRef(Indices, NumElts),
13202                                             "pslldq");
13203     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13204   }
13205   case X86::BI__builtin_ia32_psrldqi128_byteshift:
13206   case X86::BI__builtin_ia32_psrldqi256_byteshift:
13207   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13208     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13209     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13210     // Builtin type is vXi64 so multiply by 8 to get bytes.
13211     unsigned NumElts = ResultType->getNumElements() * 8;
13212 
13213     // If psrldq is shifting the vector more than 15 bytes, emit zero.
13214     if (ShiftVal >= 16)
13215       return llvm::Constant::getNullValue(ResultType);
13216 
13217     int Indices[64];
13218     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13219     for (unsigned l = 0; l != NumElts; l += 16) {
13220       for (unsigned i = 0; i != 16; ++i) {
13221         unsigned Idx = i + ShiftVal;
13222         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13223         Indices[l + i] = Idx + l;
13224       }
13225     }
13226 
13227     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13228     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13229     Value *Zero = llvm::Constant::getNullValue(VecTy);
13230     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13231                                             makeArrayRef(Indices, NumElts),
13232                                             "psrldq");
13233     return Builder.CreateBitCast(SV, ResultType, "cast");
13234   }
13235   case X86::BI__builtin_ia32_kshiftliqi:
13236   case X86::BI__builtin_ia32_kshiftlihi:
13237   case X86::BI__builtin_ia32_kshiftlisi:
13238   case X86::BI__builtin_ia32_kshiftlidi: {
13239     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13240     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13241 
13242     if (ShiftVal >= NumElts)
13243       return llvm::Constant::getNullValue(Ops[0]->getType());
13244 
13245     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13246 
13247     int Indices[64];
13248     for (unsigned i = 0; i != NumElts; ++i)
13249       Indices[i] = NumElts + i - ShiftVal;
13250 
13251     Value *Zero = llvm::Constant::getNullValue(In->getType());
13252     Value *SV = Builder.CreateShuffleVector(Zero, In,
13253                                             makeArrayRef(Indices, NumElts),
13254                                             "kshiftl");
13255     return Builder.CreateBitCast(SV, Ops[0]->getType());
13256   }
13257   case X86::BI__builtin_ia32_kshiftriqi:
13258   case X86::BI__builtin_ia32_kshiftrihi:
13259   case X86::BI__builtin_ia32_kshiftrisi:
13260   case X86::BI__builtin_ia32_kshiftridi: {
13261     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13262     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13263 
13264     if (ShiftVal >= NumElts)
13265       return llvm::Constant::getNullValue(Ops[0]->getType());
13266 
13267     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13268 
13269     int Indices[64];
13270     for (unsigned i = 0; i != NumElts; ++i)
13271       Indices[i] = i + ShiftVal;
13272 
13273     Value *Zero = llvm::Constant::getNullValue(In->getType());
13274     Value *SV = Builder.CreateShuffleVector(In, Zero,
13275                                             makeArrayRef(Indices, NumElts),
13276                                             "kshiftr");
13277     return Builder.CreateBitCast(SV, Ops[0]->getType());
13278   }
13279   case X86::BI__builtin_ia32_movnti:
13280   case X86::BI__builtin_ia32_movnti64:
13281   case X86::BI__builtin_ia32_movntsd:
13282   case X86::BI__builtin_ia32_movntss: {
13283     llvm::MDNode *Node = llvm::MDNode::get(
13284         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
13285 
13286     Value *Ptr = Ops[0];
13287     Value *Src = Ops[1];
13288 
13289     // Extract the 0'th element of the source vector.
13290     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
13291         BuiltinID == X86::BI__builtin_ia32_movntss)
13292       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
13293 
13294     // Convert the type of the pointer to a pointer to the stored type.
13295     Value *BC = Builder.CreateBitCast(
13296         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
13297 
13298     // Unaligned nontemporal store of the scalar value.
13299     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
13300     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
13301     SI->setAlignment(llvm::Align(1));
13302     return SI;
13303   }
13304   // Rotate is a special case of funnel shift - 1st 2 args are the same.
13305   case X86::BI__builtin_ia32_vprotb:
13306   case X86::BI__builtin_ia32_vprotw:
13307   case X86::BI__builtin_ia32_vprotd:
13308   case X86::BI__builtin_ia32_vprotq:
13309   case X86::BI__builtin_ia32_vprotbi:
13310   case X86::BI__builtin_ia32_vprotwi:
13311   case X86::BI__builtin_ia32_vprotdi:
13312   case X86::BI__builtin_ia32_vprotqi:
13313   case X86::BI__builtin_ia32_prold128:
13314   case X86::BI__builtin_ia32_prold256:
13315   case X86::BI__builtin_ia32_prold512:
13316   case X86::BI__builtin_ia32_prolq128:
13317   case X86::BI__builtin_ia32_prolq256:
13318   case X86::BI__builtin_ia32_prolq512:
13319   case X86::BI__builtin_ia32_prolvd128:
13320   case X86::BI__builtin_ia32_prolvd256:
13321   case X86::BI__builtin_ia32_prolvd512:
13322   case X86::BI__builtin_ia32_prolvq128:
13323   case X86::BI__builtin_ia32_prolvq256:
13324   case X86::BI__builtin_ia32_prolvq512:
13325     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13326   case X86::BI__builtin_ia32_prord128:
13327   case X86::BI__builtin_ia32_prord256:
13328   case X86::BI__builtin_ia32_prord512:
13329   case X86::BI__builtin_ia32_prorq128:
13330   case X86::BI__builtin_ia32_prorq256:
13331   case X86::BI__builtin_ia32_prorq512:
13332   case X86::BI__builtin_ia32_prorvd128:
13333   case X86::BI__builtin_ia32_prorvd256:
13334   case X86::BI__builtin_ia32_prorvd512:
13335   case X86::BI__builtin_ia32_prorvq128:
13336   case X86::BI__builtin_ia32_prorvq256:
13337   case X86::BI__builtin_ia32_prorvq512:
13338     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13339   case X86::BI__builtin_ia32_selectb_128:
13340   case X86::BI__builtin_ia32_selectb_256:
13341   case X86::BI__builtin_ia32_selectb_512:
13342   case X86::BI__builtin_ia32_selectw_128:
13343   case X86::BI__builtin_ia32_selectw_256:
13344   case X86::BI__builtin_ia32_selectw_512:
13345   case X86::BI__builtin_ia32_selectd_128:
13346   case X86::BI__builtin_ia32_selectd_256:
13347   case X86::BI__builtin_ia32_selectd_512:
13348   case X86::BI__builtin_ia32_selectq_128:
13349   case X86::BI__builtin_ia32_selectq_256:
13350   case X86::BI__builtin_ia32_selectq_512:
13351   case X86::BI__builtin_ia32_selectps_128:
13352   case X86::BI__builtin_ia32_selectps_256:
13353   case X86::BI__builtin_ia32_selectps_512:
13354   case X86::BI__builtin_ia32_selectpd_128:
13355   case X86::BI__builtin_ia32_selectpd_256:
13356   case X86::BI__builtin_ia32_selectpd_512:
13357     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13358   case X86::BI__builtin_ia32_selectss_128:
13359   case X86::BI__builtin_ia32_selectsd_128: {
13360     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13361     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13362     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13363     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13364   }
13365   case X86::BI__builtin_ia32_cmpb128_mask:
13366   case X86::BI__builtin_ia32_cmpb256_mask:
13367   case X86::BI__builtin_ia32_cmpb512_mask:
13368   case X86::BI__builtin_ia32_cmpw128_mask:
13369   case X86::BI__builtin_ia32_cmpw256_mask:
13370   case X86::BI__builtin_ia32_cmpw512_mask:
13371   case X86::BI__builtin_ia32_cmpd128_mask:
13372   case X86::BI__builtin_ia32_cmpd256_mask:
13373   case X86::BI__builtin_ia32_cmpd512_mask:
13374   case X86::BI__builtin_ia32_cmpq128_mask:
13375   case X86::BI__builtin_ia32_cmpq256_mask:
13376   case X86::BI__builtin_ia32_cmpq512_mask: {
13377     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13378     return EmitX86MaskedCompare(*this, CC, true, Ops);
13379   }
13380   case X86::BI__builtin_ia32_ucmpb128_mask:
13381   case X86::BI__builtin_ia32_ucmpb256_mask:
13382   case X86::BI__builtin_ia32_ucmpb512_mask:
13383   case X86::BI__builtin_ia32_ucmpw128_mask:
13384   case X86::BI__builtin_ia32_ucmpw256_mask:
13385   case X86::BI__builtin_ia32_ucmpw512_mask:
13386   case X86::BI__builtin_ia32_ucmpd128_mask:
13387   case X86::BI__builtin_ia32_ucmpd256_mask:
13388   case X86::BI__builtin_ia32_ucmpd512_mask:
13389   case X86::BI__builtin_ia32_ucmpq128_mask:
13390   case X86::BI__builtin_ia32_ucmpq256_mask:
13391   case X86::BI__builtin_ia32_ucmpq512_mask: {
13392     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13393     return EmitX86MaskedCompare(*this, CC, false, Ops);
13394   }
13395   case X86::BI__builtin_ia32_vpcomb:
13396   case X86::BI__builtin_ia32_vpcomw:
13397   case X86::BI__builtin_ia32_vpcomd:
13398   case X86::BI__builtin_ia32_vpcomq:
13399     return EmitX86vpcom(*this, Ops, true);
13400   case X86::BI__builtin_ia32_vpcomub:
13401   case X86::BI__builtin_ia32_vpcomuw:
13402   case X86::BI__builtin_ia32_vpcomud:
13403   case X86::BI__builtin_ia32_vpcomuq:
13404     return EmitX86vpcom(*this, Ops, false);
13405 
13406   case X86::BI__builtin_ia32_kortestcqi:
13407   case X86::BI__builtin_ia32_kortestchi:
13408   case X86::BI__builtin_ia32_kortestcsi:
13409   case X86::BI__builtin_ia32_kortestcdi: {
13410     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13411     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13412     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13413     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13414   }
13415   case X86::BI__builtin_ia32_kortestzqi:
13416   case X86::BI__builtin_ia32_kortestzhi:
13417   case X86::BI__builtin_ia32_kortestzsi:
13418   case X86::BI__builtin_ia32_kortestzdi: {
13419     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13420     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13421     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13422     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13423   }
13424 
13425   case X86::BI__builtin_ia32_ktestcqi:
13426   case X86::BI__builtin_ia32_ktestzqi:
13427   case X86::BI__builtin_ia32_ktestchi:
13428   case X86::BI__builtin_ia32_ktestzhi:
13429   case X86::BI__builtin_ia32_ktestcsi:
13430   case X86::BI__builtin_ia32_ktestzsi:
13431   case X86::BI__builtin_ia32_ktestcdi:
13432   case X86::BI__builtin_ia32_ktestzdi: {
13433     Intrinsic::ID IID;
13434     switch (BuiltinID) {
13435     default: llvm_unreachable("Unsupported intrinsic!");
13436     case X86::BI__builtin_ia32_ktestcqi:
13437       IID = Intrinsic::x86_avx512_ktestc_b;
13438       break;
13439     case X86::BI__builtin_ia32_ktestzqi:
13440       IID = Intrinsic::x86_avx512_ktestz_b;
13441       break;
13442     case X86::BI__builtin_ia32_ktestchi:
13443       IID = Intrinsic::x86_avx512_ktestc_w;
13444       break;
13445     case X86::BI__builtin_ia32_ktestzhi:
13446       IID = Intrinsic::x86_avx512_ktestz_w;
13447       break;
13448     case X86::BI__builtin_ia32_ktestcsi:
13449       IID = Intrinsic::x86_avx512_ktestc_d;
13450       break;
13451     case X86::BI__builtin_ia32_ktestzsi:
13452       IID = Intrinsic::x86_avx512_ktestz_d;
13453       break;
13454     case X86::BI__builtin_ia32_ktestcdi:
13455       IID = Intrinsic::x86_avx512_ktestc_q;
13456       break;
13457     case X86::BI__builtin_ia32_ktestzdi:
13458       IID = Intrinsic::x86_avx512_ktestz_q;
13459       break;
13460     }
13461 
13462     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13463     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13464     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13465     Function *Intr = CGM.getIntrinsic(IID);
13466     return Builder.CreateCall(Intr, {LHS, RHS});
13467   }
13468 
13469   case X86::BI__builtin_ia32_kaddqi:
13470   case X86::BI__builtin_ia32_kaddhi:
13471   case X86::BI__builtin_ia32_kaddsi:
13472   case X86::BI__builtin_ia32_kadddi: {
13473     Intrinsic::ID IID;
13474     switch (BuiltinID) {
13475     default: llvm_unreachable("Unsupported intrinsic!");
13476     case X86::BI__builtin_ia32_kaddqi:
13477       IID = Intrinsic::x86_avx512_kadd_b;
13478       break;
13479     case X86::BI__builtin_ia32_kaddhi:
13480       IID = Intrinsic::x86_avx512_kadd_w;
13481       break;
13482     case X86::BI__builtin_ia32_kaddsi:
13483       IID = Intrinsic::x86_avx512_kadd_d;
13484       break;
13485     case X86::BI__builtin_ia32_kadddi:
13486       IID = Intrinsic::x86_avx512_kadd_q;
13487       break;
13488     }
13489 
13490     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13491     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13492     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13493     Function *Intr = CGM.getIntrinsic(IID);
13494     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13495     return Builder.CreateBitCast(Res, Ops[0]->getType());
13496   }
13497   case X86::BI__builtin_ia32_kandqi:
13498   case X86::BI__builtin_ia32_kandhi:
13499   case X86::BI__builtin_ia32_kandsi:
13500   case X86::BI__builtin_ia32_kanddi:
13501     return EmitX86MaskLogic(*this, Instruction::And, Ops);
13502   case X86::BI__builtin_ia32_kandnqi:
13503   case X86::BI__builtin_ia32_kandnhi:
13504   case X86::BI__builtin_ia32_kandnsi:
13505   case X86::BI__builtin_ia32_kandndi:
13506     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13507   case X86::BI__builtin_ia32_korqi:
13508   case X86::BI__builtin_ia32_korhi:
13509   case X86::BI__builtin_ia32_korsi:
13510   case X86::BI__builtin_ia32_kordi:
13511     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13512   case X86::BI__builtin_ia32_kxnorqi:
13513   case X86::BI__builtin_ia32_kxnorhi:
13514   case X86::BI__builtin_ia32_kxnorsi:
13515   case X86::BI__builtin_ia32_kxnordi:
13516     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13517   case X86::BI__builtin_ia32_kxorqi:
13518   case X86::BI__builtin_ia32_kxorhi:
13519   case X86::BI__builtin_ia32_kxorsi:
13520   case X86::BI__builtin_ia32_kxordi:
13521     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
13522   case X86::BI__builtin_ia32_knotqi:
13523   case X86::BI__builtin_ia32_knothi:
13524   case X86::BI__builtin_ia32_knotsi:
13525   case X86::BI__builtin_ia32_knotdi: {
13526     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13527     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13528     return Builder.CreateBitCast(Builder.CreateNot(Res),
13529                                  Ops[0]->getType());
13530   }
13531   case X86::BI__builtin_ia32_kmovb:
13532   case X86::BI__builtin_ia32_kmovw:
13533   case X86::BI__builtin_ia32_kmovd:
13534   case X86::BI__builtin_ia32_kmovq: {
13535     // Bitcast to vXi1 type and then back to integer. This gets the mask
13536     // register type into the IR, but might be optimized out depending on
13537     // what's around it.
13538     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13539     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13540     return Builder.CreateBitCast(Res, Ops[0]->getType());
13541   }
13542 
13543   case X86::BI__builtin_ia32_kunpckdi:
13544   case X86::BI__builtin_ia32_kunpcksi:
13545   case X86::BI__builtin_ia32_kunpckhi: {
13546     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13547     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13548     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13549     int Indices[64];
13550     for (unsigned i = 0; i != NumElts; ++i)
13551       Indices[i] = i;
13552 
13553     // First extract half of each vector. This gives better codegen than
13554     // doing it in a single shuffle.
13555     LHS = Builder.CreateShuffleVector(LHS, LHS,
13556                                       makeArrayRef(Indices, NumElts / 2));
13557     RHS = Builder.CreateShuffleVector(RHS, RHS,
13558                                       makeArrayRef(Indices, NumElts / 2));
13559     // Concat the vectors.
13560     // NOTE: Operands are swapped to match the intrinsic definition.
13561     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13562                                              makeArrayRef(Indices, NumElts));
13563     return Builder.CreateBitCast(Res, Ops[0]->getType());
13564   }
13565 
13566   case X86::BI__builtin_ia32_vplzcntd_128:
13567   case X86::BI__builtin_ia32_vplzcntd_256:
13568   case X86::BI__builtin_ia32_vplzcntd_512:
13569   case X86::BI__builtin_ia32_vplzcntq_128:
13570   case X86::BI__builtin_ia32_vplzcntq_256:
13571   case X86::BI__builtin_ia32_vplzcntq_512: {
13572     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13573     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
13574   }
13575   case X86::BI__builtin_ia32_sqrtss:
13576   case X86::BI__builtin_ia32_sqrtsd: {
13577     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13578     Function *F;
13579     if (Builder.getIsFPConstrained()) {
13580       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13581                            A->getType());
13582       A = Builder.CreateConstrainedFPCall(F, {A});
13583     } else {
13584       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13585       A = Builder.CreateCall(F, {A});
13586     }
13587     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13588   }
13589   case X86::BI__builtin_ia32_sqrtsd_round_mask:
13590   case X86::BI__builtin_ia32_sqrtss_round_mask: {
13591     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13592     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13593     // otherwise keep the intrinsic.
13594     if (CC != 4) {
13595       Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
13596                           Intrinsic::x86_avx512_mask_sqrt_sd :
13597                           Intrinsic::x86_avx512_mask_sqrt_ss;
13598       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13599     }
13600     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13601     Function *F;
13602     if (Builder.getIsFPConstrained()) {
13603       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13604                            A->getType());
13605       A = Builder.CreateConstrainedFPCall(F, A);
13606     } else {
13607       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13608       A = Builder.CreateCall(F, A);
13609     }
13610     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13611     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
13612     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13613   }
13614   case X86::BI__builtin_ia32_sqrtpd256:
13615   case X86::BI__builtin_ia32_sqrtpd:
13616   case X86::BI__builtin_ia32_sqrtps256:
13617   case X86::BI__builtin_ia32_sqrtps:
13618   case X86::BI__builtin_ia32_sqrtps512:
13619   case X86::BI__builtin_ia32_sqrtpd512: {
13620     if (Ops.size() == 2) {
13621       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13622       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13623       // otherwise keep the intrinsic.
13624       if (CC != 4) {
13625         Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
13626                             Intrinsic::x86_avx512_sqrt_ps_512 :
13627                             Intrinsic::x86_avx512_sqrt_pd_512;
13628         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13629       }
13630     }
13631     if (Builder.getIsFPConstrained()) {
13632       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13633                                      Ops[0]->getType());
13634       return Builder.CreateConstrainedFPCall(F, Ops[0]);
13635     } else {
13636       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
13637       return Builder.CreateCall(F, Ops[0]);
13638     }
13639   }
13640   case X86::BI__builtin_ia32_pabsb128:
13641   case X86::BI__builtin_ia32_pabsw128:
13642   case X86::BI__builtin_ia32_pabsd128:
13643   case X86::BI__builtin_ia32_pabsb256:
13644   case X86::BI__builtin_ia32_pabsw256:
13645   case X86::BI__builtin_ia32_pabsd256:
13646   case X86::BI__builtin_ia32_pabsq128:
13647   case X86::BI__builtin_ia32_pabsq256:
13648   case X86::BI__builtin_ia32_pabsb512:
13649   case X86::BI__builtin_ia32_pabsw512:
13650   case X86::BI__builtin_ia32_pabsd512:
13651   case X86::BI__builtin_ia32_pabsq512: {
13652     Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType());
13653     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13654   }
13655   case X86::BI__builtin_ia32_pmaxsb128:
13656   case X86::BI__builtin_ia32_pmaxsw128:
13657   case X86::BI__builtin_ia32_pmaxsd128:
13658   case X86::BI__builtin_ia32_pmaxsq128:
13659   case X86::BI__builtin_ia32_pmaxsb256:
13660   case X86::BI__builtin_ia32_pmaxsw256:
13661   case X86::BI__builtin_ia32_pmaxsd256:
13662   case X86::BI__builtin_ia32_pmaxsq256:
13663   case X86::BI__builtin_ia32_pmaxsb512:
13664   case X86::BI__builtin_ia32_pmaxsw512:
13665   case X86::BI__builtin_ia32_pmaxsd512:
13666   case X86::BI__builtin_ia32_pmaxsq512:
13667     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax);
13668   case X86::BI__builtin_ia32_pmaxub128:
13669   case X86::BI__builtin_ia32_pmaxuw128:
13670   case X86::BI__builtin_ia32_pmaxud128:
13671   case X86::BI__builtin_ia32_pmaxuq128:
13672   case X86::BI__builtin_ia32_pmaxub256:
13673   case X86::BI__builtin_ia32_pmaxuw256:
13674   case X86::BI__builtin_ia32_pmaxud256:
13675   case X86::BI__builtin_ia32_pmaxuq256:
13676   case X86::BI__builtin_ia32_pmaxub512:
13677   case X86::BI__builtin_ia32_pmaxuw512:
13678   case X86::BI__builtin_ia32_pmaxud512:
13679   case X86::BI__builtin_ia32_pmaxuq512:
13680     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax);
13681   case X86::BI__builtin_ia32_pminsb128:
13682   case X86::BI__builtin_ia32_pminsw128:
13683   case X86::BI__builtin_ia32_pminsd128:
13684   case X86::BI__builtin_ia32_pminsq128:
13685   case X86::BI__builtin_ia32_pminsb256:
13686   case X86::BI__builtin_ia32_pminsw256:
13687   case X86::BI__builtin_ia32_pminsd256:
13688   case X86::BI__builtin_ia32_pminsq256:
13689   case X86::BI__builtin_ia32_pminsb512:
13690   case X86::BI__builtin_ia32_pminsw512:
13691   case X86::BI__builtin_ia32_pminsd512:
13692   case X86::BI__builtin_ia32_pminsq512:
13693     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin);
13694   case X86::BI__builtin_ia32_pminub128:
13695   case X86::BI__builtin_ia32_pminuw128:
13696   case X86::BI__builtin_ia32_pminud128:
13697   case X86::BI__builtin_ia32_pminuq128:
13698   case X86::BI__builtin_ia32_pminub256:
13699   case X86::BI__builtin_ia32_pminuw256:
13700   case X86::BI__builtin_ia32_pminud256:
13701   case X86::BI__builtin_ia32_pminuq256:
13702   case X86::BI__builtin_ia32_pminub512:
13703   case X86::BI__builtin_ia32_pminuw512:
13704   case X86::BI__builtin_ia32_pminud512:
13705   case X86::BI__builtin_ia32_pminuq512:
13706     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin);
13707 
13708   case X86::BI__builtin_ia32_pmuludq128:
13709   case X86::BI__builtin_ia32_pmuludq256:
13710   case X86::BI__builtin_ia32_pmuludq512:
13711     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
13712 
13713   case X86::BI__builtin_ia32_pmuldq128:
13714   case X86::BI__builtin_ia32_pmuldq256:
13715   case X86::BI__builtin_ia32_pmuldq512:
13716     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
13717 
13718   case X86::BI__builtin_ia32_pternlogd512_mask:
13719   case X86::BI__builtin_ia32_pternlogq512_mask:
13720   case X86::BI__builtin_ia32_pternlogd128_mask:
13721   case X86::BI__builtin_ia32_pternlogd256_mask:
13722   case X86::BI__builtin_ia32_pternlogq128_mask:
13723   case X86::BI__builtin_ia32_pternlogq256_mask:
13724     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
13725 
13726   case X86::BI__builtin_ia32_pternlogd512_maskz:
13727   case X86::BI__builtin_ia32_pternlogq512_maskz:
13728   case X86::BI__builtin_ia32_pternlogd128_maskz:
13729   case X86::BI__builtin_ia32_pternlogd256_maskz:
13730   case X86::BI__builtin_ia32_pternlogq128_maskz:
13731   case X86::BI__builtin_ia32_pternlogq256_maskz:
13732     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
13733 
13734   case X86::BI__builtin_ia32_vpshldd128:
13735   case X86::BI__builtin_ia32_vpshldd256:
13736   case X86::BI__builtin_ia32_vpshldd512:
13737   case X86::BI__builtin_ia32_vpshldq128:
13738   case X86::BI__builtin_ia32_vpshldq256:
13739   case X86::BI__builtin_ia32_vpshldq512:
13740   case X86::BI__builtin_ia32_vpshldw128:
13741   case X86::BI__builtin_ia32_vpshldw256:
13742   case X86::BI__builtin_ia32_vpshldw512:
13743     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13744 
13745   case X86::BI__builtin_ia32_vpshrdd128:
13746   case X86::BI__builtin_ia32_vpshrdd256:
13747   case X86::BI__builtin_ia32_vpshrdd512:
13748   case X86::BI__builtin_ia32_vpshrdq128:
13749   case X86::BI__builtin_ia32_vpshrdq256:
13750   case X86::BI__builtin_ia32_vpshrdq512:
13751   case X86::BI__builtin_ia32_vpshrdw128:
13752   case X86::BI__builtin_ia32_vpshrdw256:
13753   case X86::BI__builtin_ia32_vpshrdw512:
13754     // Ops 0 and 1 are swapped.
13755     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13756 
13757   case X86::BI__builtin_ia32_vpshldvd128:
13758   case X86::BI__builtin_ia32_vpshldvd256:
13759   case X86::BI__builtin_ia32_vpshldvd512:
13760   case X86::BI__builtin_ia32_vpshldvq128:
13761   case X86::BI__builtin_ia32_vpshldvq256:
13762   case X86::BI__builtin_ia32_vpshldvq512:
13763   case X86::BI__builtin_ia32_vpshldvw128:
13764   case X86::BI__builtin_ia32_vpshldvw256:
13765   case X86::BI__builtin_ia32_vpshldvw512:
13766     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13767 
13768   case X86::BI__builtin_ia32_vpshrdvd128:
13769   case X86::BI__builtin_ia32_vpshrdvd256:
13770   case X86::BI__builtin_ia32_vpshrdvd512:
13771   case X86::BI__builtin_ia32_vpshrdvq128:
13772   case X86::BI__builtin_ia32_vpshrdvq256:
13773   case X86::BI__builtin_ia32_vpshrdvq512:
13774   case X86::BI__builtin_ia32_vpshrdvw128:
13775   case X86::BI__builtin_ia32_vpshrdvw256:
13776   case X86::BI__builtin_ia32_vpshrdvw512:
13777     // Ops 0 and 1 are swapped.
13778     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13779 
13780   // Reductions
13781   case X86::BI__builtin_ia32_reduce_add_d512:
13782   case X86::BI__builtin_ia32_reduce_add_q512: {
13783     Function *F =
13784         CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
13785     return Builder.CreateCall(F, {Ops[0]});
13786   }
13787   case X86::BI__builtin_ia32_reduce_and_d512:
13788   case X86::BI__builtin_ia32_reduce_and_q512: {
13789     Function *F =
13790         CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType());
13791     return Builder.CreateCall(F, {Ops[0]});
13792   }
13793   case X86::BI__builtin_ia32_reduce_fadd_pd512:
13794   case X86::BI__builtin_ia32_reduce_fadd_ps512: {
13795     Function *F =
13796         CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
13797     Builder.getFastMathFlags().setAllowReassoc(true);
13798     return Builder.CreateCall(F, {Ops[0], Ops[1]});
13799   }
13800   case X86::BI__builtin_ia32_reduce_fmul_pd512:
13801   case X86::BI__builtin_ia32_reduce_fmul_ps512: {
13802     Function *F =
13803         CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
13804     Builder.getFastMathFlags().setAllowReassoc(true);
13805     return Builder.CreateCall(F, {Ops[0], Ops[1]});
13806   }
13807   case X86::BI__builtin_ia32_reduce_mul_d512:
13808   case X86::BI__builtin_ia32_reduce_mul_q512: {
13809     Function *F =
13810         CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
13811     return Builder.CreateCall(F, {Ops[0]});
13812   }
13813   case X86::BI__builtin_ia32_reduce_or_d512:
13814   case X86::BI__builtin_ia32_reduce_or_q512: {
13815     Function *F =
13816         CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType());
13817     return Builder.CreateCall(F, {Ops[0]});
13818   }
13819   case X86::BI__builtin_ia32_reduce_smax_d512:
13820   case X86::BI__builtin_ia32_reduce_smax_q512: {
13821     Function *F =
13822         CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType());
13823     return Builder.CreateCall(F, {Ops[0]});
13824   }
13825   case X86::BI__builtin_ia32_reduce_smin_d512:
13826   case X86::BI__builtin_ia32_reduce_smin_q512: {
13827     Function *F =
13828         CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType());
13829     return Builder.CreateCall(F, {Ops[0]});
13830   }
13831   case X86::BI__builtin_ia32_reduce_umax_d512:
13832   case X86::BI__builtin_ia32_reduce_umax_q512: {
13833     Function *F =
13834         CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType());
13835     return Builder.CreateCall(F, {Ops[0]});
13836   }
13837   case X86::BI__builtin_ia32_reduce_umin_d512:
13838   case X86::BI__builtin_ia32_reduce_umin_q512: {
13839     Function *F =
13840         CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType());
13841     return Builder.CreateCall(F, {Ops[0]});
13842   }
13843 
13844   // 3DNow!
13845   case X86::BI__builtin_ia32_pswapdsf:
13846   case X86::BI__builtin_ia32_pswapdsi: {
13847     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
13848     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
13849     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
13850     return Builder.CreateCall(F, Ops, "pswapd");
13851   }
13852   case X86::BI__builtin_ia32_rdrand16_step:
13853   case X86::BI__builtin_ia32_rdrand32_step:
13854   case X86::BI__builtin_ia32_rdrand64_step:
13855   case X86::BI__builtin_ia32_rdseed16_step:
13856   case X86::BI__builtin_ia32_rdseed32_step:
13857   case X86::BI__builtin_ia32_rdseed64_step: {
13858     Intrinsic::ID ID;
13859     switch (BuiltinID) {
13860     default: llvm_unreachable("Unsupported intrinsic!");
13861     case X86::BI__builtin_ia32_rdrand16_step:
13862       ID = Intrinsic::x86_rdrand_16;
13863       break;
13864     case X86::BI__builtin_ia32_rdrand32_step:
13865       ID = Intrinsic::x86_rdrand_32;
13866       break;
13867     case X86::BI__builtin_ia32_rdrand64_step:
13868       ID = Intrinsic::x86_rdrand_64;
13869       break;
13870     case X86::BI__builtin_ia32_rdseed16_step:
13871       ID = Intrinsic::x86_rdseed_16;
13872       break;
13873     case X86::BI__builtin_ia32_rdseed32_step:
13874       ID = Intrinsic::x86_rdseed_32;
13875       break;
13876     case X86::BI__builtin_ia32_rdseed64_step:
13877       ID = Intrinsic::x86_rdseed_64;
13878       break;
13879     }
13880 
13881     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
13882     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
13883                                       Ops[0]);
13884     return Builder.CreateExtractValue(Call, 1);
13885   }
13886   case X86::BI__builtin_ia32_addcarryx_u32:
13887   case X86::BI__builtin_ia32_addcarryx_u64:
13888   case X86::BI__builtin_ia32_subborrow_u32:
13889   case X86::BI__builtin_ia32_subborrow_u64: {
13890     Intrinsic::ID IID;
13891     switch (BuiltinID) {
13892     default: llvm_unreachable("Unsupported intrinsic!");
13893     case X86::BI__builtin_ia32_addcarryx_u32:
13894       IID = Intrinsic::x86_addcarry_32;
13895       break;
13896     case X86::BI__builtin_ia32_addcarryx_u64:
13897       IID = Intrinsic::x86_addcarry_64;
13898       break;
13899     case X86::BI__builtin_ia32_subborrow_u32:
13900       IID = Intrinsic::x86_subborrow_32;
13901       break;
13902     case X86::BI__builtin_ia32_subborrow_u64:
13903       IID = Intrinsic::x86_subborrow_64;
13904       break;
13905     }
13906 
13907     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
13908                                      { Ops[0], Ops[1], Ops[2] });
13909     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
13910                                       Ops[3]);
13911     return Builder.CreateExtractValue(Call, 0);
13912   }
13913 
13914   case X86::BI__builtin_ia32_fpclassps128_mask:
13915   case X86::BI__builtin_ia32_fpclassps256_mask:
13916   case X86::BI__builtin_ia32_fpclassps512_mask:
13917   case X86::BI__builtin_ia32_fpclasspd128_mask:
13918   case X86::BI__builtin_ia32_fpclasspd256_mask:
13919   case X86::BI__builtin_ia32_fpclasspd512_mask: {
13920     unsigned NumElts =
13921         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13922     Value *MaskIn = Ops[2];
13923     Ops.erase(&Ops[2]);
13924 
13925     Intrinsic::ID ID;
13926     switch (BuiltinID) {
13927     default: llvm_unreachable("Unsupported intrinsic!");
13928     case X86::BI__builtin_ia32_fpclassps128_mask:
13929       ID = Intrinsic::x86_avx512_fpclass_ps_128;
13930       break;
13931     case X86::BI__builtin_ia32_fpclassps256_mask:
13932       ID = Intrinsic::x86_avx512_fpclass_ps_256;
13933       break;
13934     case X86::BI__builtin_ia32_fpclassps512_mask:
13935       ID = Intrinsic::x86_avx512_fpclass_ps_512;
13936       break;
13937     case X86::BI__builtin_ia32_fpclasspd128_mask:
13938       ID = Intrinsic::x86_avx512_fpclass_pd_128;
13939       break;
13940     case X86::BI__builtin_ia32_fpclasspd256_mask:
13941       ID = Intrinsic::x86_avx512_fpclass_pd_256;
13942       break;
13943     case X86::BI__builtin_ia32_fpclasspd512_mask:
13944       ID = Intrinsic::x86_avx512_fpclass_pd_512;
13945       break;
13946     }
13947 
13948     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13949     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
13950   }
13951 
13952   case X86::BI__builtin_ia32_vp2intersect_q_512:
13953   case X86::BI__builtin_ia32_vp2intersect_q_256:
13954   case X86::BI__builtin_ia32_vp2intersect_q_128:
13955   case X86::BI__builtin_ia32_vp2intersect_d_512:
13956   case X86::BI__builtin_ia32_vp2intersect_d_256:
13957   case X86::BI__builtin_ia32_vp2intersect_d_128: {
13958     unsigned NumElts =
13959         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13960     Intrinsic::ID ID;
13961 
13962     switch (BuiltinID) {
13963     default: llvm_unreachable("Unsupported intrinsic!");
13964     case X86::BI__builtin_ia32_vp2intersect_q_512:
13965       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
13966       break;
13967     case X86::BI__builtin_ia32_vp2intersect_q_256:
13968       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
13969       break;
13970     case X86::BI__builtin_ia32_vp2intersect_q_128:
13971       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
13972       break;
13973     case X86::BI__builtin_ia32_vp2intersect_d_512:
13974       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
13975       break;
13976     case X86::BI__builtin_ia32_vp2intersect_d_256:
13977       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
13978       break;
13979     case X86::BI__builtin_ia32_vp2intersect_d_128:
13980       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
13981       break;
13982     }
13983 
13984     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
13985     Value *Result = Builder.CreateExtractValue(Call, 0);
13986     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13987     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
13988 
13989     Result = Builder.CreateExtractValue(Call, 1);
13990     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13991     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
13992   }
13993 
13994   case X86::BI__builtin_ia32_vpmultishiftqb128:
13995   case X86::BI__builtin_ia32_vpmultishiftqb256:
13996   case X86::BI__builtin_ia32_vpmultishiftqb512: {
13997     Intrinsic::ID ID;
13998     switch (BuiltinID) {
13999     default: llvm_unreachable("Unsupported intrinsic!");
14000     case X86::BI__builtin_ia32_vpmultishiftqb128:
14001       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14002       break;
14003     case X86::BI__builtin_ia32_vpmultishiftqb256:
14004       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14005       break;
14006     case X86::BI__builtin_ia32_vpmultishiftqb512:
14007       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14008       break;
14009     }
14010 
14011     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14012   }
14013 
14014   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14015   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14016   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14017     unsigned NumElts =
14018         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14019     Value *MaskIn = Ops[2];
14020     Ops.erase(&Ops[2]);
14021 
14022     Intrinsic::ID ID;
14023     switch (BuiltinID) {
14024     default: llvm_unreachable("Unsupported intrinsic!");
14025     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14026       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14027       break;
14028     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14029       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14030       break;
14031     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14032       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14033       break;
14034     }
14035 
14036     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14037     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14038   }
14039 
14040   // packed comparison intrinsics
14041   case X86::BI__builtin_ia32_cmpeqps:
14042   case X86::BI__builtin_ia32_cmpeqpd:
14043     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14044   case X86::BI__builtin_ia32_cmpltps:
14045   case X86::BI__builtin_ia32_cmpltpd:
14046     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14047   case X86::BI__builtin_ia32_cmpleps:
14048   case X86::BI__builtin_ia32_cmplepd:
14049     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14050   case X86::BI__builtin_ia32_cmpunordps:
14051   case X86::BI__builtin_ia32_cmpunordpd:
14052     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14053   case X86::BI__builtin_ia32_cmpneqps:
14054   case X86::BI__builtin_ia32_cmpneqpd:
14055     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14056   case X86::BI__builtin_ia32_cmpnltps:
14057   case X86::BI__builtin_ia32_cmpnltpd:
14058     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14059   case X86::BI__builtin_ia32_cmpnleps:
14060   case X86::BI__builtin_ia32_cmpnlepd:
14061     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14062   case X86::BI__builtin_ia32_cmpordps:
14063   case X86::BI__builtin_ia32_cmpordpd:
14064     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14065   case X86::BI__builtin_ia32_cmpps128_mask:
14066   case X86::BI__builtin_ia32_cmpps256_mask:
14067   case X86::BI__builtin_ia32_cmpps512_mask:
14068   case X86::BI__builtin_ia32_cmppd128_mask:
14069   case X86::BI__builtin_ia32_cmppd256_mask:
14070   case X86::BI__builtin_ia32_cmppd512_mask:
14071     IsMaskFCmp = true;
14072     LLVM_FALLTHROUGH;
14073   case X86::BI__builtin_ia32_cmpps:
14074   case X86::BI__builtin_ia32_cmpps256:
14075   case X86::BI__builtin_ia32_cmppd:
14076   case X86::BI__builtin_ia32_cmppd256: {
14077     // Lowering vector comparisons to fcmp instructions, while
14078     // ignoring signalling behaviour requested
14079     // ignoring rounding mode requested
14080     // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14081 
14082     // The third argument is the comparison condition, and integer in the
14083     // range [0, 31]
14084     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14085 
14086     // Lowering to IR fcmp instruction.
14087     // Ignoring requested signaling behaviour,
14088     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14089     FCmpInst::Predicate Pred;
14090     bool IsSignaling;
14091     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14092     // behavior is inverted. We'll handle that after the switch.
14093     switch (CC & 0xf) {
14094     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
14095     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
14096     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
14097     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
14098     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
14099     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
14100     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
14101     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
14102     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
14103     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
14104     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
14105     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14106     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
14107     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
14108     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
14109     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
14110     default: llvm_unreachable("Unhandled CC");
14111     }
14112 
14113     // Invert the signalling behavior for 16-31.
14114     if (CC & 0x10)
14115       IsSignaling = !IsSignaling;
14116 
14117     // If the predicate is true or false and we're using constrained intrinsics,
14118     // we don't have a compare intrinsic we can use. Just use the legacy X86
14119     // specific intrinsic.
14120     // If the intrinsic is mask enabled and we're using constrained intrinsics,
14121     // use the legacy X86 specific intrinsic.
14122     if (Builder.getIsFPConstrained() &&
14123         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14124          IsMaskFCmp)) {
14125 
14126       Intrinsic::ID IID;
14127       switch (BuiltinID) {
14128       default: llvm_unreachable("Unexpected builtin");
14129       case X86::BI__builtin_ia32_cmpps:
14130         IID = Intrinsic::x86_sse_cmp_ps;
14131         break;
14132       case X86::BI__builtin_ia32_cmpps256:
14133         IID = Intrinsic::x86_avx_cmp_ps_256;
14134         break;
14135       case X86::BI__builtin_ia32_cmppd:
14136         IID = Intrinsic::x86_sse2_cmp_pd;
14137         break;
14138       case X86::BI__builtin_ia32_cmppd256:
14139         IID = Intrinsic::x86_avx_cmp_pd_256;
14140         break;
14141       case X86::BI__builtin_ia32_cmpps512_mask:
14142         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14143         break;
14144       case X86::BI__builtin_ia32_cmppd512_mask:
14145         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14146         break;
14147       case X86::BI__builtin_ia32_cmpps128_mask:
14148         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14149         break;
14150       case X86::BI__builtin_ia32_cmpps256_mask:
14151         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14152         break;
14153       case X86::BI__builtin_ia32_cmppd128_mask:
14154         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14155         break;
14156       case X86::BI__builtin_ia32_cmppd256_mask:
14157         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14158         break;
14159       }
14160 
14161       Function *Intr = CGM.getIntrinsic(IID);
14162       if (IsMaskFCmp) {
14163         unsigned NumElts =
14164             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14165         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14166         Value *Cmp = Builder.CreateCall(Intr, Ops);
14167         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14168       }
14169 
14170       return Builder.CreateCall(Intr, Ops);
14171     }
14172 
14173     // Builtins without the _mask suffix return a vector of integers
14174     // of the same width as the input vectors
14175     if (IsMaskFCmp) {
14176       // We ignore SAE if strict FP is disabled. We only keep precise
14177       // exception behavior under strict FP.
14178       unsigned NumElts =
14179           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14180       Value *Cmp;
14181       if (IsSignaling)
14182         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14183       else
14184         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14185       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14186     }
14187 
14188     return getVectorFCmpIR(Pred, IsSignaling);
14189   }
14190 
14191   // SSE scalar comparison intrinsics
14192   case X86::BI__builtin_ia32_cmpeqss:
14193     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14194   case X86::BI__builtin_ia32_cmpltss:
14195     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14196   case X86::BI__builtin_ia32_cmpless:
14197     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14198   case X86::BI__builtin_ia32_cmpunordss:
14199     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14200   case X86::BI__builtin_ia32_cmpneqss:
14201     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14202   case X86::BI__builtin_ia32_cmpnltss:
14203     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14204   case X86::BI__builtin_ia32_cmpnless:
14205     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14206   case X86::BI__builtin_ia32_cmpordss:
14207     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14208   case X86::BI__builtin_ia32_cmpeqsd:
14209     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14210   case X86::BI__builtin_ia32_cmpltsd:
14211     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14212   case X86::BI__builtin_ia32_cmplesd:
14213     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14214   case X86::BI__builtin_ia32_cmpunordsd:
14215     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14216   case X86::BI__builtin_ia32_cmpneqsd:
14217     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14218   case X86::BI__builtin_ia32_cmpnltsd:
14219     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14220   case X86::BI__builtin_ia32_cmpnlesd:
14221     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14222   case X86::BI__builtin_ia32_cmpordsd:
14223     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14224 
14225   // f16c half2float intrinsics
14226   case X86::BI__builtin_ia32_vcvtph2ps:
14227   case X86::BI__builtin_ia32_vcvtph2ps256:
14228   case X86::BI__builtin_ia32_vcvtph2ps_mask:
14229   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14230   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
14231     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14232 
14233 // AVX512 bf16 intrinsics
14234   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14235     Ops[2] = getMaskVecValue(
14236         *this, Ops[2],
14237         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14238     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14239     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14240   }
14241   case X86::BI__builtin_ia32_cvtsbf162ss_32:
14242     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14243 
14244   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14245   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14246     Intrinsic::ID IID;
14247     switch (BuiltinID) {
14248     default: llvm_unreachable("Unsupported intrinsic!");
14249     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14250       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14251       break;
14252     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14253       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14254       break;
14255     }
14256     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14257     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14258   }
14259 
14260   case X86::BI__emul:
14261   case X86::BI__emulu: {
14262     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14263     bool isSigned = (BuiltinID == X86::BI__emul);
14264     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14265     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
14266     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
14267   }
14268   case X86::BI__mulh:
14269   case X86::BI__umulh:
14270   case X86::BI_mul128:
14271   case X86::BI_umul128: {
14272     llvm::Type *ResType = ConvertType(E->getType());
14273     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
14274 
14275     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
14276     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
14277     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
14278 
14279     Value *MulResult, *HigherBits;
14280     if (IsSigned) {
14281       MulResult = Builder.CreateNSWMul(LHS, RHS);
14282       HigherBits = Builder.CreateAShr(MulResult, 64);
14283     } else {
14284       MulResult = Builder.CreateNUWMul(LHS, RHS);
14285       HigherBits = Builder.CreateLShr(MulResult, 64);
14286     }
14287     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
14288 
14289     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
14290       return HigherBits;
14291 
14292     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
14293     Builder.CreateStore(HigherBits, HighBitsAddress);
14294     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
14295   }
14296 
14297   case X86::BI__faststorefence: {
14298     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14299                                llvm::SyncScope::System);
14300   }
14301   case X86::BI__shiftleft128:
14302   case X86::BI__shiftright128: {
14303     llvm::Function *F = CGM.getIntrinsic(
14304         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
14305         Int64Ty);
14306     // Flip low/high ops and zero-extend amount to matching type.
14307     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
14308     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
14309     std::swap(Ops[0], Ops[1]);
14310     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
14311     return Builder.CreateCall(F, Ops);
14312   }
14313   case X86::BI_ReadWriteBarrier:
14314   case X86::BI_ReadBarrier:
14315   case X86::BI_WriteBarrier: {
14316     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14317                                llvm::SyncScope::SingleThread);
14318   }
14319 
14320   case X86::BI_AddressOfReturnAddress: {
14321     Function *F =
14322         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14323     return Builder.CreateCall(F);
14324   }
14325   case X86::BI__stosb: {
14326     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14327     // instruction, but it will create a memset that won't be optimized away.
14328     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14329   }
14330   case X86::BI__ud2:
14331     // llvm.trap makes a ud2a instruction on x86.
14332     return EmitTrapCall(Intrinsic::trap);
14333   case X86::BI__int2c: {
14334     // This syscall signals a driver assertion failure in x86 NT kernels.
14335     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14336     llvm::InlineAsm *IA =
14337         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14338     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14339         getLLVMContext(), llvm::AttributeList::FunctionIndex,
14340         llvm::Attribute::NoReturn);
14341     llvm::CallInst *CI = Builder.CreateCall(IA);
14342     CI->setAttributes(NoReturnAttr);
14343     return CI;
14344   }
14345   case X86::BI__readfsbyte:
14346   case X86::BI__readfsword:
14347   case X86::BI__readfsdword:
14348   case X86::BI__readfsqword: {
14349     llvm::Type *IntTy = ConvertType(E->getType());
14350     Value *Ptr =
14351         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14352     LoadInst *Load = Builder.CreateAlignedLoad(
14353         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14354     Load->setVolatile(true);
14355     return Load;
14356   }
14357   case X86::BI__readgsbyte:
14358   case X86::BI__readgsword:
14359   case X86::BI__readgsdword:
14360   case X86::BI__readgsqword: {
14361     llvm::Type *IntTy = ConvertType(E->getType());
14362     Value *Ptr =
14363         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14364     LoadInst *Load = Builder.CreateAlignedLoad(
14365         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14366     Load->setVolatile(true);
14367     return Load;
14368   }
14369   case X86::BI__builtin_ia32_paddsb512:
14370   case X86::BI__builtin_ia32_paddsw512:
14371   case X86::BI__builtin_ia32_paddsb256:
14372   case X86::BI__builtin_ia32_paddsw256:
14373   case X86::BI__builtin_ia32_paddsb128:
14374   case X86::BI__builtin_ia32_paddsw128:
14375     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat);
14376   case X86::BI__builtin_ia32_paddusb512:
14377   case X86::BI__builtin_ia32_paddusw512:
14378   case X86::BI__builtin_ia32_paddusb256:
14379   case X86::BI__builtin_ia32_paddusw256:
14380   case X86::BI__builtin_ia32_paddusb128:
14381   case X86::BI__builtin_ia32_paddusw128:
14382     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat);
14383   case X86::BI__builtin_ia32_psubsb512:
14384   case X86::BI__builtin_ia32_psubsw512:
14385   case X86::BI__builtin_ia32_psubsb256:
14386   case X86::BI__builtin_ia32_psubsw256:
14387   case X86::BI__builtin_ia32_psubsb128:
14388   case X86::BI__builtin_ia32_psubsw128:
14389     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat);
14390   case X86::BI__builtin_ia32_psubusb512:
14391   case X86::BI__builtin_ia32_psubusw512:
14392   case X86::BI__builtin_ia32_psubusb256:
14393   case X86::BI__builtin_ia32_psubusw256:
14394   case X86::BI__builtin_ia32_psubusb128:
14395   case X86::BI__builtin_ia32_psubusw128:
14396     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat);
14397   case X86::BI__builtin_ia32_encodekey128_u32: {
14398     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
14399 
14400     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
14401 
14402     for (int i = 0; i < 6; ++i) {
14403       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14404       Value *Ptr = Builder.CreateConstGEP1_32(Ops[2], i * 16);
14405       Ptr = Builder.CreateBitCast(
14406           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14407       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14408     }
14409 
14410     return Builder.CreateExtractValue(Call, 0);
14411   }
14412   case X86::BI__builtin_ia32_encodekey256_u32: {
14413     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
14414 
14415     Value *Call =
14416         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
14417 
14418     for (int i = 0; i < 7; ++i) {
14419       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14420       Value *Ptr = Builder.CreateConstGEP1_32(Ops[3], i * 16);
14421       Ptr = Builder.CreateBitCast(
14422           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14423       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14424     }
14425 
14426     return Builder.CreateExtractValue(Call, 0);
14427   }
14428   case X86::BI__builtin_ia32_aesenc128kl_u8:
14429   case X86::BI__builtin_ia32_aesdec128kl_u8:
14430   case X86::BI__builtin_ia32_aesenc256kl_u8:
14431   case X86::BI__builtin_ia32_aesdec256kl_u8: {
14432     Intrinsic::ID IID;
14433     switch (BuiltinID) {
14434     default: llvm_unreachable("Unexpected builtin");
14435     case X86::BI__builtin_ia32_aesenc128kl_u8:
14436       IID = Intrinsic::x86_aesenc128kl;
14437       break;
14438     case X86::BI__builtin_ia32_aesdec128kl_u8:
14439       IID = Intrinsic::x86_aesdec128kl;
14440       break;
14441     case X86::BI__builtin_ia32_aesenc256kl_u8:
14442       IID = Intrinsic::x86_aesenc256kl;
14443       break;
14444     case X86::BI__builtin_ia32_aesdec256kl_u8:
14445       IID = Intrinsic::x86_aesdec256kl;
14446       break;
14447     }
14448 
14449     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
14450 
14451     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14452                                       Ops[0]);
14453 
14454     return Builder.CreateExtractValue(Call, 0);
14455   }
14456   case X86::BI__builtin_ia32_aesencwide128kl_u8:
14457   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14458   case X86::BI__builtin_ia32_aesencwide256kl_u8:
14459   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
14460     Intrinsic::ID IID;
14461     switch (BuiltinID) {
14462     case X86::BI__builtin_ia32_aesencwide128kl_u8:
14463       IID = Intrinsic::x86_aesencwide128kl;
14464       break;
14465     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14466       IID = Intrinsic::x86_aesdecwide128kl;
14467       break;
14468     case X86::BI__builtin_ia32_aesencwide256kl_u8:
14469       IID = Intrinsic::x86_aesencwide256kl;
14470       break;
14471     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
14472       IID = Intrinsic::x86_aesdecwide256kl;
14473       break;
14474     }
14475 
14476     Value *InOps[9];
14477     InOps[0] = Ops[2];
14478     for (int i = 0; i != 8; ++i) {
14479       Value *Ptr = Builder.CreateConstGEP1_32(Ops[1], i);
14480       InOps[i + 1] = Builder.CreateAlignedLoad(Ptr, Align(16));
14481     }
14482 
14483     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
14484 
14485     for (int i = 0; i != 8; ++i) {
14486       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14487       Value *Ptr = Builder.CreateConstGEP1_32(Ops[0], i);
14488       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
14489     }
14490 
14491     return Builder.CreateExtractValue(Call, 0);
14492   }
14493   }
14494 }
14495 
14496 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
14497                                            const CallExpr *E) {
14498   SmallVector<Value*, 4> Ops;
14499 
14500   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
14501     Ops.push_back(EmitScalarExpr(E->getArg(i)));
14502 
14503   Intrinsic::ID ID = Intrinsic::not_intrinsic;
14504 
14505   switch (BuiltinID) {
14506   default: return nullptr;
14507 
14508   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
14509   // call __builtin_readcyclecounter.
14510   case PPC::BI__builtin_ppc_get_timebase:
14511     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
14512 
14513   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
14514   case PPC::BI__builtin_altivec_lvx:
14515   case PPC::BI__builtin_altivec_lvxl:
14516   case PPC::BI__builtin_altivec_lvebx:
14517   case PPC::BI__builtin_altivec_lvehx:
14518   case PPC::BI__builtin_altivec_lvewx:
14519   case PPC::BI__builtin_altivec_lvsl:
14520   case PPC::BI__builtin_altivec_lvsr:
14521   case PPC::BI__builtin_vsx_lxvd2x:
14522   case PPC::BI__builtin_vsx_lxvw4x:
14523   case PPC::BI__builtin_vsx_lxvd2x_be:
14524   case PPC::BI__builtin_vsx_lxvw4x_be:
14525   case PPC::BI__builtin_vsx_lxvl:
14526   case PPC::BI__builtin_vsx_lxvll:
14527   {
14528     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
14529        BuiltinID == PPC::BI__builtin_vsx_lxvll){
14530       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
14531     }else {
14532       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14533       Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
14534       Ops.pop_back();
14535     }
14536 
14537     switch (BuiltinID) {
14538     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
14539     case PPC::BI__builtin_altivec_lvx:
14540       ID = Intrinsic::ppc_altivec_lvx;
14541       break;
14542     case PPC::BI__builtin_altivec_lvxl:
14543       ID = Intrinsic::ppc_altivec_lvxl;
14544       break;
14545     case PPC::BI__builtin_altivec_lvebx:
14546       ID = Intrinsic::ppc_altivec_lvebx;
14547       break;
14548     case PPC::BI__builtin_altivec_lvehx:
14549       ID = Intrinsic::ppc_altivec_lvehx;
14550       break;
14551     case PPC::BI__builtin_altivec_lvewx:
14552       ID = Intrinsic::ppc_altivec_lvewx;
14553       break;
14554     case PPC::BI__builtin_altivec_lvsl:
14555       ID = Intrinsic::ppc_altivec_lvsl;
14556       break;
14557     case PPC::BI__builtin_altivec_lvsr:
14558       ID = Intrinsic::ppc_altivec_lvsr;
14559       break;
14560     case PPC::BI__builtin_vsx_lxvd2x:
14561       ID = Intrinsic::ppc_vsx_lxvd2x;
14562       break;
14563     case PPC::BI__builtin_vsx_lxvw4x:
14564       ID = Intrinsic::ppc_vsx_lxvw4x;
14565       break;
14566     case PPC::BI__builtin_vsx_lxvd2x_be:
14567       ID = Intrinsic::ppc_vsx_lxvd2x_be;
14568       break;
14569     case PPC::BI__builtin_vsx_lxvw4x_be:
14570       ID = Intrinsic::ppc_vsx_lxvw4x_be;
14571       break;
14572     case PPC::BI__builtin_vsx_lxvl:
14573       ID = Intrinsic::ppc_vsx_lxvl;
14574       break;
14575     case PPC::BI__builtin_vsx_lxvll:
14576       ID = Intrinsic::ppc_vsx_lxvll;
14577       break;
14578     }
14579     llvm::Function *F = CGM.getIntrinsic(ID);
14580     return Builder.CreateCall(F, Ops, "");
14581   }
14582 
14583   // vec_st, vec_xst_be
14584   case PPC::BI__builtin_altivec_stvx:
14585   case PPC::BI__builtin_altivec_stvxl:
14586   case PPC::BI__builtin_altivec_stvebx:
14587   case PPC::BI__builtin_altivec_stvehx:
14588   case PPC::BI__builtin_altivec_stvewx:
14589   case PPC::BI__builtin_vsx_stxvd2x:
14590   case PPC::BI__builtin_vsx_stxvw4x:
14591   case PPC::BI__builtin_vsx_stxvd2x_be:
14592   case PPC::BI__builtin_vsx_stxvw4x_be:
14593   case PPC::BI__builtin_vsx_stxvl:
14594   case PPC::BI__builtin_vsx_stxvll:
14595   {
14596     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
14597       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
14598       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14599     }else {
14600       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
14601       Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
14602       Ops.pop_back();
14603     }
14604 
14605     switch (BuiltinID) {
14606     default: llvm_unreachable("Unsupported st intrinsic!");
14607     case PPC::BI__builtin_altivec_stvx:
14608       ID = Intrinsic::ppc_altivec_stvx;
14609       break;
14610     case PPC::BI__builtin_altivec_stvxl:
14611       ID = Intrinsic::ppc_altivec_stvxl;
14612       break;
14613     case PPC::BI__builtin_altivec_stvebx:
14614       ID = Intrinsic::ppc_altivec_stvebx;
14615       break;
14616     case PPC::BI__builtin_altivec_stvehx:
14617       ID = Intrinsic::ppc_altivec_stvehx;
14618       break;
14619     case PPC::BI__builtin_altivec_stvewx:
14620       ID = Intrinsic::ppc_altivec_stvewx;
14621       break;
14622     case PPC::BI__builtin_vsx_stxvd2x:
14623       ID = Intrinsic::ppc_vsx_stxvd2x;
14624       break;
14625     case PPC::BI__builtin_vsx_stxvw4x:
14626       ID = Intrinsic::ppc_vsx_stxvw4x;
14627       break;
14628     case PPC::BI__builtin_vsx_stxvd2x_be:
14629       ID = Intrinsic::ppc_vsx_stxvd2x_be;
14630       break;
14631     case PPC::BI__builtin_vsx_stxvw4x_be:
14632       ID = Intrinsic::ppc_vsx_stxvw4x_be;
14633       break;
14634     case PPC::BI__builtin_vsx_stxvl:
14635       ID = Intrinsic::ppc_vsx_stxvl;
14636       break;
14637     case PPC::BI__builtin_vsx_stxvll:
14638       ID = Intrinsic::ppc_vsx_stxvll;
14639       break;
14640     }
14641     llvm::Function *F = CGM.getIntrinsic(ID);
14642     return Builder.CreateCall(F, Ops, "");
14643   }
14644   // Square root
14645   case PPC::BI__builtin_vsx_xvsqrtsp:
14646   case PPC::BI__builtin_vsx_xvsqrtdp: {
14647     llvm::Type *ResultType = ConvertType(E->getType());
14648     Value *X = EmitScalarExpr(E->getArg(0));
14649     if (Builder.getIsFPConstrained()) {
14650       llvm::Function *F = CGM.getIntrinsic(
14651           Intrinsic::experimental_constrained_sqrt, ResultType);
14652       return Builder.CreateConstrainedFPCall(F, X);
14653     } else {
14654       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
14655       return Builder.CreateCall(F, X);
14656     }
14657   }
14658   // Count leading zeros
14659   case PPC::BI__builtin_altivec_vclzb:
14660   case PPC::BI__builtin_altivec_vclzh:
14661   case PPC::BI__builtin_altivec_vclzw:
14662   case PPC::BI__builtin_altivec_vclzd: {
14663     llvm::Type *ResultType = ConvertType(E->getType());
14664     Value *X = EmitScalarExpr(E->getArg(0));
14665     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14666     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
14667     return Builder.CreateCall(F, {X, Undef});
14668   }
14669   case PPC::BI__builtin_altivec_vctzb:
14670   case PPC::BI__builtin_altivec_vctzh:
14671   case PPC::BI__builtin_altivec_vctzw:
14672   case PPC::BI__builtin_altivec_vctzd: {
14673     llvm::Type *ResultType = ConvertType(E->getType());
14674     Value *X = EmitScalarExpr(E->getArg(0));
14675     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14676     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
14677     return Builder.CreateCall(F, {X, Undef});
14678   }
14679   case PPC::BI__builtin_altivec_vec_replace_elt:
14680   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
14681     // The third argument of vec_replace_elt and vec_replace_unaligned must
14682     // be a compile time constant and will be emitted either to the vinsw
14683     // or vinsd instruction.
14684     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14685     assert(ArgCI &&
14686            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
14687     llvm::Type *ResultType = ConvertType(E->getType());
14688     llvm::Function *F = nullptr;
14689     Value *Call = nullptr;
14690     int64_t ConstArg = ArgCI->getSExtValue();
14691     unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
14692     bool Is32Bit = false;
14693     assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width");
14694     // The input to vec_replace_elt is an element index, not a byte index.
14695     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
14696       ConstArg *= ArgWidth / 8;
14697     if (ArgWidth == 32) {
14698       Is32Bit = true;
14699       // When the second argument is 32 bits, it can either be an integer or
14700       // a float. The vinsw intrinsic is used in this case.
14701       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
14702       // Fix the constant according to endianess.
14703       if (getTarget().isLittleEndian())
14704         ConstArg = 12 - ConstArg;
14705     } else {
14706       // When the second argument is 64 bits, it can either be a long long or
14707       // a double. The vinsd intrinsic is used in this case.
14708       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
14709       // Fix the constant for little endian.
14710       if (getTarget().isLittleEndian())
14711         ConstArg = 8 - ConstArg;
14712     }
14713     Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
14714     // Depending on ArgWidth, the input vector could be a float or a double.
14715     // If the input vector is a float type, bitcast the inputs to integers. Or,
14716     // if the input vector is a double, bitcast the inputs to 64-bit integers.
14717     if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
14718       Ops[0] = Builder.CreateBitCast(
14719           Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
14720                           : llvm::FixedVectorType::get(Int64Ty, 2));
14721       Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
14722     }
14723     // Emit the call to vinsw or vinsd.
14724     Call = Builder.CreateCall(F, Ops);
14725     // Depending on the builtin, bitcast to the approriate result type.
14726     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
14727         !Ops[1]->getType()->isIntegerTy())
14728       return Builder.CreateBitCast(Call, ResultType);
14729     else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
14730              Ops[1]->getType()->isIntegerTy())
14731       return Call;
14732     else
14733       return Builder.CreateBitCast(Call,
14734                                    llvm::FixedVectorType::get(Int8Ty, 16));
14735   }
14736   case PPC::BI__builtin_altivec_vpopcntb:
14737   case PPC::BI__builtin_altivec_vpopcnth:
14738   case PPC::BI__builtin_altivec_vpopcntw:
14739   case PPC::BI__builtin_altivec_vpopcntd: {
14740     llvm::Type *ResultType = ConvertType(E->getType());
14741     Value *X = EmitScalarExpr(E->getArg(0));
14742     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14743     return Builder.CreateCall(F, X);
14744   }
14745   // Copy sign
14746   case PPC::BI__builtin_vsx_xvcpsgnsp:
14747   case PPC::BI__builtin_vsx_xvcpsgndp: {
14748     llvm::Type *ResultType = ConvertType(E->getType());
14749     Value *X = EmitScalarExpr(E->getArg(0));
14750     Value *Y = EmitScalarExpr(E->getArg(1));
14751     ID = Intrinsic::copysign;
14752     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14753     return Builder.CreateCall(F, {X, Y});
14754   }
14755   // Rounding/truncation
14756   case PPC::BI__builtin_vsx_xvrspip:
14757   case PPC::BI__builtin_vsx_xvrdpip:
14758   case PPC::BI__builtin_vsx_xvrdpim:
14759   case PPC::BI__builtin_vsx_xvrspim:
14760   case PPC::BI__builtin_vsx_xvrdpi:
14761   case PPC::BI__builtin_vsx_xvrspi:
14762   case PPC::BI__builtin_vsx_xvrdpic:
14763   case PPC::BI__builtin_vsx_xvrspic:
14764   case PPC::BI__builtin_vsx_xvrdpiz:
14765   case PPC::BI__builtin_vsx_xvrspiz: {
14766     llvm::Type *ResultType = ConvertType(E->getType());
14767     Value *X = EmitScalarExpr(E->getArg(0));
14768     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
14769         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
14770       ID = Builder.getIsFPConstrained()
14771                ? Intrinsic::experimental_constrained_floor
14772                : Intrinsic::floor;
14773     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
14774              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
14775       ID = Builder.getIsFPConstrained()
14776                ? Intrinsic::experimental_constrained_round
14777                : Intrinsic::round;
14778     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
14779              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
14780       ID = Builder.getIsFPConstrained()
14781                ? Intrinsic::experimental_constrained_rint
14782                : Intrinsic::rint;
14783     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
14784              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
14785       ID = Builder.getIsFPConstrained()
14786                ? Intrinsic::experimental_constrained_ceil
14787                : Intrinsic::ceil;
14788     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
14789              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
14790       ID = Builder.getIsFPConstrained()
14791                ? Intrinsic::experimental_constrained_trunc
14792                : Intrinsic::trunc;
14793     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14794     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
14795                                         : Builder.CreateCall(F, X);
14796   }
14797 
14798   // Absolute value
14799   case PPC::BI__builtin_vsx_xvabsdp:
14800   case PPC::BI__builtin_vsx_xvabssp: {
14801     llvm::Type *ResultType = ConvertType(E->getType());
14802     Value *X = EmitScalarExpr(E->getArg(0));
14803     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
14804     return Builder.CreateCall(F, X);
14805   }
14806 
14807   // FMA variations
14808   case PPC::BI__builtin_vsx_xvmaddadp:
14809   case PPC::BI__builtin_vsx_xvmaddasp:
14810   case PPC::BI__builtin_vsx_xvnmaddadp:
14811   case PPC::BI__builtin_vsx_xvnmaddasp:
14812   case PPC::BI__builtin_vsx_xvmsubadp:
14813   case PPC::BI__builtin_vsx_xvmsubasp:
14814   case PPC::BI__builtin_vsx_xvnmsubadp:
14815   case PPC::BI__builtin_vsx_xvnmsubasp: {
14816     llvm::Type *ResultType = ConvertType(E->getType());
14817     Value *X = EmitScalarExpr(E->getArg(0));
14818     Value *Y = EmitScalarExpr(E->getArg(1));
14819     Value *Z = EmitScalarExpr(E->getArg(2));
14820     llvm::Function *F;
14821     if (Builder.getIsFPConstrained())
14822       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
14823     else
14824       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
14825     switch (BuiltinID) {
14826       case PPC::BI__builtin_vsx_xvmaddadp:
14827       case PPC::BI__builtin_vsx_xvmaddasp:
14828         if (Builder.getIsFPConstrained())
14829           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
14830         else
14831           return Builder.CreateCall(F, {X, Y, Z});
14832       case PPC::BI__builtin_vsx_xvnmaddadp:
14833       case PPC::BI__builtin_vsx_xvnmaddasp:
14834         if (Builder.getIsFPConstrained())
14835           return Builder.CreateFNeg(
14836               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
14837         else
14838           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
14839       case PPC::BI__builtin_vsx_xvmsubadp:
14840       case PPC::BI__builtin_vsx_xvmsubasp:
14841         if (Builder.getIsFPConstrained())
14842           return Builder.CreateConstrainedFPCall(
14843               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14844         else
14845           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14846       case PPC::BI__builtin_vsx_xvnmsubadp:
14847       case PPC::BI__builtin_vsx_xvnmsubasp:
14848         if (Builder.getIsFPConstrained())
14849           return Builder.CreateFNeg(
14850               Builder.CreateConstrainedFPCall(
14851                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14852               "neg");
14853         else
14854           return Builder.CreateFNeg(
14855               Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14856               "neg");
14857     }
14858     llvm_unreachable("Unknown FMA operation");
14859     return nullptr; // Suppress no-return warning
14860   }
14861 
14862   case PPC::BI__builtin_vsx_insertword: {
14863     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
14864 
14865     // Third argument is a compile time constant int. It must be clamped to
14866     // to the range [0, 12].
14867     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14868     assert(ArgCI &&
14869            "Third arg to xxinsertw intrinsic must be constant integer");
14870     const int64_t MaxIndex = 12;
14871     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14872 
14873     // The builtin semantics don't exactly match the xxinsertw instructions
14874     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
14875     // word from the first argument, and inserts it in the second argument. The
14876     // instruction extracts the word from its second input register and inserts
14877     // it into its first input register, so swap the first and second arguments.
14878     std::swap(Ops[0], Ops[1]);
14879 
14880     // Need to cast the second argument from a vector of unsigned int to a
14881     // vector of long long.
14882     Ops[1] =
14883         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14884 
14885     if (getTarget().isLittleEndian()) {
14886       // Reverse the double words in the vector we will extract from.
14887       Ops[0] =
14888           Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14889       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
14890 
14891       // Reverse the index.
14892       Index = MaxIndex - Index;
14893     }
14894 
14895     // Intrinsic expects the first arg to be a vector of int.
14896     Ops[0] =
14897         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14898     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
14899     return Builder.CreateCall(F, Ops);
14900   }
14901 
14902   case PPC::BI__builtin_vsx_extractuword: {
14903     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
14904 
14905     // Intrinsic expects the first argument to be a vector of doublewords.
14906     Ops[0] =
14907         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14908 
14909     // The second argument is a compile time constant int that needs to
14910     // be clamped to the range [0, 12].
14911     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
14912     assert(ArgCI &&
14913            "Second Arg to xxextractuw intrinsic must be a constant integer!");
14914     const int64_t MaxIndex = 12;
14915     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14916 
14917     if (getTarget().isLittleEndian()) {
14918       // Reverse the index.
14919       Index = MaxIndex - Index;
14920       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14921 
14922       // Emit the call, then reverse the double words of the results vector.
14923       Value *Call = Builder.CreateCall(F, Ops);
14924 
14925       Value *ShuffleCall =
14926           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
14927       return ShuffleCall;
14928     } else {
14929       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14930       return Builder.CreateCall(F, Ops);
14931     }
14932   }
14933 
14934   case PPC::BI__builtin_vsx_xxpermdi: {
14935     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14936     assert(ArgCI && "Third arg must be constant integer!");
14937 
14938     unsigned Index = ArgCI->getZExtValue();
14939     Ops[0] =
14940         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14941     Ops[1] =
14942         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14943 
14944     // Account for endianness by treating this as just a shuffle. So we use the
14945     // same indices for both LE and BE in order to produce expected results in
14946     // both cases.
14947     int ElemIdx0 = (Index & 2) >> 1;
14948     int ElemIdx1 = 2 + (Index & 1);
14949 
14950     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
14951     Value *ShuffleCall =
14952         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14953     QualType BIRetType = E->getType();
14954     auto RetTy = ConvertType(BIRetType);
14955     return Builder.CreateBitCast(ShuffleCall, RetTy);
14956   }
14957 
14958   case PPC::BI__builtin_vsx_xxsldwi: {
14959     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14960     assert(ArgCI && "Third argument must be a compile time constant");
14961     unsigned Index = ArgCI->getZExtValue() & 0x3;
14962     Ops[0] =
14963         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14964     Ops[1] =
14965         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
14966 
14967     // Create a shuffle mask
14968     int ElemIdx0;
14969     int ElemIdx1;
14970     int ElemIdx2;
14971     int ElemIdx3;
14972     if (getTarget().isLittleEndian()) {
14973       // Little endian element N comes from element 8+N-Index of the
14974       // concatenated wide vector (of course, using modulo arithmetic on
14975       // the total number of elements).
14976       ElemIdx0 = (8 - Index) % 8;
14977       ElemIdx1 = (9 - Index) % 8;
14978       ElemIdx2 = (10 - Index) % 8;
14979       ElemIdx3 = (11 - Index) % 8;
14980     } else {
14981       // Big endian ElemIdx<N> = Index + N
14982       ElemIdx0 = Index;
14983       ElemIdx1 = Index + 1;
14984       ElemIdx2 = Index + 2;
14985       ElemIdx3 = Index + 3;
14986     }
14987 
14988     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
14989     Value *ShuffleCall =
14990         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14991     QualType BIRetType = E->getType();
14992     auto RetTy = ConvertType(BIRetType);
14993     return Builder.CreateBitCast(ShuffleCall, RetTy);
14994   }
14995 
14996   case PPC::BI__builtin_pack_vector_int128: {
14997     bool isLittleEndian = getTarget().isLittleEndian();
14998     Value *UndefValue =
14999         llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
15000     Value *Res = Builder.CreateInsertElement(
15001         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
15002     Res = Builder.CreateInsertElement(Res, Ops[1],
15003                                       (uint64_t)(isLittleEndian ? 0 : 1));
15004     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
15005   }
15006 
15007   case PPC::BI__builtin_unpack_vector_int128: {
15008     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
15009     Value *Unpacked = Builder.CreateBitCast(
15010         Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
15011 
15012     if (getTarget().isLittleEndian())
15013       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
15014 
15015     return Builder.CreateExtractElement(Unpacked, Index);
15016   }
15017 
15018   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
15019   // Some of the MMA instructions accumulate their result into an existing
15020   // accumulator whereas the others generate a new accumulator. So we need to
15021   // use custom code generation to expand a builtin call with a pointer to a
15022   // load (if the corresponding instruction accumulates its result) followed by
15023   // the call to the intrinsic and a store of the result.
15024 #define CUSTOM_BUILTIN(Name, Types, Accumulate) \
15025   case PPC::BI__builtin_##Name:
15026 #include "clang/Basic/BuiltinsPPC.def"
15027   {
15028     // The first argument of these two builtins is a pointer used to store their
15029     // result. However, the llvm intrinsics return their result in multiple
15030     // return values. So, here we emit code extracting these values from the
15031     // intrinsic results and storing them using that pointer.
15032     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
15033         BuiltinID == PPC::BI__builtin_vsx_disassemble_pair) {
15034       unsigned NumVecs = 2;
15035       auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
15036       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
15037         NumVecs = 4;
15038         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
15039       }
15040       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
15041       Address Addr = EmitPointerWithAlignment(E->getArg(1));
15042       Value *Vec = Builder.CreateLoad(Addr);
15043       Value *Call = Builder.CreateCall(F, {Vec});
15044       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
15045       Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
15046       for (unsigned i=0; i<NumVecs; i++) {
15047         Value *Vec = Builder.CreateExtractValue(Call, i);
15048         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
15049         Value *GEP = Builder.CreateInBoundsGEP(Ptr, Index);
15050         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
15051       }
15052       return Call;
15053     }
15054     bool Accumulate;
15055     switch (BuiltinID) {
15056   #define CUSTOM_BUILTIN(Name, Types, Acc) \
15057     case PPC::BI__builtin_##Name: \
15058       ID = Intrinsic::ppc_##Name; \
15059       Accumulate = Acc; \
15060       break;
15061   #include "clang/Basic/BuiltinsPPC.def"
15062     }
15063     if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15064         BuiltinID == PPC::BI__builtin_vsx_stxvp) {
15065       if (BuiltinID == PPC::BI__builtin_vsx_lxvp) {
15066         Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15067         Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
15068       } else {
15069         Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15070         Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
15071       }
15072       Ops.pop_back();
15073       llvm::Function *F = CGM.getIntrinsic(ID);
15074       return Builder.CreateCall(F, Ops, "");
15075     }
15076     SmallVector<Value*, 4> CallOps;
15077     if (Accumulate) {
15078       Address Addr = EmitPointerWithAlignment(E->getArg(0));
15079       Value *Acc = Builder.CreateLoad(Addr);
15080       CallOps.push_back(Acc);
15081     }
15082     for (unsigned i=1; i<Ops.size(); i++)
15083       CallOps.push_back(Ops[i]);
15084     llvm::Function *F = CGM.getIntrinsic(ID);
15085     Value *Call = Builder.CreateCall(F, CallOps);
15086     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
15087   }
15088   }
15089 }
15090 
15091 namespace {
15092 // If \p E is not null pointer, insert address space cast to match return
15093 // type of \p E if necessary.
15094 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
15095                              const CallExpr *E = nullptr) {
15096   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
15097   auto *Call = CGF.Builder.CreateCall(F);
15098   Call->addAttribute(
15099       AttributeList::ReturnIndex,
15100       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
15101   Call->addAttribute(AttributeList::ReturnIndex,
15102                      Attribute::getWithAlignment(Call->getContext(), Align(4)));
15103   if (!E)
15104     return Call;
15105   QualType BuiltinRetType = E->getType();
15106   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
15107   if (RetTy == Call->getType())
15108     return Call;
15109   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
15110 }
15111 
15112 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
15113 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
15114   const unsigned XOffset = 4;
15115   auto *DP = EmitAMDGPUDispatchPtr(CGF);
15116   // Indexing the HSA kernel_dispatch_packet struct.
15117   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
15118   auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
15119   auto *DstTy =
15120       CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15121   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15122   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
15123   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
15124   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
15125       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
15126   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
15127   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15128       llvm::MDNode::get(CGF.getLLVMContext(), None));
15129   return LD;
15130 }
15131 
15132 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
15133 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
15134   const unsigned XOffset = 12;
15135   auto *DP = EmitAMDGPUDispatchPtr(CGF);
15136   // Indexing the HSA kernel_dispatch_packet struct.
15137   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
15138   auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
15139   auto *DstTy =
15140       CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15141   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15142   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4)));
15143   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15144                   llvm::MDNode::get(CGF.getLLVMContext(), None));
15145   return LD;
15146 }
15147 } // namespace
15148 
15149 // For processing memory ordering and memory scope arguments of various
15150 // amdgcn builtins.
15151 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
15152 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
15153 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
15154 // specific SyncScopeID and writes it to \p SSID.
15155 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
15156                                               llvm::AtomicOrdering &AO,
15157                                               llvm::SyncScope::ID &SSID) {
15158   if (isa<llvm::ConstantInt>(Order)) {
15159     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
15160 
15161     // Map C11/C++11 memory ordering to LLVM memory ordering
15162     switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
15163     case llvm::AtomicOrderingCABI::acquire:
15164       AO = llvm::AtomicOrdering::Acquire;
15165       break;
15166     case llvm::AtomicOrderingCABI::release:
15167       AO = llvm::AtomicOrdering::Release;
15168       break;
15169     case llvm::AtomicOrderingCABI::acq_rel:
15170       AO = llvm::AtomicOrdering::AcquireRelease;
15171       break;
15172     case llvm::AtomicOrderingCABI::seq_cst:
15173       AO = llvm::AtomicOrdering::SequentiallyConsistent;
15174       break;
15175     case llvm::AtomicOrderingCABI::consume:
15176     case llvm::AtomicOrderingCABI::relaxed:
15177       break;
15178     }
15179 
15180     StringRef scp;
15181     llvm::getConstantStringInfo(Scope, scp);
15182     SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
15183     return true;
15184   }
15185   return false;
15186 }
15187 
15188 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
15189                                               const CallExpr *E) {
15190   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
15191   llvm::SyncScope::ID SSID;
15192   switch (BuiltinID) {
15193   case AMDGPU::BI__builtin_amdgcn_div_scale:
15194   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
15195     // Translate from the intrinsics's struct return to the builtin's out
15196     // argument.
15197 
15198     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
15199 
15200     llvm::Value *X = EmitScalarExpr(E->getArg(0));
15201     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
15202     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
15203 
15204     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
15205                                            X->getType());
15206 
15207     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
15208 
15209     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
15210     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
15211 
15212     llvm::Type *RealFlagType
15213       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
15214 
15215     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
15216     Builder.CreateStore(FlagExt, FlagOutPtr);
15217     return Result;
15218   }
15219   case AMDGPU::BI__builtin_amdgcn_div_fmas:
15220   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
15221     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15222     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15223     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15224     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15225 
15226     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
15227                                       Src0->getType());
15228     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
15229     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
15230   }
15231 
15232   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
15233     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
15234   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
15235     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
15236   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
15237   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
15238     llvm::SmallVector<llvm::Value *, 6> Args;
15239     for (unsigned I = 0; I != E->getNumArgs(); ++I)
15240       Args.push_back(EmitScalarExpr(E->getArg(I)));
15241     assert(Args.size() == 5 || Args.size() == 6);
15242     if (Args.size() == 5)
15243       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
15244     Function *F =
15245         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
15246     return Builder.CreateCall(F, Args);
15247   }
15248   case AMDGPU::BI__builtin_amdgcn_div_fixup:
15249   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
15250   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
15251     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
15252   case AMDGPU::BI__builtin_amdgcn_trig_preop:
15253   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
15254     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
15255   case AMDGPU::BI__builtin_amdgcn_rcp:
15256   case AMDGPU::BI__builtin_amdgcn_rcpf:
15257   case AMDGPU::BI__builtin_amdgcn_rcph:
15258     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
15259   case AMDGPU::BI__builtin_amdgcn_sqrt:
15260   case AMDGPU::BI__builtin_amdgcn_sqrtf:
15261   case AMDGPU::BI__builtin_amdgcn_sqrth:
15262     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
15263   case AMDGPU::BI__builtin_amdgcn_rsq:
15264   case AMDGPU::BI__builtin_amdgcn_rsqf:
15265   case AMDGPU::BI__builtin_amdgcn_rsqh:
15266     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
15267   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
15268   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
15269     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
15270   case AMDGPU::BI__builtin_amdgcn_sinf:
15271   case AMDGPU::BI__builtin_amdgcn_sinh:
15272     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
15273   case AMDGPU::BI__builtin_amdgcn_cosf:
15274   case AMDGPU::BI__builtin_amdgcn_cosh:
15275     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
15276   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
15277     return EmitAMDGPUDispatchPtr(*this, E);
15278   case AMDGPU::BI__builtin_amdgcn_log_clampf:
15279     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
15280   case AMDGPU::BI__builtin_amdgcn_ldexp:
15281   case AMDGPU::BI__builtin_amdgcn_ldexpf:
15282   case AMDGPU::BI__builtin_amdgcn_ldexph:
15283     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
15284   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
15285   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
15286   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
15287     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
15288   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
15289   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
15290     Value *Src0 = EmitScalarExpr(E->getArg(0));
15291     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15292                                 { Builder.getInt32Ty(), Src0->getType() });
15293     return Builder.CreateCall(F, Src0);
15294   }
15295   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
15296     Value *Src0 = EmitScalarExpr(E->getArg(0));
15297     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15298                                 { Builder.getInt16Ty(), Src0->getType() });
15299     return Builder.CreateCall(F, Src0);
15300   }
15301   case AMDGPU::BI__builtin_amdgcn_fract:
15302   case AMDGPU::BI__builtin_amdgcn_fractf:
15303   case AMDGPU::BI__builtin_amdgcn_fracth:
15304     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
15305   case AMDGPU::BI__builtin_amdgcn_lerp:
15306     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
15307   case AMDGPU::BI__builtin_amdgcn_ubfe:
15308     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
15309   case AMDGPU::BI__builtin_amdgcn_sbfe:
15310     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
15311   case AMDGPU::BI__builtin_amdgcn_uicmp:
15312   case AMDGPU::BI__builtin_amdgcn_uicmpl:
15313   case AMDGPU::BI__builtin_amdgcn_sicmp:
15314   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
15315     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15316     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15317     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15318 
15319     // FIXME-GFX10: How should 32 bit mask be handled?
15320     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
15321       { Builder.getInt64Ty(), Src0->getType() });
15322     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15323   }
15324   case AMDGPU::BI__builtin_amdgcn_fcmp:
15325   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
15326     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15327     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15328     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15329 
15330     // FIXME-GFX10: How should 32 bit mask be handled?
15331     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
15332       { Builder.getInt64Ty(), Src0->getType() });
15333     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15334   }
15335   case AMDGPU::BI__builtin_amdgcn_class:
15336   case AMDGPU::BI__builtin_amdgcn_classf:
15337   case AMDGPU::BI__builtin_amdgcn_classh:
15338     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
15339   case AMDGPU::BI__builtin_amdgcn_fmed3f:
15340   case AMDGPU::BI__builtin_amdgcn_fmed3h:
15341     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
15342   case AMDGPU::BI__builtin_amdgcn_ds_append:
15343   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
15344     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
15345       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
15346     Value *Src0 = EmitScalarExpr(E->getArg(0));
15347     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
15348     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
15349   }
15350   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15351   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15352   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
15353     Intrinsic::ID Intrin;
15354     switch (BuiltinID) {
15355     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15356       Intrin = Intrinsic::amdgcn_ds_fadd;
15357       break;
15358     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15359       Intrin = Intrinsic::amdgcn_ds_fmin;
15360       break;
15361     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
15362       Intrin = Intrinsic::amdgcn_ds_fmax;
15363       break;
15364     }
15365     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15366     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15367     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15368     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15369     llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
15370     llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
15371     llvm::FunctionType *FTy = F->getFunctionType();
15372     llvm::Type *PTy = FTy->getParamType(0);
15373     Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
15374     return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
15375   }
15376   case AMDGPU::BI__builtin_amdgcn_read_exec: {
15377     CallInst *CI = cast<CallInst>(
15378       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
15379     CI->setConvergent();
15380     return CI;
15381   }
15382   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
15383   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
15384     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
15385       "exec_lo" : "exec_hi";
15386     CallInst *CI = cast<CallInst>(
15387       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
15388     CI->setConvergent();
15389     return CI;
15390   }
15391   // amdgcn workitem
15392   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
15393     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
15394   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
15395     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
15396   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
15397     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
15398 
15399   // amdgcn workgroup size
15400   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
15401     return EmitAMDGPUWorkGroupSize(*this, 0);
15402   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
15403     return EmitAMDGPUWorkGroupSize(*this, 1);
15404   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
15405     return EmitAMDGPUWorkGroupSize(*this, 2);
15406 
15407   // amdgcn grid size
15408   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
15409     return EmitAMDGPUGridSize(*this, 0);
15410   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
15411     return EmitAMDGPUGridSize(*this, 1);
15412   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
15413     return EmitAMDGPUGridSize(*this, 2);
15414 
15415   // r600 intrinsics
15416   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
15417   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
15418     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
15419   case AMDGPU::BI__builtin_r600_read_tidig_x:
15420     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
15421   case AMDGPU::BI__builtin_r600_read_tidig_y:
15422     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
15423   case AMDGPU::BI__builtin_r600_read_tidig_z:
15424     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
15425   case AMDGPU::BI__builtin_amdgcn_alignbit: {
15426     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15427     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15428     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15429     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
15430     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15431   }
15432 
15433   case AMDGPU::BI__builtin_amdgcn_fence: {
15434     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
15435                                 EmitScalarExpr(E->getArg(1)), AO, SSID))
15436       return Builder.CreateFence(AO, SSID);
15437     LLVM_FALLTHROUGH;
15438   }
15439   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15440   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15441   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15442   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
15443     unsigned BuiltinAtomicOp;
15444     llvm::Type *ResultType = ConvertType(E->getType());
15445 
15446     switch (BuiltinID) {
15447     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15448     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15449       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
15450       break;
15451     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15452     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
15453       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
15454       break;
15455     }
15456 
15457     Value *Ptr = EmitScalarExpr(E->getArg(0));
15458     Value *Val = EmitScalarExpr(E->getArg(1));
15459 
15460     llvm::Function *F =
15461         CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
15462 
15463     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
15464                                 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
15465 
15466       // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
15467       // scope as unsigned values
15468       Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
15469       Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
15470 
15471       QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
15472       bool Volatile =
15473           PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
15474       Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
15475 
15476       return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
15477     }
15478     LLVM_FALLTHROUGH;
15479   }
15480   default:
15481     return nullptr;
15482   }
15483 }
15484 
15485 /// Handle a SystemZ function in which the final argument is a pointer
15486 /// to an int that receives the post-instruction CC value.  At the LLVM level
15487 /// this is represented as a function that returns a {result, cc} pair.
15488 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
15489                                          unsigned IntrinsicID,
15490                                          const CallExpr *E) {
15491   unsigned NumArgs = E->getNumArgs() - 1;
15492   SmallVector<Value *, 8> Args(NumArgs);
15493   for (unsigned I = 0; I < NumArgs; ++I)
15494     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
15495   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
15496   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
15497   Value *Call = CGF.Builder.CreateCall(F, Args);
15498   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
15499   CGF.Builder.CreateStore(CC, CCPtr);
15500   return CGF.Builder.CreateExtractValue(Call, 0);
15501 }
15502 
15503 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
15504                                                const CallExpr *E) {
15505   switch (BuiltinID) {
15506   case SystemZ::BI__builtin_tbegin: {
15507     Value *TDB = EmitScalarExpr(E->getArg(0));
15508     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15509     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
15510     return Builder.CreateCall(F, {TDB, Control});
15511   }
15512   case SystemZ::BI__builtin_tbegin_nofloat: {
15513     Value *TDB = EmitScalarExpr(E->getArg(0));
15514     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15515     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
15516     return Builder.CreateCall(F, {TDB, Control});
15517   }
15518   case SystemZ::BI__builtin_tbeginc: {
15519     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
15520     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
15521     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
15522     return Builder.CreateCall(F, {TDB, Control});
15523   }
15524   case SystemZ::BI__builtin_tabort: {
15525     Value *Data = EmitScalarExpr(E->getArg(0));
15526     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
15527     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
15528   }
15529   case SystemZ::BI__builtin_non_tx_store: {
15530     Value *Address = EmitScalarExpr(E->getArg(0));
15531     Value *Data = EmitScalarExpr(E->getArg(1));
15532     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
15533     return Builder.CreateCall(F, {Data, Address});
15534   }
15535 
15536   // Vector builtins.  Note that most vector builtins are mapped automatically
15537   // to target-specific LLVM intrinsics.  The ones handled specially here can
15538   // be represented via standard LLVM IR, which is preferable to enable common
15539   // LLVM optimizations.
15540 
15541   case SystemZ::BI__builtin_s390_vpopctb:
15542   case SystemZ::BI__builtin_s390_vpopcth:
15543   case SystemZ::BI__builtin_s390_vpopctf:
15544   case SystemZ::BI__builtin_s390_vpopctg: {
15545     llvm::Type *ResultType = ConvertType(E->getType());
15546     Value *X = EmitScalarExpr(E->getArg(0));
15547     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15548     return Builder.CreateCall(F, X);
15549   }
15550 
15551   case SystemZ::BI__builtin_s390_vclzb:
15552   case SystemZ::BI__builtin_s390_vclzh:
15553   case SystemZ::BI__builtin_s390_vclzf:
15554   case SystemZ::BI__builtin_s390_vclzg: {
15555     llvm::Type *ResultType = ConvertType(E->getType());
15556     Value *X = EmitScalarExpr(E->getArg(0));
15557     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15558     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15559     return Builder.CreateCall(F, {X, Undef});
15560   }
15561 
15562   case SystemZ::BI__builtin_s390_vctzb:
15563   case SystemZ::BI__builtin_s390_vctzh:
15564   case SystemZ::BI__builtin_s390_vctzf:
15565   case SystemZ::BI__builtin_s390_vctzg: {
15566     llvm::Type *ResultType = ConvertType(E->getType());
15567     Value *X = EmitScalarExpr(E->getArg(0));
15568     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15569     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15570     return Builder.CreateCall(F, {X, Undef});
15571   }
15572 
15573   case SystemZ::BI__builtin_s390_vfsqsb:
15574   case SystemZ::BI__builtin_s390_vfsqdb: {
15575     llvm::Type *ResultType = ConvertType(E->getType());
15576     Value *X = EmitScalarExpr(E->getArg(0));
15577     if (Builder.getIsFPConstrained()) {
15578       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
15579       return Builder.CreateConstrainedFPCall(F, { X });
15580     } else {
15581       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15582       return Builder.CreateCall(F, X);
15583     }
15584   }
15585   case SystemZ::BI__builtin_s390_vfmasb:
15586   case SystemZ::BI__builtin_s390_vfmadb: {
15587     llvm::Type *ResultType = ConvertType(E->getType());
15588     Value *X = EmitScalarExpr(E->getArg(0));
15589     Value *Y = EmitScalarExpr(E->getArg(1));
15590     Value *Z = EmitScalarExpr(E->getArg(2));
15591     if (Builder.getIsFPConstrained()) {
15592       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15593       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15594     } else {
15595       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15596       return Builder.CreateCall(F, {X, Y, Z});
15597     }
15598   }
15599   case SystemZ::BI__builtin_s390_vfmssb:
15600   case SystemZ::BI__builtin_s390_vfmsdb: {
15601     llvm::Type *ResultType = ConvertType(E->getType());
15602     Value *X = EmitScalarExpr(E->getArg(0));
15603     Value *Y = EmitScalarExpr(E->getArg(1));
15604     Value *Z = EmitScalarExpr(E->getArg(2));
15605     if (Builder.getIsFPConstrained()) {
15606       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15607       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15608     } else {
15609       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15610       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15611     }
15612   }
15613   case SystemZ::BI__builtin_s390_vfnmasb:
15614   case SystemZ::BI__builtin_s390_vfnmadb: {
15615     llvm::Type *ResultType = ConvertType(E->getType());
15616     Value *X = EmitScalarExpr(E->getArg(0));
15617     Value *Y = EmitScalarExpr(E->getArg(1));
15618     Value *Z = EmitScalarExpr(E->getArg(2));
15619     if (Builder.getIsFPConstrained()) {
15620       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15621       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
15622     } else {
15623       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15624       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15625     }
15626   }
15627   case SystemZ::BI__builtin_s390_vfnmssb:
15628   case SystemZ::BI__builtin_s390_vfnmsdb: {
15629     llvm::Type *ResultType = ConvertType(E->getType());
15630     Value *X = EmitScalarExpr(E->getArg(0));
15631     Value *Y = EmitScalarExpr(E->getArg(1));
15632     Value *Z = EmitScalarExpr(E->getArg(2));
15633     if (Builder.getIsFPConstrained()) {
15634       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15635       Value *NegZ = Builder.CreateFNeg(Z, "sub");
15636       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
15637     } else {
15638       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15639       Value *NegZ = Builder.CreateFNeg(Z, "neg");
15640       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
15641     }
15642   }
15643   case SystemZ::BI__builtin_s390_vflpsb:
15644   case SystemZ::BI__builtin_s390_vflpdb: {
15645     llvm::Type *ResultType = ConvertType(E->getType());
15646     Value *X = EmitScalarExpr(E->getArg(0));
15647     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15648     return Builder.CreateCall(F, X);
15649   }
15650   case SystemZ::BI__builtin_s390_vflnsb:
15651   case SystemZ::BI__builtin_s390_vflndb: {
15652     llvm::Type *ResultType = ConvertType(E->getType());
15653     Value *X = EmitScalarExpr(E->getArg(0));
15654     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15655     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
15656   }
15657   case SystemZ::BI__builtin_s390_vfisb:
15658   case SystemZ::BI__builtin_s390_vfidb: {
15659     llvm::Type *ResultType = ConvertType(E->getType());
15660     Value *X = EmitScalarExpr(E->getArg(0));
15661     // Constant-fold the M4 and M5 mask arguments.
15662     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
15663     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15664     // Check whether this instance can be represented via a LLVM standard
15665     // intrinsic.  We only support some combinations of M4 and M5.
15666     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15667     Intrinsic::ID CI;
15668     switch (M4.getZExtValue()) {
15669     default: break;
15670     case 0:  // IEEE-inexact exception allowed
15671       switch (M5.getZExtValue()) {
15672       default: break;
15673       case 0: ID = Intrinsic::rint;
15674               CI = Intrinsic::experimental_constrained_rint; break;
15675       }
15676       break;
15677     case 4:  // IEEE-inexact exception suppressed
15678       switch (M5.getZExtValue()) {
15679       default: break;
15680       case 0: ID = Intrinsic::nearbyint;
15681               CI = Intrinsic::experimental_constrained_nearbyint; break;
15682       case 1: ID = Intrinsic::round;
15683               CI = Intrinsic::experimental_constrained_round; break;
15684       case 5: ID = Intrinsic::trunc;
15685               CI = Intrinsic::experimental_constrained_trunc; break;
15686       case 6: ID = Intrinsic::ceil;
15687               CI = Intrinsic::experimental_constrained_ceil; break;
15688       case 7: ID = Intrinsic::floor;
15689               CI = Intrinsic::experimental_constrained_floor; break;
15690       }
15691       break;
15692     }
15693     if (ID != Intrinsic::not_intrinsic) {
15694       if (Builder.getIsFPConstrained()) {
15695         Function *F = CGM.getIntrinsic(CI, ResultType);
15696         return Builder.CreateConstrainedFPCall(F, X);
15697       } else {
15698         Function *F = CGM.getIntrinsic(ID, ResultType);
15699         return Builder.CreateCall(F, X);
15700       }
15701     }
15702     switch (BuiltinID) { // FIXME: constrained version?
15703       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
15704       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
15705       default: llvm_unreachable("Unknown BuiltinID");
15706     }
15707     Function *F = CGM.getIntrinsic(ID);
15708     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15709     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
15710     return Builder.CreateCall(F, {X, M4Value, M5Value});
15711   }
15712   case SystemZ::BI__builtin_s390_vfmaxsb:
15713   case SystemZ::BI__builtin_s390_vfmaxdb: {
15714     llvm::Type *ResultType = ConvertType(E->getType());
15715     Value *X = EmitScalarExpr(E->getArg(0));
15716     Value *Y = EmitScalarExpr(E->getArg(1));
15717     // Constant-fold the M4 mask argument.
15718     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15719     // Check whether this instance can be represented via a LLVM standard
15720     // intrinsic.  We only support some values of M4.
15721     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15722     Intrinsic::ID CI;
15723     switch (M4.getZExtValue()) {
15724     default: break;
15725     case 4: ID = Intrinsic::maxnum;
15726             CI = Intrinsic::experimental_constrained_maxnum; break;
15727     }
15728     if (ID != Intrinsic::not_intrinsic) {
15729       if (Builder.getIsFPConstrained()) {
15730         Function *F = CGM.getIntrinsic(CI, ResultType);
15731         return Builder.CreateConstrainedFPCall(F, {X, Y});
15732       } else {
15733         Function *F = CGM.getIntrinsic(ID, ResultType);
15734         return Builder.CreateCall(F, {X, Y});
15735       }
15736     }
15737     switch (BuiltinID) {
15738       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
15739       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
15740       default: llvm_unreachable("Unknown BuiltinID");
15741     }
15742     Function *F = CGM.getIntrinsic(ID);
15743     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15744     return Builder.CreateCall(F, {X, Y, M4Value});
15745   }
15746   case SystemZ::BI__builtin_s390_vfminsb:
15747   case SystemZ::BI__builtin_s390_vfmindb: {
15748     llvm::Type *ResultType = ConvertType(E->getType());
15749     Value *X = EmitScalarExpr(E->getArg(0));
15750     Value *Y = EmitScalarExpr(E->getArg(1));
15751     // Constant-fold the M4 mask argument.
15752     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15753     // Check whether this instance can be represented via a LLVM standard
15754     // intrinsic.  We only support some values of M4.
15755     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15756     Intrinsic::ID CI;
15757     switch (M4.getZExtValue()) {
15758     default: break;
15759     case 4: ID = Intrinsic::minnum;
15760             CI = Intrinsic::experimental_constrained_minnum; break;
15761     }
15762     if (ID != Intrinsic::not_intrinsic) {
15763       if (Builder.getIsFPConstrained()) {
15764         Function *F = CGM.getIntrinsic(CI, ResultType);
15765         return Builder.CreateConstrainedFPCall(F, {X, Y});
15766       } else {
15767         Function *F = CGM.getIntrinsic(ID, ResultType);
15768         return Builder.CreateCall(F, {X, Y});
15769       }
15770     }
15771     switch (BuiltinID) {
15772       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
15773       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
15774       default: llvm_unreachable("Unknown BuiltinID");
15775     }
15776     Function *F = CGM.getIntrinsic(ID);
15777     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15778     return Builder.CreateCall(F, {X, Y, M4Value});
15779   }
15780 
15781   case SystemZ::BI__builtin_s390_vlbrh:
15782   case SystemZ::BI__builtin_s390_vlbrf:
15783   case SystemZ::BI__builtin_s390_vlbrg: {
15784     llvm::Type *ResultType = ConvertType(E->getType());
15785     Value *X = EmitScalarExpr(E->getArg(0));
15786     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
15787     return Builder.CreateCall(F, X);
15788   }
15789 
15790   // Vector intrinsics that output the post-instruction CC value.
15791 
15792 #define INTRINSIC_WITH_CC(NAME) \
15793     case SystemZ::BI__builtin_##NAME: \
15794       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
15795 
15796   INTRINSIC_WITH_CC(s390_vpkshs);
15797   INTRINSIC_WITH_CC(s390_vpksfs);
15798   INTRINSIC_WITH_CC(s390_vpksgs);
15799 
15800   INTRINSIC_WITH_CC(s390_vpklshs);
15801   INTRINSIC_WITH_CC(s390_vpklsfs);
15802   INTRINSIC_WITH_CC(s390_vpklsgs);
15803 
15804   INTRINSIC_WITH_CC(s390_vceqbs);
15805   INTRINSIC_WITH_CC(s390_vceqhs);
15806   INTRINSIC_WITH_CC(s390_vceqfs);
15807   INTRINSIC_WITH_CC(s390_vceqgs);
15808 
15809   INTRINSIC_WITH_CC(s390_vchbs);
15810   INTRINSIC_WITH_CC(s390_vchhs);
15811   INTRINSIC_WITH_CC(s390_vchfs);
15812   INTRINSIC_WITH_CC(s390_vchgs);
15813 
15814   INTRINSIC_WITH_CC(s390_vchlbs);
15815   INTRINSIC_WITH_CC(s390_vchlhs);
15816   INTRINSIC_WITH_CC(s390_vchlfs);
15817   INTRINSIC_WITH_CC(s390_vchlgs);
15818 
15819   INTRINSIC_WITH_CC(s390_vfaebs);
15820   INTRINSIC_WITH_CC(s390_vfaehs);
15821   INTRINSIC_WITH_CC(s390_vfaefs);
15822 
15823   INTRINSIC_WITH_CC(s390_vfaezbs);
15824   INTRINSIC_WITH_CC(s390_vfaezhs);
15825   INTRINSIC_WITH_CC(s390_vfaezfs);
15826 
15827   INTRINSIC_WITH_CC(s390_vfeebs);
15828   INTRINSIC_WITH_CC(s390_vfeehs);
15829   INTRINSIC_WITH_CC(s390_vfeefs);
15830 
15831   INTRINSIC_WITH_CC(s390_vfeezbs);
15832   INTRINSIC_WITH_CC(s390_vfeezhs);
15833   INTRINSIC_WITH_CC(s390_vfeezfs);
15834 
15835   INTRINSIC_WITH_CC(s390_vfenebs);
15836   INTRINSIC_WITH_CC(s390_vfenehs);
15837   INTRINSIC_WITH_CC(s390_vfenefs);
15838 
15839   INTRINSIC_WITH_CC(s390_vfenezbs);
15840   INTRINSIC_WITH_CC(s390_vfenezhs);
15841   INTRINSIC_WITH_CC(s390_vfenezfs);
15842 
15843   INTRINSIC_WITH_CC(s390_vistrbs);
15844   INTRINSIC_WITH_CC(s390_vistrhs);
15845   INTRINSIC_WITH_CC(s390_vistrfs);
15846 
15847   INTRINSIC_WITH_CC(s390_vstrcbs);
15848   INTRINSIC_WITH_CC(s390_vstrchs);
15849   INTRINSIC_WITH_CC(s390_vstrcfs);
15850 
15851   INTRINSIC_WITH_CC(s390_vstrczbs);
15852   INTRINSIC_WITH_CC(s390_vstrczhs);
15853   INTRINSIC_WITH_CC(s390_vstrczfs);
15854 
15855   INTRINSIC_WITH_CC(s390_vfcesbs);
15856   INTRINSIC_WITH_CC(s390_vfcedbs);
15857   INTRINSIC_WITH_CC(s390_vfchsbs);
15858   INTRINSIC_WITH_CC(s390_vfchdbs);
15859   INTRINSIC_WITH_CC(s390_vfchesbs);
15860   INTRINSIC_WITH_CC(s390_vfchedbs);
15861 
15862   INTRINSIC_WITH_CC(s390_vftcisb);
15863   INTRINSIC_WITH_CC(s390_vftcidb);
15864 
15865   INTRINSIC_WITH_CC(s390_vstrsb);
15866   INTRINSIC_WITH_CC(s390_vstrsh);
15867   INTRINSIC_WITH_CC(s390_vstrsf);
15868 
15869   INTRINSIC_WITH_CC(s390_vstrszb);
15870   INTRINSIC_WITH_CC(s390_vstrszh);
15871   INTRINSIC_WITH_CC(s390_vstrszf);
15872 
15873 #undef INTRINSIC_WITH_CC
15874 
15875   default:
15876     return nullptr;
15877   }
15878 }
15879 
15880 namespace {
15881 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
15882 struct NVPTXMmaLdstInfo {
15883   unsigned NumResults;  // Number of elements to load/store
15884   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
15885   unsigned IID_col;
15886   unsigned IID_row;
15887 };
15888 
15889 #define MMA_INTR(geom_op_type, layout) \
15890   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
15891 #define MMA_LDST(n, geom_op_type)                                              \
15892   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
15893 
15894 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
15895   switch (BuiltinID) {
15896   // FP MMA loads
15897   case NVPTX::BI__hmma_m16n16k16_ld_a:
15898     return MMA_LDST(8, m16n16k16_load_a_f16);
15899   case NVPTX::BI__hmma_m16n16k16_ld_b:
15900     return MMA_LDST(8, m16n16k16_load_b_f16);
15901   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
15902     return MMA_LDST(4, m16n16k16_load_c_f16);
15903   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
15904     return MMA_LDST(8, m16n16k16_load_c_f32);
15905   case NVPTX::BI__hmma_m32n8k16_ld_a:
15906     return MMA_LDST(8, m32n8k16_load_a_f16);
15907   case NVPTX::BI__hmma_m32n8k16_ld_b:
15908     return MMA_LDST(8, m32n8k16_load_b_f16);
15909   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
15910     return MMA_LDST(4, m32n8k16_load_c_f16);
15911   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
15912     return MMA_LDST(8, m32n8k16_load_c_f32);
15913   case NVPTX::BI__hmma_m8n32k16_ld_a:
15914     return MMA_LDST(8, m8n32k16_load_a_f16);
15915   case NVPTX::BI__hmma_m8n32k16_ld_b:
15916     return MMA_LDST(8, m8n32k16_load_b_f16);
15917   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
15918     return MMA_LDST(4, m8n32k16_load_c_f16);
15919   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
15920     return MMA_LDST(8, m8n32k16_load_c_f32);
15921 
15922   // Integer MMA loads
15923   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
15924     return MMA_LDST(2, m16n16k16_load_a_s8);
15925   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
15926     return MMA_LDST(2, m16n16k16_load_a_u8);
15927   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
15928     return MMA_LDST(2, m16n16k16_load_b_s8);
15929   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
15930     return MMA_LDST(2, m16n16k16_load_b_u8);
15931   case NVPTX::BI__imma_m16n16k16_ld_c:
15932     return MMA_LDST(8, m16n16k16_load_c_s32);
15933   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
15934     return MMA_LDST(4, m32n8k16_load_a_s8);
15935   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
15936     return MMA_LDST(4, m32n8k16_load_a_u8);
15937   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
15938     return MMA_LDST(1, m32n8k16_load_b_s8);
15939   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
15940     return MMA_LDST(1, m32n8k16_load_b_u8);
15941   case NVPTX::BI__imma_m32n8k16_ld_c:
15942     return MMA_LDST(8, m32n8k16_load_c_s32);
15943   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
15944     return MMA_LDST(1, m8n32k16_load_a_s8);
15945   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
15946     return MMA_LDST(1, m8n32k16_load_a_u8);
15947   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
15948     return MMA_LDST(4, m8n32k16_load_b_s8);
15949   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
15950     return MMA_LDST(4, m8n32k16_load_b_u8);
15951   case NVPTX::BI__imma_m8n32k16_ld_c:
15952     return MMA_LDST(8, m8n32k16_load_c_s32);
15953 
15954   // Sub-integer MMA loads.
15955   // Only row/col layout is supported by A/B fragments.
15956   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
15957     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
15958   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
15959     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
15960   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
15961     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
15962   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
15963     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
15964   case NVPTX::BI__imma_m8n8k32_ld_c:
15965     return MMA_LDST(2, m8n8k32_load_c_s32);
15966   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
15967     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
15968   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
15969     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
15970   case NVPTX::BI__bmma_m8n8k128_ld_c:
15971     return MMA_LDST(2, m8n8k128_load_c_s32);
15972 
15973   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
15974   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
15975   // use fragment C for both loads and stores.
15976   // FP MMA stores.
15977   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
15978     return MMA_LDST(4, m16n16k16_store_d_f16);
15979   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
15980     return MMA_LDST(8, m16n16k16_store_d_f32);
15981   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
15982     return MMA_LDST(4, m32n8k16_store_d_f16);
15983   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
15984     return MMA_LDST(8, m32n8k16_store_d_f32);
15985   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
15986     return MMA_LDST(4, m8n32k16_store_d_f16);
15987   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
15988     return MMA_LDST(8, m8n32k16_store_d_f32);
15989 
15990   // Integer and sub-integer MMA stores.
15991   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
15992   // name, integer loads/stores use LLVM's i32.
15993   case NVPTX::BI__imma_m16n16k16_st_c_i32:
15994     return MMA_LDST(8, m16n16k16_store_d_s32);
15995   case NVPTX::BI__imma_m32n8k16_st_c_i32:
15996     return MMA_LDST(8, m32n8k16_store_d_s32);
15997   case NVPTX::BI__imma_m8n32k16_st_c_i32:
15998     return MMA_LDST(8, m8n32k16_store_d_s32);
15999   case NVPTX::BI__imma_m8n8k32_st_c_i32:
16000     return MMA_LDST(2, m8n8k32_store_d_s32);
16001   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
16002     return MMA_LDST(2, m8n8k128_store_d_s32);
16003 
16004   default:
16005     llvm_unreachable("Unknown MMA builtin");
16006   }
16007 }
16008 #undef MMA_LDST
16009 #undef MMA_INTR
16010 
16011 
16012 struct NVPTXMmaInfo {
16013   unsigned NumEltsA;
16014   unsigned NumEltsB;
16015   unsigned NumEltsC;
16016   unsigned NumEltsD;
16017   std::array<unsigned, 8> Variants;
16018 
16019   unsigned getMMAIntrinsic(int Layout, bool Satf) {
16020     unsigned Index = Layout * 2 + Satf;
16021     if (Index >= Variants.size())
16022       return 0;
16023     return Variants[Index];
16024   }
16025 };
16026 
16027   // Returns an intrinsic that matches Layout and Satf for valid combinations of
16028   // Layout and Satf, 0 otherwise.
16029 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
16030   // clang-format off
16031 #define MMA_VARIANTS(geom, type) {{                                 \
16032       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
16033       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
16034       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
16035       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16036       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
16037       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
16038       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
16039       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
16040     }}
16041 // Sub-integer MMA only supports row.col layout.
16042 #define MMA_VARIANTS_I4(geom, type) {{ \
16043       0, \
16044       0, \
16045       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
16046       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16047       0, \
16048       0, \
16049       0, \
16050       0  \
16051     }}
16052 // b1 MMA does not support .satfinite.
16053 #define MMA_VARIANTS_B1(geom, type) {{ \
16054       0, \
16055       0, \
16056       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
16057       0, \
16058       0, \
16059       0, \
16060       0, \
16061       0  \
16062     }}
16063     // clang-format on
16064     switch (BuiltinID) {
16065     // FP MMA
16066     // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
16067     // NumEltsN of return value are ordered as A,B,C,D.
16068     case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16069       return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
16070     case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16071       return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
16072     case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16073       return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
16074     case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16075       return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
16076     case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16077       return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
16078     case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16079       return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
16080     case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16081       return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
16082     case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16083       return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
16084     case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16085       return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
16086     case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16087       return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
16088     case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16089       return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
16090     case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16091       return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
16092 
16093     // Integer MMA
16094     case NVPTX::BI__imma_m16n16k16_mma_s8:
16095       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
16096     case NVPTX::BI__imma_m16n16k16_mma_u8:
16097       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
16098     case NVPTX::BI__imma_m32n8k16_mma_s8:
16099       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
16100     case NVPTX::BI__imma_m32n8k16_mma_u8:
16101       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
16102     case NVPTX::BI__imma_m8n32k16_mma_s8:
16103       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
16104     case NVPTX::BI__imma_m8n32k16_mma_u8:
16105       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
16106 
16107     // Sub-integer MMA
16108     case NVPTX::BI__imma_m8n8k32_mma_s4:
16109       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
16110     case NVPTX::BI__imma_m8n8k32_mma_u4:
16111       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
16112     case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
16113       return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
16114     default:
16115       llvm_unreachable("Unexpected builtin ID.");
16116     }
16117 #undef MMA_VARIANTS
16118 #undef MMA_VARIANTS_I4
16119 #undef MMA_VARIANTS_B1
16120 }
16121 
16122 } // namespace
16123 
16124 Value *
16125 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
16126   auto MakeLdg = [&](unsigned IntrinsicID) {
16127     Value *Ptr = EmitScalarExpr(E->getArg(0));
16128     clang::CharUnits Align =
16129         CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
16130     return Builder.CreateCall(
16131         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
16132                                        Ptr->getType()}),
16133         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
16134   };
16135   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
16136     Value *Ptr = EmitScalarExpr(E->getArg(0));
16137     return Builder.CreateCall(
16138         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
16139                                        Ptr->getType()}),
16140         {Ptr, EmitScalarExpr(E->getArg(1))});
16141   };
16142   switch (BuiltinID) {
16143   case NVPTX::BI__nvvm_atom_add_gen_i:
16144   case NVPTX::BI__nvvm_atom_add_gen_l:
16145   case NVPTX::BI__nvvm_atom_add_gen_ll:
16146     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
16147 
16148   case NVPTX::BI__nvvm_atom_sub_gen_i:
16149   case NVPTX::BI__nvvm_atom_sub_gen_l:
16150   case NVPTX::BI__nvvm_atom_sub_gen_ll:
16151     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
16152 
16153   case NVPTX::BI__nvvm_atom_and_gen_i:
16154   case NVPTX::BI__nvvm_atom_and_gen_l:
16155   case NVPTX::BI__nvvm_atom_and_gen_ll:
16156     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
16157 
16158   case NVPTX::BI__nvvm_atom_or_gen_i:
16159   case NVPTX::BI__nvvm_atom_or_gen_l:
16160   case NVPTX::BI__nvvm_atom_or_gen_ll:
16161     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
16162 
16163   case NVPTX::BI__nvvm_atom_xor_gen_i:
16164   case NVPTX::BI__nvvm_atom_xor_gen_l:
16165   case NVPTX::BI__nvvm_atom_xor_gen_ll:
16166     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
16167 
16168   case NVPTX::BI__nvvm_atom_xchg_gen_i:
16169   case NVPTX::BI__nvvm_atom_xchg_gen_l:
16170   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
16171     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
16172 
16173   case NVPTX::BI__nvvm_atom_max_gen_i:
16174   case NVPTX::BI__nvvm_atom_max_gen_l:
16175   case NVPTX::BI__nvvm_atom_max_gen_ll:
16176     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
16177 
16178   case NVPTX::BI__nvvm_atom_max_gen_ui:
16179   case NVPTX::BI__nvvm_atom_max_gen_ul:
16180   case NVPTX::BI__nvvm_atom_max_gen_ull:
16181     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
16182 
16183   case NVPTX::BI__nvvm_atom_min_gen_i:
16184   case NVPTX::BI__nvvm_atom_min_gen_l:
16185   case NVPTX::BI__nvvm_atom_min_gen_ll:
16186     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
16187 
16188   case NVPTX::BI__nvvm_atom_min_gen_ui:
16189   case NVPTX::BI__nvvm_atom_min_gen_ul:
16190   case NVPTX::BI__nvvm_atom_min_gen_ull:
16191     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
16192 
16193   case NVPTX::BI__nvvm_atom_cas_gen_i:
16194   case NVPTX::BI__nvvm_atom_cas_gen_l:
16195   case NVPTX::BI__nvvm_atom_cas_gen_ll:
16196     // __nvvm_atom_cas_gen_* should return the old value rather than the
16197     // success flag.
16198     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
16199 
16200   case NVPTX::BI__nvvm_atom_add_gen_f:
16201   case NVPTX::BI__nvvm_atom_add_gen_d: {
16202     Value *Ptr = EmitScalarExpr(E->getArg(0));
16203     Value *Val = EmitScalarExpr(E->getArg(1));
16204     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
16205                                    AtomicOrdering::SequentiallyConsistent);
16206   }
16207 
16208   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
16209     Value *Ptr = EmitScalarExpr(E->getArg(0));
16210     Value *Val = EmitScalarExpr(E->getArg(1));
16211     Function *FnALI32 =
16212         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
16213     return Builder.CreateCall(FnALI32, {Ptr, Val});
16214   }
16215 
16216   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
16217     Value *Ptr = EmitScalarExpr(E->getArg(0));
16218     Value *Val = EmitScalarExpr(E->getArg(1));
16219     Function *FnALD32 =
16220         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
16221     return Builder.CreateCall(FnALD32, {Ptr, Val});
16222   }
16223 
16224   case NVPTX::BI__nvvm_ldg_c:
16225   case NVPTX::BI__nvvm_ldg_c2:
16226   case NVPTX::BI__nvvm_ldg_c4:
16227   case NVPTX::BI__nvvm_ldg_s:
16228   case NVPTX::BI__nvvm_ldg_s2:
16229   case NVPTX::BI__nvvm_ldg_s4:
16230   case NVPTX::BI__nvvm_ldg_i:
16231   case NVPTX::BI__nvvm_ldg_i2:
16232   case NVPTX::BI__nvvm_ldg_i4:
16233   case NVPTX::BI__nvvm_ldg_l:
16234   case NVPTX::BI__nvvm_ldg_ll:
16235   case NVPTX::BI__nvvm_ldg_ll2:
16236   case NVPTX::BI__nvvm_ldg_uc:
16237   case NVPTX::BI__nvvm_ldg_uc2:
16238   case NVPTX::BI__nvvm_ldg_uc4:
16239   case NVPTX::BI__nvvm_ldg_us:
16240   case NVPTX::BI__nvvm_ldg_us2:
16241   case NVPTX::BI__nvvm_ldg_us4:
16242   case NVPTX::BI__nvvm_ldg_ui:
16243   case NVPTX::BI__nvvm_ldg_ui2:
16244   case NVPTX::BI__nvvm_ldg_ui4:
16245   case NVPTX::BI__nvvm_ldg_ul:
16246   case NVPTX::BI__nvvm_ldg_ull:
16247   case NVPTX::BI__nvvm_ldg_ull2:
16248     // PTX Interoperability section 2.2: "For a vector with an even number of
16249     // elements, its alignment is set to number of elements times the alignment
16250     // of its member: n*alignof(t)."
16251     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
16252   case NVPTX::BI__nvvm_ldg_f:
16253   case NVPTX::BI__nvvm_ldg_f2:
16254   case NVPTX::BI__nvvm_ldg_f4:
16255   case NVPTX::BI__nvvm_ldg_d:
16256   case NVPTX::BI__nvvm_ldg_d2:
16257     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
16258 
16259   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
16260   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
16261   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
16262     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
16263   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
16264   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
16265   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
16266     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
16267   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
16268   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
16269     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
16270   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
16271   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
16272     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
16273   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
16274   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
16275   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
16276     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
16277   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
16278   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
16279   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
16280     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
16281   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
16282   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
16283   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
16284   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
16285   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
16286   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
16287     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
16288   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
16289   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
16290   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
16291   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
16292   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
16293   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
16294     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
16295   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
16296   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
16297   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
16298   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
16299   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
16300   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
16301     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
16302   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
16303   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
16304   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
16305   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
16306   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
16307   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
16308     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
16309   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
16310     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
16311   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
16312     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
16313   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
16314     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
16315   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
16316     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
16317   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
16318   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
16319   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
16320     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
16321   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
16322   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
16323   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
16324     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
16325   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
16326   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
16327   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
16328     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
16329   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
16330   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
16331   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
16332     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
16333   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
16334   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
16335   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
16336     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
16337   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
16338   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
16339   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
16340     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
16341   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
16342   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
16343   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
16344     Value *Ptr = EmitScalarExpr(E->getArg(0));
16345     return Builder.CreateCall(
16346         CGM.getIntrinsic(
16347             Intrinsic::nvvm_atomic_cas_gen_i_cta,
16348             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16349         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16350   }
16351   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
16352   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
16353   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
16354     Value *Ptr = EmitScalarExpr(E->getArg(0));
16355     return Builder.CreateCall(
16356         CGM.getIntrinsic(
16357             Intrinsic::nvvm_atomic_cas_gen_i_sys,
16358             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16359         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16360   }
16361   case NVPTX::BI__nvvm_match_all_sync_i32p:
16362   case NVPTX::BI__nvvm_match_all_sync_i64p: {
16363     Value *Mask = EmitScalarExpr(E->getArg(0));
16364     Value *Val = EmitScalarExpr(E->getArg(1));
16365     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
16366     Value *ResultPair = Builder.CreateCall(
16367         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
16368                              ? Intrinsic::nvvm_match_all_sync_i32p
16369                              : Intrinsic::nvvm_match_all_sync_i64p),
16370         {Mask, Val});
16371     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
16372                                      PredOutPtr.getElementType());
16373     Builder.CreateStore(Pred, PredOutPtr);
16374     return Builder.CreateExtractValue(ResultPair, 0);
16375   }
16376 
16377   // FP MMA loads
16378   case NVPTX::BI__hmma_m16n16k16_ld_a:
16379   case NVPTX::BI__hmma_m16n16k16_ld_b:
16380   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16381   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16382   case NVPTX::BI__hmma_m32n8k16_ld_a:
16383   case NVPTX::BI__hmma_m32n8k16_ld_b:
16384   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16385   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16386   case NVPTX::BI__hmma_m8n32k16_ld_a:
16387   case NVPTX::BI__hmma_m8n32k16_ld_b:
16388   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16389   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16390   // Integer MMA loads.
16391   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16392   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16393   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16394   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16395   case NVPTX::BI__imma_m16n16k16_ld_c:
16396   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16397   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16398   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16399   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16400   case NVPTX::BI__imma_m32n8k16_ld_c:
16401   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16402   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16403   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16404   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16405   case NVPTX::BI__imma_m8n32k16_ld_c:
16406   // Sub-integer MMA loads.
16407   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16408   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16409   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16410   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16411   case NVPTX::BI__imma_m8n8k32_ld_c:
16412   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16413   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16414   case NVPTX::BI__bmma_m8n8k128_ld_c:
16415   {
16416     Address Dst = EmitPointerWithAlignment(E->getArg(0));
16417     Value *Src = EmitScalarExpr(E->getArg(1));
16418     Value *Ldm = EmitScalarExpr(E->getArg(2));
16419     Optional<llvm::APSInt> isColMajorArg =
16420         E->getArg(3)->getIntegerConstantExpr(getContext());
16421     if (!isColMajorArg)
16422       return nullptr;
16423     bool isColMajor = isColMajorArg->getSExtValue();
16424     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16425     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16426     if (IID == 0)
16427       return nullptr;
16428 
16429     Value *Result =
16430         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
16431 
16432     // Save returned values.
16433     assert(II.NumResults);
16434     if (II.NumResults == 1) {
16435       Builder.CreateAlignedStore(Result, Dst.getPointer(),
16436                                  CharUnits::fromQuantity(4));
16437     } else {
16438       for (unsigned i = 0; i < II.NumResults; ++i) {
16439         Builder.CreateAlignedStore(
16440             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
16441                                   Dst.getElementType()),
16442             Builder.CreateGEP(Dst.getPointer(),
16443                               llvm::ConstantInt::get(IntTy, i)),
16444             CharUnits::fromQuantity(4));
16445       }
16446     }
16447     return Result;
16448   }
16449 
16450   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16451   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16452   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16453   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16454   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16455   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16456   case NVPTX::BI__imma_m16n16k16_st_c_i32:
16457   case NVPTX::BI__imma_m32n8k16_st_c_i32:
16458   case NVPTX::BI__imma_m8n32k16_st_c_i32:
16459   case NVPTX::BI__imma_m8n8k32_st_c_i32:
16460   case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
16461     Value *Dst = EmitScalarExpr(E->getArg(0));
16462     Address Src = EmitPointerWithAlignment(E->getArg(1));
16463     Value *Ldm = EmitScalarExpr(E->getArg(2));
16464     Optional<llvm::APSInt> isColMajorArg =
16465         E->getArg(3)->getIntegerConstantExpr(getContext());
16466     if (!isColMajorArg)
16467       return nullptr;
16468     bool isColMajor = isColMajorArg->getSExtValue();
16469     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16470     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16471     if (IID == 0)
16472       return nullptr;
16473     Function *Intrinsic =
16474         CGM.getIntrinsic(IID, Dst->getType());
16475     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
16476     SmallVector<Value *, 10> Values = {Dst};
16477     for (unsigned i = 0; i < II.NumResults; ++i) {
16478       Value *V = Builder.CreateAlignedLoad(
16479           Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16480           CharUnits::fromQuantity(4));
16481       Values.push_back(Builder.CreateBitCast(V, ParamType));
16482     }
16483     Values.push_back(Ldm);
16484     Value *Result = Builder.CreateCall(Intrinsic, Values);
16485     return Result;
16486   }
16487 
16488   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
16489   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
16490   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16491   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16492   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16493   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16494   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16495   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16496   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16497   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16498   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16499   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16500   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16501   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16502   case NVPTX::BI__imma_m16n16k16_mma_s8:
16503   case NVPTX::BI__imma_m16n16k16_mma_u8:
16504   case NVPTX::BI__imma_m32n8k16_mma_s8:
16505   case NVPTX::BI__imma_m32n8k16_mma_u8:
16506   case NVPTX::BI__imma_m8n32k16_mma_s8:
16507   case NVPTX::BI__imma_m8n32k16_mma_u8:
16508   case NVPTX::BI__imma_m8n8k32_mma_s4:
16509   case NVPTX::BI__imma_m8n8k32_mma_u4:
16510   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
16511     Address Dst = EmitPointerWithAlignment(E->getArg(0));
16512     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
16513     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
16514     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
16515     Optional<llvm::APSInt> LayoutArg =
16516         E->getArg(4)->getIntegerConstantExpr(getContext());
16517     if (!LayoutArg)
16518       return nullptr;
16519     int Layout = LayoutArg->getSExtValue();
16520     if (Layout < 0 || Layout > 3)
16521       return nullptr;
16522     llvm::APSInt SatfArg;
16523     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
16524       SatfArg = 0;  // .b1 does not have satf argument.
16525     else if (Optional<llvm::APSInt> OptSatfArg =
16526                  E->getArg(5)->getIntegerConstantExpr(getContext()))
16527       SatfArg = *OptSatfArg;
16528     else
16529       return nullptr;
16530     bool Satf = SatfArg.getSExtValue();
16531     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
16532     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
16533     if (IID == 0)  // Unsupported combination of Layout/Satf.
16534       return nullptr;
16535 
16536     SmallVector<Value *, 24> Values;
16537     Function *Intrinsic = CGM.getIntrinsic(IID);
16538     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
16539     // Load A
16540     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
16541       Value *V = Builder.CreateAlignedLoad(
16542           Builder.CreateGEP(SrcA.getPointer(),
16543                             llvm::ConstantInt::get(IntTy, i)),
16544           CharUnits::fromQuantity(4));
16545       Values.push_back(Builder.CreateBitCast(V, AType));
16546     }
16547     // Load B
16548     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
16549     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
16550       Value *V = Builder.CreateAlignedLoad(
16551           Builder.CreateGEP(SrcB.getPointer(),
16552                             llvm::ConstantInt::get(IntTy, i)),
16553           CharUnits::fromQuantity(4));
16554       Values.push_back(Builder.CreateBitCast(V, BType));
16555     }
16556     // Load C
16557     llvm::Type *CType =
16558         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
16559     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
16560       Value *V = Builder.CreateAlignedLoad(
16561           Builder.CreateGEP(SrcC.getPointer(),
16562                             llvm::ConstantInt::get(IntTy, i)),
16563           CharUnits::fromQuantity(4));
16564       Values.push_back(Builder.CreateBitCast(V, CType));
16565     }
16566     Value *Result = Builder.CreateCall(Intrinsic, Values);
16567     llvm::Type *DType = Dst.getElementType();
16568     for (unsigned i = 0; i < MI.NumEltsD; ++i)
16569       Builder.CreateAlignedStore(
16570           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
16571           Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16572           CharUnits::fromQuantity(4));
16573     return Result;
16574   }
16575   default:
16576     return nullptr;
16577   }
16578 }
16579 
16580 namespace {
16581 struct BuiltinAlignArgs {
16582   llvm::Value *Src = nullptr;
16583   llvm::Type *SrcType = nullptr;
16584   llvm::Value *Alignment = nullptr;
16585   llvm::Value *Mask = nullptr;
16586   llvm::IntegerType *IntType = nullptr;
16587 
16588   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
16589     QualType AstType = E->getArg(0)->getType();
16590     if (AstType->isArrayType())
16591       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
16592     else
16593       Src = CGF.EmitScalarExpr(E->getArg(0));
16594     SrcType = Src->getType();
16595     if (SrcType->isPointerTy()) {
16596       IntType = IntegerType::get(
16597           CGF.getLLVMContext(),
16598           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
16599     } else {
16600       assert(SrcType->isIntegerTy());
16601       IntType = cast<llvm::IntegerType>(SrcType);
16602     }
16603     Alignment = CGF.EmitScalarExpr(E->getArg(1));
16604     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
16605     auto *One = llvm::ConstantInt::get(IntType, 1);
16606     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
16607   }
16608 };
16609 } // namespace
16610 
16611 /// Generate (x & (y-1)) == 0.
16612 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
16613   BuiltinAlignArgs Args(E, *this);
16614   llvm::Value *SrcAddress = Args.Src;
16615   if (Args.SrcType->isPointerTy())
16616     SrcAddress =
16617         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
16618   return RValue::get(Builder.CreateICmpEQ(
16619       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
16620       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
16621 }
16622 
16623 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
16624 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
16625 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
16626 /// TODO: actually use ptrmask once most optimization passes know about it.
16627 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
16628   BuiltinAlignArgs Args(E, *this);
16629   llvm::Value *SrcAddr = Args.Src;
16630   if (Args.Src->getType()->isPointerTy())
16631     SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
16632   llvm::Value *SrcForMask = SrcAddr;
16633   if (AlignUp) {
16634     // When aligning up we have to first add the mask to ensure we go over the
16635     // next alignment value and then align down to the next valid multiple.
16636     // By adding the mask, we ensure that align_up on an already aligned
16637     // value will not change the value.
16638     SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
16639   }
16640   // Invert the mask to only clear the lower bits.
16641   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
16642   llvm::Value *Result =
16643       Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
16644   if (Args.Src->getType()->isPointerTy()) {
16645     /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
16646     // Result = Builder.CreateIntrinsic(
16647     //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
16648     //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
16649     Result->setName("aligned_intptr");
16650     llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
16651     // The result must point to the same underlying allocation. This means we
16652     // can use an inbounds GEP to enable better optimization.
16653     Value *Base = EmitCastToVoidPtr(Args.Src);
16654     if (getLangOpts().isSignedOverflowDefined())
16655       Result = Builder.CreateGEP(Base, Difference, "aligned_result");
16656     else
16657       Result = EmitCheckedInBoundsGEP(Base, Difference,
16658                                       /*SignedIndices=*/true,
16659                                       /*isSubtraction=*/!AlignUp,
16660                                       E->getExprLoc(), "aligned_result");
16661     Result = Builder.CreatePointerCast(Result, Args.SrcType);
16662     // Emit an alignment assumption to ensure that the new alignment is
16663     // propagated to loads/stores, etc.
16664     emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
16665   }
16666   assert(Result->getType() == Args.SrcType);
16667   return RValue::get(Result);
16668 }
16669 
16670 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
16671                                                    const CallExpr *E) {
16672   switch (BuiltinID) {
16673   case WebAssembly::BI__builtin_wasm_memory_size: {
16674     llvm::Type *ResultType = ConvertType(E->getType());
16675     Value *I = EmitScalarExpr(E->getArg(0));
16676     Function *Callee =
16677         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
16678     return Builder.CreateCall(Callee, I);
16679   }
16680   case WebAssembly::BI__builtin_wasm_memory_grow: {
16681     llvm::Type *ResultType = ConvertType(E->getType());
16682     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
16683                      EmitScalarExpr(E->getArg(1))};
16684     Function *Callee =
16685         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
16686     return Builder.CreateCall(Callee, Args);
16687   }
16688   case WebAssembly::BI__builtin_wasm_tls_size: {
16689     llvm::Type *ResultType = ConvertType(E->getType());
16690     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
16691     return Builder.CreateCall(Callee);
16692   }
16693   case WebAssembly::BI__builtin_wasm_tls_align: {
16694     llvm::Type *ResultType = ConvertType(E->getType());
16695     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
16696     return Builder.CreateCall(Callee);
16697   }
16698   case WebAssembly::BI__builtin_wasm_tls_base: {
16699     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
16700     return Builder.CreateCall(Callee);
16701   }
16702   case WebAssembly::BI__builtin_wasm_throw: {
16703     Value *Tag = EmitScalarExpr(E->getArg(0));
16704     Value *Obj = EmitScalarExpr(E->getArg(1));
16705     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
16706     return Builder.CreateCall(Callee, {Tag, Obj});
16707   }
16708   case WebAssembly::BI__builtin_wasm_rethrow: {
16709     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
16710     return Builder.CreateCall(Callee);
16711   }
16712   case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
16713     Value *Addr = EmitScalarExpr(E->getArg(0));
16714     Value *Expected = EmitScalarExpr(E->getArg(1));
16715     Value *Timeout = EmitScalarExpr(E->getArg(2));
16716     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
16717     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16718   }
16719   case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
16720     Value *Addr = EmitScalarExpr(E->getArg(0));
16721     Value *Expected = EmitScalarExpr(E->getArg(1));
16722     Value *Timeout = EmitScalarExpr(E->getArg(2));
16723     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
16724     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16725   }
16726   case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
16727     Value *Addr = EmitScalarExpr(E->getArg(0));
16728     Value *Count = EmitScalarExpr(E->getArg(1));
16729     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
16730     return Builder.CreateCall(Callee, {Addr, Count});
16731   }
16732   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
16733   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
16734   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
16735   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
16736     Value *Src = EmitScalarExpr(E->getArg(0));
16737     llvm::Type *ResT = ConvertType(E->getType());
16738     Function *Callee =
16739         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
16740     return Builder.CreateCall(Callee, {Src});
16741   }
16742   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
16743   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
16744   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
16745   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
16746     Value *Src = EmitScalarExpr(E->getArg(0));
16747     llvm::Type *ResT = ConvertType(E->getType());
16748     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
16749                                         {ResT, Src->getType()});
16750     return Builder.CreateCall(Callee, {Src});
16751   }
16752   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
16753   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
16754   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
16755   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
16756   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
16757     Value *Src = EmitScalarExpr(E->getArg(0));
16758     llvm::Type *ResT = ConvertType(E->getType());
16759     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
16760                                         {ResT, Src->getType()});
16761     return Builder.CreateCall(Callee, {Src});
16762   }
16763   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
16764   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
16765   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
16766   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
16767   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
16768     Value *Src = EmitScalarExpr(E->getArg(0));
16769     llvm::Type *ResT = ConvertType(E->getType());
16770     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
16771                                         {ResT, Src->getType()});
16772     return Builder.CreateCall(Callee, {Src});
16773   }
16774   case WebAssembly::BI__builtin_wasm_min_f32:
16775   case WebAssembly::BI__builtin_wasm_min_f64:
16776   case WebAssembly::BI__builtin_wasm_min_f32x4:
16777   case WebAssembly::BI__builtin_wasm_min_f64x2: {
16778     Value *LHS = EmitScalarExpr(E->getArg(0));
16779     Value *RHS = EmitScalarExpr(E->getArg(1));
16780     Function *Callee =
16781         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
16782     return Builder.CreateCall(Callee, {LHS, RHS});
16783   }
16784   case WebAssembly::BI__builtin_wasm_max_f32:
16785   case WebAssembly::BI__builtin_wasm_max_f64:
16786   case WebAssembly::BI__builtin_wasm_max_f32x4:
16787   case WebAssembly::BI__builtin_wasm_max_f64x2: {
16788     Value *LHS = EmitScalarExpr(E->getArg(0));
16789     Value *RHS = EmitScalarExpr(E->getArg(1));
16790     Function *Callee =
16791         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
16792     return Builder.CreateCall(Callee, {LHS, RHS});
16793   }
16794   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
16795   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
16796     Value *LHS = EmitScalarExpr(E->getArg(0));
16797     Value *RHS = EmitScalarExpr(E->getArg(1));
16798     Function *Callee =
16799         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
16800     return Builder.CreateCall(Callee, {LHS, RHS});
16801   }
16802   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
16803   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
16804     Value *LHS = EmitScalarExpr(E->getArg(0));
16805     Value *RHS = EmitScalarExpr(E->getArg(1));
16806     Function *Callee =
16807         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
16808     return Builder.CreateCall(Callee, {LHS, RHS});
16809   }
16810   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16811   case WebAssembly::BI__builtin_wasm_floor_f32x4:
16812   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16813   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16814   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16815   case WebAssembly::BI__builtin_wasm_floor_f64x2:
16816   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16817   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
16818     unsigned IntNo;
16819     switch (BuiltinID) {
16820     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16821     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16822       IntNo = Intrinsic::wasm_ceil;
16823       break;
16824     case WebAssembly::BI__builtin_wasm_floor_f32x4:
16825     case WebAssembly::BI__builtin_wasm_floor_f64x2:
16826       IntNo = Intrinsic::wasm_floor;
16827       break;
16828     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16829     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16830       IntNo = Intrinsic::wasm_trunc;
16831       break;
16832     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16833     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
16834       IntNo = Intrinsic::wasm_nearest;
16835       break;
16836     default:
16837       llvm_unreachable("unexpected builtin ID");
16838     }
16839     Value *Value = EmitScalarExpr(E->getArg(0));
16840     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16841     return Builder.CreateCall(Callee, Value);
16842   }
16843   case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
16844     Value *Src = EmitScalarExpr(E->getArg(0));
16845     Value *Indices = EmitScalarExpr(E->getArg(1));
16846     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
16847     return Builder.CreateCall(Callee, {Src, Indices});
16848   }
16849   case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16850   case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16851   case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16852   case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16853   case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16854   case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16855   case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16856   case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
16857     llvm::APSInt LaneConst =
16858         *E->getArg(1)->getIntegerConstantExpr(getContext());
16859     Value *Vec = EmitScalarExpr(E->getArg(0));
16860     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16861     Value *Extract = Builder.CreateExtractElement(Vec, Lane);
16862     switch (BuiltinID) {
16863     case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16864     case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16865       return Builder.CreateSExt(Extract, ConvertType(E->getType()));
16866     case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16867     case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16868       return Builder.CreateZExt(Extract, ConvertType(E->getType()));
16869     case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16870     case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16871     case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16872     case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
16873       return Extract;
16874     default:
16875       llvm_unreachable("unexpected builtin ID");
16876     }
16877   }
16878   case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16879   case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
16880   case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16881   case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16882   case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16883   case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
16884     llvm::APSInt LaneConst =
16885         *E->getArg(1)->getIntegerConstantExpr(getContext());
16886     Value *Vec = EmitScalarExpr(E->getArg(0));
16887     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16888     Value *Val = EmitScalarExpr(E->getArg(2));
16889     switch (BuiltinID) {
16890     case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16891     case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
16892       llvm::Type *ElemType =
16893           cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType();
16894       Value *Trunc = Builder.CreateTrunc(Val, ElemType);
16895       return Builder.CreateInsertElement(Vec, Trunc, Lane);
16896     }
16897     case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16898     case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16899     case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16900     case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
16901       return Builder.CreateInsertElement(Vec, Val, Lane);
16902     default:
16903       llvm_unreachable("unexpected builtin ID");
16904     }
16905   }
16906   case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16907   case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16908   case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16909   case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16910   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16911   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16912   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16913   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
16914     unsigned IntNo;
16915     switch (BuiltinID) {
16916     case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16917     case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16918       IntNo = Intrinsic::sadd_sat;
16919       break;
16920     case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16921     case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16922       IntNo = Intrinsic::uadd_sat;
16923       break;
16924     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16925     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16926       IntNo = Intrinsic::wasm_sub_saturate_signed;
16927       break;
16928     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16929     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
16930       IntNo = Intrinsic::wasm_sub_saturate_unsigned;
16931       break;
16932     default:
16933       llvm_unreachable("unexpected builtin ID");
16934     }
16935     Value *LHS = EmitScalarExpr(E->getArg(0));
16936     Value *RHS = EmitScalarExpr(E->getArg(1));
16937     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16938     return Builder.CreateCall(Callee, {LHS, RHS});
16939   }
16940   case WebAssembly::BI__builtin_wasm_abs_i8x16:
16941   case WebAssembly::BI__builtin_wasm_abs_i16x8:
16942   case WebAssembly::BI__builtin_wasm_abs_i32x4: {
16943     Value *Vec = EmitScalarExpr(E->getArg(0));
16944     Value *Neg = Builder.CreateNeg(Vec, "neg");
16945     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
16946     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
16947     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
16948   }
16949   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16950   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16951   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16952   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16953   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16954   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16955   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16956   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16957   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16958   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16959   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16960   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
16961     Value *LHS = EmitScalarExpr(E->getArg(0));
16962     Value *RHS = EmitScalarExpr(E->getArg(1));
16963     Value *ICmp;
16964     switch (BuiltinID) {
16965     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16966     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16967     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16968       ICmp = Builder.CreateICmpSLT(LHS, RHS);
16969       break;
16970     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16971     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16972     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16973       ICmp = Builder.CreateICmpULT(LHS, RHS);
16974       break;
16975     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16976     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16977     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16978       ICmp = Builder.CreateICmpSGT(LHS, RHS);
16979       break;
16980     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16981     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16982     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
16983       ICmp = Builder.CreateICmpUGT(LHS, RHS);
16984       break;
16985     default:
16986       llvm_unreachable("unexpected builtin ID");
16987     }
16988     return Builder.CreateSelect(ICmp, LHS, RHS);
16989   }
16990   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
16991   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
16992     Value *LHS = EmitScalarExpr(E->getArg(0));
16993     Value *RHS = EmitScalarExpr(E->getArg(1));
16994     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
16995                                         ConvertType(E->getType()));
16996     return Builder.CreateCall(Callee, {LHS, RHS});
16997   }
16998   case WebAssembly::BI__builtin_wasm_q15mulr_saturate_s_i16x8: {
16999     Value *LHS = EmitScalarExpr(E->getArg(0));
17000     Value *RHS = EmitScalarExpr(E->getArg(1));
17001     Function *Callee =
17002         CGM.getIntrinsic(Intrinsic::wasm_q15mulr_saturate_signed);
17003     return Builder.CreateCall(Callee, {LHS, RHS});
17004   }
17005   case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
17006   case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
17007   case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
17008   case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
17009   case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
17010   case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
17011   case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
17012   case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
17013   case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
17014   case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
17015   case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
17016   case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: {
17017     Value *LHS = EmitScalarExpr(E->getArg(0));
17018     Value *RHS = EmitScalarExpr(E->getArg(1));
17019     unsigned IntNo;
17020     switch (BuiltinID) {
17021     case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
17022     case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
17023     case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
17024       IntNo = Intrinsic::wasm_extmul_low_signed;
17025       break;
17026     case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
17027     case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
17028     case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
17029       IntNo = Intrinsic::wasm_extmul_low_unsigned;
17030       break;
17031     case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
17032     case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
17033     case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
17034       IntNo = Intrinsic::wasm_extmul_high_signed;
17035       break;
17036     case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
17037     case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
17038     case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2:
17039       IntNo = Intrinsic::wasm_extmul_high_unsigned;
17040       break;
17041     default:
17042       llvm_unreachable("unexptected builtin ID");
17043     }
17044 
17045     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17046     return Builder.CreateCall(Callee, {LHS, RHS});
17047   }
17048   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17049   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17050   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17051   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
17052     Value *Vec = EmitScalarExpr(E->getArg(0));
17053     unsigned IntNo;
17054     switch (BuiltinID) {
17055     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17056     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17057       IntNo = Intrinsic::wasm_extadd_pairwise_signed;
17058       break;
17059     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17060     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
17061       IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
17062       break;
17063     default:
17064       llvm_unreachable("unexptected builtin ID");
17065     }
17066 
17067     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17068     return Builder.CreateCall(Callee, Vec);
17069   }
17070   case WebAssembly::BI__builtin_wasm_bitselect: {
17071     Value *V1 = EmitScalarExpr(E->getArg(0));
17072     Value *V2 = EmitScalarExpr(E->getArg(1));
17073     Value *C = EmitScalarExpr(E->getArg(2));
17074     Function *Callee =
17075         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
17076     return Builder.CreateCall(Callee, {V1, V2, C});
17077   }
17078   case WebAssembly::BI__builtin_wasm_signselect_i8x16:
17079   case WebAssembly::BI__builtin_wasm_signselect_i16x8:
17080   case WebAssembly::BI__builtin_wasm_signselect_i32x4:
17081   case WebAssembly::BI__builtin_wasm_signselect_i64x2: {
17082     Value *V1 = EmitScalarExpr(E->getArg(0));
17083     Value *V2 = EmitScalarExpr(E->getArg(1));
17084     Value *C = EmitScalarExpr(E->getArg(2));
17085     Function *Callee =
17086         CGM.getIntrinsic(Intrinsic::wasm_signselect, ConvertType(E->getType()));
17087     return Builder.CreateCall(Callee, {V1, V2, C});
17088   }
17089   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
17090     Value *LHS = EmitScalarExpr(E->getArg(0));
17091     Value *RHS = EmitScalarExpr(E->getArg(1));
17092     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
17093     return Builder.CreateCall(Callee, {LHS, RHS});
17094   }
17095   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
17096     Value *Vec = EmitScalarExpr(E->getArg(0));
17097     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_popcnt);
17098     return Builder.CreateCall(Callee, {Vec});
17099   }
17100   case WebAssembly::BI__builtin_wasm_eq_i64x2: {
17101     Value *LHS = EmitScalarExpr(E->getArg(0));
17102     Value *RHS = EmitScalarExpr(E->getArg(1));
17103     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_eq);
17104     return Builder.CreateCall(Callee, {LHS, RHS});
17105   }
17106   case WebAssembly::BI__builtin_wasm_any_true_i8x16:
17107   case WebAssembly::BI__builtin_wasm_any_true_i16x8:
17108   case WebAssembly::BI__builtin_wasm_any_true_i32x4:
17109   case WebAssembly::BI__builtin_wasm_any_true_i64x2:
17110   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17111   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17112   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17113   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
17114     unsigned IntNo;
17115     switch (BuiltinID) {
17116     case WebAssembly::BI__builtin_wasm_any_true_i8x16:
17117     case WebAssembly::BI__builtin_wasm_any_true_i16x8:
17118     case WebAssembly::BI__builtin_wasm_any_true_i32x4:
17119     case WebAssembly::BI__builtin_wasm_any_true_i64x2:
17120       IntNo = Intrinsic::wasm_anytrue;
17121       break;
17122     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17123     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17124     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17125     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
17126       IntNo = Intrinsic::wasm_alltrue;
17127       break;
17128     default:
17129       llvm_unreachable("unexpected builtin ID");
17130     }
17131     Value *Vec = EmitScalarExpr(E->getArg(0));
17132     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
17133     return Builder.CreateCall(Callee, {Vec});
17134   }
17135   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
17136   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
17137   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
17138   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
17139     Value *Vec = EmitScalarExpr(E->getArg(0));
17140     Function *Callee =
17141         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
17142     return Builder.CreateCall(Callee, {Vec});
17143   }
17144   case WebAssembly::BI__builtin_wasm_abs_f32x4:
17145   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
17146     Value *Vec = EmitScalarExpr(E->getArg(0));
17147     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
17148     return Builder.CreateCall(Callee, {Vec});
17149   }
17150   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
17151   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
17152     Value *Vec = EmitScalarExpr(E->getArg(0));
17153     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
17154     return Builder.CreateCall(Callee, {Vec});
17155   }
17156   case WebAssembly::BI__builtin_wasm_qfma_f32x4:
17157   case WebAssembly::BI__builtin_wasm_qfms_f32x4:
17158   case WebAssembly::BI__builtin_wasm_qfma_f64x2:
17159   case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
17160     Value *A = EmitScalarExpr(E->getArg(0));
17161     Value *B = EmitScalarExpr(E->getArg(1));
17162     Value *C = EmitScalarExpr(E->getArg(2));
17163     unsigned IntNo;
17164     switch (BuiltinID) {
17165     case WebAssembly::BI__builtin_wasm_qfma_f32x4:
17166     case WebAssembly::BI__builtin_wasm_qfma_f64x2:
17167       IntNo = Intrinsic::wasm_qfma;
17168       break;
17169     case WebAssembly::BI__builtin_wasm_qfms_f32x4:
17170     case WebAssembly::BI__builtin_wasm_qfms_f64x2:
17171       IntNo = Intrinsic::wasm_qfms;
17172       break;
17173     default:
17174       llvm_unreachable("unexpected builtin ID");
17175     }
17176     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
17177     return Builder.CreateCall(Callee, {A, B, C});
17178   }
17179   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17180   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17181   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17182   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
17183     Value *Low = EmitScalarExpr(E->getArg(0));
17184     Value *High = EmitScalarExpr(E->getArg(1));
17185     unsigned IntNo;
17186     switch (BuiltinID) {
17187     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17188     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17189       IntNo = Intrinsic::wasm_narrow_signed;
17190       break;
17191     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17192     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
17193       IntNo = Intrinsic::wasm_narrow_unsigned;
17194       break;
17195     default:
17196       llvm_unreachable("unexpected builtin ID");
17197     }
17198     Function *Callee =
17199         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
17200     return Builder.CreateCall(Callee, {Low, High});
17201   }
17202   case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i64x2:
17203   case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i64x2:
17204   case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i64x2:
17205   case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i64x2: {
17206     Value *Vec = EmitScalarExpr(E->getArg(0));
17207     unsigned IntNo;
17208     switch (BuiltinID) {
17209     case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i64x2:
17210       IntNo = Intrinsic::wasm_widen_low_signed;
17211       break;
17212     case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i64x2:
17213       IntNo = Intrinsic::wasm_widen_high_signed;
17214       break;
17215     case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i64x2:
17216       IntNo = Intrinsic::wasm_widen_low_unsigned;
17217       break;
17218     case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i64x2:
17219       IntNo = Intrinsic::wasm_widen_high_unsigned;
17220       break;
17221     }
17222     Function *Callee = CGM.getIntrinsic(IntNo);
17223     return Builder.CreateCall(Callee, Vec);
17224   }
17225   case WebAssembly::BI__builtin_wasm_convert_low_s_i32x4_f64x2:
17226   case WebAssembly::BI__builtin_wasm_convert_low_u_i32x4_f64x2: {
17227     Value *Vec = EmitScalarExpr(E->getArg(0));
17228     unsigned IntNo;
17229     switch (BuiltinID) {
17230     case WebAssembly::BI__builtin_wasm_convert_low_s_i32x4_f64x2:
17231       IntNo = Intrinsic::wasm_convert_low_signed;
17232       break;
17233     case WebAssembly::BI__builtin_wasm_convert_low_u_i32x4_f64x2:
17234       IntNo = Intrinsic::wasm_convert_low_unsigned;
17235       break;
17236     }
17237     Function *Callee = CGM.getIntrinsic(IntNo);
17238     return Builder.CreateCall(Callee, Vec);
17239   }
17240   case WebAssembly::BI__builtin_wasm_trunc_saturate_zero_s_f64x2_i32x4:
17241   case WebAssembly::BI__builtin_wasm_trunc_saturate_zero_u_f64x2_i32x4: {
17242     Value *Vec = EmitScalarExpr(E->getArg(0));
17243     unsigned IntNo;
17244     switch (BuiltinID) {
17245     case WebAssembly::BI__builtin_wasm_trunc_saturate_zero_s_f64x2_i32x4:
17246       IntNo = Intrinsic::wasm_trunc_saturate_zero_signed;
17247       break;
17248     case WebAssembly::BI__builtin_wasm_trunc_saturate_zero_u_f64x2_i32x4:
17249       IntNo = Intrinsic::wasm_trunc_saturate_zero_unsigned;
17250       break;
17251     }
17252     Function *Callee = CGM.getIntrinsic(IntNo);
17253     return Builder.CreateCall(Callee, Vec);
17254   }
17255   case WebAssembly::BI__builtin_wasm_demote_zero_f64x2_f32x4: {
17256     Value *Vec = EmitScalarExpr(E->getArg(0));
17257     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_demote_zero);
17258     return Builder.CreateCall(Callee, Vec);
17259   }
17260   case WebAssembly::BI__builtin_wasm_promote_low_f32x4_f64x2: {
17261     Value *Vec = EmitScalarExpr(E->getArg(0));
17262     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_promote_low);
17263     return Builder.CreateCall(Callee, Vec);
17264   }
17265   case WebAssembly::BI__builtin_wasm_load32_zero: {
17266     Value *Ptr = EmitScalarExpr(E->getArg(0));
17267     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load32_zero);
17268     return Builder.CreateCall(Callee, {Ptr});
17269   }
17270   case WebAssembly::BI__builtin_wasm_load64_zero: {
17271     Value *Ptr = EmitScalarExpr(E->getArg(0));
17272     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load64_zero);
17273     return Builder.CreateCall(Callee, {Ptr});
17274   }
17275   case WebAssembly::BI__builtin_wasm_load8_lane:
17276   case WebAssembly::BI__builtin_wasm_load16_lane:
17277   case WebAssembly::BI__builtin_wasm_load32_lane:
17278   case WebAssembly::BI__builtin_wasm_load64_lane:
17279   case WebAssembly::BI__builtin_wasm_store8_lane:
17280   case WebAssembly::BI__builtin_wasm_store16_lane:
17281   case WebAssembly::BI__builtin_wasm_store32_lane:
17282   case WebAssembly::BI__builtin_wasm_store64_lane: {
17283     Value *Ptr = EmitScalarExpr(E->getArg(0));
17284     Value *Vec = EmitScalarExpr(E->getArg(1));
17285     Optional<llvm::APSInt> LaneIdxConst =
17286         E->getArg(2)->getIntegerConstantExpr(getContext());
17287     assert(LaneIdxConst && "Constant arg isn't actually constant?");
17288     Value *LaneIdx = llvm::ConstantInt::get(getLLVMContext(), *LaneIdxConst);
17289     unsigned IntNo;
17290     switch (BuiltinID) {
17291     case WebAssembly::BI__builtin_wasm_load8_lane:
17292       IntNo = Intrinsic::wasm_load8_lane;
17293       break;
17294     case WebAssembly::BI__builtin_wasm_load16_lane:
17295       IntNo = Intrinsic::wasm_load16_lane;
17296       break;
17297     case WebAssembly::BI__builtin_wasm_load32_lane:
17298       IntNo = Intrinsic::wasm_load32_lane;
17299       break;
17300     case WebAssembly::BI__builtin_wasm_load64_lane:
17301       IntNo = Intrinsic::wasm_load64_lane;
17302       break;
17303     case WebAssembly::BI__builtin_wasm_store8_lane:
17304       IntNo = Intrinsic::wasm_store8_lane;
17305       break;
17306     case WebAssembly::BI__builtin_wasm_store16_lane:
17307       IntNo = Intrinsic::wasm_store16_lane;
17308       break;
17309     case WebAssembly::BI__builtin_wasm_store32_lane:
17310       IntNo = Intrinsic::wasm_store32_lane;
17311       break;
17312     case WebAssembly::BI__builtin_wasm_store64_lane:
17313       IntNo = Intrinsic::wasm_store64_lane;
17314       break;
17315     default:
17316       llvm_unreachable("unexpected builtin ID");
17317     }
17318     Function *Callee = CGM.getIntrinsic(IntNo);
17319     return Builder.CreateCall(Callee, {Ptr, Vec, LaneIdx});
17320   }
17321   case WebAssembly::BI__builtin_wasm_shuffle_v8x16: {
17322     Value *Ops[18];
17323     size_t OpIdx = 0;
17324     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
17325     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
17326     while (OpIdx < 18) {
17327       Optional<llvm::APSInt> LaneConst =
17328           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
17329       assert(LaneConst && "Constant arg isn't actually constant?");
17330       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
17331     }
17332     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
17333     return Builder.CreateCall(Callee, Ops);
17334   }
17335   case WebAssembly::BI__builtin_wasm_prefetch_t: {
17336     Value *Ptr = EmitScalarExpr(E->getArg(0));
17337     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_prefetch_t);
17338     return Builder.CreateCall(Callee, Ptr);
17339   }
17340   case WebAssembly::BI__builtin_wasm_prefetch_nt: {
17341     Value *Ptr = EmitScalarExpr(E->getArg(0));
17342     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_prefetch_nt);
17343     return Builder.CreateCall(Callee, Ptr);
17344   }
17345   default:
17346     return nullptr;
17347   }
17348 }
17349 
17350 static std::pair<Intrinsic::ID, unsigned>
17351 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
17352   struct Info {
17353     unsigned BuiltinID;
17354     Intrinsic::ID IntrinsicID;
17355     unsigned VecLen;
17356   };
17357   Info Infos[] = {
17358 #define CUSTOM_BUILTIN_MAPPING(x,s) \
17359   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
17360     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
17361     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
17362     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
17363     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
17364     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
17365     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
17366     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
17367     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
17368     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
17369     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
17370     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
17371     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
17372     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
17373     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
17374     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
17375     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
17376     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
17377     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
17378     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
17379     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
17380     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
17381     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
17382     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
17383     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
17384     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
17385     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
17386     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
17387     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
17388     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
17389     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
17390 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
17391 #undef CUSTOM_BUILTIN_MAPPING
17392   };
17393 
17394   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
17395   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
17396   (void)SortOnce;
17397 
17398   const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
17399                                    Info{BuiltinID, 0, 0}, CmpInfo);
17400   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
17401     return {Intrinsic::not_intrinsic, 0};
17402 
17403   return {F->IntrinsicID, F->VecLen};
17404 }
17405 
17406 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
17407                                                const CallExpr *E) {
17408   Intrinsic::ID ID;
17409   unsigned VecLen;
17410   std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
17411 
17412   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
17413     // The base pointer is passed by address, so it needs to be loaded.
17414     Address A = EmitPointerWithAlignment(E->getArg(0));
17415     Address BP = Address(
17416         Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
17417     llvm::Value *Base = Builder.CreateLoad(BP);
17418     // The treatment of both loads and stores is the same: the arguments for
17419     // the builtin are the same as the arguments for the intrinsic.
17420     // Load:
17421     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
17422     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
17423     // Store:
17424     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
17425     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
17426     SmallVector<llvm::Value*,5> Ops = { Base };
17427     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
17428       Ops.push_back(EmitScalarExpr(E->getArg(i)));
17429 
17430     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
17431     // The load intrinsics generate two results (Value, NewBase), stores
17432     // generate one (NewBase). The new base address needs to be stored.
17433     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
17434                                   : Result;
17435     llvm::Value *LV = Builder.CreateBitCast(
17436         EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
17437     Address Dest = EmitPointerWithAlignment(E->getArg(0));
17438     llvm::Value *RetVal =
17439         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
17440     if (IsLoad)
17441       RetVal = Builder.CreateExtractValue(Result, 0);
17442     return RetVal;
17443   };
17444 
17445   // Handle the conversion of bit-reverse load intrinsics to bit code.
17446   // The intrinsic call after this function only reads from memory and the
17447   // write to memory is dealt by the store instruction.
17448   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
17449     // The intrinsic generates one result, which is the new value for the base
17450     // pointer. It needs to be returned. The result of the load instruction is
17451     // passed to intrinsic by address, so the value needs to be stored.
17452     llvm::Value *BaseAddress =
17453         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
17454 
17455     // Expressions like &(*pt++) will be incremented per evaluation.
17456     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
17457     // per call.
17458     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
17459     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
17460                        DestAddr.getAlignment());
17461     llvm::Value *DestAddress = DestAddr.getPointer();
17462 
17463     // Operands are Base, Dest, Modifier.
17464     // The intrinsic format in LLVM IR is defined as
17465     // { ValueType, i8* } (i8*, i32).
17466     llvm::Value *Result = Builder.CreateCall(
17467         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
17468 
17469     // The value needs to be stored as the variable is passed by reference.
17470     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
17471 
17472     // The store needs to be truncated to fit the destination type.
17473     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
17474     // to be handled with stores of respective destination type.
17475     DestVal = Builder.CreateTrunc(DestVal, DestTy);
17476 
17477     llvm::Value *DestForStore =
17478         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
17479     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
17480     // The updated value of the base pointer is returned.
17481     return Builder.CreateExtractValue(Result, 1);
17482   };
17483 
17484   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
17485     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
17486                                      : Intrinsic::hexagon_V6_vandvrt;
17487     return Builder.CreateCall(CGM.getIntrinsic(ID),
17488                               {Vec, Builder.getInt32(-1)});
17489   };
17490   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
17491     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
17492                                      : Intrinsic::hexagon_V6_vandqrt;
17493     return Builder.CreateCall(CGM.getIntrinsic(ID),
17494                               {Pred, Builder.getInt32(-1)});
17495   };
17496 
17497   switch (BuiltinID) {
17498   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
17499   // and the corresponding C/C++ builtins use loads/stores to update
17500   // the predicate.
17501   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
17502   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
17503   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
17504   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
17505     // Get the type from the 0-th argument.
17506     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
17507     Address PredAddr = Builder.CreateBitCast(
17508         EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
17509     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
17510     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
17511         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
17512 
17513     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
17514     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
17515         PredAddr.getAlignment());
17516     return Builder.CreateExtractValue(Result, 0);
17517   }
17518 
17519   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
17520   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
17521   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
17522   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
17523   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
17524   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
17525   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
17526   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
17527   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
17528   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
17529   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
17530   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
17531     return MakeCircOp(ID, /*IsLoad=*/true);
17532   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
17533   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
17534   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
17535   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
17536   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
17537   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
17538   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
17539   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
17540   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
17541   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
17542     return MakeCircOp(ID, /*IsLoad=*/false);
17543   case Hexagon::BI__builtin_brev_ldub:
17544     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
17545   case Hexagon::BI__builtin_brev_ldb:
17546     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
17547   case Hexagon::BI__builtin_brev_lduh:
17548     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
17549   case Hexagon::BI__builtin_brev_ldh:
17550     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
17551   case Hexagon::BI__builtin_brev_ldw:
17552     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
17553   case Hexagon::BI__builtin_brev_ldd:
17554     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
17555 
17556   default: {
17557     if (ID == Intrinsic::not_intrinsic)
17558       return nullptr;
17559 
17560     auto IsVectorPredTy = [](llvm::Type *T) {
17561       return T->isVectorTy() &&
17562              cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
17563     };
17564 
17565     llvm::Function *IntrFn = CGM.getIntrinsic(ID);
17566     llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
17567     SmallVector<llvm::Value*,4> Ops;
17568     for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
17569       llvm::Type *T = IntrTy->getParamType(i);
17570       const Expr *A = E->getArg(i);
17571       if (IsVectorPredTy(T)) {
17572         // There will be an implicit cast to a boolean vector. Strip it.
17573         if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
17574           if (Cast->getCastKind() == CK_BitCast)
17575             A = Cast->getSubExpr();
17576         }
17577         Ops.push_back(V2Q(EmitScalarExpr(A)));
17578       } else {
17579         Ops.push_back(EmitScalarExpr(A));
17580       }
17581     }
17582 
17583     llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
17584     if (IsVectorPredTy(IntrTy->getReturnType()))
17585       Call = Q2V(Call);
17586 
17587     return Call;
17588   } // default
17589   } // switch
17590 
17591   return nullptr;
17592 }
17593