1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Builtin calls as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CGOpenCLRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "PatternInit.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/OSLog.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsNVPTX.h" 41 #include "llvm/IR/IntrinsicsPowerPC.h" 42 #include "llvm/IR/IntrinsicsR600.h" 43 #include "llvm/IR/IntrinsicsS390.h" 44 #include "llvm/IR/IntrinsicsWebAssembly.h" 45 #include "llvm/IR/IntrinsicsX86.h" 46 #include "llvm/IR/MDBuilder.h" 47 #include "llvm/IR/MatrixBuilder.h" 48 #include "llvm/Support/ConvertUTF.h" 49 #include "llvm/Support/ScopedPrinter.h" 50 #include "llvm/Support/X86TargetParser.h" 51 #include <sstream> 52 53 using namespace clang; 54 using namespace CodeGen; 55 using namespace llvm; 56 57 static 58 int64_t clamp(int64_t Value, int64_t Low, int64_t High) { 59 return std::min(High, std::max(Low, Value)); 60 } 61 62 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, 63 Align AlignmentInBytes) { 64 ConstantInt *Byte; 65 switch (CGF.getLangOpts().getTrivialAutoVarInit()) { 66 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 67 // Nothing to initialize. 68 return; 69 case LangOptions::TrivialAutoVarInitKind::Zero: 70 Byte = CGF.Builder.getInt8(0x00); 71 break; 72 case LangOptions::TrivialAutoVarInitKind::Pattern: { 73 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); 74 Byte = llvm::dyn_cast<llvm::ConstantInt>( 75 initializationPatternFor(CGF.CGM, Int8)); 76 break; 77 } 78 } 79 if (CGF.CGM.stopAutoInit()) 80 return; 81 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); 82 I->addAnnotationMetadata("auto-init"); 83 } 84 85 /// getBuiltinLibFunction - Given a builtin id for a function like 86 /// "__builtin_fabsf", return a Function* for "fabsf". 87 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 88 unsigned BuiltinID) { 89 assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); 90 91 // Get the name, skip over the __builtin_ prefix (if necessary). 92 StringRef Name; 93 GlobalDecl D(FD); 94 95 // If the builtin has been declared explicitly with an assembler label, 96 // use the mangled name. This differs from the plain label on platforms 97 // that prefix labels. 98 if (FD->hasAttr<AsmLabelAttr>()) 99 Name = getMangledName(D); 100 else 101 Name = Context.BuiltinInfo.getName(BuiltinID) + 10; 102 103 llvm::FunctionType *Ty = 104 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 105 106 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 107 } 108 109 /// Emit the conversions required to turn the given value into an 110 /// integer of the given size. 111 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, 112 QualType T, llvm::IntegerType *IntType) { 113 V = CGF.EmitToMemory(V, T); 114 115 if (V->getType()->isPointerTy()) 116 return CGF.Builder.CreatePtrToInt(V, IntType); 117 118 assert(V->getType() == IntType); 119 return V; 120 } 121 122 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, 123 QualType T, llvm::Type *ResultType) { 124 V = CGF.EmitFromMemory(V, T); 125 126 if (ResultType->isPointerTy()) 127 return CGF.Builder.CreateIntToPtr(V, ResultType); 128 129 assert(V->getType() == ResultType); 130 return V; 131 } 132 133 /// Utility to insert an atomic instruction based on Intrinsic::ID 134 /// and the expression node. 135 static Value *MakeBinaryAtomicValue( 136 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, 137 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 138 QualType T = E->getType(); 139 assert(E->getArg(0)->getType()->isPointerType()); 140 assert(CGF.getContext().hasSameUnqualifiedType(T, 141 E->getArg(0)->getType()->getPointeeType())); 142 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 143 144 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 145 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 146 147 llvm::IntegerType *IntType = 148 llvm::IntegerType::get(CGF.getLLVMContext(), 149 CGF.getContext().getTypeSize(T)); 150 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 151 152 llvm::Value *Args[2]; 153 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 154 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 155 llvm::Type *ValueType = Args[1]->getType(); 156 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 157 158 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 159 Kind, Args[0], Args[1], Ordering); 160 return EmitFromInt(CGF, Result, T, ValueType); 161 } 162 163 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { 164 Value *Val = CGF.EmitScalarExpr(E->getArg(0)); 165 Value *Address = CGF.EmitScalarExpr(E->getArg(1)); 166 167 // Convert the type of the pointer to a pointer to the stored type. 168 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); 169 Value *BC = CGF.Builder.CreateBitCast( 170 Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); 171 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); 172 LV.setNontemporal(true); 173 CGF.EmitStoreOfScalar(Val, LV, false); 174 return nullptr; 175 } 176 177 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { 178 Value *Address = CGF.EmitScalarExpr(E->getArg(0)); 179 180 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); 181 LV.setNontemporal(true); 182 return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); 183 } 184 185 static RValue EmitBinaryAtomic(CodeGenFunction &CGF, 186 llvm::AtomicRMWInst::BinOp Kind, 187 const CallExpr *E) { 188 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); 189 } 190 191 /// Utility to insert an atomic instruction based Intrinsic::ID and 192 /// the expression node, where the return value is the result of the 193 /// operation. 194 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, 195 llvm::AtomicRMWInst::BinOp Kind, 196 const CallExpr *E, 197 Instruction::BinaryOps Op, 198 bool Invert = false) { 199 QualType T = E->getType(); 200 assert(E->getArg(0)->getType()->isPointerType()); 201 assert(CGF.getContext().hasSameUnqualifiedType(T, 202 E->getArg(0)->getType()->getPointeeType())); 203 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 204 205 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 206 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 207 208 llvm::IntegerType *IntType = 209 llvm::IntegerType::get(CGF.getLLVMContext(), 210 CGF.getContext().getTypeSize(T)); 211 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 212 213 llvm::Value *Args[2]; 214 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 215 llvm::Type *ValueType = Args[1]->getType(); 216 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 217 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 218 219 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 220 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); 221 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); 222 if (Invert) 223 Result = 224 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, 225 llvm::ConstantInt::getAllOnesValue(IntType)); 226 Result = EmitFromInt(CGF, Result, T, ValueType); 227 return RValue::get(Result); 228 } 229 230 /// Utility to insert an atomic cmpxchg instruction. 231 /// 232 /// @param CGF The current codegen function. 233 /// @param E Builtin call expression to convert to cmpxchg. 234 /// arg0 - address to operate on 235 /// arg1 - value to compare with 236 /// arg2 - new value 237 /// @param ReturnBool Specifies whether to return success flag of 238 /// cmpxchg result or the old value. 239 /// 240 /// @returns result of cmpxchg, according to ReturnBool 241 /// 242 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics 243 /// invoke the function EmitAtomicCmpXchgForMSIntrin. 244 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, 245 bool ReturnBool) { 246 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); 247 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 248 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 249 250 llvm::IntegerType *IntType = llvm::IntegerType::get( 251 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); 252 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 253 254 Value *Args[3]; 255 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 256 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 257 llvm::Type *ValueType = Args[1]->getType(); 258 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 259 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); 260 261 Value *Pair = CGF.Builder.CreateAtomicCmpXchg( 262 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, 263 llvm::AtomicOrdering::SequentiallyConsistent); 264 if (ReturnBool) 265 // Extract boolean success flag and zext it to int. 266 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), 267 CGF.ConvertType(E->getType())); 268 else 269 // Extract old value and emit it using the same type as compare value. 270 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, 271 ValueType); 272 } 273 274 /// This function should be invoked to emit atomic cmpxchg for Microsoft's 275 /// _InterlockedCompareExchange* intrinsics which have the following signature: 276 /// T _InterlockedCompareExchange(T volatile *Destination, 277 /// T Exchange, 278 /// T Comparand); 279 /// 280 /// Whereas the llvm 'cmpxchg' instruction has the following syntax: 281 /// cmpxchg *Destination, Comparand, Exchange. 282 /// So we need to swap Comparand and Exchange when invoking 283 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility 284 /// function MakeAtomicCmpXchgValue since it expects the arguments to be 285 /// already swapped. 286 287 static 288 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, 289 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { 290 assert(E->getArg(0)->getType()->isPointerType()); 291 assert(CGF.getContext().hasSameUnqualifiedType( 292 E->getType(), E->getArg(0)->getType()->getPointeeType())); 293 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 294 E->getArg(1)->getType())); 295 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 296 E->getArg(2)->getType())); 297 298 auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); 299 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); 300 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); 301 302 // For Release ordering, the failure ordering should be Monotonic. 303 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? 304 AtomicOrdering::Monotonic : 305 SuccessOrdering; 306 307 // The atomic instruction is marked volatile for consistency with MSVC. This 308 // blocks the few atomics optimizations that LLVM has. If we want to optimize 309 // _Interlocked* operations in the future, we will have to remove the volatile 310 // marker. 311 auto *Result = CGF.Builder.CreateAtomicCmpXchg( 312 Destination, Comparand, Exchange, 313 SuccessOrdering, FailureOrdering); 314 Result->setVolatile(true); 315 return CGF.Builder.CreateExtractValue(Result, 0); 316 } 317 318 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are 319 // prototyped like this: 320 // 321 // unsigned char _InterlockedCompareExchange128...( 322 // __int64 volatile * _Destination, 323 // __int64 _ExchangeHigh, 324 // __int64 _ExchangeLow, 325 // __int64 * _ComparandResult); 326 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF, 327 const CallExpr *E, 328 AtomicOrdering SuccessOrdering) { 329 assert(E->getNumArgs() == 4); 330 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0)); 331 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1)); 332 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2)); 333 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3)); 334 335 assert(Destination->getType()->isPointerTy()); 336 assert(!ExchangeHigh->getType()->isPointerTy()); 337 assert(!ExchangeLow->getType()->isPointerTy()); 338 assert(ComparandPtr->getType()->isPointerTy()); 339 340 // For Release ordering, the failure ordering should be Monotonic. 341 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release 342 ? AtomicOrdering::Monotonic 343 : SuccessOrdering; 344 345 // Convert to i128 pointers and values. 346 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128); 347 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); 348 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy); 349 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy), 350 CGF.getContext().toCharUnitsFromBits(128)); 351 352 // (((i128)hi) << 64) | ((i128)lo) 353 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty); 354 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty); 355 ExchangeHigh = 356 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64)); 357 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow); 358 359 // Load the comparand for the instruction. 360 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult); 361 362 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 363 SuccessOrdering, FailureOrdering); 364 365 // The atomic instruction is marked volatile for consistency with MSVC. This 366 // blocks the few atomics optimizations that LLVM has. If we want to optimize 367 // _Interlocked* operations in the future, we will have to remove the volatile 368 // marker. 369 CXI->setVolatile(true); 370 371 // Store the result as an outparameter. 372 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0), 373 ComparandResult); 374 375 // Get the success boolean and zero extend it to i8. 376 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1); 377 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty); 378 } 379 380 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, 381 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 382 assert(E->getArg(0)->getType()->isPointerType()); 383 384 auto *IntTy = CGF.ConvertType(E->getType()); 385 auto *Result = CGF.Builder.CreateAtomicRMW( 386 AtomicRMWInst::Add, 387 CGF.EmitScalarExpr(E->getArg(0)), 388 ConstantInt::get(IntTy, 1), 389 Ordering); 390 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); 391 } 392 393 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, 394 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 395 assert(E->getArg(0)->getType()->isPointerType()); 396 397 auto *IntTy = CGF.ConvertType(E->getType()); 398 auto *Result = CGF.Builder.CreateAtomicRMW( 399 AtomicRMWInst::Sub, 400 CGF.EmitScalarExpr(E->getArg(0)), 401 ConstantInt::get(IntTy, 1), 402 Ordering); 403 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); 404 } 405 406 // Build a plain volatile load. 407 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { 408 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 409 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 410 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); 411 llvm::Type *ITy = 412 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); 413 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 414 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize); 415 Load->setVolatile(true); 416 return Load; 417 } 418 419 // Build a plain volatile store. 420 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { 421 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 422 Value *Value = CGF.EmitScalarExpr(E->getArg(1)); 423 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 424 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); 425 llvm::Type *ITy = 426 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); 427 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 428 llvm::StoreInst *Store = 429 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); 430 Store->setVolatile(true); 431 return Store; 432 } 433 434 // Emit a simple mangled intrinsic that has 1 argument and a return type 435 // matching the argument type. Depending on mode, this may be a constrained 436 // floating-point intrinsic. 437 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 438 const CallExpr *E, unsigned IntrinsicID, 439 unsigned ConstrainedIntrinsicID) { 440 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 441 442 if (CGF.Builder.getIsFPConstrained()) { 443 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 444 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 445 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 }); 446 } else { 447 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 448 return CGF.Builder.CreateCall(F, Src0); 449 } 450 } 451 452 // Emit an intrinsic that has 2 operands of the same type as its result. 453 // Depending on mode, this may be a constrained floating-point intrinsic. 454 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 455 const CallExpr *E, unsigned IntrinsicID, 456 unsigned ConstrainedIntrinsicID) { 457 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 458 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 459 460 if (CGF.Builder.getIsFPConstrained()) { 461 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 462 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 463 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 }); 464 } else { 465 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 466 return CGF.Builder.CreateCall(F, { Src0, Src1 }); 467 } 468 } 469 470 // Emit an intrinsic that has 3 operands of the same type as its result. 471 // Depending on mode, this may be a constrained floating-point intrinsic. 472 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 473 const CallExpr *E, unsigned IntrinsicID, 474 unsigned ConstrainedIntrinsicID) { 475 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 476 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 477 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); 478 479 if (CGF.Builder.getIsFPConstrained()) { 480 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 481 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 482 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 }); 483 } else { 484 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 485 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); 486 } 487 } 488 489 // Emit an intrinsic where all operands are of the same type as the result. 490 // Depending on mode, this may be a constrained floating-point intrinsic. 491 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 492 unsigned IntrinsicID, 493 unsigned ConstrainedIntrinsicID, 494 llvm::Type *Ty, 495 ArrayRef<Value *> Args) { 496 Function *F; 497 if (CGF.Builder.getIsFPConstrained()) 498 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty); 499 else 500 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty); 501 502 if (CGF.Builder.getIsFPConstrained()) 503 return CGF.Builder.CreateConstrainedFPCall(F, Args); 504 else 505 return CGF.Builder.CreateCall(F, Args); 506 } 507 508 // Emit a simple mangled intrinsic that has 1 argument and a return type 509 // matching the argument type. 510 static Value *emitUnaryBuiltin(CodeGenFunction &CGF, 511 const CallExpr *E, 512 unsigned IntrinsicID) { 513 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 514 515 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 516 return CGF.Builder.CreateCall(F, Src0); 517 } 518 519 // Emit an intrinsic that has 2 operands of the same type as its result. 520 static Value *emitBinaryBuiltin(CodeGenFunction &CGF, 521 const CallExpr *E, 522 unsigned IntrinsicID) { 523 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 524 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 525 526 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 527 return CGF.Builder.CreateCall(F, { Src0, Src1 }); 528 } 529 530 // Emit an intrinsic that has 3 operands of the same type as its result. 531 static Value *emitTernaryBuiltin(CodeGenFunction &CGF, 532 const CallExpr *E, 533 unsigned IntrinsicID) { 534 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 535 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 536 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); 537 538 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 539 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); 540 } 541 542 // Emit an intrinsic that has 1 float or double operand, and 1 integer. 543 static Value *emitFPIntBuiltin(CodeGenFunction &CGF, 544 const CallExpr *E, 545 unsigned IntrinsicID) { 546 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 547 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 548 549 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 550 return CGF.Builder.CreateCall(F, {Src0, Src1}); 551 } 552 553 // Emit an intrinsic that has overloaded integer result and fp operand. 554 static Value * 555 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, 556 unsigned IntrinsicID, 557 unsigned ConstrainedIntrinsicID) { 558 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 559 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 560 561 if (CGF.Builder.getIsFPConstrained()) { 562 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 563 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, 564 {ResultType, Src0->getType()}); 565 return CGF.Builder.CreateConstrainedFPCall(F, {Src0}); 566 } else { 567 Function *F = 568 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()}); 569 return CGF.Builder.CreateCall(F, Src0); 570 } 571 } 572 573 /// EmitFAbs - Emit a call to @llvm.fabs(). 574 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { 575 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); 576 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); 577 Call->setDoesNotAccessMemory(); 578 return Call; 579 } 580 581 /// Emit the computation of the sign bit for a floating point value. Returns 582 /// the i1 sign bit value. 583 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { 584 LLVMContext &C = CGF.CGM.getLLVMContext(); 585 586 llvm::Type *Ty = V->getType(); 587 int Width = Ty->getPrimitiveSizeInBits(); 588 llvm::Type *IntTy = llvm::IntegerType::get(C, Width); 589 V = CGF.Builder.CreateBitCast(V, IntTy); 590 if (Ty->isPPC_FP128Ty()) { 591 // We want the sign bit of the higher-order double. The bitcast we just 592 // did works as if the double-double was stored to memory and then 593 // read as an i128. The "store" will put the higher-order double in the 594 // lower address in both little- and big-Endian modes, but the "load" 595 // will treat those bits as a different part of the i128: the low bits in 596 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian 597 // we need to shift the high bits down to the low before truncating. 598 Width >>= 1; 599 if (CGF.getTarget().isBigEndian()) { 600 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); 601 V = CGF.Builder.CreateLShr(V, ShiftCst); 602 } 603 // We are truncating value in order to extract the higher-order 604 // double, which we will be using to extract the sign from. 605 IntTy = llvm::IntegerType::get(C, Width); 606 V = CGF.Builder.CreateTrunc(V, IntTy); 607 } 608 Value *Zero = llvm::Constant::getNullValue(IntTy); 609 return CGF.Builder.CreateICmpSLT(V, Zero); 610 } 611 612 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, 613 const CallExpr *E, llvm::Constant *calleeValue) { 614 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); 615 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); 616 } 617 618 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* 619 /// depending on IntrinsicID. 620 /// 621 /// \arg CGF The current codegen function. 622 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. 623 /// \arg X The first argument to the llvm.*.with.overflow.*. 624 /// \arg Y The second argument to the llvm.*.with.overflow.*. 625 /// \arg Carry The carry returned by the llvm.*.with.overflow.*. 626 /// \returns The result (i.e. sum/product) returned by the intrinsic. 627 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, 628 const llvm::Intrinsic::ID IntrinsicID, 629 llvm::Value *X, llvm::Value *Y, 630 llvm::Value *&Carry) { 631 // Make sure we have integers of the same width. 632 assert(X->getType() == Y->getType() && 633 "Arguments must be the same type. (Did you forget to make sure both " 634 "arguments have the same integer width?)"); 635 636 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); 637 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); 638 Carry = CGF.Builder.CreateExtractValue(Tmp, 1); 639 return CGF.Builder.CreateExtractValue(Tmp, 0); 640 } 641 642 static Value *emitRangedBuiltin(CodeGenFunction &CGF, 643 unsigned IntrinsicID, 644 int low, int high) { 645 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 646 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); 647 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); 648 llvm::Instruction *Call = CGF.Builder.CreateCall(F); 649 Call->setMetadata(llvm::LLVMContext::MD_range, RNode); 650 return Call; 651 } 652 653 namespace { 654 struct WidthAndSignedness { 655 unsigned Width; 656 bool Signed; 657 }; 658 } 659 660 static WidthAndSignedness 661 getIntegerWidthAndSignedness(const clang::ASTContext &context, 662 const clang::QualType Type) { 663 assert(Type->isIntegerType() && "Given type is not an integer."); 664 unsigned Width = Type->isBooleanType() ? 1 665 : Type->isExtIntType() ? context.getIntWidth(Type) 666 : context.getTypeInfo(Type).Width; 667 bool Signed = Type->isSignedIntegerType(); 668 return {Width, Signed}; 669 } 670 671 // Given one or more integer types, this function produces an integer type that 672 // encompasses them: any value in one of the given types could be expressed in 673 // the encompassing type. 674 static struct WidthAndSignedness 675 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { 676 assert(Types.size() > 0 && "Empty list of types."); 677 678 // If any of the given types is signed, we must return a signed type. 679 bool Signed = false; 680 for (const auto &Type : Types) { 681 Signed |= Type.Signed; 682 } 683 684 // The encompassing type must have a width greater than or equal to the width 685 // of the specified types. Additionally, if the encompassing type is signed, 686 // its width must be strictly greater than the width of any unsigned types 687 // given. 688 unsigned Width = 0; 689 for (const auto &Type : Types) { 690 unsigned MinWidth = Type.Width + (Signed && !Type.Signed); 691 if (Width < MinWidth) { 692 Width = MinWidth; 693 } 694 } 695 696 return {Width, Signed}; 697 } 698 699 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { 700 llvm::Type *DestType = Int8PtrTy; 701 if (ArgValue->getType() != DestType) 702 ArgValue = 703 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); 704 705 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; 706 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); 707 } 708 709 /// Checks if using the result of __builtin_object_size(p, @p From) in place of 710 /// __builtin_object_size(p, @p To) is correct 711 static bool areBOSTypesCompatible(int From, int To) { 712 // Note: Our __builtin_object_size implementation currently treats Type=0 and 713 // Type=2 identically. Encoding this implementation detail here may make 714 // improving __builtin_object_size difficult in the future, so it's omitted. 715 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); 716 } 717 718 static llvm::Value * 719 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { 720 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); 721 } 722 723 llvm::Value * 724 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 725 llvm::IntegerType *ResType, 726 llvm::Value *EmittedE, 727 bool IsDynamic) { 728 uint64_t ObjectSize; 729 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) 730 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); 731 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); 732 } 733 734 /// Returns a Value corresponding to the size of the given expression. 735 /// This Value may be either of the following: 736 /// - A llvm::Argument (if E is a param with the pass_object_size attribute on 737 /// it) 738 /// - A call to the @llvm.objectsize intrinsic 739 /// 740 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null 741 /// and we wouldn't otherwise try to reference a pass_object_size parameter, 742 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. 743 llvm::Value * 744 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, 745 llvm::IntegerType *ResType, 746 llvm::Value *EmittedE, bool IsDynamic) { 747 // We need to reference an argument if the pointer is a parameter with the 748 // pass_object_size attribute. 749 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { 750 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); 751 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); 752 if (Param != nullptr && PS != nullptr && 753 areBOSTypesCompatible(PS->getType(), Type)) { 754 auto Iter = SizeArguments.find(Param); 755 assert(Iter != SizeArguments.end()); 756 757 const ImplicitParamDecl *D = Iter->second; 758 auto DIter = LocalDeclMap.find(D); 759 assert(DIter != LocalDeclMap.end()); 760 761 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, 762 getContext().getSizeType(), E->getBeginLoc()); 763 } 764 } 765 766 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't 767 // evaluate E for side-effects. In either case, we shouldn't lower to 768 // @llvm.objectsize. 769 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) 770 return getDefaultBuiltinObjectSizeResult(Type, ResType); 771 772 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); 773 assert(Ptr->getType()->isPointerTy() && 774 "Non-pointer passed to __builtin_object_size?"); 775 776 Function *F = 777 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); 778 779 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. 780 Value *Min = Builder.getInt1((Type & 2) != 0); 781 // For GCC compatibility, __builtin_object_size treat NULL as unknown size. 782 Value *NullIsUnknown = Builder.getTrue(); 783 Value *Dynamic = Builder.getInt1(IsDynamic); 784 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); 785 } 786 787 namespace { 788 /// A struct to generically describe a bit test intrinsic. 789 struct BitTest { 790 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; 791 enum InterlockingKind : uint8_t { 792 Unlocked, 793 Sequential, 794 Acquire, 795 Release, 796 NoFence 797 }; 798 799 ActionKind Action; 800 InterlockingKind Interlocking; 801 bool Is64Bit; 802 803 static BitTest decodeBitTestBuiltin(unsigned BuiltinID); 804 }; 805 } // namespace 806 807 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { 808 switch (BuiltinID) { 809 // Main portable variants. 810 case Builtin::BI_bittest: 811 return {TestOnly, Unlocked, false}; 812 case Builtin::BI_bittestandcomplement: 813 return {Complement, Unlocked, false}; 814 case Builtin::BI_bittestandreset: 815 return {Reset, Unlocked, false}; 816 case Builtin::BI_bittestandset: 817 return {Set, Unlocked, false}; 818 case Builtin::BI_interlockedbittestandreset: 819 return {Reset, Sequential, false}; 820 case Builtin::BI_interlockedbittestandset: 821 return {Set, Sequential, false}; 822 823 // X86-specific 64-bit variants. 824 case Builtin::BI_bittest64: 825 return {TestOnly, Unlocked, true}; 826 case Builtin::BI_bittestandcomplement64: 827 return {Complement, Unlocked, true}; 828 case Builtin::BI_bittestandreset64: 829 return {Reset, Unlocked, true}; 830 case Builtin::BI_bittestandset64: 831 return {Set, Unlocked, true}; 832 case Builtin::BI_interlockedbittestandreset64: 833 return {Reset, Sequential, true}; 834 case Builtin::BI_interlockedbittestandset64: 835 return {Set, Sequential, true}; 836 837 // ARM/AArch64-specific ordering variants. 838 case Builtin::BI_interlockedbittestandset_acq: 839 return {Set, Acquire, false}; 840 case Builtin::BI_interlockedbittestandset_rel: 841 return {Set, Release, false}; 842 case Builtin::BI_interlockedbittestandset_nf: 843 return {Set, NoFence, false}; 844 case Builtin::BI_interlockedbittestandreset_acq: 845 return {Reset, Acquire, false}; 846 case Builtin::BI_interlockedbittestandreset_rel: 847 return {Reset, Release, false}; 848 case Builtin::BI_interlockedbittestandreset_nf: 849 return {Reset, NoFence, false}; 850 } 851 llvm_unreachable("expected only bittest intrinsics"); 852 } 853 854 static char bitActionToX86BTCode(BitTest::ActionKind A) { 855 switch (A) { 856 case BitTest::TestOnly: return '\0'; 857 case BitTest::Complement: return 'c'; 858 case BitTest::Reset: return 'r'; 859 case BitTest::Set: return 's'; 860 } 861 llvm_unreachable("invalid action"); 862 } 863 864 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, 865 BitTest BT, 866 const CallExpr *E, Value *BitBase, 867 Value *BitPos) { 868 char Action = bitActionToX86BTCode(BT.Action); 869 char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; 870 871 // Build the assembly. 872 SmallString<64> Asm; 873 raw_svector_ostream AsmOS(Asm); 874 if (BT.Interlocking != BitTest::Unlocked) 875 AsmOS << "lock "; 876 AsmOS << "bt"; 877 if (Action) 878 AsmOS << Action; 879 AsmOS << SizeSuffix << " $2, ($1)"; 880 881 // Build the constraints. FIXME: We should support immediates when possible. 882 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}"; 883 std::string MachineClobbers = CGF.getTarget().getClobbers(); 884 if (!MachineClobbers.empty()) { 885 Constraints += ','; 886 Constraints += MachineClobbers; 887 } 888 llvm::IntegerType *IntType = llvm::IntegerType::get( 889 CGF.getLLVMContext(), 890 CGF.getContext().getTypeSize(E->getArg(1)->getType())); 891 llvm::Type *IntPtrType = IntType->getPointerTo(); 892 llvm::FunctionType *FTy = 893 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); 894 895 llvm::InlineAsm *IA = 896 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 897 return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); 898 } 899 900 static llvm::AtomicOrdering 901 getBitTestAtomicOrdering(BitTest::InterlockingKind I) { 902 switch (I) { 903 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; 904 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; 905 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; 906 case BitTest::Release: return llvm::AtomicOrdering::Release; 907 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; 908 } 909 llvm_unreachable("invalid interlocking"); 910 } 911 912 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of 913 /// bits and a bit position and read and optionally modify the bit at that 914 /// position. The position index can be arbitrarily large, i.e. it can be larger 915 /// than 31 or 63, so we need an indexed load in the general case. 916 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, 917 unsigned BuiltinID, 918 const CallExpr *E) { 919 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); 920 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); 921 922 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); 923 924 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array 925 // indexing operation internally. Use them if possible. 926 if (CGF.getTarget().getTriple().isX86()) 927 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); 928 929 // Otherwise, use generic code to load one byte and test the bit. Use all but 930 // the bottom three bits as the array index, and the bottom three bits to form 931 // a mask. 932 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; 933 Value *ByteIndex = CGF.Builder.CreateAShr( 934 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); 935 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); 936 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, 937 ByteIndex, "bittest.byteaddr"), 938 CharUnits::One()); 939 Value *PosLow = 940 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), 941 llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); 942 943 // The updating instructions will need a mask. 944 Value *Mask = nullptr; 945 if (BT.Action != BitTest::TestOnly) { 946 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, 947 "bittest.mask"); 948 } 949 950 // Check the action and ordering of the interlocked intrinsics. 951 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); 952 953 Value *OldByte = nullptr; 954 if (Ordering != llvm::AtomicOrdering::NotAtomic) { 955 // Emit a combined atomicrmw load/store operation for the interlocked 956 // intrinsics. 957 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; 958 if (BT.Action == BitTest::Reset) { 959 Mask = CGF.Builder.CreateNot(Mask); 960 RMWOp = llvm::AtomicRMWInst::And; 961 } 962 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, 963 Ordering); 964 } else { 965 // Emit a plain load for the non-interlocked intrinsics. 966 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); 967 Value *NewByte = nullptr; 968 switch (BT.Action) { 969 case BitTest::TestOnly: 970 // Don't store anything. 971 break; 972 case BitTest::Complement: 973 NewByte = CGF.Builder.CreateXor(OldByte, Mask); 974 break; 975 case BitTest::Reset: 976 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); 977 break; 978 case BitTest::Set: 979 NewByte = CGF.Builder.CreateOr(OldByte, Mask); 980 break; 981 } 982 if (NewByte) 983 CGF.Builder.CreateStore(NewByte, ByteAddr); 984 } 985 986 // However we loaded the old byte, either by plain load or atomicrmw, shift 987 // the bit into the low position and mask it to 0 or 1. 988 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); 989 return CGF.Builder.CreateAnd( 990 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); 991 } 992 993 namespace { 994 enum class MSVCSetJmpKind { 995 _setjmpex, 996 _setjmp3, 997 _setjmp 998 }; 999 } 1000 1001 /// MSVC handles setjmp a bit differently on different platforms. On every 1002 /// architecture except 32-bit x86, the frame address is passed. On x86, extra 1003 /// parameters can be passed as variadic arguments, but we always pass none. 1004 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, 1005 const CallExpr *E) { 1006 llvm::Value *Arg1 = nullptr; 1007 llvm::Type *Arg1Ty = nullptr; 1008 StringRef Name; 1009 bool IsVarArg = false; 1010 if (SJKind == MSVCSetJmpKind::_setjmp3) { 1011 Name = "_setjmp3"; 1012 Arg1Ty = CGF.Int32Ty; 1013 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); 1014 IsVarArg = true; 1015 } else { 1016 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; 1017 Arg1Ty = CGF.Int8PtrTy; 1018 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { 1019 Arg1 = CGF.Builder.CreateCall( 1020 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); 1021 } else 1022 Arg1 = CGF.Builder.CreateCall( 1023 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), 1024 llvm::ConstantInt::get(CGF.Int32Ty, 0)); 1025 } 1026 1027 // Mark the call site and declaration with ReturnsTwice. 1028 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; 1029 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( 1030 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, 1031 llvm::Attribute::ReturnsTwice); 1032 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( 1033 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, 1034 ReturnsTwiceAttr, /*Local=*/true); 1035 1036 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( 1037 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); 1038 llvm::Value *Args[] = {Buf, Arg1}; 1039 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); 1040 CB->setAttributes(ReturnsTwiceAttr); 1041 return RValue::get(CB); 1042 } 1043 1044 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, 1045 // we handle them here. 1046 enum class CodeGenFunction::MSVCIntrin { 1047 _BitScanForward, 1048 _BitScanReverse, 1049 _InterlockedAnd, 1050 _InterlockedDecrement, 1051 _InterlockedExchange, 1052 _InterlockedExchangeAdd, 1053 _InterlockedExchangeSub, 1054 _InterlockedIncrement, 1055 _InterlockedOr, 1056 _InterlockedXor, 1057 _InterlockedExchangeAdd_acq, 1058 _InterlockedExchangeAdd_rel, 1059 _InterlockedExchangeAdd_nf, 1060 _InterlockedExchange_acq, 1061 _InterlockedExchange_rel, 1062 _InterlockedExchange_nf, 1063 _InterlockedCompareExchange_acq, 1064 _InterlockedCompareExchange_rel, 1065 _InterlockedCompareExchange_nf, 1066 _InterlockedCompareExchange128, 1067 _InterlockedCompareExchange128_acq, 1068 _InterlockedCompareExchange128_rel, 1069 _InterlockedCompareExchange128_nf, 1070 _InterlockedOr_acq, 1071 _InterlockedOr_rel, 1072 _InterlockedOr_nf, 1073 _InterlockedXor_acq, 1074 _InterlockedXor_rel, 1075 _InterlockedXor_nf, 1076 _InterlockedAnd_acq, 1077 _InterlockedAnd_rel, 1078 _InterlockedAnd_nf, 1079 _InterlockedIncrement_acq, 1080 _InterlockedIncrement_rel, 1081 _InterlockedIncrement_nf, 1082 _InterlockedDecrement_acq, 1083 _InterlockedDecrement_rel, 1084 _InterlockedDecrement_nf, 1085 __fastfail, 1086 }; 1087 1088 static Optional<CodeGenFunction::MSVCIntrin> 1089 translateArmToMsvcIntrin(unsigned BuiltinID) { 1090 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1091 switch (BuiltinID) { 1092 default: 1093 return None; 1094 case ARM::BI_BitScanForward: 1095 case ARM::BI_BitScanForward64: 1096 return MSVCIntrin::_BitScanForward; 1097 case ARM::BI_BitScanReverse: 1098 case ARM::BI_BitScanReverse64: 1099 return MSVCIntrin::_BitScanReverse; 1100 case ARM::BI_InterlockedAnd64: 1101 return MSVCIntrin::_InterlockedAnd; 1102 case ARM::BI_InterlockedExchange64: 1103 return MSVCIntrin::_InterlockedExchange; 1104 case ARM::BI_InterlockedExchangeAdd64: 1105 return MSVCIntrin::_InterlockedExchangeAdd; 1106 case ARM::BI_InterlockedExchangeSub64: 1107 return MSVCIntrin::_InterlockedExchangeSub; 1108 case ARM::BI_InterlockedOr64: 1109 return MSVCIntrin::_InterlockedOr; 1110 case ARM::BI_InterlockedXor64: 1111 return MSVCIntrin::_InterlockedXor; 1112 case ARM::BI_InterlockedDecrement64: 1113 return MSVCIntrin::_InterlockedDecrement; 1114 case ARM::BI_InterlockedIncrement64: 1115 return MSVCIntrin::_InterlockedIncrement; 1116 case ARM::BI_InterlockedExchangeAdd8_acq: 1117 case ARM::BI_InterlockedExchangeAdd16_acq: 1118 case ARM::BI_InterlockedExchangeAdd_acq: 1119 case ARM::BI_InterlockedExchangeAdd64_acq: 1120 return MSVCIntrin::_InterlockedExchangeAdd_acq; 1121 case ARM::BI_InterlockedExchangeAdd8_rel: 1122 case ARM::BI_InterlockedExchangeAdd16_rel: 1123 case ARM::BI_InterlockedExchangeAdd_rel: 1124 case ARM::BI_InterlockedExchangeAdd64_rel: 1125 return MSVCIntrin::_InterlockedExchangeAdd_rel; 1126 case ARM::BI_InterlockedExchangeAdd8_nf: 1127 case ARM::BI_InterlockedExchangeAdd16_nf: 1128 case ARM::BI_InterlockedExchangeAdd_nf: 1129 case ARM::BI_InterlockedExchangeAdd64_nf: 1130 return MSVCIntrin::_InterlockedExchangeAdd_nf; 1131 case ARM::BI_InterlockedExchange8_acq: 1132 case ARM::BI_InterlockedExchange16_acq: 1133 case ARM::BI_InterlockedExchange_acq: 1134 case ARM::BI_InterlockedExchange64_acq: 1135 return MSVCIntrin::_InterlockedExchange_acq; 1136 case ARM::BI_InterlockedExchange8_rel: 1137 case ARM::BI_InterlockedExchange16_rel: 1138 case ARM::BI_InterlockedExchange_rel: 1139 case ARM::BI_InterlockedExchange64_rel: 1140 return MSVCIntrin::_InterlockedExchange_rel; 1141 case ARM::BI_InterlockedExchange8_nf: 1142 case ARM::BI_InterlockedExchange16_nf: 1143 case ARM::BI_InterlockedExchange_nf: 1144 case ARM::BI_InterlockedExchange64_nf: 1145 return MSVCIntrin::_InterlockedExchange_nf; 1146 case ARM::BI_InterlockedCompareExchange8_acq: 1147 case ARM::BI_InterlockedCompareExchange16_acq: 1148 case ARM::BI_InterlockedCompareExchange_acq: 1149 case ARM::BI_InterlockedCompareExchange64_acq: 1150 return MSVCIntrin::_InterlockedCompareExchange_acq; 1151 case ARM::BI_InterlockedCompareExchange8_rel: 1152 case ARM::BI_InterlockedCompareExchange16_rel: 1153 case ARM::BI_InterlockedCompareExchange_rel: 1154 case ARM::BI_InterlockedCompareExchange64_rel: 1155 return MSVCIntrin::_InterlockedCompareExchange_rel; 1156 case ARM::BI_InterlockedCompareExchange8_nf: 1157 case ARM::BI_InterlockedCompareExchange16_nf: 1158 case ARM::BI_InterlockedCompareExchange_nf: 1159 case ARM::BI_InterlockedCompareExchange64_nf: 1160 return MSVCIntrin::_InterlockedCompareExchange_nf; 1161 case ARM::BI_InterlockedOr8_acq: 1162 case ARM::BI_InterlockedOr16_acq: 1163 case ARM::BI_InterlockedOr_acq: 1164 case ARM::BI_InterlockedOr64_acq: 1165 return MSVCIntrin::_InterlockedOr_acq; 1166 case ARM::BI_InterlockedOr8_rel: 1167 case ARM::BI_InterlockedOr16_rel: 1168 case ARM::BI_InterlockedOr_rel: 1169 case ARM::BI_InterlockedOr64_rel: 1170 return MSVCIntrin::_InterlockedOr_rel; 1171 case ARM::BI_InterlockedOr8_nf: 1172 case ARM::BI_InterlockedOr16_nf: 1173 case ARM::BI_InterlockedOr_nf: 1174 case ARM::BI_InterlockedOr64_nf: 1175 return MSVCIntrin::_InterlockedOr_nf; 1176 case ARM::BI_InterlockedXor8_acq: 1177 case ARM::BI_InterlockedXor16_acq: 1178 case ARM::BI_InterlockedXor_acq: 1179 case ARM::BI_InterlockedXor64_acq: 1180 return MSVCIntrin::_InterlockedXor_acq; 1181 case ARM::BI_InterlockedXor8_rel: 1182 case ARM::BI_InterlockedXor16_rel: 1183 case ARM::BI_InterlockedXor_rel: 1184 case ARM::BI_InterlockedXor64_rel: 1185 return MSVCIntrin::_InterlockedXor_rel; 1186 case ARM::BI_InterlockedXor8_nf: 1187 case ARM::BI_InterlockedXor16_nf: 1188 case ARM::BI_InterlockedXor_nf: 1189 case ARM::BI_InterlockedXor64_nf: 1190 return MSVCIntrin::_InterlockedXor_nf; 1191 case ARM::BI_InterlockedAnd8_acq: 1192 case ARM::BI_InterlockedAnd16_acq: 1193 case ARM::BI_InterlockedAnd_acq: 1194 case ARM::BI_InterlockedAnd64_acq: 1195 return MSVCIntrin::_InterlockedAnd_acq; 1196 case ARM::BI_InterlockedAnd8_rel: 1197 case ARM::BI_InterlockedAnd16_rel: 1198 case ARM::BI_InterlockedAnd_rel: 1199 case ARM::BI_InterlockedAnd64_rel: 1200 return MSVCIntrin::_InterlockedAnd_rel; 1201 case ARM::BI_InterlockedAnd8_nf: 1202 case ARM::BI_InterlockedAnd16_nf: 1203 case ARM::BI_InterlockedAnd_nf: 1204 case ARM::BI_InterlockedAnd64_nf: 1205 return MSVCIntrin::_InterlockedAnd_nf; 1206 case ARM::BI_InterlockedIncrement16_acq: 1207 case ARM::BI_InterlockedIncrement_acq: 1208 case ARM::BI_InterlockedIncrement64_acq: 1209 return MSVCIntrin::_InterlockedIncrement_acq; 1210 case ARM::BI_InterlockedIncrement16_rel: 1211 case ARM::BI_InterlockedIncrement_rel: 1212 case ARM::BI_InterlockedIncrement64_rel: 1213 return MSVCIntrin::_InterlockedIncrement_rel; 1214 case ARM::BI_InterlockedIncrement16_nf: 1215 case ARM::BI_InterlockedIncrement_nf: 1216 case ARM::BI_InterlockedIncrement64_nf: 1217 return MSVCIntrin::_InterlockedIncrement_nf; 1218 case ARM::BI_InterlockedDecrement16_acq: 1219 case ARM::BI_InterlockedDecrement_acq: 1220 case ARM::BI_InterlockedDecrement64_acq: 1221 return MSVCIntrin::_InterlockedDecrement_acq; 1222 case ARM::BI_InterlockedDecrement16_rel: 1223 case ARM::BI_InterlockedDecrement_rel: 1224 case ARM::BI_InterlockedDecrement64_rel: 1225 return MSVCIntrin::_InterlockedDecrement_rel; 1226 case ARM::BI_InterlockedDecrement16_nf: 1227 case ARM::BI_InterlockedDecrement_nf: 1228 case ARM::BI_InterlockedDecrement64_nf: 1229 return MSVCIntrin::_InterlockedDecrement_nf; 1230 } 1231 llvm_unreachable("must return from switch"); 1232 } 1233 1234 static Optional<CodeGenFunction::MSVCIntrin> 1235 translateAarch64ToMsvcIntrin(unsigned BuiltinID) { 1236 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1237 switch (BuiltinID) { 1238 default: 1239 return None; 1240 case AArch64::BI_BitScanForward: 1241 case AArch64::BI_BitScanForward64: 1242 return MSVCIntrin::_BitScanForward; 1243 case AArch64::BI_BitScanReverse: 1244 case AArch64::BI_BitScanReverse64: 1245 return MSVCIntrin::_BitScanReverse; 1246 case AArch64::BI_InterlockedAnd64: 1247 return MSVCIntrin::_InterlockedAnd; 1248 case AArch64::BI_InterlockedExchange64: 1249 return MSVCIntrin::_InterlockedExchange; 1250 case AArch64::BI_InterlockedExchangeAdd64: 1251 return MSVCIntrin::_InterlockedExchangeAdd; 1252 case AArch64::BI_InterlockedExchangeSub64: 1253 return MSVCIntrin::_InterlockedExchangeSub; 1254 case AArch64::BI_InterlockedOr64: 1255 return MSVCIntrin::_InterlockedOr; 1256 case AArch64::BI_InterlockedXor64: 1257 return MSVCIntrin::_InterlockedXor; 1258 case AArch64::BI_InterlockedDecrement64: 1259 return MSVCIntrin::_InterlockedDecrement; 1260 case AArch64::BI_InterlockedIncrement64: 1261 return MSVCIntrin::_InterlockedIncrement; 1262 case AArch64::BI_InterlockedExchangeAdd8_acq: 1263 case AArch64::BI_InterlockedExchangeAdd16_acq: 1264 case AArch64::BI_InterlockedExchangeAdd_acq: 1265 case AArch64::BI_InterlockedExchangeAdd64_acq: 1266 return MSVCIntrin::_InterlockedExchangeAdd_acq; 1267 case AArch64::BI_InterlockedExchangeAdd8_rel: 1268 case AArch64::BI_InterlockedExchangeAdd16_rel: 1269 case AArch64::BI_InterlockedExchangeAdd_rel: 1270 case AArch64::BI_InterlockedExchangeAdd64_rel: 1271 return MSVCIntrin::_InterlockedExchangeAdd_rel; 1272 case AArch64::BI_InterlockedExchangeAdd8_nf: 1273 case AArch64::BI_InterlockedExchangeAdd16_nf: 1274 case AArch64::BI_InterlockedExchangeAdd_nf: 1275 case AArch64::BI_InterlockedExchangeAdd64_nf: 1276 return MSVCIntrin::_InterlockedExchangeAdd_nf; 1277 case AArch64::BI_InterlockedExchange8_acq: 1278 case AArch64::BI_InterlockedExchange16_acq: 1279 case AArch64::BI_InterlockedExchange_acq: 1280 case AArch64::BI_InterlockedExchange64_acq: 1281 return MSVCIntrin::_InterlockedExchange_acq; 1282 case AArch64::BI_InterlockedExchange8_rel: 1283 case AArch64::BI_InterlockedExchange16_rel: 1284 case AArch64::BI_InterlockedExchange_rel: 1285 case AArch64::BI_InterlockedExchange64_rel: 1286 return MSVCIntrin::_InterlockedExchange_rel; 1287 case AArch64::BI_InterlockedExchange8_nf: 1288 case AArch64::BI_InterlockedExchange16_nf: 1289 case AArch64::BI_InterlockedExchange_nf: 1290 case AArch64::BI_InterlockedExchange64_nf: 1291 return MSVCIntrin::_InterlockedExchange_nf; 1292 case AArch64::BI_InterlockedCompareExchange8_acq: 1293 case AArch64::BI_InterlockedCompareExchange16_acq: 1294 case AArch64::BI_InterlockedCompareExchange_acq: 1295 case AArch64::BI_InterlockedCompareExchange64_acq: 1296 return MSVCIntrin::_InterlockedCompareExchange_acq; 1297 case AArch64::BI_InterlockedCompareExchange8_rel: 1298 case AArch64::BI_InterlockedCompareExchange16_rel: 1299 case AArch64::BI_InterlockedCompareExchange_rel: 1300 case AArch64::BI_InterlockedCompareExchange64_rel: 1301 return MSVCIntrin::_InterlockedCompareExchange_rel; 1302 case AArch64::BI_InterlockedCompareExchange8_nf: 1303 case AArch64::BI_InterlockedCompareExchange16_nf: 1304 case AArch64::BI_InterlockedCompareExchange_nf: 1305 case AArch64::BI_InterlockedCompareExchange64_nf: 1306 return MSVCIntrin::_InterlockedCompareExchange_nf; 1307 case AArch64::BI_InterlockedCompareExchange128: 1308 return MSVCIntrin::_InterlockedCompareExchange128; 1309 case AArch64::BI_InterlockedCompareExchange128_acq: 1310 return MSVCIntrin::_InterlockedCompareExchange128_acq; 1311 case AArch64::BI_InterlockedCompareExchange128_nf: 1312 return MSVCIntrin::_InterlockedCompareExchange128_nf; 1313 case AArch64::BI_InterlockedCompareExchange128_rel: 1314 return MSVCIntrin::_InterlockedCompareExchange128_rel; 1315 case AArch64::BI_InterlockedOr8_acq: 1316 case AArch64::BI_InterlockedOr16_acq: 1317 case AArch64::BI_InterlockedOr_acq: 1318 case AArch64::BI_InterlockedOr64_acq: 1319 return MSVCIntrin::_InterlockedOr_acq; 1320 case AArch64::BI_InterlockedOr8_rel: 1321 case AArch64::BI_InterlockedOr16_rel: 1322 case AArch64::BI_InterlockedOr_rel: 1323 case AArch64::BI_InterlockedOr64_rel: 1324 return MSVCIntrin::_InterlockedOr_rel; 1325 case AArch64::BI_InterlockedOr8_nf: 1326 case AArch64::BI_InterlockedOr16_nf: 1327 case AArch64::BI_InterlockedOr_nf: 1328 case AArch64::BI_InterlockedOr64_nf: 1329 return MSVCIntrin::_InterlockedOr_nf; 1330 case AArch64::BI_InterlockedXor8_acq: 1331 case AArch64::BI_InterlockedXor16_acq: 1332 case AArch64::BI_InterlockedXor_acq: 1333 case AArch64::BI_InterlockedXor64_acq: 1334 return MSVCIntrin::_InterlockedXor_acq; 1335 case AArch64::BI_InterlockedXor8_rel: 1336 case AArch64::BI_InterlockedXor16_rel: 1337 case AArch64::BI_InterlockedXor_rel: 1338 case AArch64::BI_InterlockedXor64_rel: 1339 return MSVCIntrin::_InterlockedXor_rel; 1340 case AArch64::BI_InterlockedXor8_nf: 1341 case AArch64::BI_InterlockedXor16_nf: 1342 case AArch64::BI_InterlockedXor_nf: 1343 case AArch64::BI_InterlockedXor64_nf: 1344 return MSVCIntrin::_InterlockedXor_nf; 1345 case AArch64::BI_InterlockedAnd8_acq: 1346 case AArch64::BI_InterlockedAnd16_acq: 1347 case AArch64::BI_InterlockedAnd_acq: 1348 case AArch64::BI_InterlockedAnd64_acq: 1349 return MSVCIntrin::_InterlockedAnd_acq; 1350 case AArch64::BI_InterlockedAnd8_rel: 1351 case AArch64::BI_InterlockedAnd16_rel: 1352 case AArch64::BI_InterlockedAnd_rel: 1353 case AArch64::BI_InterlockedAnd64_rel: 1354 return MSVCIntrin::_InterlockedAnd_rel; 1355 case AArch64::BI_InterlockedAnd8_nf: 1356 case AArch64::BI_InterlockedAnd16_nf: 1357 case AArch64::BI_InterlockedAnd_nf: 1358 case AArch64::BI_InterlockedAnd64_nf: 1359 return MSVCIntrin::_InterlockedAnd_nf; 1360 case AArch64::BI_InterlockedIncrement16_acq: 1361 case AArch64::BI_InterlockedIncrement_acq: 1362 case AArch64::BI_InterlockedIncrement64_acq: 1363 return MSVCIntrin::_InterlockedIncrement_acq; 1364 case AArch64::BI_InterlockedIncrement16_rel: 1365 case AArch64::BI_InterlockedIncrement_rel: 1366 case AArch64::BI_InterlockedIncrement64_rel: 1367 return MSVCIntrin::_InterlockedIncrement_rel; 1368 case AArch64::BI_InterlockedIncrement16_nf: 1369 case AArch64::BI_InterlockedIncrement_nf: 1370 case AArch64::BI_InterlockedIncrement64_nf: 1371 return MSVCIntrin::_InterlockedIncrement_nf; 1372 case AArch64::BI_InterlockedDecrement16_acq: 1373 case AArch64::BI_InterlockedDecrement_acq: 1374 case AArch64::BI_InterlockedDecrement64_acq: 1375 return MSVCIntrin::_InterlockedDecrement_acq; 1376 case AArch64::BI_InterlockedDecrement16_rel: 1377 case AArch64::BI_InterlockedDecrement_rel: 1378 case AArch64::BI_InterlockedDecrement64_rel: 1379 return MSVCIntrin::_InterlockedDecrement_rel; 1380 case AArch64::BI_InterlockedDecrement16_nf: 1381 case AArch64::BI_InterlockedDecrement_nf: 1382 case AArch64::BI_InterlockedDecrement64_nf: 1383 return MSVCIntrin::_InterlockedDecrement_nf; 1384 } 1385 llvm_unreachable("must return from switch"); 1386 } 1387 1388 static Optional<CodeGenFunction::MSVCIntrin> 1389 translateX86ToMsvcIntrin(unsigned BuiltinID) { 1390 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1391 switch (BuiltinID) { 1392 default: 1393 return None; 1394 case clang::X86::BI_BitScanForward: 1395 case clang::X86::BI_BitScanForward64: 1396 return MSVCIntrin::_BitScanForward; 1397 case clang::X86::BI_BitScanReverse: 1398 case clang::X86::BI_BitScanReverse64: 1399 return MSVCIntrin::_BitScanReverse; 1400 case clang::X86::BI_InterlockedAnd64: 1401 return MSVCIntrin::_InterlockedAnd; 1402 case clang::X86::BI_InterlockedCompareExchange128: 1403 return MSVCIntrin::_InterlockedCompareExchange128; 1404 case clang::X86::BI_InterlockedExchange64: 1405 return MSVCIntrin::_InterlockedExchange; 1406 case clang::X86::BI_InterlockedExchangeAdd64: 1407 return MSVCIntrin::_InterlockedExchangeAdd; 1408 case clang::X86::BI_InterlockedExchangeSub64: 1409 return MSVCIntrin::_InterlockedExchangeSub; 1410 case clang::X86::BI_InterlockedOr64: 1411 return MSVCIntrin::_InterlockedOr; 1412 case clang::X86::BI_InterlockedXor64: 1413 return MSVCIntrin::_InterlockedXor; 1414 case clang::X86::BI_InterlockedDecrement64: 1415 return MSVCIntrin::_InterlockedDecrement; 1416 case clang::X86::BI_InterlockedIncrement64: 1417 return MSVCIntrin::_InterlockedIncrement; 1418 } 1419 llvm_unreachable("must return from switch"); 1420 } 1421 1422 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated. 1423 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, 1424 const CallExpr *E) { 1425 switch (BuiltinID) { 1426 case MSVCIntrin::_BitScanForward: 1427 case MSVCIntrin::_BitScanReverse: { 1428 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0))); 1429 Value *ArgValue = EmitScalarExpr(E->getArg(1)); 1430 1431 llvm::Type *ArgType = ArgValue->getType(); 1432 llvm::Type *IndexType = 1433 IndexAddress.getPointer()->getType()->getPointerElementType(); 1434 llvm::Type *ResultType = ConvertType(E->getType()); 1435 1436 Value *ArgZero = llvm::Constant::getNullValue(ArgType); 1437 Value *ResZero = llvm::Constant::getNullValue(ResultType); 1438 Value *ResOne = llvm::ConstantInt::get(ResultType, 1); 1439 1440 BasicBlock *Begin = Builder.GetInsertBlock(); 1441 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); 1442 Builder.SetInsertPoint(End); 1443 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); 1444 1445 Builder.SetInsertPoint(Begin); 1446 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); 1447 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); 1448 Builder.CreateCondBr(IsZero, End, NotZero); 1449 Result->addIncoming(ResZero, Begin); 1450 1451 Builder.SetInsertPoint(NotZero); 1452 1453 if (BuiltinID == MSVCIntrin::_BitScanForward) { 1454 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 1455 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 1456 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 1457 Builder.CreateStore(ZeroCount, IndexAddress, false); 1458 } else { 1459 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); 1460 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); 1461 1462 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 1463 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 1464 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 1465 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); 1466 Builder.CreateStore(Index, IndexAddress, false); 1467 } 1468 Builder.CreateBr(End); 1469 Result->addIncoming(ResOne, NotZero); 1470 1471 Builder.SetInsertPoint(End); 1472 return Result; 1473 } 1474 case MSVCIntrin::_InterlockedAnd: 1475 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); 1476 case MSVCIntrin::_InterlockedExchange: 1477 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); 1478 case MSVCIntrin::_InterlockedExchangeAdd: 1479 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); 1480 case MSVCIntrin::_InterlockedExchangeSub: 1481 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); 1482 case MSVCIntrin::_InterlockedOr: 1483 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); 1484 case MSVCIntrin::_InterlockedXor: 1485 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); 1486 case MSVCIntrin::_InterlockedExchangeAdd_acq: 1487 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1488 AtomicOrdering::Acquire); 1489 case MSVCIntrin::_InterlockedExchangeAdd_rel: 1490 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1491 AtomicOrdering::Release); 1492 case MSVCIntrin::_InterlockedExchangeAdd_nf: 1493 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1494 AtomicOrdering::Monotonic); 1495 case MSVCIntrin::_InterlockedExchange_acq: 1496 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1497 AtomicOrdering::Acquire); 1498 case MSVCIntrin::_InterlockedExchange_rel: 1499 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1500 AtomicOrdering::Release); 1501 case MSVCIntrin::_InterlockedExchange_nf: 1502 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1503 AtomicOrdering::Monotonic); 1504 case MSVCIntrin::_InterlockedCompareExchange_acq: 1505 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); 1506 case MSVCIntrin::_InterlockedCompareExchange_rel: 1507 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); 1508 case MSVCIntrin::_InterlockedCompareExchange_nf: 1509 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); 1510 case MSVCIntrin::_InterlockedCompareExchange128: 1511 return EmitAtomicCmpXchg128ForMSIntrin( 1512 *this, E, AtomicOrdering::SequentiallyConsistent); 1513 case MSVCIntrin::_InterlockedCompareExchange128_acq: 1514 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire); 1515 case MSVCIntrin::_InterlockedCompareExchange128_rel: 1516 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release); 1517 case MSVCIntrin::_InterlockedCompareExchange128_nf: 1518 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic); 1519 case MSVCIntrin::_InterlockedOr_acq: 1520 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1521 AtomicOrdering::Acquire); 1522 case MSVCIntrin::_InterlockedOr_rel: 1523 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1524 AtomicOrdering::Release); 1525 case MSVCIntrin::_InterlockedOr_nf: 1526 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1527 AtomicOrdering::Monotonic); 1528 case MSVCIntrin::_InterlockedXor_acq: 1529 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1530 AtomicOrdering::Acquire); 1531 case MSVCIntrin::_InterlockedXor_rel: 1532 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1533 AtomicOrdering::Release); 1534 case MSVCIntrin::_InterlockedXor_nf: 1535 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1536 AtomicOrdering::Monotonic); 1537 case MSVCIntrin::_InterlockedAnd_acq: 1538 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1539 AtomicOrdering::Acquire); 1540 case MSVCIntrin::_InterlockedAnd_rel: 1541 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1542 AtomicOrdering::Release); 1543 case MSVCIntrin::_InterlockedAnd_nf: 1544 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1545 AtomicOrdering::Monotonic); 1546 case MSVCIntrin::_InterlockedIncrement_acq: 1547 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); 1548 case MSVCIntrin::_InterlockedIncrement_rel: 1549 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); 1550 case MSVCIntrin::_InterlockedIncrement_nf: 1551 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); 1552 case MSVCIntrin::_InterlockedDecrement_acq: 1553 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); 1554 case MSVCIntrin::_InterlockedDecrement_rel: 1555 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); 1556 case MSVCIntrin::_InterlockedDecrement_nf: 1557 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); 1558 1559 case MSVCIntrin::_InterlockedDecrement: 1560 return EmitAtomicDecrementValue(*this, E); 1561 case MSVCIntrin::_InterlockedIncrement: 1562 return EmitAtomicIncrementValue(*this, E); 1563 1564 case MSVCIntrin::__fastfail: { 1565 // Request immediate process termination from the kernel. The instruction 1566 // sequences to do this are documented on MSDN: 1567 // https://msdn.microsoft.com/en-us/library/dn774154.aspx 1568 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); 1569 StringRef Asm, Constraints; 1570 switch (ISA) { 1571 default: 1572 ErrorUnsupported(E, "__fastfail call for this architecture"); 1573 break; 1574 case llvm::Triple::x86: 1575 case llvm::Triple::x86_64: 1576 Asm = "int $$0x29"; 1577 Constraints = "{cx}"; 1578 break; 1579 case llvm::Triple::thumb: 1580 Asm = "udf #251"; 1581 Constraints = "{r0}"; 1582 break; 1583 case llvm::Triple::aarch64: 1584 Asm = "brk #0xF003"; 1585 Constraints = "{w0}"; 1586 } 1587 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); 1588 llvm::InlineAsm *IA = 1589 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 1590 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 1591 getLLVMContext(), llvm::AttributeList::FunctionIndex, 1592 llvm::Attribute::NoReturn); 1593 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); 1594 CI->setAttributes(NoReturnAttr); 1595 return CI; 1596 } 1597 } 1598 llvm_unreachable("Incorrect MSVC intrinsic!"); 1599 } 1600 1601 namespace { 1602 // ARC cleanup for __builtin_os_log_format 1603 struct CallObjCArcUse final : EHScopeStack::Cleanup { 1604 CallObjCArcUse(llvm::Value *object) : object(object) {} 1605 llvm::Value *object; 1606 1607 void Emit(CodeGenFunction &CGF, Flags flags) override { 1608 CGF.EmitARCIntrinsicUse(object); 1609 } 1610 }; 1611 } 1612 1613 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, 1614 BuiltinCheckKind Kind) { 1615 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) 1616 && "Unsupported builtin check kind"); 1617 1618 Value *ArgValue = EmitScalarExpr(E); 1619 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) 1620 return ArgValue; 1621 1622 SanitizerScope SanScope(this); 1623 Value *Cond = Builder.CreateICmpNE( 1624 ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); 1625 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), 1626 SanitizerHandler::InvalidBuiltin, 1627 {EmitCheckSourceLocation(E->getExprLoc()), 1628 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, 1629 None); 1630 return ArgValue; 1631 } 1632 1633 /// Get the argument type for arguments to os_log_helper. 1634 static CanQualType getOSLogArgType(ASTContext &C, int Size) { 1635 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); 1636 return C.getCanonicalType(UnsignedTy); 1637 } 1638 1639 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( 1640 const analyze_os_log::OSLogBufferLayout &Layout, 1641 CharUnits BufferAlignment) { 1642 ASTContext &Ctx = getContext(); 1643 1644 llvm::SmallString<64> Name; 1645 { 1646 raw_svector_ostream OS(Name); 1647 OS << "__os_log_helper"; 1648 OS << "_" << BufferAlignment.getQuantity(); 1649 OS << "_" << int(Layout.getSummaryByte()); 1650 OS << "_" << int(Layout.getNumArgsByte()); 1651 for (const auto &Item : Layout.Items) 1652 OS << "_" << int(Item.getSizeByte()) << "_" 1653 << int(Item.getDescriptorByte()); 1654 } 1655 1656 if (llvm::Function *F = CGM.getModule().getFunction(Name)) 1657 return F; 1658 1659 llvm::SmallVector<QualType, 4> ArgTys; 1660 FunctionArgList Args; 1661 Args.push_back(ImplicitParamDecl::Create( 1662 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, 1663 ImplicitParamDecl::Other)); 1664 ArgTys.emplace_back(Ctx.VoidPtrTy); 1665 1666 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { 1667 char Size = Layout.Items[I].getSizeByte(); 1668 if (!Size) 1669 continue; 1670 1671 QualType ArgTy = getOSLogArgType(Ctx, Size); 1672 Args.push_back(ImplicitParamDecl::Create( 1673 Ctx, nullptr, SourceLocation(), 1674 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, 1675 ImplicitParamDecl::Other)); 1676 ArgTys.emplace_back(ArgTy); 1677 } 1678 1679 QualType ReturnTy = Ctx.VoidTy; 1680 QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {}); 1681 1682 // The helper function has linkonce_odr linkage to enable the linker to merge 1683 // identical functions. To ensure the merging always happens, 'noinline' is 1684 // attached to the function when compiling with -Oz. 1685 const CGFunctionInfo &FI = 1686 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); 1687 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); 1688 llvm::Function *Fn = llvm::Function::Create( 1689 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); 1690 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); 1691 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn); 1692 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); 1693 Fn->setDoesNotThrow(); 1694 1695 // Attach 'noinline' at -Oz. 1696 if (CGM.getCodeGenOpts().OptimizeSize == 2) 1697 Fn->addFnAttr(llvm::Attribute::NoInline); 1698 1699 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1700 IdentifierInfo *II = &Ctx.Idents.get(Name); 1701 FunctionDecl *FD = FunctionDecl::Create( 1702 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 1703 FuncionTy, nullptr, SC_PrivateExtern, false, false); 1704 // Avoid generating debug location info for the function. 1705 FD->setImplicit(); 1706 1707 StartFunction(FD, ReturnTy, Fn, FI, Args); 1708 1709 // Create a scope with an artificial location for the body of this function. 1710 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1711 1712 CharUnits Offset; 1713 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), 1714 BufferAlignment); 1715 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), 1716 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); 1717 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), 1718 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); 1719 1720 unsigned I = 1; 1721 for (const auto &Item : Layout.Items) { 1722 Builder.CreateStore( 1723 Builder.getInt8(Item.getDescriptorByte()), 1724 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); 1725 Builder.CreateStore( 1726 Builder.getInt8(Item.getSizeByte()), 1727 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); 1728 1729 CharUnits Size = Item.size(); 1730 if (!Size.getQuantity()) 1731 continue; 1732 1733 Address Arg = GetAddrOfLocalVar(Args[I]); 1734 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); 1735 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), 1736 "argDataCast"); 1737 Builder.CreateStore(Builder.CreateLoad(Arg), Addr); 1738 Offset += Size; 1739 ++I; 1740 } 1741 1742 FinishFunction(); 1743 1744 return Fn; 1745 } 1746 1747 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { 1748 assert(E.getNumArgs() >= 2 && 1749 "__builtin_os_log_format takes at least 2 arguments"); 1750 ASTContext &Ctx = getContext(); 1751 analyze_os_log::OSLogBufferLayout Layout; 1752 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); 1753 Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); 1754 llvm::SmallVector<llvm::Value *, 4> RetainableOperands; 1755 1756 // Ignore argument 1, the format string. It is not currently used. 1757 CallArgList Args; 1758 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); 1759 1760 for (const auto &Item : Layout.Items) { 1761 int Size = Item.getSizeByte(); 1762 if (!Size) 1763 continue; 1764 1765 llvm::Value *ArgVal; 1766 1767 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { 1768 uint64_t Val = 0; 1769 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) 1770 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; 1771 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); 1772 } else if (const Expr *TheExpr = Item.getExpr()) { 1773 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); 1774 1775 // If a temporary object that requires destruction after the full 1776 // expression is passed, push a lifetime-extended cleanup to extend its 1777 // lifetime to the end of the enclosing block scope. 1778 auto LifetimeExtendObject = [&](const Expr *E) { 1779 E = E->IgnoreParenCasts(); 1780 // Extend lifetimes of objects returned by function calls and message 1781 // sends. 1782 1783 // FIXME: We should do this in other cases in which temporaries are 1784 // created including arguments of non-ARC types (e.g., C++ 1785 // temporaries). 1786 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)) 1787 return true; 1788 return false; 1789 }; 1790 1791 if (TheExpr->getType()->isObjCRetainableType() && 1792 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) { 1793 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && 1794 "Only scalar can be a ObjC retainable type"); 1795 if (!isa<Constant>(ArgVal)) { 1796 CleanupKind Cleanup = getARCCleanupKind(); 1797 QualType Ty = TheExpr->getType(); 1798 Address Alloca = Address::invalid(); 1799 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca); 1800 ArgVal = EmitARCRetain(Ty, ArgVal); 1801 Builder.CreateStore(ArgVal, Addr); 1802 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty, 1803 CodeGenFunction::destroyARCStrongPrecise, 1804 Cleanup & EHCleanup); 1805 1806 // Push a clang.arc.use call to ensure ARC optimizer knows that the 1807 // argument has to be alive. 1808 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 1809 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal); 1810 } 1811 } 1812 } else { 1813 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); 1814 } 1815 1816 unsigned ArgValSize = 1817 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); 1818 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), 1819 ArgValSize); 1820 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); 1821 CanQualType ArgTy = getOSLogArgType(Ctx, Size); 1822 // If ArgVal has type x86_fp80, zero-extend ArgVal. 1823 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); 1824 Args.add(RValue::get(ArgVal), ArgTy); 1825 } 1826 1827 const CGFunctionInfo &FI = 1828 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); 1829 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( 1830 Layout, BufAddr.getAlignment()); 1831 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); 1832 return RValue::get(BufAddr.getPointer()); 1833 } 1834 1835 static bool isSpecialUnsignedMultiplySignedResult( 1836 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, 1837 WidthAndSignedness ResultInfo) { 1838 return BuiltinID == Builtin::BI__builtin_mul_overflow && 1839 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width && 1840 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed; 1841 } 1842 1843 static RValue EmitCheckedUnsignedMultiplySignedResult( 1844 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, 1845 const clang::Expr *Op2, WidthAndSignedness Op2Info, 1846 const clang::Expr *ResultArg, QualType ResultQTy, 1847 WidthAndSignedness ResultInfo) { 1848 assert(isSpecialUnsignedMultiplySignedResult( 1849 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && 1850 "Cannot specialize this multiply"); 1851 1852 llvm::Value *V1 = CGF.EmitScalarExpr(Op1); 1853 llvm::Value *V2 = CGF.EmitScalarExpr(Op2); 1854 1855 llvm::Value *HasOverflow; 1856 llvm::Value *Result = EmitOverflowIntrinsic( 1857 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow); 1858 1859 // The intrinsic call will detect overflow when the value is > UINT_MAX, 1860 // however, since the original builtin had a signed result, we need to report 1861 // an overflow when the result is greater than INT_MAX. 1862 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width); 1863 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax); 1864 1865 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue); 1866 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow); 1867 1868 bool isVolatile = 1869 ResultArg->getType()->getPointeeType().isVolatileQualified(); 1870 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); 1871 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, 1872 isVolatile); 1873 return RValue::get(HasOverflow); 1874 } 1875 1876 /// Determine if a binop is a checked mixed-sign multiply we can specialize. 1877 static bool isSpecialMixedSignMultiply(unsigned BuiltinID, 1878 WidthAndSignedness Op1Info, 1879 WidthAndSignedness Op2Info, 1880 WidthAndSignedness ResultInfo) { 1881 return BuiltinID == Builtin::BI__builtin_mul_overflow && 1882 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && 1883 Op1Info.Signed != Op2Info.Signed; 1884 } 1885 1886 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of 1887 /// the generic checked-binop irgen. 1888 static RValue 1889 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, 1890 WidthAndSignedness Op1Info, const clang::Expr *Op2, 1891 WidthAndSignedness Op2Info, 1892 const clang::Expr *ResultArg, QualType ResultQTy, 1893 WidthAndSignedness ResultInfo) { 1894 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, 1895 Op2Info, ResultInfo) && 1896 "Not a mixed-sign multipliction we can specialize"); 1897 1898 // Emit the signed and unsigned operands. 1899 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; 1900 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; 1901 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); 1902 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); 1903 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; 1904 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; 1905 1906 // One of the operands may be smaller than the other. If so, [s|z]ext it. 1907 if (SignedOpWidth < UnsignedOpWidth) 1908 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); 1909 if (UnsignedOpWidth < SignedOpWidth) 1910 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); 1911 1912 llvm::Type *OpTy = Signed->getType(); 1913 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); 1914 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); 1915 llvm::Type *ResTy = ResultPtr.getElementType(); 1916 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); 1917 1918 // Take the absolute value of the signed operand. 1919 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); 1920 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); 1921 llvm::Value *AbsSigned = 1922 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); 1923 1924 // Perform a checked unsigned multiplication. 1925 llvm::Value *UnsignedOverflow; 1926 llvm::Value *UnsignedResult = 1927 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, 1928 Unsigned, UnsignedOverflow); 1929 1930 llvm::Value *Overflow, *Result; 1931 if (ResultInfo.Signed) { 1932 // Signed overflow occurs if the result is greater than INT_MAX or lesser 1933 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). 1934 auto IntMax = 1935 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth); 1936 llvm::Value *MaxResult = 1937 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), 1938 CGF.Builder.CreateZExt(IsNegative, OpTy)); 1939 llvm::Value *SignedOverflow = 1940 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); 1941 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); 1942 1943 // Prepare the signed result (possibly by negating it). 1944 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); 1945 llvm::Value *SignedResult = 1946 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); 1947 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); 1948 } else { 1949 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. 1950 llvm::Value *Underflow = CGF.Builder.CreateAnd( 1951 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); 1952 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); 1953 if (ResultInfo.Width < OpWidth) { 1954 auto IntMax = 1955 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); 1956 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( 1957 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); 1958 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); 1959 } 1960 1961 // Negate the product if it would be negative in infinite precision. 1962 Result = CGF.Builder.CreateSelect( 1963 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); 1964 1965 Result = CGF.Builder.CreateTrunc(Result, ResTy); 1966 } 1967 assert(Overflow && Result && "Missing overflow or result"); 1968 1969 bool isVolatile = 1970 ResultArg->getType()->getPointeeType().isVolatileQualified(); 1971 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, 1972 isVolatile); 1973 return RValue::get(Overflow); 1974 } 1975 1976 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, 1977 Value *&RecordPtr, CharUnits Align, 1978 llvm::FunctionCallee Func, int Lvl) { 1979 ASTContext &Context = CGF.getContext(); 1980 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition(); 1981 std::string Pad = std::string(Lvl * 4, ' '); 1982 1983 Value *GString = 1984 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); 1985 Value *Res = CGF.Builder.CreateCall(Func, {GString}); 1986 1987 static llvm::DenseMap<QualType, const char *> Types; 1988 if (Types.empty()) { 1989 Types[Context.CharTy] = "%c"; 1990 Types[Context.BoolTy] = "%d"; 1991 Types[Context.SignedCharTy] = "%hhd"; 1992 Types[Context.UnsignedCharTy] = "%hhu"; 1993 Types[Context.IntTy] = "%d"; 1994 Types[Context.UnsignedIntTy] = "%u"; 1995 Types[Context.LongTy] = "%ld"; 1996 Types[Context.UnsignedLongTy] = "%lu"; 1997 Types[Context.LongLongTy] = "%lld"; 1998 Types[Context.UnsignedLongLongTy] = "%llu"; 1999 Types[Context.ShortTy] = "%hd"; 2000 Types[Context.UnsignedShortTy] = "%hu"; 2001 Types[Context.VoidPtrTy] = "%p"; 2002 Types[Context.FloatTy] = "%f"; 2003 Types[Context.DoubleTy] = "%f"; 2004 Types[Context.LongDoubleTy] = "%Lf"; 2005 Types[Context.getPointerType(Context.CharTy)] = "%s"; 2006 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; 2007 } 2008 2009 for (const auto *FD : RD->fields()) { 2010 Value *FieldPtr = RecordPtr; 2011 if (RD->isUnion()) 2012 FieldPtr = CGF.Builder.CreatePointerCast( 2013 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); 2014 else 2015 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, 2016 FD->getFieldIndex()); 2017 2018 GString = CGF.Builder.CreateGlobalStringPtr( 2019 llvm::Twine(Pad) 2020 .concat(FD->getType().getAsString()) 2021 .concat(llvm::Twine(' ')) 2022 .concat(FD->getNameAsString()) 2023 .concat(" : ") 2024 .str()); 2025 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 2026 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2027 2028 QualType CanonicalType = 2029 FD->getType().getUnqualifiedType().getCanonicalType(); 2030 2031 // We check whether we are in a recursive type 2032 if (CanonicalType->isRecordType()) { 2033 TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); 2034 Res = CGF.Builder.CreateAdd(TmpRes, Res); 2035 continue; 2036 } 2037 2038 // We try to determine the best format to print the current field 2039 llvm::Twine Format = Types.find(CanonicalType) == Types.end() 2040 ? Types[Context.VoidPtrTy] 2041 : Types[CanonicalType]; 2042 2043 Address FieldAddress = Address(FieldPtr, Align); 2044 FieldPtr = CGF.Builder.CreateLoad(FieldAddress); 2045 2046 // FIXME Need to handle bitfield here 2047 GString = CGF.Builder.CreateGlobalStringPtr( 2048 Format.concat(llvm::Twine('\n')).str()); 2049 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); 2050 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2051 } 2052 2053 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); 2054 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 2055 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2056 return Res; 2057 } 2058 2059 static bool 2060 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, 2061 llvm::SmallPtrSetImpl<const Decl *> &Seen) { 2062 if (const auto *Arr = Ctx.getAsArrayType(Ty)) 2063 Ty = Ctx.getBaseElementType(Arr); 2064 2065 const auto *Record = Ty->getAsCXXRecordDecl(); 2066 if (!Record) 2067 return false; 2068 2069 // We've already checked this type, or are in the process of checking it. 2070 if (!Seen.insert(Record).second) 2071 return false; 2072 2073 assert(Record->hasDefinition() && 2074 "Incomplete types should already be diagnosed"); 2075 2076 if (Record->isDynamicClass()) 2077 return true; 2078 2079 for (FieldDecl *F : Record->fields()) { 2080 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) 2081 return true; 2082 } 2083 return false; 2084 } 2085 2086 /// Determine if the specified type requires laundering by checking if it is a 2087 /// dynamic class type or contains a subobject which is a dynamic class type. 2088 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { 2089 if (!CGM.getCodeGenOpts().StrictVTablePointers) 2090 return false; 2091 llvm::SmallPtrSet<const Decl *, 16> Seen; 2092 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); 2093 } 2094 2095 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { 2096 llvm::Value *Src = EmitScalarExpr(E->getArg(0)); 2097 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); 2098 2099 // The builtin's shift arg may have a different type than the source arg and 2100 // result, but the LLVM intrinsic uses the same type for all values. 2101 llvm::Type *Ty = Src->getType(); 2102 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); 2103 2104 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. 2105 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; 2106 Function *F = CGM.getIntrinsic(IID, Ty); 2107 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); 2108 } 2109 2110 // Map math builtins for long-double to f128 version. 2111 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) { 2112 switch (BuiltinID) { 2113 #define MUTATE_LDBL(func) \ 2114 case Builtin::BI__builtin_##func##l: \ 2115 return Builtin::BI__builtin_##func##f128; 2116 MUTATE_LDBL(sqrt) 2117 MUTATE_LDBL(cbrt) 2118 MUTATE_LDBL(fabs) 2119 MUTATE_LDBL(log) 2120 MUTATE_LDBL(log2) 2121 MUTATE_LDBL(log10) 2122 MUTATE_LDBL(log1p) 2123 MUTATE_LDBL(logb) 2124 MUTATE_LDBL(exp) 2125 MUTATE_LDBL(exp2) 2126 MUTATE_LDBL(expm1) 2127 MUTATE_LDBL(fdim) 2128 MUTATE_LDBL(hypot) 2129 MUTATE_LDBL(ilogb) 2130 MUTATE_LDBL(pow) 2131 MUTATE_LDBL(fmin) 2132 MUTATE_LDBL(fmax) 2133 MUTATE_LDBL(ceil) 2134 MUTATE_LDBL(trunc) 2135 MUTATE_LDBL(rint) 2136 MUTATE_LDBL(nearbyint) 2137 MUTATE_LDBL(round) 2138 MUTATE_LDBL(floor) 2139 MUTATE_LDBL(lround) 2140 MUTATE_LDBL(llround) 2141 MUTATE_LDBL(lrint) 2142 MUTATE_LDBL(llrint) 2143 MUTATE_LDBL(fmod) 2144 MUTATE_LDBL(modf) 2145 MUTATE_LDBL(nan) 2146 MUTATE_LDBL(nans) 2147 MUTATE_LDBL(inf) 2148 MUTATE_LDBL(fma) 2149 MUTATE_LDBL(sin) 2150 MUTATE_LDBL(cos) 2151 MUTATE_LDBL(tan) 2152 MUTATE_LDBL(sinh) 2153 MUTATE_LDBL(cosh) 2154 MUTATE_LDBL(tanh) 2155 MUTATE_LDBL(asin) 2156 MUTATE_LDBL(acos) 2157 MUTATE_LDBL(atan) 2158 MUTATE_LDBL(asinh) 2159 MUTATE_LDBL(acosh) 2160 MUTATE_LDBL(atanh) 2161 MUTATE_LDBL(atan2) 2162 MUTATE_LDBL(erf) 2163 MUTATE_LDBL(erfc) 2164 MUTATE_LDBL(ldexp) 2165 MUTATE_LDBL(frexp) 2166 MUTATE_LDBL(huge_val) 2167 MUTATE_LDBL(copysign) 2168 MUTATE_LDBL(nextafter) 2169 MUTATE_LDBL(nexttoward) 2170 MUTATE_LDBL(remainder) 2171 MUTATE_LDBL(remquo) 2172 MUTATE_LDBL(scalbln) 2173 MUTATE_LDBL(scalbn) 2174 MUTATE_LDBL(tgamma) 2175 MUTATE_LDBL(lgamma) 2176 #undef MUTATE_LDBL 2177 default: 2178 return BuiltinID; 2179 } 2180 } 2181 2182 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 2183 const CallExpr *E, 2184 ReturnValueSlot ReturnValue) { 2185 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 2186 // See if we can constant fold this builtin. If so, don't emit it at all. 2187 Expr::EvalResult Result; 2188 if (E->EvaluateAsRValue(Result, CGM.getContext()) && 2189 !Result.hasSideEffects()) { 2190 if (Result.Val.isInt()) 2191 return RValue::get(llvm::ConstantInt::get(getLLVMContext(), 2192 Result.Val.getInt())); 2193 if (Result.Val.isFloat()) 2194 return RValue::get(llvm::ConstantFP::get(getLLVMContext(), 2195 Result.Val.getFloat())); 2196 } 2197 2198 // If current long-double semantics is IEEE 128-bit, replace math builtins 2199 // of long-double with f128 equivalent. 2200 // TODO: This mutation should also be applied to other targets other than PPC, 2201 // after backend supports IEEE 128-bit style libcalls. 2202 if (getTarget().getTriple().isPPC64() && 2203 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 2204 BuiltinID = mutateLongDoubleBuiltin(BuiltinID); 2205 2206 // If the builtin has been declared explicitly with an assembler label, 2207 // disable the specialized emitting below. Ideally we should communicate the 2208 // rename in IR, or at least avoid generating the intrinsic calls that are 2209 // likely to get lowered to the renamed library functions. 2210 const unsigned BuiltinIDIfNoAsmLabel = 2211 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID; 2212 2213 // There are LLVM math intrinsics/instructions corresponding to math library 2214 // functions except the LLVM op will never set errno while the math library 2215 // might. Also, math builtins have the same semantics as their math library 2216 // twins. Thus, we can transform math library and builtin calls to their 2217 // LLVM counterparts if the call is marked 'const' (known to never set errno). 2218 if (FD->hasAttr<ConstAttr>()) { 2219 switch (BuiltinIDIfNoAsmLabel) { 2220 case Builtin::BIceil: 2221 case Builtin::BIceilf: 2222 case Builtin::BIceill: 2223 case Builtin::BI__builtin_ceil: 2224 case Builtin::BI__builtin_ceilf: 2225 case Builtin::BI__builtin_ceilf16: 2226 case Builtin::BI__builtin_ceill: 2227 case Builtin::BI__builtin_ceilf128: 2228 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2229 Intrinsic::ceil, 2230 Intrinsic::experimental_constrained_ceil)); 2231 2232 case Builtin::BIcopysign: 2233 case Builtin::BIcopysignf: 2234 case Builtin::BIcopysignl: 2235 case Builtin::BI__builtin_copysign: 2236 case Builtin::BI__builtin_copysignf: 2237 case Builtin::BI__builtin_copysignf16: 2238 case Builtin::BI__builtin_copysignl: 2239 case Builtin::BI__builtin_copysignf128: 2240 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); 2241 2242 case Builtin::BIcos: 2243 case Builtin::BIcosf: 2244 case Builtin::BIcosl: 2245 case Builtin::BI__builtin_cos: 2246 case Builtin::BI__builtin_cosf: 2247 case Builtin::BI__builtin_cosf16: 2248 case Builtin::BI__builtin_cosl: 2249 case Builtin::BI__builtin_cosf128: 2250 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2251 Intrinsic::cos, 2252 Intrinsic::experimental_constrained_cos)); 2253 2254 case Builtin::BIexp: 2255 case Builtin::BIexpf: 2256 case Builtin::BIexpl: 2257 case Builtin::BI__builtin_exp: 2258 case Builtin::BI__builtin_expf: 2259 case Builtin::BI__builtin_expf16: 2260 case Builtin::BI__builtin_expl: 2261 case Builtin::BI__builtin_expf128: 2262 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2263 Intrinsic::exp, 2264 Intrinsic::experimental_constrained_exp)); 2265 2266 case Builtin::BIexp2: 2267 case Builtin::BIexp2f: 2268 case Builtin::BIexp2l: 2269 case Builtin::BI__builtin_exp2: 2270 case Builtin::BI__builtin_exp2f: 2271 case Builtin::BI__builtin_exp2f16: 2272 case Builtin::BI__builtin_exp2l: 2273 case Builtin::BI__builtin_exp2f128: 2274 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2275 Intrinsic::exp2, 2276 Intrinsic::experimental_constrained_exp2)); 2277 2278 case Builtin::BIfabs: 2279 case Builtin::BIfabsf: 2280 case Builtin::BIfabsl: 2281 case Builtin::BI__builtin_fabs: 2282 case Builtin::BI__builtin_fabsf: 2283 case Builtin::BI__builtin_fabsf16: 2284 case Builtin::BI__builtin_fabsl: 2285 case Builtin::BI__builtin_fabsf128: 2286 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); 2287 2288 case Builtin::BIfloor: 2289 case Builtin::BIfloorf: 2290 case Builtin::BIfloorl: 2291 case Builtin::BI__builtin_floor: 2292 case Builtin::BI__builtin_floorf: 2293 case Builtin::BI__builtin_floorf16: 2294 case Builtin::BI__builtin_floorl: 2295 case Builtin::BI__builtin_floorf128: 2296 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2297 Intrinsic::floor, 2298 Intrinsic::experimental_constrained_floor)); 2299 2300 case Builtin::BIfma: 2301 case Builtin::BIfmaf: 2302 case Builtin::BIfmal: 2303 case Builtin::BI__builtin_fma: 2304 case Builtin::BI__builtin_fmaf: 2305 case Builtin::BI__builtin_fmaf16: 2306 case Builtin::BI__builtin_fmal: 2307 case Builtin::BI__builtin_fmaf128: 2308 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E, 2309 Intrinsic::fma, 2310 Intrinsic::experimental_constrained_fma)); 2311 2312 case Builtin::BIfmax: 2313 case Builtin::BIfmaxf: 2314 case Builtin::BIfmaxl: 2315 case Builtin::BI__builtin_fmax: 2316 case Builtin::BI__builtin_fmaxf: 2317 case Builtin::BI__builtin_fmaxf16: 2318 case Builtin::BI__builtin_fmaxl: 2319 case Builtin::BI__builtin_fmaxf128: 2320 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2321 Intrinsic::maxnum, 2322 Intrinsic::experimental_constrained_maxnum)); 2323 2324 case Builtin::BIfmin: 2325 case Builtin::BIfminf: 2326 case Builtin::BIfminl: 2327 case Builtin::BI__builtin_fmin: 2328 case Builtin::BI__builtin_fminf: 2329 case Builtin::BI__builtin_fminf16: 2330 case Builtin::BI__builtin_fminl: 2331 case Builtin::BI__builtin_fminf128: 2332 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2333 Intrinsic::minnum, 2334 Intrinsic::experimental_constrained_minnum)); 2335 2336 // fmod() is a special-case. It maps to the frem instruction rather than an 2337 // LLVM intrinsic. 2338 case Builtin::BIfmod: 2339 case Builtin::BIfmodf: 2340 case Builtin::BIfmodl: 2341 case Builtin::BI__builtin_fmod: 2342 case Builtin::BI__builtin_fmodf: 2343 case Builtin::BI__builtin_fmodf16: 2344 case Builtin::BI__builtin_fmodl: 2345 case Builtin::BI__builtin_fmodf128: { 2346 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2347 Value *Arg1 = EmitScalarExpr(E->getArg(0)); 2348 Value *Arg2 = EmitScalarExpr(E->getArg(1)); 2349 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); 2350 } 2351 2352 case Builtin::BIlog: 2353 case Builtin::BIlogf: 2354 case Builtin::BIlogl: 2355 case Builtin::BI__builtin_log: 2356 case Builtin::BI__builtin_logf: 2357 case Builtin::BI__builtin_logf16: 2358 case Builtin::BI__builtin_logl: 2359 case Builtin::BI__builtin_logf128: 2360 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2361 Intrinsic::log, 2362 Intrinsic::experimental_constrained_log)); 2363 2364 case Builtin::BIlog10: 2365 case Builtin::BIlog10f: 2366 case Builtin::BIlog10l: 2367 case Builtin::BI__builtin_log10: 2368 case Builtin::BI__builtin_log10f: 2369 case Builtin::BI__builtin_log10f16: 2370 case Builtin::BI__builtin_log10l: 2371 case Builtin::BI__builtin_log10f128: 2372 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2373 Intrinsic::log10, 2374 Intrinsic::experimental_constrained_log10)); 2375 2376 case Builtin::BIlog2: 2377 case Builtin::BIlog2f: 2378 case Builtin::BIlog2l: 2379 case Builtin::BI__builtin_log2: 2380 case Builtin::BI__builtin_log2f: 2381 case Builtin::BI__builtin_log2f16: 2382 case Builtin::BI__builtin_log2l: 2383 case Builtin::BI__builtin_log2f128: 2384 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2385 Intrinsic::log2, 2386 Intrinsic::experimental_constrained_log2)); 2387 2388 case Builtin::BInearbyint: 2389 case Builtin::BInearbyintf: 2390 case Builtin::BInearbyintl: 2391 case Builtin::BI__builtin_nearbyint: 2392 case Builtin::BI__builtin_nearbyintf: 2393 case Builtin::BI__builtin_nearbyintl: 2394 case Builtin::BI__builtin_nearbyintf128: 2395 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2396 Intrinsic::nearbyint, 2397 Intrinsic::experimental_constrained_nearbyint)); 2398 2399 case Builtin::BIpow: 2400 case Builtin::BIpowf: 2401 case Builtin::BIpowl: 2402 case Builtin::BI__builtin_pow: 2403 case Builtin::BI__builtin_powf: 2404 case Builtin::BI__builtin_powf16: 2405 case Builtin::BI__builtin_powl: 2406 case Builtin::BI__builtin_powf128: 2407 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2408 Intrinsic::pow, 2409 Intrinsic::experimental_constrained_pow)); 2410 2411 case Builtin::BIrint: 2412 case Builtin::BIrintf: 2413 case Builtin::BIrintl: 2414 case Builtin::BI__builtin_rint: 2415 case Builtin::BI__builtin_rintf: 2416 case Builtin::BI__builtin_rintf16: 2417 case Builtin::BI__builtin_rintl: 2418 case Builtin::BI__builtin_rintf128: 2419 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2420 Intrinsic::rint, 2421 Intrinsic::experimental_constrained_rint)); 2422 2423 case Builtin::BIround: 2424 case Builtin::BIroundf: 2425 case Builtin::BIroundl: 2426 case Builtin::BI__builtin_round: 2427 case Builtin::BI__builtin_roundf: 2428 case Builtin::BI__builtin_roundf16: 2429 case Builtin::BI__builtin_roundl: 2430 case Builtin::BI__builtin_roundf128: 2431 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2432 Intrinsic::round, 2433 Intrinsic::experimental_constrained_round)); 2434 2435 case Builtin::BIsin: 2436 case Builtin::BIsinf: 2437 case Builtin::BIsinl: 2438 case Builtin::BI__builtin_sin: 2439 case Builtin::BI__builtin_sinf: 2440 case Builtin::BI__builtin_sinf16: 2441 case Builtin::BI__builtin_sinl: 2442 case Builtin::BI__builtin_sinf128: 2443 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2444 Intrinsic::sin, 2445 Intrinsic::experimental_constrained_sin)); 2446 2447 case Builtin::BIsqrt: 2448 case Builtin::BIsqrtf: 2449 case Builtin::BIsqrtl: 2450 case Builtin::BI__builtin_sqrt: 2451 case Builtin::BI__builtin_sqrtf: 2452 case Builtin::BI__builtin_sqrtf16: 2453 case Builtin::BI__builtin_sqrtl: 2454 case Builtin::BI__builtin_sqrtf128: 2455 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2456 Intrinsic::sqrt, 2457 Intrinsic::experimental_constrained_sqrt)); 2458 2459 case Builtin::BItrunc: 2460 case Builtin::BItruncf: 2461 case Builtin::BItruncl: 2462 case Builtin::BI__builtin_trunc: 2463 case Builtin::BI__builtin_truncf: 2464 case Builtin::BI__builtin_truncf16: 2465 case Builtin::BI__builtin_truncl: 2466 case Builtin::BI__builtin_truncf128: 2467 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2468 Intrinsic::trunc, 2469 Intrinsic::experimental_constrained_trunc)); 2470 2471 case Builtin::BIlround: 2472 case Builtin::BIlroundf: 2473 case Builtin::BIlroundl: 2474 case Builtin::BI__builtin_lround: 2475 case Builtin::BI__builtin_lroundf: 2476 case Builtin::BI__builtin_lroundl: 2477 case Builtin::BI__builtin_lroundf128: 2478 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2479 *this, E, Intrinsic::lround, 2480 Intrinsic::experimental_constrained_lround)); 2481 2482 case Builtin::BIllround: 2483 case Builtin::BIllroundf: 2484 case Builtin::BIllroundl: 2485 case Builtin::BI__builtin_llround: 2486 case Builtin::BI__builtin_llroundf: 2487 case Builtin::BI__builtin_llroundl: 2488 case Builtin::BI__builtin_llroundf128: 2489 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2490 *this, E, Intrinsic::llround, 2491 Intrinsic::experimental_constrained_llround)); 2492 2493 case Builtin::BIlrint: 2494 case Builtin::BIlrintf: 2495 case Builtin::BIlrintl: 2496 case Builtin::BI__builtin_lrint: 2497 case Builtin::BI__builtin_lrintf: 2498 case Builtin::BI__builtin_lrintl: 2499 case Builtin::BI__builtin_lrintf128: 2500 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2501 *this, E, Intrinsic::lrint, 2502 Intrinsic::experimental_constrained_lrint)); 2503 2504 case Builtin::BIllrint: 2505 case Builtin::BIllrintf: 2506 case Builtin::BIllrintl: 2507 case Builtin::BI__builtin_llrint: 2508 case Builtin::BI__builtin_llrintf: 2509 case Builtin::BI__builtin_llrintl: 2510 case Builtin::BI__builtin_llrintf128: 2511 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2512 *this, E, Intrinsic::llrint, 2513 Intrinsic::experimental_constrained_llrint)); 2514 2515 default: 2516 break; 2517 } 2518 } 2519 2520 switch (BuiltinIDIfNoAsmLabel) { 2521 default: break; 2522 case Builtin::BI__builtin___CFStringMakeConstantString: 2523 case Builtin::BI__builtin___NSStringMakeConstantString: 2524 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); 2525 case Builtin::BI__builtin_stdarg_start: 2526 case Builtin::BI__builtin_va_start: 2527 case Builtin::BI__va_start: 2528 case Builtin::BI__builtin_va_end: 2529 return RValue::get( 2530 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start 2531 ? EmitScalarExpr(E->getArg(0)) 2532 : EmitVAListRef(E->getArg(0)).getPointer(), 2533 BuiltinID != Builtin::BI__builtin_va_end)); 2534 case Builtin::BI__builtin_va_copy: { 2535 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); 2536 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); 2537 2538 llvm::Type *Type = Int8PtrTy; 2539 2540 DstPtr = Builder.CreateBitCast(DstPtr, Type); 2541 SrcPtr = Builder.CreateBitCast(SrcPtr, Type); 2542 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), 2543 {DstPtr, SrcPtr})); 2544 } 2545 case Builtin::BI__builtin_abs: 2546 case Builtin::BI__builtin_labs: 2547 case Builtin::BI__builtin_llabs: { 2548 // X < 0 ? -X : X 2549 // The negation has 'nsw' because abs of INT_MIN is undefined. 2550 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2551 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); 2552 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); 2553 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); 2554 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); 2555 return RValue::get(Result); 2556 } 2557 case Builtin::BI__builtin_complex: { 2558 Value *Real = EmitScalarExpr(E->getArg(0)); 2559 Value *Imag = EmitScalarExpr(E->getArg(1)); 2560 return RValue::getComplex({Real, Imag}); 2561 } 2562 case Builtin::BI__builtin_conj: 2563 case Builtin::BI__builtin_conjf: 2564 case Builtin::BI__builtin_conjl: 2565 case Builtin::BIconj: 2566 case Builtin::BIconjf: 2567 case Builtin::BIconjl: { 2568 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2569 Value *Real = ComplexVal.first; 2570 Value *Imag = ComplexVal.second; 2571 Imag = Builder.CreateFNeg(Imag, "neg"); 2572 return RValue::getComplex(std::make_pair(Real, Imag)); 2573 } 2574 case Builtin::BI__builtin_creal: 2575 case Builtin::BI__builtin_crealf: 2576 case Builtin::BI__builtin_creall: 2577 case Builtin::BIcreal: 2578 case Builtin::BIcrealf: 2579 case Builtin::BIcreall: { 2580 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2581 return RValue::get(ComplexVal.first); 2582 } 2583 2584 case Builtin::BI__builtin_dump_struct: { 2585 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy); 2586 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get( 2587 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true); 2588 2589 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); 2590 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); 2591 2592 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); 2593 QualType Arg0Type = Arg0->getType()->getPointeeType(); 2594 2595 Value *RecordPtr = EmitScalarExpr(Arg0); 2596 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, 2597 {LLVMFuncType, Func}, 0); 2598 return RValue::get(Res); 2599 } 2600 2601 case Builtin::BI__builtin_preserve_access_index: { 2602 // Only enabled preserved access index region when debuginfo 2603 // is available as debuginfo is needed to preserve user-level 2604 // access pattern. 2605 if (!getDebugInfo()) { 2606 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); 2607 return RValue::get(EmitScalarExpr(E->getArg(0))); 2608 } 2609 2610 // Nested builtin_preserve_access_index() not supported 2611 if (IsInPreservedAIRegion) { 2612 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); 2613 return RValue::get(EmitScalarExpr(E->getArg(0))); 2614 } 2615 2616 IsInPreservedAIRegion = true; 2617 Value *Res = EmitScalarExpr(E->getArg(0)); 2618 IsInPreservedAIRegion = false; 2619 return RValue::get(Res); 2620 } 2621 2622 case Builtin::BI__builtin_cimag: 2623 case Builtin::BI__builtin_cimagf: 2624 case Builtin::BI__builtin_cimagl: 2625 case Builtin::BIcimag: 2626 case Builtin::BIcimagf: 2627 case Builtin::BIcimagl: { 2628 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2629 return RValue::get(ComplexVal.second); 2630 } 2631 2632 case Builtin::BI__builtin_clrsb: 2633 case Builtin::BI__builtin_clrsbl: 2634 case Builtin::BI__builtin_clrsbll: { 2635 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or 2636 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2637 2638 llvm::Type *ArgType = ArgValue->getType(); 2639 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2640 2641 llvm::Type *ResultType = ConvertType(E->getType()); 2642 Value *Zero = llvm::Constant::getNullValue(ArgType); 2643 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); 2644 Value *Inverse = Builder.CreateNot(ArgValue, "not"); 2645 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); 2646 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); 2647 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); 2648 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2649 "cast"); 2650 return RValue::get(Result); 2651 } 2652 case Builtin::BI__builtin_ctzs: 2653 case Builtin::BI__builtin_ctz: 2654 case Builtin::BI__builtin_ctzl: 2655 case Builtin::BI__builtin_ctzll: { 2656 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); 2657 2658 llvm::Type *ArgType = ArgValue->getType(); 2659 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 2660 2661 llvm::Type *ResultType = ConvertType(E->getType()); 2662 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 2663 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 2664 if (Result->getType() != ResultType) 2665 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2666 "cast"); 2667 return RValue::get(Result); 2668 } 2669 case Builtin::BI__builtin_clzs: 2670 case Builtin::BI__builtin_clz: 2671 case Builtin::BI__builtin_clzl: 2672 case Builtin::BI__builtin_clzll: { 2673 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); 2674 2675 llvm::Type *ArgType = ArgValue->getType(); 2676 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2677 2678 llvm::Type *ResultType = ConvertType(E->getType()); 2679 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 2680 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 2681 if (Result->getType() != ResultType) 2682 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2683 "cast"); 2684 return RValue::get(Result); 2685 } 2686 case Builtin::BI__builtin_ffs: 2687 case Builtin::BI__builtin_ffsl: 2688 case Builtin::BI__builtin_ffsll: { 2689 // ffs(x) -> x ? cttz(x) + 1 : 0 2690 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2691 2692 llvm::Type *ArgType = ArgValue->getType(); 2693 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 2694 2695 llvm::Type *ResultType = ConvertType(E->getType()); 2696 Value *Tmp = 2697 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), 2698 llvm::ConstantInt::get(ArgType, 1)); 2699 Value *Zero = llvm::Constant::getNullValue(ArgType); 2700 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); 2701 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); 2702 if (Result->getType() != ResultType) 2703 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2704 "cast"); 2705 return RValue::get(Result); 2706 } 2707 case Builtin::BI__builtin_parity: 2708 case Builtin::BI__builtin_parityl: 2709 case Builtin::BI__builtin_parityll: { 2710 // parity(x) -> ctpop(x) & 1 2711 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2712 2713 llvm::Type *ArgType = ArgValue->getType(); 2714 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 2715 2716 llvm::Type *ResultType = ConvertType(E->getType()); 2717 Value *Tmp = Builder.CreateCall(F, ArgValue); 2718 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); 2719 if (Result->getType() != ResultType) 2720 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2721 "cast"); 2722 return RValue::get(Result); 2723 } 2724 case Builtin::BI__lzcnt16: 2725 case Builtin::BI__lzcnt: 2726 case Builtin::BI__lzcnt64: { 2727 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2728 2729 llvm::Type *ArgType = ArgValue->getType(); 2730 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2731 2732 llvm::Type *ResultType = ConvertType(E->getType()); 2733 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); 2734 if (Result->getType() != ResultType) 2735 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2736 "cast"); 2737 return RValue::get(Result); 2738 } 2739 case Builtin::BI__popcnt16: 2740 case Builtin::BI__popcnt: 2741 case Builtin::BI__popcnt64: 2742 case Builtin::BI__builtin_popcount: 2743 case Builtin::BI__builtin_popcountl: 2744 case Builtin::BI__builtin_popcountll: { 2745 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2746 2747 llvm::Type *ArgType = ArgValue->getType(); 2748 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 2749 2750 llvm::Type *ResultType = ConvertType(E->getType()); 2751 Value *Result = Builder.CreateCall(F, ArgValue); 2752 if (Result->getType() != ResultType) 2753 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2754 "cast"); 2755 return RValue::get(Result); 2756 } 2757 case Builtin::BI__builtin_unpredictable: { 2758 // Always return the argument of __builtin_unpredictable. LLVM does not 2759 // handle this builtin. Metadata for this builtin should be added directly 2760 // to instructions such as branches or switches that use it. 2761 return RValue::get(EmitScalarExpr(E->getArg(0))); 2762 } 2763 case Builtin::BI__builtin_expect: { 2764 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2765 llvm::Type *ArgType = ArgValue->getType(); 2766 2767 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 2768 // Don't generate llvm.expect on -O0 as the backend won't use it for 2769 // anything. 2770 // Note, we still IRGen ExpectedValue because it could have side-effects. 2771 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2772 return RValue::get(ArgValue); 2773 2774 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); 2775 Value *Result = 2776 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); 2777 return RValue::get(Result); 2778 } 2779 case Builtin::BI__builtin_expect_with_probability: { 2780 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2781 llvm::Type *ArgType = ArgValue->getType(); 2782 2783 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 2784 llvm::APFloat Probability(0.0); 2785 const Expr *ProbArg = E->getArg(2); 2786 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext()); 2787 assert(EvalSucceed && "probability should be able to evaluate as float"); 2788 (void)EvalSucceed; 2789 bool LoseInfo = false; 2790 Probability.convert(llvm::APFloat::IEEEdouble(), 2791 llvm::RoundingMode::Dynamic, &LoseInfo); 2792 llvm::Type *Ty = ConvertType(ProbArg->getType()); 2793 Constant *Confidence = ConstantFP::get(Ty, Probability); 2794 // Don't generate llvm.expect.with.probability on -O0 as the backend 2795 // won't use it for anything. 2796 // Note, we still IRGen ExpectedValue because it could have side-effects. 2797 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2798 return RValue::get(ArgValue); 2799 2800 Function *FnExpect = 2801 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType); 2802 Value *Result = Builder.CreateCall( 2803 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval"); 2804 return RValue::get(Result); 2805 } 2806 case Builtin::BI__builtin_assume_aligned: { 2807 const Expr *Ptr = E->getArg(0); 2808 Value *PtrValue = EmitScalarExpr(Ptr); 2809 Value *OffsetValue = 2810 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; 2811 2812 Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); 2813 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); 2814 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) 2815 AlignmentCI = ConstantInt::get(AlignmentCI->getType(), 2816 llvm::Value::MaximumAlignment); 2817 2818 emitAlignmentAssumption(PtrValue, Ptr, 2819 /*The expr loc is sufficient.*/ SourceLocation(), 2820 AlignmentCI, OffsetValue); 2821 return RValue::get(PtrValue); 2822 } 2823 case Builtin::BI__assume: 2824 case Builtin::BI__builtin_assume: { 2825 if (E->getArg(0)->HasSideEffects(getContext())) 2826 return RValue::get(nullptr); 2827 2828 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2829 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); 2830 return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); 2831 } 2832 case Builtin::BI__builtin_bswap16: 2833 case Builtin::BI__builtin_bswap32: 2834 case Builtin::BI__builtin_bswap64: { 2835 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); 2836 } 2837 case Builtin::BI__builtin_bitreverse8: 2838 case Builtin::BI__builtin_bitreverse16: 2839 case Builtin::BI__builtin_bitreverse32: 2840 case Builtin::BI__builtin_bitreverse64: { 2841 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); 2842 } 2843 case Builtin::BI__builtin_rotateleft8: 2844 case Builtin::BI__builtin_rotateleft16: 2845 case Builtin::BI__builtin_rotateleft32: 2846 case Builtin::BI__builtin_rotateleft64: 2847 case Builtin::BI_rotl8: // Microsoft variants of rotate left 2848 case Builtin::BI_rotl16: 2849 case Builtin::BI_rotl: 2850 case Builtin::BI_lrotl: 2851 case Builtin::BI_rotl64: 2852 return emitRotate(E, false); 2853 2854 case Builtin::BI__builtin_rotateright8: 2855 case Builtin::BI__builtin_rotateright16: 2856 case Builtin::BI__builtin_rotateright32: 2857 case Builtin::BI__builtin_rotateright64: 2858 case Builtin::BI_rotr8: // Microsoft variants of rotate right 2859 case Builtin::BI_rotr16: 2860 case Builtin::BI_rotr: 2861 case Builtin::BI_lrotr: 2862 case Builtin::BI_rotr64: 2863 return emitRotate(E, true); 2864 2865 case Builtin::BI__builtin_constant_p: { 2866 llvm::Type *ResultType = ConvertType(E->getType()); 2867 2868 const Expr *Arg = E->getArg(0); 2869 QualType ArgType = Arg->getType(); 2870 // FIXME: The allowance for Obj-C pointers and block pointers is historical 2871 // and likely a mistake. 2872 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && 2873 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) 2874 // Per the GCC documentation, only numeric constants are recognized after 2875 // inlining. 2876 return RValue::get(ConstantInt::get(ResultType, 0)); 2877 2878 if (Arg->HasSideEffects(getContext())) 2879 // The argument is unevaluated, so be conservative if it might have 2880 // side-effects. 2881 return RValue::get(ConstantInt::get(ResultType, 0)); 2882 2883 Value *ArgValue = EmitScalarExpr(Arg); 2884 if (ArgType->isObjCObjectPointerType()) { 2885 // Convert Objective-C objects to id because we cannot distinguish between 2886 // LLVM types for Obj-C classes as they are opaque. 2887 ArgType = CGM.getContext().getObjCIdType(); 2888 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); 2889 } 2890 Function *F = 2891 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); 2892 Value *Result = Builder.CreateCall(F, ArgValue); 2893 if (Result->getType() != ResultType) 2894 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); 2895 return RValue::get(Result); 2896 } 2897 case Builtin::BI__builtin_dynamic_object_size: 2898 case Builtin::BI__builtin_object_size: { 2899 unsigned Type = 2900 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); 2901 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); 2902 2903 // We pass this builtin onto the optimizer so that it can figure out the 2904 // object size in more complex cases. 2905 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; 2906 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, 2907 /*EmittedE=*/nullptr, IsDynamic)); 2908 } 2909 case Builtin::BI__builtin_prefetch: { 2910 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); 2911 // FIXME: Technically these constants should of type 'int', yes? 2912 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : 2913 llvm::ConstantInt::get(Int32Ty, 0); 2914 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : 2915 llvm::ConstantInt::get(Int32Ty, 3); 2916 Value *Data = llvm::ConstantInt::get(Int32Ty, 1); 2917 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 2918 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); 2919 } 2920 case Builtin::BI__builtin_readcyclecounter: { 2921 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); 2922 return RValue::get(Builder.CreateCall(F)); 2923 } 2924 case Builtin::BI__builtin___clear_cache: { 2925 Value *Begin = EmitScalarExpr(E->getArg(0)); 2926 Value *End = EmitScalarExpr(E->getArg(1)); 2927 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); 2928 return RValue::get(Builder.CreateCall(F, {Begin, End})); 2929 } 2930 case Builtin::BI__builtin_trap: 2931 return RValue::get(EmitTrapCall(Intrinsic::trap)); 2932 case Builtin::BI__debugbreak: 2933 return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); 2934 case Builtin::BI__builtin_unreachable: { 2935 EmitUnreachable(E->getExprLoc()); 2936 2937 // We do need to preserve an insertion point. 2938 EmitBlock(createBasicBlock("unreachable.cont")); 2939 2940 return RValue::get(nullptr); 2941 } 2942 2943 case Builtin::BI__builtin_powi: 2944 case Builtin::BI__builtin_powif: 2945 case Builtin::BI__builtin_powil: 2946 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin( 2947 *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi)); 2948 2949 case Builtin::BI__builtin_isgreater: 2950 case Builtin::BI__builtin_isgreaterequal: 2951 case Builtin::BI__builtin_isless: 2952 case Builtin::BI__builtin_islessequal: 2953 case Builtin::BI__builtin_islessgreater: 2954 case Builtin::BI__builtin_isunordered: { 2955 // Ordered comparisons: we know the arguments to these are matching scalar 2956 // floating point values. 2957 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2958 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 2959 Value *LHS = EmitScalarExpr(E->getArg(0)); 2960 Value *RHS = EmitScalarExpr(E->getArg(1)); 2961 2962 switch (BuiltinID) { 2963 default: llvm_unreachable("Unknown ordered comparison"); 2964 case Builtin::BI__builtin_isgreater: 2965 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); 2966 break; 2967 case Builtin::BI__builtin_isgreaterequal: 2968 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); 2969 break; 2970 case Builtin::BI__builtin_isless: 2971 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); 2972 break; 2973 case Builtin::BI__builtin_islessequal: 2974 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); 2975 break; 2976 case Builtin::BI__builtin_islessgreater: 2977 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); 2978 break; 2979 case Builtin::BI__builtin_isunordered: 2980 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); 2981 break; 2982 } 2983 // ZExt bool to int type. 2984 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); 2985 } 2986 case Builtin::BI__builtin_isnan: { 2987 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2988 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 2989 Value *V = EmitScalarExpr(E->getArg(0)); 2990 V = Builder.CreateFCmpUNO(V, V, "cmp"); 2991 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 2992 } 2993 2994 case Builtin::BI__builtin_matrix_transpose: { 2995 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); 2996 Value *MatValue = EmitScalarExpr(E->getArg(0)); 2997 MatrixBuilder<CGBuilderTy> MB(Builder); 2998 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(), 2999 MatrixTy->getNumColumns()); 3000 return RValue::get(Result); 3001 } 3002 3003 case Builtin::BI__builtin_matrix_column_major_load: { 3004 MatrixBuilder<CGBuilderTy> MB(Builder); 3005 // Emit everything that isn't dependent on the first parameter type 3006 Value *Stride = EmitScalarExpr(E->getArg(3)); 3007 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>(); 3008 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>(); 3009 assert(PtrTy && "arg0 must be of pointer type"); 3010 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); 3011 3012 Address Src = EmitPointerWithAlignment(E->getArg(0)); 3013 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(), 3014 E->getArg(0)->getExprLoc(), FD, 0); 3015 Value *Result = MB.CreateColumnMajorLoad( 3016 Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride, 3017 IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(), 3018 "matrix"); 3019 return RValue::get(Result); 3020 } 3021 3022 case Builtin::BI__builtin_matrix_column_major_store: { 3023 MatrixBuilder<CGBuilderTy> MB(Builder); 3024 Value *Matrix = EmitScalarExpr(E->getArg(0)); 3025 Address Dst = EmitPointerWithAlignment(E->getArg(1)); 3026 Value *Stride = EmitScalarExpr(E->getArg(2)); 3027 3028 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); 3029 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>(); 3030 assert(PtrTy && "arg1 must be of pointer type"); 3031 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); 3032 3033 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(), 3034 E->getArg(1)->getExprLoc(), FD, 0); 3035 Value *Result = MB.CreateColumnMajorStore( 3036 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()), 3037 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns()); 3038 return RValue::get(Result); 3039 } 3040 3041 case Builtin::BIfinite: 3042 case Builtin::BI__finite: 3043 case Builtin::BIfinitef: 3044 case Builtin::BI__finitef: 3045 case Builtin::BIfinitel: 3046 case Builtin::BI__finitel: 3047 case Builtin::BI__builtin_isinf: 3048 case Builtin::BI__builtin_isfinite: { 3049 // isinf(x) --> fabs(x) == infinity 3050 // isfinite(x) --> fabs(x) != infinity 3051 // x != NaN via the ordered compare in either case. 3052 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3053 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3054 Value *V = EmitScalarExpr(E->getArg(0)); 3055 Value *Fabs = EmitFAbs(*this, V); 3056 Constant *Infinity = ConstantFP::getInfinity(V->getType()); 3057 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) 3058 ? CmpInst::FCMP_OEQ 3059 : CmpInst::FCMP_ONE; 3060 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); 3061 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); 3062 } 3063 3064 case Builtin::BI__builtin_isinf_sign: { 3065 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 3066 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3067 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3068 Value *Arg = EmitScalarExpr(E->getArg(0)); 3069 Value *AbsArg = EmitFAbs(*this, Arg); 3070 Value *IsInf = Builder.CreateFCmpOEQ( 3071 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); 3072 Value *IsNeg = EmitSignBit(*this, Arg); 3073 3074 llvm::Type *IntTy = ConvertType(E->getType()); 3075 Value *Zero = Constant::getNullValue(IntTy); 3076 Value *One = ConstantInt::get(IntTy, 1); 3077 Value *NegativeOne = ConstantInt::get(IntTy, -1); 3078 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); 3079 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); 3080 return RValue::get(Result); 3081 } 3082 3083 case Builtin::BI__builtin_isnormal: { 3084 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min 3085 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3086 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3087 Value *V = EmitScalarExpr(E->getArg(0)); 3088 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); 3089 3090 Value *Abs = EmitFAbs(*this, V); 3091 Value *IsLessThanInf = 3092 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); 3093 APFloat Smallest = APFloat::getSmallestNormalized( 3094 getContext().getFloatTypeSemantics(E->getArg(0)->getType())); 3095 Value *IsNormal = 3096 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), 3097 "isnormal"); 3098 V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); 3099 V = Builder.CreateAnd(V, IsNormal, "and"); 3100 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3101 } 3102 3103 case Builtin::BI__builtin_flt_rounds: { 3104 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); 3105 3106 llvm::Type *ResultType = ConvertType(E->getType()); 3107 Value *Result = Builder.CreateCall(F); 3108 if (Result->getType() != ResultType) 3109 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 3110 "cast"); 3111 return RValue::get(Result); 3112 } 3113 3114 case Builtin::BI__builtin_fpclassify: { 3115 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3116 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3117 Value *V = EmitScalarExpr(E->getArg(5)); 3118 llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); 3119 3120 // Create Result 3121 BasicBlock *Begin = Builder.GetInsertBlock(); 3122 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); 3123 Builder.SetInsertPoint(End); 3124 PHINode *Result = 3125 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, 3126 "fpclassify_result"); 3127 3128 // if (V==0) return FP_ZERO 3129 Builder.SetInsertPoint(Begin); 3130 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), 3131 "iszero"); 3132 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); 3133 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); 3134 Builder.CreateCondBr(IsZero, End, NotZero); 3135 Result->addIncoming(ZeroLiteral, Begin); 3136 3137 // if (V != V) return FP_NAN 3138 Builder.SetInsertPoint(NotZero); 3139 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); 3140 Value *NanLiteral = EmitScalarExpr(E->getArg(0)); 3141 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); 3142 Builder.CreateCondBr(IsNan, End, NotNan); 3143 Result->addIncoming(NanLiteral, NotZero); 3144 3145 // if (fabs(V) == infinity) return FP_INFINITY 3146 Builder.SetInsertPoint(NotNan); 3147 Value *VAbs = EmitFAbs(*this, V); 3148 Value *IsInf = 3149 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), 3150 "isinf"); 3151 Value *InfLiteral = EmitScalarExpr(E->getArg(1)); 3152 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); 3153 Builder.CreateCondBr(IsInf, End, NotInf); 3154 Result->addIncoming(InfLiteral, NotNan); 3155 3156 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL 3157 Builder.SetInsertPoint(NotInf); 3158 APFloat Smallest = APFloat::getSmallestNormalized( 3159 getContext().getFloatTypeSemantics(E->getArg(5)->getType())); 3160 Value *IsNormal = 3161 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), 3162 "isnormal"); 3163 Value *NormalResult = 3164 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), 3165 EmitScalarExpr(E->getArg(3))); 3166 Builder.CreateBr(End); 3167 Result->addIncoming(NormalResult, NotInf); 3168 3169 // return Result 3170 Builder.SetInsertPoint(End); 3171 return RValue::get(Result); 3172 } 3173 3174 case Builtin::BIalloca: 3175 case Builtin::BI_alloca: 3176 case Builtin::BI__builtin_alloca: { 3177 Value *Size = EmitScalarExpr(E->getArg(0)); 3178 const TargetInfo &TI = getContext().getTargetInfo(); 3179 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. 3180 const Align SuitableAlignmentInBytes = 3181 CGM.getContext() 3182 .toCharUnitsFromBits(TI.getSuitableAlign()) 3183 .getAsAlign(); 3184 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 3185 AI->setAlignment(SuitableAlignmentInBytes); 3186 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); 3187 return RValue::get(AI); 3188 } 3189 3190 case Builtin::BI__builtin_alloca_with_align: { 3191 Value *Size = EmitScalarExpr(E->getArg(0)); 3192 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); 3193 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); 3194 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); 3195 const Align AlignmentInBytes = 3196 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign(); 3197 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 3198 AI->setAlignment(AlignmentInBytes); 3199 initializeAlloca(*this, AI, Size, AlignmentInBytes); 3200 return RValue::get(AI); 3201 } 3202 3203 case Builtin::BIbzero: 3204 case Builtin::BI__builtin_bzero: { 3205 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3206 Value *SizeVal = EmitScalarExpr(E->getArg(1)); 3207 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3208 E->getArg(0)->getExprLoc(), FD, 0); 3209 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); 3210 return RValue::get(nullptr); 3211 } 3212 case Builtin::BImemcpy: 3213 case Builtin::BI__builtin_memcpy: 3214 case Builtin::BImempcpy: 3215 case Builtin::BI__builtin_mempcpy: { 3216 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3217 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3218 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3219 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3220 E->getArg(0)->getExprLoc(), FD, 0); 3221 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3222 E->getArg(1)->getExprLoc(), FD, 1); 3223 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 3224 if (BuiltinID == Builtin::BImempcpy || 3225 BuiltinID == Builtin::BI__builtin_mempcpy) 3226 return RValue::get(Builder.CreateInBoundsGEP(Dest.getPointer(), SizeVal)); 3227 else 3228 return RValue::get(Dest.getPointer()); 3229 } 3230 3231 case Builtin::BI__builtin_memcpy_inline: { 3232 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3233 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3234 uint64_t Size = 3235 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); 3236 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3237 E->getArg(0)->getExprLoc(), FD, 0); 3238 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3239 E->getArg(1)->getExprLoc(), FD, 1); 3240 Builder.CreateMemCpyInline(Dest, Src, Size); 3241 return RValue::get(nullptr); 3242 } 3243 3244 case Builtin::BI__builtin_char_memchr: 3245 BuiltinID = Builtin::BI__builtin_memchr; 3246 break; 3247 3248 case Builtin::BI__builtin___memcpy_chk: { 3249 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. 3250 Expr::EvalResult SizeResult, DstSizeResult; 3251 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3252 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3253 break; 3254 llvm::APSInt Size = SizeResult.Val.getInt(); 3255 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3256 if (Size.ugt(DstSize)) 3257 break; 3258 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3259 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3260 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3261 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 3262 return RValue::get(Dest.getPointer()); 3263 } 3264 3265 case Builtin::BI__builtin_objc_memmove_collectable: { 3266 Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); 3267 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); 3268 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3269 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, 3270 DestAddr, SrcAddr, SizeVal); 3271 return RValue::get(DestAddr.getPointer()); 3272 } 3273 3274 case Builtin::BI__builtin___memmove_chk: { 3275 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. 3276 Expr::EvalResult SizeResult, DstSizeResult; 3277 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3278 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3279 break; 3280 llvm::APSInt Size = SizeResult.Val.getInt(); 3281 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3282 if (Size.ugt(DstSize)) 3283 break; 3284 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3285 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3286 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3287 Builder.CreateMemMove(Dest, Src, SizeVal, false); 3288 return RValue::get(Dest.getPointer()); 3289 } 3290 3291 case Builtin::BImemmove: 3292 case Builtin::BI__builtin_memmove: { 3293 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3294 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3295 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3296 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3297 E->getArg(0)->getExprLoc(), FD, 0); 3298 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3299 E->getArg(1)->getExprLoc(), FD, 1); 3300 Builder.CreateMemMove(Dest, Src, SizeVal, false); 3301 return RValue::get(Dest.getPointer()); 3302 } 3303 case Builtin::BImemset: 3304 case Builtin::BI__builtin_memset: { 3305 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3306 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 3307 Builder.getInt8Ty()); 3308 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3309 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3310 E->getArg(0)->getExprLoc(), FD, 0); 3311 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 3312 return RValue::get(Dest.getPointer()); 3313 } 3314 case Builtin::BI__builtin___memset_chk: { 3315 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. 3316 Expr::EvalResult SizeResult, DstSizeResult; 3317 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3318 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3319 break; 3320 llvm::APSInt Size = SizeResult.Val.getInt(); 3321 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3322 if (Size.ugt(DstSize)) 3323 break; 3324 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3325 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 3326 Builder.getInt8Ty()); 3327 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3328 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 3329 return RValue::get(Dest.getPointer()); 3330 } 3331 case Builtin::BI__builtin_wmemcmp: { 3332 // The MSVC runtime library does not provide a definition of wmemcmp, so we 3333 // need an inline implementation. 3334 if (!getTarget().getTriple().isOSMSVCRT()) 3335 break; 3336 3337 llvm::Type *WCharTy = ConvertType(getContext().WCharTy); 3338 3339 Value *Dst = EmitScalarExpr(E->getArg(0)); 3340 Value *Src = EmitScalarExpr(E->getArg(1)); 3341 Value *Size = EmitScalarExpr(E->getArg(2)); 3342 3343 BasicBlock *Entry = Builder.GetInsertBlock(); 3344 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); 3345 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); 3346 BasicBlock *Next = createBasicBlock("wmemcmp.next"); 3347 BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); 3348 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); 3349 Builder.CreateCondBr(SizeEq0, Exit, CmpGT); 3350 3351 EmitBlock(CmpGT); 3352 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); 3353 DstPhi->addIncoming(Dst, Entry); 3354 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); 3355 SrcPhi->addIncoming(Src, Entry); 3356 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); 3357 SizePhi->addIncoming(Size, Entry); 3358 CharUnits WCharAlign = 3359 getContext().getTypeAlignInChars(getContext().WCharTy); 3360 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); 3361 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); 3362 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); 3363 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); 3364 3365 EmitBlock(CmpLT); 3366 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); 3367 Builder.CreateCondBr(DstLtSrc, Exit, Next); 3368 3369 EmitBlock(Next); 3370 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); 3371 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); 3372 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); 3373 Value *NextSizeEq0 = 3374 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); 3375 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); 3376 DstPhi->addIncoming(NextDst, Next); 3377 SrcPhi->addIncoming(NextSrc, Next); 3378 SizePhi->addIncoming(NextSize, Next); 3379 3380 EmitBlock(Exit); 3381 PHINode *Ret = Builder.CreatePHI(IntTy, 4); 3382 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); 3383 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); 3384 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); 3385 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); 3386 return RValue::get(Ret); 3387 } 3388 case Builtin::BI__builtin_dwarf_cfa: { 3389 // The offset in bytes from the first argument to the CFA. 3390 // 3391 // Why on earth is this in the frontend? Is there any reason at 3392 // all that the backend can't reasonably determine this while 3393 // lowering llvm.eh.dwarf.cfa()? 3394 // 3395 // TODO: If there's a satisfactory reason, add a target hook for 3396 // this instead of hard-coding 0, which is correct for most targets. 3397 int32_t Offset = 0; 3398 3399 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); 3400 return RValue::get(Builder.CreateCall(F, 3401 llvm::ConstantInt::get(Int32Ty, Offset))); 3402 } 3403 case Builtin::BI__builtin_return_address: { 3404 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 3405 getContext().UnsignedIntTy); 3406 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 3407 return RValue::get(Builder.CreateCall(F, Depth)); 3408 } 3409 case Builtin::BI_ReturnAddress: { 3410 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 3411 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); 3412 } 3413 case Builtin::BI__builtin_frame_address: { 3414 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 3415 getContext().UnsignedIntTy); 3416 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); 3417 return RValue::get(Builder.CreateCall(F, Depth)); 3418 } 3419 case Builtin::BI__builtin_extract_return_addr: { 3420 Value *Address = EmitScalarExpr(E->getArg(0)); 3421 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); 3422 return RValue::get(Result); 3423 } 3424 case Builtin::BI__builtin_frob_return_addr: { 3425 Value *Address = EmitScalarExpr(E->getArg(0)); 3426 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); 3427 return RValue::get(Result); 3428 } 3429 case Builtin::BI__builtin_dwarf_sp_column: { 3430 llvm::IntegerType *Ty 3431 = cast<llvm::IntegerType>(ConvertType(E->getType())); 3432 int Column = getTargetHooks().getDwarfEHStackPointer(CGM); 3433 if (Column == -1) { 3434 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); 3435 return RValue::get(llvm::UndefValue::get(Ty)); 3436 } 3437 return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); 3438 } 3439 case Builtin::BI__builtin_init_dwarf_reg_size_table: { 3440 Value *Address = EmitScalarExpr(E->getArg(0)); 3441 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) 3442 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); 3443 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); 3444 } 3445 case Builtin::BI__builtin_eh_return: { 3446 Value *Int = EmitScalarExpr(E->getArg(0)); 3447 Value *Ptr = EmitScalarExpr(E->getArg(1)); 3448 3449 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); 3450 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && 3451 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); 3452 Function *F = 3453 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 3454 : Intrinsic::eh_return_i64); 3455 Builder.CreateCall(F, {Int, Ptr}); 3456 Builder.CreateUnreachable(); 3457 3458 // We do need to preserve an insertion point. 3459 EmitBlock(createBasicBlock("builtin_eh_return.cont")); 3460 3461 return RValue::get(nullptr); 3462 } 3463 case Builtin::BI__builtin_unwind_init: { 3464 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); 3465 return RValue::get(Builder.CreateCall(F)); 3466 } 3467 case Builtin::BI__builtin_extend_pointer: { 3468 // Extends a pointer to the size of an _Unwind_Word, which is 3469 // uint64_t on all platforms. Generally this gets poked into a 3470 // register and eventually used as an address, so if the 3471 // addressing registers are wider than pointers and the platform 3472 // doesn't implicitly ignore high-order bits when doing 3473 // addressing, we need to make sure we zext / sext based on 3474 // the platform's expectations. 3475 // 3476 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html 3477 3478 // Cast the pointer to intptr_t. 3479 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3480 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); 3481 3482 // If that's 64 bits, we're done. 3483 if (IntPtrTy->getBitWidth() == 64) 3484 return RValue::get(Result); 3485 3486 // Otherwise, ask the codegen data what to do. 3487 if (getTargetHooks().extendPointerWithSExt()) 3488 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); 3489 else 3490 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); 3491 } 3492 case Builtin::BI__builtin_setjmp: { 3493 // Buffer is a void**. 3494 Address Buf = EmitPointerWithAlignment(E->getArg(0)); 3495 3496 // Store the frame pointer to the setjmp buffer. 3497 Value *FrameAddr = Builder.CreateCall( 3498 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), 3499 ConstantInt::get(Int32Ty, 0)); 3500 Builder.CreateStore(FrameAddr, Buf); 3501 3502 // Store the stack pointer to the setjmp buffer. 3503 Value *StackAddr = 3504 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); 3505 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); 3506 Builder.CreateStore(StackAddr, StackSaveSlot); 3507 3508 // Call LLVM's EH setjmp, which is lightweight. 3509 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); 3510 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 3511 return RValue::get(Builder.CreateCall(F, Buf.getPointer())); 3512 } 3513 case Builtin::BI__builtin_longjmp: { 3514 Value *Buf = EmitScalarExpr(E->getArg(0)); 3515 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 3516 3517 // Call LLVM's EH longjmp, which is lightweight. 3518 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); 3519 3520 // longjmp doesn't return; mark this as unreachable. 3521 Builder.CreateUnreachable(); 3522 3523 // We do need to preserve an insertion point. 3524 EmitBlock(createBasicBlock("longjmp.cont")); 3525 3526 return RValue::get(nullptr); 3527 } 3528 case Builtin::BI__builtin_launder: { 3529 const Expr *Arg = E->getArg(0); 3530 QualType ArgTy = Arg->getType()->getPointeeType(); 3531 Value *Ptr = EmitScalarExpr(Arg); 3532 if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) 3533 Ptr = Builder.CreateLaunderInvariantGroup(Ptr); 3534 3535 return RValue::get(Ptr); 3536 } 3537 case Builtin::BI__sync_fetch_and_add: 3538 case Builtin::BI__sync_fetch_and_sub: 3539 case Builtin::BI__sync_fetch_and_or: 3540 case Builtin::BI__sync_fetch_and_and: 3541 case Builtin::BI__sync_fetch_and_xor: 3542 case Builtin::BI__sync_fetch_and_nand: 3543 case Builtin::BI__sync_add_and_fetch: 3544 case Builtin::BI__sync_sub_and_fetch: 3545 case Builtin::BI__sync_and_and_fetch: 3546 case Builtin::BI__sync_or_and_fetch: 3547 case Builtin::BI__sync_xor_and_fetch: 3548 case Builtin::BI__sync_nand_and_fetch: 3549 case Builtin::BI__sync_val_compare_and_swap: 3550 case Builtin::BI__sync_bool_compare_and_swap: 3551 case Builtin::BI__sync_lock_test_and_set: 3552 case Builtin::BI__sync_lock_release: 3553 case Builtin::BI__sync_swap: 3554 llvm_unreachable("Shouldn't make it through sema"); 3555 case Builtin::BI__sync_fetch_and_add_1: 3556 case Builtin::BI__sync_fetch_and_add_2: 3557 case Builtin::BI__sync_fetch_and_add_4: 3558 case Builtin::BI__sync_fetch_and_add_8: 3559 case Builtin::BI__sync_fetch_and_add_16: 3560 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); 3561 case Builtin::BI__sync_fetch_and_sub_1: 3562 case Builtin::BI__sync_fetch_and_sub_2: 3563 case Builtin::BI__sync_fetch_and_sub_4: 3564 case Builtin::BI__sync_fetch_and_sub_8: 3565 case Builtin::BI__sync_fetch_and_sub_16: 3566 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); 3567 case Builtin::BI__sync_fetch_and_or_1: 3568 case Builtin::BI__sync_fetch_and_or_2: 3569 case Builtin::BI__sync_fetch_and_or_4: 3570 case Builtin::BI__sync_fetch_and_or_8: 3571 case Builtin::BI__sync_fetch_and_or_16: 3572 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); 3573 case Builtin::BI__sync_fetch_and_and_1: 3574 case Builtin::BI__sync_fetch_and_and_2: 3575 case Builtin::BI__sync_fetch_and_and_4: 3576 case Builtin::BI__sync_fetch_and_and_8: 3577 case Builtin::BI__sync_fetch_and_and_16: 3578 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); 3579 case Builtin::BI__sync_fetch_and_xor_1: 3580 case Builtin::BI__sync_fetch_and_xor_2: 3581 case Builtin::BI__sync_fetch_and_xor_4: 3582 case Builtin::BI__sync_fetch_and_xor_8: 3583 case Builtin::BI__sync_fetch_and_xor_16: 3584 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); 3585 case Builtin::BI__sync_fetch_and_nand_1: 3586 case Builtin::BI__sync_fetch_and_nand_2: 3587 case Builtin::BI__sync_fetch_and_nand_4: 3588 case Builtin::BI__sync_fetch_and_nand_8: 3589 case Builtin::BI__sync_fetch_and_nand_16: 3590 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); 3591 3592 // Clang extensions: not overloaded yet. 3593 case Builtin::BI__sync_fetch_and_min: 3594 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); 3595 case Builtin::BI__sync_fetch_and_max: 3596 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); 3597 case Builtin::BI__sync_fetch_and_umin: 3598 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); 3599 case Builtin::BI__sync_fetch_and_umax: 3600 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); 3601 3602 case Builtin::BI__sync_add_and_fetch_1: 3603 case Builtin::BI__sync_add_and_fetch_2: 3604 case Builtin::BI__sync_add_and_fetch_4: 3605 case Builtin::BI__sync_add_and_fetch_8: 3606 case Builtin::BI__sync_add_and_fetch_16: 3607 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, 3608 llvm::Instruction::Add); 3609 case Builtin::BI__sync_sub_and_fetch_1: 3610 case Builtin::BI__sync_sub_and_fetch_2: 3611 case Builtin::BI__sync_sub_and_fetch_4: 3612 case Builtin::BI__sync_sub_and_fetch_8: 3613 case Builtin::BI__sync_sub_and_fetch_16: 3614 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, 3615 llvm::Instruction::Sub); 3616 case Builtin::BI__sync_and_and_fetch_1: 3617 case Builtin::BI__sync_and_and_fetch_2: 3618 case Builtin::BI__sync_and_and_fetch_4: 3619 case Builtin::BI__sync_and_and_fetch_8: 3620 case Builtin::BI__sync_and_and_fetch_16: 3621 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, 3622 llvm::Instruction::And); 3623 case Builtin::BI__sync_or_and_fetch_1: 3624 case Builtin::BI__sync_or_and_fetch_2: 3625 case Builtin::BI__sync_or_and_fetch_4: 3626 case Builtin::BI__sync_or_and_fetch_8: 3627 case Builtin::BI__sync_or_and_fetch_16: 3628 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, 3629 llvm::Instruction::Or); 3630 case Builtin::BI__sync_xor_and_fetch_1: 3631 case Builtin::BI__sync_xor_and_fetch_2: 3632 case Builtin::BI__sync_xor_and_fetch_4: 3633 case Builtin::BI__sync_xor_and_fetch_8: 3634 case Builtin::BI__sync_xor_and_fetch_16: 3635 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, 3636 llvm::Instruction::Xor); 3637 case Builtin::BI__sync_nand_and_fetch_1: 3638 case Builtin::BI__sync_nand_and_fetch_2: 3639 case Builtin::BI__sync_nand_and_fetch_4: 3640 case Builtin::BI__sync_nand_and_fetch_8: 3641 case Builtin::BI__sync_nand_and_fetch_16: 3642 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, 3643 llvm::Instruction::And, true); 3644 3645 case Builtin::BI__sync_val_compare_and_swap_1: 3646 case Builtin::BI__sync_val_compare_and_swap_2: 3647 case Builtin::BI__sync_val_compare_and_swap_4: 3648 case Builtin::BI__sync_val_compare_and_swap_8: 3649 case Builtin::BI__sync_val_compare_and_swap_16: 3650 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); 3651 3652 case Builtin::BI__sync_bool_compare_and_swap_1: 3653 case Builtin::BI__sync_bool_compare_and_swap_2: 3654 case Builtin::BI__sync_bool_compare_and_swap_4: 3655 case Builtin::BI__sync_bool_compare_and_swap_8: 3656 case Builtin::BI__sync_bool_compare_and_swap_16: 3657 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); 3658 3659 case Builtin::BI__sync_swap_1: 3660 case Builtin::BI__sync_swap_2: 3661 case Builtin::BI__sync_swap_4: 3662 case Builtin::BI__sync_swap_8: 3663 case Builtin::BI__sync_swap_16: 3664 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 3665 3666 case Builtin::BI__sync_lock_test_and_set_1: 3667 case Builtin::BI__sync_lock_test_and_set_2: 3668 case Builtin::BI__sync_lock_test_and_set_4: 3669 case Builtin::BI__sync_lock_test_and_set_8: 3670 case Builtin::BI__sync_lock_test_and_set_16: 3671 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 3672 3673 case Builtin::BI__sync_lock_release_1: 3674 case Builtin::BI__sync_lock_release_2: 3675 case Builtin::BI__sync_lock_release_4: 3676 case Builtin::BI__sync_lock_release_8: 3677 case Builtin::BI__sync_lock_release_16: { 3678 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3679 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 3680 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); 3681 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), 3682 StoreSize.getQuantity() * 8); 3683 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 3684 llvm::StoreInst *Store = 3685 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, 3686 StoreSize); 3687 Store->setAtomic(llvm::AtomicOrdering::Release); 3688 return RValue::get(nullptr); 3689 } 3690 3691 case Builtin::BI__sync_synchronize: { 3692 // We assume this is supposed to correspond to a C++0x-style 3693 // sequentially-consistent fence (i.e. this is only usable for 3694 // synchronization, not device I/O or anything like that). This intrinsic 3695 // is really badly designed in the sense that in theory, there isn't 3696 // any way to safely use it... but in practice, it mostly works 3697 // to use it with non-atomic loads and stores to get acquire/release 3698 // semantics. 3699 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); 3700 return RValue::get(nullptr); 3701 } 3702 3703 case Builtin::BI__builtin_nontemporal_load: 3704 return RValue::get(EmitNontemporalLoad(*this, E)); 3705 case Builtin::BI__builtin_nontemporal_store: 3706 return RValue::get(EmitNontemporalStore(*this, E)); 3707 case Builtin::BI__c11_atomic_is_lock_free: 3708 case Builtin::BI__atomic_is_lock_free: { 3709 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the 3710 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since 3711 // _Atomic(T) is always properly-aligned. 3712 const char *LibCallName = "__atomic_is_lock_free"; 3713 CallArgList Args; 3714 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), 3715 getContext().getSizeType()); 3716 if (BuiltinID == Builtin::BI__atomic_is_lock_free) 3717 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), 3718 getContext().VoidPtrTy); 3719 else 3720 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), 3721 getContext().VoidPtrTy); 3722 const CGFunctionInfo &FuncInfo = 3723 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); 3724 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3725 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3726 return EmitCall(FuncInfo, CGCallee::forDirect(Func), 3727 ReturnValueSlot(), Args); 3728 } 3729 3730 case Builtin::BI__atomic_test_and_set: { 3731 // Look at the argument type to determine whether this is a volatile 3732 // operation. The parameter type is always volatile. 3733 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 3734 bool Volatile = 3735 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 3736 3737 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3738 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); 3739 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 3740 Value *NewVal = Builder.getInt8(1); 3741 Value *Order = EmitScalarExpr(E->getArg(1)); 3742 if (isa<llvm::ConstantInt>(Order)) { 3743 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3744 AtomicRMWInst *Result = nullptr; 3745 switch (ord) { 3746 case 0: // memory_order_relaxed 3747 default: // invalid order 3748 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3749 llvm::AtomicOrdering::Monotonic); 3750 break; 3751 case 1: // memory_order_consume 3752 case 2: // memory_order_acquire 3753 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3754 llvm::AtomicOrdering::Acquire); 3755 break; 3756 case 3: // memory_order_release 3757 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3758 llvm::AtomicOrdering::Release); 3759 break; 3760 case 4: // memory_order_acq_rel 3761 3762 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3763 llvm::AtomicOrdering::AcquireRelease); 3764 break; 3765 case 5: // memory_order_seq_cst 3766 Result = Builder.CreateAtomicRMW( 3767 llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3768 llvm::AtomicOrdering::SequentiallyConsistent); 3769 break; 3770 } 3771 Result->setVolatile(Volatile); 3772 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 3773 } 3774 3775 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3776 3777 llvm::BasicBlock *BBs[5] = { 3778 createBasicBlock("monotonic", CurFn), 3779 createBasicBlock("acquire", CurFn), 3780 createBasicBlock("release", CurFn), 3781 createBasicBlock("acqrel", CurFn), 3782 createBasicBlock("seqcst", CurFn) 3783 }; 3784 llvm::AtomicOrdering Orders[5] = { 3785 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, 3786 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, 3787 llvm::AtomicOrdering::SequentiallyConsistent}; 3788 3789 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3790 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 3791 3792 Builder.SetInsertPoint(ContBB); 3793 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); 3794 3795 for (unsigned i = 0; i < 5; ++i) { 3796 Builder.SetInsertPoint(BBs[i]); 3797 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 3798 Ptr, NewVal, Orders[i]); 3799 RMW->setVolatile(Volatile); 3800 Result->addIncoming(RMW, BBs[i]); 3801 Builder.CreateBr(ContBB); 3802 } 3803 3804 SI->addCase(Builder.getInt32(0), BBs[0]); 3805 SI->addCase(Builder.getInt32(1), BBs[1]); 3806 SI->addCase(Builder.getInt32(2), BBs[1]); 3807 SI->addCase(Builder.getInt32(3), BBs[2]); 3808 SI->addCase(Builder.getInt32(4), BBs[3]); 3809 SI->addCase(Builder.getInt32(5), BBs[4]); 3810 3811 Builder.SetInsertPoint(ContBB); 3812 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 3813 } 3814 3815 case Builtin::BI__atomic_clear: { 3816 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 3817 bool Volatile = 3818 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 3819 3820 Address Ptr = EmitPointerWithAlignment(E->getArg(0)); 3821 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); 3822 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 3823 Value *NewVal = Builder.getInt8(0); 3824 Value *Order = EmitScalarExpr(E->getArg(1)); 3825 if (isa<llvm::ConstantInt>(Order)) { 3826 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3827 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 3828 switch (ord) { 3829 case 0: // memory_order_relaxed 3830 default: // invalid order 3831 Store->setOrdering(llvm::AtomicOrdering::Monotonic); 3832 break; 3833 case 3: // memory_order_release 3834 Store->setOrdering(llvm::AtomicOrdering::Release); 3835 break; 3836 case 5: // memory_order_seq_cst 3837 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); 3838 break; 3839 } 3840 return RValue::get(nullptr); 3841 } 3842 3843 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3844 3845 llvm::BasicBlock *BBs[3] = { 3846 createBasicBlock("monotonic", CurFn), 3847 createBasicBlock("release", CurFn), 3848 createBasicBlock("seqcst", CurFn) 3849 }; 3850 llvm::AtomicOrdering Orders[3] = { 3851 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, 3852 llvm::AtomicOrdering::SequentiallyConsistent}; 3853 3854 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3855 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 3856 3857 for (unsigned i = 0; i < 3; ++i) { 3858 Builder.SetInsertPoint(BBs[i]); 3859 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 3860 Store->setOrdering(Orders[i]); 3861 Builder.CreateBr(ContBB); 3862 } 3863 3864 SI->addCase(Builder.getInt32(0), BBs[0]); 3865 SI->addCase(Builder.getInt32(3), BBs[1]); 3866 SI->addCase(Builder.getInt32(5), BBs[2]); 3867 3868 Builder.SetInsertPoint(ContBB); 3869 return RValue::get(nullptr); 3870 } 3871 3872 case Builtin::BI__atomic_thread_fence: 3873 case Builtin::BI__atomic_signal_fence: 3874 case Builtin::BI__c11_atomic_thread_fence: 3875 case Builtin::BI__c11_atomic_signal_fence: { 3876 llvm::SyncScope::ID SSID; 3877 if (BuiltinID == Builtin::BI__atomic_signal_fence || 3878 BuiltinID == Builtin::BI__c11_atomic_signal_fence) 3879 SSID = llvm::SyncScope::SingleThread; 3880 else 3881 SSID = llvm::SyncScope::System; 3882 Value *Order = EmitScalarExpr(E->getArg(0)); 3883 if (isa<llvm::ConstantInt>(Order)) { 3884 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3885 switch (ord) { 3886 case 0: // memory_order_relaxed 3887 default: // invalid order 3888 break; 3889 case 1: // memory_order_consume 3890 case 2: // memory_order_acquire 3891 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 3892 break; 3893 case 3: // memory_order_release 3894 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 3895 break; 3896 case 4: // memory_order_acq_rel 3897 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 3898 break; 3899 case 5: // memory_order_seq_cst 3900 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 3901 break; 3902 } 3903 return RValue::get(nullptr); 3904 } 3905 3906 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; 3907 AcquireBB = createBasicBlock("acquire", CurFn); 3908 ReleaseBB = createBasicBlock("release", CurFn); 3909 AcqRelBB = createBasicBlock("acqrel", CurFn); 3910 SeqCstBB = createBasicBlock("seqcst", CurFn); 3911 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3912 3913 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3914 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); 3915 3916 Builder.SetInsertPoint(AcquireBB); 3917 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 3918 Builder.CreateBr(ContBB); 3919 SI->addCase(Builder.getInt32(1), AcquireBB); 3920 SI->addCase(Builder.getInt32(2), AcquireBB); 3921 3922 Builder.SetInsertPoint(ReleaseBB); 3923 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 3924 Builder.CreateBr(ContBB); 3925 SI->addCase(Builder.getInt32(3), ReleaseBB); 3926 3927 Builder.SetInsertPoint(AcqRelBB); 3928 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 3929 Builder.CreateBr(ContBB); 3930 SI->addCase(Builder.getInt32(4), AcqRelBB); 3931 3932 Builder.SetInsertPoint(SeqCstBB); 3933 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 3934 Builder.CreateBr(ContBB); 3935 SI->addCase(Builder.getInt32(5), SeqCstBB); 3936 3937 Builder.SetInsertPoint(ContBB); 3938 return RValue::get(nullptr); 3939 } 3940 3941 case Builtin::BI__builtin_signbit: 3942 case Builtin::BI__builtin_signbitf: 3943 case Builtin::BI__builtin_signbitl: { 3944 return RValue::get( 3945 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), 3946 ConvertType(E->getType()))); 3947 } 3948 case Builtin::BI__warn_memset_zero_len: 3949 return RValue::getIgnored(); 3950 case Builtin::BI__annotation: { 3951 // Re-encode each wide string to UTF8 and make an MDString. 3952 SmallVector<Metadata *, 1> Strings; 3953 for (const Expr *Arg : E->arguments()) { 3954 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); 3955 assert(Str->getCharByteWidth() == 2); 3956 StringRef WideBytes = Str->getBytes(); 3957 std::string StrUtf8; 3958 if (!convertUTF16ToUTF8String( 3959 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { 3960 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); 3961 continue; 3962 } 3963 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); 3964 } 3965 3966 // Build and MDTuple of MDStrings and emit the intrinsic call. 3967 llvm::Function *F = 3968 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); 3969 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); 3970 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); 3971 return RValue::getIgnored(); 3972 } 3973 case Builtin::BI__builtin_annotation: { 3974 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); 3975 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, 3976 AnnVal->getType()); 3977 3978 // Get the annotation string, go through casts. Sema requires this to be a 3979 // non-wide string literal, potentially casted, so the cast<> is safe. 3980 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); 3981 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); 3982 return RValue::get( 3983 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr)); 3984 } 3985 case Builtin::BI__builtin_addcb: 3986 case Builtin::BI__builtin_addcs: 3987 case Builtin::BI__builtin_addc: 3988 case Builtin::BI__builtin_addcl: 3989 case Builtin::BI__builtin_addcll: 3990 case Builtin::BI__builtin_subcb: 3991 case Builtin::BI__builtin_subcs: 3992 case Builtin::BI__builtin_subc: 3993 case Builtin::BI__builtin_subcl: 3994 case Builtin::BI__builtin_subcll: { 3995 3996 // We translate all of these builtins from expressions of the form: 3997 // int x = ..., y = ..., carryin = ..., carryout, result; 3998 // result = __builtin_addc(x, y, carryin, &carryout); 3999 // 4000 // to LLVM IR of the form: 4001 // 4002 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) 4003 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 4004 // %carry1 = extractvalue {i32, i1} %tmp1, 1 4005 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, 4006 // i32 %carryin) 4007 // %result = extractvalue {i32, i1} %tmp2, 0 4008 // %carry2 = extractvalue {i32, i1} %tmp2, 1 4009 // %tmp3 = or i1 %carry1, %carry2 4010 // %tmp4 = zext i1 %tmp3 to i32 4011 // store i32 %tmp4, i32* %carryout 4012 4013 // Scalarize our inputs. 4014 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 4015 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 4016 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); 4017 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); 4018 4019 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. 4020 llvm::Intrinsic::ID IntrinsicId; 4021 switch (BuiltinID) { 4022 default: llvm_unreachable("Unknown multiprecision builtin id."); 4023 case Builtin::BI__builtin_addcb: 4024 case Builtin::BI__builtin_addcs: 4025 case Builtin::BI__builtin_addc: 4026 case Builtin::BI__builtin_addcl: 4027 case Builtin::BI__builtin_addcll: 4028 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 4029 break; 4030 case Builtin::BI__builtin_subcb: 4031 case Builtin::BI__builtin_subcs: 4032 case Builtin::BI__builtin_subc: 4033 case Builtin::BI__builtin_subcl: 4034 case Builtin::BI__builtin_subcll: 4035 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 4036 break; 4037 } 4038 4039 // Construct our resulting LLVM IR expression. 4040 llvm::Value *Carry1; 4041 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, 4042 X, Y, Carry1); 4043 llvm::Value *Carry2; 4044 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, 4045 Sum1, Carryin, Carry2); 4046 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), 4047 X->getType()); 4048 Builder.CreateStore(CarryOut, CarryOutPtr); 4049 return RValue::get(Sum2); 4050 } 4051 4052 case Builtin::BI__builtin_add_overflow: 4053 case Builtin::BI__builtin_sub_overflow: 4054 case Builtin::BI__builtin_mul_overflow: { 4055 const clang::Expr *LeftArg = E->getArg(0); 4056 const clang::Expr *RightArg = E->getArg(1); 4057 const clang::Expr *ResultArg = E->getArg(2); 4058 4059 clang::QualType ResultQTy = 4060 ResultArg->getType()->castAs<PointerType>()->getPointeeType(); 4061 4062 WidthAndSignedness LeftInfo = 4063 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); 4064 WidthAndSignedness RightInfo = 4065 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); 4066 WidthAndSignedness ResultInfo = 4067 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); 4068 4069 // Handle mixed-sign multiplication as a special case, because adding 4070 // runtime or backend support for our generic irgen would be too expensive. 4071 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) 4072 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, 4073 RightInfo, ResultArg, ResultQTy, 4074 ResultInfo); 4075 4076 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo, 4077 ResultInfo)) 4078 return EmitCheckedUnsignedMultiplySignedResult( 4079 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy, 4080 ResultInfo); 4081 4082 WidthAndSignedness EncompassingInfo = 4083 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); 4084 4085 llvm::Type *EncompassingLLVMTy = 4086 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); 4087 4088 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); 4089 4090 llvm::Intrinsic::ID IntrinsicId; 4091 switch (BuiltinID) { 4092 default: 4093 llvm_unreachable("Unknown overflow builtin id."); 4094 case Builtin::BI__builtin_add_overflow: 4095 IntrinsicId = EncompassingInfo.Signed 4096 ? llvm::Intrinsic::sadd_with_overflow 4097 : llvm::Intrinsic::uadd_with_overflow; 4098 break; 4099 case Builtin::BI__builtin_sub_overflow: 4100 IntrinsicId = EncompassingInfo.Signed 4101 ? llvm::Intrinsic::ssub_with_overflow 4102 : llvm::Intrinsic::usub_with_overflow; 4103 break; 4104 case Builtin::BI__builtin_mul_overflow: 4105 IntrinsicId = EncompassingInfo.Signed 4106 ? llvm::Intrinsic::smul_with_overflow 4107 : llvm::Intrinsic::umul_with_overflow; 4108 break; 4109 } 4110 4111 llvm::Value *Left = EmitScalarExpr(LeftArg); 4112 llvm::Value *Right = EmitScalarExpr(RightArg); 4113 Address ResultPtr = EmitPointerWithAlignment(ResultArg); 4114 4115 // Extend each operand to the encompassing type. 4116 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); 4117 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); 4118 4119 // Perform the operation on the extended values. 4120 llvm::Value *Overflow, *Result; 4121 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); 4122 4123 if (EncompassingInfo.Width > ResultInfo.Width) { 4124 // The encompassing type is wider than the result type, so we need to 4125 // truncate it. 4126 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); 4127 4128 // To see if the truncation caused an overflow, we will extend 4129 // the result and then compare it to the original result. 4130 llvm::Value *ResultTruncExt = Builder.CreateIntCast( 4131 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); 4132 llvm::Value *TruncationOverflow = 4133 Builder.CreateICmpNE(Result, ResultTruncExt); 4134 4135 Overflow = Builder.CreateOr(Overflow, TruncationOverflow); 4136 Result = ResultTrunc; 4137 } 4138 4139 // Finally, store the result using the pointer. 4140 bool isVolatile = 4141 ResultArg->getType()->getPointeeType().isVolatileQualified(); 4142 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); 4143 4144 return RValue::get(Overflow); 4145 } 4146 4147 case Builtin::BI__builtin_uadd_overflow: 4148 case Builtin::BI__builtin_uaddl_overflow: 4149 case Builtin::BI__builtin_uaddll_overflow: 4150 case Builtin::BI__builtin_usub_overflow: 4151 case Builtin::BI__builtin_usubl_overflow: 4152 case Builtin::BI__builtin_usubll_overflow: 4153 case Builtin::BI__builtin_umul_overflow: 4154 case Builtin::BI__builtin_umull_overflow: 4155 case Builtin::BI__builtin_umulll_overflow: 4156 case Builtin::BI__builtin_sadd_overflow: 4157 case Builtin::BI__builtin_saddl_overflow: 4158 case Builtin::BI__builtin_saddll_overflow: 4159 case Builtin::BI__builtin_ssub_overflow: 4160 case Builtin::BI__builtin_ssubl_overflow: 4161 case Builtin::BI__builtin_ssubll_overflow: 4162 case Builtin::BI__builtin_smul_overflow: 4163 case Builtin::BI__builtin_smull_overflow: 4164 case Builtin::BI__builtin_smulll_overflow: { 4165 4166 // We translate all of these builtins directly to the relevant llvm IR node. 4167 4168 // Scalarize our inputs. 4169 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 4170 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 4171 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); 4172 4173 // Decide which of the overflow intrinsics we are lowering to: 4174 llvm::Intrinsic::ID IntrinsicId; 4175 switch (BuiltinID) { 4176 default: llvm_unreachable("Unknown overflow builtin id."); 4177 case Builtin::BI__builtin_uadd_overflow: 4178 case Builtin::BI__builtin_uaddl_overflow: 4179 case Builtin::BI__builtin_uaddll_overflow: 4180 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 4181 break; 4182 case Builtin::BI__builtin_usub_overflow: 4183 case Builtin::BI__builtin_usubl_overflow: 4184 case Builtin::BI__builtin_usubll_overflow: 4185 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 4186 break; 4187 case Builtin::BI__builtin_umul_overflow: 4188 case Builtin::BI__builtin_umull_overflow: 4189 case Builtin::BI__builtin_umulll_overflow: 4190 IntrinsicId = llvm::Intrinsic::umul_with_overflow; 4191 break; 4192 case Builtin::BI__builtin_sadd_overflow: 4193 case Builtin::BI__builtin_saddl_overflow: 4194 case Builtin::BI__builtin_saddll_overflow: 4195 IntrinsicId = llvm::Intrinsic::sadd_with_overflow; 4196 break; 4197 case Builtin::BI__builtin_ssub_overflow: 4198 case Builtin::BI__builtin_ssubl_overflow: 4199 case Builtin::BI__builtin_ssubll_overflow: 4200 IntrinsicId = llvm::Intrinsic::ssub_with_overflow; 4201 break; 4202 case Builtin::BI__builtin_smul_overflow: 4203 case Builtin::BI__builtin_smull_overflow: 4204 case Builtin::BI__builtin_smulll_overflow: 4205 IntrinsicId = llvm::Intrinsic::smul_with_overflow; 4206 break; 4207 } 4208 4209 4210 llvm::Value *Carry; 4211 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); 4212 Builder.CreateStore(Sum, SumOutPtr); 4213 4214 return RValue::get(Carry); 4215 } 4216 case Builtin::BI__builtin_addressof: 4217 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); 4218 case Builtin::BI__builtin_operator_new: 4219 return EmitBuiltinNewDeleteCall( 4220 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); 4221 case Builtin::BI__builtin_operator_delete: 4222 return EmitBuiltinNewDeleteCall( 4223 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); 4224 4225 case Builtin::BI__builtin_is_aligned: 4226 return EmitBuiltinIsAligned(E); 4227 case Builtin::BI__builtin_align_up: 4228 return EmitBuiltinAlignTo(E, true); 4229 case Builtin::BI__builtin_align_down: 4230 return EmitBuiltinAlignTo(E, false); 4231 4232 case Builtin::BI__noop: 4233 // __noop always evaluates to an integer literal zero. 4234 return RValue::get(ConstantInt::get(IntTy, 0)); 4235 case Builtin::BI__builtin_call_with_static_chain: { 4236 const CallExpr *Call = cast<CallExpr>(E->getArg(0)); 4237 const Expr *Chain = E->getArg(1); 4238 return EmitCall(Call->getCallee()->getType(), 4239 EmitCallee(Call->getCallee()), Call, ReturnValue, 4240 EmitScalarExpr(Chain)); 4241 } 4242 case Builtin::BI_InterlockedExchange8: 4243 case Builtin::BI_InterlockedExchange16: 4244 case Builtin::BI_InterlockedExchange: 4245 case Builtin::BI_InterlockedExchangePointer: 4246 return RValue::get( 4247 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); 4248 case Builtin::BI_InterlockedCompareExchangePointer: 4249 case Builtin::BI_InterlockedCompareExchangePointer_nf: { 4250 llvm::Type *RTy; 4251 llvm::IntegerType *IntType = 4252 IntegerType::get(getLLVMContext(), 4253 getContext().getTypeSize(E->getType())); 4254 llvm::Type *IntPtrType = IntType->getPointerTo(); 4255 4256 llvm::Value *Destination = 4257 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); 4258 4259 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); 4260 RTy = Exchange->getType(); 4261 Exchange = Builder.CreatePtrToInt(Exchange, IntType); 4262 4263 llvm::Value *Comparand = 4264 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); 4265 4266 auto Ordering = 4267 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? 4268 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; 4269 4270 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 4271 Ordering, Ordering); 4272 Result->setVolatile(true); 4273 4274 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, 4275 0), 4276 RTy)); 4277 } 4278 case Builtin::BI_InterlockedCompareExchange8: 4279 case Builtin::BI_InterlockedCompareExchange16: 4280 case Builtin::BI_InterlockedCompareExchange: 4281 case Builtin::BI_InterlockedCompareExchange64: 4282 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); 4283 case Builtin::BI_InterlockedIncrement16: 4284 case Builtin::BI_InterlockedIncrement: 4285 return RValue::get( 4286 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); 4287 case Builtin::BI_InterlockedDecrement16: 4288 case Builtin::BI_InterlockedDecrement: 4289 return RValue::get( 4290 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); 4291 case Builtin::BI_InterlockedAnd8: 4292 case Builtin::BI_InterlockedAnd16: 4293 case Builtin::BI_InterlockedAnd: 4294 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); 4295 case Builtin::BI_InterlockedExchangeAdd8: 4296 case Builtin::BI_InterlockedExchangeAdd16: 4297 case Builtin::BI_InterlockedExchangeAdd: 4298 return RValue::get( 4299 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); 4300 case Builtin::BI_InterlockedExchangeSub8: 4301 case Builtin::BI_InterlockedExchangeSub16: 4302 case Builtin::BI_InterlockedExchangeSub: 4303 return RValue::get( 4304 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); 4305 case Builtin::BI_InterlockedOr8: 4306 case Builtin::BI_InterlockedOr16: 4307 case Builtin::BI_InterlockedOr: 4308 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); 4309 case Builtin::BI_InterlockedXor8: 4310 case Builtin::BI_InterlockedXor16: 4311 case Builtin::BI_InterlockedXor: 4312 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); 4313 4314 case Builtin::BI_bittest64: 4315 case Builtin::BI_bittest: 4316 case Builtin::BI_bittestandcomplement64: 4317 case Builtin::BI_bittestandcomplement: 4318 case Builtin::BI_bittestandreset64: 4319 case Builtin::BI_bittestandreset: 4320 case Builtin::BI_bittestandset64: 4321 case Builtin::BI_bittestandset: 4322 case Builtin::BI_interlockedbittestandreset: 4323 case Builtin::BI_interlockedbittestandreset64: 4324 case Builtin::BI_interlockedbittestandset64: 4325 case Builtin::BI_interlockedbittestandset: 4326 case Builtin::BI_interlockedbittestandset_acq: 4327 case Builtin::BI_interlockedbittestandset_rel: 4328 case Builtin::BI_interlockedbittestandset_nf: 4329 case Builtin::BI_interlockedbittestandreset_acq: 4330 case Builtin::BI_interlockedbittestandreset_rel: 4331 case Builtin::BI_interlockedbittestandreset_nf: 4332 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); 4333 4334 // These builtins exist to emit regular volatile loads and stores not 4335 // affected by the -fms-volatile setting. 4336 case Builtin::BI__iso_volatile_load8: 4337 case Builtin::BI__iso_volatile_load16: 4338 case Builtin::BI__iso_volatile_load32: 4339 case Builtin::BI__iso_volatile_load64: 4340 return RValue::get(EmitISOVolatileLoad(*this, E)); 4341 case Builtin::BI__iso_volatile_store8: 4342 case Builtin::BI__iso_volatile_store16: 4343 case Builtin::BI__iso_volatile_store32: 4344 case Builtin::BI__iso_volatile_store64: 4345 return RValue::get(EmitISOVolatileStore(*this, E)); 4346 4347 case Builtin::BI__exception_code: 4348 case Builtin::BI_exception_code: 4349 return RValue::get(EmitSEHExceptionCode()); 4350 case Builtin::BI__exception_info: 4351 case Builtin::BI_exception_info: 4352 return RValue::get(EmitSEHExceptionInfo()); 4353 case Builtin::BI__abnormal_termination: 4354 case Builtin::BI_abnormal_termination: 4355 return RValue::get(EmitSEHAbnormalTermination()); 4356 case Builtin::BI_setjmpex: 4357 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && 4358 E->getArg(0)->getType()->isPointerType()) 4359 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 4360 break; 4361 case Builtin::BI_setjmp: 4362 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && 4363 E->getArg(0)->getType()->isPointerType()) { 4364 if (getTarget().getTriple().getArch() == llvm::Triple::x86) 4365 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); 4366 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) 4367 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 4368 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); 4369 } 4370 break; 4371 4372 case Builtin::BI__GetExceptionInfo: { 4373 if (llvm::GlobalVariable *GV = 4374 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) 4375 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); 4376 break; 4377 } 4378 4379 case Builtin::BI__fastfail: 4380 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); 4381 4382 case Builtin::BI__builtin_coro_size: { 4383 auto & Context = getContext(); 4384 auto SizeTy = Context.getSizeType(); 4385 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4386 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); 4387 return RValue::get(Builder.CreateCall(F)); 4388 } 4389 4390 case Builtin::BI__builtin_coro_id: 4391 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); 4392 case Builtin::BI__builtin_coro_promise: 4393 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); 4394 case Builtin::BI__builtin_coro_resume: 4395 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); 4396 case Builtin::BI__builtin_coro_frame: 4397 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); 4398 case Builtin::BI__builtin_coro_noop: 4399 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); 4400 case Builtin::BI__builtin_coro_free: 4401 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); 4402 case Builtin::BI__builtin_coro_destroy: 4403 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); 4404 case Builtin::BI__builtin_coro_done: 4405 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); 4406 case Builtin::BI__builtin_coro_alloc: 4407 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); 4408 case Builtin::BI__builtin_coro_begin: 4409 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); 4410 case Builtin::BI__builtin_coro_end: 4411 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); 4412 case Builtin::BI__builtin_coro_suspend: 4413 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); 4414 case Builtin::BI__builtin_coro_param: 4415 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); 4416 4417 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions 4418 case Builtin::BIread_pipe: 4419 case Builtin::BIwrite_pipe: { 4420 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4421 *Arg1 = EmitScalarExpr(E->getArg(1)); 4422 CGOpenCLRuntime OpenCLRT(CGM); 4423 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4424 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4425 4426 // Type of the generic packet parameter. 4427 unsigned GenericAS = 4428 getContext().getTargetAddressSpace(LangAS::opencl_generic); 4429 llvm::Type *I8PTy = llvm::PointerType::get( 4430 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); 4431 4432 // Testing which overloaded version we should generate the call for. 4433 if (2U == E->getNumArgs()) { 4434 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" 4435 : "__write_pipe_2"; 4436 // Creating a generic function type to be able to call with any builtin or 4437 // user defined type. 4438 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; 4439 llvm::FunctionType *FTy = llvm::FunctionType::get( 4440 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4441 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); 4442 return RValue::get( 4443 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4444 {Arg0, BCast, PacketSize, PacketAlign})); 4445 } else { 4446 assert(4 == E->getNumArgs() && 4447 "Illegal number of parameters to pipe function"); 4448 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" 4449 : "__write_pipe_4"; 4450 4451 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, 4452 Int32Ty, Int32Ty}; 4453 Value *Arg2 = EmitScalarExpr(E->getArg(2)), 4454 *Arg3 = EmitScalarExpr(E->getArg(3)); 4455 llvm::FunctionType *FTy = llvm::FunctionType::get( 4456 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4457 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); 4458 // We know the third argument is an integer type, but we may need to cast 4459 // it to i32. 4460 if (Arg2->getType() != Int32Ty) 4461 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); 4462 return RValue::get( 4463 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4464 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); 4465 } 4466 } 4467 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write 4468 // functions 4469 case Builtin::BIreserve_read_pipe: 4470 case Builtin::BIreserve_write_pipe: 4471 case Builtin::BIwork_group_reserve_read_pipe: 4472 case Builtin::BIwork_group_reserve_write_pipe: 4473 case Builtin::BIsub_group_reserve_read_pipe: 4474 case Builtin::BIsub_group_reserve_write_pipe: { 4475 // Composing the mangled name for the function. 4476 const char *Name; 4477 if (BuiltinID == Builtin::BIreserve_read_pipe) 4478 Name = "__reserve_read_pipe"; 4479 else if (BuiltinID == Builtin::BIreserve_write_pipe) 4480 Name = "__reserve_write_pipe"; 4481 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) 4482 Name = "__work_group_reserve_read_pipe"; 4483 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) 4484 Name = "__work_group_reserve_write_pipe"; 4485 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) 4486 Name = "__sub_group_reserve_read_pipe"; 4487 else 4488 Name = "__sub_group_reserve_write_pipe"; 4489 4490 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4491 *Arg1 = EmitScalarExpr(E->getArg(1)); 4492 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); 4493 CGOpenCLRuntime OpenCLRT(CGM); 4494 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4495 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4496 4497 // Building the generic function prototype. 4498 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; 4499 llvm::FunctionType *FTy = llvm::FunctionType::get( 4500 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4501 // We know the second argument is an integer type, but we may need to cast 4502 // it to i32. 4503 if (Arg1->getType() != Int32Ty) 4504 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); 4505 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4506 {Arg0, Arg1, PacketSize, PacketAlign})); 4507 } 4508 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write 4509 // functions 4510 case Builtin::BIcommit_read_pipe: 4511 case Builtin::BIcommit_write_pipe: 4512 case Builtin::BIwork_group_commit_read_pipe: 4513 case Builtin::BIwork_group_commit_write_pipe: 4514 case Builtin::BIsub_group_commit_read_pipe: 4515 case Builtin::BIsub_group_commit_write_pipe: { 4516 const char *Name; 4517 if (BuiltinID == Builtin::BIcommit_read_pipe) 4518 Name = "__commit_read_pipe"; 4519 else if (BuiltinID == Builtin::BIcommit_write_pipe) 4520 Name = "__commit_write_pipe"; 4521 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) 4522 Name = "__work_group_commit_read_pipe"; 4523 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) 4524 Name = "__work_group_commit_write_pipe"; 4525 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) 4526 Name = "__sub_group_commit_read_pipe"; 4527 else 4528 Name = "__sub_group_commit_write_pipe"; 4529 4530 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4531 *Arg1 = EmitScalarExpr(E->getArg(1)); 4532 CGOpenCLRuntime OpenCLRT(CGM); 4533 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4534 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4535 4536 // Building the generic function prototype. 4537 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; 4538 llvm::FunctionType *FTy = 4539 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 4540 llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4541 4542 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4543 {Arg0, Arg1, PacketSize, PacketAlign})); 4544 } 4545 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions 4546 case Builtin::BIget_pipe_num_packets: 4547 case Builtin::BIget_pipe_max_packets: { 4548 const char *BaseName; 4549 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); 4550 if (BuiltinID == Builtin::BIget_pipe_num_packets) 4551 BaseName = "__get_pipe_num_packets"; 4552 else 4553 BaseName = "__get_pipe_max_packets"; 4554 std::string Name = std::string(BaseName) + 4555 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); 4556 4557 // Building the generic function prototype. 4558 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 4559 CGOpenCLRuntime OpenCLRT(CGM); 4560 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4561 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4562 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; 4563 llvm::FunctionType *FTy = llvm::FunctionType::get( 4564 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4565 4566 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4567 {Arg0, PacketSize, PacketAlign})); 4568 } 4569 4570 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 4571 case Builtin::BIto_global: 4572 case Builtin::BIto_local: 4573 case Builtin::BIto_private: { 4574 auto Arg0 = EmitScalarExpr(E->getArg(0)); 4575 auto NewArgT = llvm::PointerType::get(Int8Ty, 4576 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4577 auto NewRetT = llvm::PointerType::get(Int8Ty, 4578 CGM.getContext().getTargetAddressSpace( 4579 E->getType()->getPointeeType().getAddressSpace())); 4580 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); 4581 llvm::Value *NewArg; 4582 if (Arg0->getType()->getPointerAddressSpace() != 4583 NewArgT->getPointerAddressSpace()) 4584 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); 4585 else 4586 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); 4587 auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); 4588 auto NewCall = 4589 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); 4590 return RValue::get(Builder.CreateBitOrPointerCast(NewCall, 4591 ConvertType(E->getType()))); 4592 } 4593 4594 // OpenCL v2.0, s6.13.17 - Enqueue kernel function. 4595 // It contains four different overload formats specified in Table 6.13.17.1. 4596 case Builtin::BIenqueue_kernel: { 4597 StringRef Name; // Generated function call name 4598 unsigned NumArgs = E->getNumArgs(); 4599 4600 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); 4601 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4602 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4603 4604 llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); 4605 llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); 4606 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); 4607 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer(); 4608 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType(); 4609 4610 if (NumArgs == 4) { 4611 // The most basic form of the call with parameters: 4612 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) 4613 Name = "__enqueue_kernel_basic"; 4614 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, 4615 GenericVoidPtrTy}; 4616 llvm::FunctionType *FTy = llvm::FunctionType::get( 4617 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4618 4619 auto Info = 4620 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 4621 llvm::Value *Kernel = 4622 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4623 llvm::Value *Block = 4624 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4625 4626 AttrBuilder B; 4627 B.addByValAttr(NDRangeL.getAddress(*this).getElementType()); 4628 llvm::AttributeList ByValAttrSet = 4629 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); 4630 4631 auto RTCall = 4632 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), 4633 {Queue, Flags, Range, Kernel, Block}); 4634 RTCall->setAttributes(ByValAttrSet); 4635 return RValue::get(RTCall); 4636 } 4637 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); 4638 4639 // Create a temporary array to hold the sizes of local pointer arguments 4640 // for the block. \p First is the position of the first size argument. 4641 auto CreateArrayForSizeVar = [=](unsigned First) 4642 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { 4643 llvm::APInt ArraySize(32, NumArgs - First); 4644 QualType SizeArrayTy = getContext().getConstantArrayType( 4645 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, 4646 /*IndexTypeQuals=*/0); 4647 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); 4648 llvm::Value *TmpPtr = Tmp.getPointer(); 4649 llvm::Value *TmpSize = EmitLifetimeStart( 4650 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); 4651 llvm::Value *ElemPtr; 4652 // Each of the following arguments specifies the size of the corresponding 4653 // argument passed to the enqueued block. 4654 auto *Zero = llvm::ConstantInt::get(IntTy, 0); 4655 for (unsigned I = First; I < NumArgs; ++I) { 4656 auto *Index = llvm::ConstantInt::get(IntTy, I - First); 4657 auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index}); 4658 if (I == First) 4659 ElemPtr = GEP; 4660 auto *V = 4661 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); 4662 Builder.CreateAlignedStore( 4663 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy)); 4664 } 4665 return std::tie(ElemPtr, TmpSize, TmpPtr); 4666 }; 4667 4668 // Could have events and/or varargs. 4669 if (E->getArg(3)->getType()->isBlockPointerType()) { 4670 // No events passed, but has variadic arguments. 4671 Name = "__enqueue_kernel_varargs"; 4672 auto Info = 4673 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 4674 llvm::Value *Kernel = 4675 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4676 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4677 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 4678 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); 4679 4680 // Create a vector of the arguments, as well as a constant value to 4681 // express to the runtime the number of variadic arguments. 4682 llvm::Value *const Args[] = {Queue, Flags, 4683 Range, Kernel, 4684 Block, ConstantInt::get(IntTy, NumArgs - 4), 4685 ElemPtr}; 4686 llvm::Type *const ArgTys[] = { 4687 QueueTy, IntTy, RangeTy, GenericVoidPtrTy, 4688 GenericVoidPtrTy, IntTy, ElemPtr->getType()}; 4689 4690 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false); 4691 auto Call = RValue::get( 4692 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args)); 4693 if (TmpSize) 4694 EmitLifetimeEnd(TmpSize, TmpPtr); 4695 return Call; 4696 } 4697 // Any calls now have event arguments passed. 4698 if (NumArgs >= 7) { 4699 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); 4700 llvm::PointerType *EventPtrTy = EventTy->getPointerTo( 4701 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4702 4703 llvm::Value *NumEvents = 4704 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); 4705 4706 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments 4707 // to be a null pointer constant (including `0` literal), we can take it 4708 // into account and emit null pointer directly. 4709 llvm::Value *EventWaitList = nullptr; 4710 if (E->getArg(4)->isNullPointerConstant( 4711 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 4712 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); 4713 } else { 4714 EventWaitList = E->getArg(4)->getType()->isArrayType() 4715 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() 4716 : EmitScalarExpr(E->getArg(4)); 4717 // Convert to generic address space. 4718 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); 4719 } 4720 llvm::Value *EventRet = nullptr; 4721 if (E->getArg(5)->isNullPointerConstant( 4722 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 4723 EventRet = llvm::ConstantPointerNull::get(EventPtrTy); 4724 } else { 4725 EventRet = 4726 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); 4727 } 4728 4729 auto Info = 4730 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); 4731 llvm::Value *Kernel = 4732 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4733 llvm::Value *Block = 4734 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4735 4736 std::vector<llvm::Type *> ArgTys = { 4737 QueueTy, Int32Ty, RangeTy, Int32Ty, 4738 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; 4739 4740 std::vector<llvm::Value *> Args = {Queue, Flags, Range, 4741 NumEvents, EventWaitList, EventRet, 4742 Kernel, Block}; 4743 4744 if (NumArgs == 7) { 4745 // Has events but no variadics. 4746 Name = "__enqueue_kernel_basic_events"; 4747 llvm::FunctionType *FTy = llvm::FunctionType::get( 4748 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4749 return RValue::get( 4750 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4751 llvm::ArrayRef<llvm::Value *>(Args))); 4752 } 4753 // Has event info and variadics 4754 // Pass the number of variadics to the runtime function too. 4755 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); 4756 ArgTys.push_back(Int32Ty); 4757 Name = "__enqueue_kernel_events_varargs"; 4758 4759 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 4760 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); 4761 Args.push_back(ElemPtr); 4762 ArgTys.push_back(ElemPtr->getType()); 4763 4764 llvm::FunctionType *FTy = llvm::FunctionType::get( 4765 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4766 auto Call = 4767 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4768 llvm::ArrayRef<llvm::Value *>(Args))); 4769 if (TmpSize) 4770 EmitLifetimeEnd(TmpSize, TmpPtr); 4771 return Call; 4772 } 4773 LLVM_FALLTHROUGH; 4774 } 4775 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block 4776 // parameter. 4777 case Builtin::BIget_kernel_work_group_size: { 4778 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4779 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4780 auto Info = 4781 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 4782 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4783 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4784 return RValue::get(EmitRuntimeCall( 4785 CGM.CreateRuntimeFunction( 4786 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 4787 false), 4788 "__get_kernel_work_group_size_impl"), 4789 {Kernel, Arg})); 4790 } 4791 case Builtin::BIget_kernel_preferred_work_group_size_multiple: { 4792 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4793 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4794 auto Info = 4795 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 4796 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4797 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4798 return RValue::get(EmitRuntimeCall( 4799 CGM.CreateRuntimeFunction( 4800 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 4801 false), 4802 "__get_kernel_preferred_work_group_size_multiple_impl"), 4803 {Kernel, Arg})); 4804 } 4805 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 4806 case Builtin::BIget_kernel_sub_group_count_for_ndrange: { 4807 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4808 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4809 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); 4810 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer(); 4811 auto Info = 4812 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); 4813 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4814 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4815 const char *Name = 4816 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange 4817 ? "__get_kernel_max_sub_group_size_for_ndrange_impl" 4818 : "__get_kernel_sub_group_count_for_ndrange_impl"; 4819 return RValue::get(EmitRuntimeCall( 4820 CGM.CreateRuntimeFunction( 4821 llvm::FunctionType::get( 4822 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, 4823 false), 4824 Name), 4825 {NDRange, Kernel, Block})); 4826 } 4827 4828 case Builtin::BI__builtin_store_half: 4829 case Builtin::BI__builtin_store_halff: { 4830 Value *Val = EmitScalarExpr(E->getArg(0)); 4831 Address Address = EmitPointerWithAlignment(E->getArg(1)); 4832 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); 4833 return RValue::get(Builder.CreateStore(HalfVal, Address)); 4834 } 4835 case Builtin::BI__builtin_load_half: { 4836 Address Address = EmitPointerWithAlignment(E->getArg(0)); 4837 Value *HalfVal = Builder.CreateLoad(Address); 4838 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); 4839 } 4840 case Builtin::BI__builtin_load_halff: { 4841 Address Address = EmitPointerWithAlignment(E->getArg(0)); 4842 Value *HalfVal = Builder.CreateLoad(Address); 4843 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); 4844 } 4845 case Builtin::BIprintf: 4846 if (getTarget().getTriple().isNVPTX()) 4847 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue); 4848 if (getTarget().getTriple().getArch() == Triple::amdgcn && 4849 getLangOpts().HIP) 4850 return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue); 4851 break; 4852 case Builtin::BI__builtin_canonicalize: 4853 case Builtin::BI__builtin_canonicalizef: 4854 case Builtin::BI__builtin_canonicalizef16: 4855 case Builtin::BI__builtin_canonicalizel: 4856 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); 4857 4858 case Builtin::BI__builtin_thread_pointer: { 4859 if (!getContext().getTargetInfo().isTLSSupported()) 4860 CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); 4861 // Fall through - it's already mapped to the intrinsic by GCCBuiltin. 4862 break; 4863 } 4864 case Builtin::BI__builtin_os_log_format: 4865 return emitBuiltinOSLogFormat(*E); 4866 4867 case Builtin::BI__xray_customevent: { 4868 if (!ShouldXRayInstrumentFunction()) 4869 return RValue::getIgnored(); 4870 4871 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 4872 XRayInstrKind::Custom)) 4873 return RValue::getIgnored(); 4874 4875 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 4876 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) 4877 return RValue::getIgnored(); 4878 4879 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); 4880 auto FTy = F->getFunctionType(); 4881 auto Arg0 = E->getArg(0); 4882 auto Arg0Val = EmitScalarExpr(Arg0); 4883 auto Arg0Ty = Arg0->getType(); 4884 auto PTy0 = FTy->getParamType(0); 4885 if (PTy0 != Arg0Val->getType()) { 4886 if (Arg0Ty->isArrayType()) 4887 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); 4888 else 4889 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); 4890 } 4891 auto Arg1 = EmitScalarExpr(E->getArg(1)); 4892 auto PTy1 = FTy->getParamType(1); 4893 if (PTy1 != Arg1->getType()) 4894 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); 4895 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); 4896 } 4897 4898 case Builtin::BI__xray_typedevent: { 4899 // TODO: There should be a way to always emit events even if the current 4900 // function is not instrumented. Losing events in a stream can cripple 4901 // a trace. 4902 if (!ShouldXRayInstrumentFunction()) 4903 return RValue::getIgnored(); 4904 4905 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 4906 XRayInstrKind::Typed)) 4907 return RValue::getIgnored(); 4908 4909 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 4910 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) 4911 return RValue::getIgnored(); 4912 4913 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); 4914 auto FTy = F->getFunctionType(); 4915 auto Arg0 = EmitScalarExpr(E->getArg(0)); 4916 auto PTy0 = FTy->getParamType(0); 4917 if (PTy0 != Arg0->getType()) 4918 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); 4919 auto Arg1 = E->getArg(1); 4920 auto Arg1Val = EmitScalarExpr(Arg1); 4921 auto Arg1Ty = Arg1->getType(); 4922 auto PTy1 = FTy->getParamType(1); 4923 if (PTy1 != Arg1Val->getType()) { 4924 if (Arg1Ty->isArrayType()) 4925 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); 4926 else 4927 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); 4928 } 4929 auto Arg2 = EmitScalarExpr(E->getArg(2)); 4930 auto PTy2 = FTy->getParamType(2); 4931 if (PTy2 != Arg2->getType()) 4932 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); 4933 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); 4934 } 4935 4936 case Builtin::BI__builtin_ms_va_start: 4937 case Builtin::BI__builtin_ms_va_end: 4938 return RValue::get( 4939 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), 4940 BuiltinID == Builtin::BI__builtin_ms_va_start)); 4941 4942 case Builtin::BI__builtin_ms_va_copy: { 4943 // Lower this manually. We can't reliably determine whether or not any 4944 // given va_copy() is for a Win64 va_list from the calling convention 4945 // alone, because it's legal to do this from a System V ABI function. 4946 // With opaque pointer types, we won't have enough information in LLVM 4947 // IR to determine this from the argument types, either. Best to do it 4948 // now, while we have enough information. 4949 Address DestAddr = EmitMSVAListRef(E->getArg(0)); 4950 Address SrcAddr = EmitMSVAListRef(E->getArg(1)); 4951 4952 llvm::Type *BPP = Int8PtrPtrTy; 4953 4954 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), 4955 DestAddr.getAlignment()); 4956 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), 4957 SrcAddr.getAlignment()); 4958 4959 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); 4960 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); 4961 } 4962 } 4963 4964 // If this is an alias for a lib function (e.g. __builtin_sin), emit 4965 // the call using the normal call path, but using the unmangled 4966 // version of the function name. 4967 if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) 4968 return emitLibraryCall(*this, FD, E, 4969 CGM.getBuiltinLibFunction(FD, BuiltinID)); 4970 4971 // If this is a predefined lib function (e.g. malloc), emit the call 4972 // using exactly the normal call path. 4973 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 4974 return emitLibraryCall(*this, FD, E, 4975 cast<llvm::Constant>(EmitScalarExpr(E->getCallee()))); 4976 4977 // Check that a call to a target specific builtin has the correct target 4978 // features. 4979 // This is down here to avoid non-target specific builtins, however, if 4980 // generic builtins start to require generic target features then we 4981 // can move this up to the beginning of the function. 4982 checkTargetFeatures(E, FD); 4983 4984 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) 4985 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); 4986 4987 // See if we have a target specific intrinsic. 4988 const char *Name = getContext().BuiltinInfo.getName(BuiltinID); 4989 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; 4990 StringRef Prefix = 4991 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); 4992 if (!Prefix.empty()) { 4993 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); 4994 // NOTE we don't need to perform a compatibility flag check here since the 4995 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the 4996 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. 4997 if (IntrinsicID == Intrinsic::not_intrinsic) 4998 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); 4999 } 5000 5001 if (IntrinsicID != Intrinsic::not_intrinsic) { 5002 SmallVector<Value*, 16> Args; 5003 5004 // Find out if any arguments are required to be integer constant 5005 // expressions. 5006 unsigned ICEArguments = 0; 5007 ASTContext::GetBuiltinTypeError Error; 5008 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 5009 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 5010 5011 Function *F = CGM.getIntrinsic(IntrinsicID); 5012 llvm::FunctionType *FTy = F->getFunctionType(); 5013 5014 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { 5015 Value *ArgValue; 5016 // If this is a normal argument, just emit it as a scalar. 5017 if ((ICEArguments & (1 << i)) == 0) { 5018 ArgValue = EmitScalarExpr(E->getArg(i)); 5019 } else { 5020 // If this is required to be a constant, constant fold it so that we 5021 // know that the generated intrinsic gets a ConstantInt. 5022 ArgValue = llvm::ConstantInt::get( 5023 getLLVMContext(), 5024 *E->getArg(i)->getIntegerConstantExpr(getContext())); 5025 } 5026 5027 // If the intrinsic arg type is different from the builtin arg type 5028 // we need to do a bit cast. 5029 llvm::Type *PTy = FTy->getParamType(i); 5030 if (PTy != ArgValue->getType()) { 5031 // XXX - vector of pointers? 5032 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) { 5033 if (PtrTy->getAddressSpace() != 5034 ArgValue->getType()->getPointerAddressSpace()) { 5035 ArgValue = Builder.CreateAddrSpaceCast( 5036 ArgValue, 5037 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace())); 5038 } 5039 } 5040 5041 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && 5042 "Must be able to losslessly bit cast to param"); 5043 ArgValue = Builder.CreateBitCast(ArgValue, PTy); 5044 } 5045 5046 Args.push_back(ArgValue); 5047 } 5048 5049 Value *V = Builder.CreateCall(F, Args); 5050 QualType BuiltinRetType = E->getType(); 5051 5052 llvm::Type *RetTy = VoidTy; 5053 if (!BuiltinRetType->isVoidType()) 5054 RetTy = ConvertType(BuiltinRetType); 5055 5056 if (RetTy != V->getType()) { 5057 // XXX - vector of pointers? 5058 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) { 5059 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { 5060 V = Builder.CreateAddrSpaceCast( 5061 V, V->getType()->getPointerTo(PtrTy->getAddressSpace())); 5062 } 5063 } 5064 5065 assert(V->getType()->canLosslesslyBitCastTo(RetTy) && 5066 "Must be able to losslessly bit cast result type"); 5067 V = Builder.CreateBitCast(V, RetTy); 5068 } 5069 5070 return RValue::get(V); 5071 } 5072 5073 // Some target-specific builtins can have aggregate return values, e.g. 5074 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force 5075 // ReturnValue to be non-null, so that the target-specific emission code can 5076 // always just emit into it. 5077 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType()); 5078 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) { 5079 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp"); 5080 ReturnValue = ReturnValueSlot(DestPtr, false); 5081 } 5082 5083 // Now see if we can emit a target-specific builtin. 5084 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) { 5085 switch (EvalKind) { 5086 case TEK_Scalar: 5087 return RValue::get(V); 5088 case TEK_Aggregate: 5089 return RValue::getAggregate(ReturnValue.getValue(), 5090 ReturnValue.isVolatile()); 5091 case TEK_Complex: 5092 llvm_unreachable("No current target builtin returns complex"); 5093 } 5094 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr"); 5095 } 5096 5097 ErrorUnsupported(E, "builtin function"); 5098 5099 // Unknown builtin, for now just dump it out and return undef. 5100 return GetUndefRValue(E->getType()); 5101 } 5102 5103 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, 5104 unsigned BuiltinID, const CallExpr *E, 5105 ReturnValueSlot ReturnValue, 5106 llvm::Triple::ArchType Arch) { 5107 switch (Arch) { 5108 case llvm::Triple::arm: 5109 case llvm::Triple::armeb: 5110 case llvm::Triple::thumb: 5111 case llvm::Triple::thumbeb: 5112 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); 5113 case llvm::Triple::aarch64: 5114 case llvm::Triple::aarch64_32: 5115 case llvm::Triple::aarch64_be: 5116 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); 5117 case llvm::Triple::bpfeb: 5118 case llvm::Triple::bpfel: 5119 return CGF->EmitBPFBuiltinExpr(BuiltinID, E); 5120 case llvm::Triple::x86: 5121 case llvm::Triple::x86_64: 5122 return CGF->EmitX86BuiltinExpr(BuiltinID, E); 5123 case llvm::Triple::ppc: 5124 case llvm::Triple::ppcle: 5125 case llvm::Triple::ppc64: 5126 case llvm::Triple::ppc64le: 5127 return CGF->EmitPPCBuiltinExpr(BuiltinID, E); 5128 case llvm::Triple::r600: 5129 case llvm::Triple::amdgcn: 5130 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); 5131 case llvm::Triple::systemz: 5132 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); 5133 case llvm::Triple::nvptx: 5134 case llvm::Triple::nvptx64: 5135 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); 5136 case llvm::Triple::wasm32: 5137 case llvm::Triple::wasm64: 5138 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); 5139 case llvm::Triple::hexagon: 5140 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); 5141 default: 5142 return nullptr; 5143 } 5144 } 5145 5146 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, 5147 const CallExpr *E, 5148 ReturnValueSlot ReturnValue) { 5149 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 5150 assert(getContext().getAuxTargetInfo() && "Missing aux target info"); 5151 return EmitTargetArchBuiltinExpr( 5152 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, 5153 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); 5154 } 5155 5156 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, 5157 getTarget().getTriple().getArch()); 5158 } 5159 5160 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF, 5161 NeonTypeFlags TypeFlags, 5162 bool HasLegalHalfType = true, 5163 bool V1Ty = false, 5164 bool AllowBFloatArgsAndRet = true) { 5165 int IsQuad = TypeFlags.isQuad(); 5166 switch (TypeFlags.getEltType()) { 5167 case NeonTypeFlags::Int8: 5168 case NeonTypeFlags::Poly8: 5169 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); 5170 case NeonTypeFlags::Int16: 5171 case NeonTypeFlags::Poly16: 5172 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5173 case NeonTypeFlags::BFloat16: 5174 if (AllowBFloatArgsAndRet) 5175 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad)); 5176 else 5177 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5178 case NeonTypeFlags::Float16: 5179 if (HasLegalHalfType) 5180 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); 5181 else 5182 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5183 case NeonTypeFlags::Int32: 5184 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); 5185 case NeonTypeFlags::Int64: 5186 case NeonTypeFlags::Poly64: 5187 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); 5188 case NeonTypeFlags::Poly128: 5189 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. 5190 // There is a lot of i128 and f128 API missing. 5191 // so we use v16i8 to represent poly128 and get pattern matched. 5192 return llvm::FixedVectorType::get(CGF->Int8Ty, 16); 5193 case NeonTypeFlags::Float32: 5194 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); 5195 case NeonTypeFlags::Float64: 5196 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); 5197 } 5198 llvm_unreachable("Unknown vector element type!"); 5199 } 5200 5201 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, 5202 NeonTypeFlags IntTypeFlags) { 5203 int IsQuad = IntTypeFlags.isQuad(); 5204 switch (IntTypeFlags.getEltType()) { 5205 case NeonTypeFlags::Int16: 5206 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad)); 5207 case NeonTypeFlags::Int32: 5208 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad)); 5209 case NeonTypeFlags::Int64: 5210 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad)); 5211 default: 5212 llvm_unreachable("Type can't be converted to floating-point!"); 5213 } 5214 } 5215 5216 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C, 5217 const ElementCount &Count) { 5218 Value *SV = llvm::ConstantVector::getSplat(Count, C); 5219 return Builder.CreateShuffleVector(V, V, SV, "lane"); 5220 } 5221 5222 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { 5223 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount(); 5224 return EmitNeonSplat(V, C, EC); 5225 } 5226 5227 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, 5228 const char *name, 5229 unsigned shift, bool rightshift) { 5230 unsigned j = 0; 5231 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 5232 ai != ae; ++ai, ++j) { 5233 if (F->isConstrainedFPIntrinsic()) 5234 if (ai->getType()->isMetadataTy()) 5235 continue; 5236 if (shift > 0 && shift == j) 5237 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); 5238 else 5239 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); 5240 } 5241 5242 if (F->isConstrainedFPIntrinsic()) 5243 return Builder.CreateConstrainedFPCall(F, Ops, name); 5244 else 5245 return Builder.CreateCall(F, Ops, name); 5246 } 5247 5248 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, 5249 bool neg) { 5250 int SV = cast<ConstantInt>(V)->getSExtValue(); 5251 return ConstantInt::get(Ty, neg ? -SV : SV); 5252 } 5253 5254 // Right-shift a vector by a constant. 5255 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, 5256 llvm::Type *Ty, bool usgn, 5257 const char *name) { 5258 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); 5259 5260 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); 5261 int EltSize = VTy->getScalarSizeInBits(); 5262 5263 Vec = Builder.CreateBitCast(Vec, Ty); 5264 5265 // lshr/ashr are undefined when the shift amount is equal to the vector 5266 // element size. 5267 if (ShiftAmt == EltSize) { 5268 if (usgn) { 5269 // Right-shifting an unsigned value by its size yields 0. 5270 return llvm::ConstantAggregateZero::get(VTy); 5271 } else { 5272 // Right-shifting a signed value by its size is equivalent 5273 // to a shift of size-1. 5274 --ShiftAmt; 5275 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); 5276 } 5277 } 5278 5279 Shift = EmitNeonShiftVector(Shift, Ty, false); 5280 if (usgn) 5281 return Builder.CreateLShr(Vec, Shift, name); 5282 else 5283 return Builder.CreateAShr(Vec, Shift, name); 5284 } 5285 5286 enum { 5287 AddRetType = (1 << 0), 5288 Add1ArgType = (1 << 1), 5289 Add2ArgTypes = (1 << 2), 5290 5291 VectorizeRetType = (1 << 3), 5292 VectorizeArgTypes = (1 << 4), 5293 5294 InventFloatType = (1 << 5), 5295 UnsignedAlts = (1 << 6), 5296 5297 Use64BitVectors = (1 << 7), 5298 Use128BitVectors = (1 << 8), 5299 5300 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, 5301 VectorRet = AddRetType | VectorizeRetType, 5302 VectorRetGetArgs01 = 5303 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, 5304 FpCmpzModifiers = 5305 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType 5306 }; 5307 5308 namespace { 5309 struct ARMVectorIntrinsicInfo { 5310 const char *NameHint; 5311 unsigned BuiltinID; 5312 unsigned LLVMIntrinsic; 5313 unsigned AltLLVMIntrinsic; 5314 uint64_t TypeModifier; 5315 5316 bool operator<(unsigned RHSBuiltinID) const { 5317 return BuiltinID < RHSBuiltinID; 5318 } 5319 bool operator<(const ARMVectorIntrinsicInfo &TE) const { 5320 return BuiltinID < TE.BuiltinID; 5321 } 5322 }; 5323 } // end anonymous namespace 5324 5325 #define NEONMAP0(NameBase) \ 5326 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } 5327 5328 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 5329 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 5330 Intrinsic::LLVMIntrinsic, 0, TypeModifier } 5331 5332 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ 5333 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 5334 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ 5335 TypeModifier } 5336 5337 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = { 5338 NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0), 5339 NEONMAP0(splat_lane_v), 5340 NEONMAP0(splat_laneq_v), 5341 NEONMAP0(splatq_lane_v), 5342 NEONMAP0(splatq_laneq_v), 5343 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 5344 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 5345 NEONMAP1(vabs_v, arm_neon_vabs, 0), 5346 NEONMAP1(vabsq_v, arm_neon_vabs, 0), 5347 NEONMAP0(vaddhn_v), 5348 NEONMAP1(vaesdq_v, arm_neon_aesd, 0), 5349 NEONMAP1(vaeseq_v, arm_neon_aese, 0), 5350 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), 5351 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), 5352 NEONMAP1(vbfdot_v, arm_neon_bfdot, 0), 5353 NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0), 5354 NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0), 5355 NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0), 5356 NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0), 5357 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), 5358 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), 5359 NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), 5360 NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), 5361 NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), 5362 NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), 5363 NEONMAP1(vcage_v, arm_neon_vacge, 0), 5364 NEONMAP1(vcageq_v, arm_neon_vacge, 0), 5365 NEONMAP1(vcagt_v, arm_neon_vacgt, 0), 5366 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), 5367 NEONMAP1(vcale_v, arm_neon_vacge, 0), 5368 NEONMAP1(vcaleq_v, arm_neon_vacge, 0), 5369 NEONMAP1(vcalt_v, arm_neon_vacgt, 0), 5370 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), 5371 NEONMAP0(vceqz_v), 5372 NEONMAP0(vceqzq_v), 5373 NEONMAP0(vcgez_v), 5374 NEONMAP0(vcgezq_v), 5375 NEONMAP0(vcgtz_v), 5376 NEONMAP0(vcgtzq_v), 5377 NEONMAP0(vclez_v), 5378 NEONMAP0(vclezq_v), 5379 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), 5380 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), 5381 NEONMAP0(vcltz_v), 5382 NEONMAP0(vcltzq_v), 5383 NEONMAP1(vclz_v, ctlz, Add1ArgType), 5384 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 5385 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 5386 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 5387 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), 5388 NEONMAP0(vcvt_f16_v), 5389 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), 5390 NEONMAP0(vcvt_f32_v), 5391 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5392 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5393 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), 5394 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), 5395 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), 5396 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), 5397 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), 5398 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), 5399 NEONMAP0(vcvt_s16_v), 5400 NEONMAP0(vcvt_s32_v), 5401 NEONMAP0(vcvt_s64_v), 5402 NEONMAP0(vcvt_u16_v), 5403 NEONMAP0(vcvt_u32_v), 5404 NEONMAP0(vcvt_u64_v), 5405 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), 5406 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), 5407 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), 5408 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), 5409 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), 5410 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), 5411 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), 5412 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), 5413 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), 5414 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), 5415 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), 5416 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), 5417 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0), 5418 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), 5419 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), 5420 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), 5421 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), 5422 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), 5423 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), 5424 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), 5425 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), 5426 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), 5427 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), 5428 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), 5429 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), 5430 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), 5431 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), 5432 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), 5433 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), 5434 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), 5435 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), 5436 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), 5437 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), 5438 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), 5439 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), 5440 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), 5441 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), 5442 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), 5443 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), 5444 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), 5445 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), 5446 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), 5447 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), 5448 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), 5449 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), 5450 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), 5451 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), 5452 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), 5453 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), 5454 NEONMAP0(vcvtq_f16_v), 5455 NEONMAP0(vcvtq_f32_v), 5456 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5457 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5458 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), 5459 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), 5460 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), 5461 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), 5462 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), 5463 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), 5464 NEONMAP0(vcvtq_s16_v), 5465 NEONMAP0(vcvtq_s32_v), 5466 NEONMAP0(vcvtq_s64_v), 5467 NEONMAP0(vcvtq_u16_v), 5468 NEONMAP0(vcvtq_u32_v), 5469 NEONMAP0(vcvtq_u64_v), 5470 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), 5471 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), 5472 NEONMAP0(vext_v), 5473 NEONMAP0(vextq_v), 5474 NEONMAP0(vfma_v), 5475 NEONMAP0(vfmaq_v), 5476 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 5477 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 5478 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 5479 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 5480 NEONMAP0(vld1_dup_v), 5481 NEONMAP1(vld1_v, arm_neon_vld1, 0), 5482 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), 5483 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), 5484 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), 5485 NEONMAP0(vld1q_dup_v), 5486 NEONMAP1(vld1q_v, arm_neon_vld1, 0), 5487 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), 5488 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), 5489 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), 5490 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), 5491 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), 5492 NEONMAP1(vld2_v, arm_neon_vld2, 0), 5493 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), 5494 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), 5495 NEONMAP1(vld2q_v, arm_neon_vld2, 0), 5496 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), 5497 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), 5498 NEONMAP1(vld3_v, arm_neon_vld3, 0), 5499 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), 5500 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), 5501 NEONMAP1(vld3q_v, arm_neon_vld3, 0), 5502 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), 5503 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), 5504 NEONMAP1(vld4_v, arm_neon_vld4, 0), 5505 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), 5506 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), 5507 NEONMAP1(vld4q_v, arm_neon_vld4, 0), 5508 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 5509 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), 5510 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), 5511 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 5512 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 5513 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), 5514 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), 5515 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 5516 NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0), 5517 NEONMAP0(vmovl_v), 5518 NEONMAP0(vmovn_v), 5519 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), 5520 NEONMAP0(vmull_v), 5521 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), 5522 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 5523 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 5524 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), 5525 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 5526 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 5527 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), 5528 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), 5529 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), 5530 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), 5531 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), 5532 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), 5533 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), 5534 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0), 5535 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0), 5536 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), 5537 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), 5538 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), 5539 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), 5540 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), 5541 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), 5542 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), 5543 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), 5544 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), 5545 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 5546 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 5547 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 5548 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 5549 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 5550 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 5551 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), 5552 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), 5553 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), 5554 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), 5555 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), 5556 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 5557 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 5558 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), 5559 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), 5560 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 5561 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 5562 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), 5563 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), 5564 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), 5565 NEONMAP0(vrndi_v), 5566 NEONMAP0(vrndiq_v), 5567 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), 5568 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), 5569 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), 5570 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), 5571 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), 5572 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), 5573 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), 5574 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), 5575 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), 5576 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 5577 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 5578 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 5579 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 5580 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 5581 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 5582 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), 5583 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), 5584 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), 5585 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), 5586 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), 5587 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), 5588 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), 5589 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), 5590 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), 5591 NEONMAP0(vshl_n_v), 5592 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 5593 NEONMAP0(vshll_n_v), 5594 NEONMAP0(vshlq_n_v), 5595 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 5596 NEONMAP0(vshr_n_v), 5597 NEONMAP0(vshrn_n_v), 5598 NEONMAP0(vshrq_n_v), 5599 NEONMAP1(vst1_v, arm_neon_vst1, 0), 5600 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), 5601 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), 5602 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), 5603 NEONMAP1(vst1q_v, arm_neon_vst1, 0), 5604 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), 5605 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), 5606 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), 5607 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), 5608 NEONMAP1(vst2_v, arm_neon_vst2, 0), 5609 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), 5610 NEONMAP1(vst2q_v, arm_neon_vst2, 0), 5611 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), 5612 NEONMAP1(vst3_v, arm_neon_vst3, 0), 5613 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), 5614 NEONMAP1(vst3q_v, arm_neon_vst3, 0), 5615 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), 5616 NEONMAP1(vst4_v, arm_neon_vst4, 0), 5617 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), 5618 NEONMAP1(vst4q_v, arm_neon_vst4, 0), 5619 NEONMAP0(vsubhn_v), 5620 NEONMAP0(vtrn_v), 5621 NEONMAP0(vtrnq_v), 5622 NEONMAP0(vtst_v), 5623 NEONMAP0(vtstq_v), 5624 NEONMAP1(vusdot_v, arm_neon_usdot, 0), 5625 NEONMAP1(vusdotq_v, arm_neon_usdot, 0), 5626 NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0), 5627 NEONMAP0(vuzp_v), 5628 NEONMAP0(vuzpq_v), 5629 NEONMAP0(vzip_v), 5630 NEONMAP0(vzipq_v) 5631 }; 5632 5633 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = { 5634 NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0), 5635 NEONMAP0(splat_lane_v), 5636 NEONMAP0(splat_laneq_v), 5637 NEONMAP0(splatq_lane_v), 5638 NEONMAP0(splatq_laneq_v), 5639 NEONMAP1(vabs_v, aarch64_neon_abs, 0), 5640 NEONMAP1(vabsq_v, aarch64_neon_abs, 0), 5641 NEONMAP0(vaddhn_v), 5642 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), 5643 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), 5644 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), 5645 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), 5646 NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0), 5647 NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0), 5648 NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0), 5649 NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0), 5650 NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0), 5651 NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), 5652 NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), 5653 NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), 5654 NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), 5655 NEONMAP1(vcage_v, aarch64_neon_facge, 0), 5656 NEONMAP1(vcageq_v, aarch64_neon_facge, 0), 5657 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), 5658 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), 5659 NEONMAP1(vcale_v, aarch64_neon_facge, 0), 5660 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), 5661 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), 5662 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), 5663 NEONMAP0(vceqz_v), 5664 NEONMAP0(vceqzq_v), 5665 NEONMAP0(vcgez_v), 5666 NEONMAP0(vcgezq_v), 5667 NEONMAP0(vcgtz_v), 5668 NEONMAP0(vcgtzq_v), 5669 NEONMAP0(vclez_v), 5670 NEONMAP0(vclezq_v), 5671 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), 5672 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), 5673 NEONMAP0(vcltz_v), 5674 NEONMAP0(vcltzq_v), 5675 NEONMAP1(vclz_v, ctlz, Add1ArgType), 5676 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 5677 NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), 5678 NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), 5679 NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), 5680 NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType), 5681 NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), 5682 NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), 5683 NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), 5684 NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType), 5685 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 5686 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 5687 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), 5688 NEONMAP0(vcvt_f16_v), 5689 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), 5690 NEONMAP0(vcvt_f32_v), 5691 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5692 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5693 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5694 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 5695 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 5696 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 5697 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 5698 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 5699 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 5700 NEONMAP0(vcvtq_f16_v), 5701 NEONMAP0(vcvtq_f32_v), 5702 NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0), 5703 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5704 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5705 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5706 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 5707 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 5708 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 5709 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 5710 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 5711 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 5712 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), 5713 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 5714 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 5715 NEONMAP0(vext_v), 5716 NEONMAP0(vextq_v), 5717 NEONMAP0(vfma_v), 5718 NEONMAP0(vfmaq_v), 5719 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0), 5720 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0), 5721 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0), 5722 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0), 5723 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0), 5724 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0), 5725 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0), 5726 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0), 5727 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 5728 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 5729 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 5730 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 5731 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), 5732 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), 5733 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), 5734 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), 5735 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), 5736 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), 5737 NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0), 5738 NEONMAP0(vmovl_v), 5739 NEONMAP0(vmovn_v), 5740 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), 5741 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), 5742 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), 5743 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 5744 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 5745 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), 5746 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), 5747 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), 5748 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 5749 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 5750 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), 5751 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), 5752 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0), 5753 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0), 5754 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), 5755 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0), 5756 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0), 5757 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), 5758 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), 5759 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), 5760 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), 5761 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), 5762 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), 5763 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0), 5764 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), 5765 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), 5766 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0), 5767 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), 5768 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), 5769 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 5770 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 5771 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), 5772 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 5773 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), 5774 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 5775 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), 5776 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), 5777 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 5778 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 5779 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), 5780 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 5781 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 5782 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), 5783 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), 5784 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 5785 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 5786 NEONMAP0(vrndi_v), 5787 NEONMAP0(vrndiq_v), 5788 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 5789 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 5790 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 5791 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 5792 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 5793 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 5794 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), 5795 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), 5796 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), 5797 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), 5798 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), 5799 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), 5800 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), 5801 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), 5802 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), 5803 NEONMAP0(vshl_n_v), 5804 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 5805 NEONMAP0(vshll_n_v), 5806 NEONMAP0(vshlq_n_v), 5807 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 5808 NEONMAP0(vshr_n_v), 5809 NEONMAP0(vshrn_n_v), 5810 NEONMAP0(vshrq_n_v), 5811 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), 5812 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), 5813 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), 5814 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), 5815 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), 5816 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), 5817 NEONMAP0(vsubhn_v), 5818 NEONMAP0(vtst_v), 5819 NEONMAP0(vtstq_v), 5820 NEONMAP1(vusdot_v, aarch64_neon_usdot, 0), 5821 NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0), 5822 NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0), 5823 }; 5824 5825 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = { 5826 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), 5827 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), 5828 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), 5829 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 5830 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 5831 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 5832 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 5833 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 5834 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 5835 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 5836 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 5837 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), 5838 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 5839 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), 5840 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 5841 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 5842 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 5843 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 5844 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 5845 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 5846 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 5847 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 5848 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 5849 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 5850 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 5851 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 5852 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 5853 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 5854 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 5855 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 5856 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 5857 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 5858 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 5859 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 5860 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0), 5861 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 5862 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 5863 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 5864 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 5865 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 5866 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 5867 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 5868 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 5869 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 5870 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 5871 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 5872 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 5873 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 5874 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 5875 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 5876 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 5877 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 5878 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 5879 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), 5880 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 5881 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 5882 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 5883 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 5884 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 5885 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 5886 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 5887 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 5888 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 5889 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 5890 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 5891 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 5892 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 5893 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 5894 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 5895 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 5896 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 5897 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 5898 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 5899 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 5900 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), 5901 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), 5902 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), 5903 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 5904 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 5905 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 5906 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 5907 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 5908 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 5909 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 5910 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 5911 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 5912 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 5913 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 5914 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), 5915 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 5916 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), 5917 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 5918 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 5919 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), 5920 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), 5921 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 5922 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 5923 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), 5924 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), 5925 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), 5926 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), 5927 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), 5928 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), 5929 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), 5930 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), 5931 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 5932 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 5933 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 5934 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 5935 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), 5936 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 5937 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 5938 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 5939 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), 5940 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 5941 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), 5942 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), 5943 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), 5944 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 5945 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 5946 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), 5947 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), 5948 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 5949 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 5950 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), 5951 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), 5952 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), 5953 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), 5954 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 5955 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 5956 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 5957 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 5958 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), 5959 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 5960 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 5961 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 5962 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 5963 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 5964 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 5965 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), 5966 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), 5967 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 5968 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 5969 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 5970 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 5971 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), 5972 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), 5973 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), 5974 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), 5975 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 5976 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 5977 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), 5978 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), 5979 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), 5980 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 5981 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 5982 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 5983 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 5984 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), 5985 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 5986 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 5987 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 5988 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 5989 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), 5990 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), 5991 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 5992 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 5993 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), 5994 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), 5995 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), 5996 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), 5997 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), 5998 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), 5999 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), 6000 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), 6001 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), 6002 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), 6003 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), 6004 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), 6005 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), 6006 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), 6007 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), 6008 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), 6009 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), 6010 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), 6011 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), 6012 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), 6013 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 6014 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), 6015 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 6016 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), 6017 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), 6018 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), 6019 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 6020 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), 6021 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 6022 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), 6023 // FP16 scalar intrinisics go here. 6024 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), 6025 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6026 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6027 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6028 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6029 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6030 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6031 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6032 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6033 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6034 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6035 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6036 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6037 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6038 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6039 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6040 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6041 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6042 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6043 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6044 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6045 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6046 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6047 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6048 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6049 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6050 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6051 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6052 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6053 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), 6054 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), 6055 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), 6056 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), 6057 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), 6058 }; 6059 6060 #undef NEONMAP0 6061 #undef NEONMAP1 6062 #undef NEONMAP2 6063 6064 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 6065 { \ 6066 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \ 6067 TypeModifier \ 6068 } 6069 6070 #define SVEMAP2(NameBase, TypeModifier) \ 6071 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier } 6072 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = { 6073 #define GET_SVE_LLVM_INTRINSIC_MAP 6074 #include "clang/Basic/arm_sve_builtin_cg.inc" 6075 #undef GET_SVE_LLVM_INTRINSIC_MAP 6076 }; 6077 6078 #undef SVEMAP1 6079 #undef SVEMAP2 6080 6081 static bool NEONSIMDIntrinsicsProvenSorted = false; 6082 6083 static bool AArch64SIMDIntrinsicsProvenSorted = false; 6084 static bool AArch64SISDIntrinsicsProvenSorted = false; 6085 static bool AArch64SVEIntrinsicsProvenSorted = false; 6086 6087 static const ARMVectorIntrinsicInfo * 6088 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap, 6089 unsigned BuiltinID, bool &MapProvenSorted) { 6090 6091 #ifndef NDEBUG 6092 if (!MapProvenSorted) { 6093 assert(llvm::is_sorted(IntrinsicMap)); 6094 MapProvenSorted = true; 6095 } 6096 #endif 6097 6098 const ARMVectorIntrinsicInfo *Builtin = 6099 llvm::lower_bound(IntrinsicMap, BuiltinID); 6100 6101 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) 6102 return Builtin; 6103 6104 return nullptr; 6105 } 6106 6107 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 6108 unsigned Modifier, 6109 llvm::Type *ArgType, 6110 const CallExpr *E) { 6111 int VectorSize = 0; 6112 if (Modifier & Use64BitVectors) 6113 VectorSize = 64; 6114 else if (Modifier & Use128BitVectors) 6115 VectorSize = 128; 6116 6117 // Return type. 6118 SmallVector<llvm::Type *, 3> Tys; 6119 if (Modifier & AddRetType) { 6120 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 6121 if (Modifier & VectorizeRetType) 6122 Ty = llvm::FixedVectorType::get( 6123 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); 6124 6125 Tys.push_back(Ty); 6126 } 6127 6128 // Arguments. 6129 if (Modifier & VectorizeArgTypes) { 6130 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; 6131 ArgType = llvm::FixedVectorType::get(ArgType, Elts); 6132 } 6133 6134 if (Modifier & (Add1ArgType | Add2ArgTypes)) 6135 Tys.push_back(ArgType); 6136 6137 if (Modifier & Add2ArgTypes) 6138 Tys.push_back(ArgType); 6139 6140 if (Modifier & InventFloatType) 6141 Tys.push_back(FloatTy); 6142 6143 return CGM.getIntrinsic(IntrinsicID, Tys); 6144 } 6145 6146 static Value *EmitCommonNeonSISDBuiltinExpr( 6147 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo, 6148 SmallVectorImpl<Value *> &Ops, const CallExpr *E) { 6149 unsigned BuiltinID = SISDInfo.BuiltinID; 6150 unsigned int Int = SISDInfo.LLVMIntrinsic; 6151 unsigned Modifier = SISDInfo.TypeModifier; 6152 const char *s = SISDInfo.NameHint; 6153 6154 switch (BuiltinID) { 6155 case NEON::BI__builtin_neon_vcled_s64: 6156 case NEON::BI__builtin_neon_vcled_u64: 6157 case NEON::BI__builtin_neon_vcles_f32: 6158 case NEON::BI__builtin_neon_vcled_f64: 6159 case NEON::BI__builtin_neon_vcltd_s64: 6160 case NEON::BI__builtin_neon_vcltd_u64: 6161 case NEON::BI__builtin_neon_vclts_f32: 6162 case NEON::BI__builtin_neon_vcltd_f64: 6163 case NEON::BI__builtin_neon_vcales_f32: 6164 case NEON::BI__builtin_neon_vcaled_f64: 6165 case NEON::BI__builtin_neon_vcalts_f32: 6166 case NEON::BI__builtin_neon_vcaltd_f64: 6167 // Only one direction of comparisons actually exist, cmle is actually a cmge 6168 // with swapped operands. The table gives us the right intrinsic but we 6169 // still need to do the swap. 6170 std::swap(Ops[0], Ops[1]); 6171 break; 6172 } 6173 6174 assert(Int && "Generic code assumes a valid intrinsic"); 6175 6176 // Determine the type(s) of this overloaded AArch64 intrinsic. 6177 const Expr *Arg = E->getArg(0); 6178 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); 6179 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); 6180 6181 int j = 0; 6182 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); 6183 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 6184 ai != ae; ++ai, ++j) { 6185 llvm::Type *ArgTy = ai->getType(); 6186 if (Ops[j]->getType()->getPrimitiveSizeInBits() == 6187 ArgTy->getPrimitiveSizeInBits()) 6188 continue; 6189 6190 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); 6191 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate 6192 // it before inserting. 6193 Ops[j] = CGF.Builder.CreateTruncOrBitCast( 6194 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType()); 6195 Ops[j] = 6196 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); 6197 } 6198 6199 Value *Result = CGF.EmitNeonCall(F, Ops, s); 6200 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 6201 if (ResultType->getPrimitiveSizeInBits().getFixedSize() < 6202 Result->getType()->getPrimitiveSizeInBits().getFixedSize()) 6203 return CGF.Builder.CreateExtractElement(Result, C0); 6204 6205 return CGF.Builder.CreateBitCast(Result, ResultType, s); 6206 } 6207 6208 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( 6209 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, 6210 const char *NameHint, unsigned Modifier, const CallExpr *E, 6211 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1, 6212 llvm::Triple::ArchType Arch) { 6213 // Get the last argument, which specifies the vector type. 6214 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 6215 Optional<llvm::APSInt> NeonTypeConst = 6216 Arg->getIntegerConstantExpr(getContext()); 6217 if (!NeonTypeConst) 6218 return nullptr; 6219 6220 // Determine the type of this overloaded NEON intrinsic. 6221 NeonTypeFlags Type(NeonTypeConst->getZExtValue()); 6222 bool Usgn = Type.isUnsigned(); 6223 bool Quad = Type.isQuad(); 6224 const bool HasLegalHalfType = getTarget().hasLegalHalfType(); 6225 const bool AllowBFloatArgsAndRet = 6226 getTargetHooks().getABIInfo().allowBFloatArgsAndRet(); 6227 6228 llvm::FixedVectorType *VTy = 6229 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet); 6230 llvm::Type *Ty = VTy; 6231 if (!Ty) 6232 return nullptr; 6233 6234 auto getAlignmentValue32 = [&](Address addr) -> Value* { 6235 return Builder.getInt32(addr.getAlignment().getQuantity()); 6236 }; 6237 6238 unsigned Int = LLVMIntrinsic; 6239 if ((Modifier & UnsignedAlts) && !Usgn) 6240 Int = AltLLVMIntrinsic; 6241 6242 switch (BuiltinID) { 6243 default: break; 6244 case NEON::BI__builtin_neon_splat_lane_v: 6245 case NEON::BI__builtin_neon_splat_laneq_v: 6246 case NEON::BI__builtin_neon_splatq_lane_v: 6247 case NEON::BI__builtin_neon_splatq_laneq_v: { 6248 auto NumElements = VTy->getElementCount(); 6249 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v) 6250 NumElements = NumElements * 2; 6251 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v) 6252 NumElements = NumElements.divideCoefficientBy(2); 6253 6254 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 6255 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements); 6256 } 6257 case NEON::BI__builtin_neon_vpadd_v: 6258 case NEON::BI__builtin_neon_vpaddq_v: 6259 // We don't allow fp/int overloading of intrinsics. 6260 if (VTy->getElementType()->isFloatingPointTy() && 6261 Int == Intrinsic::aarch64_neon_addp) 6262 Int = Intrinsic::aarch64_neon_faddp; 6263 break; 6264 case NEON::BI__builtin_neon_vabs_v: 6265 case NEON::BI__builtin_neon_vabsq_v: 6266 if (VTy->getElementType()->isFloatingPointTy()) 6267 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); 6268 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); 6269 case NEON::BI__builtin_neon_vaddhn_v: { 6270 llvm::FixedVectorType *SrcTy = 6271 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6272 6273 // %sum = add <4 x i32> %lhs, %rhs 6274 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6275 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 6276 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); 6277 6278 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 6279 Constant *ShiftAmt = 6280 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 6281 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); 6282 6283 // %res = trunc <4 x i32> %high to <4 x i16> 6284 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); 6285 } 6286 case NEON::BI__builtin_neon_vcale_v: 6287 case NEON::BI__builtin_neon_vcaleq_v: 6288 case NEON::BI__builtin_neon_vcalt_v: 6289 case NEON::BI__builtin_neon_vcaltq_v: 6290 std::swap(Ops[0], Ops[1]); 6291 LLVM_FALLTHROUGH; 6292 case NEON::BI__builtin_neon_vcage_v: 6293 case NEON::BI__builtin_neon_vcageq_v: 6294 case NEON::BI__builtin_neon_vcagt_v: 6295 case NEON::BI__builtin_neon_vcagtq_v: { 6296 llvm::Type *Ty; 6297 switch (VTy->getScalarSizeInBits()) { 6298 default: llvm_unreachable("unexpected type"); 6299 case 32: 6300 Ty = FloatTy; 6301 break; 6302 case 64: 6303 Ty = DoubleTy; 6304 break; 6305 case 16: 6306 Ty = HalfTy; 6307 break; 6308 } 6309 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements()); 6310 llvm::Type *Tys[] = { VTy, VecFlt }; 6311 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6312 return EmitNeonCall(F, Ops, NameHint); 6313 } 6314 case NEON::BI__builtin_neon_vceqz_v: 6315 case NEON::BI__builtin_neon_vceqzq_v: 6316 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, 6317 ICmpInst::ICMP_EQ, "vceqz"); 6318 case NEON::BI__builtin_neon_vcgez_v: 6319 case NEON::BI__builtin_neon_vcgezq_v: 6320 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, 6321 ICmpInst::ICMP_SGE, "vcgez"); 6322 case NEON::BI__builtin_neon_vclez_v: 6323 case NEON::BI__builtin_neon_vclezq_v: 6324 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, 6325 ICmpInst::ICMP_SLE, "vclez"); 6326 case NEON::BI__builtin_neon_vcgtz_v: 6327 case NEON::BI__builtin_neon_vcgtzq_v: 6328 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, 6329 ICmpInst::ICMP_SGT, "vcgtz"); 6330 case NEON::BI__builtin_neon_vcltz_v: 6331 case NEON::BI__builtin_neon_vcltzq_v: 6332 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, 6333 ICmpInst::ICMP_SLT, "vcltz"); 6334 case NEON::BI__builtin_neon_vclz_v: 6335 case NEON::BI__builtin_neon_vclzq_v: 6336 // We generate target-independent intrinsic, which needs a second argument 6337 // for whether or not clz of zero is undefined; on ARM it isn't. 6338 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); 6339 break; 6340 case NEON::BI__builtin_neon_vcvt_f32_v: 6341 case NEON::BI__builtin_neon_vcvtq_f32_v: 6342 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6343 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), 6344 HasLegalHalfType); 6345 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 6346 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 6347 case NEON::BI__builtin_neon_vcvt_f16_v: 6348 case NEON::BI__builtin_neon_vcvtq_f16_v: 6349 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6350 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), 6351 HasLegalHalfType); 6352 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 6353 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 6354 case NEON::BI__builtin_neon_vcvt_n_f16_v: 6355 case NEON::BI__builtin_neon_vcvt_n_f32_v: 6356 case NEON::BI__builtin_neon_vcvt_n_f64_v: 6357 case NEON::BI__builtin_neon_vcvtq_n_f16_v: 6358 case NEON::BI__builtin_neon_vcvtq_n_f32_v: 6359 case NEON::BI__builtin_neon_vcvtq_n_f64_v: { 6360 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; 6361 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 6362 Function *F = CGM.getIntrinsic(Int, Tys); 6363 return EmitNeonCall(F, Ops, "vcvt_n"); 6364 } 6365 case NEON::BI__builtin_neon_vcvt_n_s16_v: 6366 case NEON::BI__builtin_neon_vcvt_n_s32_v: 6367 case NEON::BI__builtin_neon_vcvt_n_u16_v: 6368 case NEON::BI__builtin_neon_vcvt_n_u32_v: 6369 case NEON::BI__builtin_neon_vcvt_n_s64_v: 6370 case NEON::BI__builtin_neon_vcvt_n_u64_v: 6371 case NEON::BI__builtin_neon_vcvtq_n_s16_v: 6372 case NEON::BI__builtin_neon_vcvtq_n_s32_v: 6373 case NEON::BI__builtin_neon_vcvtq_n_u16_v: 6374 case NEON::BI__builtin_neon_vcvtq_n_u32_v: 6375 case NEON::BI__builtin_neon_vcvtq_n_s64_v: 6376 case NEON::BI__builtin_neon_vcvtq_n_u64_v: { 6377 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 6378 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6379 return EmitNeonCall(F, Ops, "vcvt_n"); 6380 } 6381 case NEON::BI__builtin_neon_vcvt_s32_v: 6382 case NEON::BI__builtin_neon_vcvt_u32_v: 6383 case NEON::BI__builtin_neon_vcvt_s64_v: 6384 case NEON::BI__builtin_neon_vcvt_u64_v: 6385 case NEON::BI__builtin_neon_vcvt_s16_v: 6386 case NEON::BI__builtin_neon_vcvt_u16_v: 6387 case NEON::BI__builtin_neon_vcvtq_s32_v: 6388 case NEON::BI__builtin_neon_vcvtq_u32_v: 6389 case NEON::BI__builtin_neon_vcvtq_s64_v: 6390 case NEON::BI__builtin_neon_vcvtq_u64_v: 6391 case NEON::BI__builtin_neon_vcvtq_s16_v: 6392 case NEON::BI__builtin_neon_vcvtq_u16_v: { 6393 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); 6394 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") 6395 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); 6396 } 6397 case NEON::BI__builtin_neon_vcvta_s16_v: 6398 case NEON::BI__builtin_neon_vcvta_s32_v: 6399 case NEON::BI__builtin_neon_vcvta_s64_v: 6400 case NEON::BI__builtin_neon_vcvta_u16_v: 6401 case NEON::BI__builtin_neon_vcvta_u32_v: 6402 case NEON::BI__builtin_neon_vcvta_u64_v: 6403 case NEON::BI__builtin_neon_vcvtaq_s16_v: 6404 case NEON::BI__builtin_neon_vcvtaq_s32_v: 6405 case NEON::BI__builtin_neon_vcvtaq_s64_v: 6406 case NEON::BI__builtin_neon_vcvtaq_u16_v: 6407 case NEON::BI__builtin_neon_vcvtaq_u32_v: 6408 case NEON::BI__builtin_neon_vcvtaq_u64_v: 6409 case NEON::BI__builtin_neon_vcvtn_s16_v: 6410 case NEON::BI__builtin_neon_vcvtn_s32_v: 6411 case NEON::BI__builtin_neon_vcvtn_s64_v: 6412 case NEON::BI__builtin_neon_vcvtn_u16_v: 6413 case NEON::BI__builtin_neon_vcvtn_u32_v: 6414 case NEON::BI__builtin_neon_vcvtn_u64_v: 6415 case NEON::BI__builtin_neon_vcvtnq_s16_v: 6416 case NEON::BI__builtin_neon_vcvtnq_s32_v: 6417 case NEON::BI__builtin_neon_vcvtnq_s64_v: 6418 case NEON::BI__builtin_neon_vcvtnq_u16_v: 6419 case NEON::BI__builtin_neon_vcvtnq_u32_v: 6420 case NEON::BI__builtin_neon_vcvtnq_u64_v: 6421 case NEON::BI__builtin_neon_vcvtp_s16_v: 6422 case NEON::BI__builtin_neon_vcvtp_s32_v: 6423 case NEON::BI__builtin_neon_vcvtp_s64_v: 6424 case NEON::BI__builtin_neon_vcvtp_u16_v: 6425 case NEON::BI__builtin_neon_vcvtp_u32_v: 6426 case NEON::BI__builtin_neon_vcvtp_u64_v: 6427 case NEON::BI__builtin_neon_vcvtpq_s16_v: 6428 case NEON::BI__builtin_neon_vcvtpq_s32_v: 6429 case NEON::BI__builtin_neon_vcvtpq_s64_v: 6430 case NEON::BI__builtin_neon_vcvtpq_u16_v: 6431 case NEON::BI__builtin_neon_vcvtpq_u32_v: 6432 case NEON::BI__builtin_neon_vcvtpq_u64_v: 6433 case NEON::BI__builtin_neon_vcvtm_s16_v: 6434 case NEON::BI__builtin_neon_vcvtm_s32_v: 6435 case NEON::BI__builtin_neon_vcvtm_s64_v: 6436 case NEON::BI__builtin_neon_vcvtm_u16_v: 6437 case NEON::BI__builtin_neon_vcvtm_u32_v: 6438 case NEON::BI__builtin_neon_vcvtm_u64_v: 6439 case NEON::BI__builtin_neon_vcvtmq_s16_v: 6440 case NEON::BI__builtin_neon_vcvtmq_s32_v: 6441 case NEON::BI__builtin_neon_vcvtmq_s64_v: 6442 case NEON::BI__builtin_neon_vcvtmq_u16_v: 6443 case NEON::BI__builtin_neon_vcvtmq_u32_v: 6444 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 6445 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 6446 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 6447 } 6448 case NEON::BI__builtin_neon_vcvtx_f32_v: { 6449 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty}; 6450 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 6451 6452 } 6453 case NEON::BI__builtin_neon_vext_v: 6454 case NEON::BI__builtin_neon_vextq_v: { 6455 int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); 6456 SmallVector<int, 16> Indices; 6457 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 6458 Indices.push_back(i+CV); 6459 6460 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6461 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6462 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); 6463 } 6464 case NEON::BI__builtin_neon_vfma_v: 6465 case NEON::BI__builtin_neon_vfmaq_v: { 6466 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6467 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6468 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6469 6470 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 6471 return emitCallMaybeConstrainedFPBuiltin( 6472 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 6473 {Ops[1], Ops[2], Ops[0]}); 6474 } 6475 case NEON::BI__builtin_neon_vld1_v: 6476 case NEON::BI__builtin_neon_vld1q_v: { 6477 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6478 Ops.push_back(getAlignmentValue32(PtrOp0)); 6479 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); 6480 } 6481 case NEON::BI__builtin_neon_vld1_x2_v: 6482 case NEON::BI__builtin_neon_vld1q_x2_v: 6483 case NEON::BI__builtin_neon_vld1_x3_v: 6484 case NEON::BI__builtin_neon_vld1q_x3_v: 6485 case NEON::BI__builtin_neon_vld1_x4_v: 6486 case NEON::BI__builtin_neon_vld1q_x4_v: { 6487 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); 6488 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 6489 llvm::Type *Tys[2] = { VTy, PTy }; 6490 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6491 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); 6492 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6493 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6494 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6495 } 6496 case NEON::BI__builtin_neon_vld2_v: 6497 case NEON::BI__builtin_neon_vld2q_v: 6498 case NEON::BI__builtin_neon_vld3_v: 6499 case NEON::BI__builtin_neon_vld3q_v: 6500 case NEON::BI__builtin_neon_vld4_v: 6501 case NEON::BI__builtin_neon_vld4q_v: 6502 case NEON::BI__builtin_neon_vld2_dup_v: 6503 case NEON::BI__builtin_neon_vld2q_dup_v: 6504 case NEON::BI__builtin_neon_vld3_dup_v: 6505 case NEON::BI__builtin_neon_vld3q_dup_v: 6506 case NEON::BI__builtin_neon_vld4_dup_v: 6507 case NEON::BI__builtin_neon_vld4q_dup_v: { 6508 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6509 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6510 Value *Align = getAlignmentValue32(PtrOp1); 6511 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); 6512 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6513 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6514 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6515 } 6516 case NEON::BI__builtin_neon_vld1_dup_v: 6517 case NEON::BI__builtin_neon_vld1q_dup_v: { 6518 Value *V = UndefValue::get(Ty); 6519 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 6520 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); 6521 LoadInst *Ld = Builder.CreateLoad(PtrOp0); 6522 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 6523 Ops[0] = Builder.CreateInsertElement(V, Ld, CI); 6524 return EmitNeonSplat(Ops[0], CI); 6525 } 6526 case NEON::BI__builtin_neon_vld2_lane_v: 6527 case NEON::BI__builtin_neon_vld2q_lane_v: 6528 case NEON::BI__builtin_neon_vld3_lane_v: 6529 case NEON::BI__builtin_neon_vld3q_lane_v: 6530 case NEON::BI__builtin_neon_vld4_lane_v: 6531 case NEON::BI__builtin_neon_vld4q_lane_v: { 6532 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6533 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6534 for (unsigned I = 2; I < Ops.size() - 1; ++I) 6535 Ops[I] = Builder.CreateBitCast(Ops[I], Ty); 6536 Ops.push_back(getAlignmentValue32(PtrOp1)); 6537 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); 6538 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6539 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6540 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6541 } 6542 case NEON::BI__builtin_neon_vmovl_v: { 6543 llvm::FixedVectorType *DTy = 6544 llvm::FixedVectorType::getTruncatedElementVectorType(VTy); 6545 Ops[0] = Builder.CreateBitCast(Ops[0], DTy); 6546 if (Usgn) 6547 return Builder.CreateZExt(Ops[0], Ty, "vmovl"); 6548 return Builder.CreateSExt(Ops[0], Ty, "vmovl"); 6549 } 6550 case NEON::BI__builtin_neon_vmovn_v: { 6551 llvm::FixedVectorType *QTy = 6552 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6553 Ops[0] = Builder.CreateBitCast(Ops[0], QTy); 6554 return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); 6555 } 6556 case NEON::BI__builtin_neon_vmull_v: 6557 // FIXME: the integer vmull operations could be emitted in terms of pure 6558 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of 6559 // hoisting the exts outside loops. Until global ISel comes along that can 6560 // see through such movement this leads to bad CodeGen. So we need an 6561 // intrinsic for now. 6562 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; 6563 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; 6564 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 6565 case NEON::BI__builtin_neon_vpadal_v: 6566 case NEON::BI__builtin_neon_vpadalq_v: { 6567 // The source operand type has twice as many elements of half the size. 6568 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 6569 llvm::Type *EltTy = 6570 llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 6571 auto *NarrowTy = 6572 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); 6573 llvm::Type *Tys[2] = { Ty, NarrowTy }; 6574 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6575 } 6576 case NEON::BI__builtin_neon_vpaddl_v: 6577 case NEON::BI__builtin_neon_vpaddlq_v: { 6578 // The source operand type has twice as many elements of half the size. 6579 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 6580 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 6581 auto *NarrowTy = 6582 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); 6583 llvm::Type *Tys[2] = { Ty, NarrowTy }; 6584 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); 6585 } 6586 case NEON::BI__builtin_neon_vqdmlal_v: 6587 case NEON::BI__builtin_neon_vqdmlsl_v: { 6588 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); 6589 Ops[1] = 6590 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); 6591 Ops.resize(2); 6592 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); 6593 } 6594 case NEON::BI__builtin_neon_vqdmulhq_lane_v: 6595 case NEON::BI__builtin_neon_vqdmulh_lane_v: 6596 case NEON::BI__builtin_neon_vqrdmulhq_lane_v: 6597 case NEON::BI__builtin_neon_vqrdmulh_lane_v: { 6598 auto *RTy = cast<llvm::FixedVectorType>(Ty); 6599 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v || 6600 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v) 6601 RTy = llvm::FixedVectorType::get(RTy->getElementType(), 6602 RTy->getNumElements() * 2); 6603 llvm::Type *Tys[2] = { 6604 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, 6605 /*isQuad*/ false))}; 6606 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6607 } 6608 case NEON::BI__builtin_neon_vqdmulhq_laneq_v: 6609 case NEON::BI__builtin_neon_vqdmulh_laneq_v: 6610 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v: 6611 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: { 6612 llvm::Type *Tys[2] = { 6613 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, 6614 /*isQuad*/ true))}; 6615 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6616 } 6617 case NEON::BI__builtin_neon_vqshl_n_v: 6618 case NEON::BI__builtin_neon_vqshlq_n_v: 6619 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", 6620 1, false); 6621 case NEON::BI__builtin_neon_vqshlu_n_v: 6622 case NEON::BI__builtin_neon_vqshluq_n_v: 6623 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", 6624 1, false); 6625 case NEON::BI__builtin_neon_vrecpe_v: 6626 case NEON::BI__builtin_neon_vrecpeq_v: 6627 case NEON::BI__builtin_neon_vrsqrte_v: 6628 case NEON::BI__builtin_neon_vrsqrteq_v: 6629 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; 6630 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 6631 case NEON::BI__builtin_neon_vrndi_v: 6632 case NEON::BI__builtin_neon_vrndiq_v: 6633 Int = Builder.getIsFPConstrained() 6634 ? Intrinsic::experimental_constrained_nearbyint 6635 : Intrinsic::nearbyint; 6636 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 6637 case NEON::BI__builtin_neon_vrshr_n_v: 6638 case NEON::BI__builtin_neon_vrshrq_n_v: 6639 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 6640 1, true); 6641 case NEON::BI__builtin_neon_vshl_n_v: 6642 case NEON::BI__builtin_neon_vshlq_n_v: 6643 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); 6644 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], 6645 "vshl_n"); 6646 case NEON::BI__builtin_neon_vshll_n_v: { 6647 llvm::FixedVectorType *SrcTy = 6648 llvm::FixedVectorType::getTruncatedElementVectorType(VTy); 6649 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6650 if (Usgn) 6651 Ops[0] = Builder.CreateZExt(Ops[0], VTy); 6652 else 6653 Ops[0] = Builder.CreateSExt(Ops[0], VTy); 6654 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); 6655 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); 6656 } 6657 case NEON::BI__builtin_neon_vshrn_n_v: { 6658 llvm::FixedVectorType *SrcTy = 6659 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6660 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6661 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); 6662 if (Usgn) 6663 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); 6664 else 6665 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); 6666 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); 6667 } 6668 case NEON::BI__builtin_neon_vshr_n_v: 6669 case NEON::BI__builtin_neon_vshrq_n_v: 6670 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); 6671 case NEON::BI__builtin_neon_vst1_v: 6672 case NEON::BI__builtin_neon_vst1q_v: 6673 case NEON::BI__builtin_neon_vst2_v: 6674 case NEON::BI__builtin_neon_vst2q_v: 6675 case NEON::BI__builtin_neon_vst3_v: 6676 case NEON::BI__builtin_neon_vst3q_v: 6677 case NEON::BI__builtin_neon_vst4_v: 6678 case NEON::BI__builtin_neon_vst4q_v: 6679 case NEON::BI__builtin_neon_vst2_lane_v: 6680 case NEON::BI__builtin_neon_vst2q_lane_v: 6681 case NEON::BI__builtin_neon_vst3_lane_v: 6682 case NEON::BI__builtin_neon_vst3q_lane_v: 6683 case NEON::BI__builtin_neon_vst4_lane_v: 6684 case NEON::BI__builtin_neon_vst4q_lane_v: { 6685 llvm::Type *Tys[] = {Int8PtrTy, Ty}; 6686 Ops.push_back(getAlignmentValue32(PtrOp0)); 6687 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); 6688 } 6689 case NEON::BI__builtin_neon_vst1_x2_v: 6690 case NEON::BI__builtin_neon_vst1q_x2_v: 6691 case NEON::BI__builtin_neon_vst1_x3_v: 6692 case NEON::BI__builtin_neon_vst1q_x3_v: 6693 case NEON::BI__builtin_neon_vst1_x4_v: 6694 case NEON::BI__builtin_neon_vst1q_x4_v: { 6695 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); 6696 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas 6697 // in AArch64 it comes last. We may want to stick to one or another. 6698 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be || 6699 Arch == llvm::Triple::aarch64_32) { 6700 llvm::Type *Tys[2] = { VTy, PTy }; 6701 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 6702 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 6703 } 6704 llvm::Type *Tys[2] = { PTy, VTy }; 6705 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 6706 } 6707 case NEON::BI__builtin_neon_vsubhn_v: { 6708 llvm::FixedVectorType *SrcTy = 6709 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6710 6711 // %sum = add <4 x i32> %lhs, %rhs 6712 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6713 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 6714 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); 6715 6716 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 6717 Constant *ShiftAmt = 6718 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 6719 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); 6720 6721 // %res = trunc <4 x i32> %high to <4 x i16> 6722 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); 6723 } 6724 case NEON::BI__builtin_neon_vtrn_v: 6725 case NEON::BI__builtin_neon_vtrnq_v: { 6726 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 6727 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6728 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6729 Value *SV = nullptr; 6730 6731 for (unsigned vi = 0; vi != 2; ++vi) { 6732 SmallVector<int, 16> Indices; 6733 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 6734 Indices.push_back(i+vi); 6735 Indices.push_back(i+e+vi); 6736 } 6737 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 6738 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 6739 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 6740 } 6741 return SV; 6742 } 6743 case NEON::BI__builtin_neon_vtst_v: 6744 case NEON::BI__builtin_neon_vtstq_v: { 6745 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6746 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6747 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 6748 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 6749 ConstantAggregateZero::get(Ty)); 6750 return Builder.CreateSExt(Ops[0], Ty, "vtst"); 6751 } 6752 case NEON::BI__builtin_neon_vuzp_v: 6753 case NEON::BI__builtin_neon_vuzpq_v: { 6754 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 6755 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6756 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6757 Value *SV = nullptr; 6758 6759 for (unsigned vi = 0; vi != 2; ++vi) { 6760 SmallVector<int, 16> Indices; 6761 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 6762 Indices.push_back(2*i+vi); 6763 6764 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 6765 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 6766 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 6767 } 6768 return SV; 6769 } 6770 case NEON::BI__builtin_neon_vzip_v: 6771 case NEON::BI__builtin_neon_vzipq_v: { 6772 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 6773 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6774 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6775 Value *SV = nullptr; 6776 6777 for (unsigned vi = 0; vi != 2; ++vi) { 6778 SmallVector<int, 16> Indices; 6779 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 6780 Indices.push_back((i + vi*e) >> 1); 6781 Indices.push_back(((i + vi*e) >> 1)+e); 6782 } 6783 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 6784 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 6785 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 6786 } 6787 return SV; 6788 } 6789 case NEON::BI__builtin_neon_vdot_v: 6790 case NEON::BI__builtin_neon_vdotq_v: { 6791 auto *InputTy = 6792 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 6793 llvm::Type *Tys[2] = { Ty, InputTy }; 6794 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 6795 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); 6796 } 6797 case NEON::BI__builtin_neon_vfmlal_low_v: 6798 case NEON::BI__builtin_neon_vfmlalq_low_v: { 6799 auto *InputTy = 6800 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 6801 llvm::Type *Tys[2] = { Ty, InputTy }; 6802 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low"); 6803 } 6804 case NEON::BI__builtin_neon_vfmlsl_low_v: 6805 case NEON::BI__builtin_neon_vfmlslq_low_v: { 6806 auto *InputTy = 6807 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 6808 llvm::Type *Tys[2] = { Ty, InputTy }; 6809 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low"); 6810 } 6811 case NEON::BI__builtin_neon_vfmlal_high_v: 6812 case NEON::BI__builtin_neon_vfmlalq_high_v: { 6813 auto *InputTy = 6814 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 6815 llvm::Type *Tys[2] = { Ty, InputTy }; 6816 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high"); 6817 } 6818 case NEON::BI__builtin_neon_vfmlsl_high_v: 6819 case NEON::BI__builtin_neon_vfmlslq_high_v: { 6820 auto *InputTy = 6821 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 6822 llvm::Type *Tys[2] = { Ty, InputTy }; 6823 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high"); 6824 } 6825 case NEON::BI__builtin_neon_vmmlaq_v: { 6826 auto *InputTy = 6827 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 6828 llvm::Type *Tys[2] = { Ty, InputTy }; 6829 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 6830 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla"); 6831 } 6832 case NEON::BI__builtin_neon_vusmmlaq_v: { 6833 auto *InputTy = 6834 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 6835 llvm::Type *Tys[2] = { Ty, InputTy }; 6836 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla"); 6837 } 6838 case NEON::BI__builtin_neon_vusdot_v: 6839 case NEON::BI__builtin_neon_vusdotq_v: { 6840 auto *InputTy = 6841 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 6842 llvm::Type *Tys[2] = { Ty, InputTy }; 6843 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot"); 6844 } 6845 case NEON::BI__builtin_neon_vbfdot_v: 6846 case NEON::BI__builtin_neon_vbfdotq_v: { 6847 llvm::Type *InputTy = 6848 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16); 6849 llvm::Type *Tys[2] = { Ty, InputTy }; 6850 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot"); 6851 } 6852 case NEON::BI__builtin_neon___a32_vcvt_bf16_v: { 6853 llvm::Type *Tys[1] = { Ty }; 6854 Function *F = CGM.getIntrinsic(Int, Tys); 6855 return EmitNeonCall(F, Ops, "vcvtfp2bf"); 6856 } 6857 6858 } 6859 6860 assert(Int && "Expected valid intrinsic number"); 6861 6862 // Determine the type(s) of this overloaded AArch64 intrinsic. 6863 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); 6864 6865 Value *Result = EmitNeonCall(F, Ops, NameHint); 6866 llvm::Type *ResultType = ConvertType(E->getType()); 6867 // AArch64 intrinsic one-element vector type cast to 6868 // scalar type expected by the builtin 6869 return Builder.CreateBitCast(Result, ResultType, NameHint); 6870 } 6871 6872 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( 6873 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, 6874 const CmpInst::Predicate Ip, const Twine &Name) { 6875 llvm::Type *OTy = Op->getType(); 6876 6877 // FIXME: this is utterly horrific. We should not be looking at previous 6878 // codegen context to find out what needs doing. Unfortunately TableGen 6879 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 6880 // (etc). 6881 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) 6882 OTy = BI->getOperand(0)->getType(); 6883 6884 Op = Builder.CreateBitCast(Op, OTy); 6885 if (OTy->getScalarType()->isFloatingPointTy()) { 6886 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); 6887 } else { 6888 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); 6889 } 6890 return Builder.CreateSExt(Op, Ty, Name); 6891 } 6892 6893 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 6894 Value *ExtOp, Value *IndexOp, 6895 llvm::Type *ResTy, unsigned IntID, 6896 const char *Name) { 6897 SmallVector<Value *, 2> TblOps; 6898 if (ExtOp) 6899 TblOps.push_back(ExtOp); 6900 6901 // Build a vector containing sequential number like (0, 1, 2, ..., 15) 6902 SmallVector<int, 16> Indices; 6903 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType()); 6904 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { 6905 Indices.push_back(2*i); 6906 Indices.push_back(2*i+1); 6907 } 6908 6909 int PairPos = 0, End = Ops.size() - 1; 6910 while (PairPos < End) { 6911 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 6912 Ops[PairPos+1], Indices, 6913 Name)); 6914 PairPos += 2; 6915 } 6916 6917 // If there's an odd number of 64-bit lookup table, fill the high 64-bit 6918 // of the 128-bit lookup table with zero. 6919 if (PairPos == End) { 6920 Value *ZeroTbl = ConstantAggregateZero::get(TblTy); 6921 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 6922 ZeroTbl, Indices, Name)); 6923 } 6924 6925 Function *TblF; 6926 TblOps.push_back(IndexOp); 6927 TblF = CGF.CGM.getIntrinsic(IntID, ResTy); 6928 6929 return CGF.EmitNeonCall(TblF, TblOps, Name); 6930 } 6931 6932 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { 6933 unsigned Value; 6934 switch (BuiltinID) { 6935 default: 6936 return nullptr; 6937 case ARM::BI__builtin_arm_nop: 6938 Value = 0; 6939 break; 6940 case ARM::BI__builtin_arm_yield: 6941 case ARM::BI__yield: 6942 Value = 1; 6943 break; 6944 case ARM::BI__builtin_arm_wfe: 6945 case ARM::BI__wfe: 6946 Value = 2; 6947 break; 6948 case ARM::BI__builtin_arm_wfi: 6949 case ARM::BI__wfi: 6950 Value = 3; 6951 break; 6952 case ARM::BI__builtin_arm_sev: 6953 case ARM::BI__sev: 6954 Value = 4; 6955 break; 6956 case ARM::BI__builtin_arm_sevl: 6957 case ARM::BI__sevl: 6958 Value = 5; 6959 break; 6960 } 6961 6962 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), 6963 llvm::ConstantInt::get(Int32Ty, Value)); 6964 } 6965 6966 enum SpecialRegisterAccessKind { 6967 NormalRead, 6968 VolatileRead, 6969 Write, 6970 }; 6971 6972 // Generates the IR for the read/write special register builtin, 6973 // ValueType is the type of the value that is to be written or read, 6974 // RegisterType is the type of the register being written to or read from. 6975 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, 6976 const CallExpr *E, 6977 llvm::Type *RegisterType, 6978 llvm::Type *ValueType, 6979 SpecialRegisterAccessKind AccessKind, 6980 StringRef SysReg = "") { 6981 // write and register intrinsics only support 32 and 64 bit operations. 6982 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) 6983 && "Unsupported size for register."); 6984 6985 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6986 CodeGen::CodeGenModule &CGM = CGF.CGM; 6987 LLVMContext &Context = CGM.getLLVMContext(); 6988 6989 if (SysReg.empty()) { 6990 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); 6991 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString(); 6992 } 6993 6994 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; 6995 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 6996 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 6997 6998 llvm::Type *Types[] = { RegisterType }; 6999 7000 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); 7001 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) 7002 && "Can't fit 64-bit value in 32-bit register"); 7003 7004 if (AccessKind != Write) { 7005 assert(AccessKind == NormalRead || AccessKind == VolatileRead); 7006 llvm::Function *F = CGM.getIntrinsic( 7007 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register 7008 : llvm::Intrinsic::read_register, 7009 Types); 7010 llvm::Value *Call = Builder.CreateCall(F, Metadata); 7011 7012 if (MixedTypes) 7013 // Read into 64 bit register and then truncate result to 32 bit. 7014 return Builder.CreateTrunc(Call, ValueType); 7015 7016 if (ValueType->isPointerTy()) 7017 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). 7018 return Builder.CreateIntToPtr(Call, ValueType); 7019 7020 return Call; 7021 } 7022 7023 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 7024 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); 7025 if (MixedTypes) { 7026 // Extend 32 bit write value to 64 bit to pass to write. 7027 ArgValue = Builder.CreateZExt(ArgValue, RegisterType); 7028 return Builder.CreateCall(F, { Metadata, ArgValue }); 7029 } 7030 7031 if (ValueType->isPointerTy()) { 7032 // Have VoidPtrTy ArgValue but want to return an i32/i64. 7033 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); 7034 return Builder.CreateCall(F, { Metadata, ArgValue }); 7035 } 7036 7037 return Builder.CreateCall(F, { Metadata, ArgValue }); 7038 } 7039 7040 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra 7041 /// argument that specifies the vector type. 7042 static bool HasExtraNeonArgument(unsigned BuiltinID) { 7043 switch (BuiltinID) { 7044 default: break; 7045 case NEON::BI__builtin_neon_vget_lane_i8: 7046 case NEON::BI__builtin_neon_vget_lane_i16: 7047 case NEON::BI__builtin_neon_vget_lane_bf16: 7048 case NEON::BI__builtin_neon_vget_lane_i32: 7049 case NEON::BI__builtin_neon_vget_lane_i64: 7050 case NEON::BI__builtin_neon_vget_lane_f32: 7051 case NEON::BI__builtin_neon_vgetq_lane_i8: 7052 case NEON::BI__builtin_neon_vgetq_lane_i16: 7053 case NEON::BI__builtin_neon_vgetq_lane_bf16: 7054 case NEON::BI__builtin_neon_vgetq_lane_i32: 7055 case NEON::BI__builtin_neon_vgetq_lane_i64: 7056 case NEON::BI__builtin_neon_vgetq_lane_f32: 7057 case NEON::BI__builtin_neon_vduph_lane_bf16: 7058 case NEON::BI__builtin_neon_vduph_laneq_bf16: 7059 case NEON::BI__builtin_neon_vset_lane_i8: 7060 case NEON::BI__builtin_neon_vset_lane_i16: 7061 case NEON::BI__builtin_neon_vset_lane_bf16: 7062 case NEON::BI__builtin_neon_vset_lane_i32: 7063 case NEON::BI__builtin_neon_vset_lane_i64: 7064 case NEON::BI__builtin_neon_vset_lane_f32: 7065 case NEON::BI__builtin_neon_vsetq_lane_i8: 7066 case NEON::BI__builtin_neon_vsetq_lane_i16: 7067 case NEON::BI__builtin_neon_vsetq_lane_bf16: 7068 case NEON::BI__builtin_neon_vsetq_lane_i32: 7069 case NEON::BI__builtin_neon_vsetq_lane_i64: 7070 case NEON::BI__builtin_neon_vsetq_lane_f32: 7071 case NEON::BI__builtin_neon_vsha1h_u32: 7072 case NEON::BI__builtin_neon_vsha1cq_u32: 7073 case NEON::BI__builtin_neon_vsha1pq_u32: 7074 case NEON::BI__builtin_neon_vsha1mq_u32: 7075 case NEON::BI__builtin_neon_vcvth_bf16_f32: 7076 case clang::ARM::BI_MoveToCoprocessor: 7077 case clang::ARM::BI_MoveToCoprocessor2: 7078 return false; 7079 } 7080 return true; 7081 } 7082 7083 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, 7084 const CallExpr *E, 7085 ReturnValueSlot ReturnValue, 7086 llvm::Triple::ArchType Arch) { 7087 if (auto Hint = GetValueForARMHint(BuiltinID)) 7088 return Hint; 7089 7090 if (BuiltinID == ARM::BI__emit) { 7091 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; 7092 llvm::FunctionType *FTy = 7093 llvm::FunctionType::get(VoidTy, /*Variadic=*/false); 7094 7095 Expr::EvalResult Result; 7096 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 7097 llvm_unreachable("Sema will ensure that the parameter is constant"); 7098 7099 llvm::APSInt Value = Result.Val.getInt(); 7100 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); 7101 7102 llvm::InlineAsm *Emit = 7103 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", 7104 /*hasSideEffects=*/true) 7105 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", 7106 /*hasSideEffects=*/true); 7107 7108 return Builder.CreateCall(Emit); 7109 } 7110 7111 if (BuiltinID == ARM::BI__builtin_arm_dbg) { 7112 Value *Option = EmitScalarExpr(E->getArg(0)); 7113 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); 7114 } 7115 7116 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 7117 Value *Address = EmitScalarExpr(E->getArg(0)); 7118 Value *RW = EmitScalarExpr(E->getArg(1)); 7119 Value *IsData = EmitScalarExpr(E->getArg(2)); 7120 7121 // Locality is not supported on ARM target 7122 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); 7123 7124 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 7125 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 7126 } 7127 7128 if (BuiltinID == ARM::BI__builtin_arm_rbit) { 7129 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7130 return Builder.CreateCall( 7131 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 7132 } 7133 7134 if (BuiltinID == ARM::BI__builtin_arm_cls) { 7135 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7136 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls"); 7137 } 7138 if (BuiltinID == ARM::BI__builtin_arm_cls64) { 7139 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7140 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg, 7141 "cls"); 7142 } 7143 7144 if (BuiltinID == ARM::BI__clear_cache) { 7145 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 7146 const FunctionDecl *FD = E->getDirectCallee(); 7147 Value *Ops[2]; 7148 for (unsigned i = 0; i < 2; i++) 7149 Ops[i] = EmitScalarExpr(E->getArg(i)); 7150 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 7151 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 7152 StringRef Name = FD->getName(); 7153 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 7154 } 7155 7156 if (BuiltinID == ARM::BI__builtin_arm_mcrr || 7157 BuiltinID == ARM::BI__builtin_arm_mcrr2) { 7158 Function *F; 7159 7160 switch (BuiltinID) { 7161 default: llvm_unreachable("unexpected builtin"); 7162 case ARM::BI__builtin_arm_mcrr: 7163 F = CGM.getIntrinsic(Intrinsic::arm_mcrr); 7164 break; 7165 case ARM::BI__builtin_arm_mcrr2: 7166 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); 7167 break; 7168 } 7169 7170 // MCRR{2} instruction has 5 operands but 7171 // the intrinsic has 4 because Rt and Rt2 7172 // are represented as a single unsigned 64 7173 // bit integer in the intrinsic definition 7174 // but internally it's represented as 2 32 7175 // bit integers. 7176 7177 Value *Coproc = EmitScalarExpr(E->getArg(0)); 7178 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 7179 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); 7180 Value *CRm = EmitScalarExpr(E->getArg(3)); 7181 7182 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 7183 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); 7184 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); 7185 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); 7186 7187 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); 7188 } 7189 7190 if (BuiltinID == ARM::BI__builtin_arm_mrrc || 7191 BuiltinID == ARM::BI__builtin_arm_mrrc2) { 7192 Function *F; 7193 7194 switch (BuiltinID) { 7195 default: llvm_unreachable("unexpected builtin"); 7196 case ARM::BI__builtin_arm_mrrc: 7197 F = CGM.getIntrinsic(Intrinsic::arm_mrrc); 7198 break; 7199 case ARM::BI__builtin_arm_mrrc2: 7200 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); 7201 break; 7202 } 7203 7204 Value *Coproc = EmitScalarExpr(E->getArg(0)); 7205 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 7206 Value *CRm = EmitScalarExpr(E->getArg(2)); 7207 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); 7208 7209 // Returns an unsigned 64 bit integer, represented 7210 // as two 32 bit integers. 7211 7212 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); 7213 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); 7214 Rt = Builder.CreateZExt(Rt, Int64Ty); 7215 Rt1 = Builder.CreateZExt(Rt1, Int64Ty); 7216 7217 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); 7218 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); 7219 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); 7220 7221 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); 7222 } 7223 7224 if (BuiltinID == ARM::BI__builtin_arm_ldrexd || 7225 ((BuiltinID == ARM::BI__builtin_arm_ldrex || 7226 BuiltinID == ARM::BI__builtin_arm_ldaex) && 7227 getContext().getTypeSize(E->getType()) == 64) || 7228 BuiltinID == ARM::BI__ldrexd) { 7229 Function *F; 7230 7231 switch (BuiltinID) { 7232 default: llvm_unreachable("unexpected builtin"); 7233 case ARM::BI__builtin_arm_ldaex: 7234 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); 7235 break; 7236 case ARM::BI__builtin_arm_ldrexd: 7237 case ARM::BI__builtin_arm_ldrex: 7238 case ARM::BI__ldrexd: 7239 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); 7240 break; 7241 } 7242 7243 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 7244 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 7245 "ldrexd"); 7246 7247 Value *Val0 = Builder.CreateExtractValue(Val, 1); 7248 Value *Val1 = Builder.CreateExtractValue(Val, 0); 7249 Val0 = Builder.CreateZExt(Val0, Int64Ty); 7250 Val1 = Builder.CreateZExt(Val1, Int64Ty); 7251 7252 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); 7253 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 7254 Val = Builder.CreateOr(Val, Val1); 7255 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 7256 } 7257 7258 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 7259 BuiltinID == ARM::BI__builtin_arm_ldaex) { 7260 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 7261 7262 QualType Ty = E->getType(); 7263 llvm::Type *RealResTy = ConvertType(Ty); 7264 llvm::Type *PtrTy = llvm::IntegerType::get( 7265 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 7266 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 7267 7268 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex 7269 ? Intrinsic::arm_ldaex 7270 : Intrinsic::arm_ldrex, 7271 PtrTy); 7272 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); 7273 7274 if (RealResTy->isPointerTy()) 7275 return Builder.CreateIntToPtr(Val, RealResTy); 7276 else { 7277 llvm::Type *IntResTy = llvm::IntegerType::get( 7278 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 7279 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 7280 return Builder.CreateBitCast(Val, RealResTy); 7281 } 7282 } 7283 7284 if (BuiltinID == ARM::BI__builtin_arm_strexd || 7285 ((BuiltinID == ARM::BI__builtin_arm_stlex || 7286 BuiltinID == ARM::BI__builtin_arm_strex) && 7287 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { 7288 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 7289 ? Intrinsic::arm_stlexd 7290 : Intrinsic::arm_strexd); 7291 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); 7292 7293 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 7294 Value *Val = EmitScalarExpr(E->getArg(0)); 7295 Builder.CreateStore(Val, Tmp); 7296 7297 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); 7298 Val = Builder.CreateLoad(LdPtr); 7299 7300 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 7301 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 7302 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); 7303 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); 7304 } 7305 7306 if (BuiltinID == ARM::BI__builtin_arm_strex || 7307 BuiltinID == ARM::BI__builtin_arm_stlex) { 7308 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 7309 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 7310 7311 QualType Ty = E->getArg(0)->getType(); 7312 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 7313 getContext().getTypeSize(Ty)); 7314 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 7315 7316 if (StoreVal->getType()->isPointerTy()) 7317 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); 7318 else { 7319 llvm::Type *IntTy = llvm::IntegerType::get( 7320 getLLVMContext(), 7321 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 7322 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 7323 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); 7324 } 7325 7326 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 7327 ? Intrinsic::arm_stlex 7328 : Intrinsic::arm_strex, 7329 StoreAddr->getType()); 7330 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); 7331 } 7332 7333 if (BuiltinID == ARM::BI__builtin_arm_clrex) { 7334 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); 7335 return Builder.CreateCall(F); 7336 } 7337 7338 // CRC32 7339 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 7340 switch (BuiltinID) { 7341 case ARM::BI__builtin_arm_crc32b: 7342 CRCIntrinsicID = Intrinsic::arm_crc32b; break; 7343 case ARM::BI__builtin_arm_crc32cb: 7344 CRCIntrinsicID = Intrinsic::arm_crc32cb; break; 7345 case ARM::BI__builtin_arm_crc32h: 7346 CRCIntrinsicID = Intrinsic::arm_crc32h; break; 7347 case ARM::BI__builtin_arm_crc32ch: 7348 CRCIntrinsicID = Intrinsic::arm_crc32ch; break; 7349 case ARM::BI__builtin_arm_crc32w: 7350 case ARM::BI__builtin_arm_crc32d: 7351 CRCIntrinsicID = Intrinsic::arm_crc32w; break; 7352 case ARM::BI__builtin_arm_crc32cw: 7353 case ARM::BI__builtin_arm_crc32cd: 7354 CRCIntrinsicID = Intrinsic::arm_crc32cw; break; 7355 } 7356 7357 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 7358 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 7359 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 7360 7361 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w 7362 // intrinsics, hence we need different codegen for these cases. 7363 if (BuiltinID == ARM::BI__builtin_arm_crc32d || 7364 BuiltinID == ARM::BI__builtin_arm_crc32cd) { 7365 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 7366 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); 7367 Value *Arg1b = Builder.CreateLShr(Arg1, C1); 7368 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); 7369 7370 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 7371 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); 7372 return Builder.CreateCall(F, {Res, Arg1b}); 7373 } else { 7374 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); 7375 7376 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 7377 return Builder.CreateCall(F, {Arg0, Arg1}); 7378 } 7379 } 7380 7381 if (BuiltinID == ARM::BI__builtin_arm_rsr || 7382 BuiltinID == ARM::BI__builtin_arm_rsr64 || 7383 BuiltinID == ARM::BI__builtin_arm_rsrp || 7384 BuiltinID == ARM::BI__builtin_arm_wsr || 7385 BuiltinID == ARM::BI__builtin_arm_wsr64 || 7386 BuiltinID == ARM::BI__builtin_arm_wsrp) { 7387 7388 SpecialRegisterAccessKind AccessKind = Write; 7389 if (BuiltinID == ARM::BI__builtin_arm_rsr || 7390 BuiltinID == ARM::BI__builtin_arm_rsr64 || 7391 BuiltinID == ARM::BI__builtin_arm_rsrp) 7392 AccessKind = VolatileRead; 7393 7394 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || 7395 BuiltinID == ARM::BI__builtin_arm_wsrp; 7396 7397 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || 7398 BuiltinID == ARM::BI__builtin_arm_wsr64; 7399 7400 llvm::Type *ValueType; 7401 llvm::Type *RegisterType; 7402 if (IsPointerBuiltin) { 7403 ValueType = VoidPtrTy; 7404 RegisterType = Int32Ty; 7405 } else if (Is64Bit) { 7406 ValueType = RegisterType = Int64Ty; 7407 } else { 7408 ValueType = RegisterType = Int32Ty; 7409 } 7410 7411 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, 7412 AccessKind); 7413 } 7414 7415 // Handle MSVC intrinsics before argument evaluation to prevent double 7416 // evaluation. 7417 if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID)) 7418 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 7419 7420 // Deal with MVE builtins 7421 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) 7422 return Result; 7423 // Handle CDE builtins 7424 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) 7425 return Result; 7426 7427 // Find out if any arguments are required to be integer constant 7428 // expressions. 7429 unsigned ICEArguments = 0; 7430 ASTContext::GetBuiltinTypeError Error; 7431 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 7432 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 7433 7434 auto getAlignmentValue32 = [&](Address addr) -> Value* { 7435 return Builder.getInt32(addr.getAlignment().getQuantity()); 7436 }; 7437 7438 Address PtrOp0 = Address::invalid(); 7439 Address PtrOp1 = Address::invalid(); 7440 SmallVector<Value*, 4> Ops; 7441 bool HasExtraArg = HasExtraNeonArgument(BuiltinID); 7442 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); 7443 for (unsigned i = 0, e = NumArgs; i != e; i++) { 7444 if (i == 0) { 7445 switch (BuiltinID) { 7446 case NEON::BI__builtin_neon_vld1_v: 7447 case NEON::BI__builtin_neon_vld1q_v: 7448 case NEON::BI__builtin_neon_vld1q_lane_v: 7449 case NEON::BI__builtin_neon_vld1_lane_v: 7450 case NEON::BI__builtin_neon_vld1_dup_v: 7451 case NEON::BI__builtin_neon_vld1q_dup_v: 7452 case NEON::BI__builtin_neon_vst1_v: 7453 case NEON::BI__builtin_neon_vst1q_v: 7454 case NEON::BI__builtin_neon_vst1q_lane_v: 7455 case NEON::BI__builtin_neon_vst1_lane_v: 7456 case NEON::BI__builtin_neon_vst2_v: 7457 case NEON::BI__builtin_neon_vst2q_v: 7458 case NEON::BI__builtin_neon_vst2_lane_v: 7459 case NEON::BI__builtin_neon_vst2q_lane_v: 7460 case NEON::BI__builtin_neon_vst3_v: 7461 case NEON::BI__builtin_neon_vst3q_v: 7462 case NEON::BI__builtin_neon_vst3_lane_v: 7463 case NEON::BI__builtin_neon_vst3q_lane_v: 7464 case NEON::BI__builtin_neon_vst4_v: 7465 case NEON::BI__builtin_neon_vst4q_v: 7466 case NEON::BI__builtin_neon_vst4_lane_v: 7467 case NEON::BI__builtin_neon_vst4q_lane_v: 7468 // Get the alignment for the argument in addition to the value; 7469 // we'll use it later. 7470 PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); 7471 Ops.push_back(PtrOp0.getPointer()); 7472 continue; 7473 } 7474 } 7475 if (i == 1) { 7476 switch (BuiltinID) { 7477 case NEON::BI__builtin_neon_vld2_v: 7478 case NEON::BI__builtin_neon_vld2q_v: 7479 case NEON::BI__builtin_neon_vld3_v: 7480 case NEON::BI__builtin_neon_vld3q_v: 7481 case NEON::BI__builtin_neon_vld4_v: 7482 case NEON::BI__builtin_neon_vld4q_v: 7483 case NEON::BI__builtin_neon_vld2_lane_v: 7484 case NEON::BI__builtin_neon_vld2q_lane_v: 7485 case NEON::BI__builtin_neon_vld3_lane_v: 7486 case NEON::BI__builtin_neon_vld3q_lane_v: 7487 case NEON::BI__builtin_neon_vld4_lane_v: 7488 case NEON::BI__builtin_neon_vld4q_lane_v: 7489 case NEON::BI__builtin_neon_vld2_dup_v: 7490 case NEON::BI__builtin_neon_vld2q_dup_v: 7491 case NEON::BI__builtin_neon_vld3_dup_v: 7492 case NEON::BI__builtin_neon_vld3q_dup_v: 7493 case NEON::BI__builtin_neon_vld4_dup_v: 7494 case NEON::BI__builtin_neon_vld4q_dup_v: 7495 // Get the alignment for the argument in addition to the value; 7496 // we'll use it later. 7497 PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); 7498 Ops.push_back(PtrOp1.getPointer()); 7499 continue; 7500 } 7501 } 7502 7503 if ((ICEArguments & (1 << i)) == 0) { 7504 Ops.push_back(EmitScalarExpr(E->getArg(i))); 7505 } else { 7506 // If this is required to be a constant, constant fold it so that we know 7507 // that the generated intrinsic gets a ConstantInt. 7508 Ops.push_back(llvm::ConstantInt::get( 7509 getLLVMContext(), 7510 *E->getArg(i)->getIntegerConstantExpr(getContext()))); 7511 } 7512 } 7513 7514 switch (BuiltinID) { 7515 default: break; 7516 7517 case NEON::BI__builtin_neon_vget_lane_i8: 7518 case NEON::BI__builtin_neon_vget_lane_i16: 7519 case NEON::BI__builtin_neon_vget_lane_i32: 7520 case NEON::BI__builtin_neon_vget_lane_i64: 7521 case NEON::BI__builtin_neon_vget_lane_bf16: 7522 case NEON::BI__builtin_neon_vget_lane_f32: 7523 case NEON::BI__builtin_neon_vgetq_lane_i8: 7524 case NEON::BI__builtin_neon_vgetq_lane_i16: 7525 case NEON::BI__builtin_neon_vgetq_lane_i32: 7526 case NEON::BI__builtin_neon_vgetq_lane_i64: 7527 case NEON::BI__builtin_neon_vgetq_lane_bf16: 7528 case NEON::BI__builtin_neon_vgetq_lane_f32: 7529 case NEON::BI__builtin_neon_vduph_lane_bf16: 7530 case NEON::BI__builtin_neon_vduph_laneq_bf16: 7531 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); 7532 7533 case NEON::BI__builtin_neon_vrndns_f32: { 7534 Value *Arg = EmitScalarExpr(E->getArg(0)); 7535 llvm::Type *Tys[] = {Arg->getType()}; 7536 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); 7537 return Builder.CreateCall(F, {Arg}, "vrndn"); } 7538 7539 case NEON::BI__builtin_neon_vset_lane_i8: 7540 case NEON::BI__builtin_neon_vset_lane_i16: 7541 case NEON::BI__builtin_neon_vset_lane_i32: 7542 case NEON::BI__builtin_neon_vset_lane_i64: 7543 case NEON::BI__builtin_neon_vset_lane_bf16: 7544 case NEON::BI__builtin_neon_vset_lane_f32: 7545 case NEON::BI__builtin_neon_vsetq_lane_i8: 7546 case NEON::BI__builtin_neon_vsetq_lane_i16: 7547 case NEON::BI__builtin_neon_vsetq_lane_i32: 7548 case NEON::BI__builtin_neon_vsetq_lane_i64: 7549 case NEON::BI__builtin_neon_vsetq_lane_bf16: 7550 case NEON::BI__builtin_neon_vsetq_lane_f32: 7551 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 7552 7553 case NEON::BI__builtin_neon_vsha1h_u32: 7554 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, 7555 "vsha1h"); 7556 case NEON::BI__builtin_neon_vsha1cq_u32: 7557 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, 7558 "vsha1h"); 7559 case NEON::BI__builtin_neon_vsha1pq_u32: 7560 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, 7561 "vsha1h"); 7562 case NEON::BI__builtin_neon_vsha1mq_u32: 7563 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, 7564 "vsha1h"); 7565 7566 case NEON::BI__builtin_neon_vcvth_bf16_f32: { 7567 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops, 7568 "vcvtbfp2bf"); 7569 } 7570 7571 // The ARM _MoveToCoprocessor builtins put the input register value as 7572 // the first argument, but the LLVM intrinsic expects it as the third one. 7573 case ARM::BI_MoveToCoprocessor: 7574 case ARM::BI_MoveToCoprocessor2: { 7575 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? 7576 Intrinsic::arm_mcr : Intrinsic::arm_mcr2); 7577 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], 7578 Ops[3], Ops[4], Ops[5]}); 7579 } 7580 } 7581 7582 // Get the last argument, which specifies the vector type. 7583 assert(HasExtraArg); 7584 const Expr *Arg = E->getArg(E->getNumArgs()-1); 7585 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()); 7586 if (!Result) 7587 return nullptr; 7588 7589 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || 7590 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { 7591 // Determine the overloaded type of this builtin. 7592 llvm::Type *Ty; 7593 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) 7594 Ty = FloatTy; 7595 else 7596 Ty = DoubleTy; 7597 7598 // Determine whether this is an unsigned conversion or not. 7599 bool usgn = Result->getZExtValue() == 1; 7600 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; 7601 7602 // Call the appropriate intrinsic. 7603 Function *F = CGM.getIntrinsic(Int, Ty); 7604 return Builder.CreateCall(F, Ops, "vcvtr"); 7605 } 7606 7607 // Determine the type of this overloaded NEON intrinsic. 7608 NeonTypeFlags Type = Result->getZExtValue(); 7609 bool usgn = Type.isUnsigned(); 7610 bool rightShift = false; 7611 7612 llvm::FixedVectorType *VTy = 7613 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false, 7614 getTarget().hasBFloat16Type()); 7615 llvm::Type *Ty = VTy; 7616 if (!Ty) 7617 return nullptr; 7618 7619 // Many NEON builtins have identical semantics and uses in ARM and 7620 // AArch64. Emit these in a single function. 7621 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); 7622 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( 7623 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); 7624 if (Builtin) 7625 return EmitCommonNeonBuiltinExpr( 7626 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 7627 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); 7628 7629 unsigned Int; 7630 switch (BuiltinID) { 7631 default: return nullptr; 7632 case NEON::BI__builtin_neon_vld1q_lane_v: 7633 // Handle 64-bit integer elements as a special case. Use shuffles of 7634 // one-element vectors to avoid poor code for i64 in the backend. 7635 if (VTy->getElementType()->isIntegerTy(64)) { 7636 // Extract the other lane. 7637 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7638 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); 7639 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); 7640 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 7641 // Load the value as a one-element vector. 7642 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1); 7643 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 7644 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); 7645 Value *Align = getAlignmentValue32(PtrOp0); 7646 Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); 7647 // Combine them. 7648 int Indices[] = {1 - Lane, Lane}; 7649 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane"); 7650 } 7651 LLVM_FALLTHROUGH; 7652 case NEON::BI__builtin_neon_vld1_lane_v: { 7653 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7654 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); 7655 Value *Ld = Builder.CreateLoad(PtrOp0); 7656 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); 7657 } 7658 case NEON::BI__builtin_neon_vqrshrn_n_v: 7659 Int = 7660 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; 7661 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", 7662 1, true); 7663 case NEON::BI__builtin_neon_vqrshrun_n_v: 7664 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), 7665 Ops, "vqrshrun_n", 1, true); 7666 case NEON::BI__builtin_neon_vqshrn_n_v: 7667 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; 7668 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", 7669 1, true); 7670 case NEON::BI__builtin_neon_vqshrun_n_v: 7671 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), 7672 Ops, "vqshrun_n", 1, true); 7673 case NEON::BI__builtin_neon_vrecpe_v: 7674 case NEON::BI__builtin_neon_vrecpeq_v: 7675 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), 7676 Ops, "vrecpe"); 7677 case NEON::BI__builtin_neon_vrshrn_n_v: 7678 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), 7679 Ops, "vrshrn_n", 1, true); 7680 case NEON::BI__builtin_neon_vrsra_n_v: 7681 case NEON::BI__builtin_neon_vrsraq_n_v: 7682 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 7683 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7684 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); 7685 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; 7686 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); 7687 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); 7688 case NEON::BI__builtin_neon_vsri_n_v: 7689 case NEON::BI__builtin_neon_vsriq_n_v: 7690 rightShift = true; 7691 LLVM_FALLTHROUGH; 7692 case NEON::BI__builtin_neon_vsli_n_v: 7693 case NEON::BI__builtin_neon_vsliq_n_v: 7694 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); 7695 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), 7696 Ops, "vsli_n"); 7697 case NEON::BI__builtin_neon_vsra_n_v: 7698 case NEON::BI__builtin_neon_vsraq_n_v: 7699 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 7700 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 7701 return Builder.CreateAdd(Ops[0], Ops[1]); 7702 case NEON::BI__builtin_neon_vst1q_lane_v: 7703 // Handle 64-bit integer elements as a special case. Use a shuffle to get 7704 // a one-element vector and avoid poor code for i64 in the backend. 7705 if (VTy->getElementType()->isIntegerTy(64)) { 7706 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7707 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); 7708 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 7709 Ops[2] = getAlignmentValue32(PtrOp0); 7710 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; 7711 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, 7712 Tys), Ops); 7713 } 7714 LLVM_FALLTHROUGH; 7715 case NEON::BI__builtin_neon_vst1_lane_v: { 7716 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7717 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 7718 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 7719 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); 7720 return St; 7721 } 7722 case NEON::BI__builtin_neon_vtbl1_v: 7723 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), 7724 Ops, "vtbl1"); 7725 case NEON::BI__builtin_neon_vtbl2_v: 7726 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), 7727 Ops, "vtbl2"); 7728 case NEON::BI__builtin_neon_vtbl3_v: 7729 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), 7730 Ops, "vtbl3"); 7731 case NEON::BI__builtin_neon_vtbl4_v: 7732 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), 7733 Ops, "vtbl4"); 7734 case NEON::BI__builtin_neon_vtbx1_v: 7735 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), 7736 Ops, "vtbx1"); 7737 case NEON::BI__builtin_neon_vtbx2_v: 7738 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), 7739 Ops, "vtbx2"); 7740 case NEON::BI__builtin_neon_vtbx3_v: 7741 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), 7742 Ops, "vtbx3"); 7743 case NEON::BI__builtin_neon_vtbx4_v: 7744 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), 7745 Ops, "vtbx4"); 7746 } 7747 } 7748 7749 template<typename Integer> 7750 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) { 7751 return E->getIntegerConstantExpr(Context)->getExtValue(); 7752 } 7753 7754 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V, 7755 llvm::Type *T, bool Unsigned) { 7756 // Helper function called by Tablegen-constructed ARM MVE builtin codegen, 7757 // which finds it convenient to specify signed/unsigned as a boolean flag. 7758 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T); 7759 } 7760 7761 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V, 7762 uint32_t Shift, bool Unsigned) { 7763 // MVE helper function for integer shift right. This must handle signed vs 7764 // unsigned, and also deal specially with the case where the shift count is 7765 // equal to the lane size. In LLVM IR, an LShr with that parameter would be 7766 // undefined behavior, but in MVE it's legal, so we must convert it to code 7767 // that is not undefined in IR. 7768 unsigned LaneBits = cast<llvm::VectorType>(V->getType()) 7769 ->getElementType() 7770 ->getPrimitiveSizeInBits(); 7771 if (Shift == LaneBits) { 7772 // An unsigned shift of the full lane size always generates zero, so we can 7773 // simply emit a zero vector. A signed shift of the full lane size does the 7774 // same thing as shifting by one bit fewer. 7775 if (Unsigned) 7776 return llvm::Constant::getNullValue(V->getType()); 7777 else 7778 --Shift; 7779 } 7780 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift); 7781 } 7782 7783 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) { 7784 // MVE-specific helper function for a vector splat, which infers the element 7785 // count of the output vector by knowing that MVE vectors are all 128 bits 7786 // wide. 7787 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits(); 7788 return Builder.CreateVectorSplat(Elements, V); 7789 } 7790 7791 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder, 7792 CodeGenFunction *CGF, 7793 llvm::Value *V, 7794 llvm::Type *DestType) { 7795 // Convert one MVE vector type into another by reinterpreting its in-register 7796 // format. 7797 // 7798 // Little-endian, this is identical to a bitcast (which reinterprets the 7799 // memory format). But big-endian, they're not necessarily the same, because 7800 // the register and memory formats map to each other differently depending on 7801 // the lane size. 7802 // 7803 // We generate a bitcast whenever we can (if we're little-endian, or if the 7804 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic 7805 // that performs the different kind of reinterpretation. 7806 if (CGF->getTarget().isBigEndian() && 7807 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) { 7808 return Builder.CreateCall( 7809 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq, 7810 {DestType, V->getType()}), 7811 V); 7812 } else { 7813 return Builder.CreateBitCast(V, DestType); 7814 } 7815 } 7816 7817 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) { 7818 // Make a shufflevector that extracts every other element of a vector (evens 7819 // or odds, as desired). 7820 SmallVector<int, 16> Indices; 7821 unsigned InputElements = 7822 cast<llvm::FixedVectorType>(V->getType())->getNumElements(); 7823 for (unsigned i = 0; i < InputElements; i += 2) 7824 Indices.push_back(i + Odd); 7825 return Builder.CreateShuffleVector(V, Indices); 7826 } 7827 7828 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0, 7829 llvm::Value *V1) { 7830 // Make a shufflevector that interleaves two vectors element by element. 7831 assert(V0->getType() == V1->getType() && "Can't zip different vector types"); 7832 SmallVector<int, 16> Indices; 7833 unsigned InputElements = 7834 cast<llvm::FixedVectorType>(V0->getType())->getNumElements(); 7835 for (unsigned i = 0; i < InputElements; i++) { 7836 Indices.push_back(i); 7837 Indices.push_back(i + InputElements); 7838 } 7839 return Builder.CreateShuffleVector(V0, V1, Indices); 7840 } 7841 7842 template<unsigned HighBit, unsigned OtherBits> 7843 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) { 7844 // MVE-specific helper function to make a vector splat of a constant such as 7845 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal. 7846 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType(); 7847 unsigned LaneBits = T->getPrimitiveSizeInBits(); 7848 uint32_t Value = HighBit << (LaneBits - 1); 7849 if (OtherBits) 7850 Value |= (1UL << (LaneBits - 1)) - 1; 7851 llvm::Value *Lane = llvm::ConstantInt::get(T, Value); 7852 return ARMMVEVectorSplat(Builder, Lane); 7853 } 7854 7855 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder, 7856 llvm::Value *V, 7857 unsigned ReverseWidth) { 7858 // MVE-specific helper function which reverses the elements of a 7859 // vector within every (ReverseWidth)-bit collection of lanes. 7860 SmallVector<int, 16> Indices; 7861 unsigned LaneSize = V->getType()->getScalarSizeInBits(); 7862 unsigned Elements = 128 / LaneSize; 7863 unsigned Mask = ReverseWidth / LaneSize - 1; 7864 for (unsigned i = 0; i < Elements; i++) 7865 Indices.push_back(i ^ Mask); 7866 return Builder.CreateShuffleVector(V, Indices); 7867 } 7868 7869 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID, 7870 const CallExpr *E, 7871 ReturnValueSlot ReturnValue, 7872 llvm::Triple::ArchType Arch) { 7873 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType; 7874 Intrinsic::ID IRIntr; 7875 unsigned NumVectors; 7876 7877 // Code autogenerated by Tablegen will handle all the simple builtins. 7878 switch (BuiltinID) { 7879 #include "clang/Basic/arm_mve_builtin_cg.inc" 7880 7881 // If we didn't match an MVE builtin id at all, go back to the 7882 // main EmitARMBuiltinExpr. 7883 default: 7884 return nullptr; 7885 } 7886 7887 // Anything that breaks from that switch is an MVE builtin that 7888 // needs handwritten code to generate. 7889 7890 switch (CustomCodeGenType) { 7891 7892 case CustomCodeGen::VLD24: { 7893 llvm::SmallVector<Value *, 4> Ops; 7894 llvm::SmallVector<llvm::Type *, 4> Tys; 7895 7896 auto MvecCType = E->getType(); 7897 auto MvecLType = ConvertType(MvecCType); 7898 assert(MvecLType->isStructTy() && 7899 "Return type for vld[24]q should be a struct"); 7900 assert(MvecLType->getStructNumElements() == 1 && 7901 "Return-type struct for vld[24]q should have one element"); 7902 auto MvecLTypeInner = MvecLType->getStructElementType(0); 7903 assert(MvecLTypeInner->isArrayTy() && 7904 "Return-type struct for vld[24]q should contain an array"); 7905 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 7906 "Array member of return-type struct vld[24]q has wrong length"); 7907 auto VecLType = MvecLTypeInner->getArrayElementType(); 7908 7909 Tys.push_back(VecLType); 7910 7911 auto Addr = E->getArg(0); 7912 Ops.push_back(EmitScalarExpr(Addr)); 7913 Tys.push_back(ConvertType(Addr->getType())); 7914 7915 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 7916 Value *LoadResult = Builder.CreateCall(F, Ops); 7917 Value *MvecOut = UndefValue::get(MvecLType); 7918 for (unsigned i = 0; i < NumVectors; ++i) { 7919 Value *Vec = Builder.CreateExtractValue(LoadResult, i); 7920 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i}); 7921 } 7922 7923 if (ReturnValue.isNull()) 7924 return MvecOut; 7925 else 7926 return Builder.CreateStore(MvecOut, ReturnValue.getValue()); 7927 } 7928 7929 case CustomCodeGen::VST24: { 7930 llvm::SmallVector<Value *, 4> Ops; 7931 llvm::SmallVector<llvm::Type *, 4> Tys; 7932 7933 auto Addr = E->getArg(0); 7934 Ops.push_back(EmitScalarExpr(Addr)); 7935 Tys.push_back(ConvertType(Addr->getType())); 7936 7937 auto MvecCType = E->getArg(1)->getType(); 7938 auto MvecLType = ConvertType(MvecCType); 7939 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct"); 7940 assert(MvecLType->getStructNumElements() == 1 && 7941 "Data-type struct for vst2q should have one element"); 7942 auto MvecLTypeInner = MvecLType->getStructElementType(0); 7943 assert(MvecLTypeInner->isArrayTy() && 7944 "Data-type struct for vst2q should contain an array"); 7945 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 7946 "Array member of return-type struct vld[24]q has wrong length"); 7947 auto VecLType = MvecLTypeInner->getArrayElementType(); 7948 7949 Tys.push_back(VecLType); 7950 7951 AggValueSlot MvecSlot = CreateAggTemp(MvecCType); 7952 EmitAggExpr(E->getArg(1), MvecSlot); 7953 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress()); 7954 for (unsigned i = 0; i < NumVectors; i++) 7955 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i})); 7956 7957 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 7958 Value *ToReturn = nullptr; 7959 for (unsigned i = 0; i < NumVectors; i++) { 7960 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i)); 7961 ToReturn = Builder.CreateCall(F, Ops); 7962 Ops.pop_back(); 7963 } 7964 return ToReturn; 7965 } 7966 } 7967 llvm_unreachable("unknown custom codegen type."); 7968 } 7969 7970 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID, 7971 const CallExpr *E, 7972 ReturnValueSlot ReturnValue, 7973 llvm::Triple::ArchType Arch) { 7974 switch (BuiltinID) { 7975 default: 7976 return nullptr; 7977 #include "clang/Basic/arm_cde_builtin_cg.inc" 7978 } 7979 } 7980 7981 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, 7982 const CallExpr *E, 7983 SmallVectorImpl<Value *> &Ops, 7984 llvm::Triple::ArchType Arch) { 7985 unsigned int Int = 0; 7986 const char *s = nullptr; 7987 7988 switch (BuiltinID) { 7989 default: 7990 return nullptr; 7991 case NEON::BI__builtin_neon_vtbl1_v: 7992 case NEON::BI__builtin_neon_vqtbl1_v: 7993 case NEON::BI__builtin_neon_vqtbl1q_v: 7994 case NEON::BI__builtin_neon_vtbl2_v: 7995 case NEON::BI__builtin_neon_vqtbl2_v: 7996 case NEON::BI__builtin_neon_vqtbl2q_v: 7997 case NEON::BI__builtin_neon_vtbl3_v: 7998 case NEON::BI__builtin_neon_vqtbl3_v: 7999 case NEON::BI__builtin_neon_vqtbl3q_v: 8000 case NEON::BI__builtin_neon_vtbl4_v: 8001 case NEON::BI__builtin_neon_vqtbl4_v: 8002 case NEON::BI__builtin_neon_vqtbl4q_v: 8003 break; 8004 case NEON::BI__builtin_neon_vtbx1_v: 8005 case NEON::BI__builtin_neon_vqtbx1_v: 8006 case NEON::BI__builtin_neon_vqtbx1q_v: 8007 case NEON::BI__builtin_neon_vtbx2_v: 8008 case NEON::BI__builtin_neon_vqtbx2_v: 8009 case NEON::BI__builtin_neon_vqtbx2q_v: 8010 case NEON::BI__builtin_neon_vtbx3_v: 8011 case NEON::BI__builtin_neon_vqtbx3_v: 8012 case NEON::BI__builtin_neon_vqtbx3q_v: 8013 case NEON::BI__builtin_neon_vtbx4_v: 8014 case NEON::BI__builtin_neon_vqtbx4_v: 8015 case NEON::BI__builtin_neon_vqtbx4q_v: 8016 break; 8017 } 8018 8019 assert(E->getNumArgs() >= 3); 8020 8021 // Get the last argument, which specifies the vector type. 8022 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 8023 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext()); 8024 if (!Result) 8025 return nullptr; 8026 8027 // Determine the type of this overloaded NEON intrinsic. 8028 NeonTypeFlags Type = Result->getZExtValue(); 8029 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type); 8030 if (!Ty) 8031 return nullptr; 8032 8033 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8034 8035 // AArch64 scalar builtins are not overloaded, they do not have an extra 8036 // argument that specifies the vector type, need to handle each case. 8037 switch (BuiltinID) { 8038 case NEON::BI__builtin_neon_vtbl1_v: { 8039 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, 8040 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, 8041 "vtbl1"); 8042 } 8043 case NEON::BI__builtin_neon_vtbl2_v: { 8044 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, 8045 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, 8046 "vtbl1"); 8047 } 8048 case NEON::BI__builtin_neon_vtbl3_v: { 8049 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, 8050 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, 8051 "vtbl2"); 8052 } 8053 case NEON::BI__builtin_neon_vtbl4_v: { 8054 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, 8055 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, 8056 "vtbl2"); 8057 } 8058 case NEON::BI__builtin_neon_vtbx1_v: { 8059 Value *TblRes = 8060 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], 8061 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); 8062 8063 llvm::Constant *EightV = ConstantInt::get(Ty, 8); 8064 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); 8065 CmpRes = Builder.CreateSExt(CmpRes, Ty); 8066 8067 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 8068 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 8069 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 8070 } 8071 case NEON::BI__builtin_neon_vtbx2_v: { 8072 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], 8073 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, 8074 "vtbx1"); 8075 } 8076 case NEON::BI__builtin_neon_vtbx3_v: { 8077 Value *TblRes = 8078 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], 8079 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); 8080 8081 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); 8082 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], 8083 TwentyFourV); 8084 CmpRes = Builder.CreateSExt(CmpRes, Ty); 8085 8086 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 8087 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 8088 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 8089 } 8090 case NEON::BI__builtin_neon_vtbx4_v: { 8091 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], 8092 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, 8093 "vtbx2"); 8094 } 8095 case NEON::BI__builtin_neon_vqtbl1_v: 8096 case NEON::BI__builtin_neon_vqtbl1q_v: 8097 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; 8098 case NEON::BI__builtin_neon_vqtbl2_v: 8099 case NEON::BI__builtin_neon_vqtbl2q_v: { 8100 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; 8101 case NEON::BI__builtin_neon_vqtbl3_v: 8102 case NEON::BI__builtin_neon_vqtbl3q_v: 8103 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; 8104 case NEON::BI__builtin_neon_vqtbl4_v: 8105 case NEON::BI__builtin_neon_vqtbl4q_v: 8106 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; 8107 case NEON::BI__builtin_neon_vqtbx1_v: 8108 case NEON::BI__builtin_neon_vqtbx1q_v: 8109 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; 8110 case NEON::BI__builtin_neon_vqtbx2_v: 8111 case NEON::BI__builtin_neon_vqtbx2q_v: 8112 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; 8113 case NEON::BI__builtin_neon_vqtbx3_v: 8114 case NEON::BI__builtin_neon_vqtbx3q_v: 8115 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; 8116 case NEON::BI__builtin_neon_vqtbx4_v: 8117 case NEON::BI__builtin_neon_vqtbx4q_v: 8118 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; 8119 } 8120 } 8121 8122 if (!Int) 8123 return nullptr; 8124 8125 Function *F = CGF.CGM.getIntrinsic(Int, Ty); 8126 return CGF.EmitNeonCall(F, Ops, s); 8127 } 8128 8129 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { 8130 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4); 8131 Op = Builder.CreateBitCast(Op, Int16Ty); 8132 Value *V = UndefValue::get(VTy); 8133 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 8134 Op = Builder.CreateInsertElement(V, Op, CI); 8135 return Op; 8136 } 8137 8138 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 8139 /// access builtin. Only required if it can't be inferred from the base pointer 8140 /// operand. 8141 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) { 8142 switch (TypeFlags.getMemEltType()) { 8143 case SVETypeFlags::MemEltTyDefault: 8144 return getEltType(TypeFlags); 8145 case SVETypeFlags::MemEltTyInt8: 8146 return Builder.getInt8Ty(); 8147 case SVETypeFlags::MemEltTyInt16: 8148 return Builder.getInt16Ty(); 8149 case SVETypeFlags::MemEltTyInt32: 8150 return Builder.getInt32Ty(); 8151 case SVETypeFlags::MemEltTyInt64: 8152 return Builder.getInt64Ty(); 8153 } 8154 llvm_unreachable("Unknown MemEltType"); 8155 } 8156 8157 llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) { 8158 switch (TypeFlags.getEltType()) { 8159 default: 8160 llvm_unreachable("Invalid SVETypeFlag!"); 8161 8162 case SVETypeFlags::EltTyInt8: 8163 return Builder.getInt8Ty(); 8164 case SVETypeFlags::EltTyInt16: 8165 return Builder.getInt16Ty(); 8166 case SVETypeFlags::EltTyInt32: 8167 return Builder.getInt32Ty(); 8168 case SVETypeFlags::EltTyInt64: 8169 return Builder.getInt64Ty(); 8170 8171 case SVETypeFlags::EltTyFloat16: 8172 return Builder.getHalfTy(); 8173 case SVETypeFlags::EltTyFloat32: 8174 return Builder.getFloatTy(); 8175 case SVETypeFlags::EltTyFloat64: 8176 return Builder.getDoubleTy(); 8177 8178 case SVETypeFlags::EltTyBFloat16: 8179 return Builder.getBFloatTy(); 8180 8181 case SVETypeFlags::EltTyBool8: 8182 case SVETypeFlags::EltTyBool16: 8183 case SVETypeFlags::EltTyBool32: 8184 case SVETypeFlags::EltTyBool64: 8185 return Builder.getInt1Ty(); 8186 } 8187 } 8188 8189 // Return the llvm predicate vector type corresponding to the specified element 8190 // TypeFlags. 8191 llvm::ScalableVectorType * 8192 CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) { 8193 switch (TypeFlags.getEltType()) { 8194 default: llvm_unreachable("Unhandled SVETypeFlag!"); 8195 8196 case SVETypeFlags::EltTyInt8: 8197 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8198 case SVETypeFlags::EltTyInt16: 8199 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8200 case SVETypeFlags::EltTyInt32: 8201 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8202 case SVETypeFlags::EltTyInt64: 8203 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8204 8205 case SVETypeFlags::EltTyBFloat16: 8206 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8207 case SVETypeFlags::EltTyFloat16: 8208 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8209 case SVETypeFlags::EltTyFloat32: 8210 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8211 case SVETypeFlags::EltTyFloat64: 8212 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8213 8214 case SVETypeFlags::EltTyBool8: 8215 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8216 case SVETypeFlags::EltTyBool16: 8217 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8218 case SVETypeFlags::EltTyBool32: 8219 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8220 case SVETypeFlags::EltTyBool64: 8221 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8222 } 8223 } 8224 8225 // Return the llvm vector type corresponding to the specified element TypeFlags. 8226 llvm::ScalableVectorType * 8227 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) { 8228 switch (TypeFlags.getEltType()) { 8229 default: 8230 llvm_unreachable("Invalid SVETypeFlag!"); 8231 8232 case SVETypeFlags::EltTyInt8: 8233 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16); 8234 case SVETypeFlags::EltTyInt16: 8235 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8); 8236 case SVETypeFlags::EltTyInt32: 8237 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4); 8238 case SVETypeFlags::EltTyInt64: 8239 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2); 8240 8241 case SVETypeFlags::EltTyFloat16: 8242 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8); 8243 case SVETypeFlags::EltTyBFloat16: 8244 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8); 8245 case SVETypeFlags::EltTyFloat32: 8246 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4); 8247 case SVETypeFlags::EltTyFloat64: 8248 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2); 8249 8250 case SVETypeFlags::EltTyBool8: 8251 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8252 case SVETypeFlags::EltTyBool16: 8253 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8254 case SVETypeFlags::EltTyBool32: 8255 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8256 case SVETypeFlags::EltTyBool64: 8257 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8258 } 8259 } 8260 8261 llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) { 8262 Function *Ptrue = 8263 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags)); 8264 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)}); 8265 } 8266 8267 constexpr unsigned SVEBitsPerBlock = 128; 8268 8269 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) { 8270 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits(); 8271 return llvm::ScalableVectorType::get(EltTy, NumElts); 8272 } 8273 8274 // Reinterpret the input predicate so that it can be used to correctly isolate 8275 // the elements of the specified datatype. 8276 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred, 8277 llvm::ScalableVectorType *VTy) { 8278 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy); 8279 if (Pred->getType() == RTy) 8280 return Pred; 8281 8282 unsigned IntID; 8283 llvm::Type *IntrinsicTy; 8284 switch (VTy->getMinNumElements()) { 8285 default: 8286 llvm_unreachable("unsupported element count!"); 8287 case 2: 8288 case 4: 8289 case 8: 8290 IntID = Intrinsic::aarch64_sve_convert_from_svbool; 8291 IntrinsicTy = RTy; 8292 break; 8293 case 16: 8294 IntID = Intrinsic::aarch64_sve_convert_to_svbool; 8295 IntrinsicTy = Pred->getType(); 8296 break; 8297 } 8298 8299 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy); 8300 Value *C = Builder.CreateCall(F, Pred); 8301 assert(C->getType() == RTy && "Unexpected return type!"); 8302 return C; 8303 } 8304 8305 Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags, 8306 SmallVectorImpl<Value *> &Ops, 8307 unsigned IntID) { 8308 auto *ResultTy = getSVEType(TypeFlags); 8309 auto *OverloadedTy = 8310 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy); 8311 8312 // At the ACLE level there's only one predicate type, svbool_t, which is 8313 // mapped to <n x 16 x i1>. However, this might be incompatible with the 8314 // actual type being loaded. For example, when loading doubles (i64) the 8315 // predicated should be <n x 2 x i1> instead. At the IR level the type of 8316 // the predicate and the data being loaded must match. Cast accordingly. 8317 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); 8318 8319 Function *F = nullptr; 8320 if (Ops[1]->getType()->isVectorTy()) 8321 // This is the "vector base, scalar offset" case. In order to uniquely 8322 // map this built-in to an LLVM IR intrinsic, we need both the return type 8323 // and the type of the vector base. 8324 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()}); 8325 else 8326 // This is the "scalar base, vector offset case". The type of the offset 8327 // is encoded in the name of the intrinsic. We only need to specify the 8328 // return type in order to uniquely map this built-in to an LLVM IR 8329 // intrinsic. 8330 F = CGM.getIntrinsic(IntID, OverloadedTy); 8331 8332 // Pass 0 when the offset is missing. This can only be applied when using 8333 // the "vector base" addressing mode for which ACLE allows no offset. The 8334 // corresponding LLVM IR always requires an offset. 8335 if (Ops.size() == 2) { 8336 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); 8337 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8338 } 8339 8340 // For "vector base, scalar index" scale the index so that it becomes a 8341 // scalar offset. 8342 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) { 8343 unsigned BytesPerElt = 8344 OverloadedTy->getElementType()->getScalarSizeInBits() / 8; 8345 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8346 Ops[2] = Builder.CreateMul(Ops[2], Scale); 8347 } 8348 8349 Value *Call = Builder.CreateCall(F, Ops); 8350 8351 // The following sext/zext is only needed when ResultTy != OverloadedTy. In 8352 // other cases it's folded into a nop. 8353 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy) 8354 : Builder.CreateSExt(Call, ResultTy); 8355 } 8356 8357 Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags, 8358 SmallVectorImpl<Value *> &Ops, 8359 unsigned IntID) { 8360 auto *SrcDataTy = getSVEType(TypeFlags); 8361 auto *OverloadedTy = 8362 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy); 8363 8364 // In ACLE the source data is passed in the last argument, whereas in LLVM IR 8365 // it's the first argument. Move it accordingly. 8366 Ops.insert(Ops.begin(), Ops.pop_back_val()); 8367 8368 Function *F = nullptr; 8369 if (Ops[2]->getType()->isVectorTy()) 8370 // This is the "vector base, scalar offset" case. In order to uniquely 8371 // map this built-in to an LLVM IR intrinsic, we need both the return type 8372 // and the type of the vector base. 8373 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()}); 8374 else 8375 // This is the "scalar base, vector offset case". The type of the offset 8376 // is encoded in the name of the intrinsic. We only need to specify the 8377 // return type in order to uniquely map this built-in to an LLVM IR 8378 // intrinsic. 8379 F = CGM.getIntrinsic(IntID, OverloadedTy); 8380 8381 // Pass 0 when the offset is missing. This can only be applied when using 8382 // the "vector base" addressing mode for which ACLE allows no offset. The 8383 // corresponding LLVM IR always requires an offset. 8384 if (Ops.size() == 3) { 8385 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); 8386 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8387 } 8388 8389 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's 8390 // folded into a nop. 8391 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy); 8392 8393 // At the ACLE level there's only one predicate type, svbool_t, which is 8394 // mapped to <n x 16 x i1>. However, this might be incompatible with the 8395 // actual type being stored. For example, when storing doubles (i64) the 8396 // predicated should be <n x 2 x i1> instead. At the IR level the type of 8397 // the predicate and the data being stored must match. Cast accordingly. 8398 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy); 8399 8400 // For "vector base, scalar index" scale the index so that it becomes a 8401 // scalar offset. 8402 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) { 8403 unsigned BytesPerElt = 8404 OverloadedTy->getElementType()->getScalarSizeInBits() / 8; 8405 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8406 Ops[3] = Builder.CreateMul(Ops[3], Scale); 8407 } 8408 8409 return Builder.CreateCall(F, Ops); 8410 } 8411 8412 Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 8413 SmallVectorImpl<Value *> &Ops, 8414 unsigned IntID) { 8415 // The gather prefetches are overloaded on the vector input - this can either 8416 // be the vector of base addresses or vector of offsets. 8417 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType()); 8418 if (!OverloadedTy) 8419 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType()); 8420 8421 // Cast the predicate from svbool_t to the right number of elements. 8422 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); 8423 8424 // vector + imm addressing modes 8425 if (Ops[1]->getType()->isVectorTy()) { 8426 if (Ops.size() == 3) { 8427 // Pass 0 for 'vector+imm' when the index is omitted. 8428 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8429 8430 // The sv_prfop is the last operand in the builtin and IR intrinsic. 8431 std::swap(Ops[2], Ops[3]); 8432 } else { 8433 // Index needs to be passed as scaled offset. 8434 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); 8435 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8; 8436 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8437 Ops[2] = Builder.CreateMul(Ops[2], Scale); 8438 } 8439 } 8440 8441 Function *F = CGM.getIntrinsic(IntID, OverloadedTy); 8442 return Builder.CreateCall(F, Ops); 8443 } 8444 8445 Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags, 8446 SmallVectorImpl<Value*> &Ops, 8447 unsigned IntID) { 8448 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); 8449 auto VecPtrTy = llvm::PointerType::getUnqual(VTy); 8450 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); 8451 8452 unsigned N; 8453 switch (IntID) { 8454 case Intrinsic::aarch64_sve_ld2: 8455 N = 2; 8456 break; 8457 case Intrinsic::aarch64_sve_ld3: 8458 N = 3; 8459 break; 8460 case Intrinsic::aarch64_sve_ld4: 8461 N = 4; 8462 break; 8463 default: 8464 llvm_unreachable("unknown intrinsic!"); 8465 } 8466 auto RetTy = llvm::VectorType::get(VTy->getElementType(), 8467 VTy->getElementCount() * N); 8468 8469 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); 8470 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy); 8471 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); 8472 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); 8473 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); 8474 8475 Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()}); 8476 return Builder.CreateCall(F, { Predicate, BasePtr }); 8477 } 8478 8479 Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags, 8480 SmallVectorImpl<Value*> &Ops, 8481 unsigned IntID) { 8482 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); 8483 auto VecPtrTy = llvm::PointerType::getUnqual(VTy); 8484 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); 8485 8486 unsigned N; 8487 switch (IntID) { 8488 case Intrinsic::aarch64_sve_st2: 8489 N = 2; 8490 break; 8491 case Intrinsic::aarch64_sve_st3: 8492 N = 3; 8493 break; 8494 case Intrinsic::aarch64_sve_st4: 8495 N = 4; 8496 break; 8497 default: 8498 llvm_unreachable("unknown intrinsic!"); 8499 } 8500 auto TupleTy = 8501 llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N); 8502 8503 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); 8504 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy); 8505 Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0); 8506 Value *Val = Ops.back(); 8507 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); 8508 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); 8509 8510 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we 8511 // need to break up the tuple vector. 8512 SmallVector<llvm::Value*, 5> Operands; 8513 Function *FExtr = 8514 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); 8515 for (unsigned I = 0; I < N; ++I) 8516 Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)})); 8517 Operands.append({Predicate, BasePtr}); 8518 8519 Function *F = CGM.getIntrinsic(IntID, { VTy }); 8520 return Builder.CreateCall(F, Operands); 8521 } 8522 8523 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and 8524 // svpmullt_pair intrinsics, with the exception that their results are bitcast 8525 // to a wider type. 8526 Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags, 8527 SmallVectorImpl<Value *> &Ops, 8528 unsigned BuiltinID) { 8529 // Splat scalar operand to vector (intrinsics with _n infix) 8530 if (TypeFlags.hasSplatOperand()) { 8531 unsigned OpNo = TypeFlags.getSplatOperand(); 8532 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); 8533 } 8534 8535 // The pair-wise function has a narrower overloaded type. 8536 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType()); 8537 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]}); 8538 8539 // Now bitcast to the wider result type. 8540 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags); 8541 return EmitSVEReinterpret(Call, Ty); 8542 } 8543 8544 Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags, 8545 ArrayRef<Value *> Ops, unsigned BuiltinID) { 8546 llvm::Type *OverloadedTy = getSVEType(TypeFlags); 8547 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy); 8548 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)}); 8549 } 8550 8551 Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 8552 SmallVectorImpl<Value *> &Ops, 8553 unsigned BuiltinID) { 8554 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); 8555 auto *VectorTy = getSVEVectorForElementType(MemEltTy); 8556 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8557 8558 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8559 Value *BasePtr = Ops[1]; 8560 8561 // Implement the index operand if not omitted. 8562 if (Ops.size() > 3) { 8563 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo()); 8564 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]); 8565 } 8566 8567 // Prefetch intriniscs always expect an i8* 8568 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty)); 8569 Value *PrfOp = Ops.back(); 8570 8571 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType()); 8572 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp}); 8573 } 8574 8575 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E, 8576 llvm::Type *ReturnTy, 8577 SmallVectorImpl<Value *> &Ops, 8578 unsigned BuiltinID, 8579 bool IsZExtReturn) { 8580 QualType LangPTy = E->getArg(1)->getType(); 8581 llvm::Type *MemEltTy = CGM.getTypes().ConvertType( 8582 LangPTy->getAs<PointerType>()->getPointeeType()); 8583 8584 // The vector type that is returned may be different from the 8585 // eventual type loaded from memory. 8586 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy); 8587 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8588 8589 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8590 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); 8591 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); 8592 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); 8593 8594 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); 8595 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); 8596 Value *Load = Builder.CreateCall(F, {Predicate, BasePtr}); 8597 8598 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy) 8599 : Builder.CreateSExt(Load, VectorTy); 8600 } 8601 8602 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E, 8603 SmallVectorImpl<Value *> &Ops, 8604 unsigned BuiltinID) { 8605 QualType LangPTy = E->getArg(1)->getType(); 8606 llvm::Type *MemEltTy = CGM.getTypes().ConvertType( 8607 LangPTy->getAs<PointerType>()->getPointeeType()); 8608 8609 // The vector type that is stored may be different from the 8610 // eventual type stored to memory. 8611 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType()); 8612 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8613 8614 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8615 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); 8616 Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0); 8617 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); 8618 8619 // Last value is always the data 8620 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy); 8621 8622 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); 8623 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); 8624 return Builder.CreateCall(F, {Val, Predicate, BasePtr}); 8625 } 8626 8627 // Limit the usage of scalable llvm IR generated by the ACLE by using the 8628 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat. 8629 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) { 8630 auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty); 8631 return Builder.CreateCall(F, Scalar); 8632 } 8633 8634 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) { 8635 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType())); 8636 } 8637 8638 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) { 8639 // FIXME: For big endian this needs an additional REV, or needs a separate 8640 // intrinsic that is code-generated as a no-op, because the LLVM bitcast 8641 // instruction is defined as 'bitwise' equivalent from memory point of 8642 // view (when storing/reloading), whereas the svreinterpret builtin 8643 // implements bitwise equivalent cast from register point of view. 8644 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian. 8645 return Builder.CreateBitCast(Val, Ty); 8646 } 8647 8648 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty, 8649 SmallVectorImpl<Value *> &Ops) { 8650 auto *SplatZero = Constant::getNullValue(Ty); 8651 Ops.insert(Ops.begin(), SplatZero); 8652 } 8653 8654 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty, 8655 SmallVectorImpl<Value *> &Ops) { 8656 auto *SplatUndef = UndefValue::get(Ty); 8657 Ops.insert(Ops.begin(), SplatUndef); 8658 } 8659 8660 SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes( 8661 SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) { 8662 if (TypeFlags.isOverloadNone()) 8663 return {}; 8664 8665 llvm::Type *DefaultType = getSVEType(TypeFlags); 8666 8667 if (TypeFlags.isOverloadWhile()) 8668 return {DefaultType, Ops[1]->getType()}; 8669 8670 if (TypeFlags.isOverloadWhileRW()) 8671 return {getSVEPredType(TypeFlags), Ops[0]->getType()}; 8672 8673 if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet()) 8674 return {Ops[0]->getType(), Ops.back()->getType()}; 8675 8676 if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet()) 8677 return {ResultType, Ops[0]->getType()}; 8678 8679 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads"); 8680 return {DefaultType}; 8681 } 8682 8683 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, 8684 const CallExpr *E) { 8685 // Find out if any arguments are required to be integer constant expressions. 8686 unsigned ICEArguments = 0; 8687 ASTContext::GetBuiltinTypeError Error; 8688 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 8689 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 8690 8691 llvm::Type *Ty = ConvertType(E->getType()); 8692 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 && 8693 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) { 8694 Value *Val = EmitScalarExpr(E->getArg(0)); 8695 return EmitSVEReinterpret(Val, Ty); 8696 } 8697 8698 llvm::SmallVector<Value *, 4> Ops; 8699 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 8700 if ((ICEArguments & (1 << i)) == 0) 8701 Ops.push_back(EmitScalarExpr(E->getArg(i))); 8702 else { 8703 // If this is required to be a constant, constant fold it so that we know 8704 // that the generated intrinsic gets a ConstantInt. 8705 Optional<llvm::APSInt> Result = 8706 E->getArg(i)->getIntegerConstantExpr(getContext()); 8707 assert(Result && "Expected argument to be a constant"); 8708 8709 // Immediates for SVE llvm intrinsics are always 32bit. We can safely 8710 // truncate because the immediate has been range checked and no valid 8711 // immediate requires more than a handful of bits. 8712 *Result = Result->extOrTrunc(32); 8713 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result)); 8714 } 8715 } 8716 8717 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID, 8718 AArch64SVEIntrinsicsProvenSorted); 8719 SVETypeFlags TypeFlags(Builtin->TypeModifier); 8720 if (TypeFlags.isLoad()) 8721 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic, 8722 TypeFlags.isZExtReturn()); 8723 else if (TypeFlags.isStore()) 8724 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic); 8725 else if (TypeFlags.isGatherLoad()) 8726 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8727 else if (TypeFlags.isScatterStore()) 8728 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8729 else if (TypeFlags.isPrefetch()) 8730 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8731 else if (TypeFlags.isGatherPrefetch()) 8732 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8733 else if (TypeFlags.isStructLoad()) 8734 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8735 else if (TypeFlags.isStructStore()) 8736 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8737 else if (TypeFlags.isUndef()) 8738 return UndefValue::get(Ty); 8739 else if (Builtin->LLVMIntrinsic != 0) { 8740 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp) 8741 InsertExplicitZeroOperand(Builder, Ty, Ops); 8742 8743 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp) 8744 InsertExplicitUndefOperand(Builder, Ty, Ops); 8745 8746 // Some ACLE builtins leave out the argument to specify the predicate 8747 // pattern, which is expected to be expanded to an SV_ALL pattern. 8748 if (TypeFlags.isAppendSVALL()) 8749 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31)); 8750 if (TypeFlags.isInsertOp1SVALL()) 8751 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31)); 8752 8753 // Predicates must match the main datatype. 8754 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 8755 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType())) 8756 if (PredTy->getElementType()->isIntegerTy(1)) 8757 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags)); 8758 8759 // Splat scalar operand to vector (intrinsics with _n infix) 8760 if (TypeFlags.hasSplatOperand()) { 8761 unsigned OpNo = TypeFlags.getSplatOperand(); 8762 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); 8763 } 8764 8765 if (TypeFlags.isReverseCompare()) 8766 std::swap(Ops[1], Ops[2]); 8767 8768 if (TypeFlags.isReverseUSDOT()) 8769 std::swap(Ops[1], Ops[2]); 8770 8771 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer. 8772 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) { 8773 llvm::Type *OpndTy = Ops[1]->getType(); 8774 auto *SplatZero = Constant::getNullValue(OpndTy); 8775 Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy); 8776 Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero}); 8777 } 8778 8779 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic, 8780 getSVEOverloadTypes(TypeFlags, Ty, Ops)); 8781 Value *Call = Builder.CreateCall(F, Ops); 8782 8783 // Predicate results must be converted to svbool_t. 8784 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType())) 8785 if (PredTy->getScalarType()->isIntegerTy(1)) 8786 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); 8787 8788 return Call; 8789 } 8790 8791 switch (BuiltinID) { 8792 default: 8793 return nullptr; 8794 8795 case SVE::BI__builtin_sve_svmov_b_z: { 8796 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op) 8797 SVETypeFlags TypeFlags(Builtin->TypeModifier); 8798 llvm::Type* OverloadedTy = getSVEType(TypeFlags); 8799 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy); 8800 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]}); 8801 } 8802 8803 case SVE::BI__builtin_sve_svnot_b_z: { 8804 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg) 8805 SVETypeFlags TypeFlags(Builtin->TypeModifier); 8806 llvm::Type* OverloadedTy = getSVEType(TypeFlags); 8807 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy); 8808 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]}); 8809 } 8810 8811 case SVE::BI__builtin_sve_svmovlb_u16: 8812 case SVE::BI__builtin_sve_svmovlb_u32: 8813 case SVE::BI__builtin_sve_svmovlb_u64: 8814 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb); 8815 8816 case SVE::BI__builtin_sve_svmovlb_s16: 8817 case SVE::BI__builtin_sve_svmovlb_s32: 8818 case SVE::BI__builtin_sve_svmovlb_s64: 8819 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb); 8820 8821 case SVE::BI__builtin_sve_svmovlt_u16: 8822 case SVE::BI__builtin_sve_svmovlt_u32: 8823 case SVE::BI__builtin_sve_svmovlt_u64: 8824 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt); 8825 8826 case SVE::BI__builtin_sve_svmovlt_s16: 8827 case SVE::BI__builtin_sve_svmovlt_s32: 8828 case SVE::BI__builtin_sve_svmovlt_s64: 8829 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt); 8830 8831 case SVE::BI__builtin_sve_svpmullt_u16: 8832 case SVE::BI__builtin_sve_svpmullt_u64: 8833 case SVE::BI__builtin_sve_svpmullt_n_u16: 8834 case SVE::BI__builtin_sve_svpmullt_n_u64: 8835 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair); 8836 8837 case SVE::BI__builtin_sve_svpmullb_u16: 8838 case SVE::BI__builtin_sve_svpmullb_u64: 8839 case SVE::BI__builtin_sve_svpmullb_n_u16: 8840 case SVE::BI__builtin_sve_svpmullb_n_u64: 8841 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair); 8842 8843 case SVE::BI__builtin_sve_svdup_n_b8: 8844 case SVE::BI__builtin_sve_svdup_n_b16: 8845 case SVE::BI__builtin_sve_svdup_n_b32: 8846 case SVE::BI__builtin_sve_svdup_n_b64: { 8847 Value *CmpNE = 8848 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType())); 8849 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags); 8850 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy); 8851 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty)); 8852 } 8853 8854 case SVE::BI__builtin_sve_svdupq_n_b8: 8855 case SVE::BI__builtin_sve_svdupq_n_b16: 8856 case SVE::BI__builtin_sve_svdupq_n_b32: 8857 case SVE::BI__builtin_sve_svdupq_n_b64: 8858 case SVE::BI__builtin_sve_svdupq_n_u8: 8859 case SVE::BI__builtin_sve_svdupq_n_s8: 8860 case SVE::BI__builtin_sve_svdupq_n_u64: 8861 case SVE::BI__builtin_sve_svdupq_n_f64: 8862 case SVE::BI__builtin_sve_svdupq_n_s64: 8863 case SVE::BI__builtin_sve_svdupq_n_u16: 8864 case SVE::BI__builtin_sve_svdupq_n_f16: 8865 case SVE::BI__builtin_sve_svdupq_n_bf16: 8866 case SVE::BI__builtin_sve_svdupq_n_s16: 8867 case SVE::BI__builtin_sve_svdupq_n_u32: 8868 case SVE::BI__builtin_sve_svdupq_n_f32: 8869 case SVE::BI__builtin_sve_svdupq_n_s32: { 8870 // These builtins are implemented by storing each element to an array and using 8871 // ld1rq to materialize a vector. 8872 unsigned NumOpnds = Ops.size(); 8873 8874 bool IsBoolTy = 8875 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1); 8876 8877 // For svdupq_n_b* the element type of is an integer of type 128/numelts, 8878 // so that the compare can use the width that is natural for the expected 8879 // number of predicate lanes. 8880 llvm::Type *EltTy = Ops[0]->getType(); 8881 if (IsBoolTy) 8882 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds); 8883 8884 Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds), 8885 CharUnits::fromQuantity(16)); 8886 for (unsigned I = 0; I < NumOpnds; ++I) 8887 Builder.CreateDefaultAlignedStore( 8888 IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I], 8889 Builder.CreateGEP(Alloca.getPointer(), 8890 {Builder.getInt64(0), Builder.getInt64(I)})); 8891 8892 SVETypeFlags TypeFlags(Builtin->TypeModifier); 8893 Value *Pred = EmitSVEAllTruePred(TypeFlags); 8894 8895 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy); 8896 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy); 8897 Value *Alloca0 = Builder.CreateGEP( 8898 Alloca.getPointer(), {Builder.getInt64(0), Builder.getInt64(0)}); 8899 Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0}); 8900 8901 if (!IsBoolTy) 8902 return LD1RQ; 8903 8904 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'. 8905 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne 8906 : Intrinsic::aarch64_sve_cmpne_wide, 8907 OverloadedTy); 8908 Value *Call = 8909 Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))}); 8910 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); 8911 } 8912 8913 case SVE::BI__builtin_sve_svpfalse_b: 8914 return ConstantInt::getFalse(Ty); 8915 8916 case SVE::BI__builtin_sve_svlen_bf16: 8917 case SVE::BI__builtin_sve_svlen_f16: 8918 case SVE::BI__builtin_sve_svlen_f32: 8919 case SVE::BI__builtin_sve_svlen_f64: 8920 case SVE::BI__builtin_sve_svlen_s8: 8921 case SVE::BI__builtin_sve_svlen_s16: 8922 case SVE::BI__builtin_sve_svlen_s32: 8923 case SVE::BI__builtin_sve_svlen_s64: 8924 case SVE::BI__builtin_sve_svlen_u8: 8925 case SVE::BI__builtin_sve_svlen_u16: 8926 case SVE::BI__builtin_sve_svlen_u32: 8927 case SVE::BI__builtin_sve_svlen_u64: { 8928 SVETypeFlags TF(Builtin->TypeModifier); 8929 auto VTy = cast<llvm::VectorType>(getSVEType(TF)); 8930 auto *NumEls = 8931 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue()); 8932 8933 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty); 8934 return Builder.CreateMul(NumEls, Builder.CreateCall(F)); 8935 } 8936 8937 case SVE::BI__builtin_sve_svtbl2_u8: 8938 case SVE::BI__builtin_sve_svtbl2_s8: 8939 case SVE::BI__builtin_sve_svtbl2_u16: 8940 case SVE::BI__builtin_sve_svtbl2_s16: 8941 case SVE::BI__builtin_sve_svtbl2_u32: 8942 case SVE::BI__builtin_sve_svtbl2_s32: 8943 case SVE::BI__builtin_sve_svtbl2_u64: 8944 case SVE::BI__builtin_sve_svtbl2_s64: 8945 case SVE::BI__builtin_sve_svtbl2_f16: 8946 case SVE::BI__builtin_sve_svtbl2_bf16: 8947 case SVE::BI__builtin_sve_svtbl2_f32: 8948 case SVE::BI__builtin_sve_svtbl2_f64: { 8949 SVETypeFlags TF(Builtin->TypeModifier); 8950 auto VTy = cast<llvm::VectorType>(getSVEType(TF)); 8951 auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy); 8952 Function *FExtr = 8953 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); 8954 Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)}); 8955 Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)}); 8956 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy); 8957 return Builder.CreateCall(F, {V0, V1, Ops[1]}); 8958 } 8959 } 8960 8961 /// Should not happen 8962 return nullptr; 8963 } 8964 8965 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, 8966 const CallExpr *E, 8967 llvm::Triple::ArchType Arch) { 8968 if (BuiltinID >= AArch64::FirstSVEBuiltin && 8969 BuiltinID <= AArch64::LastSVEBuiltin) 8970 return EmitAArch64SVEBuiltinExpr(BuiltinID, E); 8971 8972 unsigned HintID = static_cast<unsigned>(-1); 8973 switch (BuiltinID) { 8974 default: break; 8975 case AArch64::BI__builtin_arm_nop: 8976 HintID = 0; 8977 break; 8978 case AArch64::BI__builtin_arm_yield: 8979 case AArch64::BI__yield: 8980 HintID = 1; 8981 break; 8982 case AArch64::BI__builtin_arm_wfe: 8983 case AArch64::BI__wfe: 8984 HintID = 2; 8985 break; 8986 case AArch64::BI__builtin_arm_wfi: 8987 case AArch64::BI__wfi: 8988 HintID = 3; 8989 break; 8990 case AArch64::BI__builtin_arm_sev: 8991 case AArch64::BI__sev: 8992 HintID = 4; 8993 break; 8994 case AArch64::BI__builtin_arm_sevl: 8995 case AArch64::BI__sevl: 8996 HintID = 5; 8997 break; 8998 } 8999 9000 if (HintID != static_cast<unsigned>(-1)) { 9001 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); 9002 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); 9003 } 9004 9005 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 9006 Value *Address = EmitScalarExpr(E->getArg(0)); 9007 Value *RW = EmitScalarExpr(E->getArg(1)); 9008 Value *CacheLevel = EmitScalarExpr(E->getArg(2)); 9009 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); 9010 Value *IsData = EmitScalarExpr(E->getArg(4)); 9011 9012 Value *Locality = nullptr; 9013 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) { 9014 // Temporal fetch, needs to convert cache level to locality. 9015 Locality = llvm::ConstantInt::get(Int32Ty, 9016 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3); 9017 } else { 9018 // Streaming fetch. 9019 Locality = llvm::ConstantInt::get(Int32Ty, 0); 9020 } 9021 9022 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify 9023 // PLDL3STRM or PLDL2STRM. 9024 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 9025 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 9026 } 9027 9028 if (BuiltinID == AArch64::BI__builtin_arm_rbit) { 9029 assert((getContext().getTypeSize(E->getType()) == 32) && 9030 "rbit of unusual size!"); 9031 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9032 return Builder.CreateCall( 9033 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 9034 } 9035 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { 9036 assert((getContext().getTypeSize(E->getType()) == 64) && 9037 "rbit of unusual size!"); 9038 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9039 return Builder.CreateCall( 9040 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 9041 } 9042 9043 if (BuiltinID == AArch64::BI__builtin_arm_cls) { 9044 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9045 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg, 9046 "cls"); 9047 } 9048 if (BuiltinID == AArch64::BI__builtin_arm_cls64) { 9049 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9050 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg, 9051 "cls"); 9052 } 9053 9054 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) { 9055 assert((getContext().getTypeSize(E->getType()) == 32) && 9056 "__jcvt of unusual size!"); 9057 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9058 return Builder.CreateCall( 9059 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg); 9060 } 9061 9062 if (BuiltinID == AArch64::BI__builtin_arm_ld64b || 9063 BuiltinID == AArch64::BI__builtin_arm_st64b || 9064 BuiltinID == AArch64::BI__builtin_arm_st64bv || 9065 BuiltinID == AArch64::BI__builtin_arm_st64bv0) { 9066 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0)); 9067 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1)); 9068 9069 if (BuiltinID == AArch64::BI__builtin_arm_ld64b) { 9070 // Load from the address via an LLVM intrinsic, receiving a 9071 // tuple of 8 i64 words, and store each one to ValPtr. 9072 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b); 9073 llvm::Value *Val = Builder.CreateCall(F, MemAddr); 9074 llvm::Value *ToRet; 9075 for (size_t i = 0; i < 8; i++) { 9076 llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i)); 9077 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); 9078 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr); 9079 } 9080 return ToRet; 9081 } else { 9082 // Load 8 i64 words from ValPtr, and store them to the address 9083 // via an LLVM intrinsic. 9084 SmallVector<llvm::Value *, 9> Args; 9085 Args.push_back(MemAddr); 9086 for (size_t i = 0; i < 8; i++) { 9087 llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i)); 9088 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); 9089 Args.push_back(Builder.CreateLoad(Addr)); 9090 } 9091 9092 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b 9093 ? Intrinsic::aarch64_st64b 9094 : BuiltinID == AArch64::BI__builtin_arm_st64bv 9095 ? Intrinsic::aarch64_st64bv 9096 : Intrinsic::aarch64_st64bv0); 9097 Function *F = CGM.getIntrinsic(Intr); 9098 return Builder.CreateCall(F, Args); 9099 } 9100 } 9101 9102 if (BuiltinID == AArch64::BI__clear_cache) { 9103 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 9104 const FunctionDecl *FD = E->getDirectCallee(); 9105 Value *Ops[2]; 9106 for (unsigned i = 0; i < 2; i++) 9107 Ops[i] = EmitScalarExpr(E->getArg(i)); 9108 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 9109 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 9110 StringRef Name = FD->getName(); 9111 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 9112 } 9113 9114 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || 9115 BuiltinID == AArch64::BI__builtin_arm_ldaex) && 9116 getContext().getTypeSize(E->getType()) == 128) { 9117 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 9118 ? Intrinsic::aarch64_ldaxp 9119 : Intrinsic::aarch64_ldxp); 9120 9121 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 9122 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 9123 "ldxp"); 9124 9125 Value *Val0 = Builder.CreateExtractValue(Val, 1); 9126 Value *Val1 = Builder.CreateExtractValue(Val, 0); 9127 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 9128 Val0 = Builder.CreateZExt(Val0, Int128Ty); 9129 Val1 = Builder.CreateZExt(Val1, Int128Ty); 9130 9131 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); 9132 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 9133 Val = Builder.CreateOr(Val, Val1); 9134 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 9135 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 9136 BuiltinID == AArch64::BI__builtin_arm_ldaex) { 9137 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 9138 9139 QualType Ty = E->getType(); 9140 llvm::Type *RealResTy = ConvertType(Ty); 9141 llvm::Type *PtrTy = llvm::IntegerType::get( 9142 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 9143 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 9144 9145 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 9146 ? Intrinsic::aarch64_ldaxr 9147 : Intrinsic::aarch64_ldxr, 9148 PtrTy); 9149 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); 9150 9151 if (RealResTy->isPointerTy()) 9152 return Builder.CreateIntToPtr(Val, RealResTy); 9153 9154 llvm::Type *IntResTy = llvm::IntegerType::get( 9155 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 9156 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 9157 return Builder.CreateBitCast(Val, RealResTy); 9158 } 9159 9160 if ((BuiltinID == AArch64::BI__builtin_arm_strex || 9161 BuiltinID == AArch64::BI__builtin_arm_stlex) && 9162 getContext().getTypeSize(E->getArg(0)->getType()) == 128) { 9163 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 9164 ? Intrinsic::aarch64_stlxp 9165 : Intrinsic::aarch64_stxp); 9166 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); 9167 9168 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 9169 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); 9170 9171 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); 9172 llvm::Value *Val = Builder.CreateLoad(Tmp); 9173 9174 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 9175 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 9176 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), 9177 Int8PtrTy); 9178 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); 9179 } 9180 9181 if (BuiltinID == AArch64::BI__builtin_arm_strex || 9182 BuiltinID == AArch64::BI__builtin_arm_stlex) { 9183 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 9184 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 9185 9186 QualType Ty = E->getArg(0)->getType(); 9187 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 9188 getContext().getTypeSize(Ty)); 9189 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 9190 9191 if (StoreVal->getType()->isPointerTy()) 9192 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); 9193 else { 9194 llvm::Type *IntTy = llvm::IntegerType::get( 9195 getLLVMContext(), 9196 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 9197 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 9198 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); 9199 } 9200 9201 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 9202 ? Intrinsic::aarch64_stlxr 9203 : Intrinsic::aarch64_stxr, 9204 StoreAddr->getType()); 9205 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); 9206 } 9207 9208 if (BuiltinID == AArch64::BI__getReg) { 9209 Expr::EvalResult Result; 9210 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 9211 llvm_unreachable("Sema will ensure that the parameter is constant"); 9212 9213 llvm::APSInt Value = Result.Val.getInt(); 9214 LLVMContext &Context = CGM.getLLVMContext(); 9215 std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10); 9216 9217 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)}; 9218 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 9219 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 9220 9221 llvm::Function *F = 9222 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty}); 9223 return Builder.CreateCall(F, Metadata); 9224 } 9225 9226 if (BuiltinID == AArch64::BI__builtin_arm_clrex) { 9227 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); 9228 return Builder.CreateCall(F); 9229 } 9230 9231 if (BuiltinID == AArch64::BI_ReadWriteBarrier) 9232 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 9233 llvm::SyncScope::SingleThread); 9234 9235 // CRC32 9236 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 9237 switch (BuiltinID) { 9238 case AArch64::BI__builtin_arm_crc32b: 9239 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; 9240 case AArch64::BI__builtin_arm_crc32cb: 9241 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; 9242 case AArch64::BI__builtin_arm_crc32h: 9243 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; 9244 case AArch64::BI__builtin_arm_crc32ch: 9245 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; 9246 case AArch64::BI__builtin_arm_crc32w: 9247 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; 9248 case AArch64::BI__builtin_arm_crc32cw: 9249 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; 9250 case AArch64::BI__builtin_arm_crc32d: 9251 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; 9252 case AArch64::BI__builtin_arm_crc32cd: 9253 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; 9254 } 9255 9256 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 9257 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 9258 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 9259 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 9260 9261 llvm::Type *DataTy = F->getFunctionType()->getParamType(1); 9262 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); 9263 9264 return Builder.CreateCall(F, {Arg0, Arg1}); 9265 } 9266 9267 // Memory Tagging Extensions (MTE) Intrinsics 9268 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic; 9269 switch (BuiltinID) { 9270 case AArch64::BI__builtin_arm_irg: 9271 MTEIntrinsicID = Intrinsic::aarch64_irg; break; 9272 case AArch64::BI__builtin_arm_addg: 9273 MTEIntrinsicID = Intrinsic::aarch64_addg; break; 9274 case AArch64::BI__builtin_arm_gmi: 9275 MTEIntrinsicID = Intrinsic::aarch64_gmi; break; 9276 case AArch64::BI__builtin_arm_ldg: 9277 MTEIntrinsicID = Intrinsic::aarch64_ldg; break; 9278 case AArch64::BI__builtin_arm_stg: 9279 MTEIntrinsicID = Intrinsic::aarch64_stg; break; 9280 case AArch64::BI__builtin_arm_subp: 9281 MTEIntrinsicID = Intrinsic::aarch64_subp; break; 9282 } 9283 9284 if (MTEIntrinsicID != Intrinsic::not_intrinsic) { 9285 llvm::Type *T = ConvertType(E->getType()); 9286 9287 if (MTEIntrinsicID == Intrinsic::aarch64_irg) { 9288 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9289 Value *Mask = EmitScalarExpr(E->getArg(1)); 9290 9291 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9292 Mask = Builder.CreateZExt(Mask, Int64Ty); 9293 Value *RV = Builder.CreateCall( 9294 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask}); 9295 return Builder.CreatePointerCast(RV, T); 9296 } 9297 if (MTEIntrinsicID == Intrinsic::aarch64_addg) { 9298 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9299 Value *TagOffset = EmitScalarExpr(E->getArg(1)); 9300 9301 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9302 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty); 9303 Value *RV = Builder.CreateCall( 9304 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset}); 9305 return Builder.CreatePointerCast(RV, T); 9306 } 9307 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) { 9308 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9309 Value *ExcludedMask = EmitScalarExpr(E->getArg(1)); 9310 9311 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty); 9312 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9313 return Builder.CreateCall( 9314 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask}); 9315 } 9316 // Although it is possible to supply a different return 9317 // address (first arg) to this intrinsic, for now we set 9318 // return address same as input address. 9319 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) { 9320 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 9321 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 9322 Value *RV = Builder.CreateCall( 9323 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 9324 return Builder.CreatePointerCast(RV, T); 9325 } 9326 // Although it is possible to supply a different tag (to set) 9327 // to this intrinsic (as first arg), for now we supply 9328 // the tag that is in input address arg (common use case). 9329 if (MTEIntrinsicID == Intrinsic::aarch64_stg) { 9330 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 9331 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 9332 return Builder.CreateCall( 9333 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 9334 } 9335 if (MTEIntrinsicID == Intrinsic::aarch64_subp) { 9336 Value *PointerA = EmitScalarExpr(E->getArg(0)); 9337 Value *PointerB = EmitScalarExpr(E->getArg(1)); 9338 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy); 9339 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy); 9340 return Builder.CreateCall( 9341 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB}); 9342 } 9343 } 9344 9345 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 9346 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 9347 BuiltinID == AArch64::BI__builtin_arm_rsrp || 9348 BuiltinID == AArch64::BI__builtin_arm_wsr || 9349 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 9350 BuiltinID == AArch64::BI__builtin_arm_wsrp) { 9351 9352 SpecialRegisterAccessKind AccessKind = Write; 9353 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 9354 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 9355 BuiltinID == AArch64::BI__builtin_arm_rsrp) 9356 AccessKind = VolatileRead; 9357 9358 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || 9359 BuiltinID == AArch64::BI__builtin_arm_wsrp; 9360 9361 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && 9362 BuiltinID != AArch64::BI__builtin_arm_wsr; 9363 9364 llvm::Type *ValueType; 9365 llvm::Type *RegisterType = Int64Ty; 9366 if (IsPointerBuiltin) { 9367 ValueType = VoidPtrTy; 9368 } else if (Is64Bit) { 9369 ValueType = Int64Ty; 9370 } else { 9371 ValueType = Int32Ty; 9372 } 9373 9374 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, 9375 AccessKind); 9376 } 9377 9378 if (BuiltinID == AArch64::BI_ReadStatusReg || 9379 BuiltinID == AArch64::BI_WriteStatusReg) { 9380 LLVMContext &Context = CGM.getLLVMContext(); 9381 9382 unsigned SysReg = 9383 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue(); 9384 9385 std::string SysRegStr; 9386 llvm::raw_string_ostream(SysRegStr) << 9387 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" << 9388 ((SysReg >> 11) & 7) << ":" << 9389 ((SysReg >> 7) & 15) << ":" << 9390 ((SysReg >> 3) & 15) << ":" << 9391 ( SysReg & 7); 9392 9393 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) }; 9394 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 9395 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 9396 9397 llvm::Type *RegisterType = Int64Ty; 9398 llvm::Type *Types[] = { RegisterType }; 9399 9400 if (BuiltinID == AArch64::BI_ReadStatusReg) { 9401 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 9402 9403 return Builder.CreateCall(F, Metadata); 9404 } 9405 9406 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 9407 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1)); 9408 9409 return Builder.CreateCall(F, { Metadata, ArgValue }); 9410 } 9411 9412 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) { 9413 llvm::Function *F = 9414 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 9415 return Builder.CreateCall(F); 9416 } 9417 9418 if (BuiltinID == AArch64::BI__builtin_sponentry) { 9419 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); 9420 return Builder.CreateCall(F); 9421 } 9422 9423 // Handle MSVC intrinsics before argument evaluation to prevent double 9424 // evaluation. 9425 if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID)) 9426 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 9427 9428 // Find out if any arguments are required to be integer constant 9429 // expressions. 9430 unsigned ICEArguments = 0; 9431 ASTContext::GetBuiltinTypeError Error; 9432 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 9433 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 9434 9435 llvm::SmallVector<Value*, 4> Ops; 9436 Address PtrOp0 = Address::invalid(); 9437 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { 9438 if (i == 0) { 9439 switch (BuiltinID) { 9440 case NEON::BI__builtin_neon_vld1_v: 9441 case NEON::BI__builtin_neon_vld1q_v: 9442 case NEON::BI__builtin_neon_vld1_dup_v: 9443 case NEON::BI__builtin_neon_vld1q_dup_v: 9444 case NEON::BI__builtin_neon_vld1_lane_v: 9445 case NEON::BI__builtin_neon_vld1q_lane_v: 9446 case NEON::BI__builtin_neon_vst1_v: 9447 case NEON::BI__builtin_neon_vst1q_v: 9448 case NEON::BI__builtin_neon_vst1_lane_v: 9449 case NEON::BI__builtin_neon_vst1q_lane_v: 9450 // Get the alignment for the argument in addition to the value; 9451 // we'll use it later. 9452 PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); 9453 Ops.push_back(PtrOp0.getPointer()); 9454 continue; 9455 } 9456 } 9457 if ((ICEArguments & (1 << i)) == 0) { 9458 Ops.push_back(EmitScalarExpr(E->getArg(i))); 9459 } else { 9460 // If this is required to be a constant, constant fold it so that we know 9461 // that the generated intrinsic gets a ConstantInt. 9462 Ops.push_back(llvm::ConstantInt::get( 9463 getLLVMContext(), 9464 *E->getArg(i)->getIntegerConstantExpr(getContext()))); 9465 } 9466 } 9467 9468 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); 9469 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( 9470 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); 9471 9472 if (Builtin) { 9473 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); 9474 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); 9475 assert(Result && "SISD intrinsic should have been handled"); 9476 return Result; 9477 } 9478 9479 const Expr *Arg = E->getArg(E->getNumArgs()-1); 9480 NeonTypeFlags Type(0); 9481 if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext())) 9482 // Determine the type of this overloaded NEON intrinsic. 9483 Type = NeonTypeFlags(Result->getZExtValue()); 9484 9485 bool usgn = Type.isUnsigned(); 9486 bool quad = Type.isQuad(); 9487 9488 // Handle non-overloaded intrinsics first. 9489 switch (BuiltinID) { 9490 default: break; 9491 case NEON::BI__builtin_neon_vabsh_f16: 9492 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9493 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); 9494 case NEON::BI__builtin_neon_vldrq_p128: { 9495 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); 9496 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); 9497 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); 9498 return Builder.CreateAlignedLoad(Int128Ty, Ptr, 9499 CharUnits::fromQuantity(16)); 9500 } 9501 case NEON::BI__builtin_neon_vstrq_p128: { 9502 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); 9503 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); 9504 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); 9505 } 9506 case NEON::BI__builtin_neon_vcvts_f32_u32: 9507 case NEON::BI__builtin_neon_vcvtd_f64_u64: 9508 usgn = true; 9509 LLVM_FALLTHROUGH; 9510 case NEON::BI__builtin_neon_vcvts_f32_s32: 9511 case NEON::BI__builtin_neon_vcvtd_f64_s64: { 9512 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9513 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; 9514 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; 9515 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; 9516 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 9517 if (usgn) 9518 return Builder.CreateUIToFP(Ops[0], FTy); 9519 return Builder.CreateSIToFP(Ops[0], FTy); 9520 } 9521 case NEON::BI__builtin_neon_vcvth_f16_u16: 9522 case NEON::BI__builtin_neon_vcvth_f16_u32: 9523 case NEON::BI__builtin_neon_vcvth_f16_u64: 9524 usgn = true; 9525 LLVM_FALLTHROUGH; 9526 case NEON::BI__builtin_neon_vcvth_f16_s16: 9527 case NEON::BI__builtin_neon_vcvth_f16_s32: 9528 case NEON::BI__builtin_neon_vcvth_f16_s64: { 9529 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9530 llvm::Type *FTy = HalfTy; 9531 llvm::Type *InTy; 9532 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) 9533 InTy = Int64Ty; 9534 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) 9535 InTy = Int32Ty; 9536 else 9537 InTy = Int16Ty; 9538 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 9539 if (usgn) 9540 return Builder.CreateUIToFP(Ops[0], FTy); 9541 return Builder.CreateSIToFP(Ops[0], FTy); 9542 } 9543 case NEON::BI__builtin_neon_vcvtah_u16_f16: 9544 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 9545 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 9546 case NEON::BI__builtin_neon_vcvtph_u16_f16: 9547 case NEON::BI__builtin_neon_vcvth_u16_f16: 9548 case NEON::BI__builtin_neon_vcvtah_s16_f16: 9549 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 9550 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 9551 case NEON::BI__builtin_neon_vcvtph_s16_f16: 9552 case NEON::BI__builtin_neon_vcvth_s16_f16: { 9553 unsigned Int; 9554 llvm::Type* InTy = Int32Ty; 9555 llvm::Type* FTy = HalfTy; 9556 llvm::Type *Tys[2] = {InTy, FTy}; 9557 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9558 switch (BuiltinID) { 9559 default: llvm_unreachable("missing builtin ID in switch!"); 9560 case NEON::BI__builtin_neon_vcvtah_u16_f16: 9561 Int = Intrinsic::aarch64_neon_fcvtau; break; 9562 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 9563 Int = Intrinsic::aarch64_neon_fcvtmu; break; 9564 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 9565 Int = Intrinsic::aarch64_neon_fcvtnu; break; 9566 case NEON::BI__builtin_neon_vcvtph_u16_f16: 9567 Int = Intrinsic::aarch64_neon_fcvtpu; break; 9568 case NEON::BI__builtin_neon_vcvth_u16_f16: 9569 Int = Intrinsic::aarch64_neon_fcvtzu; break; 9570 case NEON::BI__builtin_neon_vcvtah_s16_f16: 9571 Int = Intrinsic::aarch64_neon_fcvtas; break; 9572 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 9573 Int = Intrinsic::aarch64_neon_fcvtms; break; 9574 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 9575 Int = Intrinsic::aarch64_neon_fcvtns; break; 9576 case NEON::BI__builtin_neon_vcvtph_s16_f16: 9577 Int = Intrinsic::aarch64_neon_fcvtps; break; 9578 case NEON::BI__builtin_neon_vcvth_s16_f16: 9579 Int = Intrinsic::aarch64_neon_fcvtzs; break; 9580 } 9581 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); 9582 return Builder.CreateTrunc(Ops[0], Int16Ty); 9583 } 9584 case NEON::BI__builtin_neon_vcaleh_f16: 9585 case NEON::BI__builtin_neon_vcalth_f16: 9586 case NEON::BI__builtin_neon_vcageh_f16: 9587 case NEON::BI__builtin_neon_vcagth_f16: { 9588 unsigned Int; 9589 llvm::Type* InTy = Int32Ty; 9590 llvm::Type* FTy = HalfTy; 9591 llvm::Type *Tys[2] = {InTy, FTy}; 9592 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9593 switch (BuiltinID) { 9594 default: llvm_unreachable("missing builtin ID in switch!"); 9595 case NEON::BI__builtin_neon_vcageh_f16: 9596 Int = Intrinsic::aarch64_neon_facge; break; 9597 case NEON::BI__builtin_neon_vcagth_f16: 9598 Int = Intrinsic::aarch64_neon_facgt; break; 9599 case NEON::BI__builtin_neon_vcaleh_f16: 9600 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; 9601 case NEON::BI__builtin_neon_vcalth_f16: 9602 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; 9603 } 9604 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); 9605 return Builder.CreateTrunc(Ops[0], Int16Ty); 9606 } 9607 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 9608 case NEON::BI__builtin_neon_vcvth_n_u16_f16: { 9609 unsigned Int; 9610 llvm::Type* InTy = Int32Ty; 9611 llvm::Type* FTy = HalfTy; 9612 llvm::Type *Tys[2] = {InTy, FTy}; 9613 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9614 switch (BuiltinID) { 9615 default: llvm_unreachable("missing builtin ID in switch!"); 9616 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 9617 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; 9618 case NEON::BI__builtin_neon_vcvth_n_u16_f16: 9619 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; 9620 } 9621 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 9622 return Builder.CreateTrunc(Ops[0], Int16Ty); 9623 } 9624 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 9625 case NEON::BI__builtin_neon_vcvth_n_f16_u16: { 9626 unsigned Int; 9627 llvm::Type* FTy = HalfTy; 9628 llvm::Type* InTy = Int32Ty; 9629 llvm::Type *Tys[2] = {FTy, InTy}; 9630 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9631 switch (BuiltinID) { 9632 default: llvm_unreachable("missing builtin ID in switch!"); 9633 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 9634 Int = Intrinsic::aarch64_neon_vcvtfxs2fp; 9635 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); 9636 break; 9637 case NEON::BI__builtin_neon_vcvth_n_f16_u16: 9638 Int = Intrinsic::aarch64_neon_vcvtfxu2fp; 9639 Ops[0] = Builder.CreateZExt(Ops[0], InTy); 9640 break; 9641 } 9642 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 9643 } 9644 case NEON::BI__builtin_neon_vpaddd_s64: { 9645 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2); 9646 Value *Vec = EmitScalarExpr(E->getArg(0)); 9647 // The vector is v2f64, so make sure it's bitcast to that. 9648 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); 9649 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 9650 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 9651 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 9652 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 9653 // Pairwise addition of a v2f64 into a scalar f64. 9654 return Builder.CreateAdd(Op0, Op1, "vpaddd"); 9655 } 9656 case NEON::BI__builtin_neon_vpaddd_f64: { 9657 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2); 9658 Value *Vec = EmitScalarExpr(E->getArg(0)); 9659 // The vector is v2f64, so make sure it's bitcast to that. 9660 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); 9661 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 9662 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 9663 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 9664 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 9665 // Pairwise addition of a v2f64 into a scalar f64. 9666 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 9667 } 9668 case NEON::BI__builtin_neon_vpadds_f32: { 9669 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2); 9670 Value *Vec = EmitScalarExpr(E->getArg(0)); 9671 // The vector is v2f32, so make sure it's bitcast to that. 9672 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); 9673 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 9674 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 9675 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 9676 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 9677 // Pairwise addition of a v2f32 into a scalar f32. 9678 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 9679 } 9680 case NEON::BI__builtin_neon_vceqzd_s64: 9681 case NEON::BI__builtin_neon_vceqzd_f64: 9682 case NEON::BI__builtin_neon_vceqzs_f32: 9683 case NEON::BI__builtin_neon_vceqzh_f16: 9684 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9685 return EmitAArch64CompareBuiltinExpr( 9686 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9687 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); 9688 case NEON::BI__builtin_neon_vcgezd_s64: 9689 case NEON::BI__builtin_neon_vcgezd_f64: 9690 case NEON::BI__builtin_neon_vcgezs_f32: 9691 case NEON::BI__builtin_neon_vcgezh_f16: 9692 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9693 return EmitAArch64CompareBuiltinExpr( 9694 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9695 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); 9696 case NEON::BI__builtin_neon_vclezd_s64: 9697 case NEON::BI__builtin_neon_vclezd_f64: 9698 case NEON::BI__builtin_neon_vclezs_f32: 9699 case NEON::BI__builtin_neon_vclezh_f16: 9700 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9701 return EmitAArch64CompareBuiltinExpr( 9702 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9703 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); 9704 case NEON::BI__builtin_neon_vcgtzd_s64: 9705 case NEON::BI__builtin_neon_vcgtzd_f64: 9706 case NEON::BI__builtin_neon_vcgtzs_f32: 9707 case NEON::BI__builtin_neon_vcgtzh_f16: 9708 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9709 return EmitAArch64CompareBuiltinExpr( 9710 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9711 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); 9712 case NEON::BI__builtin_neon_vcltzd_s64: 9713 case NEON::BI__builtin_neon_vcltzd_f64: 9714 case NEON::BI__builtin_neon_vcltzs_f32: 9715 case NEON::BI__builtin_neon_vcltzh_f16: 9716 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9717 return EmitAArch64CompareBuiltinExpr( 9718 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9719 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); 9720 9721 case NEON::BI__builtin_neon_vceqzd_u64: { 9722 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9723 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 9724 Ops[0] = 9725 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); 9726 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); 9727 } 9728 case NEON::BI__builtin_neon_vceqd_f64: 9729 case NEON::BI__builtin_neon_vcled_f64: 9730 case NEON::BI__builtin_neon_vcltd_f64: 9731 case NEON::BI__builtin_neon_vcged_f64: 9732 case NEON::BI__builtin_neon_vcgtd_f64: { 9733 llvm::CmpInst::Predicate P; 9734 switch (BuiltinID) { 9735 default: llvm_unreachable("missing builtin ID in switch!"); 9736 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; 9737 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; 9738 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; 9739 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; 9740 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; 9741 } 9742 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9743 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 9744 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 9745 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 9746 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); 9747 } 9748 case NEON::BI__builtin_neon_vceqs_f32: 9749 case NEON::BI__builtin_neon_vcles_f32: 9750 case NEON::BI__builtin_neon_vclts_f32: 9751 case NEON::BI__builtin_neon_vcges_f32: 9752 case NEON::BI__builtin_neon_vcgts_f32: { 9753 llvm::CmpInst::Predicate P; 9754 switch (BuiltinID) { 9755 default: llvm_unreachable("missing builtin ID in switch!"); 9756 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; 9757 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; 9758 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; 9759 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; 9760 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; 9761 } 9762 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9763 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); 9764 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); 9765 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 9766 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); 9767 } 9768 case NEON::BI__builtin_neon_vceqh_f16: 9769 case NEON::BI__builtin_neon_vcleh_f16: 9770 case NEON::BI__builtin_neon_vclth_f16: 9771 case NEON::BI__builtin_neon_vcgeh_f16: 9772 case NEON::BI__builtin_neon_vcgth_f16: { 9773 llvm::CmpInst::Predicate P; 9774 switch (BuiltinID) { 9775 default: llvm_unreachable("missing builtin ID in switch!"); 9776 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; 9777 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; 9778 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; 9779 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; 9780 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; 9781 } 9782 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9783 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); 9784 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); 9785 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 9786 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); 9787 } 9788 case NEON::BI__builtin_neon_vceqd_s64: 9789 case NEON::BI__builtin_neon_vceqd_u64: 9790 case NEON::BI__builtin_neon_vcgtd_s64: 9791 case NEON::BI__builtin_neon_vcgtd_u64: 9792 case NEON::BI__builtin_neon_vcltd_s64: 9793 case NEON::BI__builtin_neon_vcltd_u64: 9794 case NEON::BI__builtin_neon_vcged_u64: 9795 case NEON::BI__builtin_neon_vcged_s64: 9796 case NEON::BI__builtin_neon_vcled_u64: 9797 case NEON::BI__builtin_neon_vcled_s64: { 9798 llvm::CmpInst::Predicate P; 9799 switch (BuiltinID) { 9800 default: llvm_unreachable("missing builtin ID in switch!"); 9801 case NEON::BI__builtin_neon_vceqd_s64: 9802 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; 9803 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; 9804 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; 9805 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; 9806 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; 9807 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; 9808 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; 9809 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; 9810 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; 9811 } 9812 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9813 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 9814 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 9815 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); 9816 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); 9817 } 9818 case NEON::BI__builtin_neon_vtstd_s64: 9819 case NEON::BI__builtin_neon_vtstd_u64: { 9820 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9821 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 9822 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 9823 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 9824 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 9825 llvm::Constant::getNullValue(Int64Ty)); 9826 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); 9827 } 9828 case NEON::BI__builtin_neon_vset_lane_i8: 9829 case NEON::BI__builtin_neon_vset_lane_i16: 9830 case NEON::BI__builtin_neon_vset_lane_i32: 9831 case NEON::BI__builtin_neon_vset_lane_i64: 9832 case NEON::BI__builtin_neon_vset_lane_bf16: 9833 case NEON::BI__builtin_neon_vset_lane_f32: 9834 case NEON::BI__builtin_neon_vsetq_lane_i8: 9835 case NEON::BI__builtin_neon_vsetq_lane_i16: 9836 case NEON::BI__builtin_neon_vsetq_lane_i32: 9837 case NEON::BI__builtin_neon_vsetq_lane_i64: 9838 case NEON::BI__builtin_neon_vsetq_lane_bf16: 9839 case NEON::BI__builtin_neon_vsetq_lane_f32: 9840 Ops.push_back(EmitScalarExpr(E->getArg(2))); 9841 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 9842 case NEON::BI__builtin_neon_vset_lane_f64: 9843 // The vector type needs a cast for the v1f64 variant. 9844 Ops[1] = 9845 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1)); 9846 Ops.push_back(EmitScalarExpr(E->getArg(2))); 9847 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 9848 case NEON::BI__builtin_neon_vsetq_lane_f64: 9849 // The vector type needs a cast for the v2f64 variant. 9850 Ops[1] = 9851 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2)); 9852 Ops.push_back(EmitScalarExpr(E->getArg(2))); 9853 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 9854 9855 case NEON::BI__builtin_neon_vget_lane_i8: 9856 case NEON::BI__builtin_neon_vdupb_lane_i8: 9857 Ops[0] = 9858 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8)); 9859 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9860 "vget_lane"); 9861 case NEON::BI__builtin_neon_vgetq_lane_i8: 9862 case NEON::BI__builtin_neon_vdupb_laneq_i8: 9863 Ops[0] = 9864 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16)); 9865 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9866 "vgetq_lane"); 9867 case NEON::BI__builtin_neon_vget_lane_i16: 9868 case NEON::BI__builtin_neon_vduph_lane_i16: 9869 Ops[0] = 9870 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4)); 9871 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9872 "vget_lane"); 9873 case NEON::BI__builtin_neon_vgetq_lane_i16: 9874 case NEON::BI__builtin_neon_vduph_laneq_i16: 9875 Ops[0] = 9876 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8)); 9877 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9878 "vgetq_lane"); 9879 case NEON::BI__builtin_neon_vget_lane_i32: 9880 case NEON::BI__builtin_neon_vdups_lane_i32: 9881 Ops[0] = 9882 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2)); 9883 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9884 "vget_lane"); 9885 case NEON::BI__builtin_neon_vdups_lane_f32: 9886 Ops[0] = 9887 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); 9888 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9889 "vdups_lane"); 9890 case NEON::BI__builtin_neon_vgetq_lane_i32: 9891 case NEON::BI__builtin_neon_vdups_laneq_i32: 9892 Ops[0] = 9893 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 9894 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9895 "vgetq_lane"); 9896 case NEON::BI__builtin_neon_vget_lane_i64: 9897 case NEON::BI__builtin_neon_vdupd_lane_i64: 9898 Ops[0] = 9899 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1)); 9900 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9901 "vget_lane"); 9902 case NEON::BI__builtin_neon_vdupd_lane_f64: 9903 Ops[0] = 9904 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); 9905 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9906 "vdupd_lane"); 9907 case NEON::BI__builtin_neon_vgetq_lane_i64: 9908 case NEON::BI__builtin_neon_vdupd_laneq_i64: 9909 Ops[0] = 9910 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 9911 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9912 "vgetq_lane"); 9913 case NEON::BI__builtin_neon_vget_lane_f32: 9914 Ops[0] = 9915 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); 9916 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9917 "vget_lane"); 9918 case NEON::BI__builtin_neon_vget_lane_f64: 9919 Ops[0] = 9920 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); 9921 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9922 "vget_lane"); 9923 case NEON::BI__builtin_neon_vgetq_lane_f32: 9924 case NEON::BI__builtin_neon_vdups_laneq_f32: 9925 Ops[0] = 9926 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4)); 9927 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9928 "vgetq_lane"); 9929 case NEON::BI__builtin_neon_vgetq_lane_f64: 9930 case NEON::BI__builtin_neon_vdupd_laneq_f64: 9931 Ops[0] = 9932 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2)); 9933 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 9934 "vgetq_lane"); 9935 case NEON::BI__builtin_neon_vaddh_f16: 9936 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9937 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); 9938 case NEON::BI__builtin_neon_vsubh_f16: 9939 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9940 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); 9941 case NEON::BI__builtin_neon_vmulh_f16: 9942 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9943 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); 9944 case NEON::BI__builtin_neon_vdivh_f16: 9945 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9946 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); 9947 case NEON::BI__builtin_neon_vfmah_f16: 9948 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 9949 return emitCallMaybeConstrainedFPBuiltin( 9950 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, 9951 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); 9952 case NEON::BI__builtin_neon_vfmsh_f16: { 9953 // FIXME: This should be an fneg instruction: 9954 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy); 9955 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh"); 9956 9957 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 9958 return emitCallMaybeConstrainedFPBuiltin( 9959 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, 9960 {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]}); 9961 } 9962 case NEON::BI__builtin_neon_vaddd_s64: 9963 case NEON::BI__builtin_neon_vaddd_u64: 9964 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); 9965 case NEON::BI__builtin_neon_vsubd_s64: 9966 case NEON::BI__builtin_neon_vsubd_u64: 9967 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); 9968 case NEON::BI__builtin_neon_vqdmlalh_s16: 9969 case NEON::BI__builtin_neon_vqdmlslh_s16: { 9970 SmallVector<Value *, 2> ProductOps; 9971 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 9972 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); 9973 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); 9974 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 9975 ProductOps, "vqdmlXl"); 9976 Constant *CI = ConstantInt::get(SizeTy, 0); 9977 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 9978 9979 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 9980 ? Intrinsic::aarch64_neon_sqadd 9981 : Intrinsic::aarch64_neon_sqsub; 9982 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); 9983 } 9984 case NEON::BI__builtin_neon_vqshlud_n_s64: { 9985 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9986 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 9987 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), 9988 Ops, "vqshlu_n"); 9989 } 9990 case NEON::BI__builtin_neon_vqshld_n_u64: 9991 case NEON::BI__builtin_neon_vqshld_n_s64: { 9992 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 9993 ? Intrinsic::aarch64_neon_uqshl 9994 : Intrinsic::aarch64_neon_sqshl; 9995 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9996 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 9997 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); 9998 } 9999 case NEON::BI__builtin_neon_vrshrd_n_u64: 10000 case NEON::BI__builtin_neon_vrshrd_n_s64: { 10001 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 10002 ? Intrinsic::aarch64_neon_urshl 10003 : Intrinsic::aarch64_neon_srshl; 10004 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10005 int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); 10006 Ops[1] = ConstantInt::get(Int64Ty, -SV); 10007 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); 10008 } 10009 case NEON::BI__builtin_neon_vrsrad_n_u64: 10010 case NEON::BI__builtin_neon_vrsrad_n_s64: { 10011 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 10012 ? Intrinsic::aarch64_neon_urshl 10013 : Intrinsic::aarch64_neon_srshl; 10014 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10015 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); 10016 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), 10017 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); 10018 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); 10019 } 10020 case NEON::BI__builtin_neon_vshld_n_s64: 10021 case NEON::BI__builtin_neon_vshld_n_u64: { 10022 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10023 return Builder.CreateShl( 10024 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); 10025 } 10026 case NEON::BI__builtin_neon_vshrd_n_s64: { 10027 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10028 return Builder.CreateAShr( 10029 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 10030 Amt->getZExtValue())), 10031 "shrd_n"); 10032 } 10033 case NEON::BI__builtin_neon_vshrd_n_u64: { 10034 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10035 uint64_t ShiftAmt = Amt->getZExtValue(); 10036 // Right-shifting an unsigned value by its size yields 0. 10037 if (ShiftAmt == 64) 10038 return ConstantInt::get(Int64Ty, 0); 10039 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), 10040 "shrd_n"); 10041 } 10042 case NEON::BI__builtin_neon_vsrad_n_s64: { 10043 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 10044 Ops[1] = Builder.CreateAShr( 10045 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 10046 Amt->getZExtValue())), 10047 "shrd_n"); 10048 return Builder.CreateAdd(Ops[0], Ops[1]); 10049 } 10050 case NEON::BI__builtin_neon_vsrad_n_u64: { 10051 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 10052 uint64_t ShiftAmt = Amt->getZExtValue(); 10053 // Right-shifting an unsigned value by its size yields 0. 10054 // As Op + 0 = Op, return Ops[0] directly. 10055 if (ShiftAmt == 64) 10056 return Ops[0]; 10057 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), 10058 "shrd_n"); 10059 return Builder.CreateAdd(Ops[0], Ops[1]); 10060 } 10061 case NEON::BI__builtin_neon_vqdmlalh_lane_s16: 10062 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: 10063 case NEON::BI__builtin_neon_vqdmlslh_lane_s16: 10064 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { 10065 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 10066 "lane"); 10067 SmallVector<Value *, 2> ProductOps; 10068 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 10069 ProductOps.push_back(vectorWrapScalar16(Ops[2])); 10070 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); 10071 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 10072 ProductOps, "vqdmlXl"); 10073 Constant *CI = ConstantInt::get(SizeTy, 0); 10074 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 10075 Ops.pop_back(); 10076 10077 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || 10078 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) 10079 ? Intrinsic::aarch64_neon_sqadd 10080 : Intrinsic::aarch64_neon_sqsub; 10081 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); 10082 } 10083 case NEON::BI__builtin_neon_vqdmlals_s32: 10084 case NEON::BI__builtin_neon_vqdmlsls_s32: { 10085 SmallVector<Value *, 2> ProductOps; 10086 ProductOps.push_back(Ops[1]); 10087 ProductOps.push_back(EmitScalarExpr(E->getArg(2))); 10088 Ops[1] = 10089 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 10090 ProductOps, "vqdmlXl"); 10091 10092 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 10093 ? Intrinsic::aarch64_neon_sqadd 10094 : Intrinsic::aarch64_neon_sqsub; 10095 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); 10096 } 10097 case NEON::BI__builtin_neon_vqdmlals_lane_s32: 10098 case NEON::BI__builtin_neon_vqdmlals_laneq_s32: 10099 case NEON::BI__builtin_neon_vqdmlsls_lane_s32: 10100 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { 10101 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 10102 "lane"); 10103 SmallVector<Value *, 2> ProductOps; 10104 ProductOps.push_back(Ops[1]); 10105 ProductOps.push_back(Ops[2]); 10106 Ops[1] = 10107 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 10108 ProductOps, "vqdmlXl"); 10109 Ops.pop_back(); 10110 10111 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || 10112 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) 10113 ? Intrinsic::aarch64_neon_sqadd 10114 : Intrinsic::aarch64_neon_sqsub; 10115 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); 10116 } 10117 case NEON::BI__builtin_neon_vget_lane_bf16: 10118 case NEON::BI__builtin_neon_vduph_lane_bf16: 10119 case NEON::BI__builtin_neon_vduph_lane_f16: { 10120 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10121 "vget_lane"); 10122 } 10123 case NEON::BI__builtin_neon_vgetq_lane_bf16: 10124 case NEON::BI__builtin_neon_vduph_laneq_bf16: 10125 case NEON::BI__builtin_neon_vduph_laneq_f16: { 10126 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10127 "vgetq_lane"); 10128 } 10129 10130 case AArch64::BI_InterlockedAdd: { 10131 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 10132 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 10133 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( 10134 AtomicRMWInst::Add, Arg0, Arg1, 10135 llvm::AtomicOrdering::SequentiallyConsistent); 10136 return Builder.CreateAdd(RMWI, Arg1); 10137 } 10138 } 10139 10140 llvm::FixedVectorType *VTy = GetNeonType(this, Type); 10141 llvm::Type *Ty = VTy; 10142 if (!Ty) 10143 return nullptr; 10144 10145 // Not all intrinsics handled by the common case work for AArch64 yet, so only 10146 // defer to common code if it's been added to our special map. 10147 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, 10148 AArch64SIMDIntrinsicsProvenSorted); 10149 10150 if (Builtin) 10151 return EmitCommonNeonBuiltinExpr( 10152 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 10153 Builtin->NameHint, Builtin->TypeModifier, E, Ops, 10154 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch); 10155 10156 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) 10157 return V; 10158 10159 unsigned Int; 10160 switch (BuiltinID) { 10161 default: return nullptr; 10162 case NEON::BI__builtin_neon_vbsl_v: 10163 case NEON::BI__builtin_neon_vbslq_v: { 10164 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); 10165 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); 10166 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); 10167 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); 10168 10169 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); 10170 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); 10171 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); 10172 return Builder.CreateBitCast(Ops[0], Ty); 10173 } 10174 case NEON::BI__builtin_neon_vfma_lane_v: 10175 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types 10176 // The ARM builtins (and instructions) have the addend as the first 10177 // operand, but the 'fma' intrinsics have it last. Swap it around here. 10178 Value *Addend = Ops[0]; 10179 Value *Multiplicand = Ops[1]; 10180 Value *LaneSource = Ops[2]; 10181 Ops[0] = Multiplicand; 10182 Ops[1] = LaneSource; 10183 Ops[2] = Addend; 10184 10185 // Now adjust things to handle the lane access. 10186 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v 10187 ? llvm::FixedVectorType::get(VTy->getElementType(), 10188 VTy->getNumElements() / 2) 10189 : VTy; 10190 llvm::Constant *cst = cast<Constant>(Ops[3]); 10191 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst); 10192 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); 10193 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); 10194 10195 Ops.pop_back(); 10196 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma 10197 : Intrinsic::fma; 10198 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); 10199 } 10200 case NEON::BI__builtin_neon_vfma_laneq_v: { 10201 auto *VTy = cast<llvm::FixedVectorType>(Ty); 10202 // v1f64 fma should be mapped to Neon scalar f64 fma 10203 if (VTy && VTy->getElementType() == DoubleTy) { 10204 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10205 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 10206 llvm::FixedVectorType *VTy = 10207 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true)); 10208 Ops[2] = Builder.CreateBitCast(Ops[2], VTy); 10209 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 10210 Value *Result; 10211 Result = emitCallMaybeConstrainedFPBuiltin( 10212 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, 10213 DoubleTy, {Ops[1], Ops[2], Ops[0]}); 10214 return Builder.CreateBitCast(Result, Ty); 10215 } 10216 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10217 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10218 10219 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(), 10220 VTy->getNumElements() * 2); 10221 Ops[2] = Builder.CreateBitCast(Ops[2], STy); 10222 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), 10223 cast<ConstantInt>(Ops[3])); 10224 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); 10225 10226 return emitCallMaybeConstrainedFPBuiltin( 10227 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10228 {Ops[2], Ops[1], Ops[0]}); 10229 } 10230 case NEON::BI__builtin_neon_vfmaq_laneq_v: { 10231 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10232 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10233 10234 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 10235 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); 10236 return emitCallMaybeConstrainedFPBuiltin( 10237 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10238 {Ops[2], Ops[1], Ops[0]}); 10239 } 10240 case NEON::BI__builtin_neon_vfmah_lane_f16: 10241 case NEON::BI__builtin_neon_vfmas_lane_f32: 10242 case NEON::BI__builtin_neon_vfmah_laneq_f16: 10243 case NEON::BI__builtin_neon_vfmas_laneq_f32: 10244 case NEON::BI__builtin_neon_vfmad_lane_f64: 10245 case NEON::BI__builtin_neon_vfmad_laneq_f64: { 10246 Ops.push_back(EmitScalarExpr(E->getArg(3))); 10247 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 10248 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 10249 return emitCallMaybeConstrainedFPBuiltin( 10250 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10251 {Ops[1], Ops[2], Ops[0]}); 10252 } 10253 case NEON::BI__builtin_neon_vmull_v: 10254 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10255 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; 10256 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; 10257 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 10258 case NEON::BI__builtin_neon_vmax_v: 10259 case NEON::BI__builtin_neon_vmaxq_v: 10260 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10261 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; 10262 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; 10263 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); 10264 case NEON::BI__builtin_neon_vmaxh_f16: { 10265 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10266 Int = Intrinsic::aarch64_neon_fmax; 10267 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); 10268 } 10269 case NEON::BI__builtin_neon_vmin_v: 10270 case NEON::BI__builtin_neon_vminq_v: 10271 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10272 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; 10273 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; 10274 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); 10275 case NEON::BI__builtin_neon_vminh_f16: { 10276 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10277 Int = Intrinsic::aarch64_neon_fmin; 10278 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); 10279 } 10280 case NEON::BI__builtin_neon_vabd_v: 10281 case NEON::BI__builtin_neon_vabdq_v: 10282 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10283 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; 10284 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; 10285 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); 10286 case NEON::BI__builtin_neon_vpadal_v: 10287 case NEON::BI__builtin_neon_vpadalq_v: { 10288 unsigned ArgElts = VTy->getNumElements(); 10289 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); 10290 unsigned BitWidth = EltTy->getBitWidth(); 10291 auto *ArgTy = llvm::FixedVectorType::get( 10292 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts); 10293 llvm::Type* Tys[2] = { VTy, ArgTy }; 10294 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; 10295 SmallVector<llvm::Value*, 1> TmpOps; 10296 TmpOps.push_back(Ops[1]); 10297 Function *F = CGM.getIntrinsic(Int, Tys); 10298 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); 10299 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); 10300 return Builder.CreateAdd(tmp, addend); 10301 } 10302 case NEON::BI__builtin_neon_vpmin_v: 10303 case NEON::BI__builtin_neon_vpminq_v: 10304 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10305 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; 10306 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; 10307 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); 10308 case NEON::BI__builtin_neon_vpmax_v: 10309 case NEON::BI__builtin_neon_vpmaxq_v: 10310 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10311 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; 10312 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; 10313 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); 10314 case NEON::BI__builtin_neon_vminnm_v: 10315 case NEON::BI__builtin_neon_vminnmq_v: 10316 Int = Intrinsic::aarch64_neon_fminnm; 10317 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); 10318 case NEON::BI__builtin_neon_vminnmh_f16: 10319 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10320 Int = Intrinsic::aarch64_neon_fminnm; 10321 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); 10322 case NEON::BI__builtin_neon_vmaxnm_v: 10323 case NEON::BI__builtin_neon_vmaxnmq_v: 10324 Int = Intrinsic::aarch64_neon_fmaxnm; 10325 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); 10326 case NEON::BI__builtin_neon_vmaxnmh_f16: 10327 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10328 Int = Intrinsic::aarch64_neon_fmaxnm; 10329 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); 10330 case NEON::BI__builtin_neon_vrecpss_f32: { 10331 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10332 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), 10333 Ops, "vrecps"); 10334 } 10335 case NEON::BI__builtin_neon_vrecpsd_f64: 10336 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10337 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), 10338 Ops, "vrecps"); 10339 case NEON::BI__builtin_neon_vrecpsh_f16: 10340 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10341 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), 10342 Ops, "vrecps"); 10343 case NEON::BI__builtin_neon_vqshrun_n_v: 10344 Int = Intrinsic::aarch64_neon_sqshrun; 10345 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); 10346 case NEON::BI__builtin_neon_vqrshrun_n_v: 10347 Int = Intrinsic::aarch64_neon_sqrshrun; 10348 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); 10349 case NEON::BI__builtin_neon_vqshrn_n_v: 10350 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; 10351 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); 10352 case NEON::BI__builtin_neon_vrshrn_n_v: 10353 Int = Intrinsic::aarch64_neon_rshrn; 10354 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); 10355 case NEON::BI__builtin_neon_vqrshrn_n_v: 10356 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; 10357 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); 10358 case NEON::BI__builtin_neon_vrndah_f16: { 10359 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10360 Int = Builder.getIsFPConstrained() 10361 ? Intrinsic::experimental_constrained_round 10362 : Intrinsic::round; 10363 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); 10364 } 10365 case NEON::BI__builtin_neon_vrnda_v: 10366 case NEON::BI__builtin_neon_vrndaq_v: { 10367 Int = Builder.getIsFPConstrained() 10368 ? Intrinsic::experimental_constrained_round 10369 : Intrinsic::round; 10370 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); 10371 } 10372 case NEON::BI__builtin_neon_vrndih_f16: { 10373 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10374 Int = Builder.getIsFPConstrained() 10375 ? Intrinsic::experimental_constrained_nearbyint 10376 : Intrinsic::nearbyint; 10377 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); 10378 } 10379 case NEON::BI__builtin_neon_vrndmh_f16: { 10380 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10381 Int = Builder.getIsFPConstrained() 10382 ? Intrinsic::experimental_constrained_floor 10383 : Intrinsic::floor; 10384 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); 10385 } 10386 case NEON::BI__builtin_neon_vrndm_v: 10387 case NEON::BI__builtin_neon_vrndmq_v: { 10388 Int = Builder.getIsFPConstrained() 10389 ? Intrinsic::experimental_constrained_floor 10390 : Intrinsic::floor; 10391 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); 10392 } 10393 case NEON::BI__builtin_neon_vrndnh_f16: { 10394 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10395 Int = Intrinsic::aarch64_neon_frintn; 10396 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); 10397 } 10398 case NEON::BI__builtin_neon_vrndn_v: 10399 case NEON::BI__builtin_neon_vrndnq_v: { 10400 Int = Intrinsic::aarch64_neon_frintn; 10401 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); 10402 } 10403 case NEON::BI__builtin_neon_vrndns_f32: { 10404 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10405 Int = Intrinsic::aarch64_neon_frintn; 10406 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); 10407 } 10408 case NEON::BI__builtin_neon_vrndph_f16: { 10409 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10410 Int = Builder.getIsFPConstrained() 10411 ? Intrinsic::experimental_constrained_ceil 10412 : Intrinsic::ceil; 10413 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); 10414 } 10415 case NEON::BI__builtin_neon_vrndp_v: 10416 case NEON::BI__builtin_neon_vrndpq_v: { 10417 Int = Builder.getIsFPConstrained() 10418 ? Intrinsic::experimental_constrained_ceil 10419 : Intrinsic::ceil; 10420 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); 10421 } 10422 case NEON::BI__builtin_neon_vrndxh_f16: { 10423 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10424 Int = Builder.getIsFPConstrained() 10425 ? Intrinsic::experimental_constrained_rint 10426 : Intrinsic::rint; 10427 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); 10428 } 10429 case NEON::BI__builtin_neon_vrndx_v: 10430 case NEON::BI__builtin_neon_vrndxq_v: { 10431 Int = Builder.getIsFPConstrained() 10432 ? Intrinsic::experimental_constrained_rint 10433 : Intrinsic::rint; 10434 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); 10435 } 10436 case NEON::BI__builtin_neon_vrndh_f16: { 10437 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10438 Int = Builder.getIsFPConstrained() 10439 ? Intrinsic::experimental_constrained_trunc 10440 : Intrinsic::trunc; 10441 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); 10442 } 10443 case NEON::BI__builtin_neon_vrnd_v: 10444 case NEON::BI__builtin_neon_vrndq_v: { 10445 Int = Builder.getIsFPConstrained() 10446 ? Intrinsic::experimental_constrained_trunc 10447 : Intrinsic::trunc; 10448 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); 10449 } 10450 case NEON::BI__builtin_neon_vcvt_f64_v: 10451 case NEON::BI__builtin_neon_vcvtq_f64_v: 10452 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10453 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); 10454 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 10455 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 10456 case NEON::BI__builtin_neon_vcvt_f64_f32: { 10457 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && 10458 "unexpected vcvt_f64_f32 builtin"); 10459 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); 10460 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 10461 10462 return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); 10463 } 10464 case NEON::BI__builtin_neon_vcvt_f32_f64: { 10465 assert(Type.getEltType() == NeonTypeFlags::Float32 && 10466 "unexpected vcvt_f32_f64 builtin"); 10467 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); 10468 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 10469 10470 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); 10471 } 10472 case NEON::BI__builtin_neon_vcvt_s32_v: 10473 case NEON::BI__builtin_neon_vcvt_u32_v: 10474 case NEON::BI__builtin_neon_vcvt_s64_v: 10475 case NEON::BI__builtin_neon_vcvt_u64_v: 10476 case NEON::BI__builtin_neon_vcvt_s16_v: 10477 case NEON::BI__builtin_neon_vcvt_u16_v: 10478 case NEON::BI__builtin_neon_vcvtq_s32_v: 10479 case NEON::BI__builtin_neon_vcvtq_u32_v: 10480 case NEON::BI__builtin_neon_vcvtq_s64_v: 10481 case NEON::BI__builtin_neon_vcvtq_u64_v: 10482 case NEON::BI__builtin_neon_vcvtq_s16_v: 10483 case NEON::BI__builtin_neon_vcvtq_u16_v: { 10484 Int = 10485 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs; 10486 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)}; 10487 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz"); 10488 } 10489 case NEON::BI__builtin_neon_vcvta_s16_v: 10490 case NEON::BI__builtin_neon_vcvta_u16_v: 10491 case NEON::BI__builtin_neon_vcvta_s32_v: 10492 case NEON::BI__builtin_neon_vcvtaq_s16_v: 10493 case NEON::BI__builtin_neon_vcvtaq_s32_v: 10494 case NEON::BI__builtin_neon_vcvta_u32_v: 10495 case NEON::BI__builtin_neon_vcvtaq_u16_v: 10496 case NEON::BI__builtin_neon_vcvtaq_u32_v: 10497 case NEON::BI__builtin_neon_vcvta_s64_v: 10498 case NEON::BI__builtin_neon_vcvtaq_s64_v: 10499 case NEON::BI__builtin_neon_vcvta_u64_v: 10500 case NEON::BI__builtin_neon_vcvtaq_u64_v: { 10501 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; 10502 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10503 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); 10504 } 10505 case NEON::BI__builtin_neon_vcvtm_s16_v: 10506 case NEON::BI__builtin_neon_vcvtm_s32_v: 10507 case NEON::BI__builtin_neon_vcvtmq_s16_v: 10508 case NEON::BI__builtin_neon_vcvtmq_s32_v: 10509 case NEON::BI__builtin_neon_vcvtm_u16_v: 10510 case NEON::BI__builtin_neon_vcvtm_u32_v: 10511 case NEON::BI__builtin_neon_vcvtmq_u16_v: 10512 case NEON::BI__builtin_neon_vcvtmq_u32_v: 10513 case NEON::BI__builtin_neon_vcvtm_s64_v: 10514 case NEON::BI__builtin_neon_vcvtmq_s64_v: 10515 case NEON::BI__builtin_neon_vcvtm_u64_v: 10516 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 10517 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; 10518 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10519 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); 10520 } 10521 case NEON::BI__builtin_neon_vcvtn_s16_v: 10522 case NEON::BI__builtin_neon_vcvtn_s32_v: 10523 case NEON::BI__builtin_neon_vcvtnq_s16_v: 10524 case NEON::BI__builtin_neon_vcvtnq_s32_v: 10525 case NEON::BI__builtin_neon_vcvtn_u16_v: 10526 case NEON::BI__builtin_neon_vcvtn_u32_v: 10527 case NEON::BI__builtin_neon_vcvtnq_u16_v: 10528 case NEON::BI__builtin_neon_vcvtnq_u32_v: 10529 case NEON::BI__builtin_neon_vcvtn_s64_v: 10530 case NEON::BI__builtin_neon_vcvtnq_s64_v: 10531 case NEON::BI__builtin_neon_vcvtn_u64_v: 10532 case NEON::BI__builtin_neon_vcvtnq_u64_v: { 10533 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; 10534 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10535 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); 10536 } 10537 case NEON::BI__builtin_neon_vcvtp_s16_v: 10538 case NEON::BI__builtin_neon_vcvtp_s32_v: 10539 case NEON::BI__builtin_neon_vcvtpq_s16_v: 10540 case NEON::BI__builtin_neon_vcvtpq_s32_v: 10541 case NEON::BI__builtin_neon_vcvtp_u16_v: 10542 case NEON::BI__builtin_neon_vcvtp_u32_v: 10543 case NEON::BI__builtin_neon_vcvtpq_u16_v: 10544 case NEON::BI__builtin_neon_vcvtpq_u32_v: 10545 case NEON::BI__builtin_neon_vcvtp_s64_v: 10546 case NEON::BI__builtin_neon_vcvtpq_s64_v: 10547 case NEON::BI__builtin_neon_vcvtp_u64_v: 10548 case NEON::BI__builtin_neon_vcvtpq_u64_v: { 10549 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; 10550 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10551 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); 10552 } 10553 case NEON::BI__builtin_neon_vmulx_v: 10554 case NEON::BI__builtin_neon_vmulxq_v: { 10555 Int = Intrinsic::aarch64_neon_fmulx; 10556 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); 10557 } 10558 case NEON::BI__builtin_neon_vmulxh_lane_f16: 10559 case NEON::BI__builtin_neon_vmulxh_laneq_f16: { 10560 // vmulx_lane should be mapped to Neon scalar mulx after 10561 // extracting the scalar element 10562 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10563 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 10564 Ops.pop_back(); 10565 Int = Intrinsic::aarch64_neon_fmulx; 10566 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); 10567 } 10568 case NEON::BI__builtin_neon_vmul_lane_v: 10569 case NEON::BI__builtin_neon_vmul_laneq_v: { 10570 // v1f64 vmul_lane should be mapped to Neon scalar mul lane 10571 bool Quad = false; 10572 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) 10573 Quad = true; 10574 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10575 llvm::FixedVectorType *VTy = 10576 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); 10577 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 10578 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 10579 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); 10580 return Builder.CreateBitCast(Result, Ty); 10581 } 10582 case NEON::BI__builtin_neon_vnegd_s64: 10583 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); 10584 case NEON::BI__builtin_neon_vnegh_f16: 10585 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); 10586 case NEON::BI__builtin_neon_vpmaxnm_v: 10587 case NEON::BI__builtin_neon_vpmaxnmq_v: { 10588 Int = Intrinsic::aarch64_neon_fmaxnmp; 10589 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); 10590 } 10591 case NEON::BI__builtin_neon_vpminnm_v: 10592 case NEON::BI__builtin_neon_vpminnmq_v: { 10593 Int = Intrinsic::aarch64_neon_fminnmp; 10594 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); 10595 } 10596 case NEON::BI__builtin_neon_vsqrth_f16: { 10597 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10598 Int = Builder.getIsFPConstrained() 10599 ? Intrinsic::experimental_constrained_sqrt 10600 : Intrinsic::sqrt; 10601 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); 10602 } 10603 case NEON::BI__builtin_neon_vsqrt_v: 10604 case NEON::BI__builtin_neon_vsqrtq_v: { 10605 Int = Builder.getIsFPConstrained() 10606 ? Intrinsic::experimental_constrained_sqrt 10607 : Intrinsic::sqrt; 10608 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10609 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); 10610 } 10611 case NEON::BI__builtin_neon_vrbit_v: 10612 case NEON::BI__builtin_neon_vrbitq_v: { 10613 Int = Intrinsic::aarch64_neon_rbit; 10614 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); 10615 } 10616 case NEON::BI__builtin_neon_vaddv_u8: 10617 // FIXME: These are handled by the AArch64 scalar code. 10618 usgn = true; 10619 LLVM_FALLTHROUGH; 10620 case NEON::BI__builtin_neon_vaddv_s8: { 10621 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 10622 Ty = Int32Ty; 10623 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10624 llvm::Type *Tys[2] = { Ty, VTy }; 10625 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10626 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 10627 return Builder.CreateTrunc(Ops[0], Int8Ty); 10628 } 10629 case NEON::BI__builtin_neon_vaddv_u16: 10630 usgn = true; 10631 LLVM_FALLTHROUGH; 10632 case NEON::BI__builtin_neon_vaddv_s16: { 10633 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 10634 Ty = Int32Ty; 10635 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10636 llvm::Type *Tys[2] = { Ty, VTy }; 10637 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10638 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 10639 return Builder.CreateTrunc(Ops[0], Int16Ty); 10640 } 10641 case NEON::BI__builtin_neon_vaddvq_u8: 10642 usgn = true; 10643 LLVM_FALLTHROUGH; 10644 case NEON::BI__builtin_neon_vaddvq_s8: { 10645 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 10646 Ty = Int32Ty; 10647 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10648 llvm::Type *Tys[2] = { Ty, VTy }; 10649 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10650 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 10651 return Builder.CreateTrunc(Ops[0], Int8Ty); 10652 } 10653 case NEON::BI__builtin_neon_vaddvq_u16: 10654 usgn = true; 10655 LLVM_FALLTHROUGH; 10656 case NEON::BI__builtin_neon_vaddvq_s16: { 10657 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 10658 Ty = Int32Ty; 10659 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 10660 llvm::Type *Tys[2] = { Ty, VTy }; 10661 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10662 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 10663 return Builder.CreateTrunc(Ops[0], Int16Ty); 10664 } 10665 case NEON::BI__builtin_neon_vmaxv_u8: { 10666 Int = Intrinsic::aarch64_neon_umaxv; 10667 Ty = Int32Ty; 10668 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10669 llvm::Type *Tys[2] = { Ty, VTy }; 10670 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10671 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10672 return Builder.CreateTrunc(Ops[0], Int8Ty); 10673 } 10674 case NEON::BI__builtin_neon_vmaxv_u16: { 10675 Int = Intrinsic::aarch64_neon_umaxv; 10676 Ty = Int32Ty; 10677 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10678 llvm::Type *Tys[2] = { Ty, VTy }; 10679 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10680 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10681 return Builder.CreateTrunc(Ops[0], Int16Ty); 10682 } 10683 case NEON::BI__builtin_neon_vmaxvq_u8: { 10684 Int = Intrinsic::aarch64_neon_umaxv; 10685 Ty = Int32Ty; 10686 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10687 llvm::Type *Tys[2] = { Ty, VTy }; 10688 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10689 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10690 return Builder.CreateTrunc(Ops[0], Int8Ty); 10691 } 10692 case NEON::BI__builtin_neon_vmaxvq_u16: { 10693 Int = Intrinsic::aarch64_neon_umaxv; 10694 Ty = Int32Ty; 10695 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 10696 llvm::Type *Tys[2] = { Ty, VTy }; 10697 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10698 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10699 return Builder.CreateTrunc(Ops[0], Int16Ty); 10700 } 10701 case NEON::BI__builtin_neon_vmaxv_s8: { 10702 Int = Intrinsic::aarch64_neon_smaxv; 10703 Ty = Int32Ty; 10704 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10705 llvm::Type *Tys[2] = { Ty, VTy }; 10706 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10707 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10708 return Builder.CreateTrunc(Ops[0], Int8Ty); 10709 } 10710 case NEON::BI__builtin_neon_vmaxv_s16: { 10711 Int = Intrinsic::aarch64_neon_smaxv; 10712 Ty = Int32Ty; 10713 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10714 llvm::Type *Tys[2] = { Ty, VTy }; 10715 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10716 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10717 return Builder.CreateTrunc(Ops[0], Int16Ty); 10718 } 10719 case NEON::BI__builtin_neon_vmaxvq_s8: { 10720 Int = Intrinsic::aarch64_neon_smaxv; 10721 Ty = Int32Ty; 10722 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10723 llvm::Type *Tys[2] = { Ty, VTy }; 10724 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10725 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10726 return Builder.CreateTrunc(Ops[0], Int8Ty); 10727 } 10728 case NEON::BI__builtin_neon_vmaxvq_s16: { 10729 Int = Intrinsic::aarch64_neon_smaxv; 10730 Ty = Int32Ty; 10731 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 10732 llvm::Type *Tys[2] = { Ty, VTy }; 10733 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10734 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10735 return Builder.CreateTrunc(Ops[0], Int16Ty); 10736 } 10737 case NEON::BI__builtin_neon_vmaxv_f16: { 10738 Int = Intrinsic::aarch64_neon_fmaxv; 10739 Ty = HalfTy; 10740 VTy = llvm::FixedVectorType::get(HalfTy, 4); 10741 llvm::Type *Tys[2] = { Ty, VTy }; 10742 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10743 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10744 return Builder.CreateTrunc(Ops[0], HalfTy); 10745 } 10746 case NEON::BI__builtin_neon_vmaxvq_f16: { 10747 Int = Intrinsic::aarch64_neon_fmaxv; 10748 Ty = HalfTy; 10749 VTy = llvm::FixedVectorType::get(HalfTy, 8); 10750 llvm::Type *Tys[2] = { Ty, VTy }; 10751 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10752 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10753 return Builder.CreateTrunc(Ops[0], HalfTy); 10754 } 10755 case NEON::BI__builtin_neon_vminv_u8: { 10756 Int = Intrinsic::aarch64_neon_uminv; 10757 Ty = Int32Ty; 10758 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10759 llvm::Type *Tys[2] = { Ty, VTy }; 10760 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10761 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10762 return Builder.CreateTrunc(Ops[0], Int8Ty); 10763 } 10764 case NEON::BI__builtin_neon_vminv_u16: { 10765 Int = Intrinsic::aarch64_neon_uminv; 10766 Ty = Int32Ty; 10767 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10768 llvm::Type *Tys[2] = { Ty, VTy }; 10769 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10770 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10771 return Builder.CreateTrunc(Ops[0], Int16Ty); 10772 } 10773 case NEON::BI__builtin_neon_vminvq_u8: { 10774 Int = Intrinsic::aarch64_neon_uminv; 10775 Ty = Int32Ty; 10776 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10777 llvm::Type *Tys[2] = { Ty, VTy }; 10778 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10779 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10780 return Builder.CreateTrunc(Ops[0], Int8Ty); 10781 } 10782 case NEON::BI__builtin_neon_vminvq_u16: { 10783 Int = Intrinsic::aarch64_neon_uminv; 10784 Ty = Int32Ty; 10785 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 10786 llvm::Type *Tys[2] = { Ty, VTy }; 10787 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10788 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10789 return Builder.CreateTrunc(Ops[0], Int16Ty); 10790 } 10791 case NEON::BI__builtin_neon_vminv_s8: { 10792 Int = Intrinsic::aarch64_neon_sminv; 10793 Ty = Int32Ty; 10794 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10795 llvm::Type *Tys[2] = { Ty, VTy }; 10796 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10797 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10798 return Builder.CreateTrunc(Ops[0], Int8Ty); 10799 } 10800 case NEON::BI__builtin_neon_vminv_s16: { 10801 Int = Intrinsic::aarch64_neon_sminv; 10802 Ty = Int32Ty; 10803 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10804 llvm::Type *Tys[2] = { Ty, VTy }; 10805 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10806 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10807 return Builder.CreateTrunc(Ops[0], Int16Ty); 10808 } 10809 case NEON::BI__builtin_neon_vminvq_s8: { 10810 Int = Intrinsic::aarch64_neon_sminv; 10811 Ty = Int32Ty; 10812 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10813 llvm::Type *Tys[2] = { Ty, VTy }; 10814 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10815 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10816 return Builder.CreateTrunc(Ops[0], Int8Ty); 10817 } 10818 case NEON::BI__builtin_neon_vminvq_s16: { 10819 Int = Intrinsic::aarch64_neon_sminv; 10820 Ty = Int32Ty; 10821 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 10822 llvm::Type *Tys[2] = { Ty, VTy }; 10823 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10824 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10825 return Builder.CreateTrunc(Ops[0], Int16Ty); 10826 } 10827 case NEON::BI__builtin_neon_vminv_f16: { 10828 Int = Intrinsic::aarch64_neon_fminv; 10829 Ty = HalfTy; 10830 VTy = llvm::FixedVectorType::get(HalfTy, 4); 10831 llvm::Type *Tys[2] = { Ty, VTy }; 10832 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10833 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10834 return Builder.CreateTrunc(Ops[0], HalfTy); 10835 } 10836 case NEON::BI__builtin_neon_vminvq_f16: { 10837 Int = Intrinsic::aarch64_neon_fminv; 10838 Ty = HalfTy; 10839 VTy = llvm::FixedVectorType::get(HalfTy, 8); 10840 llvm::Type *Tys[2] = { Ty, VTy }; 10841 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10842 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 10843 return Builder.CreateTrunc(Ops[0], HalfTy); 10844 } 10845 case NEON::BI__builtin_neon_vmaxnmv_f16: { 10846 Int = Intrinsic::aarch64_neon_fmaxnmv; 10847 Ty = HalfTy; 10848 VTy = llvm::FixedVectorType::get(HalfTy, 4); 10849 llvm::Type *Tys[2] = { Ty, VTy }; 10850 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10851 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 10852 return Builder.CreateTrunc(Ops[0], HalfTy); 10853 } 10854 case NEON::BI__builtin_neon_vmaxnmvq_f16: { 10855 Int = Intrinsic::aarch64_neon_fmaxnmv; 10856 Ty = HalfTy; 10857 VTy = llvm::FixedVectorType::get(HalfTy, 8); 10858 llvm::Type *Tys[2] = { Ty, VTy }; 10859 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10860 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 10861 return Builder.CreateTrunc(Ops[0], HalfTy); 10862 } 10863 case NEON::BI__builtin_neon_vminnmv_f16: { 10864 Int = Intrinsic::aarch64_neon_fminnmv; 10865 Ty = HalfTy; 10866 VTy = llvm::FixedVectorType::get(HalfTy, 4); 10867 llvm::Type *Tys[2] = { Ty, VTy }; 10868 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10869 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 10870 return Builder.CreateTrunc(Ops[0], HalfTy); 10871 } 10872 case NEON::BI__builtin_neon_vminnmvq_f16: { 10873 Int = Intrinsic::aarch64_neon_fminnmv; 10874 Ty = HalfTy; 10875 VTy = llvm::FixedVectorType::get(HalfTy, 8); 10876 llvm::Type *Tys[2] = { Ty, VTy }; 10877 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10878 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 10879 return Builder.CreateTrunc(Ops[0], HalfTy); 10880 } 10881 case NEON::BI__builtin_neon_vmul_n_f64: { 10882 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10883 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); 10884 return Builder.CreateFMul(Ops[0], RHS); 10885 } 10886 case NEON::BI__builtin_neon_vaddlv_u8: { 10887 Int = Intrinsic::aarch64_neon_uaddlv; 10888 Ty = Int32Ty; 10889 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10890 llvm::Type *Tys[2] = { Ty, VTy }; 10891 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10892 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 10893 return Builder.CreateTrunc(Ops[0], Int16Ty); 10894 } 10895 case NEON::BI__builtin_neon_vaddlv_u16: { 10896 Int = Intrinsic::aarch64_neon_uaddlv; 10897 Ty = Int32Ty; 10898 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10899 llvm::Type *Tys[2] = { Ty, VTy }; 10900 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10901 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 10902 } 10903 case NEON::BI__builtin_neon_vaddlvq_u8: { 10904 Int = Intrinsic::aarch64_neon_uaddlv; 10905 Ty = Int32Ty; 10906 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10907 llvm::Type *Tys[2] = { Ty, VTy }; 10908 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10909 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 10910 return Builder.CreateTrunc(Ops[0], Int16Ty); 10911 } 10912 case NEON::BI__builtin_neon_vaddlvq_u16: { 10913 Int = Intrinsic::aarch64_neon_uaddlv; 10914 Ty = Int32Ty; 10915 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 10916 llvm::Type *Tys[2] = { Ty, VTy }; 10917 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10918 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 10919 } 10920 case NEON::BI__builtin_neon_vaddlv_s8: { 10921 Int = Intrinsic::aarch64_neon_saddlv; 10922 Ty = Int32Ty; 10923 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10924 llvm::Type *Tys[2] = { Ty, VTy }; 10925 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10926 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 10927 return Builder.CreateTrunc(Ops[0], Int16Ty); 10928 } 10929 case NEON::BI__builtin_neon_vaddlv_s16: { 10930 Int = Intrinsic::aarch64_neon_saddlv; 10931 Ty = Int32Ty; 10932 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10933 llvm::Type *Tys[2] = { Ty, VTy }; 10934 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10935 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 10936 } 10937 case NEON::BI__builtin_neon_vaddlvq_s8: { 10938 Int = Intrinsic::aarch64_neon_saddlv; 10939 Ty = Int32Ty; 10940 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10941 llvm::Type *Tys[2] = { Ty, VTy }; 10942 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10943 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 10944 return Builder.CreateTrunc(Ops[0], Int16Ty); 10945 } 10946 case NEON::BI__builtin_neon_vaddlvq_s16: { 10947 Int = Intrinsic::aarch64_neon_saddlv; 10948 Ty = Int32Ty; 10949 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 10950 llvm::Type *Tys[2] = { Ty, VTy }; 10951 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10952 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 10953 } 10954 case NEON::BI__builtin_neon_vsri_n_v: 10955 case NEON::BI__builtin_neon_vsriq_n_v: { 10956 Int = Intrinsic::aarch64_neon_vsri; 10957 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 10958 return EmitNeonCall(Intrin, Ops, "vsri_n"); 10959 } 10960 case NEON::BI__builtin_neon_vsli_n_v: 10961 case NEON::BI__builtin_neon_vsliq_n_v: { 10962 Int = Intrinsic::aarch64_neon_vsli; 10963 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 10964 return EmitNeonCall(Intrin, Ops, "vsli_n"); 10965 } 10966 case NEON::BI__builtin_neon_vsra_n_v: 10967 case NEON::BI__builtin_neon_vsraq_n_v: 10968 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10969 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 10970 return Builder.CreateAdd(Ops[0], Ops[1]); 10971 case NEON::BI__builtin_neon_vrsra_n_v: 10972 case NEON::BI__builtin_neon_vrsraq_n_v: { 10973 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; 10974 SmallVector<llvm::Value*,2> TmpOps; 10975 TmpOps.push_back(Ops[1]); 10976 TmpOps.push_back(Ops[2]); 10977 Function* F = CGM.getIntrinsic(Int, Ty); 10978 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); 10979 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 10980 return Builder.CreateAdd(Ops[0], tmp); 10981 } 10982 case NEON::BI__builtin_neon_vld1_v: 10983 case NEON::BI__builtin_neon_vld1q_v: { 10984 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 10985 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment()); 10986 } 10987 case NEON::BI__builtin_neon_vst1_v: 10988 case NEON::BI__builtin_neon_vst1q_v: 10989 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 10990 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 10991 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment()); 10992 case NEON::BI__builtin_neon_vld1_lane_v: 10993 case NEON::BI__builtin_neon_vld1q_lane_v: { 10994 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10995 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 10996 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10997 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], 10998 PtrOp0.getAlignment()); 10999 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); 11000 } 11001 case NEON::BI__builtin_neon_vld1_dup_v: 11002 case NEON::BI__builtin_neon_vld1q_dup_v: { 11003 Value *V = UndefValue::get(Ty); 11004 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 11005 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11006 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], 11007 PtrOp0.getAlignment()); 11008 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); 11009 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); 11010 return EmitNeonSplat(Ops[0], CI); 11011 } 11012 case NEON::BI__builtin_neon_vst1_lane_v: 11013 case NEON::BI__builtin_neon_vst1q_lane_v: 11014 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11015 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 11016 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11017 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty), 11018 PtrOp0.getAlignment()); 11019 case NEON::BI__builtin_neon_vld2_v: 11020 case NEON::BI__builtin_neon_vld2q_v: { 11021 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11022 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11023 llvm::Type *Tys[2] = { VTy, PTy }; 11024 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); 11025 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 11026 Ops[0] = Builder.CreateBitCast(Ops[0], 11027 llvm::PointerType::getUnqual(Ops[1]->getType())); 11028 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11029 } 11030 case NEON::BI__builtin_neon_vld3_v: 11031 case NEON::BI__builtin_neon_vld3q_v: { 11032 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11033 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11034 llvm::Type *Tys[2] = { VTy, PTy }; 11035 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); 11036 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 11037 Ops[0] = Builder.CreateBitCast(Ops[0], 11038 llvm::PointerType::getUnqual(Ops[1]->getType())); 11039 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11040 } 11041 case NEON::BI__builtin_neon_vld4_v: 11042 case NEON::BI__builtin_neon_vld4q_v: { 11043 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11044 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11045 llvm::Type *Tys[2] = { VTy, PTy }; 11046 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); 11047 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 11048 Ops[0] = Builder.CreateBitCast(Ops[0], 11049 llvm::PointerType::getUnqual(Ops[1]->getType())); 11050 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11051 } 11052 case NEON::BI__builtin_neon_vld2_dup_v: 11053 case NEON::BI__builtin_neon_vld2q_dup_v: { 11054 llvm::Type *PTy = 11055 llvm::PointerType::getUnqual(VTy->getElementType()); 11056 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11057 llvm::Type *Tys[2] = { VTy, PTy }; 11058 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); 11059 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 11060 Ops[0] = Builder.CreateBitCast(Ops[0], 11061 llvm::PointerType::getUnqual(Ops[1]->getType())); 11062 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11063 } 11064 case NEON::BI__builtin_neon_vld3_dup_v: 11065 case NEON::BI__builtin_neon_vld3q_dup_v: { 11066 llvm::Type *PTy = 11067 llvm::PointerType::getUnqual(VTy->getElementType()); 11068 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11069 llvm::Type *Tys[2] = { VTy, PTy }; 11070 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); 11071 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 11072 Ops[0] = Builder.CreateBitCast(Ops[0], 11073 llvm::PointerType::getUnqual(Ops[1]->getType())); 11074 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11075 } 11076 case NEON::BI__builtin_neon_vld4_dup_v: 11077 case NEON::BI__builtin_neon_vld4q_dup_v: { 11078 llvm::Type *PTy = 11079 llvm::PointerType::getUnqual(VTy->getElementType()); 11080 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11081 llvm::Type *Tys[2] = { VTy, PTy }; 11082 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); 11083 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 11084 Ops[0] = Builder.CreateBitCast(Ops[0], 11085 llvm::PointerType::getUnqual(Ops[1]->getType())); 11086 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11087 } 11088 case NEON::BI__builtin_neon_vld2_lane_v: 11089 case NEON::BI__builtin_neon_vld2q_lane_v: { 11090 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11091 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); 11092 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11093 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11094 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11095 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 11096 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); 11097 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11098 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11099 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11100 } 11101 case NEON::BI__builtin_neon_vld3_lane_v: 11102 case NEON::BI__builtin_neon_vld3q_lane_v: { 11103 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11104 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); 11105 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11106 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11107 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11108 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 11109 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 11110 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); 11111 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11112 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11113 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11114 } 11115 case NEON::BI__builtin_neon_vld4_lane_v: 11116 case NEON::BI__builtin_neon_vld4q_lane_v: { 11117 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11118 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); 11119 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11120 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11121 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11122 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 11123 Ops[4] = Builder.CreateBitCast(Ops[4], Ty); 11124 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); 11125 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane"); 11126 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11127 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11128 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11129 } 11130 case NEON::BI__builtin_neon_vst2_v: 11131 case NEON::BI__builtin_neon_vst2q_v: { 11132 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11133 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; 11134 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), 11135 Ops, ""); 11136 } 11137 case NEON::BI__builtin_neon_vst2_lane_v: 11138 case NEON::BI__builtin_neon_vst2q_lane_v: { 11139 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11140 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 11141 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 11142 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), 11143 Ops, ""); 11144 } 11145 case NEON::BI__builtin_neon_vst3_v: 11146 case NEON::BI__builtin_neon_vst3q_v: { 11147 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11148 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 11149 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), 11150 Ops, ""); 11151 } 11152 case NEON::BI__builtin_neon_vst3_lane_v: 11153 case NEON::BI__builtin_neon_vst3q_lane_v: { 11154 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11155 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 11156 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 11157 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), 11158 Ops, ""); 11159 } 11160 case NEON::BI__builtin_neon_vst4_v: 11161 case NEON::BI__builtin_neon_vst4q_v: { 11162 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11163 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 11164 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), 11165 Ops, ""); 11166 } 11167 case NEON::BI__builtin_neon_vst4_lane_v: 11168 case NEON::BI__builtin_neon_vst4q_lane_v: { 11169 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11170 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 11171 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; 11172 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), 11173 Ops, ""); 11174 } 11175 case NEON::BI__builtin_neon_vtrn_v: 11176 case NEON::BI__builtin_neon_vtrnq_v: { 11177 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11178 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11179 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11180 Value *SV = nullptr; 11181 11182 for (unsigned vi = 0; vi != 2; ++vi) { 11183 SmallVector<int, 16> Indices; 11184 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 11185 Indices.push_back(i+vi); 11186 Indices.push_back(i+e+vi); 11187 } 11188 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11189 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 11190 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11191 } 11192 return SV; 11193 } 11194 case NEON::BI__builtin_neon_vuzp_v: 11195 case NEON::BI__builtin_neon_vuzpq_v: { 11196 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11197 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11198 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11199 Value *SV = nullptr; 11200 11201 for (unsigned vi = 0; vi != 2; ++vi) { 11202 SmallVector<int, 16> Indices; 11203 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 11204 Indices.push_back(2*i+vi); 11205 11206 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11207 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 11208 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11209 } 11210 return SV; 11211 } 11212 case NEON::BI__builtin_neon_vzip_v: 11213 case NEON::BI__builtin_neon_vzipq_v: { 11214 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11215 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11216 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11217 Value *SV = nullptr; 11218 11219 for (unsigned vi = 0; vi != 2; ++vi) { 11220 SmallVector<int, 16> Indices; 11221 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 11222 Indices.push_back((i + vi*e) >> 1); 11223 Indices.push_back(((i + vi*e) >> 1)+e); 11224 } 11225 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11226 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 11227 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11228 } 11229 return SV; 11230 } 11231 case NEON::BI__builtin_neon_vqtbl1q_v: { 11232 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), 11233 Ops, "vtbl1"); 11234 } 11235 case NEON::BI__builtin_neon_vqtbl2q_v: { 11236 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), 11237 Ops, "vtbl2"); 11238 } 11239 case NEON::BI__builtin_neon_vqtbl3q_v: { 11240 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), 11241 Ops, "vtbl3"); 11242 } 11243 case NEON::BI__builtin_neon_vqtbl4q_v: { 11244 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), 11245 Ops, "vtbl4"); 11246 } 11247 case NEON::BI__builtin_neon_vqtbx1q_v: { 11248 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), 11249 Ops, "vtbx1"); 11250 } 11251 case NEON::BI__builtin_neon_vqtbx2q_v: { 11252 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), 11253 Ops, "vtbx2"); 11254 } 11255 case NEON::BI__builtin_neon_vqtbx3q_v: { 11256 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), 11257 Ops, "vtbx3"); 11258 } 11259 case NEON::BI__builtin_neon_vqtbx4q_v: { 11260 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), 11261 Ops, "vtbx4"); 11262 } 11263 case NEON::BI__builtin_neon_vsqadd_v: 11264 case NEON::BI__builtin_neon_vsqaddq_v: { 11265 Int = Intrinsic::aarch64_neon_usqadd; 11266 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); 11267 } 11268 case NEON::BI__builtin_neon_vuqadd_v: 11269 case NEON::BI__builtin_neon_vuqaddq_v: { 11270 Int = Intrinsic::aarch64_neon_suqadd; 11271 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); 11272 } 11273 } 11274 } 11275 11276 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID, 11277 const CallExpr *E) { 11278 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 11279 BuiltinID == BPF::BI__builtin_btf_type_id || 11280 BuiltinID == BPF::BI__builtin_preserve_type_info || 11281 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 11282 "unexpected BPF builtin"); 11283 11284 // A sequence number, injected into IR builtin functions, to 11285 // prevent CSE given the only difference of the funciton 11286 // may just be the debuginfo metadata. 11287 static uint32_t BuiltinSeqNum; 11288 11289 switch (BuiltinID) { 11290 default: 11291 llvm_unreachable("Unexpected BPF builtin"); 11292 case BPF::BI__builtin_preserve_field_info: { 11293 const Expr *Arg = E->getArg(0); 11294 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField; 11295 11296 if (!getDebugInfo()) { 11297 CGM.Error(E->getExprLoc(), 11298 "using __builtin_preserve_field_info() without -g"); 11299 return IsBitField ? EmitLValue(Arg).getBitFieldPointer() 11300 : EmitLValue(Arg).getPointer(*this); 11301 } 11302 11303 // Enable underlying preserve_*_access_index() generation. 11304 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion; 11305 IsInPreservedAIRegion = true; 11306 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer() 11307 : EmitLValue(Arg).getPointer(*this); 11308 IsInPreservedAIRegion = OldIsInPreservedAIRegion; 11309 11310 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11311 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue()); 11312 11313 // Built the IR for the preserve_field_info intrinsic. 11314 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration( 11315 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info, 11316 {FieldAddr->getType()}); 11317 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind}); 11318 } 11319 case BPF::BI__builtin_btf_type_id: 11320 case BPF::BI__builtin_preserve_type_info: { 11321 if (!getDebugInfo()) { 11322 CGM.Error(E->getExprLoc(), "using builtin function without -g"); 11323 return nullptr; 11324 } 11325 11326 const Expr *Arg0 = E->getArg(0); 11327 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( 11328 Arg0->getType(), Arg0->getExprLoc()); 11329 11330 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11331 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); 11332 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); 11333 11334 llvm::Function *FnDecl; 11335 if (BuiltinID == BPF::BI__builtin_btf_type_id) 11336 FnDecl = llvm::Intrinsic::getDeclaration( 11337 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {}); 11338 else 11339 FnDecl = llvm::Intrinsic::getDeclaration( 11340 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {}); 11341 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue}); 11342 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 11343 return Fn; 11344 } 11345 case BPF::BI__builtin_preserve_enum_value: { 11346 if (!getDebugInfo()) { 11347 CGM.Error(E->getExprLoc(), "using builtin function without -g"); 11348 return nullptr; 11349 } 11350 11351 const Expr *Arg0 = E->getArg(0); 11352 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( 11353 Arg0->getType(), Arg0->getExprLoc()); 11354 11355 // Find enumerator 11356 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens()); 11357 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr()); 11358 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr()); 11359 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl()); 11360 11361 auto &InitVal = Enumerator->getInitVal(); 11362 std::string InitValStr; 11363 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX)) 11364 InitValStr = std::to_string(InitVal.getSExtValue()); 11365 else 11366 InitValStr = std::to_string(InitVal.getZExtValue()); 11367 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr; 11368 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr); 11369 11370 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11371 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); 11372 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); 11373 11374 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration( 11375 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {}); 11376 CallInst *Fn = 11377 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue}); 11378 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 11379 return Fn; 11380 } 11381 } 11382 } 11383 11384 llvm::Value *CodeGenFunction:: 11385 BuildVector(ArrayRef<llvm::Value*> Ops) { 11386 assert((Ops.size() & (Ops.size() - 1)) == 0 && 11387 "Not a power-of-two sized vector!"); 11388 bool AllConstants = true; 11389 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) 11390 AllConstants &= isa<Constant>(Ops[i]); 11391 11392 // If this is a constant vector, create a ConstantVector. 11393 if (AllConstants) { 11394 SmallVector<llvm::Constant*, 16> CstOps; 11395 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 11396 CstOps.push_back(cast<Constant>(Ops[i])); 11397 return llvm::ConstantVector::get(CstOps); 11398 } 11399 11400 // Otherwise, insertelement the values to build the vector. 11401 Value *Result = llvm::UndefValue::get( 11402 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size())); 11403 11404 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 11405 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); 11406 11407 return Result; 11408 } 11409 11410 // Convert the mask from an integer type to a vector of i1. 11411 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, 11412 unsigned NumElts) { 11413 11414 auto *MaskTy = llvm::FixedVectorType::get( 11415 CGF.Builder.getInt1Ty(), 11416 cast<IntegerType>(Mask->getType())->getBitWidth()); 11417 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); 11418 11419 // If we have less than 8 elements, then the starting mask was an i8 and 11420 // we need to extract down to the right number of elements. 11421 if (NumElts < 8) { 11422 int Indices[4]; 11423 for (unsigned i = 0; i != NumElts; ++i) 11424 Indices[i] = i; 11425 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec, 11426 makeArrayRef(Indices, NumElts), 11427 "extract"); 11428 } 11429 return MaskVec; 11430 } 11431 11432 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11433 Align Alignment) { 11434 // Cast the pointer to right type. 11435 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11436 llvm::PointerType::getUnqual(Ops[1]->getType())); 11437 11438 Value *MaskVec = getMaskVecValue( 11439 CGF, Ops[2], 11440 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements()); 11441 11442 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec); 11443 } 11444 11445 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11446 Align Alignment) { 11447 // Cast the pointer to right type. 11448 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11449 llvm::PointerType::getUnqual(Ops[1]->getType())); 11450 11451 Value *MaskVec = getMaskVecValue( 11452 CGF, Ops[2], 11453 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements()); 11454 11455 return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]); 11456 } 11457 11458 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF, 11459 ArrayRef<Value *> Ops) { 11460 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType()); 11461 llvm::Type *PtrTy = ResultTy->getElementType(); 11462 11463 // Cast the pointer to element type. 11464 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11465 llvm::PointerType::getUnqual(PtrTy)); 11466 11467 Value *MaskVec = getMaskVecValue( 11468 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements()); 11469 11470 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload, 11471 ResultTy); 11472 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] }); 11473 } 11474 11475 static Value *EmitX86CompressExpand(CodeGenFunction &CGF, 11476 ArrayRef<Value *> Ops, 11477 bool IsCompress) { 11478 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); 11479 11480 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); 11481 11482 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress 11483 : Intrinsic::x86_avx512_mask_expand; 11484 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy); 11485 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec }); 11486 } 11487 11488 static Value *EmitX86CompressStore(CodeGenFunction &CGF, 11489 ArrayRef<Value *> Ops) { 11490 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); 11491 llvm::Type *PtrTy = ResultTy->getElementType(); 11492 11493 // Cast the pointer to element type. 11494 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11495 llvm::PointerType::getUnqual(PtrTy)); 11496 11497 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); 11498 11499 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore, 11500 ResultTy); 11501 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec }); 11502 } 11503 11504 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc, 11505 ArrayRef<Value *> Ops, 11506 bool InvertLHS = false) { 11507 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11508 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts); 11509 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts); 11510 11511 if (InvertLHS) 11512 LHS = CGF.Builder.CreateNot(LHS); 11513 11514 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS), 11515 Ops[0]->getType()); 11516 } 11517 11518 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1, 11519 Value *Amt, bool IsRight) { 11520 llvm::Type *Ty = Op0->getType(); 11521 11522 // Amount may be scalar immediate, in which case create a splat vector. 11523 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so 11524 // we only care about the lowest log2 bits anyway. 11525 if (Amt->getType() != Ty) { 11526 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements(); 11527 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false); 11528 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt); 11529 } 11530 11531 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl; 11532 Function *F = CGF.CGM.getIntrinsic(IID, Ty); 11533 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt}); 11534 } 11535 11536 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11537 bool IsSigned) { 11538 Value *Op0 = Ops[0]; 11539 Value *Op1 = Ops[1]; 11540 llvm::Type *Ty = Op0->getType(); 11541 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 11542 11543 CmpInst::Predicate Pred; 11544 switch (Imm) { 11545 case 0x0: 11546 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11547 break; 11548 case 0x1: 11549 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 11550 break; 11551 case 0x2: 11552 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11553 break; 11554 case 0x3: 11555 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 11556 break; 11557 case 0x4: 11558 Pred = ICmpInst::ICMP_EQ; 11559 break; 11560 case 0x5: 11561 Pred = ICmpInst::ICMP_NE; 11562 break; 11563 case 0x6: 11564 return llvm::Constant::getNullValue(Ty); // FALSE 11565 case 0x7: 11566 return llvm::Constant::getAllOnesValue(Ty); // TRUE 11567 default: 11568 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate"); 11569 } 11570 11571 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1); 11572 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty); 11573 return Res; 11574 } 11575 11576 static Value *EmitX86Select(CodeGenFunction &CGF, 11577 Value *Mask, Value *Op0, Value *Op1) { 11578 11579 // If the mask is all ones just return first argument. 11580 if (const auto *C = dyn_cast<Constant>(Mask)) 11581 if (C->isAllOnesValue()) 11582 return Op0; 11583 11584 Mask = getMaskVecValue( 11585 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements()); 11586 11587 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 11588 } 11589 11590 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF, 11591 Value *Mask, Value *Op0, Value *Op1) { 11592 // If the mask is all ones just return first argument. 11593 if (const auto *C = dyn_cast<Constant>(Mask)) 11594 if (C->isAllOnesValue()) 11595 return Op0; 11596 11597 auto *MaskTy = llvm::FixedVectorType::get( 11598 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth()); 11599 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy); 11600 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0); 11601 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 11602 } 11603 11604 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp, 11605 unsigned NumElts, Value *MaskIn) { 11606 if (MaskIn) { 11607 const auto *C = dyn_cast<Constant>(MaskIn); 11608 if (!C || !C->isAllOnesValue()) 11609 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts)); 11610 } 11611 11612 if (NumElts < 8) { 11613 int Indices[8]; 11614 for (unsigned i = 0; i != NumElts; ++i) 11615 Indices[i] = i; 11616 for (unsigned i = NumElts; i != 8; ++i) 11617 Indices[i] = i % NumElts + NumElts; 11618 Cmp = CGF.Builder.CreateShuffleVector( 11619 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); 11620 } 11621 11622 return CGF.Builder.CreateBitCast(Cmp, 11623 IntegerType::get(CGF.getLLVMContext(), 11624 std::max(NumElts, 8U))); 11625 } 11626 11627 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, 11628 bool Signed, ArrayRef<Value *> Ops) { 11629 assert((Ops.size() == 2 || Ops.size() == 4) && 11630 "Unexpected number of arguments"); 11631 unsigned NumElts = 11632 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 11633 Value *Cmp; 11634 11635 if (CC == 3) { 11636 Cmp = Constant::getNullValue( 11637 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 11638 } else if (CC == 7) { 11639 Cmp = Constant::getAllOnesValue( 11640 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 11641 } else { 11642 ICmpInst::Predicate Pred; 11643 switch (CC) { 11644 default: llvm_unreachable("Unknown condition code"); 11645 case 0: Pred = ICmpInst::ICMP_EQ; break; 11646 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; 11647 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; 11648 case 4: Pred = ICmpInst::ICMP_NE; break; 11649 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; 11650 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; 11651 } 11652 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); 11653 } 11654 11655 Value *MaskIn = nullptr; 11656 if (Ops.size() == 4) 11657 MaskIn = Ops[3]; 11658 11659 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn); 11660 } 11661 11662 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) { 11663 Value *Zero = Constant::getNullValue(In->getType()); 11664 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero }); 11665 } 11666 11667 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, 11668 ArrayRef<Value *> Ops, bool IsSigned) { 11669 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue(); 11670 llvm::Type *Ty = Ops[1]->getType(); 11671 11672 Value *Res; 11673 if (Rnd != 4) { 11674 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round 11675 : Intrinsic::x86_avx512_uitofp_round; 11676 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() }); 11677 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] }); 11678 } else { 11679 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty) 11680 : CGF.Builder.CreateUIToFP(Ops[0], Ty); 11681 } 11682 11683 return EmitX86Select(CGF, Ops[2], Res, Ops[1]); 11684 } 11685 11686 // Lowers X86 FMA intrinsics to IR. 11687 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11688 unsigned BuiltinID, bool IsAddSub) { 11689 11690 bool Subtract = false; 11691 Intrinsic::ID IID = Intrinsic::not_intrinsic; 11692 switch (BuiltinID) { 11693 default: break; 11694 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 11695 Subtract = true; 11696 LLVM_FALLTHROUGH; 11697 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 11698 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 11699 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 11700 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break; 11701 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 11702 Subtract = true; 11703 LLVM_FALLTHROUGH; 11704 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 11705 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 11706 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 11707 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break; 11708 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 11709 Subtract = true; 11710 LLVM_FALLTHROUGH; 11711 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 11712 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 11713 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 11714 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512; 11715 break; 11716 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 11717 Subtract = true; 11718 LLVM_FALLTHROUGH; 11719 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 11720 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 11721 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 11722 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512; 11723 break; 11724 } 11725 11726 Value *A = Ops[0]; 11727 Value *B = Ops[1]; 11728 Value *C = Ops[2]; 11729 11730 if (Subtract) 11731 C = CGF.Builder.CreateFNeg(C); 11732 11733 Value *Res; 11734 11735 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding). 11736 if (IID != Intrinsic::not_intrinsic && 11737 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 || 11738 IsAddSub)) { 11739 Function *Intr = CGF.CGM.getIntrinsic(IID); 11740 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() }); 11741 } else { 11742 llvm::Type *Ty = A->getType(); 11743 Function *FMA; 11744 if (CGF.Builder.getIsFPConstrained()) { 11745 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty); 11746 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C}); 11747 } else { 11748 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty); 11749 Res = CGF.Builder.CreateCall(FMA, {A, B, C}); 11750 } 11751 } 11752 11753 // Handle any required masking. 11754 Value *MaskFalseVal = nullptr; 11755 switch (BuiltinID) { 11756 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 11757 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 11758 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 11759 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 11760 MaskFalseVal = Ops[0]; 11761 break; 11762 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 11763 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 11764 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 11765 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 11766 MaskFalseVal = Constant::getNullValue(Ops[0]->getType()); 11767 break; 11768 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 11769 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 11770 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 11771 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 11772 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 11773 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 11774 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 11775 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 11776 MaskFalseVal = Ops[2]; 11777 break; 11778 } 11779 11780 if (MaskFalseVal) 11781 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal); 11782 11783 return Res; 11784 } 11785 11786 static Value * 11787 EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops, 11788 Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0, 11789 bool NegAcc = false) { 11790 unsigned Rnd = 4; 11791 if (Ops.size() > 4) 11792 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 11793 11794 if (NegAcc) 11795 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]); 11796 11797 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0); 11798 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0); 11799 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0); 11800 Value *Res; 11801 if (Rnd != 4) { 11802 Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ? 11803 Intrinsic::x86_avx512_vfmadd_f32 : 11804 Intrinsic::x86_avx512_vfmadd_f64; 11805 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 11806 {Ops[0], Ops[1], Ops[2], Ops[4]}); 11807 } else if (CGF.Builder.getIsFPConstrained()) { 11808 Function *FMA = CGF.CGM.getIntrinsic( 11809 Intrinsic::experimental_constrained_fma, Ops[0]->getType()); 11810 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3)); 11811 } else { 11812 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType()); 11813 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3)); 11814 } 11815 // If we have more than 3 arguments, we need to do masking. 11816 if (Ops.size() > 3) { 11817 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType()) 11818 : Ops[PTIdx]; 11819 11820 // If we negated the accumulator and the its the PassThru value we need to 11821 // bypass the negate. Conveniently Upper should be the same thing in this 11822 // case. 11823 if (NegAcc && PTIdx == 2) 11824 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0); 11825 11826 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru); 11827 } 11828 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0); 11829 } 11830 11831 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned, 11832 ArrayRef<Value *> Ops) { 11833 llvm::Type *Ty = Ops[0]->getType(); 11834 // Arguments have a vXi32 type so cast to vXi64. 11835 Ty = llvm::FixedVectorType::get(CGF.Int64Ty, 11836 Ty->getPrimitiveSizeInBits() / 64); 11837 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty); 11838 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty); 11839 11840 if (IsSigned) { 11841 // Shift left then arithmetic shift right. 11842 Constant *ShiftAmt = ConstantInt::get(Ty, 32); 11843 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt); 11844 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt); 11845 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt); 11846 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt); 11847 } else { 11848 // Clear the upper bits. 11849 Constant *Mask = ConstantInt::get(Ty, 0xffffffff); 11850 LHS = CGF.Builder.CreateAnd(LHS, Mask); 11851 RHS = CGF.Builder.CreateAnd(RHS, Mask); 11852 } 11853 11854 return CGF.Builder.CreateMul(LHS, RHS); 11855 } 11856 11857 // Emit a masked pternlog intrinsic. This only exists because the header has to 11858 // use a macro and we aren't able to pass the input argument to a pternlog 11859 // builtin and a select builtin without evaluating it twice. 11860 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask, 11861 ArrayRef<Value *> Ops) { 11862 llvm::Type *Ty = Ops[0]->getType(); 11863 11864 unsigned VecWidth = Ty->getPrimitiveSizeInBits(); 11865 unsigned EltWidth = Ty->getScalarSizeInBits(); 11866 Intrinsic::ID IID; 11867 if (VecWidth == 128 && EltWidth == 32) 11868 IID = Intrinsic::x86_avx512_pternlog_d_128; 11869 else if (VecWidth == 256 && EltWidth == 32) 11870 IID = Intrinsic::x86_avx512_pternlog_d_256; 11871 else if (VecWidth == 512 && EltWidth == 32) 11872 IID = Intrinsic::x86_avx512_pternlog_d_512; 11873 else if (VecWidth == 128 && EltWidth == 64) 11874 IID = Intrinsic::x86_avx512_pternlog_q_128; 11875 else if (VecWidth == 256 && EltWidth == 64) 11876 IID = Intrinsic::x86_avx512_pternlog_q_256; 11877 else if (VecWidth == 512 && EltWidth == 64) 11878 IID = Intrinsic::x86_avx512_pternlog_q_512; 11879 else 11880 llvm_unreachable("Unexpected intrinsic"); 11881 11882 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 11883 Ops.drop_back()); 11884 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0]; 11885 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru); 11886 } 11887 11888 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, 11889 llvm::Type *DstTy) { 11890 unsigned NumberOfElements = 11891 cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 11892 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); 11893 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); 11894 } 11895 11896 // Emit binary intrinsic with the same type used in result/args. 11897 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF, 11898 ArrayRef<Value *> Ops, Intrinsic::ID IID) { 11899 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType()); 11900 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]}); 11901 } 11902 11903 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { 11904 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); 11905 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); 11906 return EmitX86CpuIs(CPUStr); 11907 } 11908 11909 // Convert F16 halfs to floats. 11910 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF, 11911 ArrayRef<Value *> Ops, 11912 llvm::Type *DstTy) { 11913 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && 11914 "Unknown cvtph2ps intrinsic"); 11915 11916 // If the SAE intrinsic doesn't use default rounding then we can't upgrade. 11917 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) { 11918 Function *F = 11919 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512); 11920 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]}); 11921 } 11922 11923 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 11924 Value *Src = Ops[0]; 11925 11926 // Extract the subvector. 11927 if (NumDstElts != 11928 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) { 11929 assert(NumDstElts == 4 && "Unexpected vector size"); 11930 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3}); 11931 } 11932 11933 // Bitcast from vXi16 to vXf16. 11934 auto *HalfTy = llvm::FixedVectorType::get( 11935 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts); 11936 Src = CGF.Builder.CreateBitCast(Src, HalfTy); 11937 11938 // Perform the fp-extension. 11939 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps"); 11940 11941 if (Ops.size() >= 3) 11942 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]); 11943 return Res; 11944 } 11945 11946 // Convert a BF16 to a float. 11947 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF, 11948 const CallExpr *E, 11949 ArrayRef<Value *> Ops) { 11950 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty(); 11951 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty); 11952 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16); 11953 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 11954 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType); 11955 return BitCast; 11956 } 11957 11958 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { 11959 11960 llvm::Type *Int32Ty = Builder.getInt32Ty(); 11961 11962 // Matching the struct layout from the compiler-rt/libgcc structure that is 11963 // filled in: 11964 // unsigned int __cpu_vendor; 11965 // unsigned int __cpu_type; 11966 // unsigned int __cpu_subtype; 11967 // unsigned int __cpu_features[1]; 11968 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 11969 llvm::ArrayType::get(Int32Ty, 1)); 11970 11971 // Grab the global __cpu_model. 11972 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 11973 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 11974 11975 // Calculate the index needed to access the correct field based on the 11976 // range. Also adjust the expected value. 11977 unsigned Index; 11978 unsigned Value; 11979 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) 11980 #define X86_VENDOR(ENUM, STRING) \ 11981 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)}) 11982 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \ 11983 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 11984 #define X86_CPU_TYPE(ENUM, STR) \ 11985 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 11986 #define X86_CPU_SUBTYPE(ENUM, STR) \ 11987 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)}) 11988 #include "llvm/Support/X86TargetParser.def" 11989 .Default({0, 0}); 11990 assert(Value != 0 && "Invalid CPUStr passed to CpuIs"); 11991 11992 // Grab the appropriate field from __cpu_model. 11993 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), 11994 ConstantInt::get(Int32Ty, Index)}; 11995 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs); 11996 CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4)); 11997 11998 // Check the value of the field against the requested value. 11999 return Builder.CreateICmpEQ(CpuValue, 12000 llvm::ConstantInt::get(Int32Ty, Value)); 12001 } 12002 12003 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { 12004 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); 12005 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString(); 12006 return EmitX86CpuSupports(FeatureStr); 12007 } 12008 12009 uint64_t 12010 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) { 12011 // Processor features and mapping to processor feature value. 12012 uint64_t FeaturesMask = 0; 12013 for (const StringRef &FeatureStr : FeatureStrs) { 12014 unsigned Feature = 12015 StringSwitch<unsigned>(FeatureStr) 12016 #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM) 12017 #include "llvm/Support/X86TargetParser.def" 12018 ; 12019 FeaturesMask |= (1ULL << Feature); 12020 } 12021 return FeaturesMask; 12022 } 12023 12024 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) { 12025 return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs)); 12026 } 12027 12028 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) { 12029 uint32_t Features1 = Lo_32(FeaturesMask); 12030 uint32_t Features2 = Hi_32(FeaturesMask); 12031 12032 Value *Result = Builder.getTrue(); 12033 12034 if (Features1 != 0) { 12035 // Matching the struct layout from the compiler-rt/libgcc structure that is 12036 // filled in: 12037 // unsigned int __cpu_vendor; 12038 // unsigned int __cpu_type; 12039 // unsigned int __cpu_subtype; 12040 // unsigned int __cpu_features[1]; 12041 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 12042 llvm::ArrayType::get(Int32Ty, 1)); 12043 12044 // Grab the global __cpu_model. 12045 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 12046 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 12047 12048 // Grab the first (0th) element from the field __cpu_features off of the 12049 // global in the struct STy. 12050 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3), 12051 Builder.getInt32(0)}; 12052 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs); 12053 Value *Features = 12054 Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4)); 12055 12056 // Check the value of the bit corresponding to the feature requested. 12057 Value *Mask = Builder.getInt32(Features1); 12058 Value *Bitset = Builder.CreateAnd(Features, Mask); 12059 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 12060 Result = Builder.CreateAnd(Result, Cmp); 12061 } 12062 12063 if (Features2 != 0) { 12064 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty, 12065 "__cpu_features2"); 12066 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true); 12067 12068 Value *Features = 12069 Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4)); 12070 12071 // Check the value of the bit corresponding to the feature requested. 12072 Value *Mask = Builder.getInt32(Features2); 12073 Value *Bitset = Builder.CreateAnd(Features, Mask); 12074 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 12075 Result = Builder.CreateAnd(Result, Cmp); 12076 } 12077 12078 return Result; 12079 } 12080 12081 Value *CodeGenFunction::EmitX86CpuInit() { 12082 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, 12083 /*Variadic*/ false); 12084 llvm::FunctionCallee Func = 12085 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); 12086 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true); 12087 cast<llvm::GlobalValue>(Func.getCallee()) 12088 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 12089 return Builder.CreateCall(Func); 12090 } 12091 12092 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, 12093 const CallExpr *E) { 12094 if (BuiltinID == X86::BI__builtin_cpu_is) 12095 return EmitX86CpuIs(E); 12096 if (BuiltinID == X86::BI__builtin_cpu_supports) 12097 return EmitX86CpuSupports(E); 12098 if (BuiltinID == X86::BI__builtin_cpu_init) 12099 return EmitX86CpuInit(); 12100 12101 // Handle MSVC intrinsics before argument evaluation to prevent double 12102 // evaluation. 12103 if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID)) 12104 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 12105 12106 SmallVector<Value*, 4> Ops; 12107 bool IsMaskFCmp = false; 12108 12109 // Find out if any arguments are required to be integer constant expressions. 12110 unsigned ICEArguments = 0; 12111 ASTContext::GetBuiltinTypeError Error; 12112 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 12113 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 12114 12115 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 12116 // If this is a normal argument, just emit it as a scalar. 12117 if ((ICEArguments & (1 << i)) == 0) { 12118 Ops.push_back(EmitScalarExpr(E->getArg(i))); 12119 continue; 12120 } 12121 12122 // If this is required to be a constant, constant fold it so that we know 12123 // that the generated intrinsic gets a ConstantInt. 12124 Ops.push_back(llvm::ConstantInt::get( 12125 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext()))); 12126 } 12127 12128 // These exist so that the builtin that takes an immediate can be bounds 12129 // checked by clang to avoid passing bad immediates to the backend. Since 12130 // AVX has a larger immediate than SSE we would need separate builtins to 12131 // do the different bounds checking. Rather than create a clang specific 12132 // SSE only builtin, this implements eight separate builtins to match gcc 12133 // implementation. 12134 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { 12135 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); 12136 llvm::Function *F = CGM.getIntrinsic(ID); 12137 return Builder.CreateCall(F, Ops); 12138 }; 12139 12140 // For the vector forms of FP comparisons, translate the builtins directly to 12141 // IR. 12142 // TODO: The builtins could be removed if the SSE header files used vector 12143 // extension comparisons directly (vector ordered/unordered may need 12144 // additional support via __builtin_isnan()). 12145 auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred, 12146 bool IsSignaling) { 12147 Value *Cmp; 12148 if (IsSignaling) 12149 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); 12150 else 12151 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 12152 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType()); 12153 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); 12154 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); 12155 return Builder.CreateBitCast(Sext, FPVecTy); 12156 }; 12157 12158 switch (BuiltinID) { 12159 default: return nullptr; 12160 case X86::BI_mm_prefetch: { 12161 Value *Address = Ops[0]; 12162 ConstantInt *C = cast<ConstantInt>(Ops[1]); 12163 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1); 12164 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3); 12165 Value *Data = ConstantInt::get(Int32Ty, 1); 12166 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 12167 return Builder.CreateCall(F, {Address, RW, Locality, Data}); 12168 } 12169 case X86::BI_mm_clflush: { 12170 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), 12171 Ops[0]); 12172 } 12173 case X86::BI_mm_lfence: { 12174 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); 12175 } 12176 case X86::BI_mm_mfence: { 12177 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); 12178 } 12179 case X86::BI_mm_sfence: { 12180 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); 12181 } 12182 case X86::BI_mm_pause: { 12183 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); 12184 } 12185 case X86::BI__rdtsc: { 12186 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); 12187 } 12188 case X86::BI__builtin_ia32_rdtscp: { 12189 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp)); 12190 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 12191 Ops[0]); 12192 return Builder.CreateExtractValue(Call, 0); 12193 } 12194 case X86::BI__builtin_ia32_lzcnt_u16: 12195 case X86::BI__builtin_ia32_lzcnt_u32: 12196 case X86::BI__builtin_ia32_lzcnt_u64: { 12197 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 12198 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 12199 } 12200 case X86::BI__builtin_ia32_tzcnt_u16: 12201 case X86::BI__builtin_ia32_tzcnt_u32: 12202 case X86::BI__builtin_ia32_tzcnt_u64: { 12203 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType()); 12204 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 12205 } 12206 case X86::BI__builtin_ia32_undef128: 12207 case X86::BI__builtin_ia32_undef256: 12208 case X86::BI__builtin_ia32_undef512: 12209 // The x86 definition of "undef" is not the same as the LLVM definition 12210 // (PR32176). We leave optimizing away an unnecessary zero constant to the 12211 // IR optimizer and backend. 12212 // TODO: If we had a "freeze" IR instruction to generate a fixed undef 12213 // value, we should use that here instead of a zero. 12214 return llvm::Constant::getNullValue(ConvertType(E->getType())); 12215 case X86::BI__builtin_ia32_vec_init_v8qi: 12216 case X86::BI__builtin_ia32_vec_init_v4hi: 12217 case X86::BI__builtin_ia32_vec_init_v2si: 12218 return Builder.CreateBitCast(BuildVector(Ops), 12219 llvm::Type::getX86_MMXTy(getLLVMContext())); 12220 case X86::BI__builtin_ia32_vec_ext_v2si: 12221 case X86::BI__builtin_ia32_vec_ext_v16qi: 12222 case X86::BI__builtin_ia32_vec_ext_v8hi: 12223 case X86::BI__builtin_ia32_vec_ext_v4si: 12224 case X86::BI__builtin_ia32_vec_ext_v4sf: 12225 case X86::BI__builtin_ia32_vec_ext_v2di: 12226 case X86::BI__builtin_ia32_vec_ext_v32qi: 12227 case X86::BI__builtin_ia32_vec_ext_v16hi: 12228 case X86::BI__builtin_ia32_vec_ext_v8si: 12229 case X86::BI__builtin_ia32_vec_ext_v4di: { 12230 unsigned NumElts = 12231 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12232 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 12233 Index &= NumElts - 1; 12234 // These builtins exist so we can ensure the index is an ICE and in range. 12235 // Otherwise we could just do this in the header file. 12236 return Builder.CreateExtractElement(Ops[0], Index); 12237 } 12238 case X86::BI__builtin_ia32_vec_set_v16qi: 12239 case X86::BI__builtin_ia32_vec_set_v8hi: 12240 case X86::BI__builtin_ia32_vec_set_v4si: 12241 case X86::BI__builtin_ia32_vec_set_v2di: 12242 case X86::BI__builtin_ia32_vec_set_v32qi: 12243 case X86::BI__builtin_ia32_vec_set_v16hi: 12244 case X86::BI__builtin_ia32_vec_set_v8si: 12245 case X86::BI__builtin_ia32_vec_set_v4di: { 12246 unsigned NumElts = 12247 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12248 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 12249 Index &= NumElts - 1; 12250 // These builtins exist so we can ensure the index is an ICE and in range. 12251 // Otherwise we could just do this in the header file. 12252 return Builder.CreateInsertElement(Ops[0], Ops[1], Index); 12253 } 12254 case X86::BI_mm_setcsr: 12255 case X86::BI__builtin_ia32_ldmxcsr: { 12256 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 12257 Builder.CreateStore(Ops[0], Tmp); 12258 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), 12259 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 12260 } 12261 case X86::BI_mm_getcsr: 12262 case X86::BI__builtin_ia32_stmxcsr: { 12263 Address Tmp = CreateMemTemp(E->getType()); 12264 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), 12265 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 12266 return Builder.CreateLoad(Tmp, "stmxcsr"); 12267 } 12268 case X86::BI__builtin_ia32_xsave: 12269 case X86::BI__builtin_ia32_xsave64: 12270 case X86::BI__builtin_ia32_xrstor: 12271 case X86::BI__builtin_ia32_xrstor64: 12272 case X86::BI__builtin_ia32_xsaveopt: 12273 case X86::BI__builtin_ia32_xsaveopt64: 12274 case X86::BI__builtin_ia32_xrstors: 12275 case X86::BI__builtin_ia32_xrstors64: 12276 case X86::BI__builtin_ia32_xsavec: 12277 case X86::BI__builtin_ia32_xsavec64: 12278 case X86::BI__builtin_ia32_xsaves: 12279 case X86::BI__builtin_ia32_xsaves64: 12280 case X86::BI__builtin_ia32_xsetbv: 12281 case X86::BI_xsetbv: { 12282 Intrinsic::ID ID; 12283 #define INTRINSIC_X86_XSAVE_ID(NAME) \ 12284 case X86::BI__builtin_ia32_##NAME: \ 12285 ID = Intrinsic::x86_##NAME; \ 12286 break 12287 switch (BuiltinID) { 12288 default: llvm_unreachable("Unsupported intrinsic!"); 12289 INTRINSIC_X86_XSAVE_ID(xsave); 12290 INTRINSIC_X86_XSAVE_ID(xsave64); 12291 INTRINSIC_X86_XSAVE_ID(xrstor); 12292 INTRINSIC_X86_XSAVE_ID(xrstor64); 12293 INTRINSIC_X86_XSAVE_ID(xsaveopt); 12294 INTRINSIC_X86_XSAVE_ID(xsaveopt64); 12295 INTRINSIC_X86_XSAVE_ID(xrstors); 12296 INTRINSIC_X86_XSAVE_ID(xrstors64); 12297 INTRINSIC_X86_XSAVE_ID(xsavec); 12298 INTRINSIC_X86_XSAVE_ID(xsavec64); 12299 INTRINSIC_X86_XSAVE_ID(xsaves); 12300 INTRINSIC_X86_XSAVE_ID(xsaves64); 12301 INTRINSIC_X86_XSAVE_ID(xsetbv); 12302 case X86::BI_xsetbv: 12303 ID = Intrinsic::x86_xsetbv; 12304 break; 12305 } 12306 #undef INTRINSIC_X86_XSAVE_ID 12307 Value *Mhi = Builder.CreateTrunc( 12308 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); 12309 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); 12310 Ops[1] = Mhi; 12311 Ops.push_back(Mlo); 12312 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 12313 } 12314 case X86::BI__builtin_ia32_xgetbv: 12315 case X86::BI_xgetbv: 12316 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops); 12317 case X86::BI__builtin_ia32_storedqudi128_mask: 12318 case X86::BI__builtin_ia32_storedqusi128_mask: 12319 case X86::BI__builtin_ia32_storedquhi128_mask: 12320 case X86::BI__builtin_ia32_storedquqi128_mask: 12321 case X86::BI__builtin_ia32_storeupd128_mask: 12322 case X86::BI__builtin_ia32_storeups128_mask: 12323 case X86::BI__builtin_ia32_storedqudi256_mask: 12324 case X86::BI__builtin_ia32_storedqusi256_mask: 12325 case X86::BI__builtin_ia32_storedquhi256_mask: 12326 case X86::BI__builtin_ia32_storedquqi256_mask: 12327 case X86::BI__builtin_ia32_storeupd256_mask: 12328 case X86::BI__builtin_ia32_storeups256_mask: 12329 case X86::BI__builtin_ia32_storedqudi512_mask: 12330 case X86::BI__builtin_ia32_storedqusi512_mask: 12331 case X86::BI__builtin_ia32_storedquhi512_mask: 12332 case X86::BI__builtin_ia32_storedquqi512_mask: 12333 case X86::BI__builtin_ia32_storeupd512_mask: 12334 case X86::BI__builtin_ia32_storeups512_mask: 12335 return EmitX86MaskedStore(*this, Ops, Align(1)); 12336 12337 case X86::BI__builtin_ia32_storess128_mask: 12338 case X86::BI__builtin_ia32_storesd128_mask: 12339 return EmitX86MaskedStore(*this, Ops, Align(1)); 12340 12341 case X86::BI__builtin_ia32_vpopcntb_128: 12342 case X86::BI__builtin_ia32_vpopcntd_128: 12343 case X86::BI__builtin_ia32_vpopcntq_128: 12344 case X86::BI__builtin_ia32_vpopcntw_128: 12345 case X86::BI__builtin_ia32_vpopcntb_256: 12346 case X86::BI__builtin_ia32_vpopcntd_256: 12347 case X86::BI__builtin_ia32_vpopcntq_256: 12348 case X86::BI__builtin_ia32_vpopcntw_256: 12349 case X86::BI__builtin_ia32_vpopcntb_512: 12350 case X86::BI__builtin_ia32_vpopcntd_512: 12351 case X86::BI__builtin_ia32_vpopcntq_512: 12352 case X86::BI__builtin_ia32_vpopcntw_512: { 12353 llvm::Type *ResultType = ConvertType(E->getType()); 12354 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 12355 return Builder.CreateCall(F, Ops); 12356 } 12357 case X86::BI__builtin_ia32_cvtmask2b128: 12358 case X86::BI__builtin_ia32_cvtmask2b256: 12359 case X86::BI__builtin_ia32_cvtmask2b512: 12360 case X86::BI__builtin_ia32_cvtmask2w128: 12361 case X86::BI__builtin_ia32_cvtmask2w256: 12362 case X86::BI__builtin_ia32_cvtmask2w512: 12363 case X86::BI__builtin_ia32_cvtmask2d128: 12364 case X86::BI__builtin_ia32_cvtmask2d256: 12365 case X86::BI__builtin_ia32_cvtmask2d512: 12366 case X86::BI__builtin_ia32_cvtmask2q128: 12367 case X86::BI__builtin_ia32_cvtmask2q256: 12368 case X86::BI__builtin_ia32_cvtmask2q512: 12369 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); 12370 12371 case X86::BI__builtin_ia32_cvtb2mask128: 12372 case X86::BI__builtin_ia32_cvtb2mask256: 12373 case X86::BI__builtin_ia32_cvtb2mask512: 12374 case X86::BI__builtin_ia32_cvtw2mask128: 12375 case X86::BI__builtin_ia32_cvtw2mask256: 12376 case X86::BI__builtin_ia32_cvtw2mask512: 12377 case X86::BI__builtin_ia32_cvtd2mask128: 12378 case X86::BI__builtin_ia32_cvtd2mask256: 12379 case X86::BI__builtin_ia32_cvtd2mask512: 12380 case X86::BI__builtin_ia32_cvtq2mask128: 12381 case X86::BI__builtin_ia32_cvtq2mask256: 12382 case X86::BI__builtin_ia32_cvtq2mask512: 12383 return EmitX86ConvertToMask(*this, Ops[0]); 12384 12385 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 12386 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 12387 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 12388 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true); 12389 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 12390 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 12391 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 12392 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false); 12393 12394 case X86::BI__builtin_ia32_vfmaddss3: 12395 case X86::BI__builtin_ia32_vfmaddsd3: 12396 case X86::BI__builtin_ia32_vfmaddss3_mask: 12397 case X86::BI__builtin_ia32_vfmaddsd3_mask: 12398 return EmitScalarFMAExpr(*this, Ops, Ops[0]); 12399 case X86::BI__builtin_ia32_vfmaddss: 12400 case X86::BI__builtin_ia32_vfmaddsd: 12401 return EmitScalarFMAExpr(*this, Ops, 12402 Constant::getNullValue(Ops[0]->getType())); 12403 case X86::BI__builtin_ia32_vfmaddss3_maskz: 12404 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 12405 return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true); 12406 case X86::BI__builtin_ia32_vfmaddss3_mask3: 12407 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 12408 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2); 12409 case X86::BI__builtin_ia32_vfmsubss3_mask3: 12410 case X86::BI__builtin_ia32_vfmsubsd3_mask3: 12411 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2, 12412 /*NegAcc*/true); 12413 case X86::BI__builtin_ia32_vfmaddps: 12414 case X86::BI__builtin_ia32_vfmaddpd: 12415 case X86::BI__builtin_ia32_vfmaddps256: 12416 case X86::BI__builtin_ia32_vfmaddpd256: 12417 case X86::BI__builtin_ia32_vfmaddps512_mask: 12418 case X86::BI__builtin_ia32_vfmaddps512_maskz: 12419 case X86::BI__builtin_ia32_vfmaddps512_mask3: 12420 case X86::BI__builtin_ia32_vfmsubps512_mask3: 12421 case X86::BI__builtin_ia32_vfmaddpd512_mask: 12422 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 12423 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 12424 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 12425 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false); 12426 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 12427 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 12428 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 12429 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 12430 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 12431 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 12432 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 12433 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 12434 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true); 12435 12436 case X86::BI__builtin_ia32_movdqa32store128_mask: 12437 case X86::BI__builtin_ia32_movdqa64store128_mask: 12438 case X86::BI__builtin_ia32_storeaps128_mask: 12439 case X86::BI__builtin_ia32_storeapd128_mask: 12440 case X86::BI__builtin_ia32_movdqa32store256_mask: 12441 case X86::BI__builtin_ia32_movdqa64store256_mask: 12442 case X86::BI__builtin_ia32_storeaps256_mask: 12443 case X86::BI__builtin_ia32_storeapd256_mask: 12444 case X86::BI__builtin_ia32_movdqa32store512_mask: 12445 case X86::BI__builtin_ia32_movdqa64store512_mask: 12446 case X86::BI__builtin_ia32_storeaps512_mask: 12447 case X86::BI__builtin_ia32_storeapd512_mask: 12448 return EmitX86MaskedStore( 12449 *this, Ops, 12450 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); 12451 12452 case X86::BI__builtin_ia32_loadups128_mask: 12453 case X86::BI__builtin_ia32_loadups256_mask: 12454 case X86::BI__builtin_ia32_loadups512_mask: 12455 case X86::BI__builtin_ia32_loadupd128_mask: 12456 case X86::BI__builtin_ia32_loadupd256_mask: 12457 case X86::BI__builtin_ia32_loadupd512_mask: 12458 case X86::BI__builtin_ia32_loaddquqi128_mask: 12459 case X86::BI__builtin_ia32_loaddquqi256_mask: 12460 case X86::BI__builtin_ia32_loaddquqi512_mask: 12461 case X86::BI__builtin_ia32_loaddquhi128_mask: 12462 case X86::BI__builtin_ia32_loaddquhi256_mask: 12463 case X86::BI__builtin_ia32_loaddquhi512_mask: 12464 case X86::BI__builtin_ia32_loaddqusi128_mask: 12465 case X86::BI__builtin_ia32_loaddqusi256_mask: 12466 case X86::BI__builtin_ia32_loaddqusi512_mask: 12467 case X86::BI__builtin_ia32_loaddqudi128_mask: 12468 case X86::BI__builtin_ia32_loaddqudi256_mask: 12469 case X86::BI__builtin_ia32_loaddqudi512_mask: 12470 return EmitX86MaskedLoad(*this, Ops, Align(1)); 12471 12472 case X86::BI__builtin_ia32_loadss128_mask: 12473 case X86::BI__builtin_ia32_loadsd128_mask: 12474 return EmitX86MaskedLoad(*this, Ops, Align(1)); 12475 12476 case X86::BI__builtin_ia32_loadaps128_mask: 12477 case X86::BI__builtin_ia32_loadaps256_mask: 12478 case X86::BI__builtin_ia32_loadaps512_mask: 12479 case X86::BI__builtin_ia32_loadapd128_mask: 12480 case X86::BI__builtin_ia32_loadapd256_mask: 12481 case X86::BI__builtin_ia32_loadapd512_mask: 12482 case X86::BI__builtin_ia32_movdqa32load128_mask: 12483 case X86::BI__builtin_ia32_movdqa32load256_mask: 12484 case X86::BI__builtin_ia32_movdqa32load512_mask: 12485 case X86::BI__builtin_ia32_movdqa64load128_mask: 12486 case X86::BI__builtin_ia32_movdqa64load256_mask: 12487 case X86::BI__builtin_ia32_movdqa64load512_mask: 12488 return EmitX86MaskedLoad( 12489 *this, Ops, 12490 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); 12491 12492 case X86::BI__builtin_ia32_expandloaddf128_mask: 12493 case X86::BI__builtin_ia32_expandloaddf256_mask: 12494 case X86::BI__builtin_ia32_expandloaddf512_mask: 12495 case X86::BI__builtin_ia32_expandloadsf128_mask: 12496 case X86::BI__builtin_ia32_expandloadsf256_mask: 12497 case X86::BI__builtin_ia32_expandloadsf512_mask: 12498 case X86::BI__builtin_ia32_expandloaddi128_mask: 12499 case X86::BI__builtin_ia32_expandloaddi256_mask: 12500 case X86::BI__builtin_ia32_expandloaddi512_mask: 12501 case X86::BI__builtin_ia32_expandloadsi128_mask: 12502 case X86::BI__builtin_ia32_expandloadsi256_mask: 12503 case X86::BI__builtin_ia32_expandloadsi512_mask: 12504 case X86::BI__builtin_ia32_expandloadhi128_mask: 12505 case X86::BI__builtin_ia32_expandloadhi256_mask: 12506 case X86::BI__builtin_ia32_expandloadhi512_mask: 12507 case X86::BI__builtin_ia32_expandloadqi128_mask: 12508 case X86::BI__builtin_ia32_expandloadqi256_mask: 12509 case X86::BI__builtin_ia32_expandloadqi512_mask: 12510 return EmitX86ExpandLoad(*this, Ops); 12511 12512 case X86::BI__builtin_ia32_compressstoredf128_mask: 12513 case X86::BI__builtin_ia32_compressstoredf256_mask: 12514 case X86::BI__builtin_ia32_compressstoredf512_mask: 12515 case X86::BI__builtin_ia32_compressstoresf128_mask: 12516 case X86::BI__builtin_ia32_compressstoresf256_mask: 12517 case X86::BI__builtin_ia32_compressstoresf512_mask: 12518 case X86::BI__builtin_ia32_compressstoredi128_mask: 12519 case X86::BI__builtin_ia32_compressstoredi256_mask: 12520 case X86::BI__builtin_ia32_compressstoredi512_mask: 12521 case X86::BI__builtin_ia32_compressstoresi128_mask: 12522 case X86::BI__builtin_ia32_compressstoresi256_mask: 12523 case X86::BI__builtin_ia32_compressstoresi512_mask: 12524 case X86::BI__builtin_ia32_compressstorehi128_mask: 12525 case X86::BI__builtin_ia32_compressstorehi256_mask: 12526 case X86::BI__builtin_ia32_compressstorehi512_mask: 12527 case X86::BI__builtin_ia32_compressstoreqi128_mask: 12528 case X86::BI__builtin_ia32_compressstoreqi256_mask: 12529 case X86::BI__builtin_ia32_compressstoreqi512_mask: 12530 return EmitX86CompressStore(*this, Ops); 12531 12532 case X86::BI__builtin_ia32_expanddf128_mask: 12533 case X86::BI__builtin_ia32_expanddf256_mask: 12534 case X86::BI__builtin_ia32_expanddf512_mask: 12535 case X86::BI__builtin_ia32_expandsf128_mask: 12536 case X86::BI__builtin_ia32_expandsf256_mask: 12537 case X86::BI__builtin_ia32_expandsf512_mask: 12538 case X86::BI__builtin_ia32_expanddi128_mask: 12539 case X86::BI__builtin_ia32_expanddi256_mask: 12540 case X86::BI__builtin_ia32_expanddi512_mask: 12541 case X86::BI__builtin_ia32_expandsi128_mask: 12542 case X86::BI__builtin_ia32_expandsi256_mask: 12543 case X86::BI__builtin_ia32_expandsi512_mask: 12544 case X86::BI__builtin_ia32_expandhi128_mask: 12545 case X86::BI__builtin_ia32_expandhi256_mask: 12546 case X86::BI__builtin_ia32_expandhi512_mask: 12547 case X86::BI__builtin_ia32_expandqi128_mask: 12548 case X86::BI__builtin_ia32_expandqi256_mask: 12549 case X86::BI__builtin_ia32_expandqi512_mask: 12550 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false); 12551 12552 case X86::BI__builtin_ia32_compressdf128_mask: 12553 case X86::BI__builtin_ia32_compressdf256_mask: 12554 case X86::BI__builtin_ia32_compressdf512_mask: 12555 case X86::BI__builtin_ia32_compresssf128_mask: 12556 case X86::BI__builtin_ia32_compresssf256_mask: 12557 case X86::BI__builtin_ia32_compresssf512_mask: 12558 case X86::BI__builtin_ia32_compressdi128_mask: 12559 case X86::BI__builtin_ia32_compressdi256_mask: 12560 case X86::BI__builtin_ia32_compressdi512_mask: 12561 case X86::BI__builtin_ia32_compresssi128_mask: 12562 case X86::BI__builtin_ia32_compresssi256_mask: 12563 case X86::BI__builtin_ia32_compresssi512_mask: 12564 case X86::BI__builtin_ia32_compresshi128_mask: 12565 case X86::BI__builtin_ia32_compresshi256_mask: 12566 case X86::BI__builtin_ia32_compresshi512_mask: 12567 case X86::BI__builtin_ia32_compressqi128_mask: 12568 case X86::BI__builtin_ia32_compressqi256_mask: 12569 case X86::BI__builtin_ia32_compressqi512_mask: 12570 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true); 12571 12572 case X86::BI__builtin_ia32_gather3div2df: 12573 case X86::BI__builtin_ia32_gather3div2di: 12574 case X86::BI__builtin_ia32_gather3div4df: 12575 case X86::BI__builtin_ia32_gather3div4di: 12576 case X86::BI__builtin_ia32_gather3div4sf: 12577 case X86::BI__builtin_ia32_gather3div4si: 12578 case X86::BI__builtin_ia32_gather3div8sf: 12579 case X86::BI__builtin_ia32_gather3div8si: 12580 case X86::BI__builtin_ia32_gather3siv2df: 12581 case X86::BI__builtin_ia32_gather3siv2di: 12582 case X86::BI__builtin_ia32_gather3siv4df: 12583 case X86::BI__builtin_ia32_gather3siv4di: 12584 case X86::BI__builtin_ia32_gather3siv4sf: 12585 case X86::BI__builtin_ia32_gather3siv4si: 12586 case X86::BI__builtin_ia32_gather3siv8sf: 12587 case X86::BI__builtin_ia32_gather3siv8si: 12588 case X86::BI__builtin_ia32_gathersiv8df: 12589 case X86::BI__builtin_ia32_gathersiv16sf: 12590 case X86::BI__builtin_ia32_gatherdiv8df: 12591 case X86::BI__builtin_ia32_gatherdiv16sf: 12592 case X86::BI__builtin_ia32_gathersiv8di: 12593 case X86::BI__builtin_ia32_gathersiv16si: 12594 case X86::BI__builtin_ia32_gatherdiv8di: 12595 case X86::BI__builtin_ia32_gatherdiv16si: { 12596 Intrinsic::ID IID; 12597 switch (BuiltinID) { 12598 default: llvm_unreachable("Unexpected builtin"); 12599 case X86::BI__builtin_ia32_gather3div2df: 12600 IID = Intrinsic::x86_avx512_mask_gather3div2_df; 12601 break; 12602 case X86::BI__builtin_ia32_gather3div2di: 12603 IID = Intrinsic::x86_avx512_mask_gather3div2_di; 12604 break; 12605 case X86::BI__builtin_ia32_gather3div4df: 12606 IID = Intrinsic::x86_avx512_mask_gather3div4_df; 12607 break; 12608 case X86::BI__builtin_ia32_gather3div4di: 12609 IID = Intrinsic::x86_avx512_mask_gather3div4_di; 12610 break; 12611 case X86::BI__builtin_ia32_gather3div4sf: 12612 IID = Intrinsic::x86_avx512_mask_gather3div4_sf; 12613 break; 12614 case X86::BI__builtin_ia32_gather3div4si: 12615 IID = Intrinsic::x86_avx512_mask_gather3div4_si; 12616 break; 12617 case X86::BI__builtin_ia32_gather3div8sf: 12618 IID = Intrinsic::x86_avx512_mask_gather3div8_sf; 12619 break; 12620 case X86::BI__builtin_ia32_gather3div8si: 12621 IID = Intrinsic::x86_avx512_mask_gather3div8_si; 12622 break; 12623 case X86::BI__builtin_ia32_gather3siv2df: 12624 IID = Intrinsic::x86_avx512_mask_gather3siv2_df; 12625 break; 12626 case X86::BI__builtin_ia32_gather3siv2di: 12627 IID = Intrinsic::x86_avx512_mask_gather3siv2_di; 12628 break; 12629 case X86::BI__builtin_ia32_gather3siv4df: 12630 IID = Intrinsic::x86_avx512_mask_gather3siv4_df; 12631 break; 12632 case X86::BI__builtin_ia32_gather3siv4di: 12633 IID = Intrinsic::x86_avx512_mask_gather3siv4_di; 12634 break; 12635 case X86::BI__builtin_ia32_gather3siv4sf: 12636 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf; 12637 break; 12638 case X86::BI__builtin_ia32_gather3siv4si: 12639 IID = Intrinsic::x86_avx512_mask_gather3siv4_si; 12640 break; 12641 case X86::BI__builtin_ia32_gather3siv8sf: 12642 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf; 12643 break; 12644 case X86::BI__builtin_ia32_gather3siv8si: 12645 IID = Intrinsic::x86_avx512_mask_gather3siv8_si; 12646 break; 12647 case X86::BI__builtin_ia32_gathersiv8df: 12648 IID = Intrinsic::x86_avx512_mask_gather_dpd_512; 12649 break; 12650 case X86::BI__builtin_ia32_gathersiv16sf: 12651 IID = Intrinsic::x86_avx512_mask_gather_dps_512; 12652 break; 12653 case X86::BI__builtin_ia32_gatherdiv8df: 12654 IID = Intrinsic::x86_avx512_mask_gather_qpd_512; 12655 break; 12656 case X86::BI__builtin_ia32_gatherdiv16sf: 12657 IID = Intrinsic::x86_avx512_mask_gather_qps_512; 12658 break; 12659 case X86::BI__builtin_ia32_gathersiv8di: 12660 IID = Intrinsic::x86_avx512_mask_gather_dpq_512; 12661 break; 12662 case X86::BI__builtin_ia32_gathersiv16si: 12663 IID = Intrinsic::x86_avx512_mask_gather_dpi_512; 12664 break; 12665 case X86::BI__builtin_ia32_gatherdiv8di: 12666 IID = Intrinsic::x86_avx512_mask_gather_qpq_512; 12667 break; 12668 case X86::BI__builtin_ia32_gatherdiv16si: 12669 IID = Intrinsic::x86_avx512_mask_gather_qpi_512; 12670 break; 12671 } 12672 12673 unsigned MinElts = std::min( 12674 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(), 12675 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements()); 12676 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts); 12677 Function *Intr = CGM.getIntrinsic(IID); 12678 return Builder.CreateCall(Intr, Ops); 12679 } 12680 12681 case X86::BI__builtin_ia32_scattersiv8df: 12682 case X86::BI__builtin_ia32_scattersiv16sf: 12683 case X86::BI__builtin_ia32_scatterdiv8df: 12684 case X86::BI__builtin_ia32_scatterdiv16sf: 12685 case X86::BI__builtin_ia32_scattersiv8di: 12686 case X86::BI__builtin_ia32_scattersiv16si: 12687 case X86::BI__builtin_ia32_scatterdiv8di: 12688 case X86::BI__builtin_ia32_scatterdiv16si: 12689 case X86::BI__builtin_ia32_scatterdiv2df: 12690 case X86::BI__builtin_ia32_scatterdiv2di: 12691 case X86::BI__builtin_ia32_scatterdiv4df: 12692 case X86::BI__builtin_ia32_scatterdiv4di: 12693 case X86::BI__builtin_ia32_scatterdiv4sf: 12694 case X86::BI__builtin_ia32_scatterdiv4si: 12695 case X86::BI__builtin_ia32_scatterdiv8sf: 12696 case X86::BI__builtin_ia32_scatterdiv8si: 12697 case X86::BI__builtin_ia32_scattersiv2df: 12698 case X86::BI__builtin_ia32_scattersiv2di: 12699 case X86::BI__builtin_ia32_scattersiv4df: 12700 case X86::BI__builtin_ia32_scattersiv4di: 12701 case X86::BI__builtin_ia32_scattersiv4sf: 12702 case X86::BI__builtin_ia32_scattersiv4si: 12703 case X86::BI__builtin_ia32_scattersiv8sf: 12704 case X86::BI__builtin_ia32_scattersiv8si: { 12705 Intrinsic::ID IID; 12706 switch (BuiltinID) { 12707 default: llvm_unreachable("Unexpected builtin"); 12708 case X86::BI__builtin_ia32_scattersiv8df: 12709 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512; 12710 break; 12711 case X86::BI__builtin_ia32_scattersiv16sf: 12712 IID = Intrinsic::x86_avx512_mask_scatter_dps_512; 12713 break; 12714 case X86::BI__builtin_ia32_scatterdiv8df: 12715 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512; 12716 break; 12717 case X86::BI__builtin_ia32_scatterdiv16sf: 12718 IID = Intrinsic::x86_avx512_mask_scatter_qps_512; 12719 break; 12720 case X86::BI__builtin_ia32_scattersiv8di: 12721 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512; 12722 break; 12723 case X86::BI__builtin_ia32_scattersiv16si: 12724 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512; 12725 break; 12726 case X86::BI__builtin_ia32_scatterdiv8di: 12727 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512; 12728 break; 12729 case X86::BI__builtin_ia32_scatterdiv16si: 12730 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512; 12731 break; 12732 case X86::BI__builtin_ia32_scatterdiv2df: 12733 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df; 12734 break; 12735 case X86::BI__builtin_ia32_scatterdiv2di: 12736 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di; 12737 break; 12738 case X86::BI__builtin_ia32_scatterdiv4df: 12739 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df; 12740 break; 12741 case X86::BI__builtin_ia32_scatterdiv4di: 12742 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di; 12743 break; 12744 case X86::BI__builtin_ia32_scatterdiv4sf: 12745 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf; 12746 break; 12747 case X86::BI__builtin_ia32_scatterdiv4si: 12748 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si; 12749 break; 12750 case X86::BI__builtin_ia32_scatterdiv8sf: 12751 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf; 12752 break; 12753 case X86::BI__builtin_ia32_scatterdiv8si: 12754 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si; 12755 break; 12756 case X86::BI__builtin_ia32_scattersiv2df: 12757 IID = Intrinsic::x86_avx512_mask_scattersiv2_df; 12758 break; 12759 case X86::BI__builtin_ia32_scattersiv2di: 12760 IID = Intrinsic::x86_avx512_mask_scattersiv2_di; 12761 break; 12762 case X86::BI__builtin_ia32_scattersiv4df: 12763 IID = Intrinsic::x86_avx512_mask_scattersiv4_df; 12764 break; 12765 case X86::BI__builtin_ia32_scattersiv4di: 12766 IID = Intrinsic::x86_avx512_mask_scattersiv4_di; 12767 break; 12768 case X86::BI__builtin_ia32_scattersiv4sf: 12769 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf; 12770 break; 12771 case X86::BI__builtin_ia32_scattersiv4si: 12772 IID = Intrinsic::x86_avx512_mask_scattersiv4_si; 12773 break; 12774 case X86::BI__builtin_ia32_scattersiv8sf: 12775 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf; 12776 break; 12777 case X86::BI__builtin_ia32_scattersiv8si: 12778 IID = Intrinsic::x86_avx512_mask_scattersiv8_si; 12779 break; 12780 } 12781 12782 unsigned MinElts = std::min( 12783 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(), 12784 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements()); 12785 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts); 12786 Function *Intr = CGM.getIntrinsic(IID); 12787 return Builder.CreateCall(Intr, Ops); 12788 } 12789 12790 case X86::BI__builtin_ia32_vextractf128_pd256: 12791 case X86::BI__builtin_ia32_vextractf128_ps256: 12792 case X86::BI__builtin_ia32_vextractf128_si256: 12793 case X86::BI__builtin_ia32_extract128i256: 12794 case X86::BI__builtin_ia32_extractf64x4_mask: 12795 case X86::BI__builtin_ia32_extractf32x4_mask: 12796 case X86::BI__builtin_ia32_extracti64x4_mask: 12797 case X86::BI__builtin_ia32_extracti32x4_mask: 12798 case X86::BI__builtin_ia32_extractf32x8_mask: 12799 case X86::BI__builtin_ia32_extracti32x8_mask: 12800 case X86::BI__builtin_ia32_extractf32x4_256_mask: 12801 case X86::BI__builtin_ia32_extracti32x4_256_mask: 12802 case X86::BI__builtin_ia32_extractf64x2_256_mask: 12803 case X86::BI__builtin_ia32_extracti64x2_256_mask: 12804 case X86::BI__builtin_ia32_extractf64x2_512_mask: 12805 case X86::BI__builtin_ia32_extracti64x2_512_mask: { 12806 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType())); 12807 unsigned NumElts = DstTy->getNumElements(); 12808 unsigned SrcNumElts = 12809 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12810 unsigned SubVectors = SrcNumElts / NumElts; 12811 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 12812 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 12813 Index &= SubVectors - 1; // Remove any extra bits. 12814 Index *= NumElts; 12815 12816 int Indices[16]; 12817 for (unsigned i = 0; i != NumElts; ++i) 12818 Indices[i] = i + Index; 12819 12820 Value *Res = Builder.CreateShuffleVector(Ops[0], 12821 makeArrayRef(Indices, NumElts), 12822 "extract"); 12823 12824 if (Ops.size() == 4) 12825 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]); 12826 12827 return Res; 12828 } 12829 case X86::BI__builtin_ia32_vinsertf128_pd256: 12830 case X86::BI__builtin_ia32_vinsertf128_ps256: 12831 case X86::BI__builtin_ia32_vinsertf128_si256: 12832 case X86::BI__builtin_ia32_insert128i256: 12833 case X86::BI__builtin_ia32_insertf64x4: 12834 case X86::BI__builtin_ia32_insertf32x4: 12835 case X86::BI__builtin_ia32_inserti64x4: 12836 case X86::BI__builtin_ia32_inserti32x4: 12837 case X86::BI__builtin_ia32_insertf32x8: 12838 case X86::BI__builtin_ia32_inserti32x8: 12839 case X86::BI__builtin_ia32_insertf32x4_256: 12840 case X86::BI__builtin_ia32_inserti32x4_256: 12841 case X86::BI__builtin_ia32_insertf64x2_256: 12842 case X86::BI__builtin_ia32_inserti64x2_256: 12843 case X86::BI__builtin_ia32_insertf64x2_512: 12844 case X86::BI__builtin_ia32_inserti64x2_512: { 12845 unsigned DstNumElts = 12846 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12847 unsigned SrcNumElts = 12848 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements(); 12849 unsigned SubVectors = DstNumElts / SrcNumElts; 12850 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 12851 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 12852 Index &= SubVectors - 1; // Remove any extra bits. 12853 Index *= SrcNumElts; 12854 12855 int Indices[16]; 12856 for (unsigned i = 0; i != DstNumElts; ++i) 12857 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i; 12858 12859 Value *Op1 = Builder.CreateShuffleVector(Ops[1], 12860 makeArrayRef(Indices, DstNumElts), 12861 "widen"); 12862 12863 for (unsigned i = 0; i != DstNumElts; ++i) { 12864 if (i >= Index && i < (Index + SrcNumElts)) 12865 Indices[i] = (i - Index) + DstNumElts; 12866 else 12867 Indices[i] = i; 12868 } 12869 12870 return Builder.CreateShuffleVector(Ops[0], Op1, 12871 makeArrayRef(Indices, DstNumElts), 12872 "insert"); 12873 } 12874 case X86::BI__builtin_ia32_pmovqd512_mask: 12875 case X86::BI__builtin_ia32_pmovwb512_mask: { 12876 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 12877 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 12878 } 12879 case X86::BI__builtin_ia32_pmovdb512_mask: 12880 case X86::BI__builtin_ia32_pmovdw512_mask: 12881 case X86::BI__builtin_ia32_pmovqw512_mask: { 12882 if (const auto *C = dyn_cast<Constant>(Ops[2])) 12883 if (C->isAllOnesValue()) 12884 return Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 12885 12886 Intrinsic::ID IID; 12887 switch (BuiltinID) { 12888 default: llvm_unreachable("Unsupported intrinsic!"); 12889 case X86::BI__builtin_ia32_pmovdb512_mask: 12890 IID = Intrinsic::x86_avx512_mask_pmov_db_512; 12891 break; 12892 case X86::BI__builtin_ia32_pmovdw512_mask: 12893 IID = Intrinsic::x86_avx512_mask_pmov_dw_512; 12894 break; 12895 case X86::BI__builtin_ia32_pmovqw512_mask: 12896 IID = Intrinsic::x86_avx512_mask_pmov_qw_512; 12897 break; 12898 } 12899 12900 Function *Intr = CGM.getIntrinsic(IID); 12901 return Builder.CreateCall(Intr, Ops); 12902 } 12903 case X86::BI__builtin_ia32_pblendw128: 12904 case X86::BI__builtin_ia32_blendpd: 12905 case X86::BI__builtin_ia32_blendps: 12906 case X86::BI__builtin_ia32_blendpd256: 12907 case X86::BI__builtin_ia32_blendps256: 12908 case X86::BI__builtin_ia32_pblendw256: 12909 case X86::BI__builtin_ia32_pblendd128: 12910 case X86::BI__builtin_ia32_pblendd256: { 12911 unsigned NumElts = 12912 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12913 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 12914 12915 int Indices[16]; 12916 // If there are more than 8 elements, the immediate is used twice so make 12917 // sure we handle that. 12918 for (unsigned i = 0; i != NumElts; ++i) 12919 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i; 12920 12921 return Builder.CreateShuffleVector(Ops[0], Ops[1], 12922 makeArrayRef(Indices, NumElts), 12923 "blend"); 12924 } 12925 case X86::BI__builtin_ia32_pshuflw: 12926 case X86::BI__builtin_ia32_pshuflw256: 12927 case X86::BI__builtin_ia32_pshuflw512: { 12928 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 12929 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 12930 unsigned NumElts = Ty->getNumElements(); 12931 12932 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 12933 Imm = (Imm & 0xff) * 0x01010101; 12934 12935 int Indices[32]; 12936 for (unsigned l = 0; l != NumElts; l += 8) { 12937 for (unsigned i = 0; i != 4; ++i) { 12938 Indices[l + i] = l + (Imm & 3); 12939 Imm >>= 2; 12940 } 12941 for (unsigned i = 4; i != 8; ++i) 12942 Indices[l + i] = l + i; 12943 } 12944 12945 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 12946 "pshuflw"); 12947 } 12948 case X86::BI__builtin_ia32_pshufhw: 12949 case X86::BI__builtin_ia32_pshufhw256: 12950 case X86::BI__builtin_ia32_pshufhw512: { 12951 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 12952 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 12953 unsigned NumElts = Ty->getNumElements(); 12954 12955 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 12956 Imm = (Imm & 0xff) * 0x01010101; 12957 12958 int Indices[32]; 12959 for (unsigned l = 0; l != NumElts; l += 8) { 12960 for (unsigned i = 0; i != 4; ++i) 12961 Indices[l + i] = l + i; 12962 for (unsigned i = 4; i != 8; ++i) { 12963 Indices[l + i] = l + 4 + (Imm & 3); 12964 Imm >>= 2; 12965 } 12966 } 12967 12968 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 12969 "pshufhw"); 12970 } 12971 case X86::BI__builtin_ia32_pshufd: 12972 case X86::BI__builtin_ia32_pshufd256: 12973 case X86::BI__builtin_ia32_pshufd512: 12974 case X86::BI__builtin_ia32_vpermilpd: 12975 case X86::BI__builtin_ia32_vpermilps: 12976 case X86::BI__builtin_ia32_vpermilpd256: 12977 case X86::BI__builtin_ia32_vpermilps256: 12978 case X86::BI__builtin_ia32_vpermilpd512: 12979 case X86::BI__builtin_ia32_vpermilps512: { 12980 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 12981 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 12982 unsigned NumElts = Ty->getNumElements(); 12983 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 12984 unsigned NumLaneElts = NumElts / NumLanes; 12985 12986 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 12987 Imm = (Imm & 0xff) * 0x01010101; 12988 12989 int Indices[16]; 12990 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 12991 for (unsigned i = 0; i != NumLaneElts; ++i) { 12992 Indices[i + l] = (Imm % NumLaneElts) + l; 12993 Imm /= NumLaneElts; 12994 } 12995 } 12996 12997 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 12998 "permil"); 12999 } 13000 case X86::BI__builtin_ia32_shufpd: 13001 case X86::BI__builtin_ia32_shufpd256: 13002 case X86::BI__builtin_ia32_shufpd512: 13003 case X86::BI__builtin_ia32_shufps: 13004 case X86::BI__builtin_ia32_shufps256: 13005 case X86::BI__builtin_ia32_shufps512: { 13006 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13007 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13008 unsigned NumElts = Ty->getNumElements(); 13009 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 13010 unsigned NumLaneElts = NumElts / NumLanes; 13011 13012 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13013 Imm = (Imm & 0xff) * 0x01010101; 13014 13015 int Indices[16]; 13016 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13017 for (unsigned i = 0; i != NumLaneElts; ++i) { 13018 unsigned Index = Imm % NumLaneElts; 13019 Imm /= NumLaneElts; 13020 if (i >= (NumLaneElts / 2)) 13021 Index += NumElts; 13022 Indices[l + i] = l + Index; 13023 } 13024 } 13025 13026 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13027 makeArrayRef(Indices, NumElts), 13028 "shufp"); 13029 } 13030 case X86::BI__builtin_ia32_permdi256: 13031 case X86::BI__builtin_ia32_permdf256: 13032 case X86::BI__builtin_ia32_permdi512: 13033 case X86::BI__builtin_ia32_permdf512: { 13034 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13035 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13036 unsigned NumElts = Ty->getNumElements(); 13037 13038 // These intrinsics operate on 256-bit lanes of four 64-bit elements. 13039 int Indices[8]; 13040 for (unsigned l = 0; l != NumElts; l += 4) 13041 for (unsigned i = 0; i != 4; ++i) 13042 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3); 13043 13044 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13045 "perm"); 13046 } 13047 case X86::BI__builtin_ia32_palignr128: 13048 case X86::BI__builtin_ia32_palignr256: 13049 case X86::BI__builtin_ia32_palignr512: { 13050 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 13051 13052 unsigned NumElts = 13053 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13054 assert(NumElts % 16 == 0); 13055 13056 // If palignr is shifting the pair of vectors more than the size of two 13057 // lanes, emit zero. 13058 if (ShiftVal >= 32) 13059 return llvm::Constant::getNullValue(ConvertType(E->getType())); 13060 13061 // If palignr is shifting the pair of input vectors more than one lane, 13062 // but less than two lanes, convert to shifting in zeroes. 13063 if (ShiftVal > 16) { 13064 ShiftVal -= 16; 13065 Ops[1] = Ops[0]; 13066 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); 13067 } 13068 13069 int Indices[64]; 13070 // 256-bit palignr operates on 128-bit lanes so we need to handle that 13071 for (unsigned l = 0; l != NumElts; l += 16) { 13072 for (unsigned i = 0; i != 16; ++i) { 13073 unsigned Idx = ShiftVal + i; 13074 if (Idx >= 16) 13075 Idx += NumElts - 16; // End of lane, switch operand. 13076 Indices[l + i] = Idx + l; 13077 } 13078 } 13079 13080 return Builder.CreateShuffleVector(Ops[1], Ops[0], 13081 makeArrayRef(Indices, NumElts), 13082 "palignr"); 13083 } 13084 case X86::BI__builtin_ia32_alignd128: 13085 case X86::BI__builtin_ia32_alignd256: 13086 case X86::BI__builtin_ia32_alignd512: 13087 case X86::BI__builtin_ia32_alignq128: 13088 case X86::BI__builtin_ia32_alignq256: 13089 case X86::BI__builtin_ia32_alignq512: { 13090 unsigned NumElts = 13091 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13092 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 13093 13094 // Mask the shift amount to width of two vectors. 13095 ShiftVal &= (2 * NumElts) - 1; 13096 13097 int Indices[16]; 13098 for (unsigned i = 0; i != NumElts; ++i) 13099 Indices[i] = i + ShiftVal; 13100 13101 return Builder.CreateShuffleVector(Ops[1], Ops[0], 13102 makeArrayRef(Indices, NumElts), 13103 "valign"); 13104 } 13105 case X86::BI__builtin_ia32_shuf_f32x4_256: 13106 case X86::BI__builtin_ia32_shuf_f64x2_256: 13107 case X86::BI__builtin_ia32_shuf_i32x4_256: 13108 case X86::BI__builtin_ia32_shuf_i64x2_256: 13109 case X86::BI__builtin_ia32_shuf_f32x4: 13110 case X86::BI__builtin_ia32_shuf_f64x2: 13111 case X86::BI__builtin_ia32_shuf_i32x4: 13112 case X86::BI__builtin_ia32_shuf_i64x2: { 13113 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13114 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13115 unsigned NumElts = Ty->getNumElements(); 13116 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2; 13117 unsigned NumLaneElts = NumElts / NumLanes; 13118 13119 int Indices[16]; 13120 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13121 unsigned Index = (Imm % NumLanes) * NumLaneElts; 13122 Imm /= NumLanes; // Discard the bits we just used. 13123 if (l >= (NumElts / 2)) 13124 Index += NumElts; // Switch to other source. 13125 for (unsigned i = 0; i != NumLaneElts; ++i) { 13126 Indices[l + i] = Index + i; 13127 } 13128 } 13129 13130 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13131 makeArrayRef(Indices, NumElts), 13132 "shuf"); 13133 } 13134 13135 case X86::BI__builtin_ia32_vperm2f128_pd256: 13136 case X86::BI__builtin_ia32_vperm2f128_ps256: 13137 case X86::BI__builtin_ia32_vperm2f128_si256: 13138 case X86::BI__builtin_ia32_permti256: { 13139 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13140 unsigned NumElts = 13141 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13142 13143 // This takes a very simple approach since there are two lanes and a 13144 // shuffle can have 2 inputs. So we reserve the first input for the first 13145 // lane and the second input for the second lane. This may result in 13146 // duplicate sources, but this can be dealt with in the backend. 13147 13148 Value *OutOps[2]; 13149 int Indices[8]; 13150 for (unsigned l = 0; l != 2; ++l) { 13151 // Determine the source for this lane. 13152 if (Imm & (1 << ((l * 4) + 3))) 13153 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); 13154 else if (Imm & (1 << ((l * 4) + 1))) 13155 OutOps[l] = Ops[1]; 13156 else 13157 OutOps[l] = Ops[0]; 13158 13159 for (unsigned i = 0; i != NumElts/2; ++i) { 13160 // Start with ith element of the source for this lane. 13161 unsigned Idx = (l * NumElts) + i; 13162 // If bit 0 of the immediate half is set, switch to the high half of 13163 // the source. 13164 if (Imm & (1 << (l * 4))) 13165 Idx += NumElts/2; 13166 Indices[(l * (NumElts/2)) + i] = Idx; 13167 } 13168 } 13169 13170 return Builder.CreateShuffleVector(OutOps[0], OutOps[1], 13171 makeArrayRef(Indices, NumElts), 13172 "vperm"); 13173 } 13174 13175 case X86::BI__builtin_ia32_pslldqi128_byteshift: 13176 case X86::BI__builtin_ia32_pslldqi256_byteshift: 13177 case X86::BI__builtin_ia32_pslldqi512_byteshift: { 13178 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13179 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13180 // Builtin type is vXi64 so multiply by 8 to get bytes. 13181 unsigned NumElts = ResultType->getNumElements() * 8; 13182 13183 // If pslldq is shifting the vector more than 15 bytes, emit zero. 13184 if (ShiftVal >= 16) 13185 return llvm::Constant::getNullValue(ResultType); 13186 13187 int Indices[64]; 13188 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that 13189 for (unsigned l = 0; l != NumElts; l += 16) { 13190 for (unsigned i = 0; i != 16; ++i) { 13191 unsigned Idx = NumElts + i - ShiftVal; 13192 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. 13193 Indices[l + i] = Idx + l; 13194 } 13195 } 13196 13197 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); 13198 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 13199 Value *Zero = llvm::Constant::getNullValue(VecTy); 13200 Value *SV = Builder.CreateShuffleVector(Zero, Cast, 13201 makeArrayRef(Indices, NumElts), 13202 "pslldq"); 13203 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast"); 13204 } 13205 case X86::BI__builtin_ia32_psrldqi128_byteshift: 13206 case X86::BI__builtin_ia32_psrldqi256_byteshift: 13207 case X86::BI__builtin_ia32_psrldqi512_byteshift: { 13208 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13209 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13210 // Builtin type is vXi64 so multiply by 8 to get bytes. 13211 unsigned NumElts = ResultType->getNumElements() * 8; 13212 13213 // If psrldq is shifting the vector more than 15 bytes, emit zero. 13214 if (ShiftVal >= 16) 13215 return llvm::Constant::getNullValue(ResultType); 13216 13217 int Indices[64]; 13218 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that 13219 for (unsigned l = 0; l != NumElts; l += 16) { 13220 for (unsigned i = 0; i != 16; ++i) { 13221 unsigned Idx = i + ShiftVal; 13222 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. 13223 Indices[l + i] = Idx + l; 13224 } 13225 } 13226 13227 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); 13228 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 13229 Value *Zero = llvm::Constant::getNullValue(VecTy); 13230 Value *SV = Builder.CreateShuffleVector(Cast, Zero, 13231 makeArrayRef(Indices, NumElts), 13232 "psrldq"); 13233 return Builder.CreateBitCast(SV, ResultType, "cast"); 13234 } 13235 case X86::BI__builtin_ia32_kshiftliqi: 13236 case X86::BI__builtin_ia32_kshiftlihi: 13237 case X86::BI__builtin_ia32_kshiftlisi: 13238 case X86::BI__builtin_ia32_kshiftlidi: { 13239 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13240 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13241 13242 if (ShiftVal >= NumElts) 13243 return llvm::Constant::getNullValue(Ops[0]->getType()); 13244 13245 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 13246 13247 int Indices[64]; 13248 for (unsigned i = 0; i != NumElts; ++i) 13249 Indices[i] = NumElts + i - ShiftVal; 13250 13251 Value *Zero = llvm::Constant::getNullValue(In->getType()); 13252 Value *SV = Builder.CreateShuffleVector(Zero, In, 13253 makeArrayRef(Indices, NumElts), 13254 "kshiftl"); 13255 return Builder.CreateBitCast(SV, Ops[0]->getType()); 13256 } 13257 case X86::BI__builtin_ia32_kshiftriqi: 13258 case X86::BI__builtin_ia32_kshiftrihi: 13259 case X86::BI__builtin_ia32_kshiftrisi: 13260 case X86::BI__builtin_ia32_kshiftridi: { 13261 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13262 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13263 13264 if (ShiftVal >= NumElts) 13265 return llvm::Constant::getNullValue(Ops[0]->getType()); 13266 13267 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 13268 13269 int Indices[64]; 13270 for (unsigned i = 0; i != NumElts; ++i) 13271 Indices[i] = i + ShiftVal; 13272 13273 Value *Zero = llvm::Constant::getNullValue(In->getType()); 13274 Value *SV = Builder.CreateShuffleVector(In, Zero, 13275 makeArrayRef(Indices, NumElts), 13276 "kshiftr"); 13277 return Builder.CreateBitCast(SV, Ops[0]->getType()); 13278 } 13279 case X86::BI__builtin_ia32_movnti: 13280 case X86::BI__builtin_ia32_movnti64: 13281 case X86::BI__builtin_ia32_movntsd: 13282 case X86::BI__builtin_ia32_movntss: { 13283 llvm::MDNode *Node = llvm::MDNode::get( 13284 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 13285 13286 Value *Ptr = Ops[0]; 13287 Value *Src = Ops[1]; 13288 13289 // Extract the 0'th element of the source vector. 13290 if (BuiltinID == X86::BI__builtin_ia32_movntsd || 13291 BuiltinID == X86::BI__builtin_ia32_movntss) 13292 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); 13293 13294 // Convert the type of the pointer to a pointer to the stored type. 13295 Value *BC = Builder.CreateBitCast( 13296 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast"); 13297 13298 // Unaligned nontemporal store of the scalar value. 13299 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC); 13300 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 13301 SI->setAlignment(llvm::Align(1)); 13302 return SI; 13303 } 13304 // Rotate is a special case of funnel shift - 1st 2 args are the same. 13305 case X86::BI__builtin_ia32_vprotb: 13306 case X86::BI__builtin_ia32_vprotw: 13307 case X86::BI__builtin_ia32_vprotd: 13308 case X86::BI__builtin_ia32_vprotq: 13309 case X86::BI__builtin_ia32_vprotbi: 13310 case X86::BI__builtin_ia32_vprotwi: 13311 case X86::BI__builtin_ia32_vprotdi: 13312 case X86::BI__builtin_ia32_vprotqi: 13313 case X86::BI__builtin_ia32_prold128: 13314 case X86::BI__builtin_ia32_prold256: 13315 case X86::BI__builtin_ia32_prold512: 13316 case X86::BI__builtin_ia32_prolq128: 13317 case X86::BI__builtin_ia32_prolq256: 13318 case X86::BI__builtin_ia32_prolq512: 13319 case X86::BI__builtin_ia32_prolvd128: 13320 case X86::BI__builtin_ia32_prolvd256: 13321 case X86::BI__builtin_ia32_prolvd512: 13322 case X86::BI__builtin_ia32_prolvq128: 13323 case X86::BI__builtin_ia32_prolvq256: 13324 case X86::BI__builtin_ia32_prolvq512: 13325 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false); 13326 case X86::BI__builtin_ia32_prord128: 13327 case X86::BI__builtin_ia32_prord256: 13328 case X86::BI__builtin_ia32_prord512: 13329 case X86::BI__builtin_ia32_prorq128: 13330 case X86::BI__builtin_ia32_prorq256: 13331 case X86::BI__builtin_ia32_prorq512: 13332 case X86::BI__builtin_ia32_prorvd128: 13333 case X86::BI__builtin_ia32_prorvd256: 13334 case X86::BI__builtin_ia32_prorvd512: 13335 case X86::BI__builtin_ia32_prorvq128: 13336 case X86::BI__builtin_ia32_prorvq256: 13337 case X86::BI__builtin_ia32_prorvq512: 13338 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true); 13339 case X86::BI__builtin_ia32_selectb_128: 13340 case X86::BI__builtin_ia32_selectb_256: 13341 case X86::BI__builtin_ia32_selectb_512: 13342 case X86::BI__builtin_ia32_selectw_128: 13343 case X86::BI__builtin_ia32_selectw_256: 13344 case X86::BI__builtin_ia32_selectw_512: 13345 case X86::BI__builtin_ia32_selectd_128: 13346 case X86::BI__builtin_ia32_selectd_256: 13347 case X86::BI__builtin_ia32_selectd_512: 13348 case X86::BI__builtin_ia32_selectq_128: 13349 case X86::BI__builtin_ia32_selectq_256: 13350 case X86::BI__builtin_ia32_selectq_512: 13351 case X86::BI__builtin_ia32_selectps_128: 13352 case X86::BI__builtin_ia32_selectps_256: 13353 case X86::BI__builtin_ia32_selectps_512: 13354 case X86::BI__builtin_ia32_selectpd_128: 13355 case X86::BI__builtin_ia32_selectpd_256: 13356 case X86::BI__builtin_ia32_selectpd_512: 13357 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); 13358 case X86::BI__builtin_ia32_selectss_128: 13359 case X86::BI__builtin_ia32_selectsd_128: { 13360 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 13361 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 13362 A = EmitX86ScalarSelect(*this, Ops[0], A, B); 13363 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0); 13364 } 13365 case X86::BI__builtin_ia32_cmpb128_mask: 13366 case X86::BI__builtin_ia32_cmpb256_mask: 13367 case X86::BI__builtin_ia32_cmpb512_mask: 13368 case X86::BI__builtin_ia32_cmpw128_mask: 13369 case X86::BI__builtin_ia32_cmpw256_mask: 13370 case X86::BI__builtin_ia32_cmpw512_mask: 13371 case X86::BI__builtin_ia32_cmpd128_mask: 13372 case X86::BI__builtin_ia32_cmpd256_mask: 13373 case X86::BI__builtin_ia32_cmpd512_mask: 13374 case X86::BI__builtin_ia32_cmpq128_mask: 13375 case X86::BI__builtin_ia32_cmpq256_mask: 13376 case X86::BI__builtin_ia32_cmpq512_mask: { 13377 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 13378 return EmitX86MaskedCompare(*this, CC, true, Ops); 13379 } 13380 case X86::BI__builtin_ia32_ucmpb128_mask: 13381 case X86::BI__builtin_ia32_ucmpb256_mask: 13382 case X86::BI__builtin_ia32_ucmpb512_mask: 13383 case X86::BI__builtin_ia32_ucmpw128_mask: 13384 case X86::BI__builtin_ia32_ucmpw256_mask: 13385 case X86::BI__builtin_ia32_ucmpw512_mask: 13386 case X86::BI__builtin_ia32_ucmpd128_mask: 13387 case X86::BI__builtin_ia32_ucmpd256_mask: 13388 case X86::BI__builtin_ia32_ucmpd512_mask: 13389 case X86::BI__builtin_ia32_ucmpq128_mask: 13390 case X86::BI__builtin_ia32_ucmpq256_mask: 13391 case X86::BI__builtin_ia32_ucmpq512_mask: { 13392 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 13393 return EmitX86MaskedCompare(*this, CC, false, Ops); 13394 } 13395 case X86::BI__builtin_ia32_vpcomb: 13396 case X86::BI__builtin_ia32_vpcomw: 13397 case X86::BI__builtin_ia32_vpcomd: 13398 case X86::BI__builtin_ia32_vpcomq: 13399 return EmitX86vpcom(*this, Ops, true); 13400 case X86::BI__builtin_ia32_vpcomub: 13401 case X86::BI__builtin_ia32_vpcomuw: 13402 case X86::BI__builtin_ia32_vpcomud: 13403 case X86::BI__builtin_ia32_vpcomuq: 13404 return EmitX86vpcom(*this, Ops, false); 13405 13406 case X86::BI__builtin_ia32_kortestcqi: 13407 case X86::BI__builtin_ia32_kortestchi: 13408 case X86::BI__builtin_ia32_kortestcsi: 13409 case X86::BI__builtin_ia32_kortestcdi: { 13410 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 13411 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType()); 13412 Value *Cmp = Builder.CreateICmpEQ(Or, C); 13413 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 13414 } 13415 case X86::BI__builtin_ia32_kortestzqi: 13416 case X86::BI__builtin_ia32_kortestzhi: 13417 case X86::BI__builtin_ia32_kortestzsi: 13418 case X86::BI__builtin_ia32_kortestzdi: { 13419 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 13420 Value *C = llvm::Constant::getNullValue(Ops[0]->getType()); 13421 Value *Cmp = Builder.CreateICmpEQ(Or, C); 13422 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 13423 } 13424 13425 case X86::BI__builtin_ia32_ktestcqi: 13426 case X86::BI__builtin_ia32_ktestzqi: 13427 case X86::BI__builtin_ia32_ktestchi: 13428 case X86::BI__builtin_ia32_ktestzhi: 13429 case X86::BI__builtin_ia32_ktestcsi: 13430 case X86::BI__builtin_ia32_ktestzsi: 13431 case X86::BI__builtin_ia32_ktestcdi: 13432 case X86::BI__builtin_ia32_ktestzdi: { 13433 Intrinsic::ID IID; 13434 switch (BuiltinID) { 13435 default: llvm_unreachable("Unsupported intrinsic!"); 13436 case X86::BI__builtin_ia32_ktestcqi: 13437 IID = Intrinsic::x86_avx512_ktestc_b; 13438 break; 13439 case X86::BI__builtin_ia32_ktestzqi: 13440 IID = Intrinsic::x86_avx512_ktestz_b; 13441 break; 13442 case X86::BI__builtin_ia32_ktestchi: 13443 IID = Intrinsic::x86_avx512_ktestc_w; 13444 break; 13445 case X86::BI__builtin_ia32_ktestzhi: 13446 IID = Intrinsic::x86_avx512_ktestz_w; 13447 break; 13448 case X86::BI__builtin_ia32_ktestcsi: 13449 IID = Intrinsic::x86_avx512_ktestc_d; 13450 break; 13451 case X86::BI__builtin_ia32_ktestzsi: 13452 IID = Intrinsic::x86_avx512_ktestz_d; 13453 break; 13454 case X86::BI__builtin_ia32_ktestcdi: 13455 IID = Intrinsic::x86_avx512_ktestc_q; 13456 break; 13457 case X86::BI__builtin_ia32_ktestzdi: 13458 IID = Intrinsic::x86_avx512_ktestz_q; 13459 break; 13460 } 13461 13462 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13463 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 13464 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 13465 Function *Intr = CGM.getIntrinsic(IID); 13466 return Builder.CreateCall(Intr, {LHS, RHS}); 13467 } 13468 13469 case X86::BI__builtin_ia32_kaddqi: 13470 case X86::BI__builtin_ia32_kaddhi: 13471 case X86::BI__builtin_ia32_kaddsi: 13472 case X86::BI__builtin_ia32_kadddi: { 13473 Intrinsic::ID IID; 13474 switch (BuiltinID) { 13475 default: llvm_unreachable("Unsupported intrinsic!"); 13476 case X86::BI__builtin_ia32_kaddqi: 13477 IID = Intrinsic::x86_avx512_kadd_b; 13478 break; 13479 case X86::BI__builtin_ia32_kaddhi: 13480 IID = Intrinsic::x86_avx512_kadd_w; 13481 break; 13482 case X86::BI__builtin_ia32_kaddsi: 13483 IID = Intrinsic::x86_avx512_kadd_d; 13484 break; 13485 case X86::BI__builtin_ia32_kadddi: 13486 IID = Intrinsic::x86_avx512_kadd_q; 13487 break; 13488 } 13489 13490 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13491 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 13492 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 13493 Function *Intr = CGM.getIntrinsic(IID); 13494 Value *Res = Builder.CreateCall(Intr, {LHS, RHS}); 13495 return Builder.CreateBitCast(Res, Ops[0]->getType()); 13496 } 13497 case X86::BI__builtin_ia32_kandqi: 13498 case X86::BI__builtin_ia32_kandhi: 13499 case X86::BI__builtin_ia32_kandsi: 13500 case X86::BI__builtin_ia32_kanddi: 13501 return EmitX86MaskLogic(*this, Instruction::And, Ops); 13502 case X86::BI__builtin_ia32_kandnqi: 13503 case X86::BI__builtin_ia32_kandnhi: 13504 case X86::BI__builtin_ia32_kandnsi: 13505 case X86::BI__builtin_ia32_kandndi: 13506 return EmitX86MaskLogic(*this, Instruction::And, Ops, true); 13507 case X86::BI__builtin_ia32_korqi: 13508 case X86::BI__builtin_ia32_korhi: 13509 case X86::BI__builtin_ia32_korsi: 13510 case X86::BI__builtin_ia32_kordi: 13511 return EmitX86MaskLogic(*this, Instruction::Or, Ops); 13512 case X86::BI__builtin_ia32_kxnorqi: 13513 case X86::BI__builtin_ia32_kxnorhi: 13514 case X86::BI__builtin_ia32_kxnorsi: 13515 case X86::BI__builtin_ia32_kxnordi: 13516 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true); 13517 case X86::BI__builtin_ia32_kxorqi: 13518 case X86::BI__builtin_ia32_kxorhi: 13519 case X86::BI__builtin_ia32_kxorsi: 13520 case X86::BI__builtin_ia32_kxordi: 13521 return EmitX86MaskLogic(*this, Instruction::Xor, Ops); 13522 case X86::BI__builtin_ia32_knotqi: 13523 case X86::BI__builtin_ia32_knothi: 13524 case X86::BI__builtin_ia32_knotsi: 13525 case X86::BI__builtin_ia32_knotdi: { 13526 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13527 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 13528 return Builder.CreateBitCast(Builder.CreateNot(Res), 13529 Ops[0]->getType()); 13530 } 13531 case X86::BI__builtin_ia32_kmovb: 13532 case X86::BI__builtin_ia32_kmovw: 13533 case X86::BI__builtin_ia32_kmovd: 13534 case X86::BI__builtin_ia32_kmovq: { 13535 // Bitcast to vXi1 type and then back to integer. This gets the mask 13536 // register type into the IR, but might be optimized out depending on 13537 // what's around it. 13538 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13539 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 13540 return Builder.CreateBitCast(Res, Ops[0]->getType()); 13541 } 13542 13543 case X86::BI__builtin_ia32_kunpckdi: 13544 case X86::BI__builtin_ia32_kunpcksi: 13545 case X86::BI__builtin_ia32_kunpckhi: { 13546 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13547 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 13548 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 13549 int Indices[64]; 13550 for (unsigned i = 0; i != NumElts; ++i) 13551 Indices[i] = i; 13552 13553 // First extract half of each vector. This gives better codegen than 13554 // doing it in a single shuffle. 13555 LHS = Builder.CreateShuffleVector(LHS, LHS, 13556 makeArrayRef(Indices, NumElts / 2)); 13557 RHS = Builder.CreateShuffleVector(RHS, RHS, 13558 makeArrayRef(Indices, NumElts / 2)); 13559 // Concat the vectors. 13560 // NOTE: Operands are swapped to match the intrinsic definition. 13561 Value *Res = Builder.CreateShuffleVector(RHS, LHS, 13562 makeArrayRef(Indices, NumElts)); 13563 return Builder.CreateBitCast(Res, Ops[0]->getType()); 13564 } 13565 13566 case X86::BI__builtin_ia32_vplzcntd_128: 13567 case X86::BI__builtin_ia32_vplzcntd_256: 13568 case X86::BI__builtin_ia32_vplzcntd_512: 13569 case X86::BI__builtin_ia32_vplzcntq_128: 13570 case X86::BI__builtin_ia32_vplzcntq_256: 13571 case X86::BI__builtin_ia32_vplzcntq_512: { 13572 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 13573 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}); 13574 } 13575 case X86::BI__builtin_ia32_sqrtss: 13576 case X86::BI__builtin_ia32_sqrtsd: { 13577 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0); 13578 Function *F; 13579 if (Builder.getIsFPConstrained()) { 13580 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 13581 A->getType()); 13582 A = Builder.CreateConstrainedFPCall(F, {A}); 13583 } else { 13584 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 13585 A = Builder.CreateCall(F, {A}); 13586 } 13587 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 13588 } 13589 case X86::BI__builtin_ia32_sqrtsd_round_mask: 13590 case X86::BI__builtin_ia32_sqrtss_round_mask: { 13591 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 13592 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 13593 // otherwise keep the intrinsic. 13594 if (CC != 4) { 13595 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ? 13596 Intrinsic::x86_avx512_mask_sqrt_sd : 13597 Intrinsic::x86_avx512_mask_sqrt_ss; 13598 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 13599 } 13600 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 13601 Function *F; 13602 if (Builder.getIsFPConstrained()) { 13603 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 13604 A->getType()); 13605 A = Builder.CreateConstrainedFPCall(F, A); 13606 } else { 13607 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 13608 A = Builder.CreateCall(F, A); 13609 } 13610 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 13611 A = EmitX86ScalarSelect(*this, Ops[3], A, Src); 13612 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 13613 } 13614 case X86::BI__builtin_ia32_sqrtpd256: 13615 case X86::BI__builtin_ia32_sqrtpd: 13616 case X86::BI__builtin_ia32_sqrtps256: 13617 case X86::BI__builtin_ia32_sqrtps: 13618 case X86::BI__builtin_ia32_sqrtps512: 13619 case X86::BI__builtin_ia32_sqrtpd512: { 13620 if (Ops.size() == 2) { 13621 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13622 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 13623 // otherwise keep the intrinsic. 13624 if (CC != 4) { 13625 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ? 13626 Intrinsic::x86_avx512_sqrt_ps_512 : 13627 Intrinsic::x86_avx512_sqrt_pd_512; 13628 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 13629 } 13630 } 13631 if (Builder.getIsFPConstrained()) { 13632 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 13633 Ops[0]->getType()); 13634 return Builder.CreateConstrainedFPCall(F, Ops[0]); 13635 } else { 13636 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType()); 13637 return Builder.CreateCall(F, Ops[0]); 13638 } 13639 } 13640 case X86::BI__builtin_ia32_pabsb128: 13641 case X86::BI__builtin_ia32_pabsw128: 13642 case X86::BI__builtin_ia32_pabsd128: 13643 case X86::BI__builtin_ia32_pabsb256: 13644 case X86::BI__builtin_ia32_pabsw256: 13645 case X86::BI__builtin_ia32_pabsd256: 13646 case X86::BI__builtin_ia32_pabsq128: 13647 case X86::BI__builtin_ia32_pabsq256: 13648 case X86::BI__builtin_ia32_pabsb512: 13649 case X86::BI__builtin_ia32_pabsw512: 13650 case X86::BI__builtin_ia32_pabsd512: 13651 case X86::BI__builtin_ia32_pabsq512: { 13652 Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType()); 13653 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 13654 } 13655 case X86::BI__builtin_ia32_pmaxsb128: 13656 case X86::BI__builtin_ia32_pmaxsw128: 13657 case X86::BI__builtin_ia32_pmaxsd128: 13658 case X86::BI__builtin_ia32_pmaxsq128: 13659 case X86::BI__builtin_ia32_pmaxsb256: 13660 case X86::BI__builtin_ia32_pmaxsw256: 13661 case X86::BI__builtin_ia32_pmaxsd256: 13662 case X86::BI__builtin_ia32_pmaxsq256: 13663 case X86::BI__builtin_ia32_pmaxsb512: 13664 case X86::BI__builtin_ia32_pmaxsw512: 13665 case X86::BI__builtin_ia32_pmaxsd512: 13666 case X86::BI__builtin_ia32_pmaxsq512: 13667 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax); 13668 case X86::BI__builtin_ia32_pmaxub128: 13669 case X86::BI__builtin_ia32_pmaxuw128: 13670 case X86::BI__builtin_ia32_pmaxud128: 13671 case X86::BI__builtin_ia32_pmaxuq128: 13672 case X86::BI__builtin_ia32_pmaxub256: 13673 case X86::BI__builtin_ia32_pmaxuw256: 13674 case X86::BI__builtin_ia32_pmaxud256: 13675 case X86::BI__builtin_ia32_pmaxuq256: 13676 case X86::BI__builtin_ia32_pmaxub512: 13677 case X86::BI__builtin_ia32_pmaxuw512: 13678 case X86::BI__builtin_ia32_pmaxud512: 13679 case X86::BI__builtin_ia32_pmaxuq512: 13680 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax); 13681 case X86::BI__builtin_ia32_pminsb128: 13682 case X86::BI__builtin_ia32_pminsw128: 13683 case X86::BI__builtin_ia32_pminsd128: 13684 case X86::BI__builtin_ia32_pminsq128: 13685 case X86::BI__builtin_ia32_pminsb256: 13686 case X86::BI__builtin_ia32_pminsw256: 13687 case X86::BI__builtin_ia32_pminsd256: 13688 case X86::BI__builtin_ia32_pminsq256: 13689 case X86::BI__builtin_ia32_pminsb512: 13690 case X86::BI__builtin_ia32_pminsw512: 13691 case X86::BI__builtin_ia32_pminsd512: 13692 case X86::BI__builtin_ia32_pminsq512: 13693 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin); 13694 case X86::BI__builtin_ia32_pminub128: 13695 case X86::BI__builtin_ia32_pminuw128: 13696 case X86::BI__builtin_ia32_pminud128: 13697 case X86::BI__builtin_ia32_pminuq128: 13698 case X86::BI__builtin_ia32_pminub256: 13699 case X86::BI__builtin_ia32_pminuw256: 13700 case X86::BI__builtin_ia32_pminud256: 13701 case X86::BI__builtin_ia32_pminuq256: 13702 case X86::BI__builtin_ia32_pminub512: 13703 case X86::BI__builtin_ia32_pminuw512: 13704 case X86::BI__builtin_ia32_pminud512: 13705 case X86::BI__builtin_ia32_pminuq512: 13706 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin); 13707 13708 case X86::BI__builtin_ia32_pmuludq128: 13709 case X86::BI__builtin_ia32_pmuludq256: 13710 case X86::BI__builtin_ia32_pmuludq512: 13711 return EmitX86Muldq(*this, /*IsSigned*/false, Ops); 13712 13713 case X86::BI__builtin_ia32_pmuldq128: 13714 case X86::BI__builtin_ia32_pmuldq256: 13715 case X86::BI__builtin_ia32_pmuldq512: 13716 return EmitX86Muldq(*this, /*IsSigned*/true, Ops); 13717 13718 case X86::BI__builtin_ia32_pternlogd512_mask: 13719 case X86::BI__builtin_ia32_pternlogq512_mask: 13720 case X86::BI__builtin_ia32_pternlogd128_mask: 13721 case X86::BI__builtin_ia32_pternlogd256_mask: 13722 case X86::BI__builtin_ia32_pternlogq128_mask: 13723 case X86::BI__builtin_ia32_pternlogq256_mask: 13724 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops); 13725 13726 case X86::BI__builtin_ia32_pternlogd512_maskz: 13727 case X86::BI__builtin_ia32_pternlogq512_maskz: 13728 case X86::BI__builtin_ia32_pternlogd128_maskz: 13729 case X86::BI__builtin_ia32_pternlogd256_maskz: 13730 case X86::BI__builtin_ia32_pternlogq128_maskz: 13731 case X86::BI__builtin_ia32_pternlogq256_maskz: 13732 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops); 13733 13734 case X86::BI__builtin_ia32_vpshldd128: 13735 case X86::BI__builtin_ia32_vpshldd256: 13736 case X86::BI__builtin_ia32_vpshldd512: 13737 case X86::BI__builtin_ia32_vpshldq128: 13738 case X86::BI__builtin_ia32_vpshldq256: 13739 case X86::BI__builtin_ia32_vpshldq512: 13740 case X86::BI__builtin_ia32_vpshldw128: 13741 case X86::BI__builtin_ia32_vpshldw256: 13742 case X86::BI__builtin_ia32_vpshldw512: 13743 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 13744 13745 case X86::BI__builtin_ia32_vpshrdd128: 13746 case X86::BI__builtin_ia32_vpshrdd256: 13747 case X86::BI__builtin_ia32_vpshrdd512: 13748 case X86::BI__builtin_ia32_vpshrdq128: 13749 case X86::BI__builtin_ia32_vpshrdq256: 13750 case X86::BI__builtin_ia32_vpshrdq512: 13751 case X86::BI__builtin_ia32_vpshrdw128: 13752 case X86::BI__builtin_ia32_vpshrdw256: 13753 case X86::BI__builtin_ia32_vpshrdw512: 13754 // Ops 0 and 1 are swapped. 13755 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 13756 13757 case X86::BI__builtin_ia32_vpshldvd128: 13758 case X86::BI__builtin_ia32_vpshldvd256: 13759 case X86::BI__builtin_ia32_vpshldvd512: 13760 case X86::BI__builtin_ia32_vpshldvq128: 13761 case X86::BI__builtin_ia32_vpshldvq256: 13762 case X86::BI__builtin_ia32_vpshldvq512: 13763 case X86::BI__builtin_ia32_vpshldvw128: 13764 case X86::BI__builtin_ia32_vpshldvw256: 13765 case X86::BI__builtin_ia32_vpshldvw512: 13766 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 13767 13768 case X86::BI__builtin_ia32_vpshrdvd128: 13769 case X86::BI__builtin_ia32_vpshrdvd256: 13770 case X86::BI__builtin_ia32_vpshrdvd512: 13771 case X86::BI__builtin_ia32_vpshrdvq128: 13772 case X86::BI__builtin_ia32_vpshrdvq256: 13773 case X86::BI__builtin_ia32_vpshrdvq512: 13774 case X86::BI__builtin_ia32_vpshrdvw128: 13775 case X86::BI__builtin_ia32_vpshrdvw256: 13776 case X86::BI__builtin_ia32_vpshrdvw512: 13777 // Ops 0 and 1 are swapped. 13778 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 13779 13780 // Reductions 13781 case X86::BI__builtin_ia32_reduce_add_d512: 13782 case X86::BI__builtin_ia32_reduce_add_q512: { 13783 Function *F = 13784 CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType()); 13785 return Builder.CreateCall(F, {Ops[0]}); 13786 } 13787 case X86::BI__builtin_ia32_reduce_and_d512: 13788 case X86::BI__builtin_ia32_reduce_and_q512: { 13789 Function *F = 13790 CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType()); 13791 return Builder.CreateCall(F, {Ops[0]}); 13792 } 13793 case X86::BI__builtin_ia32_reduce_fadd_pd512: 13794 case X86::BI__builtin_ia32_reduce_fadd_ps512: { 13795 Function *F = 13796 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType()); 13797 Builder.getFastMathFlags().setAllowReassoc(true); 13798 return Builder.CreateCall(F, {Ops[0], Ops[1]}); 13799 } 13800 case X86::BI__builtin_ia32_reduce_fmul_pd512: 13801 case X86::BI__builtin_ia32_reduce_fmul_ps512: { 13802 Function *F = 13803 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType()); 13804 Builder.getFastMathFlags().setAllowReassoc(true); 13805 return Builder.CreateCall(F, {Ops[0], Ops[1]}); 13806 } 13807 case X86::BI__builtin_ia32_reduce_mul_d512: 13808 case X86::BI__builtin_ia32_reduce_mul_q512: { 13809 Function *F = 13810 CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType()); 13811 return Builder.CreateCall(F, {Ops[0]}); 13812 } 13813 case X86::BI__builtin_ia32_reduce_or_d512: 13814 case X86::BI__builtin_ia32_reduce_or_q512: { 13815 Function *F = 13816 CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType()); 13817 return Builder.CreateCall(F, {Ops[0]}); 13818 } 13819 case X86::BI__builtin_ia32_reduce_smax_d512: 13820 case X86::BI__builtin_ia32_reduce_smax_q512: { 13821 Function *F = 13822 CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType()); 13823 return Builder.CreateCall(F, {Ops[0]}); 13824 } 13825 case X86::BI__builtin_ia32_reduce_smin_d512: 13826 case X86::BI__builtin_ia32_reduce_smin_q512: { 13827 Function *F = 13828 CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType()); 13829 return Builder.CreateCall(F, {Ops[0]}); 13830 } 13831 case X86::BI__builtin_ia32_reduce_umax_d512: 13832 case X86::BI__builtin_ia32_reduce_umax_q512: { 13833 Function *F = 13834 CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType()); 13835 return Builder.CreateCall(F, {Ops[0]}); 13836 } 13837 case X86::BI__builtin_ia32_reduce_umin_d512: 13838 case X86::BI__builtin_ia32_reduce_umin_q512: { 13839 Function *F = 13840 CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType()); 13841 return Builder.CreateCall(F, {Ops[0]}); 13842 } 13843 13844 // 3DNow! 13845 case X86::BI__builtin_ia32_pswapdsf: 13846 case X86::BI__builtin_ia32_pswapdsi: { 13847 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); 13848 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); 13849 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd); 13850 return Builder.CreateCall(F, Ops, "pswapd"); 13851 } 13852 case X86::BI__builtin_ia32_rdrand16_step: 13853 case X86::BI__builtin_ia32_rdrand32_step: 13854 case X86::BI__builtin_ia32_rdrand64_step: 13855 case X86::BI__builtin_ia32_rdseed16_step: 13856 case X86::BI__builtin_ia32_rdseed32_step: 13857 case X86::BI__builtin_ia32_rdseed64_step: { 13858 Intrinsic::ID ID; 13859 switch (BuiltinID) { 13860 default: llvm_unreachable("Unsupported intrinsic!"); 13861 case X86::BI__builtin_ia32_rdrand16_step: 13862 ID = Intrinsic::x86_rdrand_16; 13863 break; 13864 case X86::BI__builtin_ia32_rdrand32_step: 13865 ID = Intrinsic::x86_rdrand_32; 13866 break; 13867 case X86::BI__builtin_ia32_rdrand64_step: 13868 ID = Intrinsic::x86_rdrand_64; 13869 break; 13870 case X86::BI__builtin_ia32_rdseed16_step: 13871 ID = Intrinsic::x86_rdseed_16; 13872 break; 13873 case X86::BI__builtin_ia32_rdseed32_step: 13874 ID = Intrinsic::x86_rdseed_32; 13875 break; 13876 case X86::BI__builtin_ia32_rdseed64_step: 13877 ID = Intrinsic::x86_rdseed_64; 13878 break; 13879 } 13880 13881 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); 13882 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), 13883 Ops[0]); 13884 return Builder.CreateExtractValue(Call, 1); 13885 } 13886 case X86::BI__builtin_ia32_addcarryx_u32: 13887 case X86::BI__builtin_ia32_addcarryx_u64: 13888 case X86::BI__builtin_ia32_subborrow_u32: 13889 case X86::BI__builtin_ia32_subborrow_u64: { 13890 Intrinsic::ID IID; 13891 switch (BuiltinID) { 13892 default: llvm_unreachable("Unsupported intrinsic!"); 13893 case X86::BI__builtin_ia32_addcarryx_u32: 13894 IID = Intrinsic::x86_addcarry_32; 13895 break; 13896 case X86::BI__builtin_ia32_addcarryx_u64: 13897 IID = Intrinsic::x86_addcarry_64; 13898 break; 13899 case X86::BI__builtin_ia32_subborrow_u32: 13900 IID = Intrinsic::x86_subborrow_32; 13901 break; 13902 case X86::BI__builtin_ia32_subborrow_u64: 13903 IID = Intrinsic::x86_subborrow_64; 13904 break; 13905 } 13906 13907 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), 13908 { Ops[0], Ops[1], Ops[2] }); 13909 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 13910 Ops[3]); 13911 return Builder.CreateExtractValue(Call, 0); 13912 } 13913 13914 case X86::BI__builtin_ia32_fpclassps128_mask: 13915 case X86::BI__builtin_ia32_fpclassps256_mask: 13916 case X86::BI__builtin_ia32_fpclassps512_mask: 13917 case X86::BI__builtin_ia32_fpclasspd128_mask: 13918 case X86::BI__builtin_ia32_fpclasspd256_mask: 13919 case X86::BI__builtin_ia32_fpclasspd512_mask: { 13920 unsigned NumElts = 13921 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13922 Value *MaskIn = Ops[2]; 13923 Ops.erase(&Ops[2]); 13924 13925 Intrinsic::ID ID; 13926 switch (BuiltinID) { 13927 default: llvm_unreachable("Unsupported intrinsic!"); 13928 case X86::BI__builtin_ia32_fpclassps128_mask: 13929 ID = Intrinsic::x86_avx512_fpclass_ps_128; 13930 break; 13931 case X86::BI__builtin_ia32_fpclassps256_mask: 13932 ID = Intrinsic::x86_avx512_fpclass_ps_256; 13933 break; 13934 case X86::BI__builtin_ia32_fpclassps512_mask: 13935 ID = Intrinsic::x86_avx512_fpclass_ps_512; 13936 break; 13937 case X86::BI__builtin_ia32_fpclasspd128_mask: 13938 ID = Intrinsic::x86_avx512_fpclass_pd_128; 13939 break; 13940 case X86::BI__builtin_ia32_fpclasspd256_mask: 13941 ID = Intrinsic::x86_avx512_fpclass_pd_256; 13942 break; 13943 case X86::BI__builtin_ia32_fpclasspd512_mask: 13944 ID = Intrinsic::x86_avx512_fpclass_pd_512; 13945 break; 13946 } 13947 13948 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 13949 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn); 13950 } 13951 13952 case X86::BI__builtin_ia32_vp2intersect_q_512: 13953 case X86::BI__builtin_ia32_vp2intersect_q_256: 13954 case X86::BI__builtin_ia32_vp2intersect_q_128: 13955 case X86::BI__builtin_ia32_vp2intersect_d_512: 13956 case X86::BI__builtin_ia32_vp2intersect_d_256: 13957 case X86::BI__builtin_ia32_vp2intersect_d_128: { 13958 unsigned NumElts = 13959 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13960 Intrinsic::ID ID; 13961 13962 switch (BuiltinID) { 13963 default: llvm_unreachable("Unsupported intrinsic!"); 13964 case X86::BI__builtin_ia32_vp2intersect_q_512: 13965 ID = Intrinsic::x86_avx512_vp2intersect_q_512; 13966 break; 13967 case X86::BI__builtin_ia32_vp2intersect_q_256: 13968 ID = Intrinsic::x86_avx512_vp2intersect_q_256; 13969 break; 13970 case X86::BI__builtin_ia32_vp2intersect_q_128: 13971 ID = Intrinsic::x86_avx512_vp2intersect_q_128; 13972 break; 13973 case X86::BI__builtin_ia32_vp2intersect_d_512: 13974 ID = Intrinsic::x86_avx512_vp2intersect_d_512; 13975 break; 13976 case X86::BI__builtin_ia32_vp2intersect_d_256: 13977 ID = Intrinsic::x86_avx512_vp2intersect_d_256; 13978 break; 13979 case X86::BI__builtin_ia32_vp2intersect_d_128: 13980 ID = Intrinsic::x86_avx512_vp2intersect_d_128; 13981 break; 13982 } 13983 13984 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]}); 13985 Value *Result = Builder.CreateExtractValue(Call, 0); 13986 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 13987 Builder.CreateDefaultAlignedStore(Result, Ops[2]); 13988 13989 Result = Builder.CreateExtractValue(Call, 1); 13990 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 13991 return Builder.CreateDefaultAlignedStore(Result, Ops[3]); 13992 } 13993 13994 case X86::BI__builtin_ia32_vpmultishiftqb128: 13995 case X86::BI__builtin_ia32_vpmultishiftqb256: 13996 case X86::BI__builtin_ia32_vpmultishiftqb512: { 13997 Intrinsic::ID ID; 13998 switch (BuiltinID) { 13999 default: llvm_unreachable("Unsupported intrinsic!"); 14000 case X86::BI__builtin_ia32_vpmultishiftqb128: 14001 ID = Intrinsic::x86_avx512_pmultishift_qb_128; 14002 break; 14003 case X86::BI__builtin_ia32_vpmultishiftqb256: 14004 ID = Intrinsic::x86_avx512_pmultishift_qb_256; 14005 break; 14006 case X86::BI__builtin_ia32_vpmultishiftqb512: 14007 ID = Intrinsic::x86_avx512_pmultishift_qb_512; 14008 break; 14009 } 14010 14011 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14012 } 14013 14014 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 14015 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 14016 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: { 14017 unsigned NumElts = 14018 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14019 Value *MaskIn = Ops[2]; 14020 Ops.erase(&Ops[2]); 14021 14022 Intrinsic::ID ID; 14023 switch (BuiltinID) { 14024 default: llvm_unreachable("Unsupported intrinsic!"); 14025 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 14026 ID = Intrinsic::x86_avx512_vpshufbitqmb_128; 14027 break; 14028 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 14029 ID = Intrinsic::x86_avx512_vpshufbitqmb_256; 14030 break; 14031 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: 14032 ID = Intrinsic::x86_avx512_vpshufbitqmb_512; 14033 break; 14034 } 14035 14036 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14037 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn); 14038 } 14039 14040 // packed comparison intrinsics 14041 case X86::BI__builtin_ia32_cmpeqps: 14042 case X86::BI__builtin_ia32_cmpeqpd: 14043 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false); 14044 case X86::BI__builtin_ia32_cmpltps: 14045 case X86::BI__builtin_ia32_cmpltpd: 14046 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true); 14047 case X86::BI__builtin_ia32_cmpleps: 14048 case X86::BI__builtin_ia32_cmplepd: 14049 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true); 14050 case X86::BI__builtin_ia32_cmpunordps: 14051 case X86::BI__builtin_ia32_cmpunordpd: 14052 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false); 14053 case X86::BI__builtin_ia32_cmpneqps: 14054 case X86::BI__builtin_ia32_cmpneqpd: 14055 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false); 14056 case X86::BI__builtin_ia32_cmpnltps: 14057 case X86::BI__builtin_ia32_cmpnltpd: 14058 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true); 14059 case X86::BI__builtin_ia32_cmpnleps: 14060 case X86::BI__builtin_ia32_cmpnlepd: 14061 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true); 14062 case X86::BI__builtin_ia32_cmpordps: 14063 case X86::BI__builtin_ia32_cmpordpd: 14064 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false); 14065 case X86::BI__builtin_ia32_cmpps128_mask: 14066 case X86::BI__builtin_ia32_cmpps256_mask: 14067 case X86::BI__builtin_ia32_cmpps512_mask: 14068 case X86::BI__builtin_ia32_cmppd128_mask: 14069 case X86::BI__builtin_ia32_cmppd256_mask: 14070 case X86::BI__builtin_ia32_cmppd512_mask: 14071 IsMaskFCmp = true; 14072 LLVM_FALLTHROUGH; 14073 case X86::BI__builtin_ia32_cmpps: 14074 case X86::BI__builtin_ia32_cmpps256: 14075 case X86::BI__builtin_ia32_cmppd: 14076 case X86::BI__builtin_ia32_cmppd256: { 14077 // Lowering vector comparisons to fcmp instructions, while 14078 // ignoring signalling behaviour requested 14079 // ignoring rounding mode requested 14080 // This is only possible if fp-model is not strict and FENV_ACCESS is off. 14081 14082 // The third argument is the comparison condition, and integer in the 14083 // range [0, 31] 14084 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f; 14085 14086 // Lowering to IR fcmp instruction. 14087 // Ignoring requested signaling behaviour, 14088 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT. 14089 FCmpInst::Predicate Pred; 14090 bool IsSignaling; 14091 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling 14092 // behavior is inverted. We'll handle that after the switch. 14093 switch (CC & 0xf) { 14094 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break; 14095 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break; 14096 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break; 14097 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break; 14098 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break; 14099 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break; 14100 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break; 14101 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break; 14102 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break; 14103 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break; 14104 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break; 14105 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break; 14106 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break; 14107 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break; 14108 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break; 14109 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break; 14110 default: llvm_unreachable("Unhandled CC"); 14111 } 14112 14113 // Invert the signalling behavior for 16-31. 14114 if (CC & 0x10) 14115 IsSignaling = !IsSignaling; 14116 14117 // If the predicate is true or false and we're using constrained intrinsics, 14118 // we don't have a compare intrinsic we can use. Just use the legacy X86 14119 // specific intrinsic. 14120 // If the intrinsic is mask enabled and we're using constrained intrinsics, 14121 // use the legacy X86 specific intrinsic. 14122 if (Builder.getIsFPConstrained() && 14123 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE || 14124 IsMaskFCmp)) { 14125 14126 Intrinsic::ID IID; 14127 switch (BuiltinID) { 14128 default: llvm_unreachable("Unexpected builtin"); 14129 case X86::BI__builtin_ia32_cmpps: 14130 IID = Intrinsic::x86_sse_cmp_ps; 14131 break; 14132 case X86::BI__builtin_ia32_cmpps256: 14133 IID = Intrinsic::x86_avx_cmp_ps_256; 14134 break; 14135 case X86::BI__builtin_ia32_cmppd: 14136 IID = Intrinsic::x86_sse2_cmp_pd; 14137 break; 14138 case X86::BI__builtin_ia32_cmppd256: 14139 IID = Intrinsic::x86_avx_cmp_pd_256; 14140 break; 14141 case X86::BI__builtin_ia32_cmpps512_mask: 14142 IID = Intrinsic::x86_avx512_mask_cmp_ps_512; 14143 break; 14144 case X86::BI__builtin_ia32_cmppd512_mask: 14145 IID = Intrinsic::x86_avx512_mask_cmp_pd_512; 14146 break; 14147 case X86::BI__builtin_ia32_cmpps128_mask: 14148 IID = Intrinsic::x86_avx512_mask_cmp_ps_128; 14149 break; 14150 case X86::BI__builtin_ia32_cmpps256_mask: 14151 IID = Intrinsic::x86_avx512_mask_cmp_ps_256; 14152 break; 14153 case X86::BI__builtin_ia32_cmppd128_mask: 14154 IID = Intrinsic::x86_avx512_mask_cmp_pd_128; 14155 break; 14156 case X86::BI__builtin_ia32_cmppd256_mask: 14157 IID = Intrinsic::x86_avx512_mask_cmp_pd_256; 14158 break; 14159 } 14160 14161 Function *Intr = CGM.getIntrinsic(IID); 14162 if (IsMaskFCmp) { 14163 unsigned NumElts = 14164 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14165 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts); 14166 Value *Cmp = Builder.CreateCall(Intr, Ops); 14167 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr); 14168 } 14169 14170 return Builder.CreateCall(Intr, Ops); 14171 } 14172 14173 // Builtins without the _mask suffix return a vector of integers 14174 // of the same width as the input vectors 14175 if (IsMaskFCmp) { 14176 // We ignore SAE if strict FP is disabled. We only keep precise 14177 // exception behavior under strict FP. 14178 unsigned NumElts = 14179 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14180 Value *Cmp; 14181 if (IsSignaling) 14182 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); 14183 else 14184 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 14185 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]); 14186 } 14187 14188 return getVectorFCmpIR(Pred, IsSignaling); 14189 } 14190 14191 // SSE scalar comparison intrinsics 14192 case X86::BI__builtin_ia32_cmpeqss: 14193 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); 14194 case X86::BI__builtin_ia32_cmpltss: 14195 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); 14196 case X86::BI__builtin_ia32_cmpless: 14197 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); 14198 case X86::BI__builtin_ia32_cmpunordss: 14199 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); 14200 case X86::BI__builtin_ia32_cmpneqss: 14201 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); 14202 case X86::BI__builtin_ia32_cmpnltss: 14203 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); 14204 case X86::BI__builtin_ia32_cmpnless: 14205 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); 14206 case X86::BI__builtin_ia32_cmpordss: 14207 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); 14208 case X86::BI__builtin_ia32_cmpeqsd: 14209 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); 14210 case X86::BI__builtin_ia32_cmpltsd: 14211 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); 14212 case X86::BI__builtin_ia32_cmplesd: 14213 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); 14214 case X86::BI__builtin_ia32_cmpunordsd: 14215 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); 14216 case X86::BI__builtin_ia32_cmpneqsd: 14217 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); 14218 case X86::BI__builtin_ia32_cmpnltsd: 14219 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); 14220 case X86::BI__builtin_ia32_cmpnlesd: 14221 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); 14222 case X86::BI__builtin_ia32_cmpordsd: 14223 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); 14224 14225 // f16c half2float intrinsics 14226 case X86::BI__builtin_ia32_vcvtph2ps: 14227 case X86::BI__builtin_ia32_vcvtph2ps256: 14228 case X86::BI__builtin_ia32_vcvtph2ps_mask: 14229 case X86::BI__builtin_ia32_vcvtph2ps256_mask: 14230 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 14231 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType())); 14232 14233 // AVX512 bf16 intrinsics 14234 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: { 14235 Ops[2] = getMaskVecValue( 14236 *this, Ops[2], 14237 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements()); 14238 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128; 14239 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 14240 } 14241 case X86::BI__builtin_ia32_cvtsbf162ss_32: 14242 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops); 14243 14244 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 14245 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: { 14246 Intrinsic::ID IID; 14247 switch (BuiltinID) { 14248 default: llvm_unreachable("Unsupported intrinsic!"); 14249 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 14250 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256; 14251 break; 14252 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: 14253 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512; 14254 break; 14255 } 14256 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]); 14257 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 14258 } 14259 14260 case X86::BI__emul: 14261 case X86::BI__emulu: { 14262 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); 14263 bool isSigned = (BuiltinID == X86::BI__emul); 14264 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); 14265 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); 14266 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); 14267 } 14268 case X86::BI__mulh: 14269 case X86::BI__umulh: 14270 case X86::BI_mul128: 14271 case X86::BI_umul128: { 14272 llvm::Type *ResType = ConvertType(E->getType()); 14273 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 14274 14275 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); 14276 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); 14277 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); 14278 14279 Value *MulResult, *HigherBits; 14280 if (IsSigned) { 14281 MulResult = Builder.CreateNSWMul(LHS, RHS); 14282 HigherBits = Builder.CreateAShr(MulResult, 64); 14283 } else { 14284 MulResult = Builder.CreateNUWMul(LHS, RHS); 14285 HigherBits = Builder.CreateLShr(MulResult, 64); 14286 } 14287 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); 14288 14289 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) 14290 return HigherBits; 14291 14292 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); 14293 Builder.CreateStore(HigherBits, HighBitsAddress); 14294 return Builder.CreateIntCast(MulResult, ResType, IsSigned); 14295 } 14296 14297 case X86::BI__faststorefence: { 14298 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 14299 llvm::SyncScope::System); 14300 } 14301 case X86::BI__shiftleft128: 14302 case X86::BI__shiftright128: { 14303 llvm::Function *F = CGM.getIntrinsic( 14304 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr, 14305 Int64Ty); 14306 // Flip low/high ops and zero-extend amount to matching type. 14307 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt) 14308 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt) 14309 std::swap(Ops[0], Ops[1]); 14310 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 14311 return Builder.CreateCall(F, Ops); 14312 } 14313 case X86::BI_ReadWriteBarrier: 14314 case X86::BI_ReadBarrier: 14315 case X86::BI_WriteBarrier: { 14316 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 14317 llvm::SyncScope::SingleThread); 14318 } 14319 14320 case X86::BI_AddressOfReturnAddress: { 14321 Function *F = 14322 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 14323 return Builder.CreateCall(F); 14324 } 14325 case X86::BI__stosb: { 14326 // We treat __stosb as a volatile memset - it may not generate "rep stosb" 14327 // instruction, but it will create a memset that won't be optimized away. 14328 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true); 14329 } 14330 case X86::BI__ud2: 14331 // llvm.trap makes a ud2a instruction on x86. 14332 return EmitTrapCall(Intrinsic::trap); 14333 case X86::BI__int2c: { 14334 // This syscall signals a driver assertion failure in x86 NT kernels. 14335 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 14336 llvm::InlineAsm *IA = 14337 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true); 14338 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 14339 getLLVMContext(), llvm::AttributeList::FunctionIndex, 14340 llvm::Attribute::NoReturn); 14341 llvm::CallInst *CI = Builder.CreateCall(IA); 14342 CI->setAttributes(NoReturnAttr); 14343 return CI; 14344 } 14345 case X86::BI__readfsbyte: 14346 case X86::BI__readfsword: 14347 case X86::BI__readfsdword: 14348 case X86::BI__readfsqword: { 14349 llvm::Type *IntTy = ConvertType(E->getType()); 14350 Value *Ptr = 14351 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257)); 14352 LoadInst *Load = Builder.CreateAlignedLoad( 14353 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 14354 Load->setVolatile(true); 14355 return Load; 14356 } 14357 case X86::BI__readgsbyte: 14358 case X86::BI__readgsword: 14359 case X86::BI__readgsdword: 14360 case X86::BI__readgsqword: { 14361 llvm::Type *IntTy = ConvertType(E->getType()); 14362 Value *Ptr = 14363 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256)); 14364 LoadInst *Load = Builder.CreateAlignedLoad( 14365 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 14366 Load->setVolatile(true); 14367 return Load; 14368 } 14369 case X86::BI__builtin_ia32_paddsb512: 14370 case X86::BI__builtin_ia32_paddsw512: 14371 case X86::BI__builtin_ia32_paddsb256: 14372 case X86::BI__builtin_ia32_paddsw256: 14373 case X86::BI__builtin_ia32_paddsb128: 14374 case X86::BI__builtin_ia32_paddsw128: 14375 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat); 14376 case X86::BI__builtin_ia32_paddusb512: 14377 case X86::BI__builtin_ia32_paddusw512: 14378 case X86::BI__builtin_ia32_paddusb256: 14379 case X86::BI__builtin_ia32_paddusw256: 14380 case X86::BI__builtin_ia32_paddusb128: 14381 case X86::BI__builtin_ia32_paddusw128: 14382 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat); 14383 case X86::BI__builtin_ia32_psubsb512: 14384 case X86::BI__builtin_ia32_psubsw512: 14385 case X86::BI__builtin_ia32_psubsb256: 14386 case X86::BI__builtin_ia32_psubsw256: 14387 case X86::BI__builtin_ia32_psubsb128: 14388 case X86::BI__builtin_ia32_psubsw128: 14389 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat); 14390 case X86::BI__builtin_ia32_psubusb512: 14391 case X86::BI__builtin_ia32_psubusw512: 14392 case X86::BI__builtin_ia32_psubusb256: 14393 case X86::BI__builtin_ia32_psubusw256: 14394 case X86::BI__builtin_ia32_psubusb128: 14395 case X86::BI__builtin_ia32_psubusw128: 14396 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat); 14397 case X86::BI__builtin_ia32_encodekey128_u32: { 14398 Intrinsic::ID IID = Intrinsic::x86_encodekey128; 14399 14400 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]}); 14401 14402 for (int i = 0; i < 6; ++i) { 14403 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 14404 Value *Ptr = Builder.CreateConstGEP1_32(Ops[2], i * 16); 14405 Ptr = Builder.CreateBitCast( 14406 Ptr, llvm::PointerType::getUnqual(Extract->getType())); 14407 Builder.CreateAlignedStore(Extract, Ptr, Align(1)); 14408 } 14409 14410 return Builder.CreateExtractValue(Call, 0); 14411 } 14412 case X86::BI__builtin_ia32_encodekey256_u32: { 14413 Intrinsic::ID IID = Intrinsic::x86_encodekey256; 14414 14415 Value *Call = 14416 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]}); 14417 14418 for (int i = 0; i < 7; ++i) { 14419 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 14420 Value *Ptr = Builder.CreateConstGEP1_32(Ops[3], i * 16); 14421 Ptr = Builder.CreateBitCast( 14422 Ptr, llvm::PointerType::getUnqual(Extract->getType())); 14423 Builder.CreateAlignedStore(Extract, Ptr, Align(1)); 14424 } 14425 14426 return Builder.CreateExtractValue(Call, 0); 14427 } 14428 case X86::BI__builtin_ia32_aesenc128kl_u8: 14429 case X86::BI__builtin_ia32_aesdec128kl_u8: 14430 case X86::BI__builtin_ia32_aesenc256kl_u8: 14431 case X86::BI__builtin_ia32_aesdec256kl_u8: { 14432 Intrinsic::ID IID; 14433 switch (BuiltinID) { 14434 default: llvm_unreachable("Unexpected builtin"); 14435 case X86::BI__builtin_ia32_aesenc128kl_u8: 14436 IID = Intrinsic::x86_aesenc128kl; 14437 break; 14438 case X86::BI__builtin_ia32_aesdec128kl_u8: 14439 IID = Intrinsic::x86_aesdec128kl; 14440 break; 14441 case X86::BI__builtin_ia32_aesenc256kl_u8: 14442 IID = Intrinsic::x86_aesenc256kl; 14443 break; 14444 case X86::BI__builtin_ia32_aesdec256kl_u8: 14445 IID = Intrinsic::x86_aesdec256kl; 14446 break; 14447 } 14448 14449 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]}); 14450 14451 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 14452 Ops[0]); 14453 14454 return Builder.CreateExtractValue(Call, 0); 14455 } 14456 case X86::BI__builtin_ia32_aesencwide128kl_u8: 14457 case X86::BI__builtin_ia32_aesdecwide128kl_u8: 14458 case X86::BI__builtin_ia32_aesencwide256kl_u8: 14459 case X86::BI__builtin_ia32_aesdecwide256kl_u8: { 14460 Intrinsic::ID IID; 14461 switch (BuiltinID) { 14462 case X86::BI__builtin_ia32_aesencwide128kl_u8: 14463 IID = Intrinsic::x86_aesencwide128kl; 14464 break; 14465 case X86::BI__builtin_ia32_aesdecwide128kl_u8: 14466 IID = Intrinsic::x86_aesdecwide128kl; 14467 break; 14468 case X86::BI__builtin_ia32_aesencwide256kl_u8: 14469 IID = Intrinsic::x86_aesencwide256kl; 14470 break; 14471 case X86::BI__builtin_ia32_aesdecwide256kl_u8: 14472 IID = Intrinsic::x86_aesdecwide256kl; 14473 break; 14474 } 14475 14476 Value *InOps[9]; 14477 InOps[0] = Ops[2]; 14478 for (int i = 0; i != 8; ++i) { 14479 Value *Ptr = Builder.CreateConstGEP1_32(Ops[1], i); 14480 InOps[i + 1] = Builder.CreateAlignedLoad(Ptr, Align(16)); 14481 } 14482 14483 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps); 14484 14485 for (int i = 0; i != 8; ++i) { 14486 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 14487 Value *Ptr = Builder.CreateConstGEP1_32(Ops[0], i); 14488 Builder.CreateAlignedStore(Extract, Ptr, Align(16)); 14489 } 14490 14491 return Builder.CreateExtractValue(Call, 0); 14492 } 14493 } 14494 } 14495 14496 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, 14497 const CallExpr *E) { 14498 SmallVector<Value*, 4> Ops; 14499 14500 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) 14501 Ops.push_back(EmitScalarExpr(E->getArg(i))); 14502 14503 Intrinsic::ID ID = Intrinsic::not_intrinsic; 14504 14505 switch (BuiltinID) { 14506 default: return nullptr; 14507 14508 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we 14509 // call __builtin_readcyclecounter. 14510 case PPC::BI__builtin_ppc_get_timebase: 14511 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); 14512 14513 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr 14514 case PPC::BI__builtin_altivec_lvx: 14515 case PPC::BI__builtin_altivec_lvxl: 14516 case PPC::BI__builtin_altivec_lvebx: 14517 case PPC::BI__builtin_altivec_lvehx: 14518 case PPC::BI__builtin_altivec_lvewx: 14519 case PPC::BI__builtin_altivec_lvsl: 14520 case PPC::BI__builtin_altivec_lvsr: 14521 case PPC::BI__builtin_vsx_lxvd2x: 14522 case PPC::BI__builtin_vsx_lxvw4x: 14523 case PPC::BI__builtin_vsx_lxvd2x_be: 14524 case PPC::BI__builtin_vsx_lxvw4x_be: 14525 case PPC::BI__builtin_vsx_lxvl: 14526 case PPC::BI__builtin_vsx_lxvll: 14527 { 14528 if(BuiltinID == PPC::BI__builtin_vsx_lxvl || 14529 BuiltinID == PPC::BI__builtin_vsx_lxvll){ 14530 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); 14531 }else { 14532 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 14533 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); 14534 Ops.pop_back(); 14535 } 14536 14537 switch (BuiltinID) { 14538 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); 14539 case PPC::BI__builtin_altivec_lvx: 14540 ID = Intrinsic::ppc_altivec_lvx; 14541 break; 14542 case PPC::BI__builtin_altivec_lvxl: 14543 ID = Intrinsic::ppc_altivec_lvxl; 14544 break; 14545 case PPC::BI__builtin_altivec_lvebx: 14546 ID = Intrinsic::ppc_altivec_lvebx; 14547 break; 14548 case PPC::BI__builtin_altivec_lvehx: 14549 ID = Intrinsic::ppc_altivec_lvehx; 14550 break; 14551 case PPC::BI__builtin_altivec_lvewx: 14552 ID = Intrinsic::ppc_altivec_lvewx; 14553 break; 14554 case PPC::BI__builtin_altivec_lvsl: 14555 ID = Intrinsic::ppc_altivec_lvsl; 14556 break; 14557 case PPC::BI__builtin_altivec_lvsr: 14558 ID = Intrinsic::ppc_altivec_lvsr; 14559 break; 14560 case PPC::BI__builtin_vsx_lxvd2x: 14561 ID = Intrinsic::ppc_vsx_lxvd2x; 14562 break; 14563 case PPC::BI__builtin_vsx_lxvw4x: 14564 ID = Intrinsic::ppc_vsx_lxvw4x; 14565 break; 14566 case PPC::BI__builtin_vsx_lxvd2x_be: 14567 ID = Intrinsic::ppc_vsx_lxvd2x_be; 14568 break; 14569 case PPC::BI__builtin_vsx_lxvw4x_be: 14570 ID = Intrinsic::ppc_vsx_lxvw4x_be; 14571 break; 14572 case PPC::BI__builtin_vsx_lxvl: 14573 ID = Intrinsic::ppc_vsx_lxvl; 14574 break; 14575 case PPC::BI__builtin_vsx_lxvll: 14576 ID = Intrinsic::ppc_vsx_lxvll; 14577 break; 14578 } 14579 llvm::Function *F = CGM.getIntrinsic(ID); 14580 return Builder.CreateCall(F, Ops, ""); 14581 } 14582 14583 // vec_st, vec_xst_be 14584 case PPC::BI__builtin_altivec_stvx: 14585 case PPC::BI__builtin_altivec_stvxl: 14586 case PPC::BI__builtin_altivec_stvebx: 14587 case PPC::BI__builtin_altivec_stvehx: 14588 case PPC::BI__builtin_altivec_stvewx: 14589 case PPC::BI__builtin_vsx_stxvd2x: 14590 case PPC::BI__builtin_vsx_stxvw4x: 14591 case PPC::BI__builtin_vsx_stxvd2x_be: 14592 case PPC::BI__builtin_vsx_stxvw4x_be: 14593 case PPC::BI__builtin_vsx_stxvl: 14594 case PPC::BI__builtin_vsx_stxvll: 14595 { 14596 if(BuiltinID == PPC::BI__builtin_vsx_stxvl || 14597 BuiltinID == PPC::BI__builtin_vsx_stxvll ){ 14598 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 14599 }else { 14600 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 14601 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); 14602 Ops.pop_back(); 14603 } 14604 14605 switch (BuiltinID) { 14606 default: llvm_unreachable("Unsupported st intrinsic!"); 14607 case PPC::BI__builtin_altivec_stvx: 14608 ID = Intrinsic::ppc_altivec_stvx; 14609 break; 14610 case PPC::BI__builtin_altivec_stvxl: 14611 ID = Intrinsic::ppc_altivec_stvxl; 14612 break; 14613 case PPC::BI__builtin_altivec_stvebx: 14614 ID = Intrinsic::ppc_altivec_stvebx; 14615 break; 14616 case PPC::BI__builtin_altivec_stvehx: 14617 ID = Intrinsic::ppc_altivec_stvehx; 14618 break; 14619 case PPC::BI__builtin_altivec_stvewx: 14620 ID = Intrinsic::ppc_altivec_stvewx; 14621 break; 14622 case PPC::BI__builtin_vsx_stxvd2x: 14623 ID = Intrinsic::ppc_vsx_stxvd2x; 14624 break; 14625 case PPC::BI__builtin_vsx_stxvw4x: 14626 ID = Intrinsic::ppc_vsx_stxvw4x; 14627 break; 14628 case PPC::BI__builtin_vsx_stxvd2x_be: 14629 ID = Intrinsic::ppc_vsx_stxvd2x_be; 14630 break; 14631 case PPC::BI__builtin_vsx_stxvw4x_be: 14632 ID = Intrinsic::ppc_vsx_stxvw4x_be; 14633 break; 14634 case PPC::BI__builtin_vsx_stxvl: 14635 ID = Intrinsic::ppc_vsx_stxvl; 14636 break; 14637 case PPC::BI__builtin_vsx_stxvll: 14638 ID = Intrinsic::ppc_vsx_stxvll; 14639 break; 14640 } 14641 llvm::Function *F = CGM.getIntrinsic(ID); 14642 return Builder.CreateCall(F, Ops, ""); 14643 } 14644 // Square root 14645 case PPC::BI__builtin_vsx_xvsqrtsp: 14646 case PPC::BI__builtin_vsx_xvsqrtdp: { 14647 llvm::Type *ResultType = ConvertType(E->getType()); 14648 Value *X = EmitScalarExpr(E->getArg(0)); 14649 if (Builder.getIsFPConstrained()) { 14650 llvm::Function *F = CGM.getIntrinsic( 14651 Intrinsic::experimental_constrained_sqrt, ResultType); 14652 return Builder.CreateConstrainedFPCall(F, X); 14653 } else { 14654 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 14655 return Builder.CreateCall(F, X); 14656 } 14657 } 14658 // Count leading zeros 14659 case PPC::BI__builtin_altivec_vclzb: 14660 case PPC::BI__builtin_altivec_vclzh: 14661 case PPC::BI__builtin_altivec_vclzw: 14662 case PPC::BI__builtin_altivec_vclzd: { 14663 llvm::Type *ResultType = ConvertType(E->getType()); 14664 Value *X = EmitScalarExpr(E->getArg(0)); 14665 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 14666 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 14667 return Builder.CreateCall(F, {X, Undef}); 14668 } 14669 case PPC::BI__builtin_altivec_vctzb: 14670 case PPC::BI__builtin_altivec_vctzh: 14671 case PPC::BI__builtin_altivec_vctzw: 14672 case PPC::BI__builtin_altivec_vctzd: { 14673 llvm::Type *ResultType = ConvertType(E->getType()); 14674 Value *X = EmitScalarExpr(E->getArg(0)); 14675 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 14676 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 14677 return Builder.CreateCall(F, {X, Undef}); 14678 } 14679 case PPC::BI__builtin_altivec_vec_replace_elt: 14680 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 14681 // The third argument of vec_replace_elt and vec_replace_unaligned must 14682 // be a compile time constant and will be emitted either to the vinsw 14683 // or vinsd instruction. 14684 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 14685 assert(ArgCI && 14686 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"); 14687 llvm::Type *ResultType = ConvertType(E->getType()); 14688 llvm::Function *F = nullptr; 14689 Value *Call = nullptr; 14690 int64_t ConstArg = ArgCI->getSExtValue(); 14691 unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits(); 14692 bool Is32Bit = false; 14693 assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width"); 14694 // The input to vec_replace_elt is an element index, not a byte index. 14695 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt) 14696 ConstArg *= ArgWidth / 8; 14697 if (ArgWidth == 32) { 14698 Is32Bit = true; 14699 // When the second argument is 32 bits, it can either be an integer or 14700 // a float. The vinsw intrinsic is used in this case. 14701 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw); 14702 // Fix the constant according to endianess. 14703 if (getTarget().isLittleEndian()) 14704 ConstArg = 12 - ConstArg; 14705 } else { 14706 // When the second argument is 64 bits, it can either be a long long or 14707 // a double. The vinsd intrinsic is used in this case. 14708 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd); 14709 // Fix the constant for little endian. 14710 if (getTarget().isLittleEndian()) 14711 ConstArg = 8 - ConstArg; 14712 } 14713 Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg); 14714 // Depending on ArgWidth, the input vector could be a float or a double. 14715 // If the input vector is a float type, bitcast the inputs to integers. Or, 14716 // if the input vector is a double, bitcast the inputs to 64-bit integers. 14717 if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) { 14718 Ops[0] = Builder.CreateBitCast( 14719 Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4) 14720 : llvm::FixedVectorType::get(Int64Ty, 2)); 14721 Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty); 14722 } 14723 // Emit the call to vinsw or vinsd. 14724 Call = Builder.CreateCall(F, Ops); 14725 // Depending on the builtin, bitcast to the approriate result type. 14726 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt && 14727 !Ops[1]->getType()->isIntegerTy()) 14728 return Builder.CreateBitCast(Call, ResultType); 14729 else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt && 14730 Ops[1]->getType()->isIntegerTy()) 14731 return Call; 14732 else 14733 return Builder.CreateBitCast(Call, 14734 llvm::FixedVectorType::get(Int8Ty, 16)); 14735 } 14736 case PPC::BI__builtin_altivec_vpopcntb: 14737 case PPC::BI__builtin_altivec_vpopcnth: 14738 case PPC::BI__builtin_altivec_vpopcntw: 14739 case PPC::BI__builtin_altivec_vpopcntd: { 14740 llvm::Type *ResultType = ConvertType(E->getType()); 14741 Value *X = EmitScalarExpr(E->getArg(0)); 14742 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 14743 return Builder.CreateCall(F, X); 14744 } 14745 // Copy sign 14746 case PPC::BI__builtin_vsx_xvcpsgnsp: 14747 case PPC::BI__builtin_vsx_xvcpsgndp: { 14748 llvm::Type *ResultType = ConvertType(E->getType()); 14749 Value *X = EmitScalarExpr(E->getArg(0)); 14750 Value *Y = EmitScalarExpr(E->getArg(1)); 14751 ID = Intrinsic::copysign; 14752 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 14753 return Builder.CreateCall(F, {X, Y}); 14754 } 14755 // Rounding/truncation 14756 case PPC::BI__builtin_vsx_xvrspip: 14757 case PPC::BI__builtin_vsx_xvrdpip: 14758 case PPC::BI__builtin_vsx_xvrdpim: 14759 case PPC::BI__builtin_vsx_xvrspim: 14760 case PPC::BI__builtin_vsx_xvrdpi: 14761 case PPC::BI__builtin_vsx_xvrspi: 14762 case PPC::BI__builtin_vsx_xvrdpic: 14763 case PPC::BI__builtin_vsx_xvrspic: 14764 case PPC::BI__builtin_vsx_xvrdpiz: 14765 case PPC::BI__builtin_vsx_xvrspiz: { 14766 llvm::Type *ResultType = ConvertType(E->getType()); 14767 Value *X = EmitScalarExpr(E->getArg(0)); 14768 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || 14769 BuiltinID == PPC::BI__builtin_vsx_xvrspim) 14770 ID = Builder.getIsFPConstrained() 14771 ? Intrinsic::experimental_constrained_floor 14772 : Intrinsic::floor; 14773 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || 14774 BuiltinID == PPC::BI__builtin_vsx_xvrspi) 14775 ID = Builder.getIsFPConstrained() 14776 ? Intrinsic::experimental_constrained_round 14777 : Intrinsic::round; 14778 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || 14779 BuiltinID == PPC::BI__builtin_vsx_xvrspic) 14780 ID = Builder.getIsFPConstrained() 14781 ? Intrinsic::experimental_constrained_rint 14782 : Intrinsic::rint; 14783 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || 14784 BuiltinID == PPC::BI__builtin_vsx_xvrspip) 14785 ID = Builder.getIsFPConstrained() 14786 ? Intrinsic::experimental_constrained_ceil 14787 : Intrinsic::ceil; 14788 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || 14789 BuiltinID == PPC::BI__builtin_vsx_xvrspiz) 14790 ID = Builder.getIsFPConstrained() 14791 ? Intrinsic::experimental_constrained_trunc 14792 : Intrinsic::trunc; 14793 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 14794 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X) 14795 : Builder.CreateCall(F, X); 14796 } 14797 14798 // Absolute value 14799 case PPC::BI__builtin_vsx_xvabsdp: 14800 case PPC::BI__builtin_vsx_xvabssp: { 14801 llvm::Type *ResultType = ConvertType(E->getType()); 14802 Value *X = EmitScalarExpr(E->getArg(0)); 14803 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 14804 return Builder.CreateCall(F, X); 14805 } 14806 14807 // FMA variations 14808 case PPC::BI__builtin_vsx_xvmaddadp: 14809 case PPC::BI__builtin_vsx_xvmaddasp: 14810 case PPC::BI__builtin_vsx_xvnmaddadp: 14811 case PPC::BI__builtin_vsx_xvnmaddasp: 14812 case PPC::BI__builtin_vsx_xvmsubadp: 14813 case PPC::BI__builtin_vsx_xvmsubasp: 14814 case PPC::BI__builtin_vsx_xvnmsubadp: 14815 case PPC::BI__builtin_vsx_xvnmsubasp: { 14816 llvm::Type *ResultType = ConvertType(E->getType()); 14817 Value *X = EmitScalarExpr(E->getArg(0)); 14818 Value *Y = EmitScalarExpr(E->getArg(1)); 14819 Value *Z = EmitScalarExpr(E->getArg(2)); 14820 llvm::Function *F; 14821 if (Builder.getIsFPConstrained()) 14822 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 14823 else 14824 F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 14825 switch (BuiltinID) { 14826 case PPC::BI__builtin_vsx_xvmaddadp: 14827 case PPC::BI__builtin_vsx_xvmaddasp: 14828 if (Builder.getIsFPConstrained()) 14829 return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); 14830 else 14831 return Builder.CreateCall(F, {X, Y, Z}); 14832 case PPC::BI__builtin_vsx_xvnmaddadp: 14833 case PPC::BI__builtin_vsx_xvnmaddasp: 14834 if (Builder.getIsFPConstrained()) 14835 return Builder.CreateFNeg( 14836 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); 14837 else 14838 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); 14839 case PPC::BI__builtin_vsx_xvmsubadp: 14840 case PPC::BI__builtin_vsx_xvmsubasp: 14841 if (Builder.getIsFPConstrained()) 14842 return Builder.CreateConstrainedFPCall( 14843 F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 14844 else 14845 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 14846 case PPC::BI__builtin_vsx_xvnmsubadp: 14847 case PPC::BI__builtin_vsx_xvnmsubasp: 14848 if (Builder.getIsFPConstrained()) 14849 return Builder.CreateFNeg( 14850 Builder.CreateConstrainedFPCall( 14851 F, {X, Y, Builder.CreateFNeg(Z, "neg")}), 14852 "neg"); 14853 else 14854 return Builder.CreateFNeg( 14855 Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}), 14856 "neg"); 14857 } 14858 llvm_unreachable("Unknown FMA operation"); 14859 return nullptr; // Suppress no-return warning 14860 } 14861 14862 case PPC::BI__builtin_vsx_insertword: { 14863 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); 14864 14865 // Third argument is a compile time constant int. It must be clamped to 14866 // to the range [0, 12]. 14867 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 14868 assert(ArgCI && 14869 "Third arg to xxinsertw intrinsic must be constant integer"); 14870 const int64_t MaxIndex = 12; 14871 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 14872 14873 // The builtin semantics don't exactly match the xxinsertw instructions 14874 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the 14875 // word from the first argument, and inserts it in the second argument. The 14876 // instruction extracts the word from its second input register and inserts 14877 // it into its first input register, so swap the first and second arguments. 14878 std::swap(Ops[0], Ops[1]); 14879 14880 // Need to cast the second argument from a vector of unsigned int to a 14881 // vector of long long. 14882 Ops[1] = 14883 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); 14884 14885 if (getTarget().isLittleEndian()) { 14886 // Reverse the double words in the vector we will extract from. 14887 Ops[0] = 14888 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 14889 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0}); 14890 14891 // Reverse the index. 14892 Index = MaxIndex - Index; 14893 } 14894 14895 // Intrinsic expects the first arg to be a vector of int. 14896 Ops[0] = 14897 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 14898 Ops[2] = ConstantInt::getSigned(Int32Ty, Index); 14899 return Builder.CreateCall(F, Ops); 14900 } 14901 14902 case PPC::BI__builtin_vsx_extractuword: { 14903 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); 14904 14905 // Intrinsic expects the first argument to be a vector of doublewords. 14906 Ops[0] = 14907 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 14908 14909 // The second argument is a compile time constant int that needs to 14910 // be clamped to the range [0, 12]. 14911 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]); 14912 assert(ArgCI && 14913 "Second Arg to xxextractuw intrinsic must be a constant integer!"); 14914 const int64_t MaxIndex = 12; 14915 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 14916 14917 if (getTarget().isLittleEndian()) { 14918 // Reverse the index. 14919 Index = MaxIndex - Index; 14920 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 14921 14922 // Emit the call, then reverse the double words of the results vector. 14923 Value *Call = Builder.CreateCall(F, Ops); 14924 14925 Value *ShuffleCall = 14926 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0}); 14927 return ShuffleCall; 14928 } else { 14929 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 14930 return Builder.CreateCall(F, Ops); 14931 } 14932 } 14933 14934 case PPC::BI__builtin_vsx_xxpermdi: { 14935 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 14936 assert(ArgCI && "Third arg must be constant integer!"); 14937 14938 unsigned Index = ArgCI->getZExtValue(); 14939 Ops[0] = 14940 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 14941 Ops[1] = 14942 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); 14943 14944 // Account for endianness by treating this as just a shuffle. So we use the 14945 // same indices for both LE and BE in order to produce expected results in 14946 // both cases. 14947 int ElemIdx0 = (Index & 2) >> 1; 14948 int ElemIdx1 = 2 + (Index & 1); 14949 14950 int ShuffleElts[2] = {ElemIdx0, ElemIdx1}; 14951 Value *ShuffleCall = 14952 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); 14953 QualType BIRetType = E->getType(); 14954 auto RetTy = ConvertType(BIRetType); 14955 return Builder.CreateBitCast(ShuffleCall, RetTy); 14956 } 14957 14958 case PPC::BI__builtin_vsx_xxsldwi: { 14959 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 14960 assert(ArgCI && "Third argument must be a compile time constant"); 14961 unsigned Index = ArgCI->getZExtValue() & 0x3; 14962 Ops[0] = 14963 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 14964 Ops[1] = 14965 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4)); 14966 14967 // Create a shuffle mask 14968 int ElemIdx0; 14969 int ElemIdx1; 14970 int ElemIdx2; 14971 int ElemIdx3; 14972 if (getTarget().isLittleEndian()) { 14973 // Little endian element N comes from element 8+N-Index of the 14974 // concatenated wide vector (of course, using modulo arithmetic on 14975 // the total number of elements). 14976 ElemIdx0 = (8 - Index) % 8; 14977 ElemIdx1 = (9 - Index) % 8; 14978 ElemIdx2 = (10 - Index) % 8; 14979 ElemIdx3 = (11 - Index) % 8; 14980 } else { 14981 // Big endian ElemIdx<N> = Index + N 14982 ElemIdx0 = Index; 14983 ElemIdx1 = Index + 1; 14984 ElemIdx2 = Index + 2; 14985 ElemIdx3 = Index + 3; 14986 } 14987 14988 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3}; 14989 Value *ShuffleCall = 14990 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); 14991 QualType BIRetType = E->getType(); 14992 auto RetTy = ConvertType(BIRetType); 14993 return Builder.CreateBitCast(ShuffleCall, RetTy); 14994 } 14995 14996 case PPC::BI__builtin_pack_vector_int128: { 14997 bool isLittleEndian = getTarget().isLittleEndian(); 14998 Value *UndefValue = 14999 llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2)); 15000 Value *Res = Builder.CreateInsertElement( 15001 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0)); 15002 Res = Builder.CreateInsertElement(Res, Ops[1], 15003 (uint64_t)(isLittleEndian ? 0 : 1)); 15004 return Builder.CreateBitCast(Res, ConvertType(E->getType())); 15005 } 15006 15007 case PPC::BI__builtin_unpack_vector_int128: { 15008 ConstantInt *Index = cast<ConstantInt>(Ops[1]); 15009 Value *Unpacked = Builder.CreateBitCast( 15010 Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2)); 15011 15012 if (getTarget().isLittleEndian()) 15013 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue()); 15014 15015 return Builder.CreateExtractElement(Unpacked, Index); 15016 } 15017 15018 // The PPC MMA builtins take a pointer to a __vector_quad as an argument. 15019 // Some of the MMA instructions accumulate their result into an existing 15020 // accumulator whereas the others generate a new accumulator. So we need to 15021 // use custom code generation to expand a builtin call with a pointer to a 15022 // load (if the corresponding instruction accumulates its result) followed by 15023 // the call to the intrinsic and a store of the result. 15024 #define CUSTOM_BUILTIN(Name, Types, Accumulate) \ 15025 case PPC::BI__builtin_##Name: 15026 #include "clang/Basic/BuiltinsPPC.def" 15027 { 15028 // The first argument of these two builtins is a pointer used to store their 15029 // result. However, the llvm intrinsics return their result in multiple 15030 // return values. So, here we emit code extracting these values from the 15031 // intrinsic results and storing them using that pointer. 15032 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc || 15033 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair) { 15034 unsigned NumVecs = 2; 15035 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair; 15036 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) { 15037 NumVecs = 4; 15038 Intrinsic = Intrinsic::ppc_mma_disassemble_acc; 15039 } 15040 llvm::Function *F = CGM.getIntrinsic(Intrinsic); 15041 Address Addr = EmitPointerWithAlignment(E->getArg(1)); 15042 Value *Vec = Builder.CreateLoad(Addr); 15043 Value *Call = Builder.CreateCall(F, {Vec}); 15044 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16); 15045 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo()); 15046 for (unsigned i=0; i<NumVecs; i++) { 15047 Value *Vec = Builder.CreateExtractValue(Call, i); 15048 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i); 15049 Value *GEP = Builder.CreateInBoundsGEP(Ptr, Index); 15050 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16)); 15051 } 15052 return Call; 15053 } 15054 bool Accumulate; 15055 switch (BuiltinID) { 15056 #define CUSTOM_BUILTIN(Name, Types, Acc) \ 15057 case PPC::BI__builtin_##Name: \ 15058 ID = Intrinsic::ppc_##Name; \ 15059 Accumulate = Acc; \ 15060 break; 15061 #include "clang/Basic/BuiltinsPPC.def" 15062 } 15063 if (BuiltinID == PPC::BI__builtin_vsx_lxvp || 15064 BuiltinID == PPC::BI__builtin_vsx_stxvp) { 15065 if (BuiltinID == PPC::BI__builtin_vsx_lxvp) { 15066 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 15067 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); 15068 } else { 15069 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 15070 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); 15071 } 15072 Ops.pop_back(); 15073 llvm::Function *F = CGM.getIntrinsic(ID); 15074 return Builder.CreateCall(F, Ops, ""); 15075 } 15076 SmallVector<Value*, 4> CallOps; 15077 if (Accumulate) { 15078 Address Addr = EmitPointerWithAlignment(E->getArg(0)); 15079 Value *Acc = Builder.CreateLoad(Addr); 15080 CallOps.push_back(Acc); 15081 } 15082 for (unsigned i=1; i<Ops.size(); i++) 15083 CallOps.push_back(Ops[i]); 15084 llvm::Function *F = CGM.getIntrinsic(ID); 15085 Value *Call = Builder.CreateCall(F, CallOps); 15086 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64)); 15087 } 15088 } 15089 } 15090 15091 namespace { 15092 // If \p E is not null pointer, insert address space cast to match return 15093 // type of \p E if necessary. 15094 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF, 15095 const CallExpr *E = nullptr) { 15096 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr); 15097 auto *Call = CGF.Builder.CreateCall(F); 15098 Call->addAttribute( 15099 AttributeList::ReturnIndex, 15100 Attribute::getWithDereferenceableBytes(Call->getContext(), 64)); 15101 Call->addAttribute(AttributeList::ReturnIndex, 15102 Attribute::getWithAlignment(Call->getContext(), Align(4))); 15103 if (!E) 15104 return Call; 15105 QualType BuiltinRetType = E->getType(); 15106 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType)); 15107 if (RetTy == Call->getType()) 15108 return Call; 15109 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy); 15110 } 15111 15112 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. 15113 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) { 15114 const unsigned XOffset = 4; 15115 auto *DP = EmitAMDGPUDispatchPtr(CGF); 15116 // Indexing the HSA kernel_dispatch_packet struct. 15117 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2); 15118 auto *GEP = CGF.Builder.CreateGEP(DP, Offset); 15119 auto *DstTy = 15120 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace()); 15121 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy); 15122 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2))); 15123 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 15124 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1), 15125 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1)); 15126 LD->setMetadata(llvm::LLVMContext::MD_range, RNode); 15127 LD->setMetadata(llvm::LLVMContext::MD_invariant_load, 15128 llvm::MDNode::get(CGF.getLLVMContext(), None)); 15129 return LD; 15130 } 15131 15132 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. 15133 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) { 15134 const unsigned XOffset = 12; 15135 auto *DP = EmitAMDGPUDispatchPtr(CGF); 15136 // Indexing the HSA kernel_dispatch_packet struct. 15137 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4); 15138 auto *GEP = CGF.Builder.CreateGEP(DP, Offset); 15139 auto *DstTy = 15140 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace()); 15141 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy); 15142 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4))); 15143 LD->setMetadata(llvm::LLVMContext::MD_invariant_load, 15144 llvm::MDNode::get(CGF.getLLVMContext(), None)); 15145 return LD; 15146 } 15147 } // namespace 15148 15149 // For processing memory ordering and memory scope arguments of various 15150 // amdgcn builtins. 15151 // \p Order takes a C++11 comptabile memory-ordering specifier and converts 15152 // it into LLVM's memory ordering specifier using atomic C ABI, and writes 15153 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN 15154 // specific SyncScopeID and writes it to \p SSID. 15155 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope, 15156 llvm::AtomicOrdering &AO, 15157 llvm::SyncScope::ID &SSID) { 15158 if (isa<llvm::ConstantInt>(Order)) { 15159 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 15160 15161 // Map C11/C++11 memory ordering to LLVM memory ordering 15162 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { 15163 case llvm::AtomicOrderingCABI::acquire: 15164 AO = llvm::AtomicOrdering::Acquire; 15165 break; 15166 case llvm::AtomicOrderingCABI::release: 15167 AO = llvm::AtomicOrdering::Release; 15168 break; 15169 case llvm::AtomicOrderingCABI::acq_rel: 15170 AO = llvm::AtomicOrdering::AcquireRelease; 15171 break; 15172 case llvm::AtomicOrderingCABI::seq_cst: 15173 AO = llvm::AtomicOrdering::SequentiallyConsistent; 15174 break; 15175 case llvm::AtomicOrderingCABI::consume: 15176 case llvm::AtomicOrderingCABI::relaxed: 15177 break; 15178 } 15179 15180 StringRef scp; 15181 llvm::getConstantStringInfo(Scope, scp); 15182 SSID = getLLVMContext().getOrInsertSyncScopeID(scp); 15183 return true; 15184 } 15185 return false; 15186 } 15187 15188 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, 15189 const CallExpr *E) { 15190 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent; 15191 llvm::SyncScope::ID SSID; 15192 switch (BuiltinID) { 15193 case AMDGPU::BI__builtin_amdgcn_div_scale: 15194 case AMDGPU::BI__builtin_amdgcn_div_scalef: { 15195 // Translate from the intrinsics's struct return to the builtin's out 15196 // argument. 15197 15198 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); 15199 15200 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 15201 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 15202 llvm::Value *Z = EmitScalarExpr(E->getArg(2)); 15203 15204 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, 15205 X->getType()); 15206 15207 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); 15208 15209 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); 15210 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); 15211 15212 llvm::Type *RealFlagType 15213 = FlagOutPtr.getPointer()->getType()->getPointerElementType(); 15214 15215 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); 15216 Builder.CreateStore(FlagExt, FlagOutPtr); 15217 return Result; 15218 } 15219 case AMDGPU::BI__builtin_amdgcn_div_fmas: 15220 case AMDGPU::BI__builtin_amdgcn_div_fmasf: { 15221 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15222 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15223 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15224 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); 15225 15226 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, 15227 Src0->getType()); 15228 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); 15229 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); 15230 } 15231 15232 case AMDGPU::BI__builtin_amdgcn_ds_swizzle: 15233 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle); 15234 case AMDGPU::BI__builtin_amdgcn_mov_dpp8: 15235 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8); 15236 case AMDGPU::BI__builtin_amdgcn_mov_dpp: 15237 case AMDGPU::BI__builtin_amdgcn_update_dpp: { 15238 llvm::SmallVector<llvm::Value *, 6> Args; 15239 for (unsigned I = 0; I != E->getNumArgs(); ++I) 15240 Args.push_back(EmitScalarExpr(E->getArg(I))); 15241 assert(Args.size() == 5 || Args.size() == 6); 15242 if (Args.size() == 5) 15243 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType())); 15244 Function *F = 15245 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType()); 15246 return Builder.CreateCall(F, Args); 15247 } 15248 case AMDGPU::BI__builtin_amdgcn_div_fixup: 15249 case AMDGPU::BI__builtin_amdgcn_div_fixupf: 15250 case AMDGPU::BI__builtin_amdgcn_div_fixuph: 15251 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup); 15252 case AMDGPU::BI__builtin_amdgcn_trig_preop: 15253 case AMDGPU::BI__builtin_amdgcn_trig_preopf: 15254 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); 15255 case AMDGPU::BI__builtin_amdgcn_rcp: 15256 case AMDGPU::BI__builtin_amdgcn_rcpf: 15257 case AMDGPU::BI__builtin_amdgcn_rcph: 15258 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp); 15259 case AMDGPU::BI__builtin_amdgcn_sqrt: 15260 case AMDGPU::BI__builtin_amdgcn_sqrtf: 15261 case AMDGPU::BI__builtin_amdgcn_sqrth: 15262 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt); 15263 case AMDGPU::BI__builtin_amdgcn_rsq: 15264 case AMDGPU::BI__builtin_amdgcn_rsqf: 15265 case AMDGPU::BI__builtin_amdgcn_rsqh: 15266 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq); 15267 case AMDGPU::BI__builtin_amdgcn_rsq_clamp: 15268 case AMDGPU::BI__builtin_amdgcn_rsq_clampf: 15269 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp); 15270 case AMDGPU::BI__builtin_amdgcn_sinf: 15271 case AMDGPU::BI__builtin_amdgcn_sinh: 15272 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin); 15273 case AMDGPU::BI__builtin_amdgcn_cosf: 15274 case AMDGPU::BI__builtin_amdgcn_cosh: 15275 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos); 15276 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr: 15277 return EmitAMDGPUDispatchPtr(*this, E); 15278 case AMDGPU::BI__builtin_amdgcn_log_clampf: 15279 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp); 15280 case AMDGPU::BI__builtin_amdgcn_ldexp: 15281 case AMDGPU::BI__builtin_amdgcn_ldexpf: 15282 case AMDGPU::BI__builtin_amdgcn_ldexph: 15283 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp); 15284 case AMDGPU::BI__builtin_amdgcn_frexp_mant: 15285 case AMDGPU::BI__builtin_amdgcn_frexp_mantf: 15286 case AMDGPU::BI__builtin_amdgcn_frexp_manth: 15287 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant); 15288 case AMDGPU::BI__builtin_amdgcn_frexp_exp: 15289 case AMDGPU::BI__builtin_amdgcn_frexp_expf: { 15290 Value *Src0 = EmitScalarExpr(E->getArg(0)); 15291 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 15292 { Builder.getInt32Ty(), Src0->getType() }); 15293 return Builder.CreateCall(F, Src0); 15294 } 15295 case AMDGPU::BI__builtin_amdgcn_frexp_exph: { 15296 Value *Src0 = EmitScalarExpr(E->getArg(0)); 15297 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 15298 { Builder.getInt16Ty(), Src0->getType() }); 15299 return Builder.CreateCall(F, Src0); 15300 } 15301 case AMDGPU::BI__builtin_amdgcn_fract: 15302 case AMDGPU::BI__builtin_amdgcn_fractf: 15303 case AMDGPU::BI__builtin_amdgcn_fracth: 15304 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract); 15305 case AMDGPU::BI__builtin_amdgcn_lerp: 15306 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp); 15307 case AMDGPU::BI__builtin_amdgcn_ubfe: 15308 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe); 15309 case AMDGPU::BI__builtin_amdgcn_sbfe: 15310 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe); 15311 case AMDGPU::BI__builtin_amdgcn_uicmp: 15312 case AMDGPU::BI__builtin_amdgcn_uicmpl: 15313 case AMDGPU::BI__builtin_amdgcn_sicmp: 15314 case AMDGPU::BI__builtin_amdgcn_sicmpl: { 15315 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15316 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15317 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15318 15319 // FIXME-GFX10: How should 32 bit mask be handled? 15320 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp, 15321 { Builder.getInt64Ty(), Src0->getType() }); 15322 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 15323 } 15324 case AMDGPU::BI__builtin_amdgcn_fcmp: 15325 case AMDGPU::BI__builtin_amdgcn_fcmpf: { 15326 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15327 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15328 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15329 15330 // FIXME-GFX10: How should 32 bit mask be handled? 15331 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp, 15332 { Builder.getInt64Ty(), Src0->getType() }); 15333 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 15334 } 15335 case AMDGPU::BI__builtin_amdgcn_class: 15336 case AMDGPU::BI__builtin_amdgcn_classf: 15337 case AMDGPU::BI__builtin_amdgcn_classh: 15338 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); 15339 case AMDGPU::BI__builtin_amdgcn_fmed3f: 15340 case AMDGPU::BI__builtin_amdgcn_fmed3h: 15341 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3); 15342 case AMDGPU::BI__builtin_amdgcn_ds_append: 15343 case AMDGPU::BI__builtin_amdgcn_ds_consume: { 15344 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ? 15345 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume; 15346 Value *Src0 = EmitScalarExpr(E->getArg(0)); 15347 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() }); 15348 return Builder.CreateCall(F, { Src0, Builder.getFalse() }); 15349 } 15350 case AMDGPU::BI__builtin_amdgcn_ds_faddf: 15351 case AMDGPU::BI__builtin_amdgcn_ds_fminf: 15352 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: { 15353 Intrinsic::ID Intrin; 15354 switch (BuiltinID) { 15355 case AMDGPU::BI__builtin_amdgcn_ds_faddf: 15356 Intrin = Intrinsic::amdgcn_ds_fadd; 15357 break; 15358 case AMDGPU::BI__builtin_amdgcn_ds_fminf: 15359 Intrin = Intrinsic::amdgcn_ds_fmin; 15360 break; 15361 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: 15362 Intrin = Intrinsic::amdgcn_ds_fmax; 15363 break; 15364 } 15365 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15366 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15367 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15368 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); 15369 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4)); 15370 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() }); 15371 llvm::FunctionType *FTy = F->getFunctionType(); 15372 llvm::Type *PTy = FTy->getParamType(0); 15373 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy); 15374 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 }); 15375 } 15376 case AMDGPU::BI__builtin_amdgcn_read_exec: { 15377 CallInst *CI = cast<CallInst>( 15378 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec")); 15379 CI->setConvergent(); 15380 return CI; 15381 } 15382 case AMDGPU::BI__builtin_amdgcn_read_exec_lo: 15383 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: { 15384 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ? 15385 "exec_lo" : "exec_hi"; 15386 CallInst *CI = cast<CallInst>( 15387 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName)); 15388 CI->setConvergent(); 15389 return CI; 15390 } 15391 // amdgcn workitem 15392 case AMDGPU::BI__builtin_amdgcn_workitem_id_x: 15393 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); 15394 case AMDGPU::BI__builtin_amdgcn_workitem_id_y: 15395 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); 15396 case AMDGPU::BI__builtin_amdgcn_workitem_id_z: 15397 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); 15398 15399 // amdgcn workgroup size 15400 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x: 15401 return EmitAMDGPUWorkGroupSize(*this, 0); 15402 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y: 15403 return EmitAMDGPUWorkGroupSize(*this, 1); 15404 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z: 15405 return EmitAMDGPUWorkGroupSize(*this, 2); 15406 15407 // amdgcn grid size 15408 case AMDGPU::BI__builtin_amdgcn_grid_size_x: 15409 return EmitAMDGPUGridSize(*this, 0); 15410 case AMDGPU::BI__builtin_amdgcn_grid_size_y: 15411 return EmitAMDGPUGridSize(*this, 1); 15412 case AMDGPU::BI__builtin_amdgcn_grid_size_z: 15413 return EmitAMDGPUGridSize(*this, 2); 15414 15415 // r600 intrinsics 15416 case AMDGPU::BI__builtin_r600_recipsqrt_ieee: 15417 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: 15418 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee); 15419 case AMDGPU::BI__builtin_r600_read_tidig_x: 15420 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); 15421 case AMDGPU::BI__builtin_r600_read_tidig_y: 15422 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); 15423 case AMDGPU::BI__builtin_r600_read_tidig_z: 15424 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); 15425 case AMDGPU::BI__builtin_amdgcn_alignbit: { 15426 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15427 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15428 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15429 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType()); 15430 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 15431 } 15432 15433 case AMDGPU::BI__builtin_amdgcn_fence: { 15434 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)), 15435 EmitScalarExpr(E->getArg(1)), AO, SSID)) 15436 return Builder.CreateFence(AO, SSID); 15437 LLVM_FALLTHROUGH; 15438 } 15439 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 15440 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 15441 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 15442 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: { 15443 unsigned BuiltinAtomicOp; 15444 llvm::Type *ResultType = ConvertType(E->getType()); 15445 15446 switch (BuiltinID) { 15447 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 15448 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 15449 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc; 15450 break; 15451 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 15452 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 15453 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec; 15454 break; 15455 } 15456 15457 Value *Ptr = EmitScalarExpr(E->getArg(0)); 15458 Value *Val = EmitScalarExpr(E->getArg(1)); 15459 15460 llvm::Function *F = 15461 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()}); 15462 15463 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)), 15464 EmitScalarExpr(E->getArg(3)), AO, SSID)) { 15465 15466 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and 15467 // scope as unsigned values 15468 Value *MemOrder = Builder.getInt32(static_cast<int>(AO)); 15469 Value *MemScope = Builder.getInt32(static_cast<int>(SSID)); 15470 15471 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 15472 bool Volatile = 15473 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 15474 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile)); 15475 15476 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile}); 15477 } 15478 LLVM_FALLTHROUGH; 15479 } 15480 default: 15481 return nullptr; 15482 } 15483 } 15484 15485 /// Handle a SystemZ function in which the final argument is a pointer 15486 /// to an int that receives the post-instruction CC value. At the LLVM level 15487 /// this is represented as a function that returns a {result, cc} pair. 15488 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, 15489 unsigned IntrinsicID, 15490 const CallExpr *E) { 15491 unsigned NumArgs = E->getNumArgs() - 1; 15492 SmallVector<Value *, 8> Args(NumArgs); 15493 for (unsigned I = 0; I < NumArgs; ++I) 15494 Args[I] = CGF.EmitScalarExpr(E->getArg(I)); 15495 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); 15496 Function *F = CGF.CGM.getIntrinsic(IntrinsicID); 15497 Value *Call = CGF.Builder.CreateCall(F, Args); 15498 Value *CC = CGF.Builder.CreateExtractValue(Call, 1); 15499 CGF.Builder.CreateStore(CC, CCPtr); 15500 return CGF.Builder.CreateExtractValue(Call, 0); 15501 } 15502 15503 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, 15504 const CallExpr *E) { 15505 switch (BuiltinID) { 15506 case SystemZ::BI__builtin_tbegin: { 15507 Value *TDB = EmitScalarExpr(E->getArg(0)); 15508 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 15509 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); 15510 return Builder.CreateCall(F, {TDB, Control}); 15511 } 15512 case SystemZ::BI__builtin_tbegin_nofloat: { 15513 Value *TDB = EmitScalarExpr(E->getArg(0)); 15514 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 15515 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); 15516 return Builder.CreateCall(F, {TDB, Control}); 15517 } 15518 case SystemZ::BI__builtin_tbeginc: { 15519 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); 15520 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); 15521 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); 15522 return Builder.CreateCall(F, {TDB, Control}); 15523 } 15524 case SystemZ::BI__builtin_tabort: { 15525 Value *Data = EmitScalarExpr(E->getArg(0)); 15526 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort); 15527 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); 15528 } 15529 case SystemZ::BI__builtin_non_tx_store: { 15530 Value *Address = EmitScalarExpr(E->getArg(0)); 15531 Value *Data = EmitScalarExpr(E->getArg(1)); 15532 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); 15533 return Builder.CreateCall(F, {Data, Address}); 15534 } 15535 15536 // Vector builtins. Note that most vector builtins are mapped automatically 15537 // to target-specific LLVM intrinsics. The ones handled specially here can 15538 // be represented via standard LLVM IR, which is preferable to enable common 15539 // LLVM optimizations. 15540 15541 case SystemZ::BI__builtin_s390_vpopctb: 15542 case SystemZ::BI__builtin_s390_vpopcth: 15543 case SystemZ::BI__builtin_s390_vpopctf: 15544 case SystemZ::BI__builtin_s390_vpopctg: { 15545 llvm::Type *ResultType = ConvertType(E->getType()); 15546 Value *X = EmitScalarExpr(E->getArg(0)); 15547 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 15548 return Builder.CreateCall(F, X); 15549 } 15550 15551 case SystemZ::BI__builtin_s390_vclzb: 15552 case SystemZ::BI__builtin_s390_vclzh: 15553 case SystemZ::BI__builtin_s390_vclzf: 15554 case SystemZ::BI__builtin_s390_vclzg: { 15555 llvm::Type *ResultType = ConvertType(E->getType()); 15556 Value *X = EmitScalarExpr(E->getArg(0)); 15557 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 15558 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 15559 return Builder.CreateCall(F, {X, Undef}); 15560 } 15561 15562 case SystemZ::BI__builtin_s390_vctzb: 15563 case SystemZ::BI__builtin_s390_vctzh: 15564 case SystemZ::BI__builtin_s390_vctzf: 15565 case SystemZ::BI__builtin_s390_vctzg: { 15566 llvm::Type *ResultType = ConvertType(E->getType()); 15567 Value *X = EmitScalarExpr(E->getArg(0)); 15568 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 15569 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 15570 return Builder.CreateCall(F, {X, Undef}); 15571 } 15572 15573 case SystemZ::BI__builtin_s390_vfsqsb: 15574 case SystemZ::BI__builtin_s390_vfsqdb: { 15575 llvm::Type *ResultType = ConvertType(E->getType()); 15576 Value *X = EmitScalarExpr(E->getArg(0)); 15577 if (Builder.getIsFPConstrained()) { 15578 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType); 15579 return Builder.CreateConstrainedFPCall(F, { X }); 15580 } else { 15581 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 15582 return Builder.CreateCall(F, X); 15583 } 15584 } 15585 case SystemZ::BI__builtin_s390_vfmasb: 15586 case SystemZ::BI__builtin_s390_vfmadb: { 15587 llvm::Type *ResultType = ConvertType(E->getType()); 15588 Value *X = EmitScalarExpr(E->getArg(0)); 15589 Value *Y = EmitScalarExpr(E->getArg(1)); 15590 Value *Z = EmitScalarExpr(E->getArg(2)); 15591 if (Builder.getIsFPConstrained()) { 15592 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15593 return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); 15594 } else { 15595 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15596 return Builder.CreateCall(F, {X, Y, Z}); 15597 } 15598 } 15599 case SystemZ::BI__builtin_s390_vfmssb: 15600 case SystemZ::BI__builtin_s390_vfmsdb: { 15601 llvm::Type *ResultType = ConvertType(E->getType()); 15602 Value *X = EmitScalarExpr(E->getArg(0)); 15603 Value *Y = EmitScalarExpr(E->getArg(1)); 15604 Value *Z = EmitScalarExpr(E->getArg(2)); 15605 if (Builder.getIsFPConstrained()) { 15606 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15607 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15608 } else { 15609 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15610 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15611 } 15612 } 15613 case SystemZ::BI__builtin_s390_vfnmasb: 15614 case SystemZ::BI__builtin_s390_vfnmadb: { 15615 llvm::Type *ResultType = ConvertType(E->getType()); 15616 Value *X = EmitScalarExpr(E->getArg(0)); 15617 Value *Y = EmitScalarExpr(E->getArg(1)); 15618 Value *Z = EmitScalarExpr(E->getArg(2)); 15619 if (Builder.getIsFPConstrained()) { 15620 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15621 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); 15622 } else { 15623 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15624 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); 15625 } 15626 } 15627 case SystemZ::BI__builtin_s390_vfnmssb: 15628 case SystemZ::BI__builtin_s390_vfnmsdb: { 15629 llvm::Type *ResultType = ConvertType(E->getType()); 15630 Value *X = EmitScalarExpr(E->getArg(0)); 15631 Value *Y = EmitScalarExpr(E->getArg(1)); 15632 Value *Z = EmitScalarExpr(E->getArg(2)); 15633 if (Builder.getIsFPConstrained()) { 15634 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15635 Value *NegZ = Builder.CreateFNeg(Z, "sub"); 15636 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ})); 15637 } else { 15638 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15639 Value *NegZ = Builder.CreateFNeg(Z, "neg"); 15640 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ})); 15641 } 15642 } 15643 case SystemZ::BI__builtin_s390_vflpsb: 15644 case SystemZ::BI__builtin_s390_vflpdb: { 15645 llvm::Type *ResultType = ConvertType(E->getType()); 15646 Value *X = EmitScalarExpr(E->getArg(0)); 15647 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 15648 return Builder.CreateCall(F, X); 15649 } 15650 case SystemZ::BI__builtin_s390_vflnsb: 15651 case SystemZ::BI__builtin_s390_vflndb: { 15652 llvm::Type *ResultType = ConvertType(E->getType()); 15653 Value *X = EmitScalarExpr(E->getArg(0)); 15654 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 15655 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg"); 15656 } 15657 case SystemZ::BI__builtin_s390_vfisb: 15658 case SystemZ::BI__builtin_s390_vfidb: { 15659 llvm::Type *ResultType = ConvertType(E->getType()); 15660 Value *X = EmitScalarExpr(E->getArg(0)); 15661 // Constant-fold the M4 and M5 mask arguments. 15662 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext()); 15663 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 15664 // Check whether this instance can be represented via a LLVM standard 15665 // intrinsic. We only support some combinations of M4 and M5. 15666 Intrinsic::ID ID = Intrinsic::not_intrinsic; 15667 Intrinsic::ID CI; 15668 switch (M4.getZExtValue()) { 15669 default: break; 15670 case 0: // IEEE-inexact exception allowed 15671 switch (M5.getZExtValue()) { 15672 default: break; 15673 case 0: ID = Intrinsic::rint; 15674 CI = Intrinsic::experimental_constrained_rint; break; 15675 } 15676 break; 15677 case 4: // IEEE-inexact exception suppressed 15678 switch (M5.getZExtValue()) { 15679 default: break; 15680 case 0: ID = Intrinsic::nearbyint; 15681 CI = Intrinsic::experimental_constrained_nearbyint; break; 15682 case 1: ID = Intrinsic::round; 15683 CI = Intrinsic::experimental_constrained_round; break; 15684 case 5: ID = Intrinsic::trunc; 15685 CI = Intrinsic::experimental_constrained_trunc; break; 15686 case 6: ID = Intrinsic::ceil; 15687 CI = Intrinsic::experimental_constrained_ceil; break; 15688 case 7: ID = Intrinsic::floor; 15689 CI = Intrinsic::experimental_constrained_floor; break; 15690 } 15691 break; 15692 } 15693 if (ID != Intrinsic::not_intrinsic) { 15694 if (Builder.getIsFPConstrained()) { 15695 Function *F = CGM.getIntrinsic(CI, ResultType); 15696 return Builder.CreateConstrainedFPCall(F, X); 15697 } else { 15698 Function *F = CGM.getIntrinsic(ID, ResultType); 15699 return Builder.CreateCall(F, X); 15700 } 15701 } 15702 switch (BuiltinID) { // FIXME: constrained version? 15703 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; 15704 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; 15705 default: llvm_unreachable("Unknown BuiltinID"); 15706 } 15707 Function *F = CGM.getIntrinsic(ID); 15708 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 15709 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); 15710 return Builder.CreateCall(F, {X, M4Value, M5Value}); 15711 } 15712 case SystemZ::BI__builtin_s390_vfmaxsb: 15713 case SystemZ::BI__builtin_s390_vfmaxdb: { 15714 llvm::Type *ResultType = ConvertType(E->getType()); 15715 Value *X = EmitScalarExpr(E->getArg(0)); 15716 Value *Y = EmitScalarExpr(E->getArg(1)); 15717 // Constant-fold the M4 mask argument. 15718 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 15719 // Check whether this instance can be represented via a LLVM standard 15720 // intrinsic. We only support some values of M4. 15721 Intrinsic::ID ID = Intrinsic::not_intrinsic; 15722 Intrinsic::ID CI; 15723 switch (M4.getZExtValue()) { 15724 default: break; 15725 case 4: ID = Intrinsic::maxnum; 15726 CI = Intrinsic::experimental_constrained_maxnum; break; 15727 } 15728 if (ID != Intrinsic::not_intrinsic) { 15729 if (Builder.getIsFPConstrained()) { 15730 Function *F = CGM.getIntrinsic(CI, ResultType); 15731 return Builder.CreateConstrainedFPCall(F, {X, Y}); 15732 } else { 15733 Function *F = CGM.getIntrinsic(ID, ResultType); 15734 return Builder.CreateCall(F, {X, Y}); 15735 } 15736 } 15737 switch (BuiltinID) { 15738 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; 15739 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; 15740 default: llvm_unreachable("Unknown BuiltinID"); 15741 } 15742 Function *F = CGM.getIntrinsic(ID); 15743 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 15744 return Builder.CreateCall(F, {X, Y, M4Value}); 15745 } 15746 case SystemZ::BI__builtin_s390_vfminsb: 15747 case SystemZ::BI__builtin_s390_vfmindb: { 15748 llvm::Type *ResultType = ConvertType(E->getType()); 15749 Value *X = EmitScalarExpr(E->getArg(0)); 15750 Value *Y = EmitScalarExpr(E->getArg(1)); 15751 // Constant-fold the M4 mask argument. 15752 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 15753 // Check whether this instance can be represented via a LLVM standard 15754 // intrinsic. We only support some values of M4. 15755 Intrinsic::ID ID = Intrinsic::not_intrinsic; 15756 Intrinsic::ID CI; 15757 switch (M4.getZExtValue()) { 15758 default: break; 15759 case 4: ID = Intrinsic::minnum; 15760 CI = Intrinsic::experimental_constrained_minnum; break; 15761 } 15762 if (ID != Intrinsic::not_intrinsic) { 15763 if (Builder.getIsFPConstrained()) { 15764 Function *F = CGM.getIntrinsic(CI, ResultType); 15765 return Builder.CreateConstrainedFPCall(F, {X, Y}); 15766 } else { 15767 Function *F = CGM.getIntrinsic(ID, ResultType); 15768 return Builder.CreateCall(F, {X, Y}); 15769 } 15770 } 15771 switch (BuiltinID) { 15772 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; 15773 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; 15774 default: llvm_unreachable("Unknown BuiltinID"); 15775 } 15776 Function *F = CGM.getIntrinsic(ID); 15777 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 15778 return Builder.CreateCall(F, {X, Y, M4Value}); 15779 } 15780 15781 case SystemZ::BI__builtin_s390_vlbrh: 15782 case SystemZ::BI__builtin_s390_vlbrf: 15783 case SystemZ::BI__builtin_s390_vlbrg: { 15784 llvm::Type *ResultType = ConvertType(E->getType()); 15785 Value *X = EmitScalarExpr(E->getArg(0)); 15786 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType); 15787 return Builder.CreateCall(F, X); 15788 } 15789 15790 // Vector intrinsics that output the post-instruction CC value. 15791 15792 #define INTRINSIC_WITH_CC(NAME) \ 15793 case SystemZ::BI__builtin_##NAME: \ 15794 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) 15795 15796 INTRINSIC_WITH_CC(s390_vpkshs); 15797 INTRINSIC_WITH_CC(s390_vpksfs); 15798 INTRINSIC_WITH_CC(s390_vpksgs); 15799 15800 INTRINSIC_WITH_CC(s390_vpklshs); 15801 INTRINSIC_WITH_CC(s390_vpklsfs); 15802 INTRINSIC_WITH_CC(s390_vpklsgs); 15803 15804 INTRINSIC_WITH_CC(s390_vceqbs); 15805 INTRINSIC_WITH_CC(s390_vceqhs); 15806 INTRINSIC_WITH_CC(s390_vceqfs); 15807 INTRINSIC_WITH_CC(s390_vceqgs); 15808 15809 INTRINSIC_WITH_CC(s390_vchbs); 15810 INTRINSIC_WITH_CC(s390_vchhs); 15811 INTRINSIC_WITH_CC(s390_vchfs); 15812 INTRINSIC_WITH_CC(s390_vchgs); 15813 15814 INTRINSIC_WITH_CC(s390_vchlbs); 15815 INTRINSIC_WITH_CC(s390_vchlhs); 15816 INTRINSIC_WITH_CC(s390_vchlfs); 15817 INTRINSIC_WITH_CC(s390_vchlgs); 15818 15819 INTRINSIC_WITH_CC(s390_vfaebs); 15820 INTRINSIC_WITH_CC(s390_vfaehs); 15821 INTRINSIC_WITH_CC(s390_vfaefs); 15822 15823 INTRINSIC_WITH_CC(s390_vfaezbs); 15824 INTRINSIC_WITH_CC(s390_vfaezhs); 15825 INTRINSIC_WITH_CC(s390_vfaezfs); 15826 15827 INTRINSIC_WITH_CC(s390_vfeebs); 15828 INTRINSIC_WITH_CC(s390_vfeehs); 15829 INTRINSIC_WITH_CC(s390_vfeefs); 15830 15831 INTRINSIC_WITH_CC(s390_vfeezbs); 15832 INTRINSIC_WITH_CC(s390_vfeezhs); 15833 INTRINSIC_WITH_CC(s390_vfeezfs); 15834 15835 INTRINSIC_WITH_CC(s390_vfenebs); 15836 INTRINSIC_WITH_CC(s390_vfenehs); 15837 INTRINSIC_WITH_CC(s390_vfenefs); 15838 15839 INTRINSIC_WITH_CC(s390_vfenezbs); 15840 INTRINSIC_WITH_CC(s390_vfenezhs); 15841 INTRINSIC_WITH_CC(s390_vfenezfs); 15842 15843 INTRINSIC_WITH_CC(s390_vistrbs); 15844 INTRINSIC_WITH_CC(s390_vistrhs); 15845 INTRINSIC_WITH_CC(s390_vistrfs); 15846 15847 INTRINSIC_WITH_CC(s390_vstrcbs); 15848 INTRINSIC_WITH_CC(s390_vstrchs); 15849 INTRINSIC_WITH_CC(s390_vstrcfs); 15850 15851 INTRINSIC_WITH_CC(s390_vstrczbs); 15852 INTRINSIC_WITH_CC(s390_vstrczhs); 15853 INTRINSIC_WITH_CC(s390_vstrczfs); 15854 15855 INTRINSIC_WITH_CC(s390_vfcesbs); 15856 INTRINSIC_WITH_CC(s390_vfcedbs); 15857 INTRINSIC_WITH_CC(s390_vfchsbs); 15858 INTRINSIC_WITH_CC(s390_vfchdbs); 15859 INTRINSIC_WITH_CC(s390_vfchesbs); 15860 INTRINSIC_WITH_CC(s390_vfchedbs); 15861 15862 INTRINSIC_WITH_CC(s390_vftcisb); 15863 INTRINSIC_WITH_CC(s390_vftcidb); 15864 15865 INTRINSIC_WITH_CC(s390_vstrsb); 15866 INTRINSIC_WITH_CC(s390_vstrsh); 15867 INTRINSIC_WITH_CC(s390_vstrsf); 15868 15869 INTRINSIC_WITH_CC(s390_vstrszb); 15870 INTRINSIC_WITH_CC(s390_vstrszh); 15871 INTRINSIC_WITH_CC(s390_vstrszf); 15872 15873 #undef INTRINSIC_WITH_CC 15874 15875 default: 15876 return nullptr; 15877 } 15878 } 15879 15880 namespace { 15881 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant. 15882 struct NVPTXMmaLdstInfo { 15883 unsigned NumResults; // Number of elements to load/store 15884 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported. 15885 unsigned IID_col; 15886 unsigned IID_row; 15887 }; 15888 15889 #define MMA_INTR(geom_op_type, layout) \ 15890 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride 15891 #define MMA_LDST(n, geom_op_type) \ 15892 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) } 15893 15894 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) { 15895 switch (BuiltinID) { 15896 // FP MMA loads 15897 case NVPTX::BI__hmma_m16n16k16_ld_a: 15898 return MMA_LDST(8, m16n16k16_load_a_f16); 15899 case NVPTX::BI__hmma_m16n16k16_ld_b: 15900 return MMA_LDST(8, m16n16k16_load_b_f16); 15901 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 15902 return MMA_LDST(4, m16n16k16_load_c_f16); 15903 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 15904 return MMA_LDST(8, m16n16k16_load_c_f32); 15905 case NVPTX::BI__hmma_m32n8k16_ld_a: 15906 return MMA_LDST(8, m32n8k16_load_a_f16); 15907 case NVPTX::BI__hmma_m32n8k16_ld_b: 15908 return MMA_LDST(8, m32n8k16_load_b_f16); 15909 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 15910 return MMA_LDST(4, m32n8k16_load_c_f16); 15911 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 15912 return MMA_LDST(8, m32n8k16_load_c_f32); 15913 case NVPTX::BI__hmma_m8n32k16_ld_a: 15914 return MMA_LDST(8, m8n32k16_load_a_f16); 15915 case NVPTX::BI__hmma_m8n32k16_ld_b: 15916 return MMA_LDST(8, m8n32k16_load_b_f16); 15917 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 15918 return MMA_LDST(4, m8n32k16_load_c_f16); 15919 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 15920 return MMA_LDST(8, m8n32k16_load_c_f32); 15921 15922 // Integer MMA loads 15923 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 15924 return MMA_LDST(2, m16n16k16_load_a_s8); 15925 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 15926 return MMA_LDST(2, m16n16k16_load_a_u8); 15927 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 15928 return MMA_LDST(2, m16n16k16_load_b_s8); 15929 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 15930 return MMA_LDST(2, m16n16k16_load_b_u8); 15931 case NVPTX::BI__imma_m16n16k16_ld_c: 15932 return MMA_LDST(8, m16n16k16_load_c_s32); 15933 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 15934 return MMA_LDST(4, m32n8k16_load_a_s8); 15935 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 15936 return MMA_LDST(4, m32n8k16_load_a_u8); 15937 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 15938 return MMA_LDST(1, m32n8k16_load_b_s8); 15939 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 15940 return MMA_LDST(1, m32n8k16_load_b_u8); 15941 case NVPTX::BI__imma_m32n8k16_ld_c: 15942 return MMA_LDST(8, m32n8k16_load_c_s32); 15943 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 15944 return MMA_LDST(1, m8n32k16_load_a_s8); 15945 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 15946 return MMA_LDST(1, m8n32k16_load_a_u8); 15947 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 15948 return MMA_LDST(4, m8n32k16_load_b_s8); 15949 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 15950 return MMA_LDST(4, m8n32k16_load_b_u8); 15951 case NVPTX::BI__imma_m8n32k16_ld_c: 15952 return MMA_LDST(8, m8n32k16_load_c_s32); 15953 15954 // Sub-integer MMA loads. 15955 // Only row/col layout is supported by A/B fragments. 15956 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 15957 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)}; 15958 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 15959 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)}; 15960 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 15961 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0}; 15962 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 15963 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0}; 15964 case NVPTX::BI__imma_m8n8k32_ld_c: 15965 return MMA_LDST(2, m8n8k32_load_c_s32); 15966 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 15967 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)}; 15968 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 15969 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0}; 15970 case NVPTX::BI__bmma_m8n8k128_ld_c: 15971 return MMA_LDST(2, m8n8k128_load_c_s32); 15972 15973 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike 15974 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always 15975 // use fragment C for both loads and stores. 15976 // FP MMA stores. 15977 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 15978 return MMA_LDST(4, m16n16k16_store_d_f16); 15979 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 15980 return MMA_LDST(8, m16n16k16_store_d_f32); 15981 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 15982 return MMA_LDST(4, m32n8k16_store_d_f16); 15983 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 15984 return MMA_LDST(8, m32n8k16_store_d_f32); 15985 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 15986 return MMA_LDST(4, m8n32k16_store_d_f16); 15987 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 15988 return MMA_LDST(8, m8n32k16_store_d_f32); 15989 15990 // Integer and sub-integer MMA stores. 15991 // Another naming quirk. Unlike other MMA builtins that use PTX types in the 15992 // name, integer loads/stores use LLVM's i32. 15993 case NVPTX::BI__imma_m16n16k16_st_c_i32: 15994 return MMA_LDST(8, m16n16k16_store_d_s32); 15995 case NVPTX::BI__imma_m32n8k16_st_c_i32: 15996 return MMA_LDST(8, m32n8k16_store_d_s32); 15997 case NVPTX::BI__imma_m8n32k16_st_c_i32: 15998 return MMA_LDST(8, m8n32k16_store_d_s32); 15999 case NVPTX::BI__imma_m8n8k32_st_c_i32: 16000 return MMA_LDST(2, m8n8k32_store_d_s32); 16001 case NVPTX::BI__bmma_m8n8k128_st_c_i32: 16002 return MMA_LDST(2, m8n8k128_store_d_s32); 16003 16004 default: 16005 llvm_unreachable("Unknown MMA builtin"); 16006 } 16007 } 16008 #undef MMA_LDST 16009 #undef MMA_INTR 16010 16011 16012 struct NVPTXMmaInfo { 16013 unsigned NumEltsA; 16014 unsigned NumEltsB; 16015 unsigned NumEltsC; 16016 unsigned NumEltsD; 16017 std::array<unsigned, 8> Variants; 16018 16019 unsigned getMMAIntrinsic(int Layout, bool Satf) { 16020 unsigned Index = Layout * 2 + Satf; 16021 if (Index >= Variants.size()) 16022 return 0; 16023 return Variants[Index]; 16024 } 16025 }; 16026 16027 // Returns an intrinsic that matches Layout and Satf for valid combinations of 16028 // Layout and Satf, 0 otherwise. 16029 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) { 16030 // clang-format off 16031 #define MMA_VARIANTS(geom, type) {{ \ 16032 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \ 16033 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \ 16034 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 16035 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 16036 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \ 16037 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \ 16038 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \ 16039 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \ 16040 }} 16041 // Sub-integer MMA only supports row.col layout. 16042 #define MMA_VARIANTS_I4(geom, type) {{ \ 16043 0, \ 16044 0, \ 16045 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 16046 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 16047 0, \ 16048 0, \ 16049 0, \ 16050 0 \ 16051 }} 16052 // b1 MMA does not support .satfinite. 16053 #define MMA_VARIANTS_B1(geom, type) {{ \ 16054 0, \ 16055 0, \ 16056 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 16057 0, \ 16058 0, \ 16059 0, \ 16060 0, \ 16061 0 \ 16062 }} 16063 // clang-format on 16064 switch (BuiltinID) { 16065 // FP MMA 16066 // Note that 'type' argument of MMA_VARIANT uses D_C notation, while 16067 // NumEltsN of return value are ordered as A,B,C,D. 16068 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 16069 return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)}; 16070 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 16071 return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)}; 16072 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 16073 return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)}; 16074 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 16075 return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)}; 16076 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 16077 return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)}; 16078 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 16079 return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)}; 16080 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 16081 return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)}; 16082 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 16083 return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)}; 16084 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 16085 return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)}; 16086 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 16087 return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)}; 16088 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 16089 return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)}; 16090 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 16091 return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)}; 16092 16093 // Integer MMA 16094 case NVPTX::BI__imma_m16n16k16_mma_s8: 16095 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)}; 16096 case NVPTX::BI__imma_m16n16k16_mma_u8: 16097 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)}; 16098 case NVPTX::BI__imma_m32n8k16_mma_s8: 16099 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)}; 16100 case NVPTX::BI__imma_m32n8k16_mma_u8: 16101 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)}; 16102 case NVPTX::BI__imma_m8n32k16_mma_s8: 16103 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)}; 16104 case NVPTX::BI__imma_m8n32k16_mma_u8: 16105 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)}; 16106 16107 // Sub-integer MMA 16108 case NVPTX::BI__imma_m8n8k32_mma_s4: 16109 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)}; 16110 case NVPTX::BI__imma_m8n8k32_mma_u4: 16111 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)}; 16112 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: 16113 return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)}; 16114 default: 16115 llvm_unreachable("Unexpected builtin ID."); 16116 } 16117 #undef MMA_VARIANTS 16118 #undef MMA_VARIANTS_I4 16119 #undef MMA_VARIANTS_B1 16120 } 16121 16122 } // namespace 16123 16124 Value * 16125 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { 16126 auto MakeLdg = [&](unsigned IntrinsicID) { 16127 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16128 clang::CharUnits Align = 16129 CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType()); 16130 return Builder.CreateCall( 16131 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 16132 Ptr->getType()}), 16133 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())}); 16134 }; 16135 auto MakeScopedAtomic = [&](unsigned IntrinsicID) { 16136 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16137 return Builder.CreateCall( 16138 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 16139 Ptr->getType()}), 16140 {Ptr, EmitScalarExpr(E->getArg(1))}); 16141 }; 16142 switch (BuiltinID) { 16143 case NVPTX::BI__nvvm_atom_add_gen_i: 16144 case NVPTX::BI__nvvm_atom_add_gen_l: 16145 case NVPTX::BI__nvvm_atom_add_gen_ll: 16146 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); 16147 16148 case NVPTX::BI__nvvm_atom_sub_gen_i: 16149 case NVPTX::BI__nvvm_atom_sub_gen_l: 16150 case NVPTX::BI__nvvm_atom_sub_gen_ll: 16151 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); 16152 16153 case NVPTX::BI__nvvm_atom_and_gen_i: 16154 case NVPTX::BI__nvvm_atom_and_gen_l: 16155 case NVPTX::BI__nvvm_atom_and_gen_ll: 16156 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); 16157 16158 case NVPTX::BI__nvvm_atom_or_gen_i: 16159 case NVPTX::BI__nvvm_atom_or_gen_l: 16160 case NVPTX::BI__nvvm_atom_or_gen_ll: 16161 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); 16162 16163 case NVPTX::BI__nvvm_atom_xor_gen_i: 16164 case NVPTX::BI__nvvm_atom_xor_gen_l: 16165 case NVPTX::BI__nvvm_atom_xor_gen_ll: 16166 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); 16167 16168 case NVPTX::BI__nvvm_atom_xchg_gen_i: 16169 case NVPTX::BI__nvvm_atom_xchg_gen_l: 16170 case NVPTX::BI__nvvm_atom_xchg_gen_ll: 16171 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); 16172 16173 case NVPTX::BI__nvvm_atom_max_gen_i: 16174 case NVPTX::BI__nvvm_atom_max_gen_l: 16175 case NVPTX::BI__nvvm_atom_max_gen_ll: 16176 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); 16177 16178 case NVPTX::BI__nvvm_atom_max_gen_ui: 16179 case NVPTX::BI__nvvm_atom_max_gen_ul: 16180 case NVPTX::BI__nvvm_atom_max_gen_ull: 16181 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); 16182 16183 case NVPTX::BI__nvvm_atom_min_gen_i: 16184 case NVPTX::BI__nvvm_atom_min_gen_l: 16185 case NVPTX::BI__nvvm_atom_min_gen_ll: 16186 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); 16187 16188 case NVPTX::BI__nvvm_atom_min_gen_ui: 16189 case NVPTX::BI__nvvm_atom_min_gen_ul: 16190 case NVPTX::BI__nvvm_atom_min_gen_ull: 16191 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); 16192 16193 case NVPTX::BI__nvvm_atom_cas_gen_i: 16194 case NVPTX::BI__nvvm_atom_cas_gen_l: 16195 case NVPTX::BI__nvvm_atom_cas_gen_ll: 16196 // __nvvm_atom_cas_gen_* should return the old value rather than the 16197 // success flag. 16198 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); 16199 16200 case NVPTX::BI__nvvm_atom_add_gen_f: 16201 case NVPTX::BI__nvvm_atom_add_gen_d: { 16202 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16203 Value *Val = EmitScalarExpr(E->getArg(1)); 16204 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val, 16205 AtomicOrdering::SequentiallyConsistent); 16206 } 16207 16208 case NVPTX::BI__nvvm_atom_inc_gen_ui: { 16209 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16210 Value *Val = EmitScalarExpr(E->getArg(1)); 16211 Function *FnALI32 = 16212 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); 16213 return Builder.CreateCall(FnALI32, {Ptr, Val}); 16214 } 16215 16216 case NVPTX::BI__nvvm_atom_dec_gen_ui: { 16217 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16218 Value *Val = EmitScalarExpr(E->getArg(1)); 16219 Function *FnALD32 = 16220 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); 16221 return Builder.CreateCall(FnALD32, {Ptr, Val}); 16222 } 16223 16224 case NVPTX::BI__nvvm_ldg_c: 16225 case NVPTX::BI__nvvm_ldg_c2: 16226 case NVPTX::BI__nvvm_ldg_c4: 16227 case NVPTX::BI__nvvm_ldg_s: 16228 case NVPTX::BI__nvvm_ldg_s2: 16229 case NVPTX::BI__nvvm_ldg_s4: 16230 case NVPTX::BI__nvvm_ldg_i: 16231 case NVPTX::BI__nvvm_ldg_i2: 16232 case NVPTX::BI__nvvm_ldg_i4: 16233 case NVPTX::BI__nvvm_ldg_l: 16234 case NVPTX::BI__nvvm_ldg_ll: 16235 case NVPTX::BI__nvvm_ldg_ll2: 16236 case NVPTX::BI__nvvm_ldg_uc: 16237 case NVPTX::BI__nvvm_ldg_uc2: 16238 case NVPTX::BI__nvvm_ldg_uc4: 16239 case NVPTX::BI__nvvm_ldg_us: 16240 case NVPTX::BI__nvvm_ldg_us2: 16241 case NVPTX::BI__nvvm_ldg_us4: 16242 case NVPTX::BI__nvvm_ldg_ui: 16243 case NVPTX::BI__nvvm_ldg_ui2: 16244 case NVPTX::BI__nvvm_ldg_ui4: 16245 case NVPTX::BI__nvvm_ldg_ul: 16246 case NVPTX::BI__nvvm_ldg_ull: 16247 case NVPTX::BI__nvvm_ldg_ull2: 16248 // PTX Interoperability section 2.2: "For a vector with an even number of 16249 // elements, its alignment is set to number of elements times the alignment 16250 // of its member: n*alignof(t)." 16251 return MakeLdg(Intrinsic::nvvm_ldg_global_i); 16252 case NVPTX::BI__nvvm_ldg_f: 16253 case NVPTX::BI__nvvm_ldg_f2: 16254 case NVPTX::BI__nvvm_ldg_f4: 16255 case NVPTX::BI__nvvm_ldg_d: 16256 case NVPTX::BI__nvvm_ldg_d2: 16257 return MakeLdg(Intrinsic::nvvm_ldg_global_f); 16258 16259 case NVPTX::BI__nvvm_atom_cta_add_gen_i: 16260 case NVPTX::BI__nvvm_atom_cta_add_gen_l: 16261 case NVPTX::BI__nvvm_atom_cta_add_gen_ll: 16262 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta); 16263 case NVPTX::BI__nvvm_atom_sys_add_gen_i: 16264 case NVPTX::BI__nvvm_atom_sys_add_gen_l: 16265 case NVPTX::BI__nvvm_atom_sys_add_gen_ll: 16266 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys); 16267 case NVPTX::BI__nvvm_atom_cta_add_gen_f: 16268 case NVPTX::BI__nvvm_atom_cta_add_gen_d: 16269 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta); 16270 case NVPTX::BI__nvvm_atom_sys_add_gen_f: 16271 case NVPTX::BI__nvvm_atom_sys_add_gen_d: 16272 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys); 16273 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: 16274 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: 16275 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: 16276 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta); 16277 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: 16278 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: 16279 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: 16280 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys); 16281 case NVPTX::BI__nvvm_atom_cta_max_gen_i: 16282 case NVPTX::BI__nvvm_atom_cta_max_gen_ui: 16283 case NVPTX::BI__nvvm_atom_cta_max_gen_l: 16284 case NVPTX::BI__nvvm_atom_cta_max_gen_ul: 16285 case NVPTX::BI__nvvm_atom_cta_max_gen_ll: 16286 case NVPTX::BI__nvvm_atom_cta_max_gen_ull: 16287 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta); 16288 case NVPTX::BI__nvvm_atom_sys_max_gen_i: 16289 case NVPTX::BI__nvvm_atom_sys_max_gen_ui: 16290 case NVPTX::BI__nvvm_atom_sys_max_gen_l: 16291 case NVPTX::BI__nvvm_atom_sys_max_gen_ul: 16292 case NVPTX::BI__nvvm_atom_sys_max_gen_ll: 16293 case NVPTX::BI__nvvm_atom_sys_max_gen_ull: 16294 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys); 16295 case NVPTX::BI__nvvm_atom_cta_min_gen_i: 16296 case NVPTX::BI__nvvm_atom_cta_min_gen_ui: 16297 case NVPTX::BI__nvvm_atom_cta_min_gen_l: 16298 case NVPTX::BI__nvvm_atom_cta_min_gen_ul: 16299 case NVPTX::BI__nvvm_atom_cta_min_gen_ll: 16300 case NVPTX::BI__nvvm_atom_cta_min_gen_ull: 16301 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta); 16302 case NVPTX::BI__nvvm_atom_sys_min_gen_i: 16303 case NVPTX::BI__nvvm_atom_sys_min_gen_ui: 16304 case NVPTX::BI__nvvm_atom_sys_min_gen_l: 16305 case NVPTX::BI__nvvm_atom_sys_min_gen_ul: 16306 case NVPTX::BI__nvvm_atom_sys_min_gen_ll: 16307 case NVPTX::BI__nvvm_atom_sys_min_gen_ull: 16308 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys); 16309 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: 16310 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta); 16311 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: 16312 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta); 16313 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: 16314 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys); 16315 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: 16316 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys); 16317 case NVPTX::BI__nvvm_atom_cta_and_gen_i: 16318 case NVPTX::BI__nvvm_atom_cta_and_gen_l: 16319 case NVPTX::BI__nvvm_atom_cta_and_gen_ll: 16320 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta); 16321 case NVPTX::BI__nvvm_atom_sys_and_gen_i: 16322 case NVPTX::BI__nvvm_atom_sys_and_gen_l: 16323 case NVPTX::BI__nvvm_atom_sys_and_gen_ll: 16324 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys); 16325 case NVPTX::BI__nvvm_atom_cta_or_gen_i: 16326 case NVPTX::BI__nvvm_atom_cta_or_gen_l: 16327 case NVPTX::BI__nvvm_atom_cta_or_gen_ll: 16328 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta); 16329 case NVPTX::BI__nvvm_atom_sys_or_gen_i: 16330 case NVPTX::BI__nvvm_atom_sys_or_gen_l: 16331 case NVPTX::BI__nvvm_atom_sys_or_gen_ll: 16332 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys); 16333 case NVPTX::BI__nvvm_atom_cta_xor_gen_i: 16334 case NVPTX::BI__nvvm_atom_cta_xor_gen_l: 16335 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: 16336 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta); 16337 case NVPTX::BI__nvvm_atom_sys_xor_gen_i: 16338 case NVPTX::BI__nvvm_atom_sys_xor_gen_l: 16339 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: 16340 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys); 16341 case NVPTX::BI__nvvm_atom_cta_cas_gen_i: 16342 case NVPTX::BI__nvvm_atom_cta_cas_gen_l: 16343 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { 16344 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16345 return Builder.CreateCall( 16346 CGM.getIntrinsic( 16347 Intrinsic::nvvm_atomic_cas_gen_i_cta, 16348 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 16349 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 16350 } 16351 case NVPTX::BI__nvvm_atom_sys_cas_gen_i: 16352 case NVPTX::BI__nvvm_atom_sys_cas_gen_l: 16353 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { 16354 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16355 return Builder.CreateCall( 16356 CGM.getIntrinsic( 16357 Intrinsic::nvvm_atomic_cas_gen_i_sys, 16358 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 16359 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 16360 } 16361 case NVPTX::BI__nvvm_match_all_sync_i32p: 16362 case NVPTX::BI__nvvm_match_all_sync_i64p: { 16363 Value *Mask = EmitScalarExpr(E->getArg(0)); 16364 Value *Val = EmitScalarExpr(E->getArg(1)); 16365 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); 16366 Value *ResultPair = Builder.CreateCall( 16367 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p 16368 ? Intrinsic::nvvm_match_all_sync_i32p 16369 : Intrinsic::nvvm_match_all_sync_i64p), 16370 {Mask, Val}); 16371 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), 16372 PredOutPtr.getElementType()); 16373 Builder.CreateStore(Pred, PredOutPtr); 16374 return Builder.CreateExtractValue(ResultPair, 0); 16375 } 16376 16377 // FP MMA loads 16378 case NVPTX::BI__hmma_m16n16k16_ld_a: 16379 case NVPTX::BI__hmma_m16n16k16_ld_b: 16380 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 16381 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 16382 case NVPTX::BI__hmma_m32n8k16_ld_a: 16383 case NVPTX::BI__hmma_m32n8k16_ld_b: 16384 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 16385 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 16386 case NVPTX::BI__hmma_m8n32k16_ld_a: 16387 case NVPTX::BI__hmma_m8n32k16_ld_b: 16388 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 16389 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 16390 // Integer MMA loads. 16391 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 16392 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 16393 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 16394 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 16395 case NVPTX::BI__imma_m16n16k16_ld_c: 16396 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 16397 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 16398 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 16399 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 16400 case NVPTX::BI__imma_m32n8k16_ld_c: 16401 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 16402 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 16403 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 16404 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 16405 case NVPTX::BI__imma_m8n32k16_ld_c: 16406 // Sub-integer MMA loads. 16407 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 16408 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 16409 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 16410 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 16411 case NVPTX::BI__imma_m8n8k32_ld_c: 16412 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 16413 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 16414 case NVPTX::BI__bmma_m8n8k128_ld_c: 16415 { 16416 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 16417 Value *Src = EmitScalarExpr(E->getArg(1)); 16418 Value *Ldm = EmitScalarExpr(E->getArg(2)); 16419 Optional<llvm::APSInt> isColMajorArg = 16420 E->getArg(3)->getIntegerConstantExpr(getContext()); 16421 if (!isColMajorArg) 16422 return nullptr; 16423 bool isColMajor = isColMajorArg->getSExtValue(); 16424 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 16425 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 16426 if (IID == 0) 16427 return nullptr; 16428 16429 Value *Result = 16430 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm}); 16431 16432 // Save returned values. 16433 assert(II.NumResults); 16434 if (II.NumResults == 1) { 16435 Builder.CreateAlignedStore(Result, Dst.getPointer(), 16436 CharUnits::fromQuantity(4)); 16437 } else { 16438 for (unsigned i = 0; i < II.NumResults; ++i) { 16439 Builder.CreateAlignedStore( 16440 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), 16441 Dst.getElementType()), 16442 Builder.CreateGEP(Dst.getPointer(), 16443 llvm::ConstantInt::get(IntTy, i)), 16444 CharUnits::fromQuantity(4)); 16445 } 16446 } 16447 return Result; 16448 } 16449 16450 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 16451 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 16452 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 16453 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 16454 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 16455 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 16456 case NVPTX::BI__imma_m16n16k16_st_c_i32: 16457 case NVPTX::BI__imma_m32n8k16_st_c_i32: 16458 case NVPTX::BI__imma_m8n32k16_st_c_i32: 16459 case NVPTX::BI__imma_m8n8k32_st_c_i32: 16460 case NVPTX::BI__bmma_m8n8k128_st_c_i32: { 16461 Value *Dst = EmitScalarExpr(E->getArg(0)); 16462 Address Src = EmitPointerWithAlignment(E->getArg(1)); 16463 Value *Ldm = EmitScalarExpr(E->getArg(2)); 16464 Optional<llvm::APSInt> isColMajorArg = 16465 E->getArg(3)->getIntegerConstantExpr(getContext()); 16466 if (!isColMajorArg) 16467 return nullptr; 16468 bool isColMajor = isColMajorArg->getSExtValue(); 16469 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 16470 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 16471 if (IID == 0) 16472 return nullptr; 16473 Function *Intrinsic = 16474 CGM.getIntrinsic(IID, Dst->getType()); 16475 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); 16476 SmallVector<Value *, 10> Values = {Dst}; 16477 for (unsigned i = 0; i < II.NumResults; ++i) { 16478 Value *V = Builder.CreateAlignedLoad( 16479 Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)), 16480 CharUnits::fromQuantity(4)); 16481 Values.push_back(Builder.CreateBitCast(V, ParamType)); 16482 } 16483 Values.push_back(Ldm); 16484 Value *Result = Builder.CreateCall(Intrinsic, Values); 16485 return Result; 16486 } 16487 16488 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) --> 16489 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf> 16490 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 16491 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 16492 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 16493 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 16494 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 16495 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 16496 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 16497 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 16498 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 16499 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 16500 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 16501 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 16502 case NVPTX::BI__imma_m16n16k16_mma_s8: 16503 case NVPTX::BI__imma_m16n16k16_mma_u8: 16504 case NVPTX::BI__imma_m32n8k16_mma_s8: 16505 case NVPTX::BI__imma_m32n8k16_mma_u8: 16506 case NVPTX::BI__imma_m8n32k16_mma_s8: 16507 case NVPTX::BI__imma_m8n32k16_mma_u8: 16508 case NVPTX::BI__imma_m8n8k32_mma_s4: 16509 case NVPTX::BI__imma_m8n8k32_mma_u4: 16510 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: { 16511 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 16512 Address SrcA = EmitPointerWithAlignment(E->getArg(1)); 16513 Address SrcB = EmitPointerWithAlignment(E->getArg(2)); 16514 Address SrcC = EmitPointerWithAlignment(E->getArg(3)); 16515 Optional<llvm::APSInt> LayoutArg = 16516 E->getArg(4)->getIntegerConstantExpr(getContext()); 16517 if (!LayoutArg) 16518 return nullptr; 16519 int Layout = LayoutArg->getSExtValue(); 16520 if (Layout < 0 || Layout > 3) 16521 return nullptr; 16522 llvm::APSInt SatfArg; 16523 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1) 16524 SatfArg = 0; // .b1 does not have satf argument. 16525 else if (Optional<llvm::APSInt> OptSatfArg = 16526 E->getArg(5)->getIntegerConstantExpr(getContext())) 16527 SatfArg = *OptSatfArg; 16528 else 16529 return nullptr; 16530 bool Satf = SatfArg.getSExtValue(); 16531 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID); 16532 unsigned IID = MI.getMMAIntrinsic(Layout, Satf); 16533 if (IID == 0) // Unsupported combination of Layout/Satf. 16534 return nullptr; 16535 16536 SmallVector<Value *, 24> Values; 16537 Function *Intrinsic = CGM.getIntrinsic(IID); 16538 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0); 16539 // Load A 16540 for (unsigned i = 0; i < MI.NumEltsA; ++i) { 16541 Value *V = Builder.CreateAlignedLoad( 16542 Builder.CreateGEP(SrcA.getPointer(), 16543 llvm::ConstantInt::get(IntTy, i)), 16544 CharUnits::fromQuantity(4)); 16545 Values.push_back(Builder.CreateBitCast(V, AType)); 16546 } 16547 // Load B 16548 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA); 16549 for (unsigned i = 0; i < MI.NumEltsB; ++i) { 16550 Value *V = Builder.CreateAlignedLoad( 16551 Builder.CreateGEP(SrcB.getPointer(), 16552 llvm::ConstantInt::get(IntTy, i)), 16553 CharUnits::fromQuantity(4)); 16554 Values.push_back(Builder.CreateBitCast(V, BType)); 16555 } 16556 // Load C 16557 llvm::Type *CType = 16558 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB); 16559 for (unsigned i = 0; i < MI.NumEltsC; ++i) { 16560 Value *V = Builder.CreateAlignedLoad( 16561 Builder.CreateGEP(SrcC.getPointer(), 16562 llvm::ConstantInt::get(IntTy, i)), 16563 CharUnits::fromQuantity(4)); 16564 Values.push_back(Builder.CreateBitCast(V, CType)); 16565 } 16566 Value *Result = Builder.CreateCall(Intrinsic, Values); 16567 llvm::Type *DType = Dst.getElementType(); 16568 for (unsigned i = 0; i < MI.NumEltsD; ++i) 16569 Builder.CreateAlignedStore( 16570 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), 16571 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), 16572 CharUnits::fromQuantity(4)); 16573 return Result; 16574 } 16575 default: 16576 return nullptr; 16577 } 16578 } 16579 16580 namespace { 16581 struct BuiltinAlignArgs { 16582 llvm::Value *Src = nullptr; 16583 llvm::Type *SrcType = nullptr; 16584 llvm::Value *Alignment = nullptr; 16585 llvm::Value *Mask = nullptr; 16586 llvm::IntegerType *IntType = nullptr; 16587 16588 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) { 16589 QualType AstType = E->getArg(0)->getType(); 16590 if (AstType->isArrayType()) 16591 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer(); 16592 else 16593 Src = CGF.EmitScalarExpr(E->getArg(0)); 16594 SrcType = Src->getType(); 16595 if (SrcType->isPointerTy()) { 16596 IntType = IntegerType::get( 16597 CGF.getLLVMContext(), 16598 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType)); 16599 } else { 16600 assert(SrcType->isIntegerTy()); 16601 IntType = cast<llvm::IntegerType>(SrcType); 16602 } 16603 Alignment = CGF.EmitScalarExpr(E->getArg(1)); 16604 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment"); 16605 auto *One = llvm::ConstantInt::get(IntType, 1); 16606 Mask = CGF.Builder.CreateSub(Alignment, One, "mask"); 16607 } 16608 }; 16609 } // namespace 16610 16611 /// Generate (x & (y-1)) == 0. 16612 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) { 16613 BuiltinAlignArgs Args(E, *this); 16614 llvm::Value *SrcAddress = Args.Src; 16615 if (Args.SrcType->isPointerTy()) 16616 SrcAddress = 16617 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr"); 16618 return RValue::get(Builder.CreateICmpEQ( 16619 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"), 16620 llvm::Constant::getNullValue(Args.IntType), "is_aligned")); 16621 } 16622 16623 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up. 16624 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the 16625 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case). 16626 /// TODO: actually use ptrmask once most optimization passes know about it. 16627 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) { 16628 BuiltinAlignArgs Args(E, *this); 16629 llvm::Value *SrcAddr = Args.Src; 16630 if (Args.Src->getType()->isPointerTy()) 16631 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr"); 16632 llvm::Value *SrcForMask = SrcAddr; 16633 if (AlignUp) { 16634 // When aligning up we have to first add the mask to ensure we go over the 16635 // next alignment value and then align down to the next valid multiple. 16636 // By adding the mask, we ensure that align_up on an already aligned 16637 // value will not change the value. 16638 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary"); 16639 } 16640 // Invert the mask to only clear the lower bits. 16641 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask"); 16642 llvm::Value *Result = 16643 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result"); 16644 if (Args.Src->getType()->isPointerTy()) { 16645 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well. 16646 // Result = Builder.CreateIntrinsic( 16647 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType}, 16648 // {SrcForMask, NegatedMask}, nullptr, "aligned_result"); 16649 Result->setName("aligned_intptr"); 16650 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff"); 16651 // The result must point to the same underlying allocation. This means we 16652 // can use an inbounds GEP to enable better optimization. 16653 Value *Base = EmitCastToVoidPtr(Args.Src); 16654 if (getLangOpts().isSignedOverflowDefined()) 16655 Result = Builder.CreateGEP(Base, Difference, "aligned_result"); 16656 else 16657 Result = EmitCheckedInBoundsGEP(Base, Difference, 16658 /*SignedIndices=*/true, 16659 /*isSubtraction=*/!AlignUp, 16660 E->getExprLoc(), "aligned_result"); 16661 Result = Builder.CreatePointerCast(Result, Args.SrcType); 16662 // Emit an alignment assumption to ensure that the new alignment is 16663 // propagated to loads/stores, etc. 16664 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment); 16665 } 16666 assert(Result->getType() == Args.SrcType); 16667 return RValue::get(Result); 16668 } 16669 16670 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 16671 const CallExpr *E) { 16672 switch (BuiltinID) { 16673 case WebAssembly::BI__builtin_wasm_memory_size: { 16674 llvm::Type *ResultType = ConvertType(E->getType()); 16675 Value *I = EmitScalarExpr(E->getArg(0)); 16676 Function *Callee = 16677 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType); 16678 return Builder.CreateCall(Callee, I); 16679 } 16680 case WebAssembly::BI__builtin_wasm_memory_grow: { 16681 llvm::Type *ResultType = ConvertType(E->getType()); 16682 Value *Args[] = {EmitScalarExpr(E->getArg(0)), 16683 EmitScalarExpr(E->getArg(1))}; 16684 Function *Callee = 16685 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType); 16686 return Builder.CreateCall(Callee, Args); 16687 } 16688 case WebAssembly::BI__builtin_wasm_tls_size: { 16689 llvm::Type *ResultType = ConvertType(E->getType()); 16690 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType); 16691 return Builder.CreateCall(Callee); 16692 } 16693 case WebAssembly::BI__builtin_wasm_tls_align: { 16694 llvm::Type *ResultType = ConvertType(E->getType()); 16695 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType); 16696 return Builder.CreateCall(Callee); 16697 } 16698 case WebAssembly::BI__builtin_wasm_tls_base: { 16699 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base); 16700 return Builder.CreateCall(Callee); 16701 } 16702 case WebAssembly::BI__builtin_wasm_throw: { 16703 Value *Tag = EmitScalarExpr(E->getArg(0)); 16704 Value *Obj = EmitScalarExpr(E->getArg(1)); 16705 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); 16706 return Builder.CreateCall(Callee, {Tag, Obj}); 16707 } 16708 case WebAssembly::BI__builtin_wasm_rethrow: { 16709 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow); 16710 return Builder.CreateCall(Callee); 16711 } 16712 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: { 16713 Value *Addr = EmitScalarExpr(E->getArg(0)); 16714 Value *Expected = EmitScalarExpr(E->getArg(1)); 16715 Value *Timeout = EmitScalarExpr(E->getArg(2)); 16716 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32); 16717 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 16718 } 16719 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: { 16720 Value *Addr = EmitScalarExpr(E->getArg(0)); 16721 Value *Expected = EmitScalarExpr(E->getArg(1)); 16722 Value *Timeout = EmitScalarExpr(E->getArg(2)); 16723 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64); 16724 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 16725 } 16726 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: { 16727 Value *Addr = EmitScalarExpr(E->getArg(0)); 16728 Value *Count = EmitScalarExpr(E->getArg(1)); 16729 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify); 16730 return Builder.CreateCall(Callee, {Addr, Count}); 16731 } 16732 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32: 16733 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64: 16734 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32: 16735 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: { 16736 Value *Src = EmitScalarExpr(E->getArg(0)); 16737 llvm::Type *ResT = ConvertType(E->getType()); 16738 Function *Callee = 16739 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()}); 16740 return Builder.CreateCall(Callee, {Src}); 16741 } 16742 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32: 16743 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64: 16744 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32: 16745 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: { 16746 Value *Src = EmitScalarExpr(E->getArg(0)); 16747 llvm::Type *ResT = ConvertType(E->getType()); 16748 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned, 16749 {ResT, Src->getType()}); 16750 return Builder.CreateCall(Callee, {Src}); 16751 } 16752 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32: 16753 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64: 16754 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32: 16755 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64: 16756 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: { 16757 Value *Src = EmitScalarExpr(E->getArg(0)); 16758 llvm::Type *ResT = ConvertType(E->getType()); 16759 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed, 16760 {ResT, Src->getType()}); 16761 return Builder.CreateCall(Callee, {Src}); 16762 } 16763 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32: 16764 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64: 16765 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32: 16766 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64: 16767 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: { 16768 Value *Src = EmitScalarExpr(E->getArg(0)); 16769 llvm::Type *ResT = ConvertType(E->getType()); 16770 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned, 16771 {ResT, Src->getType()}); 16772 return Builder.CreateCall(Callee, {Src}); 16773 } 16774 case WebAssembly::BI__builtin_wasm_min_f32: 16775 case WebAssembly::BI__builtin_wasm_min_f64: 16776 case WebAssembly::BI__builtin_wasm_min_f32x4: 16777 case WebAssembly::BI__builtin_wasm_min_f64x2: { 16778 Value *LHS = EmitScalarExpr(E->getArg(0)); 16779 Value *RHS = EmitScalarExpr(E->getArg(1)); 16780 Function *Callee = 16781 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType())); 16782 return Builder.CreateCall(Callee, {LHS, RHS}); 16783 } 16784 case WebAssembly::BI__builtin_wasm_max_f32: 16785 case WebAssembly::BI__builtin_wasm_max_f64: 16786 case WebAssembly::BI__builtin_wasm_max_f32x4: 16787 case WebAssembly::BI__builtin_wasm_max_f64x2: { 16788 Value *LHS = EmitScalarExpr(E->getArg(0)); 16789 Value *RHS = EmitScalarExpr(E->getArg(1)); 16790 Function *Callee = 16791 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType())); 16792 return Builder.CreateCall(Callee, {LHS, RHS}); 16793 } 16794 case WebAssembly::BI__builtin_wasm_pmin_f32x4: 16795 case WebAssembly::BI__builtin_wasm_pmin_f64x2: { 16796 Value *LHS = EmitScalarExpr(E->getArg(0)); 16797 Value *RHS = EmitScalarExpr(E->getArg(1)); 16798 Function *Callee = 16799 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType())); 16800 return Builder.CreateCall(Callee, {LHS, RHS}); 16801 } 16802 case WebAssembly::BI__builtin_wasm_pmax_f32x4: 16803 case WebAssembly::BI__builtin_wasm_pmax_f64x2: { 16804 Value *LHS = EmitScalarExpr(E->getArg(0)); 16805 Value *RHS = EmitScalarExpr(E->getArg(1)); 16806 Function *Callee = 16807 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType())); 16808 return Builder.CreateCall(Callee, {LHS, RHS}); 16809 } 16810 case WebAssembly::BI__builtin_wasm_ceil_f32x4: 16811 case WebAssembly::BI__builtin_wasm_floor_f32x4: 16812 case WebAssembly::BI__builtin_wasm_trunc_f32x4: 16813 case WebAssembly::BI__builtin_wasm_nearest_f32x4: 16814 case WebAssembly::BI__builtin_wasm_ceil_f64x2: 16815 case WebAssembly::BI__builtin_wasm_floor_f64x2: 16816 case WebAssembly::BI__builtin_wasm_trunc_f64x2: 16817 case WebAssembly::BI__builtin_wasm_nearest_f64x2: { 16818 unsigned IntNo; 16819 switch (BuiltinID) { 16820 case WebAssembly::BI__builtin_wasm_ceil_f32x4: 16821 case WebAssembly::BI__builtin_wasm_ceil_f64x2: 16822 IntNo = Intrinsic::wasm_ceil; 16823 break; 16824 case WebAssembly::BI__builtin_wasm_floor_f32x4: 16825 case WebAssembly::BI__builtin_wasm_floor_f64x2: 16826 IntNo = Intrinsic::wasm_floor; 16827 break; 16828 case WebAssembly::BI__builtin_wasm_trunc_f32x4: 16829 case WebAssembly::BI__builtin_wasm_trunc_f64x2: 16830 IntNo = Intrinsic::wasm_trunc; 16831 break; 16832 case WebAssembly::BI__builtin_wasm_nearest_f32x4: 16833 case WebAssembly::BI__builtin_wasm_nearest_f64x2: 16834 IntNo = Intrinsic::wasm_nearest; 16835 break; 16836 default: 16837 llvm_unreachable("unexpected builtin ID"); 16838 } 16839 Value *Value = EmitScalarExpr(E->getArg(0)); 16840 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 16841 return Builder.CreateCall(Callee, Value); 16842 } 16843 case WebAssembly::BI__builtin_wasm_swizzle_v8x16: { 16844 Value *Src = EmitScalarExpr(E->getArg(0)); 16845 Value *Indices = EmitScalarExpr(E->getArg(1)); 16846 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle); 16847 return Builder.CreateCall(Callee, {Src, Indices}); 16848 } 16849 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: 16850 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: 16851 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: 16852 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: 16853 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: 16854 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: 16855 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: 16856 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: { 16857 llvm::APSInt LaneConst = 16858 *E->getArg(1)->getIntegerConstantExpr(getContext()); 16859 Value *Vec = EmitScalarExpr(E->getArg(0)); 16860 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); 16861 Value *Extract = Builder.CreateExtractElement(Vec, Lane); 16862 switch (BuiltinID) { 16863 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: 16864 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: 16865 return Builder.CreateSExt(Extract, ConvertType(E->getType())); 16866 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: 16867 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: 16868 return Builder.CreateZExt(Extract, ConvertType(E->getType())); 16869 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: 16870 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: 16871 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: 16872 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: 16873 return Extract; 16874 default: 16875 llvm_unreachable("unexpected builtin ID"); 16876 } 16877 } 16878 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: 16879 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: 16880 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: 16881 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: 16882 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: 16883 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: { 16884 llvm::APSInt LaneConst = 16885 *E->getArg(1)->getIntegerConstantExpr(getContext()); 16886 Value *Vec = EmitScalarExpr(E->getArg(0)); 16887 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); 16888 Value *Val = EmitScalarExpr(E->getArg(2)); 16889 switch (BuiltinID) { 16890 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: 16891 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: { 16892 llvm::Type *ElemType = 16893 cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType(); 16894 Value *Trunc = Builder.CreateTrunc(Val, ElemType); 16895 return Builder.CreateInsertElement(Vec, Trunc, Lane); 16896 } 16897 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: 16898 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: 16899 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: 16900 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: 16901 return Builder.CreateInsertElement(Vec, Val, Lane); 16902 default: 16903 llvm_unreachable("unexpected builtin ID"); 16904 } 16905 } 16906 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16: 16907 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16: 16908 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8: 16909 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8: 16910 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16: 16911 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16: 16912 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8: 16913 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: { 16914 unsigned IntNo; 16915 switch (BuiltinID) { 16916 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16: 16917 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8: 16918 IntNo = Intrinsic::sadd_sat; 16919 break; 16920 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16: 16921 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8: 16922 IntNo = Intrinsic::uadd_sat; 16923 break; 16924 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16: 16925 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8: 16926 IntNo = Intrinsic::wasm_sub_saturate_signed; 16927 break; 16928 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16: 16929 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: 16930 IntNo = Intrinsic::wasm_sub_saturate_unsigned; 16931 break; 16932 default: 16933 llvm_unreachable("unexpected builtin ID"); 16934 } 16935 Value *LHS = EmitScalarExpr(E->getArg(0)); 16936 Value *RHS = EmitScalarExpr(E->getArg(1)); 16937 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 16938 return Builder.CreateCall(Callee, {LHS, RHS}); 16939 } 16940 case WebAssembly::BI__builtin_wasm_abs_i8x16: 16941 case WebAssembly::BI__builtin_wasm_abs_i16x8: 16942 case WebAssembly::BI__builtin_wasm_abs_i32x4: { 16943 Value *Vec = EmitScalarExpr(E->getArg(0)); 16944 Value *Neg = Builder.CreateNeg(Vec, "neg"); 16945 Constant *Zero = llvm::Constant::getNullValue(Vec->getType()); 16946 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond"); 16947 return Builder.CreateSelect(ICmp, Neg, Vec, "abs"); 16948 } 16949 case WebAssembly::BI__builtin_wasm_min_s_i8x16: 16950 case WebAssembly::BI__builtin_wasm_min_u_i8x16: 16951 case WebAssembly::BI__builtin_wasm_max_s_i8x16: 16952 case WebAssembly::BI__builtin_wasm_max_u_i8x16: 16953 case WebAssembly::BI__builtin_wasm_min_s_i16x8: 16954 case WebAssembly::BI__builtin_wasm_min_u_i16x8: 16955 case WebAssembly::BI__builtin_wasm_max_s_i16x8: 16956 case WebAssembly::BI__builtin_wasm_max_u_i16x8: 16957 case WebAssembly::BI__builtin_wasm_min_s_i32x4: 16958 case WebAssembly::BI__builtin_wasm_min_u_i32x4: 16959 case WebAssembly::BI__builtin_wasm_max_s_i32x4: 16960 case WebAssembly::BI__builtin_wasm_max_u_i32x4: { 16961 Value *LHS = EmitScalarExpr(E->getArg(0)); 16962 Value *RHS = EmitScalarExpr(E->getArg(1)); 16963 Value *ICmp; 16964 switch (BuiltinID) { 16965 case WebAssembly::BI__builtin_wasm_min_s_i8x16: 16966 case WebAssembly::BI__builtin_wasm_min_s_i16x8: 16967 case WebAssembly::BI__builtin_wasm_min_s_i32x4: 16968 ICmp = Builder.CreateICmpSLT(LHS, RHS); 16969 break; 16970 case WebAssembly::BI__builtin_wasm_min_u_i8x16: 16971 case WebAssembly::BI__builtin_wasm_min_u_i16x8: 16972 case WebAssembly::BI__builtin_wasm_min_u_i32x4: 16973 ICmp = Builder.CreateICmpULT(LHS, RHS); 16974 break; 16975 case WebAssembly::BI__builtin_wasm_max_s_i8x16: 16976 case WebAssembly::BI__builtin_wasm_max_s_i16x8: 16977 case WebAssembly::BI__builtin_wasm_max_s_i32x4: 16978 ICmp = Builder.CreateICmpSGT(LHS, RHS); 16979 break; 16980 case WebAssembly::BI__builtin_wasm_max_u_i8x16: 16981 case WebAssembly::BI__builtin_wasm_max_u_i16x8: 16982 case WebAssembly::BI__builtin_wasm_max_u_i32x4: 16983 ICmp = Builder.CreateICmpUGT(LHS, RHS); 16984 break; 16985 default: 16986 llvm_unreachable("unexpected builtin ID"); 16987 } 16988 return Builder.CreateSelect(ICmp, LHS, RHS); 16989 } 16990 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16: 16991 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: { 16992 Value *LHS = EmitScalarExpr(E->getArg(0)); 16993 Value *RHS = EmitScalarExpr(E->getArg(1)); 16994 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned, 16995 ConvertType(E->getType())); 16996 return Builder.CreateCall(Callee, {LHS, RHS}); 16997 } 16998 case WebAssembly::BI__builtin_wasm_q15mulr_saturate_s_i16x8: { 16999 Value *LHS = EmitScalarExpr(E->getArg(0)); 17000 Value *RHS = EmitScalarExpr(E->getArg(1)); 17001 Function *Callee = 17002 CGM.getIntrinsic(Intrinsic::wasm_q15mulr_saturate_signed); 17003 return Builder.CreateCall(Callee, {LHS, RHS}); 17004 } 17005 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8: 17006 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8: 17007 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8: 17008 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8: 17009 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4: 17010 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4: 17011 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4: 17012 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4: 17013 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2: 17014 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2: 17015 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2: 17016 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: { 17017 Value *LHS = EmitScalarExpr(E->getArg(0)); 17018 Value *RHS = EmitScalarExpr(E->getArg(1)); 17019 unsigned IntNo; 17020 switch (BuiltinID) { 17021 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8: 17022 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4: 17023 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2: 17024 IntNo = Intrinsic::wasm_extmul_low_signed; 17025 break; 17026 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8: 17027 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4: 17028 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2: 17029 IntNo = Intrinsic::wasm_extmul_low_unsigned; 17030 break; 17031 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8: 17032 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4: 17033 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2: 17034 IntNo = Intrinsic::wasm_extmul_high_signed; 17035 break; 17036 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8: 17037 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4: 17038 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: 17039 IntNo = Intrinsic::wasm_extmul_high_unsigned; 17040 break; 17041 default: 17042 llvm_unreachable("unexptected builtin ID"); 17043 } 17044 17045 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 17046 return Builder.CreateCall(Callee, {LHS, RHS}); 17047 } 17048 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: 17049 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: 17050 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: 17051 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: { 17052 Value *Vec = EmitScalarExpr(E->getArg(0)); 17053 unsigned IntNo; 17054 switch (BuiltinID) { 17055 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: 17056 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: 17057 IntNo = Intrinsic::wasm_extadd_pairwise_signed; 17058 break; 17059 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: 17060 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: 17061 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned; 17062 break; 17063 default: 17064 llvm_unreachable("unexptected builtin ID"); 17065 } 17066 17067 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 17068 return Builder.CreateCall(Callee, Vec); 17069 } 17070 case WebAssembly::BI__builtin_wasm_bitselect: { 17071 Value *V1 = EmitScalarExpr(E->getArg(0)); 17072 Value *V2 = EmitScalarExpr(E->getArg(1)); 17073 Value *C = EmitScalarExpr(E->getArg(2)); 17074 Function *Callee = 17075 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType())); 17076 return Builder.CreateCall(Callee, {V1, V2, C}); 17077 } 17078 case WebAssembly::BI__builtin_wasm_signselect_i8x16: 17079 case WebAssembly::BI__builtin_wasm_signselect_i16x8: 17080 case WebAssembly::BI__builtin_wasm_signselect_i32x4: 17081 case WebAssembly::BI__builtin_wasm_signselect_i64x2: { 17082 Value *V1 = EmitScalarExpr(E->getArg(0)); 17083 Value *V2 = EmitScalarExpr(E->getArg(1)); 17084 Value *C = EmitScalarExpr(E->getArg(2)); 17085 Function *Callee = 17086 CGM.getIntrinsic(Intrinsic::wasm_signselect, ConvertType(E->getType())); 17087 return Builder.CreateCall(Callee, {V1, V2, C}); 17088 } 17089 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: { 17090 Value *LHS = EmitScalarExpr(E->getArg(0)); 17091 Value *RHS = EmitScalarExpr(E->getArg(1)); 17092 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot); 17093 return Builder.CreateCall(Callee, {LHS, RHS}); 17094 } 17095 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: { 17096 Value *Vec = EmitScalarExpr(E->getArg(0)); 17097 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_popcnt); 17098 return Builder.CreateCall(Callee, {Vec}); 17099 } 17100 case WebAssembly::BI__builtin_wasm_eq_i64x2: { 17101 Value *LHS = EmitScalarExpr(E->getArg(0)); 17102 Value *RHS = EmitScalarExpr(E->getArg(1)); 17103 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_eq); 17104 return Builder.CreateCall(Callee, {LHS, RHS}); 17105 } 17106 case WebAssembly::BI__builtin_wasm_any_true_i8x16: 17107 case WebAssembly::BI__builtin_wasm_any_true_i16x8: 17108 case WebAssembly::BI__builtin_wasm_any_true_i32x4: 17109 case WebAssembly::BI__builtin_wasm_any_true_i64x2: 17110 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 17111 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 17112 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 17113 case WebAssembly::BI__builtin_wasm_all_true_i64x2: { 17114 unsigned IntNo; 17115 switch (BuiltinID) { 17116 case WebAssembly::BI__builtin_wasm_any_true_i8x16: 17117 case WebAssembly::BI__builtin_wasm_any_true_i16x8: 17118 case WebAssembly::BI__builtin_wasm_any_true_i32x4: 17119 case WebAssembly::BI__builtin_wasm_any_true_i64x2: 17120 IntNo = Intrinsic::wasm_anytrue; 17121 break; 17122 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 17123 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 17124 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 17125 case WebAssembly::BI__builtin_wasm_all_true_i64x2: 17126 IntNo = Intrinsic::wasm_alltrue; 17127 break; 17128 default: 17129 llvm_unreachable("unexpected builtin ID"); 17130 } 17131 Value *Vec = EmitScalarExpr(E->getArg(0)); 17132 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType()); 17133 return Builder.CreateCall(Callee, {Vec}); 17134 } 17135 case WebAssembly::BI__builtin_wasm_bitmask_i8x16: 17136 case WebAssembly::BI__builtin_wasm_bitmask_i16x8: 17137 case WebAssembly::BI__builtin_wasm_bitmask_i32x4: 17138 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: { 17139 Value *Vec = EmitScalarExpr(E->getArg(0)); 17140 Function *Callee = 17141 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType()); 17142 return Builder.CreateCall(Callee, {Vec}); 17143 } 17144 case WebAssembly::BI__builtin_wasm_abs_f32x4: 17145 case WebAssembly::BI__builtin_wasm_abs_f64x2: { 17146 Value *Vec = EmitScalarExpr(E->getArg(0)); 17147 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType()); 17148 return Builder.CreateCall(Callee, {Vec}); 17149 } 17150 case WebAssembly::BI__builtin_wasm_sqrt_f32x4: 17151 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: { 17152 Value *Vec = EmitScalarExpr(E->getArg(0)); 17153 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType()); 17154 return Builder.CreateCall(Callee, {Vec}); 17155 } 17156 case WebAssembly::BI__builtin_wasm_qfma_f32x4: 17157 case WebAssembly::BI__builtin_wasm_qfms_f32x4: 17158 case WebAssembly::BI__builtin_wasm_qfma_f64x2: 17159 case WebAssembly::BI__builtin_wasm_qfms_f64x2: { 17160 Value *A = EmitScalarExpr(E->getArg(0)); 17161 Value *B = EmitScalarExpr(E->getArg(1)); 17162 Value *C = EmitScalarExpr(E->getArg(2)); 17163 unsigned IntNo; 17164 switch (BuiltinID) { 17165 case WebAssembly::BI__builtin_wasm_qfma_f32x4: 17166 case WebAssembly::BI__builtin_wasm_qfma_f64x2: 17167 IntNo = Intrinsic::wasm_qfma; 17168 break; 17169 case WebAssembly::BI__builtin_wasm_qfms_f32x4: 17170 case WebAssembly::BI__builtin_wasm_qfms_f64x2: 17171 IntNo = Intrinsic::wasm_qfms; 17172 break; 17173 default: 17174 llvm_unreachable("unexpected builtin ID"); 17175 } 17176 Function *Callee = CGM.getIntrinsic(IntNo, A->getType()); 17177 return Builder.CreateCall(Callee, {A, B, C}); 17178 } 17179 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 17180 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 17181 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 17182 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: { 17183 Value *Low = EmitScalarExpr(E->getArg(0)); 17184 Value *High = EmitScalarExpr(E->getArg(1)); 17185 unsigned IntNo; 17186 switch (BuiltinID) { 17187 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 17188 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 17189 IntNo = Intrinsic::wasm_narrow_signed; 17190 break; 17191 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 17192 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: 17193 IntNo = Intrinsic::wasm_narrow_unsigned; 17194 break; 17195 default: 17196 llvm_unreachable("unexpected builtin ID"); 17197 } 17198 Function *Callee = 17199 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()}); 17200 return Builder.CreateCall(Callee, {Low, High}); 17201 } 17202 case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i64x2: 17203 case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i64x2: 17204 case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i64x2: 17205 case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i64x2: { 17206 Value *Vec = EmitScalarExpr(E->getArg(0)); 17207 unsigned IntNo; 17208 switch (BuiltinID) { 17209 case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i64x2: 17210 IntNo = Intrinsic::wasm_widen_low_signed; 17211 break; 17212 case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i64x2: 17213 IntNo = Intrinsic::wasm_widen_high_signed; 17214 break; 17215 case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i64x2: 17216 IntNo = Intrinsic::wasm_widen_low_unsigned; 17217 break; 17218 case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i64x2: 17219 IntNo = Intrinsic::wasm_widen_high_unsigned; 17220 break; 17221 } 17222 Function *Callee = CGM.getIntrinsic(IntNo); 17223 return Builder.CreateCall(Callee, Vec); 17224 } 17225 case WebAssembly::BI__builtin_wasm_convert_low_s_i32x4_f64x2: 17226 case WebAssembly::BI__builtin_wasm_convert_low_u_i32x4_f64x2: { 17227 Value *Vec = EmitScalarExpr(E->getArg(0)); 17228 unsigned IntNo; 17229 switch (BuiltinID) { 17230 case WebAssembly::BI__builtin_wasm_convert_low_s_i32x4_f64x2: 17231 IntNo = Intrinsic::wasm_convert_low_signed; 17232 break; 17233 case WebAssembly::BI__builtin_wasm_convert_low_u_i32x4_f64x2: 17234 IntNo = Intrinsic::wasm_convert_low_unsigned; 17235 break; 17236 } 17237 Function *Callee = CGM.getIntrinsic(IntNo); 17238 return Builder.CreateCall(Callee, Vec); 17239 } 17240 case WebAssembly::BI__builtin_wasm_trunc_saturate_zero_s_f64x2_i32x4: 17241 case WebAssembly::BI__builtin_wasm_trunc_saturate_zero_u_f64x2_i32x4: { 17242 Value *Vec = EmitScalarExpr(E->getArg(0)); 17243 unsigned IntNo; 17244 switch (BuiltinID) { 17245 case WebAssembly::BI__builtin_wasm_trunc_saturate_zero_s_f64x2_i32x4: 17246 IntNo = Intrinsic::wasm_trunc_saturate_zero_signed; 17247 break; 17248 case WebAssembly::BI__builtin_wasm_trunc_saturate_zero_u_f64x2_i32x4: 17249 IntNo = Intrinsic::wasm_trunc_saturate_zero_unsigned; 17250 break; 17251 } 17252 Function *Callee = CGM.getIntrinsic(IntNo); 17253 return Builder.CreateCall(Callee, Vec); 17254 } 17255 case WebAssembly::BI__builtin_wasm_demote_zero_f64x2_f32x4: { 17256 Value *Vec = EmitScalarExpr(E->getArg(0)); 17257 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_demote_zero); 17258 return Builder.CreateCall(Callee, Vec); 17259 } 17260 case WebAssembly::BI__builtin_wasm_promote_low_f32x4_f64x2: { 17261 Value *Vec = EmitScalarExpr(E->getArg(0)); 17262 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_promote_low); 17263 return Builder.CreateCall(Callee, Vec); 17264 } 17265 case WebAssembly::BI__builtin_wasm_load32_zero: { 17266 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17267 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load32_zero); 17268 return Builder.CreateCall(Callee, {Ptr}); 17269 } 17270 case WebAssembly::BI__builtin_wasm_load64_zero: { 17271 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17272 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load64_zero); 17273 return Builder.CreateCall(Callee, {Ptr}); 17274 } 17275 case WebAssembly::BI__builtin_wasm_load8_lane: 17276 case WebAssembly::BI__builtin_wasm_load16_lane: 17277 case WebAssembly::BI__builtin_wasm_load32_lane: 17278 case WebAssembly::BI__builtin_wasm_load64_lane: 17279 case WebAssembly::BI__builtin_wasm_store8_lane: 17280 case WebAssembly::BI__builtin_wasm_store16_lane: 17281 case WebAssembly::BI__builtin_wasm_store32_lane: 17282 case WebAssembly::BI__builtin_wasm_store64_lane: { 17283 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17284 Value *Vec = EmitScalarExpr(E->getArg(1)); 17285 Optional<llvm::APSInt> LaneIdxConst = 17286 E->getArg(2)->getIntegerConstantExpr(getContext()); 17287 assert(LaneIdxConst && "Constant arg isn't actually constant?"); 17288 Value *LaneIdx = llvm::ConstantInt::get(getLLVMContext(), *LaneIdxConst); 17289 unsigned IntNo; 17290 switch (BuiltinID) { 17291 case WebAssembly::BI__builtin_wasm_load8_lane: 17292 IntNo = Intrinsic::wasm_load8_lane; 17293 break; 17294 case WebAssembly::BI__builtin_wasm_load16_lane: 17295 IntNo = Intrinsic::wasm_load16_lane; 17296 break; 17297 case WebAssembly::BI__builtin_wasm_load32_lane: 17298 IntNo = Intrinsic::wasm_load32_lane; 17299 break; 17300 case WebAssembly::BI__builtin_wasm_load64_lane: 17301 IntNo = Intrinsic::wasm_load64_lane; 17302 break; 17303 case WebAssembly::BI__builtin_wasm_store8_lane: 17304 IntNo = Intrinsic::wasm_store8_lane; 17305 break; 17306 case WebAssembly::BI__builtin_wasm_store16_lane: 17307 IntNo = Intrinsic::wasm_store16_lane; 17308 break; 17309 case WebAssembly::BI__builtin_wasm_store32_lane: 17310 IntNo = Intrinsic::wasm_store32_lane; 17311 break; 17312 case WebAssembly::BI__builtin_wasm_store64_lane: 17313 IntNo = Intrinsic::wasm_store64_lane; 17314 break; 17315 default: 17316 llvm_unreachable("unexpected builtin ID"); 17317 } 17318 Function *Callee = CGM.getIntrinsic(IntNo); 17319 return Builder.CreateCall(Callee, {Ptr, Vec, LaneIdx}); 17320 } 17321 case WebAssembly::BI__builtin_wasm_shuffle_v8x16: { 17322 Value *Ops[18]; 17323 size_t OpIdx = 0; 17324 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0)); 17325 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1)); 17326 while (OpIdx < 18) { 17327 Optional<llvm::APSInt> LaneConst = 17328 E->getArg(OpIdx)->getIntegerConstantExpr(getContext()); 17329 assert(LaneConst && "Constant arg isn't actually constant?"); 17330 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst); 17331 } 17332 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle); 17333 return Builder.CreateCall(Callee, Ops); 17334 } 17335 case WebAssembly::BI__builtin_wasm_prefetch_t: { 17336 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17337 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_prefetch_t); 17338 return Builder.CreateCall(Callee, Ptr); 17339 } 17340 case WebAssembly::BI__builtin_wasm_prefetch_nt: { 17341 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17342 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_prefetch_nt); 17343 return Builder.CreateCall(Callee, Ptr); 17344 } 17345 default: 17346 return nullptr; 17347 } 17348 } 17349 17350 static std::pair<Intrinsic::ID, unsigned> 17351 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) { 17352 struct Info { 17353 unsigned BuiltinID; 17354 Intrinsic::ID IntrinsicID; 17355 unsigned VecLen; 17356 }; 17357 Info Infos[] = { 17358 #define CUSTOM_BUILTIN_MAPPING(x,s) \ 17359 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s }, 17360 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0) 17361 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0) 17362 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0) 17363 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0) 17364 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0) 17365 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0) 17366 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0) 17367 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0) 17368 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0) 17369 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0) 17370 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0) 17371 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0) 17372 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0) 17373 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0) 17374 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0) 17375 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0) 17376 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0) 17377 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0) 17378 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0) 17379 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0) 17380 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0) 17381 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0) 17382 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64) 17383 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64) 17384 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64) 17385 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64) 17386 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128) 17387 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128) 17388 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128) 17389 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128) 17390 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def" 17391 #undef CUSTOM_BUILTIN_MAPPING 17392 }; 17393 17394 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; }; 17395 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true); 17396 (void)SortOnce; 17397 17398 const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos), 17399 Info{BuiltinID, 0, 0}, CmpInfo); 17400 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 17401 return {Intrinsic::not_intrinsic, 0}; 17402 17403 return {F->IntrinsicID, F->VecLen}; 17404 } 17405 17406 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID, 17407 const CallExpr *E) { 17408 Intrinsic::ID ID; 17409 unsigned VecLen; 17410 std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID); 17411 17412 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) { 17413 // The base pointer is passed by address, so it needs to be loaded. 17414 Address A = EmitPointerWithAlignment(E->getArg(0)); 17415 Address BP = Address( 17416 Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment()); 17417 llvm::Value *Base = Builder.CreateLoad(BP); 17418 // The treatment of both loads and stores is the same: the arguments for 17419 // the builtin are the same as the arguments for the intrinsic. 17420 // Load: 17421 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start) 17422 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start) 17423 // Store: 17424 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start) 17425 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start) 17426 SmallVector<llvm::Value*,5> Ops = { Base }; 17427 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i) 17428 Ops.push_back(EmitScalarExpr(E->getArg(i))); 17429 17430 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); 17431 // The load intrinsics generate two results (Value, NewBase), stores 17432 // generate one (NewBase). The new base address needs to be stored. 17433 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1) 17434 : Result; 17435 llvm::Value *LV = Builder.CreateBitCast( 17436 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo()); 17437 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 17438 llvm::Value *RetVal = 17439 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); 17440 if (IsLoad) 17441 RetVal = Builder.CreateExtractValue(Result, 0); 17442 return RetVal; 17443 }; 17444 17445 // Handle the conversion of bit-reverse load intrinsics to bit code. 17446 // The intrinsic call after this function only reads from memory and the 17447 // write to memory is dealt by the store instruction. 17448 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) { 17449 // The intrinsic generates one result, which is the new value for the base 17450 // pointer. It needs to be returned. The result of the load instruction is 17451 // passed to intrinsic by address, so the value needs to be stored. 17452 llvm::Value *BaseAddress = 17453 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy); 17454 17455 // Expressions like &(*pt++) will be incremented per evaluation. 17456 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression 17457 // per call. 17458 Address DestAddr = EmitPointerWithAlignment(E->getArg(1)); 17459 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy), 17460 DestAddr.getAlignment()); 17461 llvm::Value *DestAddress = DestAddr.getPointer(); 17462 17463 // Operands are Base, Dest, Modifier. 17464 // The intrinsic format in LLVM IR is defined as 17465 // { ValueType, i8* } (i8*, i32). 17466 llvm::Value *Result = Builder.CreateCall( 17467 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))}); 17468 17469 // The value needs to be stored as the variable is passed by reference. 17470 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0); 17471 17472 // The store needs to be truncated to fit the destination type. 17473 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs 17474 // to be handled with stores of respective destination type. 17475 DestVal = Builder.CreateTrunc(DestVal, DestTy); 17476 17477 llvm::Value *DestForStore = 17478 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo()); 17479 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment()); 17480 // The updated value of the base pointer is returned. 17481 return Builder.CreateExtractValue(Result, 1); 17482 }; 17483 17484 auto V2Q = [this, VecLen] (llvm::Value *Vec) { 17485 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B 17486 : Intrinsic::hexagon_V6_vandvrt; 17487 return Builder.CreateCall(CGM.getIntrinsic(ID), 17488 {Vec, Builder.getInt32(-1)}); 17489 }; 17490 auto Q2V = [this, VecLen] (llvm::Value *Pred) { 17491 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B 17492 : Intrinsic::hexagon_V6_vandqrt; 17493 return Builder.CreateCall(CGM.getIntrinsic(ID), 17494 {Pred, Builder.getInt32(-1)}); 17495 }; 17496 17497 switch (BuiltinID) { 17498 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR, 17499 // and the corresponding C/C++ builtins use loads/stores to update 17500 // the predicate. 17501 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry: 17502 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: 17503 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry: 17504 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: { 17505 // Get the type from the 0-th argument. 17506 llvm::Type *VecType = ConvertType(E->getArg(0)->getType()); 17507 Address PredAddr = Builder.CreateBitCast( 17508 EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0)); 17509 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr)); 17510 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), 17511 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn}); 17512 17513 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1); 17514 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(), 17515 PredAddr.getAlignment()); 17516 return Builder.CreateExtractValue(Result, 0); 17517 } 17518 17519 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci: 17520 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci: 17521 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci: 17522 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci: 17523 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci: 17524 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci: 17525 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr: 17526 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr: 17527 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr: 17528 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr: 17529 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr: 17530 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr: 17531 return MakeCircOp(ID, /*IsLoad=*/true); 17532 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci: 17533 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci: 17534 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci: 17535 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci: 17536 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci: 17537 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr: 17538 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr: 17539 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr: 17540 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr: 17541 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr: 17542 return MakeCircOp(ID, /*IsLoad=*/false); 17543 case Hexagon::BI__builtin_brev_ldub: 17544 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty); 17545 case Hexagon::BI__builtin_brev_ldb: 17546 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty); 17547 case Hexagon::BI__builtin_brev_lduh: 17548 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty); 17549 case Hexagon::BI__builtin_brev_ldh: 17550 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty); 17551 case Hexagon::BI__builtin_brev_ldw: 17552 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty); 17553 case Hexagon::BI__builtin_brev_ldd: 17554 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty); 17555 17556 default: { 17557 if (ID == Intrinsic::not_intrinsic) 17558 return nullptr; 17559 17560 auto IsVectorPredTy = [](llvm::Type *T) { 17561 return T->isVectorTy() && 17562 cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1); 17563 }; 17564 17565 llvm::Function *IntrFn = CGM.getIntrinsic(ID); 17566 llvm::FunctionType *IntrTy = IntrFn->getFunctionType(); 17567 SmallVector<llvm::Value*,4> Ops; 17568 for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) { 17569 llvm::Type *T = IntrTy->getParamType(i); 17570 const Expr *A = E->getArg(i); 17571 if (IsVectorPredTy(T)) { 17572 // There will be an implicit cast to a boolean vector. Strip it. 17573 if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) { 17574 if (Cast->getCastKind() == CK_BitCast) 17575 A = Cast->getSubExpr(); 17576 } 17577 Ops.push_back(V2Q(EmitScalarExpr(A))); 17578 } else { 17579 Ops.push_back(EmitScalarExpr(A)); 17580 } 17581 } 17582 17583 llvm::Value *Call = Builder.CreateCall(IntrFn, Ops); 17584 if (IsVectorPredTy(IntrTy->getReturnType())) 17585 Call = Q2V(Call); 17586 17587 return Call; 17588 } // default 17589 } // switch 17590 17591 return nullptr; 17592 } 17593