xref: /freebsd-src/contrib/llvm-project/clang/lib/AST/MicrosoftMangle.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/Mangle.h"
25 #include "clang/AST/VTableBuilder.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/DiagnosticOptions.h"
28 #include "clang/Basic/FileManager.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/CRC.h"
33 #include "llvm/Support/MD5.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/StringSaver.h"
36 #include "llvm/Support/xxhash.h"
37 
38 using namespace clang;
39 
40 namespace {
41 
42 struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
43   raw_ostream &OS;
44   llvm::SmallString<64> Buffer;
45 
46   msvc_hashing_ostream(raw_ostream &OS)
47       : llvm::raw_svector_ostream(Buffer), OS(OS) {}
48   ~msvc_hashing_ostream() override {
49     StringRef MangledName = str();
50     bool StartsWithEscape = MangledName.startswith("\01");
51     if (StartsWithEscape)
52       MangledName = MangledName.drop_front(1);
53     if (MangledName.size() < 4096) {
54       OS << str();
55       return;
56     }
57 
58     llvm::MD5 Hasher;
59     llvm::MD5::MD5Result Hash;
60     Hasher.update(MangledName);
61     Hasher.final(Hash);
62 
63     SmallString<32> HexString;
64     llvm::MD5::stringifyResult(Hash, HexString);
65 
66     if (StartsWithEscape)
67       OS << '\01';
68     OS << "??@" << HexString << '@';
69   }
70 };
71 
72 static const DeclContext *
73 getLambdaDefaultArgumentDeclContext(const Decl *D) {
74   if (const auto *RD = dyn_cast<CXXRecordDecl>(D))
75     if (RD->isLambda())
76       if (const auto *Parm =
77               dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
78         return Parm->getDeclContext();
79   return nullptr;
80 }
81 
82 /// Retrieve the declaration context that should be used when mangling
83 /// the given declaration.
84 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
85   // The ABI assumes that lambda closure types that occur within
86   // default arguments live in the context of the function. However, due to
87   // the way in which Clang parses and creates function declarations, this is
88   // not the case: the lambda closure type ends up living in the context
89   // where the function itself resides, because the function declaration itself
90   // had not yet been created. Fix the context here.
91   if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D))
92     return LDADC;
93 
94   // Perform the same check for block literals.
95   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
96     if (ParmVarDecl *ContextParam =
97             dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
98       return ContextParam->getDeclContext();
99   }
100 
101   const DeclContext *DC = D->getDeclContext();
102   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
103       isa<OMPDeclareMapperDecl>(DC)) {
104     return getEffectiveDeclContext(cast<Decl>(DC));
105   }
106 
107   return DC->getRedeclContext();
108 }
109 
110 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
111   return getEffectiveDeclContext(cast<Decl>(DC));
112 }
113 
114 static const FunctionDecl *getStructor(const NamedDecl *ND) {
115   if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
116     return FTD->getTemplatedDecl()->getCanonicalDecl();
117 
118   const auto *FD = cast<FunctionDecl>(ND);
119   if (const auto *FTD = FD->getPrimaryTemplate())
120     return FTD->getTemplatedDecl()->getCanonicalDecl();
121 
122   return FD->getCanonicalDecl();
123 }
124 
125 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
126 /// Microsoft Visual C++ ABI.
127 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
128   typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
129   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
130   llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
131   llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
132   llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
133   llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
134   SmallString<16> AnonymousNamespaceHash;
135 
136 public:
137   MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags);
138   bool shouldMangleCXXName(const NamedDecl *D) override;
139   bool shouldMangleStringLiteral(const StringLiteral *SL) override;
140   void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override;
141   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
142                                 const MethodVFTableLocation &ML,
143                                 raw_ostream &Out) override;
144   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
145                    raw_ostream &) override;
146   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
147                           const ThisAdjustment &ThisAdjustment,
148                           raw_ostream &) override;
149   void mangleCXXVFTable(const CXXRecordDecl *Derived,
150                         ArrayRef<const CXXRecordDecl *> BasePath,
151                         raw_ostream &Out) override;
152   void mangleCXXVBTable(const CXXRecordDecl *Derived,
153                         ArrayRef<const CXXRecordDecl *> BasePath,
154                         raw_ostream &Out) override;
155   void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
156                                        const CXXRecordDecl *DstRD,
157                                        raw_ostream &Out) override;
158   void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
159                           bool IsUnaligned, uint32_t NumEntries,
160                           raw_ostream &Out) override;
161   void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
162                                    raw_ostream &Out) override;
163   void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
164                               CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
165                               int32_t VBPtrOffset, uint32_t VBIndex,
166                               raw_ostream &Out) override;
167   void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
168   void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
169   void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
170                                         uint32_t NVOffset, int32_t VBPtrOffset,
171                                         uint32_t VBTableOffset, uint32_t Flags,
172                                         raw_ostream &Out) override;
173   void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
174                                    raw_ostream &Out) override;
175   void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
176                                              raw_ostream &Out) override;
177   void
178   mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
179                                      ArrayRef<const CXXRecordDecl *> BasePath,
180                                      raw_ostream &Out) override;
181   void mangleTypeName(QualType T, raw_ostream &) override;
182   void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
183                                 raw_ostream &) override;
184   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
185   void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
186                                            raw_ostream &Out) override;
187   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
188   void mangleDynamicAtExitDestructor(const VarDecl *D,
189                                      raw_ostream &Out) override;
190   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
191                                  raw_ostream &Out) override;
192   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
193                              raw_ostream &Out) override;
194   void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
195   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
196     const DeclContext *DC = getEffectiveDeclContext(ND);
197     if (!DC->isFunctionOrMethod())
198       return false;
199 
200     // Lambda closure types are already numbered, give out a phony number so
201     // that they demangle nicely.
202     if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
203       if (RD->isLambda()) {
204         disc = 1;
205         return true;
206       }
207     }
208 
209     // Use the canonical number for externally visible decls.
210     if (ND->isExternallyVisible()) {
211       disc = getASTContext().getManglingNumber(ND);
212       return true;
213     }
214 
215     // Anonymous tags are already numbered.
216     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
217       if (!Tag->hasNameForLinkage() &&
218           !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
219           !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
220         return false;
221     }
222 
223     // Make up a reasonable number for internal decls.
224     unsigned &discriminator = Uniquifier[ND];
225     if (!discriminator)
226       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
227     disc = discriminator + 1;
228     return true;
229   }
230 
231   std::string getLambdaString(const CXXRecordDecl *Lambda) override {
232     assert(Lambda->isLambda() && "RD must be a lambda!");
233     std::string Name("<lambda_");
234 
235     Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
236     unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
237     unsigned LambdaId;
238     const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
239     const FunctionDecl *Func =
240         Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
241 
242     if (Func) {
243       unsigned DefaultArgNo =
244           Func->getNumParams() - Parm->getFunctionScopeIndex();
245       Name += llvm::utostr(DefaultArgNo);
246       Name += "_";
247     }
248 
249     if (LambdaManglingNumber)
250       LambdaId = LambdaManglingNumber;
251     else
252       LambdaId = getLambdaIdForDebugInfo(Lambda);
253 
254     Name += llvm::utostr(LambdaId);
255     Name += ">";
256     return Name;
257   }
258 
259   unsigned getLambdaId(const CXXRecordDecl *RD) {
260     assert(RD->isLambda() && "RD must be a lambda!");
261     assert(!RD->isExternallyVisible() && "RD must not be visible!");
262     assert(RD->getLambdaManglingNumber() == 0 &&
263            "RD must not have a mangling number!");
264     std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
265         Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
266     return Result.first->second;
267   }
268 
269   unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) {
270     assert(RD->isLambda() && "RD must be a lambda!");
271     assert(!RD->isExternallyVisible() && "RD must not be visible!");
272     assert(RD->getLambdaManglingNumber() == 0 &&
273            "RD must not have a mangling number!");
274     llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator Result =
275         LambdaIds.find(RD);
276     // The lambda should exist, but return 0 in case it doesn't.
277     if (Result == LambdaIds.end())
278       return 0;
279     return Result->second;
280   }
281 
282   /// Return a character sequence that is (somewhat) unique to the TU suitable
283   /// for mangling anonymous namespaces.
284   StringRef getAnonymousNamespaceHash() const {
285     return AnonymousNamespaceHash;
286   }
287 
288 private:
289   void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
290 };
291 
292 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
293 /// Microsoft Visual C++ ABI.
294 class MicrosoftCXXNameMangler {
295   MicrosoftMangleContextImpl &Context;
296   raw_ostream &Out;
297 
298   /// The "structor" is the top-level declaration being mangled, if
299   /// that's not a template specialization; otherwise it's the pattern
300   /// for that specialization.
301   const NamedDecl *Structor;
302   unsigned StructorType;
303 
304   typedef llvm::SmallVector<std::string, 10> BackRefVec;
305   BackRefVec NameBackReferences;
306 
307   typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
308   ArgBackRefMap FunArgBackReferences;
309   ArgBackRefMap TemplateArgBackReferences;
310 
311   typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap;
312   TemplateArgStringMap TemplateArgStrings;
313   llvm::StringSaver TemplateArgStringStorage;
314   llvm::BumpPtrAllocator TemplateArgStringStorageAlloc;
315 
316   typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet;
317   PassObjectSizeArgsSet PassObjectSizeArgs;
318 
319   ASTContext &getASTContext() const { return Context.getASTContext(); }
320 
321   const bool PointersAre64Bit;
322 
323 public:
324   enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
325 
326   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
327       : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
328         TemplateArgStringStorage(TemplateArgStringStorageAlloc),
329         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
330                          64) {}
331 
332   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
333                           const CXXConstructorDecl *D, CXXCtorType Type)
334       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
335         TemplateArgStringStorage(TemplateArgStringStorageAlloc),
336         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
337                          64) {}
338 
339   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
340                           const CXXDestructorDecl *D, CXXDtorType Type)
341       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
342         TemplateArgStringStorage(TemplateArgStringStorageAlloc),
343         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
344                          64) {}
345 
346   raw_ostream &getStream() const { return Out; }
347 
348   void mangle(const NamedDecl *D, StringRef Prefix = "?");
349   void mangleName(const NamedDecl *ND);
350   void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
351   void mangleVariableEncoding(const VarDecl *VD);
352   void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD,
353                                StringRef Prefix = "$");
354   void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
355                                    const CXXMethodDecl *MD,
356                                    StringRef Prefix = "$");
357   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
358                                 const MethodVFTableLocation &ML);
359   void mangleNumber(int64_t Number);
360   void mangleNumber(llvm::APSInt Number);
361   void mangleFloat(llvm::APFloat Number);
362   void mangleBits(llvm::APInt Number);
363   void mangleTagTypeKind(TagTypeKind TK);
364   void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName,
365                               ArrayRef<StringRef> NestedNames = None);
366   void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range);
367   void mangleType(QualType T, SourceRange Range,
368                   QualifierMangleMode QMM = QMM_Mangle);
369   void mangleFunctionType(const FunctionType *T,
370                           const FunctionDecl *D = nullptr,
371                           bool ForceThisQuals = false,
372                           bool MangleExceptionSpec = true);
373   void mangleNestedName(const NamedDecl *ND);
374 
375 private:
376   bool isStructorDecl(const NamedDecl *ND) const {
377     return ND == Structor || getStructor(ND) == Structor;
378   }
379 
380   bool is64BitPointer(Qualifiers Quals) const {
381     LangAS AddrSpace = Quals.getAddressSpace();
382     return AddrSpace == LangAS::ptr64 ||
383            (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr ||
384                                   AddrSpace == LangAS::ptr32_uptr));
385   }
386 
387   void mangleUnqualifiedName(const NamedDecl *ND) {
388     mangleUnqualifiedName(ND, ND->getDeclName());
389   }
390   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
391   void mangleSourceName(StringRef Name);
392   void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
393   void mangleCXXDtorType(CXXDtorType T);
394   void mangleQualifiers(Qualifiers Quals, bool IsMember);
395   void mangleRefQualifier(RefQualifierKind RefQualifier);
396   void manglePointerCVQualifiers(Qualifiers Quals);
397   void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
398 
399   void mangleUnscopedTemplateName(const TemplateDecl *ND);
400   void
401   mangleTemplateInstantiationName(const TemplateDecl *TD,
402                                   const TemplateArgumentList &TemplateArgs);
403   void mangleObjCMethodName(const ObjCMethodDecl *MD);
404 
405   void mangleFunctionArgumentType(QualType T, SourceRange Range);
406   void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
407 
408   bool isArtificialTagType(QualType T) const;
409 
410   // Declare manglers for every type class.
411 #define ABSTRACT_TYPE(CLASS, PARENT)
412 #define NON_CANONICAL_TYPE(CLASS, PARENT)
413 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
414                                             Qualifiers Quals, \
415                                             SourceRange Range);
416 #include "clang/AST/TypeNodes.inc"
417 #undef ABSTRACT_TYPE
418 #undef NON_CANONICAL_TYPE
419 #undef TYPE
420 
421   void mangleType(const TagDecl *TD);
422   void mangleDecayedArrayType(const ArrayType *T);
423   void mangleArrayType(const ArrayType *T);
424   void mangleFunctionClass(const FunctionDecl *FD);
425   void mangleCallingConvention(CallingConv CC);
426   void mangleCallingConvention(const FunctionType *T);
427   void mangleIntegerLiteral(const llvm::APSInt &Number,
428                             const NonTypeTemplateParmDecl *PD = nullptr,
429                             QualType TemplateArgType = QualType());
430   void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD);
431   void mangleThrowSpecification(const FunctionProtoType *T);
432 
433   void mangleTemplateArgs(const TemplateDecl *TD,
434                           const TemplateArgumentList &TemplateArgs);
435   void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
436                          const NamedDecl *Parm);
437   void mangleTemplateArgValue(QualType T, const APValue &V,
438                               bool WithScalarType = false);
439 
440   void mangleObjCProtocol(const ObjCProtocolDecl *PD);
441   void mangleObjCLifetime(const QualType T, Qualifiers Quals,
442                           SourceRange Range);
443   void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals,
444                             SourceRange Range);
445 };
446 }
447 
448 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context,
449                                                        DiagnosticsEngine &Diags)
450     : MicrosoftMangleContext(Context, Diags) {
451   // To mangle anonymous namespaces, hash the path to the main source file. The
452   // path should be whatever (probably relative) path was passed on the command
453   // line. The goal is for the compiler to produce the same output regardless of
454   // working directory, so use the uncanonicalized relative path.
455   //
456   // It's important to make the mangled names unique because, when CodeView
457   // debug info is in use, the debugger uses mangled type names to distinguish
458   // between otherwise identically named types in anonymous namespaces.
459   //
460   // These symbols are always internal, so there is no need for the hash to
461   // match what MSVC produces. For the same reason, clang is free to change the
462   // hash at any time without breaking compatibility with old versions of clang.
463   // The generated names are intended to look similar to what MSVC generates,
464   // which are something like "?A0x01234567@".
465   SourceManager &SM = Context.getSourceManager();
466   if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) {
467     // Truncate the hash so we get 8 characters of hexadecimal.
468     uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName()));
469     AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash);
470   } else {
471     // If we don't have a path to the main file, we'll just use 0.
472     AnonymousNamespaceHash = "0";
473   }
474 }
475 
476 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
477   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
478     LanguageLinkage L = FD->getLanguageLinkage();
479     // Overloadable functions need mangling.
480     if (FD->hasAttr<OverloadableAttr>())
481       return true;
482 
483     // The ABI expects that we would never mangle "typical" user-defined entry
484     // points regardless of visibility or freestanding-ness.
485     //
486     // N.B. This is distinct from asking about "main".  "main" has a lot of
487     // special rules associated with it in the standard while these
488     // user-defined entry points are outside of the purview of the standard.
489     // For example, there can be only one definition for "main" in a standards
490     // compliant program; however nothing forbids the existence of wmain and
491     // WinMain in the same translation unit.
492     if (FD->isMSVCRTEntryPoint())
493       return false;
494 
495     // C++ functions and those whose names are not a simple identifier need
496     // mangling.
497     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
498       return true;
499 
500     // C functions are not mangled.
501     if (L == CLanguageLinkage)
502       return false;
503   }
504 
505   // Otherwise, no mangling is done outside C++ mode.
506   if (!getASTContext().getLangOpts().CPlusPlus)
507     return false;
508 
509   const VarDecl *VD = dyn_cast<VarDecl>(D);
510   if (VD && !isa<DecompositionDecl>(D)) {
511     // C variables are not mangled.
512     if (VD->isExternC())
513       return false;
514 
515     // Variables at global scope with internal linkage are not mangled.
516     const DeclContext *DC = getEffectiveDeclContext(D);
517     // Check for extern variable declared locally.
518     if (DC->isFunctionOrMethod() && D->hasLinkage())
519       while (!DC->isNamespace() && !DC->isTranslationUnit())
520         DC = getEffectiveParentContext(DC);
521 
522     if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
523         !isa<VarTemplateSpecializationDecl>(D) &&
524         D->getIdentifier() != nullptr)
525       return false;
526   }
527 
528   return true;
529 }
530 
531 bool
532 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
533   return true;
534 }
535 
536 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
537   // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
538   // Therefore it's really important that we don't decorate the
539   // name with leading underscores or leading/trailing at signs. So, by
540   // default, we emit an asm marker at the start so we get the name right.
541   // Callers can override this with a custom prefix.
542 
543   // <mangled-name> ::= ? <name> <type-encoding>
544   Out << Prefix;
545   mangleName(D);
546   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
547     mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
548   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
549     mangleVariableEncoding(VD);
550   else if (isa<MSGuidDecl>(D))
551     // MSVC appears to mangle GUIDs as if they were variables of type
552     // 'const struct __s_GUID'.
553     Out << "3U__s_GUID@@B";
554   else if (isa<TemplateParamObjectDecl>(D)) {
555     // Template parameter objects don't get a <type-encoding>; their type is
556     // specified as part of their value.
557   } else
558     llvm_unreachable("Tried to mangle unexpected NamedDecl!");
559 }
560 
561 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
562                                                      bool ShouldMangle) {
563   // <type-encoding> ::= <function-class> <function-type>
564 
565   // Since MSVC operates on the type as written and not the canonical type, it
566   // actually matters which decl we have here.  MSVC appears to choose the
567   // first, since it is most likely to be the declaration in a header file.
568   FD = FD->getFirstDecl();
569 
570   // We should never ever see a FunctionNoProtoType at this point.
571   // We don't even know how to mangle their types anyway :).
572   const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
573 
574   // extern "C" functions can hold entities that must be mangled.
575   // As it stands, these functions still need to get expressed in the full
576   // external name.  They have their class and type omitted, replaced with '9'.
577   if (ShouldMangle) {
578     // We would like to mangle all extern "C" functions using this additional
579     // component but this would break compatibility with MSVC's behavior.
580     // Instead, do this when we know that compatibility isn't important (in
581     // other words, when it is an overloaded extern "C" function).
582     if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
583       Out << "$$J0";
584 
585     mangleFunctionClass(FD);
586 
587     mangleFunctionType(FT, FD, false, false);
588   } else {
589     Out << '9';
590   }
591 }
592 
593 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
594   // <type-encoding> ::= <storage-class> <variable-type>
595   // <storage-class> ::= 0  # private static member
596   //                 ::= 1  # protected static member
597   //                 ::= 2  # public static member
598   //                 ::= 3  # global
599   //                 ::= 4  # static local
600 
601   // The first character in the encoding (after the name) is the storage class.
602   if (VD->isStaticDataMember()) {
603     // If it's a static member, it also encodes the access level.
604     switch (VD->getAccess()) {
605       default:
606       case AS_private: Out << '0'; break;
607       case AS_protected: Out << '1'; break;
608       case AS_public: Out << '2'; break;
609     }
610   }
611   else if (!VD->isStaticLocal())
612     Out << '3';
613   else
614     Out << '4';
615   // Now mangle the type.
616   // <variable-type> ::= <type> <cvr-qualifiers>
617   //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references
618   // Pointers and references are odd. The type of 'int * const foo;' gets
619   // mangled as 'QAHA' instead of 'PAHB', for example.
620   SourceRange SR = VD->getSourceRange();
621   QualType Ty = VD->getType();
622   if (Ty->isPointerType() || Ty->isReferenceType() ||
623       Ty->isMemberPointerType()) {
624     mangleType(Ty, SR, QMM_Drop);
625     manglePointerExtQualifiers(
626         Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
627     if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
628       mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
629       // Member pointers are suffixed with a back reference to the member
630       // pointer's class name.
631       mangleName(MPT->getClass()->getAsCXXRecordDecl());
632     } else
633       mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
634   } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
635     // Global arrays are funny, too.
636     mangleDecayedArrayType(AT);
637     if (AT->getElementType()->isArrayType())
638       Out << 'A';
639     else
640       mangleQualifiers(Ty.getQualifiers(), false);
641   } else {
642     mangleType(Ty, SR, QMM_Drop);
643     mangleQualifiers(Ty.getQualifiers(), false);
644   }
645 }
646 
647 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
648                                                       const ValueDecl *VD,
649                                                       StringRef Prefix) {
650   // <member-data-pointer> ::= <integer-literal>
651   //                       ::= $F <number> <number>
652   //                       ::= $G <number> <number> <number>
653 
654   int64_t FieldOffset;
655   int64_t VBTableOffset;
656   MSInheritanceModel IM = RD->getMSInheritanceModel();
657   if (VD) {
658     FieldOffset = getASTContext().getFieldOffset(VD);
659     assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
660            "cannot take address of bitfield");
661     FieldOffset /= getASTContext().getCharWidth();
662 
663     VBTableOffset = 0;
664 
665     if (IM == MSInheritanceModel::Virtual)
666       FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
667   } else {
668     FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
669 
670     VBTableOffset = -1;
671   }
672 
673   char Code = '\0';
674   switch (IM) {
675   case MSInheritanceModel::Single:      Code = '0'; break;
676   case MSInheritanceModel::Multiple:    Code = '0'; break;
677   case MSInheritanceModel::Virtual:     Code = 'F'; break;
678   case MSInheritanceModel::Unspecified: Code = 'G'; break;
679   }
680 
681   Out << Prefix << Code;
682 
683   mangleNumber(FieldOffset);
684 
685   // The C++ standard doesn't allow base-to-derived member pointer conversions
686   // in template parameter contexts, so the vbptr offset of data member pointers
687   // is always zero.
688   if (inheritanceModelHasVBPtrOffsetField(IM))
689     mangleNumber(0);
690   if (inheritanceModelHasVBTableOffsetField(IM))
691     mangleNumber(VBTableOffset);
692 }
693 
694 void
695 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
696                                                      const CXXMethodDecl *MD,
697                                                      StringRef Prefix) {
698   // <member-function-pointer> ::= $1? <name>
699   //                           ::= $H? <name> <number>
700   //                           ::= $I? <name> <number> <number>
701   //                           ::= $J? <name> <number> <number> <number>
702 
703   MSInheritanceModel IM = RD->getMSInheritanceModel();
704 
705   char Code = '\0';
706   switch (IM) {
707   case MSInheritanceModel::Single:      Code = '1'; break;
708   case MSInheritanceModel::Multiple:    Code = 'H'; break;
709   case MSInheritanceModel::Virtual:     Code = 'I'; break;
710   case MSInheritanceModel::Unspecified: Code = 'J'; break;
711   }
712 
713   // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr
714   // thunk.
715   uint64_t NVOffset = 0;
716   uint64_t VBTableOffset = 0;
717   uint64_t VBPtrOffset = 0;
718   if (MD) {
719     Out << Prefix << Code << '?';
720     if (MD->isVirtual()) {
721       MicrosoftVTableContext *VTContext =
722           cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
723       MethodVFTableLocation ML =
724           VTContext->getMethodVFTableLocation(GlobalDecl(MD));
725       mangleVirtualMemPtrThunk(MD, ML);
726       NVOffset = ML.VFPtrOffset.getQuantity();
727       VBTableOffset = ML.VBTableIndex * 4;
728       if (ML.VBase) {
729         const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
730         VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
731       }
732     } else {
733       mangleName(MD);
734       mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
735     }
736 
737     if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual)
738       NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
739   } else {
740     // Null single inheritance member functions are encoded as a simple nullptr.
741     if (IM == MSInheritanceModel::Single) {
742       Out << Prefix << "0A@";
743       return;
744     }
745     if (IM == MSInheritanceModel::Unspecified)
746       VBTableOffset = -1;
747     Out << Prefix << Code;
748   }
749 
750   if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM))
751     mangleNumber(static_cast<uint32_t>(NVOffset));
752   if (inheritanceModelHasVBPtrOffsetField(IM))
753     mangleNumber(VBPtrOffset);
754   if (inheritanceModelHasVBTableOffsetField(IM))
755     mangleNumber(VBTableOffset);
756 }
757 
758 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
759     const CXXMethodDecl *MD, const MethodVFTableLocation &ML) {
760   // Get the vftable offset.
761   CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
762       getASTContext().getTargetInfo().getPointerWidth(0));
763   uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
764 
765   Out << "?_9";
766   mangleName(MD->getParent());
767   Out << "$B";
768   mangleNumber(OffsetInVFTable);
769   Out << 'A';
770   mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>());
771 }
772 
773 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
774   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
775 
776   // Always start with the unqualified name.
777   mangleUnqualifiedName(ND);
778 
779   mangleNestedName(ND);
780 
781   // Terminate the whole name with an '@'.
782   Out << '@';
783 }
784 
785 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
786   mangleNumber(llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false));
787 }
788 
789 void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) {
790   // MSVC never mangles any integer wider than 64 bits. In general it appears
791   // to convert every integer to signed 64 bit before mangling (including
792   // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom
793   // 64.
794   llvm::APInt Value =
795       Number.isSigned() ? Number.sextOrSelf(64) : Number.zextOrSelf(64);
796 
797   // <non-negative integer> ::= A@              # when Number == 0
798   //                        ::= <decimal digit> # when 1 <= Number <= 10
799   //                        ::= <hex digit>+ @  # when Number >= 10
800   //
801   // <number>               ::= [?] <non-negative integer>
802 
803   if (Value.isNegative()) {
804     Value = -Value;
805     Out << '?';
806   }
807   mangleBits(Value);
808 }
809 
810 void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) {
811   using llvm::APFloat;
812 
813   switch (APFloat::SemanticsToEnum(Number.getSemantics())) {
814   case APFloat::S_IEEEsingle: Out << 'A'; break;
815   case APFloat::S_IEEEdouble: Out << 'B'; break;
816 
817   // The following are all Clang extensions. We try to pick manglings that are
818   // unlikely to conflict with MSVC's scheme.
819   case APFloat::S_IEEEhalf: Out << 'V'; break;
820   case APFloat::S_BFloat: Out << 'W'; break;
821   case APFloat::S_x87DoubleExtended: Out << 'X'; break;
822   case APFloat::S_IEEEquad: Out << 'Y'; break;
823   case APFloat::S_PPCDoubleDouble: Out << 'Z'; break;
824   }
825 
826   mangleBits(Number.bitcastToAPInt());
827 }
828 
829 void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) {
830   if (Value == 0)
831     Out << "A@";
832   else if (Value.uge(1) && Value.ule(10))
833     Out << (Value - 1);
834   else {
835     // Numbers that are not encoded as decimal digits are represented as nibbles
836     // in the range of ASCII characters 'A' to 'P'.
837     // The number 0x123450 would be encoded as 'BCDEFA'
838     llvm::SmallString<32> EncodedNumberBuffer;
839     for (; Value != 0; Value.lshrInPlace(4))
840       EncodedNumberBuffer.push_back('A' + (Value & 0xf).getZExtValue());
841     std::reverse(EncodedNumberBuffer.begin(), EncodedNumberBuffer.end());
842     Out.write(EncodedNumberBuffer.data(), EncodedNumberBuffer.size());
843     Out << '@';
844   }
845 }
846 
847 static const TemplateDecl *
848 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
849   // Check if we have a function template.
850   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
851     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
852       TemplateArgs = FD->getTemplateSpecializationArgs();
853       return TD;
854     }
855   }
856 
857   // Check if we have a class template.
858   if (const ClassTemplateSpecializationDecl *Spec =
859           dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
860     TemplateArgs = &Spec->getTemplateArgs();
861     return Spec->getSpecializedTemplate();
862   }
863 
864   // Check if we have a variable template.
865   if (const VarTemplateSpecializationDecl *Spec =
866           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
867     TemplateArgs = &Spec->getTemplateArgs();
868     return Spec->getSpecializedTemplate();
869   }
870 
871   return nullptr;
872 }
873 
874 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
875                                                     DeclarationName Name) {
876   //  <unqualified-name> ::= <operator-name>
877   //                     ::= <ctor-dtor-name>
878   //                     ::= <source-name>
879   //                     ::= <template-name>
880 
881   // Check if we have a template.
882   const TemplateArgumentList *TemplateArgs = nullptr;
883   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
884     // Function templates aren't considered for name back referencing.  This
885     // makes sense since function templates aren't likely to occur multiple
886     // times in a symbol.
887     if (isa<FunctionTemplateDecl>(TD)) {
888       mangleTemplateInstantiationName(TD, *TemplateArgs);
889       Out << '@';
890       return;
891     }
892 
893     // Here comes the tricky thing: if we need to mangle something like
894     //   void foo(A::X<Y>, B::X<Y>),
895     // the X<Y> part is aliased. However, if you need to mangle
896     //   void foo(A::X<A::Y>, A::X<B::Y>),
897     // the A::X<> part is not aliased.
898     // That is, from the mangler's perspective we have a structure like this:
899     //   namespace[s] -> type[ -> template-parameters]
900     // but from the Clang perspective we have
901     //   type [ -> template-parameters]
902     //      \-> namespace[s]
903     // What we do is we create a new mangler, mangle the same type (without
904     // a namespace suffix) to a string using the extra mangler and then use
905     // the mangled type name as a key to check the mangling of different types
906     // for aliasing.
907 
908     // It's important to key cache reads off ND, not TD -- the same TD can
909     // be used with different TemplateArgs, but ND uniquely identifies
910     // TD / TemplateArg pairs.
911     ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND);
912     if (Found == TemplateArgBackReferences.end()) {
913 
914       TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND);
915       if (Found == TemplateArgStrings.end()) {
916         // Mangle full template name into temporary buffer.
917         llvm::SmallString<64> TemplateMangling;
918         llvm::raw_svector_ostream Stream(TemplateMangling);
919         MicrosoftCXXNameMangler Extra(Context, Stream);
920         Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
921 
922         // Use the string backref vector to possibly get a back reference.
923         mangleSourceName(TemplateMangling);
924 
925         // Memoize back reference for this type if one exist, else memoize
926         // the mangling itself.
927         BackRefVec::iterator StringFound =
928             llvm::find(NameBackReferences, TemplateMangling);
929         if (StringFound != NameBackReferences.end()) {
930           TemplateArgBackReferences[ND] =
931               StringFound - NameBackReferences.begin();
932         } else {
933           TemplateArgStrings[ND] =
934               TemplateArgStringStorage.save(TemplateMangling.str());
935         }
936       } else {
937         Out << Found->second << '@'; // Outputs a StringRef.
938       }
939     } else {
940       Out << Found->second; // Outputs a back reference (an int).
941     }
942     return;
943   }
944 
945   switch (Name.getNameKind()) {
946     case DeclarationName::Identifier: {
947       if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
948         mangleSourceName(II->getName());
949         break;
950       }
951 
952       // Otherwise, an anonymous entity.  We must have a declaration.
953       assert(ND && "mangling empty name without declaration");
954 
955       if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
956         if (NS->isAnonymousNamespace()) {
957           Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@';
958           break;
959         }
960       }
961 
962       if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) {
963         // Decomposition declarations are considered anonymous, and get
964         // numbered with a $S prefix.
965         llvm::SmallString<64> Name("$S");
966         // Get a unique id for the anonymous struct.
967         Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1);
968         mangleSourceName(Name);
969         break;
970       }
971 
972       if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
973         // We must have an anonymous union or struct declaration.
974         const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
975         assert(RD && "expected variable decl to have a record type");
976         // Anonymous types with no tag or typedef get the name of their
977         // declarator mangled in.  If they have no declarator, number them with
978         // a $S prefix.
979         llvm::SmallString<64> Name("$S");
980         // Get a unique id for the anonymous struct.
981         Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
982         mangleSourceName(Name.str());
983         break;
984       }
985 
986       if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) {
987         // Mangle a GUID object as if it were a variable with the corresponding
988         // mangled name.
989         SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
990         llvm::raw_svector_ostream GUIDOS(GUID);
991         Context.mangleMSGuidDecl(GD, GUIDOS);
992         mangleSourceName(GUID);
993         break;
994       }
995 
996       if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
997         Out << "?__N";
998         mangleTemplateArgValue(TPO->getType().getUnqualifiedType(),
999                                TPO->getValue());
1000         break;
1001       }
1002 
1003       // We must have an anonymous struct.
1004       const TagDecl *TD = cast<TagDecl>(ND);
1005       if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1006         assert(TD->getDeclContext() == D->getDeclContext() &&
1007                "Typedef should not be in another decl context!");
1008         assert(D->getDeclName().getAsIdentifierInfo() &&
1009                "Typedef was not named!");
1010         mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
1011         break;
1012       }
1013 
1014       if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1015         if (Record->isLambda()) {
1016           llvm::SmallString<10> Name("<lambda_");
1017 
1018           Decl *LambdaContextDecl = Record->getLambdaContextDecl();
1019           unsigned LambdaManglingNumber = Record->getLambdaManglingNumber();
1020           unsigned LambdaId;
1021           const ParmVarDecl *Parm =
1022               dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
1023           const FunctionDecl *Func =
1024               Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
1025 
1026           if (Func) {
1027             unsigned DefaultArgNo =
1028                 Func->getNumParams() - Parm->getFunctionScopeIndex();
1029             Name += llvm::utostr(DefaultArgNo);
1030             Name += "_";
1031           }
1032 
1033           if (LambdaManglingNumber)
1034             LambdaId = LambdaManglingNumber;
1035           else
1036             LambdaId = Context.getLambdaId(Record);
1037 
1038           Name += llvm::utostr(LambdaId);
1039           Name += ">";
1040 
1041           mangleSourceName(Name);
1042 
1043           // If the context is a variable or a class member and not a parameter,
1044           // it is encoded in a qualified name.
1045           if (LambdaManglingNumber && LambdaContextDecl) {
1046             if ((isa<VarDecl>(LambdaContextDecl) ||
1047                  isa<FieldDecl>(LambdaContextDecl)) &&
1048                 !isa<ParmVarDecl>(LambdaContextDecl)) {
1049               mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl));
1050             }
1051           }
1052           break;
1053         }
1054       }
1055 
1056       llvm::SmallString<64> Name;
1057       if (DeclaratorDecl *DD =
1058               Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
1059         // Anonymous types without a name for linkage purposes have their
1060         // declarator mangled in if they have one.
1061         Name += "<unnamed-type-";
1062         Name += DD->getName();
1063       } else if (TypedefNameDecl *TND =
1064                      Context.getASTContext().getTypedefNameForUnnamedTagDecl(
1065                          TD)) {
1066         // Anonymous types without a name for linkage purposes have their
1067         // associate typedef mangled in if they have one.
1068         Name += "<unnamed-type-";
1069         Name += TND->getName();
1070       } else if (isa<EnumDecl>(TD) &&
1071                  cast<EnumDecl>(TD)->enumerator_begin() !=
1072                      cast<EnumDecl>(TD)->enumerator_end()) {
1073         // Anonymous non-empty enums mangle in the first enumerator.
1074         auto *ED = cast<EnumDecl>(TD);
1075         Name += "<unnamed-enum-";
1076         Name += ED->enumerator_begin()->getName();
1077       } else {
1078         // Otherwise, number the types using a $S prefix.
1079         Name += "<unnamed-type-$S";
1080         Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
1081       }
1082       Name += ">";
1083       mangleSourceName(Name.str());
1084       break;
1085     }
1086 
1087     case DeclarationName::ObjCZeroArgSelector:
1088     case DeclarationName::ObjCOneArgSelector:
1089     case DeclarationName::ObjCMultiArgSelector: {
1090       // This is reachable only when constructing an outlined SEH finally
1091       // block.  Nothing depends on this mangling and it's used only with
1092       // functinos with internal linkage.
1093       llvm::SmallString<64> Name;
1094       mangleSourceName(Name.str());
1095       break;
1096     }
1097 
1098     case DeclarationName::CXXConstructorName:
1099       if (isStructorDecl(ND)) {
1100         if (StructorType == Ctor_CopyingClosure) {
1101           Out << "?_O";
1102           return;
1103         }
1104         if (StructorType == Ctor_DefaultClosure) {
1105           Out << "?_F";
1106           return;
1107         }
1108       }
1109       Out << "?0";
1110       return;
1111 
1112     case DeclarationName::CXXDestructorName:
1113       if (isStructorDecl(ND))
1114         // If the named decl is the C++ destructor we're mangling,
1115         // use the type we were given.
1116         mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1117       else
1118         // Otherwise, use the base destructor name. This is relevant if a
1119         // class with a destructor is declared within a destructor.
1120         mangleCXXDtorType(Dtor_Base);
1121       break;
1122 
1123     case DeclarationName::CXXConversionFunctionName:
1124       // <operator-name> ::= ?B # (cast)
1125       // The target type is encoded as the return type.
1126       Out << "?B";
1127       break;
1128 
1129     case DeclarationName::CXXOperatorName:
1130       mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
1131       break;
1132 
1133     case DeclarationName::CXXLiteralOperatorName: {
1134       Out << "?__K";
1135       mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
1136       break;
1137     }
1138 
1139     case DeclarationName::CXXDeductionGuideName:
1140       llvm_unreachable("Can't mangle a deduction guide name!");
1141 
1142     case DeclarationName::CXXUsingDirective:
1143       llvm_unreachable("Can't mangle a using directive name!");
1144   }
1145 }
1146 
1147 // <postfix> ::= <unqualified-name> [<postfix>]
1148 //           ::= <substitution> [<postfix>]
1149 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
1150   const DeclContext *DC = getEffectiveDeclContext(ND);
1151   while (!DC->isTranslationUnit()) {
1152     if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
1153       unsigned Disc;
1154       if (Context.getNextDiscriminator(ND, Disc)) {
1155         Out << '?';
1156         mangleNumber(Disc);
1157         Out << '?';
1158       }
1159     }
1160 
1161     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
1162       auto Discriminate =
1163           [](StringRef Name, const unsigned Discriminator,
1164              const unsigned ParameterDiscriminator) -> std::string {
1165         std::string Buffer;
1166         llvm::raw_string_ostream Stream(Buffer);
1167         Stream << Name;
1168         if (Discriminator)
1169           Stream << '_' << Discriminator;
1170         if (ParameterDiscriminator)
1171           Stream << '_' << ParameterDiscriminator;
1172         return Stream.str();
1173       };
1174 
1175       unsigned Discriminator = BD->getBlockManglingNumber();
1176       if (!Discriminator)
1177         Discriminator = Context.getBlockId(BD, /*Local=*/false);
1178 
1179       // Mangle the parameter position as a discriminator to deal with unnamed
1180       // parameters.  Rather than mangling the unqualified parameter name,
1181       // always use the position to give a uniform mangling.
1182       unsigned ParameterDiscriminator = 0;
1183       if (const auto *MC = BD->getBlockManglingContextDecl())
1184         if (const auto *P = dyn_cast<ParmVarDecl>(MC))
1185           if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext()))
1186             ParameterDiscriminator =
1187                 F->getNumParams() - P->getFunctionScopeIndex();
1188 
1189       DC = getEffectiveDeclContext(BD);
1190 
1191       Out << '?';
1192       mangleSourceName(Discriminate("_block_invoke", Discriminator,
1193                                     ParameterDiscriminator));
1194       // If we have a block mangling context, encode that now.  This allows us
1195       // to discriminate between named static data initializers in the same
1196       // scope.  This is handled differently from parameters, which use
1197       // positions to discriminate between multiple instances.
1198       if (const auto *MC = BD->getBlockManglingContextDecl())
1199         if (!isa<ParmVarDecl>(MC))
1200           if (const auto *ND = dyn_cast<NamedDecl>(MC))
1201             mangleUnqualifiedName(ND);
1202       // MS ABI and Itanium manglings are in inverted scopes.  In the case of a
1203       // RecordDecl, mangle the entire scope hierarchy at this point rather than
1204       // just the unqualified name to get the ordering correct.
1205       if (const auto *RD = dyn_cast<RecordDecl>(DC))
1206         mangleName(RD);
1207       else
1208         Out << '@';
1209       // void __cdecl
1210       Out << "YAX";
1211       // struct __block_literal *
1212       Out << 'P';
1213       // __ptr64
1214       if (PointersAre64Bit)
1215         Out << 'E';
1216       Out << 'A';
1217       mangleArtificialTagType(TTK_Struct,
1218                              Discriminate("__block_literal", Discriminator,
1219                                           ParameterDiscriminator));
1220       Out << "@Z";
1221 
1222       // If the effective context was a Record, we have fully mangled the
1223       // qualified name and do not need to continue.
1224       if (isa<RecordDecl>(DC))
1225         break;
1226       continue;
1227     } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
1228       mangleObjCMethodName(Method);
1229     } else if (isa<NamedDecl>(DC)) {
1230       ND = cast<NamedDecl>(DC);
1231       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1232         mangle(FD, "?");
1233         break;
1234       } else {
1235         mangleUnqualifiedName(ND);
1236         // Lambdas in default arguments conceptually belong to the function the
1237         // parameter corresponds to.
1238         if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) {
1239           DC = LDADC;
1240           continue;
1241         }
1242       }
1243     }
1244     DC = DC->getParent();
1245   }
1246 }
1247 
1248 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
1249   // Microsoft uses the names on the case labels for these dtor variants.  Clang
1250   // uses the Itanium terminology internally.  Everything in this ABI delegates
1251   // towards the base dtor.
1252   switch (T) {
1253   // <operator-name> ::= ?1  # destructor
1254   case Dtor_Base: Out << "?1"; return;
1255   // <operator-name> ::= ?_D # vbase destructor
1256   case Dtor_Complete: Out << "?_D"; return;
1257   // <operator-name> ::= ?_G # scalar deleting destructor
1258   case Dtor_Deleting: Out << "?_G"; return;
1259   // <operator-name> ::= ?_E # vector deleting destructor
1260   // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need
1261   // it.
1262   case Dtor_Comdat:
1263     llvm_unreachable("not expecting a COMDAT");
1264   }
1265   llvm_unreachable("Unsupported dtor type?");
1266 }
1267 
1268 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
1269                                                  SourceLocation Loc) {
1270   switch (OO) {
1271   //                     ?0 # constructor
1272   //                     ?1 # destructor
1273   // <operator-name> ::= ?2 # new
1274   case OO_New: Out << "?2"; break;
1275   // <operator-name> ::= ?3 # delete
1276   case OO_Delete: Out << "?3"; break;
1277   // <operator-name> ::= ?4 # =
1278   case OO_Equal: Out << "?4"; break;
1279   // <operator-name> ::= ?5 # >>
1280   case OO_GreaterGreater: Out << "?5"; break;
1281   // <operator-name> ::= ?6 # <<
1282   case OO_LessLess: Out << "?6"; break;
1283   // <operator-name> ::= ?7 # !
1284   case OO_Exclaim: Out << "?7"; break;
1285   // <operator-name> ::= ?8 # ==
1286   case OO_EqualEqual: Out << "?8"; break;
1287   // <operator-name> ::= ?9 # !=
1288   case OO_ExclaimEqual: Out << "?9"; break;
1289   // <operator-name> ::= ?A # []
1290   case OO_Subscript: Out << "?A"; break;
1291   //                     ?B # conversion
1292   // <operator-name> ::= ?C # ->
1293   case OO_Arrow: Out << "?C"; break;
1294   // <operator-name> ::= ?D # *
1295   case OO_Star: Out << "?D"; break;
1296   // <operator-name> ::= ?E # ++
1297   case OO_PlusPlus: Out << "?E"; break;
1298   // <operator-name> ::= ?F # --
1299   case OO_MinusMinus: Out << "?F"; break;
1300   // <operator-name> ::= ?G # -
1301   case OO_Minus: Out << "?G"; break;
1302   // <operator-name> ::= ?H # +
1303   case OO_Plus: Out << "?H"; break;
1304   // <operator-name> ::= ?I # &
1305   case OO_Amp: Out << "?I"; break;
1306   // <operator-name> ::= ?J # ->*
1307   case OO_ArrowStar: Out << "?J"; break;
1308   // <operator-name> ::= ?K # /
1309   case OO_Slash: Out << "?K"; break;
1310   // <operator-name> ::= ?L # %
1311   case OO_Percent: Out << "?L"; break;
1312   // <operator-name> ::= ?M # <
1313   case OO_Less: Out << "?M"; break;
1314   // <operator-name> ::= ?N # <=
1315   case OO_LessEqual: Out << "?N"; break;
1316   // <operator-name> ::= ?O # >
1317   case OO_Greater: Out << "?O"; break;
1318   // <operator-name> ::= ?P # >=
1319   case OO_GreaterEqual: Out << "?P"; break;
1320   // <operator-name> ::= ?Q # ,
1321   case OO_Comma: Out << "?Q"; break;
1322   // <operator-name> ::= ?R # ()
1323   case OO_Call: Out << "?R"; break;
1324   // <operator-name> ::= ?S # ~
1325   case OO_Tilde: Out << "?S"; break;
1326   // <operator-name> ::= ?T # ^
1327   case OO_Caret: Out << "?T"; break;
1328   // <operator-name> ::= ?U # |
1329   case OO_Pipe: Out << "?U"; break;
1330   // <operator-name> ::= ?V # &&
1331   case OO_AmpAmp: Out << "?V"; break;
1332   // <operator-name> ::= ?W # ||
1333   case OO_PipePipe: Out << "?W"; break;
1334   // <operator-name> ::= ?X # *=
1335   case OO_StarEqual: Out << "?X"; break;
1336   // <operator-name> ::= ?Y # +=
1337   case OO_PlusEqual: Out << "?Y"; break;
1338   // <operator-name> ::= ?Z # -=
1339   case OO_MinusEqual: Out << "?Z"; break;
1340   // <operator-name> ::= ?_0 # /=
1341   case OO_SlashEqual: Out << "?_0"; break;
1342   // <operator-name> ::= ?_1 # %=
1343   case OO_PercentEqual: Out << "?_1"; break;
1344   // <operator-name> ::= ?_2 # >>=
1345   case OO_GreaterGreaterEqual: Out << "?_2"; break;
1346   // <operator-name> ::= ?_3 # <<=
1347   case OO_LessLessEqual: Out << "?_3"; break;
1348   // <operator-name> ::= ?_4 # &=
1349   case OO_AmpEqual: Out << "?_4"; break;
1350   // <operator-name> ::= ?_5 # |=
1351   case OO_PipeEqual: Out << "?_5"; break;
1352   // <operator-name> ::= ?_6 # ^=
1353   case OO_CaretEqual: Out << "?_6"; break;
1354   //                     ?_7 # vftable
1355   //                     ?_8 # vbtable
1356   //                     ?_9 # vcall
1357   //                     ?_A # typeof
1358   //                     ?_B # local static guard
1359   //                     ?_C # string
1360   //                     ?_D # vbase destructor
1361   //                     ?_E # vector deleting destructor
1362   //                     ?_F # default constructor closure
1363   //                     ?_G # scalar deleting destructor
1364   //                     ?_H # vector constructor iterator
1365   //                     ?_I # vector destructor iterator
1366   //                     ?_J # vector vbase constructor iterator
1367   //                     ?_K # virtual displacement map
1368   //                     ?_L # eh vector constructor iterator
1369   //                     ?_M # eh vector destructor iterator
1370   //                     ?_N # eh vector vbase constructor iterator
1371   //                     ?_O # copy constructor closure
1372   //                     ?_P<name> # udt returning <name>
1373   //                     ?_Q # <unknown>
1374   //                     ?_R0 # RTTI Type Descriptor
1375   //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1376   //                     ?_R2 # RTTI Base Class Array
1377   //                     ?_R3 # RTTI Class Hierarchy Descriptor
1378   //                     ?_R4 # RTTI Complete Object Locator
1379   //                     ?_S # local vftable
1380   //                     ?_T # local vftable constructor closure
1381   // <operator-name> ::= ?_U # new[]
1382   case OO_Array_New: Out << "?_U"; break;
1383   // <operator-name> ::= ?_V # delete[]
1384   case OO_Array_Delete: Out << "?_V"; break;
1385   // <operator-name> ::= ?__L # co_await
1386   case OO_Coawait: Out << "?__L"; break;
1387   // <operator-name> ::= ?__M # <=>
1388   case OO_Spaceship: Out << "?__M"; break;
1389 
1390   case OO_Conditional: {
1391     DiagnosticsEngine &Diags = Context.getDiags();
1392     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1393       "cannot mangle this conditional operator yet");
1394     Diags.Report(Loc, DiagID);
1395     break;
1396   }
1397 
1398   case OO_None:
1399   case NUM_OVERLOADED_OPERATORS:
1400     llvm_unreachable("Not an overloaded operator");
1401   }
1402 }
1403 
1404 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1405   // <source name> ::= <identifier> @
1406   BackRefVec::iterator Found = llvm::find(NameBackReferences, Name);
1407   if (Found == NameBackReferences.end()) {
1408     if (NameBackReferences.size() < 10)
1409       NameBackReferences.push_back(std::string(Name));
1410     Out << Name << '@';
1411   } else {
1412     Out << (Found - NameBackReferences.begin());
1413   }
1414 }
1415 
1416 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1417   Context.mangleObjCMethodNameAsSourceName(MD, Out);
1418 }
1419 
1420 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1421     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1422   // <template-name> ::= <unscoped-template-name> <template-args>
1423   //                 ::= <substitution>
1424   // Always start with the unqualified name.
1425 
1426   // Templates have their own context for back references.
1427   ArgBackRefMap OuterFunArgsContext;
1428   ArgBackRefMap OuterTemplateArgsContext;
1429   BackRefVec OuterTemplateContext;
1430   PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1431   NameBackReferences.swap(OuterTemplateContext);
1432   FunArgBackReferences.swap(OuterFunArgsContext);
1433   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1434   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1435 
1436   mangleUnscopedTemplateName(TD);
1437   mangleTemplateArgs(TD, TemplateArgs);
1438 
1439   // Restore the previous back reference contexts.
1440   NameBackReferences.swap(OuterTemplateContext);
1441   FunArgBackReferences.swap(OuterFunArgsContext);
1442   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1443   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1444 }
1445 
1446 void
1447 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1448   // <unscoped-template-name> ::= ?$ <unqualified-name>
1449   Out << "?$";
1450   mangleUnqualifiedName(TD);
1451 }
1452 
1453 void MicrosoftCXXNameMangler::mangleIntegerLiteral(
1454     const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD,
1455     QualType TemplateArgType) {
1456   // <integer-literal> ::= $0 <number>
1457   Out << "$";
1458 
1459   // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when
1460   // argument is integer.
1461   if (getASTContext().getLangOpts().isCompatibleWithMSVC(
1462           LangOptions::MSVC2019) &&
1463       PD && PD->getType()->getTypeClass() == Type::Auto &&
1464       !TemplateArgType.isNull()) {
1465     Out << "M";
1466     mangleType(TemplateArgType, SourceRange(), QMM_Drop);
1467   }
1468 
1469   Out << "0";
1470 
1471   mangleNumber(Value);
1472 }
1473 
1474 void MicrosoftCXXNameMangler::mangleExpression(
1475     const Expr *E, const NonTypeTemplateParmDecl *PD) {
1476   // See if this is a constant expression.
1477   if (Optional<llvm::APSInt> Value =
1478           E->getIntegerConstantExpr(Context.getASTContext())) {
1479     mangleIntegerLiteral(*Value, PD, E->getType());
1480     return;
1481   }
1482 
1483   // As bad as this diagnostic is, it's better than crashing.
1484   DiagnosticsEngine &Diags = Context.getDiags();
1485   unsigned DiagID = Diags.getCustomDiagID(
1486       DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1487   Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1488                                         << E->getSourceRange();
1489 }
1490 
1491 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1492     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1493   // <template-args> ::= <template-arg>+
1494   const TemplateParameterList *TPL = TD->getTemplateParameters();
1495   assert(TPL->size() == TemplateArgs.size() &&
1496          "size mismatch between args and parms!");
1497 
1498   for (size_t i = 0; i < TemplateArgs.size(); ++i) {
1499     const TemplateArgument &TA = TemplateArgs[i];
1500 
1501     // Separate consecutive packs by $$Z.
1502     if (i > 0 && TA.getKind() == TemplateArgument::Pack &&
1503         TemplateArgs[i - 1].getKind() == TemplateArgument::Pack)
1504       Out << "$$Z";
1505 
1506     mangleTemplateArg(TD, TA, TPL->getParam(i));
1507   }
1508 }
1509 
1510 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1511                                                 const TemplateArgument &TA,
1512                                                 const NamedDecl *Parm) {
1513   // <template-arg> ::= <type>
1514   //                ::= <integer-literal>
1515   //                ::= <member-data-pointer>
1516   //                ::= <member-function-pointer>
1517   //                ::= $ <constant-value>
1518   //                ::= <template-args>
1519   //
1520   // <constant-value> ::= 0 <number>                   # integer
1521   //                  ::= 1 <mangled-name>             # address of D
1522   //                  ::= 2 <type> <typed-constant-value>* @ # struct
1523   //                  ::= 3 <type> <constant-value>* @ # array
1524   //                  ::= 4 ???                        # string
1525   //                  ::= 5 <constant-value> @         # address of subobject
1526   //                  ::= 6 <constant-value> <unqualified-name> @ # a.b
1527   //                  ::= 7 <type> [<unqualified-name> <constant-value>] @
1528   //                      # union, with or without an active member
1529   //                  # pointer to member, symbolically
1530   //                  ::= 8 <class> <unqualified-name> @
1531   //                  ::= A <type> <non-negative integer>  # float
1532   //                  ::= B <type> <non-negative integer>  # double
1533   //                  ::= E <mangled-name>             # reference to D
1534   //                  # pointer to member, by component value
1535   //                  ::= F <number> <number>
1536   //                  ::= G <number> <number> <number>
1537   //                  ::= H <mangled-name> <number>
1538   //                  ::= I <mangled-name> <number> <number>
1539   //                  ::= J <mangled-name> <number> <number> <number>
1540   //
1541   // <typed-constant-value> ::= [<type>] <constant-value>
1542   //
1543   // The <type> appears to be included in a <typed-constant-value> only in the
1544   // '0', '1', '8', 'A', 'B', and 'E' cases.
1545 
1546   switch (TA.getKind()) {
1547   case TemplateArgument::Null:
1548     llvm_unreachable("Can't mangle null template arguments!");
1549   case TemplateArgument::TemplateExpansion:
1550     llvm_unreachable("Can't mangle template expansion arguments!");
1551   case TemplateArgument::Type: {
1552     QualType T = TA.getAsType();
1553     mangleType(T, SourceRange(), QMM_Escape);
1554     break;
1555   }
1556   case TemplateArgument::Declaration: {
1557     const NamedDecl *ND = TA.getAsDecl();
1558     if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1559       mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext())
1560                                   ->getMostRecentNonInjectedDecl(),
1561                               cast<ValueDecl>(ND));
1562     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1563       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1564       if (MD && MD->isInstance()) {
1565         mangleMemberFunctionPointer(
1566             MD->getParent()->getMostRecentNonInjectedDecl(), MD);
1567       } else {
1568         Out << "$1?";
1569         mangleName(FD);
1570         mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1571       }
1572     } else if (TA.getParamTypeForDecl()->isRecordType()) {
1573       Out << "$";
1574       auto *TPO = cast<TemplateParamObjectDecl>(ND);
1575       mangleTemplateArgValue(TPO->getType().getUnqualifiedType(),
1576                              TPO->getValue());
1577     } else {
1578       mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1579     }
1580     break;
1581   }
1582   case TemplateArgument::Integral: {
1583     QualType T = TA.getIntegralType();
1584     mangleIntegerLiteral(TA.getAsIntegral(),
1585                          cast<NonTypeTemplateParmDecl>(Parm), T);
1586     break;
1587   }
1588   case TemplateArgument::NullPtr: {
1589     QualType T = TA.getNullPtrType();
1590     if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1591       const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1592       if (MPT->isMemberFunctionPointerType() &&
1593           !isa<FunctionTemplateDecl>(TD)) {
1594         mangleMemberFunctionPointer(RD, nullptr);
1595         return;
1596       }
1597       if (MPT->isMemberDataPointer()) {
1598         if (!isa<FunctionTemplateDecl>(TD)) {
1599           mangleMemberDataPointer(RD, nullptr);
1600           return;
1601         }
1602         // nullptr data pointers are always represented with a single field
1603         // which is initialized with either 0 or -1.  Why -1?  Well, we need to
1604         // distinguish the case where the data member is at offset zero in the
1605         // record.
1606         // However, we are free to use 0 *if* we would use multiple fields for
1607         // non-nullptr member pointers.
1608         if (!RD->nullFieldOffsetIsZero()) {
1609           mangleIntegerLiteral(llvm::APSInt::get(-1),
1610                                cast<NonTypeTemplateParmDecl>(Parm), T);
1611           return;
1612         }
1613       }
1614     }
1615     mangleIntegerLiteral(llvm::APSInt::getUnsigned(0),
1616                          cast<NonTypeTemplateParmDecl>(Parm), T);
1617     break;
1618   }
1619   case TemplateArgument::Expression:
1620     mangleExpression(TA.getAsExpr(), cast<NonTypeTemplateParmDecl>(Parm));
1621     break;
1622   case TemplateArgument::Pack: {
1623     ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1624     if (TemplateArgs.empty()) {
1625       if (isa<TemplateTypeParmDecl>(Parm) ||
1626           isa<TemplateTemplateParmDecl>(Parm))
1627         // MSVC 2015 changed the mangling for empty expanded template packs,
1628         // use the old mangling for link compatibility for old versions.
1629         Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1630                     LangOptions::MSVC2015)
1631                     ? "$$V"
1632                     : "$$$V");
1633       else if (isa<NonTypeTemplateParmDecl>(Parm))
1634         Out << "$S";
1635       else
1636         llvm_unreachable("unexpected template parameter decl!");
1637     } else {
1638       for (const TemplateArgument &PA : TemplateArgs)
1639         mangleTemplateArg(TD, PA, Parm);
1640     }
1641     break;
1642   }
1643   case TemplateArgument::Template: {
1644     const NamedDecl *ND =
1645         TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1646     if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1647       mangleType(TD);
1648     } else if (isa<TypeAliasDecl>(ND)) {
1649       Out << "$$Y";
1650       mangleName(ND);
1651     } else {
1652       llvm_unreachable("unexpected template template NamedDecl!");
1653     }
1654     break;
1655   }
1656   }
1657 }
1658 
1659 void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T,
1660                                                      const APValue &V,
1661                                                      bool WithScalarType) {
1662   switch (V.getKind()) {
1663   case APValue::None:
1664   case APValue::Indeterminate:
1665     // FIXME: MSVC doesn't allow this, so we can't be sure how it should be
1666     // mangled.
1667     if (WithScalarType)
1668       mangleType(T, SourceRange(), QMM_Escape);
1669     Out << '@';
1670     return;
1671 
1672   case APValue::Int:
1673     if (WithScalarType)
1674       mangleType(T, SourceRange(), QMM_Escape);
1675     Out << '0';
1676     mangleNumber(V.getInt());
1677     return;
1678 
1679   case APValue::Float:
1680     if (WithScalarType)
1681       mangleType(T, SourceRange(), QMM_Escape);
1682     mangleFloat(V.getFloat());
1683     return;
1684 
1685   case APValue::LValue: {
1686     if (WithScalarType)
1687       mangleType(T, SourceRange(), QMM_Escape);
1688 
1689     // We don't know how to mangle past-the-end pointers yet.
1690     if (V.isLValueOnePastTheEnd())
1691       break;
1692 
1693     APValue::LValueBase Base = V.getLValueBase();
1694     if (!V.hasLValuePath() || V.getLValuePath().empty()) {
1695       // Taking the address of a complete object has a special-case mangling.
1696       if (Base.isNull()) {
1697         // MSVC emits 0A@ for null pointers. Generalize this for arbitrary
1698         // integers cast to pointers.
1699         // FIXME: This mangles 0 cast to a pointer the same as a null pointer,
1700         // even in cases where the two are different values.
1701         Out << "0";
1702         mangleNumber(V.getLValueOffset().getQuantity());
1703       } else if (!V.hasLValuePath()) {
1704         // FIXME: This can only happen as an extension. Invent a mangling.
1705         break;
1706       } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) {
1707         Out << (T->isReferenceType() ? "E" : "1");
1708         mangle(VD);
1709       } else {
1710         break;
1711       }
1712     } else {
1713       unsigned NumAts = 0;
1714       if (T->isPointerType()) {
1715         Out << "5";
1716         ++NumAts;
1717       }
1718 
1719       QualType T = Base.getType();
1720       for (APValue::LValuePathEntry E : V.getLValuePath()) {
1721         // We don't know how to mangle array subscripting yet.
1722         if (T->isArrayType())
1723           goto mangling_unknown;
1724 
1725         const Decl *D = E.getAsBaseOrMember().getPointer();
1726         auto *FD = dyn_cast<FieldDecl>(D);
1727         // We don't know how to mangle derived-to-base conversions yet.
1728         if (!FD)
1729           goto mangling_unknown;
1730 
1731         Out << "6";
1732         ++NumAts;
1733         T = FD->getType();
1734       }
1735 
1736       auto *VD = Base.dyn_cast<const ValueDecl*>();
1737       if (!VD)
1738         break;
1739       Out << "E";
1740       mangle(VD);
1741 
1742       for (APValue::LValuePathEntry E : V.getLValuePath()) {
1743         const Decl *D = E.getAsBaseOrMember().getPointer();
1744         mangleUnqualifiedName(cast<FieldDecl>(D));
1745       }
1746       for (unsigned I = 0; I != NumAts; ++I)
1747         Out << '@';
1748     }
1749 
1750     return;
1751   }
1752 
1753   case APValue::MemberPointer: {
1754     if (WithScalarType)
1755       mangleType(T, SourceRange(), QMM_Escape);
1756 
1757     // FIXME: The below manglings don't include a conversion, so bail if there
1758     // would be one. MSVC mangles the (possibly converted) value of the
1759     // pointer-to-member object as if it were a struct, leading to collisions
1760     // in some cases.
1761     if (!V.getMemberPointerPath().empty())
1762       break;
1763 
1764     const CXXRecordDecl *RD =
1765         T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl();
1766     const ValueDecl *D = V.getMemberPointerDecl();
1767     if (T->isMemberDataPointerType())
1768       mangleMemberDataPointer(RD, D, "");
1769     else
1770       mangleMemberFunctionPointer(RD, cast_or_null<CXXMethodDecl>(D), "");
1771     return;
1772   }
1773 
1774   case APValue::Struct: {
1775     Out << '2';
1776     mangleType(T, SourceRange(), QMM_Escape);
1777     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
1778     assert(RD && "unexpected type for record value");
1779 
1780     unsigned BaseIndex = 0;
1781     for (const CXXBaseSpecifier &B : RD->bases())
1782       mangleTemplateArgValue(B.getType(), V.getStructBase(BaseIndex++));
1783     for (const FieldDecl *FD : RD->fields())
1784       if (!FD->isUnnamedBitfield())
1785         mangleTemplateArgValue(FD->getType(),
1786                                V.getStructField(FD->getFieldIndex()),
1787                                /*WithScalarType*/ true);
1788     Out << '@';
1789     return;
1790   }
1791 
1792   case APValue::Union:
1793     Out << '7';
1794     mangleType(T, SourceRange(), QMM_Escape);
1795     if (const FieldDecl *FD = V.getUnionField()) {
1796       mangleUnqualifiedName(FD);
1797       mangleTemplateArgValue(FD->getType(), V.getUnionValue());
1798     }
1799     Out << '@';
1800     return;
1801 
1802   case APValue::ComplexInt:
1803     // We mangle complex types as structs, so mangle the value as a struct too.
1804     Out << '2';
1805     mangleType(T, SourceRange(), QMM_Escape);
1806     Out << '0';
1807     mangleNumber(V.getComplexIntReal());
1808     Out << '0';
1809     mangleNumber(V.getComplexIntImag());
1810     Out << '@';
1811     return;
1812 
1813   case APValue::ComplexFloat:
1814     Out << '2';
1815     mangleType(T, SourceRange(), QMM_Escape);
1816     mangleFloat(V.getComplexFloatReal());
1817     mangleFloat(V.getComplexFloatImag());
1818     Out << '@';
1819     return;
1820 
1821   case APValue::Array: {
1822     Out << '3';
1823     QualType ElemT = getASTContext().getAsArrayType(T)->getElementType();
1824     mangleType(ElemT, SourceRange(), QMM_Escape);
1825     for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) {
1826       const APValue &ElemV = I < V.getArrayInitializedElts()
1827                                  ? V.getArrayInitializedElt(I)
1828                                  : V.getArrayFiller();
1829       mangleTemplateArgValue(ElemT, ElemV);
1830       Out << '@';
1831     }
1832     Out << '@';
1833     return;
1834   }
1835 
1836   case APValue::Vector: {
1837     // __m128 is mangled as a struct containing an array. We follow this
1838     // approach for all vector types.
1839     Out << '2';
1840     mangleType(T, SourceRange(), QMM_Escape);
1841     Out << '3';
1842     QualType ElemT = T->castAs<VectorType>()->getElementType();
1843     mangleType(ElemT, SourceRange(), QMM_Escape);
1844     for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) {
1845       const APValue &ElemV = V.getVectorElt(I);
1846       mangleTemplateArgValue(ElemT, ElemV);
1847       Out << '@';
1848     }
1849     Out << "@@";
1850     return;
1851   }
1852 
1853   case APValue::AddrLabelDiff:
1854   case APValue::FixedPoint:
1855     break;
1856   }
1857 
1858 mangling_unknown:
1859   DiagnosticsEngine &Diags = Context.getDiags();
1860   unsigned DiagID = Diags.getCustomDiagID(
1861       DiagnosticsEngine::Error, "cannot mangle this template argument yet");
1862   Diags.Report(DiagID);
1863 }
1864 
1865 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) {
1866   llvm::SmallString<64> TemplateMangling;
1867   llvm::raw_svector_ostream Stream(TemplateMangling);
1868   MicrosoftCXXNameMangler Extra(Context, Stream);
1869 
1870   Stream << "?$";
1871   Extra.mangleSourceName("Protocol");
1872   Extra.mangleArtificialTagType(TTK_Struct, PD->getName());
1873 
1874   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1875 }
1876 
1877 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type,
1878                                                  Qualifiers Quals,
1879                                                  SourceRange Range) {
1880   llvm::SmallString<64> TemplateMangling;
1881   llvm::raw_svector_ostream Stream(TemplateMangling);
1882   MicrosoftCXXNameMangler Extra(Context, Stream);
1883 
1884   Stream << "?$";
1885   switch (Quals.getObjCLifetime()) {
1886   case Qualifiers::OCL_None:
1887   case Qualifiers::OCL_ExplicitNone:
1888     break;
1889   case Qualifiers::OCL_Autoreleasing:
1890     Extra.mangleSourceName("Autoreleasing");
1891     break;
1892   case Qualifiers::OCL_Strong:
1893     Extra.mangleSourceName("Strong");
1894     break;
1895   case Qualifiers::OCL_Weak:
1896     Extra.mangleSourceName("Weak");
1897     break;
1898   }
1899   Extra.manglePointerCVQualifiers(Quals);
1900   Extra.manglePointerExtQualifiers(Quals, Type);
1901   Extra.mangleType(Type, Range);
1902 
1903   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1904 }
1905 
1906 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T,
1907                                                    Qualifiers Quals,
1908                                                    SourceRange Range) {
1909   llvm::SmallString<64> TemplateMangling;
1910   llvm::raw_svector_ostream Stream(TemplateMangling);
1911   MicrosoftCXXNameMangler Extra(Context, Stream);
1912 
1913   Stream << "?$";
1914   Extra.mangleSourceName("KindOf");
1915   Extra.mangleType(QualType(T, 0)
1916                        .stripObjCKindOfType(getASTContext())
1917                        ->getAs<ObjCObjectType>(),
1918                    Quals, Range);
1919 
1920   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1921 }
1922 
1923 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1924                                                bool IsMember) {
1925   // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1926   // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1927   // 'I' means __restrict (32/64-bit).
1928   // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1929   // keyword!
1930   // <base-cvr-qualifiers> ::= A  # near
1931   //                       ::= B  # near const
1932   //                       ::= C  # near volatile
1933   //                       ::= D  # near const volatile
1934   //                       ::= E  # far (16-bit)
1935   //                       ::= F  # far const (16-bit)
1936   //                       ::= G  # far volatile (16-bit)
1937   //                       ::= H  # far const volatile (16-bit)
1938   //                       ::= I  # huge (16-bit)
1939   //                       ::= J  # huge const (16-bit)
1940   //                       ::= K  # huge volatile (16-bit)
1941   //                       ::= L  # huge const volatile (16-bit)
1942   //                       ::= M <basis> # based
1943   //                       ::= N <basis> # based const
1944   //                       ::= O <basis> # based volatile
1945   //                       ::= P <basis> # based const volatile
1946   //                       ::= Q  # near member
1947   //                       ::= R  # near const member
1948   //                       ::= S  # near volatile member
1949   //                       ::= T  # near const volatile member
1950   //                       ::= U  # far member (16-bit)
1951   //                       ::= V  # far const member (16-bit)
1952   //                       ::= W  # far volatile member (16-bit)
1953   //                       ::= X  # far const volatile member (16-bit)
1954   //                       ::= Y  # huge member (16-bit)
1955   //                       ::= Z  # huge const member (16-bit)
1956   //                       ::= 0  # huge volatile member (16-bit)
1957   //                       ::= 1  # huge const volatile member (16-bit)
1958   //                       ::= 2 <basis> # based member
1959   //                       ::= 3 <basis> # based const member
1960   //                       ::= 4 <basis> # based volatile member
1961   //                       ::= 5 <basis> # based const volatile member
1962   //                       ::= 6  # near function (pointers only)
1963   //                       ::= 7  # far function (pointers only)
1964   //                       ::= 8  # near method (pointers only)
1965   //                       ::= 9  # far method (pointers only)
1966   //                       ::= _A <basis> # based function (pointers only)
1967   //                       ::= _B <basis> # based function (far?) (pointers only)
1968   //                       ::= _C <basis> # based method (pointers only)
1969   //                       ::= _D <basis> # based method (far?) (pointers only)
1970   //                       ::= _E # block (Clang)
1971   // <basis> ::= 0 # __based(void)
1972   //         ::= 1 # __based(segment)?
1973   //         ::= 2 <name> # __based(name)
1974   //         ::= 3 # ?
1975   //         ::= 4 # ?
1976   //         ::= 5 # not really based
1977   bool HasConst = Quals.hasConst(),
1978        HasVolatile = Quals.hasVolatile();
1979 
1980   if (!IsMember) {
1981     if (HasConst && HasVolatile) {
1982       Out << 'D';
1983     } else if (HasVolatile) {
1984       Out << 'C';
1985     } else if (HasConst) {
1986       Out << 'B';
1987     } else {
1988       Out << 'A';
1989     }
1990   } else {
1991     if (HasConst && HasVolatile) {
1992       Out << 'T';
1993     } else if (HasVolatile) {
1994       Out << 'S';
1995     } else if (HasConst) {
1996       Out << 'R';
1997     } else {
1998       Out << 'Q';
1999     }
2000   }
2001 
2002   // FIXME: For now, just drop all extension qualifiers on the floor.
2003 }
2004 
2005 void
2006 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2007   // <ref-qualifier> ::= G                # lvalue reference
2008   //                 ::= H                # rvalue-reference
2009   switch (RefQualifier) {
2010   case RQ_None:
2011     break;
2012 
2013   case RQ_LValue:
2014     Out << 'G';
2015     break;
2016 
2017   case RQ_RValue:
2018     Out << 'H';
2019     break;
2020   }
2021 }
2022 
2023 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
2024                                                          QualType PointeeType) {
2025   // Check if this is a default 64-bit pointer or has __ptr64 qualifier.
2026   bool is64Bit = PointeeType.isNull() ? PointersAre64Bit :
2027       is64BitPointer(PointeeType.getQualifiers());
2028   if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType()))
2029     Out << 'E';
2030 
2031   if (Quals.hasRestrict())
2032     Out << 'I';
2033 
2034   if (Quals.hasUnaligned() ||
2035       (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
2036     Out << 'F';
2037 }
2038 
2039 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
2040   // <pointer-cv-qualifiers> ::= P  # no qualifiers
2041   //                         ::= Q  # const
2042   //                         ::= R  # volatile
2043   //                         ::= S  # const volatile
2044   bool HasConst = Quals.hasConst(),
2045        HasVolatile = Quals.hasVolatile();
2046 
2047   if (HasConst && HasVolatile) {
2048     Out << 'S';
2049   } else if (HasVolatile) {
2050     Out << 'R';
2051   } else if (HasConst) {
2052     Out << 'Q';
2053   } else {
2054     Out << 'P';
2055   }
2056 }
2057 
2058 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T,
2059                                                          SourceRange Range) {
2060   // MSVC will backreference two canonically equivalent types that have slightly
2061   // different manglings when mangled alone.
2062 
2063   // Decayed types do not match up with non-decayed versions of the same type.
2064   //
2065   // e.g.
2066   // void (*x)(void) will not form a backreference with void x(void)
2067   void *TypePtr;
2068   if (const auto *DT = T->getAs<DecayedType>()) {
2069     QualType OriginalType = DT->getOriginalType();
2070     // All decayed ArrayTypes should be treated identically; as-if they were
2071     // a decayed IncompleteArrayType.
2072     if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
2073       OriginalType = getASTContext().getIncompleteArrayType(
2074           AT->getElementType(), AT->getSizeModifier(),
2075           AT->getIndexTypeCVRQualifiers());
2076 
2077     TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
2078     // If the original parameter was textually written as an array,
2079     // instead treat the decayed parameter like it's const.
2080     //
2081     // e.g.
2082     // int [] -> int * const
2083     if (OriginalType->isArrayType())
2084       T = T.withConst();
2085   } else {
2086     TypePtr = T.getCanonicalType().getAsOpaquePtr();
2087   }
2088 
2089   ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
2090 
2091   if (Found == FunArgBackReferences.end()) {
2092     size_t OutSizeBefore = Out.tell();
2093 
2094     mangleType(T, Range, QMM_Drop);
2095 
2096     // See if it's worth creating a back reference.
2097     // Only types longer than 1 character are considered
2098     // and only 10 back references slots are available:
2099     bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
2100     if (LongerThanOneChar && FunArgBackReferences.size() < 10) {
2101       size_t Size = FunArgBackReferences.size();
2102       FunArgBackReferences[TypePtr] = Size;
2103     }
2104   } else {
2105     Out << Found->second;
2106   }
2107 }
2108 
2109 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
2110     const PassObjectSizeAttr *POSA) {
2111   int Type = POSA->getType();
2112   bool Dynamic = POSA->isDynamic();
2113 
2114   auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first;
2115   auto *TypePtr = (const void *)&*Iter;
2116   ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
2117 
2118   if (Found == FunArgBackReferences.end()) {
2119     std::string Name =
2120         Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size";
2121     mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"});
2122 
2123     if (FunArgBackReferences.size() < 10) {
2124       size_t Size = FunArgBackReferences.size();
2125       FunArgBackReferences[TypePtr] = Size;
2126     }
2127   } else {
2128     Out << Found->second;
2129   }
2130 }
2131 
2132 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T,
2133                                                      Qualifiers Quals,
2134                                                      SourceRange Range) {
2135   // Address space is mangled as an unqualified templated type in the __clang
2136   // namespace. The demangled version of this is:
2137   // In the case of a language specific address space:
2138   // __clang::struct _AS[language_addr_space]<Type>
2139   // where:
2140   //  <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace>
2141   //    <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2142   //                                "private"| "generic" | "device" | "host" ]
2143   //    <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2144   //    Note that the above were chosen to match the Itanium mangling for this.
2145   //
2146   // In the case of a non-language specific address space:
2147   //  __clang::struct _AS<TargetAS, Type>
2148   assert(Quals.hasAddressSpace() && "Not valid without address space");
2149   llvm::SmallString<32> ASMangling;
2150   llvm::raw_svector_ostream Stream(ASMangling);
2151   MicrosoftCXXNameMangler Extra(Context, Stream);
2152   Stream << "?$";
2153 
2154   LangAS AS = Quals.getAddressSpace();
2155   if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2156     unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2157     Extra.mangleSourceName("_AS");
2158     Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS));
2159   } else {
2160     switch (AS) {
2161     default:
2162       llvm_unreachable("Not a language specific address space");
2163     case LangAS::opencl_global:
2164       Extra.mangleSourceName("_ASCLglobal");
2165       break;
2166     case LangAS::opencl_global_device:
2167       Extra.mangleSourceName("_ASCLdevice");
2168       break;
2169     case LangAS::opencl_global_host:
2170       Extra.mangleSourceName("_ASCLhost");
2171       break;
2172     case LangAS::opencl_local:
2173       Extra.mangleSourceName("_ASCLlocal");
2174       break;
2175     case LangAS::opencl_constant:
2176       Extra.mangleSourceName("_ASCLconstant");
2177       break;
2178     case LangAS::opencl_private:
2179       Extra.mangleSourceName("_ASCLprivate");
2180       break;
2181     case LangAS::opencl_generic:
2182       Extra.mangleSourceName("_ASCLgeneric");
2183       break;
2184     case LangAS::cuda_device:
2185       Extra.mangleSourceName("_ASCUdevice");
2186       break;
2187     case LangAS::cuda_constant:
2188       Extra.mangleSourceName("_ASCUconstant");
2189       break;
2190     case LangAS::cuda_shared:
2191       Extra.mangleSourceName("_ASCUshared");
2192       break;
2193     case LangAS::ptr32_sptr:
2194     case LangAS::ptr32_uptr:
2195     case LangAS::ptr64:
2196       llvm_unreachable("don't mangle ptr address spaces with _AS");
2197     }
2198   }
2199 
2200   Extra.mangleType(T, Range, QMM_Escape);
2201   mangleQualifiers(Qualifiers(), false);
2202   mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"});
2203 }
2204 
2205 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
2206                                          QualifierMangleMode QMM) {
2207   // Don't use the canonical types.  MSVC includes things like 'const' on
2208   // pointer arguments to function pointers that canonicalization strips away.
2209   T = T.getDesugaredType(getASTContext());
2210   Qualifiers Quals = T.getLocalQualifiers();
2211 
2212   if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
2213     // If there were any Quals, getAsArrayType() pushed them onto the array
2214     // element type.
2215     if (QMM == QMM_Mangle)
2216       Out << 'A';
2217     else if (QMM == QMM_Escape || QMM == QMM_Result)
2218       Out << "$$B";
2219     mangleArrayType(AT);
2220     return;
2221   }
2222 
2223   bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
2224                    T->isReferenceType() || T->isBlockPointerType();
2225 
2226   switch (QMM) {
2227   case QMM_Drop:
2228     if (Quals.hasObjCLifetime())
2229       Quals = Quals.withoutObjCLifetime();
2230     break;
2231   case QMM_Mangle:
2232     if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
2233       Out << '6';
2234       mangleFunctionType(FT);
2235       return;
2236     }
2237     mangleQualifiers(Quals, false);
2238     break;
2239   case QMM_Escape:
2240     if (!IsPointer && Quals) {
2241       Out << "$$C";
2242       mangleQualifiers(Quals, false);
2243     }
2244     break;
2245   case QMM_Result:
2246     // Presence of __unaligned qualifier shouldn't affect mangling here.
2247     Quals.removeUnaligned();
2248     if (Quals.hasObjCLifetime())
2249       Quals = Quals.withoutObjCLifetime();
2250     if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) {
2251       Out << '?';
2252       mangleQualifiers(Quals, false);
2253     }
2254     break;
2255   }
2256 
2257   const Type *ty = T.getTypePtr();
2258 
2259   switch (ty->getTypeClass()) {
2260 #define ABSTRACT_TYPE(CLASS, PARENT)
2261 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2262   case Type::CLASS: \
2263     llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2264     return;
2265 #define TYPE(CLASS, PARENT) \
2266   case Type::CLASS: \
2267     mangleType(cast<CLASS##Type>(ty), Quals, Range); \
2268     break;
2269 #include "clang/AST/TypeNodes.inc"
2270 #undef ABSTRACT_TYPE
2271 #undef NON_CANONICAL_TYPE
2272 #undef TYPE
2273   }
2274 }
2275 
2276 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
2277                                          SourceRange Range) {
2278   //  <type>         ::= <builtin-type>
2279   //  <builtin-type> ::= X  # void
2280   //                 ::= C  # signed char
2281   //                 ::= D  # char
2282   //                 ::= E  # unsigned char
2283   //                 ::= F  # short
2284   //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
2285   //                 ::= H  # int
2286   //                 ::= I  # unsigned int
2287   //                 ::= J  # long
2288   //                 ::= K  # unsigned long
2289   //                     L  # <none>
2290   //                 ::= M  # float
2291   //                 ::= N  # double
2292   //                 ::= O  # long double (__float80 is mangled differently)
2293   //                 ::= _J # long long, __int64
2294   //                 ::= _K # unsigned long long, __int64
2295   //                 ::= _L # __int128
2296   //                 ::= _M # unsigned __int128
2297   //                 ::= _N # bool
2298   //                     _O # <array in parameter>
2299   //                 ::= _Q # char8_t
2300   //                 ::= _S # char16_t
2301   //                 ::= _T # __float80 (Intel)
2302   //                 ::= _U # char32_t
2303   //                 ::= _W # wchar_t
2304   //                 ::= _Z # __float80 (Digital Mars)
2305   switch (T->getKind()) {
2306   case BuiltinType::Void:
2307     Out << 'X';
2308     break;
2309   case BuiltinType::SChar:
2310     Out << 'C';
2311     break;
2312   case BuiltinType::Char_U:
2313   case BuiltinType::Char_S:
2314     Out << 'D';
2315     break;
2316   case BuiltinType::UChar:
2317     Out << 'E';
2318     break;
2319   case BuiltinType::Short:
2320     Out << 'F';
2321     break;
2322   case BuiltinType::UShort:
2323     Out << 'G';
2324     break;
2325   case BuiltinType::Int:
2326     Out << 'H';
2327     break;
2328   case BuiltinType::UInt:
2329     Out << 'I';
2330     break;
2331   case BuiltinType::Long:
2332     Out << 'J';
2333     break;
2334   case BuiltinType::ULong:
2335     Out << 'K';
2336     break;
2337   case BuiltinType::Float:
2338     Out << 'M';
2339     break;
2340   case BuiltinType::Double:
2341     Out << 'N';
2342     break;
2343   // TODO: Determine size and mangle accordingly
2344   case BuiltinType::LongDouble:
2345     Out << 'O';
2346     break;
2347   case BuiltinType::LongLong:
2348     Out << "_J";
2349     break;
2350   case BuiltinType::ULongLong:
2351     Out << "_K";
2352     break;
2353   case BuiltinType::Int128:
2354     Out << "_L";
2355     break;
2356   case BuiltinType::UInt128:
2357     Out << "_M";
2358     break;
2359   case BuiltinType::Bool:
2360     Out << "_N";
2361     break;
2362   case BuiltinType::Char8:
2363     Out << "_Q";
2364     break;
2365   case BuiltinType::Char16:
2366     Out << "_S";
2367     break;
2368   case BuiltinType::Char32:
2369     Out << "_U";
2370     break;
2371   case BuiltinType::WChar_S:
2372   case BuiltinType::WChar_U:
2373     Out << "_W";
2374     break;
2375 
2376 #define BUILTIN_TYPE(Id, SingletonId)
2377 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2378   case BuiltinType::Id:
2379 #include "clang/AST/BuiltinTypes.def"
2380   case BuiltinType::Dependent:
2381     llvm_unreachable("placeholder types shouldn't get to name mangling");
2382 
2383   case BuiltinType::ObjCId:
2384     mangleArtificialTagType(TTK_Struct, "objc_object");
2385     break;
2386   case BuiltinType::ObjCClass:
2387     mangleArtificialTagType(TTK_Struct, "objc_class");
2388     break;
2389   case BuiltinType::ObjCSel:
2390     mangleArtificialTagType(TTK_Struct, "objc_selector");
2391     break;
2392 
2393 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2394   case BuiltinType::Id: \
2395     Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
2396     break;
2397 #include "clang/Basic/OpenCLImageTypes.def"
2398   case BuiltinType::OCLSampler:
2399     Out << "PA";
2400     mangleArtificialTagType(TTK_Struct, "ocl_sampler");
2401     break;
2402   case BuiltinType::OCLEvent:
2403     Out << "PA";
2404     mangleArtificialTagType(TTK_Struct, "ocl_event");
2405     break;
2406   case BuiltinType::OCLClkEvent:
2407     Out << "PA";
2408     mangleArtificialTagType(TTK_Struct, "ocl_clkevent");
2409     break;
2410   case BuiltinType::OCLQueue:
2411     Out << "PA";
2412     mangleArtificialTagType(TTK_Struct, "ocl_queue");
2413     break;
2414   case BuiltinType::OCLReserveID:
2415     Out << "PA";
2416     mangleArtificialTagType(TTK_Struct, "ocl_reserveid");
2417     break;
2418 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2419   case BuiltinType::Id: \
2420     mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \
2421     break;
2422 #include "clang/Basic/OpenCLExtensionTypes.def"
2423 
2424   case BuiltinType::NullPtr:
2425     Out << "$$T";
2426     break;
2427 
2428   case BuiltinType::Float16:
2429     mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"});
2430     break;
2431 
2432   case BuiltinType::Half:
2433     mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"});
2434     break;
2435 
2436 #define SVE_TYPE(Name, Id, SingletonId) \
2437   case BuiltinType::Id:
2438 #include "clang/Basic/AArch64SVEACLETypes.def"
2439 #define PPC_VECTOR_TYPE(Name, Id, Size) \
2440   case BuiltinType::Id:
2441 #include "clang/Basic/PPCTypes.def"
2442 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2443 #include "clang/Basic/RISCVVTypes.def"
2444   case BuiltinType::ShortAccum:
2445   case BuiltinType::Accum:
2446   case BuiltinType::LongAccum:
2447   case BuiltinType::UShortAccum:
2448   case BuiltinType::UAccum:
2449   case BuiltinType::ULongAccum:
2450   case BuiltinType::ShortFract:
2451   case BuiltinType::Fract:
2452   case BuiltinType::LongFract:
2453   case BuiltinType::UShortFract:
2454   case BuiltinType::UFract:
2455   case BuiltinType::ULongFract:
2456   case BuiltinType::SatShortAccum:
2457   case BuiltinType::SatAccum:
2458   case BuiltinType::SatLongAccum:
2459   case BuiltinType::SatUShortAccum:
2460   case BuiltinType::SatUAccum:
2461   case BuiltinType::SatULongAccum:
2462   case BuiltinType::SatShortFract:
2463   case BuiltinType::SatFract:
2464   case BuiltinType::SatLongFract:
2465   case BuiltinType::SatUShortFract:
2466   case BuiltinType::SatUFract:
2467   case BuiltinType::SatULongFract:
2468   case BuiltinType::BFloat16:
2469   case BuiltinType::Ibm128:
2470   case BuiltinType::Float128: {
2471     DiagnosticsEngine &Diags = Context.getDiags();
2472     unsigned DiagID = Diags.getCustomDiagID(
2473         DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
2474     Diags.Report(Range.getBegin(), DiagID)
2475         << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
2476     break;
2477   }
2478   }
2479 }
2480 
2481 // <type>          ::= <function-type>
2482 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
2483                                          SourceRange) {
2484   // Structors only appear in decls, so at this point we know it's not a
2485   // structor type.
2486   // FIXME: This may not be lambda-friendly.
2487   if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) {
2488     Out << "$$A8@@";
2489     mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
2490   } else {
2491     Out << "$$A6";
2492     mangleFunctionType(T);
2493   }
2494 }
2495 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
2496                                          Qualifiers, SourceRange) {
2497   Out << "$$A6";
2498   mangleFunctionType(T);
2499 }
2500 
2501 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
2502                                                  const FunctionDecl *D,
2503                                                  bool ForceThisQuals,
2504                                                  bool MangleExceptionSpec) {
2505   // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
2506   //                     <return-type> <argument-list> <throw-spec>
2507   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
2508 
2509   SourceRange Range;
2510   if (D) Range = D->getSourceRange();
2511 
2512   bool IsInLambda = false;
2513   bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
2514   CallingConv CC = T->getCallConv();
2515   if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
2516     if (MD->getParent()->isLambda())
2517       IsInLambda = true;
2518     if (MD->isInstance())
2519       HasThisQuals = true;
2520     if (isa<CXXDestructorDecl>(MD)) {
2521       IsStructor = true;
2522     } else if (isa<CXXConstructorDecl>(MD)) {
2523       IsStructor = true;
2524       IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
2525                        StructorType == Ctor_DefaultClosure) &&
2526                       isStructorDecl(MD);
2527       if (IsCtorClosure)
2528         CC = getASTContext().getDefaultCallingConvention(
2529             /*IsVariadic=*/false, /*IsCXXMethod=*/true);
2530     }
2531   }
2532 
2533   // If this is a C++ instance method, mangle the CVR qualifiers for the
2534   // this pointer.
2535   if (HasThisQuals) {
2536     Qualifiers Quals = Proto->getMethodQuals();
2537     manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
2538     mangleRefQualifier(Proto->getRefQualifier());
2539     mangleQualifiers(Quals, /*IsMember=*/false);
2540   }
2541 
2542   mangleCallingConvention(CC);
2543 
2544   // <return-type> ::= <type>
2545   //               ::= @ # structors (they have no declared return type)
2546   if (IsStructor) {
2547     if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) {
2548       // The scalar deleting destructor takes an extra int argument which is not
2549       // reflected in the AST.
2550       if (StructorType == Dtor_Deleting) {
2551         Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
2552         return;
2553       }
2554       // The vbase destructor returns void which is not reflected in the AST.
2555       if (StructorType == Dtor_Complete) {
2556         Out << "XXZ";
2557         return;
2558       }
2559     }
2560     if (IsCtorClosure) {
2561       // Default constructor closure and copy constructor closure both return
2562       // void.
2563       Out << 'X';
2564 
2565       if (StructorType == Ctor_DefaultClosure) {
2566         // Default constructor closure always has no arguments.
2567         Out << 'X';
2568       } else if (StructorType == Ctor_CopyingClosure) {
2569         // Copy constructor closure always takes an unqualified reference.
2570         mangleFunctionArgumentType(getASTContext().getLValueReferenceType(
2571                                        Proto->getParamType(0)
2572                                            ->getAs<LValueReferenceType>()
2573                                            ->getPointeeType(),
2574                                        /*SpelledAsLValue=*/true),
2575                                    Range);
2576         Out << '@';
2577       } else {
2578         llvm_unreachable("unexpected constructor closure!");
2579       }
2580       Out << 'Z';
2581       return;
2582     }
2583     Out << '@';
2584   } else if (IsInLambda && D && isa<CXXConversionDecl>(D)) {
2585     // The only lambda conversion operators are to function pointers, which
2586     // can differ by their calling convention and are typically deduced.  So
2587     // we make sure that this type gets mangled properly.
2588     mangleType(T->getReturnType(), Range, QMM_Result);
2589   } else {
2590     QualType ResultType = T->getReturnType();
2591     if (IsInLambda && isa<CXXConversionDecl>(D)) {
2592       // The only lambda conversion operators are to function pointers, which
2593       // can differ by their calling convention and are typically deduced.  So
2594       // we make sure that this type gets mangled properly.
2595       mangleType(ResultType, Range, QMM_Result);
2596     } else if (const auto *AT = dyn_cast_or_null<AutoType>(
2597                    ResultType->getContainedAutoType())) {
2598       Out << '?';
2599       mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
2600       Out << '?';
2601       assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2602              "shouldn't need to mangle __auto_type!");
2603       mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
2604       Out << '@';
2605     } else if (IsInLambda) {
2606       Out << '@';
2607     } else {
2608       if (ResultType->isVoidType())
2609         ResultType = ResultType.getUnqualifiedType();
2610       mangleType(ResultType, Range, QMM_Result);
2611     }
2612   }
2613 
2614   // <argument-list> ::= X # void
2615   //                 ::= <type>+ @
2616   //                 ::= <type>* Z # varargs
2617   if (!Proto) {
2618     // Function types without prototypes can arise when mangling a function type
2619     // within an overloadable function in C. We mangle these as the absence of
2620     // any parameter types (not even an empty parameter list).
2621     Out << '@';
2622   } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2623     Out << 'X';
2624   } else {
2625     // Happens for function pointer type arguments for example.
2626     for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2627       mangleFunctionArgumentType(Proto->getParamType(I), Range);
2628       // Mangle each pass_object_size parameter as if it's a parameter of enum
2629       // type passed directly after the parameter with the pass_object_size
2630       // attribute. The aforementioned enum's name is __pass_object_size, and we
2631       // pretend it resides in a top-level namespace called __clang.
2632       //
2633       // FIXME: Is there a defined extension notation for the MS ABI, or is it
2634       // necessary to just cross our fingers and hope this type+namespace
2635       // combination doesn't conflict with anything?
2636       if (D)
2637         if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
2638           manglePassObjectSizeArg(P);
2639     }
2640     // <builtin-type>      ::= Z  # ellipsis
2641     if (Proto->isVariadic())
2642       Out << 'Z';
2643     else
2644       Out << '@';
2645   }
2646 
2647   if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 &&
2648       getASTContext().getLangOpts().isCompatibleWithMSVC(
2649           LangOptions::MSVC2017_5))
2650     mangleThrowSpecification(Proto);
2651   else
2652     Out << 'Z';
2653 }
2654 
2655 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
2656   // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this'
2657   //                                            # pointer. in 64-bit mode *all*
2658   //                                            # 'this' pointers are 64-bit.
2659   //                   ::= <global-function>
2660   // <member-function> ::= A # private: near
2661   //                   ::= B # private: far
2662   //                   ::= C # private: static near
2663   //                   ::= D # private: static far
2664   //                   ::= E # private: virtual near
2665   //                   ::= F # private: virtual far
2666   //                   ::= I # protected: near
2667   //                   ::= J # protected: far
2668   //                   ::= K # protected: static near
2669   //                   ::= L # protected: static far
2670   //                   ::= M # protected: virtual near
2671   //                   ::= N # protected: virtual far
2672   //                   ::= Q # public: near
2673   //                   ::= R # public: far
2674   //                   ::= S # public: static near
2675   //                   ::= T # public: static far
2676   //                   ::= U # public: virtual near
2677   //                   ::= V # public: virtual far
2678   // <global-function> ::= Y # global near
2679   //                   ::= Z # global far
2680   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
2681     bool IsVirtual = MD->isVirtual();
2682     // When mangling vbase destructor variants, ignore whether or not the
2683     // underlying destructor was defined to be virtual.
2684     if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) &&
2685         StructorType == Dtor_Complete) {
2686       IsVirtual = false;
2687     }
2688     switch (MD->getAccess()) {
2689       case AS_none:
2690         llvm_unreachable("Unsupported access specifier");
2691       case AS_private:
2692         if (MD->isStatic())
2693           Out << 'C';
2694         else if (IsVirtual)
2695           Out << 'E';
2696         else
2697           Out << 'A';
2698         break;
2699       case AS_protected:
2700         if (MD->isStatic())
2701           Out << 'K';
2702         else if (IsVirtual)
2703           Out << 'M';
2704         else
2705           Out << 'I';
2706         break;
2707       case AS_public:
2708         if (MD->isStatic())
2709           Out << 'S';
2710         else if (IsVirtual)
2711           Out << 'U';
2712         else
2713           Out << 'Q';
2714     }
2715   } else {
2716     Out << 'Y';
2717   }
2718 }
2719 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
2720   // <calling-convention> ::= A # __cdecl
2721   //                      ::= B # __export __cdecl
2722   //                      ::= C # __pascal
2723   //                      ::= D # __export __pascal
2724   //                      ::= E # __thiscall
2725   //                      ::= F # __export __thiscall
2726   //                      ::= G # __stdcall
2727   //                      ::= H # __export __stdcall
2728   //                      ::= I # __fastcall
2729   //                      ::= J # __export __fastcall
2730   //                      ::= Q # __vectorcall
2731   //                      ::= S # __attribute__((__swiftcall__)) // Clang-only
2732   //                      ::= T # __attribute__((__swiftasynccall__))
2733   //                            // Clang-only
2734   //                      ::= w # __regcall
2735   // The 'export' calling conventions are from a bygone era
2736   // (*cough*Win16*cough*) when functions were declared for export with
2737   // that keyword. (It didn't actually export them, it just made them so
2738   // that they could be in a DLL and somebody from another module could call
2739   // them.)
2740 
2741   switch (CC) {
2742     default:
2743       llvm_unreachable("Unsupported CC for mangling");
2744     case CC_Win64:
2745     case CC_X86_64SysV:
2746     case CC_C: Out << 'A'; break;
2747     case CC_X86Pascal: Out << 'C'; break;
2748     case CC_X86ThisCall: Out << 'E'; break;
2749     case CC_X86StdCall: Out << 'G'; break;
2750     case CC_X86FastCall: Out << 'I'; break;
2751     case CC_X86VectorCall: Out << 'Q'; break;
2752     case CC_Swift: Out << 'S'; break;
2753     case CC_SwiftAsync: Out << 'W'; break;
2754     case CC_PreserveMost: Out << 'U'; break;
2755     case CC_X86RegCall: Out << 'w'; break;
2756   }
2757 }
2758 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2759   mangleCallingConvention(T->getCallConv());
2760 }
2761 
2762 void MicrosoftCXXNameMangler::mangleThrowSpecification(
2763                                                 const FunctionProtoType *FT) {
2764   // <throw-spec> ::= Z # (default)
2765   //              ::= _E # noexcept
2766   if (FT->canThrow())
2767     Out << 'Z';
2768   else
2769     Out << "_E";
2770 }
2771 
2772 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2773                                          Qualifiers, SourceRange Range) {
2774   // Probably should be mangled as a template instantiation; need to see what
2775   // VC does first.
2776   DiagnosticsEngine &Diags = Context.getDiags();
2777   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2778     "cannot mangle this unresolved dependent type yet");
2779   Diags.Report(Range.getBegin(), DiagID)
2780     << Range;
2781 }
2782 
2783 // <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2784 // <union-type>  ::= T <name>
2785 // <struct-type> ::= U <name>
2786 // <class-type>  ::= V <name>
2787 // <enum-type>   ::= W4 <name>
2788 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2789   switch (TTK) {
2790     case TTK_Union:
2791       Out << 'T';
2792       break;
2793     case TTK_Struct:
2794     case TTK_Interface:
2795       Out << 'U';
2796       break;
2797     case TTK_Class:
2798       Out << 'V';
2799       break;
2800     case TTK_Enum:
2801       Out << "W4";
2802       break;
2803   }
2804 }
2805 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2806                                          SourceRange) {
2807   mangleType(cast<TagType>(T)->getDecl());
2808 }
2809 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2810                                          SourceRange) {
2811   mangleType(cast<TagType>(T)->getDecl());
2812 }
2813 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2814   mangleTagTypeKind(TD->getTagKind());
2815   mangleName(TD);
2816 }
2817 
2818 // If you add a call to this, consider updating isArtificialTagType() too.
2819 void MicrosoftCXXNameMangler::mangleArtificialTagType(
2820     TagTypeKind TK, StringRef UnqualifiedName,
2821     ArrayRef<StringRef> NestedNames) {
2822   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2823   mangleTagTypeKind(TK);
2824 
2825   // Always start with the unqualified name.
2826   mangleSourceName(UnqualifiedName);
2827 
2828   for (StringRef N : llvm::reverse(NestedNames))
2829     mangleSourceName(N);
2830 
2831   // Terminate the whole name with an '@'.
2832   Out << '@';
2833 }
2834 
2835 // <type>       ::= <array-type>
2836 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2837 //                  [Y <dimension-count> <dimension>+]
2838 //                  <element-type> # as global, E is never required
2839 // It's supposed to be the other way around, but for some strange reason, it
2840 // isn't. Today this behavior is retained for the sole purpose of backwards
2841 // compatibility.
2842 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2843   // This isn't a recursive mangling, so now we have to do it all in this
2844   // one call.
2845   manglePointerCVQualifiers(T->getElementType().getQualifiers());
2846   mangleType(T->getElementType(), SourceRange());
2847 }
2848 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2849                                          SourceRange) {
2850   llvm_unreachable("Should have been special cased");
2851 }
2852 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2853                                          SourceRange) {
2854   llvm_unreachable("Should have been special cased");
2855 }
2856 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2857                                          Qualifiers, SourceRange) {
2858   llvm_unreachable("Should have been special cased");
2859 }
2860 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2861                                          Qualifiers, SourceRange) {
2862   llvm_unreachable("Should have been special cased");
2863 }
2864 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2865   QualType ElementTy(T, 0);
2866   SmallVector<llvm::APInt, 3> Dimensions;
2867   for (;;) {
2868     if (ElementTy->isConstantArrayType()) {
2869       const ConstantArrayType *CAT =
2870           getASTContext().getAsConstantArrayType(ElementTy);
2871       Dimensions.push_back(CAT->getSize());
2872       ElementTy = CAT->getElementType();
2873     } else if (ElementTy->isIncompleteArrayType()) {
2874       const IncompleteArrayType *IAT =
2875           getASTContext().getAsIncompleteArrayType(ElementTy);
2876       Dimensions.push_back(llvm::APInt(32, 0));
2877       ElementTy = IAT->getElementType();
2878     } else if (ElementTy->isVariableArrayType()) {
2879       const VariableArrayType *VAT =
2880         getASTContext().getAsVariableArrayType(ElementTy);
2881       Dimensions.push_back(llvm::APInt(32, 0));
2882       ElementTy = VAT->getElementType();
2883     } else if (ElementTy->isDependentSizedArrayType()) {
2884       // The dependent expression has to be folded into a constant (TODO).
2885       const DependentSizedArrayType *DSAT =
2886         getASTContext().getAsDependentSizedArrayType(ElementTy);
2887       DiagnosticsEngine &Diags = Context.getDiags();
2888       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2889         "cannot mangle this dependent-length array yet");
2890       Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2891         << DSAT->getBracketsRange();
2892       return;
2893     } else {
2894       break;
2895     }
2896   }
2897   Out << 'Y';
2898   // <dimension-count> ::= <number> # number of extra dimensions
2899   mangleNumber(Dimensions.size());
2900   for (const llvm::APInt &Dimension : Dimensions)
2901     mangleNumber(Dimension.getLimitedValue());
2902   mangleType(ElementTy, SourceRange(), QMM_Escape);
2903 }
2904 
2905 // <type>                   ::= <pointer-to-member-type>
2906 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2907 //                                                          <class name> <type>
2908 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
2909                                          Qualifiers Quals, SourceRange Range) {
2910   QualType PointeeType = T->getPointeeType();
2911   manglePointerCVQualifiers(Quals);
2912   manglePointerExtQualifiers(Quals, PointeeType);
2913   if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2914     Out << '8';
2915     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2916     mangleFunctionType(FPT, nullptr, true);
2917   } else {
2918     mangleQualifiers(PointeeType.getQualifiers(), true);
2919     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2920     mangleType(PointeeType, Range, QMM_Drop);
2921   }
2922 }
2923 
2924 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2925                                          Qualifiers, SourceRange Range) {
2926   DiagnosticsEngine &Diags = Context.getDiags();
2927   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2928     "cannot mangle this template type parameter type yet");
2929   Diags.Report(Range.getBegin(), DiagID)
2930     << Range;
2931 }
2932 
2933 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2934                                          Qualifiers, SourceRange Range) {
2935   DiagnosticsEngine &Diags = Context.getDiags();
2936   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2937     "cannot mangle this substituted parameter pack yet");
2938   Diags.Report(Range.getBegin(), DiagID)
2939     << Range;
2940 }
2941 
2942 // <type> ::= <pointer-type>
2943 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2944 //                       # the E is required for 64-bit non-static pointers
2945 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2946                                          SourceRange Range) {
2947   QualType PointeeType = T->getPointeeType();
2948   manglePointerCVQualifiers(Quals);
2949   manglePointerExtQualifiers(Quals, PointeeType);
2950 
2951   // For pointer size address spaces, go down the same type mangling path as
2952   // non address space types.
2953   LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace();
2954   if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default)
2955     mangleType(PointeeType, Range);
2956   else
2957     mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range);
2958 }
2959 
2960 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2961                                          Qualifiers Quals, SourceRange Range) {
2962   QualType PointeeType = T->getPointeeType();
2963   switch (Quals.getObjCLifetime()) {
2964   case Qualifiers::OCL_None:
2965   case Qualifiers::OCL_ExplicitNone:
2966     break;
2967   case Qualifiers::OCL_Autoreleasing:
2968   case Qualifiers::OCL_Strong:
2969   case Qualifiers::OCL_Weak:
2970     return mangleObjCLifetime(PointeeType, Quals, Range);
2971   }
2972   manglePointerCVQualifiers(Quals);
2973   manglePointerExtQualifiers(Quals, PointeeType);
2974   mangleType(PointeeType, Range);
2975 }
2976 
2977 // <type> ::= <reference-type>
2978 // <reference-type> ::= A E? <cvr-qualifiers> <type>
2979 //                 # the E is required for 64-bit non-static lvalue references
2980 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2981                                          Qualifiers Quals, SourceRange Range) {
2982   QualType PointeeType = T->getPointeeType();
2983   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2984   Out << 'A';
2985   manglePointerExtQualifiers(Quals, PointeeType);
2986   mangleType(PointeeType, Range);
2987 }
2988 
2989 // <type> ::= <r-value-reference-type>
2990 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2991 //                 # the E is required for 64-bit non-static rvalue references
2992 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2993                                          Qualifiers Quals, SourceRange Range) {
2994   QualType PointeeType = T->getPointeeType();
2995   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2996   Out << "$$Q";
2997   manglePointerExtQualifiers(Quals, PointeeType);
2998   mangleType(PointeeType, Range);
2999 }
3000 
3001 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
3002                                          SourceRange Range) {
3003   QualType ElementType = T->getElementType();
3004 
3005   llvm::SmallString<64> TemplateMangling;
3006   llvm::raw_svector_ostream Stream(TemplateMangling);
3007   MicrosoftCXXNameMangler Extra(Context, Stream);
3008   Stream << "?$";
3009   Extra.mangleSourceName("_Complex");
3010   Extra.mangleType(ElementType, Range, QMM_Escape);
3011 
3012   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3013 }
3014 
3015 // Returns true for types that mangleArtificialTagType() gets called for with
3016 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's
3017 // mangling matters.
3018 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't
3019 // support.)
3020 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const {
3021   const Type *ty = T.getTypePtr();
3022   switch (ty->getTypeClass()) {
3023   default:
3024     return false;
3025 
3026   case Type::Vector: {
3027     // For ABI compatibility only __m64, __m128(id), and __m256(id) matter,
3028     // but since mangleType(VectorType*) always calls mangleArtificialTagType()
3029     // just always return true (the other vector types are clang-only).
3030     return true;
3031   }
3032   }
3033 }
3034 
3035 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
3036                                          SourceRange Range) {
3037   const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
3038   assert(ET && "vectors with non-builtin elements are unsupported");
3039   uint64_t Width = getASTContext().getTypeSize(T);
3040   // Pattern match exactly the typedefs in our intrinsic headers.  Anything that
3041   // doesn't match the Intel types uses a custom mangling below.
3042   size_t OutSizeBefore = Out.tell();
3043   if (!isa<ExtVectorType>(T)) {
3044     if (getASTContext().getTargetInfo().getTriple().isX86()) {
3045       if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
3046         mangleArtificialTagType(TTK_Union, "__m64");
3047       } else if (Width >= 128) {
3048         if (ET->getKind() == BuiltinType::Float)
3049           mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width));
3050         else if (ET->getKind() == BuiltinType::LongLong)
3051           mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
3052         else if (ET->getKind() == BuiltinType::Double)
3053           mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
3054       }
3055     }
3056   }
3057 
3058   bool IsBuiltin = Out.tell() != OutSizeBefore;
3059   if (!IsBuiltin) {
3060     // The MS ABI doesn't have a special mangling for vector types, so we define
3061     // our own mangling to handle uses of __vector_size__ on user-specified
3062     // types, and for extensions like __v4sf.
3063 
3064     llvm::SmallString<64> TemplateMangling;
3065     llvm::raw_svector_ostream Stream(TemplateMangling);
3066     MicrosoftCXXNameMangler Extra(Context, Stream);
3067     Stream << "?$";
3068     Extra.mangleSourceName("__vector");
3069     Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
3070     Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()));
3071 
3072     mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"});
3073   }
3074 }
3075 
3076 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
3077                                          Qualifiers Quals, SourceRange Range) {
3078   mangleType(static_cast<const VectorType *>(T), Quals, Range);
3079 }
3080 
3081 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T,
3082                                          Qualifiers, SourceRange Range) {
3083   DiagnosticsEngine &Diags = Context.getDiags();
3084   unsigned DiagID = Diags.getCustomDiagID(
3085       DiagnosticsEngine::Error,
3086       "cannot mangle this dependent-sized vector type yet");
3087   Diags.Report(Range.getBegin(), DiagID) << Range;
3088 }
3089 
3090 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
3091                                          Qualifiers, SourceRange Range) {
3092   DiagnosticsEngine &Diags = Context.getDiags();
3093   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3094     "cannot mangle this dependent-sized extended vector type yet");
3095   Diags.Report(Range.getBegin(), DiagID)
3096     << Range;
3097 }
3098 
3099 void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T,
3100                                          Qualifiers quals, SourceRange Range) {
3101   DiagnosticsEngine &Diags = Context.getDiags();
3102   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3103                                           "Cannot mangle this matrix type yet");
3104   Diags.Report(Range.getBegin(), DiagID) << Range;
3105 }
3106 
3107 void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T,
3108                                          Qualifiers quals, SourceRange Range) {
3109   DiagnosticsEngine &Diags = Context.getDiags();
3110   unsigned DiagID = Diags.getCustomDiagID(
3111       DiagnosticsEngine::Error,
3112       "Cannot mangle this dependent-sized matrix type yet");
3113   Diags.Report(Range.getBegin(), DiagID) << Range;
3114 }
3115 
3116 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T,
3117                                          Qualifiers, SourceRange Range) {
3118   DiagnosticsEngine &Diags = Context.getDiags();
3119   unsigned DiagID = Diags.getCustomDiagID(
3120       DiagnosticsEngine::Error,
3121       "cannot mangle this dependent address space type yet");
3122   Diags.Report(Range.getBegin(), DiagID) << Range;
3123 }
3124 
3125 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
3126                                          SourceRange) {
3127   // ObjC interfaces have structs underlying them.
3128   mangleTagTypeKind(TTK_Struct);
3129   mangleName(T->getDecl());
3130 }
3131 
3132 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
3133                                          Qualifiers Quals, SourceRange Range) {
3134   if (T->isKindOfType())
3135     return mangleObjCKindOfType(T, Quals, Range);
3136 
3137   if (T->qual_empty() && !T->isSpecialized())
3138     return mangleType(T->getBaseType(), Range, QMM_Drop);
3139 
3140   ArgBackRefMap OuterFunArgsContext;
3141   ArgBackRefMap OuterTemplateArgsContext;
3142   BackRefVec OuterTemplateContext;
3143 
3144   FunArgBackReferences.swap(OuterFunArgsContext);
3145   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
3146   NameBackReferences.swap(OuterTemplateContext);
3147 
3148   mangleTagTypeKind(TTK_Struct);
3149 
3150   Out << "?$";
3151   if (T->isObjCId())
3152     mangleSourceName("objc_object");
3153   else if (T->isObjCClass())
3154     mangleSourceName("objc_class");
3155   else
3156     mangleSourceName(T->getInterface()->getName());
3157 
3158   for (const auto &Q : T->quals())
3159     mangleObjCProtocol(Q);
3160 
3161   if (T->isSpecialized())
3162     for (const auto &TA : T->getTypeArgs())
3163       mangleType(TA, Range, QMM_Drop);
3164 
3165   Out << '@';
3166 
3167   Out << '@';
3168 
3169   FunArgBackReferences.swap(OuterFunArgsContext);
3170   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
3171   NameBackReferences.swap(OuterTemplateContext);
3172 }
3173 
3174 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
3175                                          Qualifiers Quals, SourceRange Range) {
3176   QualType PointeeType = T->getPointeeType();
3177   manglePointerCVQualifiers(Quals);
3178   manglePointerExtQualifiers(Quals, PointeeType);
3179 
3180   Out << "_E";
3181 
3182   mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
3183 }
3184 
3185 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
3186                                          Qualifiers, SourceRange) {
3187   llvm_unreachable("Cannot mangle injected class name type.");
3188 }
3189 
3190 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
3191                                          Qualifiers, SourceRange Range) {
3192   DiagnosticsEngine &Diags = Context.getDiags();
3193   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3194     "cannot mangle this template specialization type yet");
3195   Diags.Report(Range.getBegin(), DiagID)
3196     << Range;
3197 }
3198 
3199 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
3200                                          SourceRange Range) {
3201   DiagnosticsEngine &Diags = Context.getDiags();
3202   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3203     "cannot mangle this dependent name type yet");
3204   Diags.Report(Range.getBegin(), DiagID)
3205     << Range;
3206 }
3207 
3208 void MicrosoftCXXNameMangler::mangleType(
3209     const DependentTemplateSpecializationType *T, Qualifiers,
3210     SourceRange Range) {
3211   DiagnosticsEngine &Diags = Context.getDiags();
3212   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3213     "cannot mangle this dependent template specialization type yet");
3214   Diags.Report(Range.getBegin(), DiagID)
3215     << Range;
3216 }
3217 
3218 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
3219                                          SourceRange Range) {
3220   DiagnosticsEngine &Diags = Context.getDiags();
3221   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3222     "cannot mangle this pack expansion yet");
3223   Diags.Report(Range.getBegin(), DiagID)
3224     << Range;
3225 }
3226 
3227 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
3228                                          SourceRange Range) {
3229   DiagnosticsEngine &Diags = Context.getDiags();
3230   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3231     "cannot mangle this typeof(type) yet");
3232   Diags.Report(Range.getBegin(), DiagID)
3233     << Range;
3234 }
3235 
3236 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
3237                                          SourceRange Range) {
3238   DiagnosticsEngine &Diags = Context.getDiags();
3239   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3240     "cannot mangle this typeof(expression) yet");
3241   Diags.Report(Range.getBegin(), DiagID)
3242     << Range;
3243 }
3244 
3245 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
3246                                          SourceRange Range) {
3247   DiagnosticsEngine &Diags = Context.getDiags();
3248   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3249     "cannot mangle this decltype() yet");
3250   Diags.Report(Range.getBegin(), DiagID)
3251     << Range;
3252 }
3253 
3254 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
3255                                          Qualifiers, SourceRange Range) {
3256   DiagnosticsEngine &Diags = Context.getDiags();
3257   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3258     "cannot mangle this unary transform type yet");
3259   Diags.Report(Range.getBegin(), DiagID)
3260     << Range;
3261 }
3262 
3263 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
3264                                          SourceRange Range) {
3265   assert(T->getDeducedType().isNull() && "expecting a dependent type!");
3266 
3267   DiagnosticsEngine &Diags = Context.getDiags();
3268   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3269     "cannot mangle this 'auto' type yet");
3270   Diags.Report(Range.getBegin(), DiagID)
3271     << Range;
3272 }
3273 
3274 void MicrosoftCXXNameMangler::mangleType(
3275     const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) {
3276   assert(T->getDeducedType().isNull() && "expecting a dependent type!");
3277 
3278   DiagnosticsEngine &Diags = Context.getDiags();
3279   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3280     "cannot mangle this deduced class template specialization type yet");
3281   Diags.Report(Range.getBegin(), DiagID)
3282     << Range;
3283 }
3284 
3285 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
3286                                          SourceRange Range) {
3287   QualType ValueType = T->getValueType();
3288 
3289   llvm::SmallString<64> TemplateMangling;
3290   llvm::raw_svector_ostream Stream(TemplateMangling);
3291   MicrosoftCXXNameMangler Extra(Context, Stream);
3292   Stream << "?$";
3293   Extra.mangleSourceName("_Atomic");
3294   Extra.mangleType(ValueType, Range, QMM_Escape);
3295 
3296   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3297 }
3298 
3299 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
3300                                          SourceRange Range) {
3301   QualType ElementType = T->getElementType();
3302 
3303   llvm::SmallString<64> TemplateMangling;
3304   llvm::raw_svector_ostream Stream(TemplateMangling);
3305   MicrosoftCXXNameMangler Extra(Context, Stream);
3306   Stream << "?$";
3307   Extra.mangleSourceName("ocl_pipe");
3308   Extra.mangleType(ElementType, Range, QMM_Escape);
3309   Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly()));
3310 
3311   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3312 }
3313 
3314 void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD,
3315                                                raw_ostream &Out) {
3316   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
3317   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3318                                  getASTContext().getSourceManager(),
3319                                  "Mangling declaration");
3320 
3321   msvc_hashing_ostream MHO(Out);
3322 
3323   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
3324     auto Type = GD.getCtorType();
3325     MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type);
3326     return mangler.mangle(D);
3327   }
3328 
3329   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
3330     auto Type = GD.getDtorType();
3331     MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type);
3332     return mangler.mangle(D);
3333   }
3334 
3335   MicrosoftCXXNameMangler Mangler(*this, MHO);
3336   return Mangler.mangle(D);
3337 }
3338 
3339 void MicrosoftCXXNameMangler::mangleType(const ExtIntType *T, Qualifiers,
3340                                          SourceRange Range) {
3341   llvm::SmallString<64> TemplateMangling;
3342   llvm::raw_svector_ostream Stream(TemplateMangling);
3343   MicrosoftCXXNameMangler Extra(Context, Stream);
3344   Stream << "?$";
3345   if (T->isUnsigned())
3346     Extra.mangleSourceName("_UExtInt");
3347   else
3348     Extra.mangleSourceName("_ExtInt");
3349   Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits()));
3350 
3351   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3352 }
3353 
3354 void MicrosoftCXXNameMangler::mangleType(const DependentExtIntType *T,
3355                                          Qualifiers, SourceRange Range) {
3356   DiagnosticsEngine &Diags = Context.getDiags();
3357   unsigned DiagID = Diags.getCustomDiagID(
3358       DiagnosticsEngine::Error, "cannot mangle this DependentExtInt type yet");
3359   Diags.Report(Range.getBegin(), DiagID) << Range;
3360 }
3361 
3362 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
3363 //                       <virtual-adjustment>
3364 // <no-adjustment>      ::= A # private near
3365 //                      ::= B # private far
3366 //                      ::= I # protected near
3367 //                      ::= J # protected far
3368 //                      ::= Q # public near
3369 //                      ::= R # public far
3370 // <static-adjustment>  ::= G <static-offset> # private near
3371 //                      ::= H <static-offset> # private far
3372 //                      ::= O <static-offset> # protected near
3373 //                      ::= P <static-offset> # protected far
3374 //                      ::= W <static-offset> # public near
3375 //                      ::= X <static-offset> # public far
3376 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
3377 //                      ::= $1 <virtual-shift> <static-offset> # private far
3378 //                      ::= $2 <virtual-shift> <static-offset> # protected near
3379 //                      ::= $3 <virtual-shift> <static-offset> # protected far
3380 //                      ::= $4 <virtual-shift> <static-offset> # public near
3381 //                      ::= $5 <virtual-shift> <static-offset> # public far
3382 // <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift>
3383 // <vtordisp-shift>     ::= <offset-to-vtordisp>
3384 // <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset>
3385 //                          <offset-to-vtordisp>
3386 static void mangleThunkThisAdjustment(AccessSpecifier AS,
3387                                       const ThisAdjustment &Adjustment,
3388                                       MicrosoftCXXNameMangler &Mangler,
3389                                       raw_ostream &Out) {
3390   if (!Adjustment.Virtual.isEmpty()) {
3391     Out << '$';
3392     char AccessSpec;
3393     switch (AS) {
3394     case AS_none:
3395       llvm_unreachable("Unsupported access specifier");
3396     case AS_private:
3397       AccessSpec = '0';
3398       break;
3399     case AS_protected:
3400       AccessSpec = '2';
3401       break;
3402     case AS_public:
3403       AccessSpec = '4';
3404     }
3405     if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
3406       Out << 'R' << AccessSpec;
3407       Mangler.mangleNumber(
3408           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
3409       Mangler.mangleNumber(
3410           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
3411       Mangler.mangleNumber(
3412           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3413       Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
3414     } else {
3415       Out << AccessSpec;
3416       Mangler.mangleNumber(
3417           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3418       Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3419     }
3420   } else if (Adjustment.NonVirtual != 0) {
3421     switch (AS) {
3422     case AS_none:
3423       llvm_unreachable("Unsupported access specifier");
3424     case AS_private:
3425       Out << 'G';
3426       break;
3427     case AS_protected:
3428       Out << 'O';
3429       break;
3430     case AS_public:
3431       Out << 'W';
3432     }
3433     Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3434   } else {
3435     switch (AS) {
3436     case AS_none:
3437       llvm_unreachable("Unsupported access specifier");
3438     case AS_private:
3439       Out << 'A';
3440       break;
3441     case AS_protected:
3442       Out << 'I';
3443       break;
3444     case AS_public:
3445       Out << 'Q';
3446     }
3447   }
3448 }
3449 
3450 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
3451     const CXXMethodDecl *MD, const MethodVFTableLocation &ML,
3452     raw_ostream &Out) {
3453   msvc_hashing_ostream MHO(Out);
3454   MicrosoftCXXNameMangler Mangler(*this, MHO);
3455   Mangler.getStream() << '?';
3456   Mangler.mangleVirtualMemPtrThunk(MD, ML);
3457 }
3458 
3459 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3460                                              const ThunkInfo &Thunk,
3461                                              raw_ostream &Out) {
3462   msvc_hashing_ostream MHO(Out);
3463   MicrosoftCXXNameMangler Mangler(*this, MHO);
3464   Mangler.getStream() << '?';
3465   Mangler.mangleName(MD);
3466 
3467   // Usually the thunk uses the access specifier of the new method, but if this
3468   // is a covariant return thunk, then MSVC always uses the public access
3469   // specifier, and we do the same.
3470   AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public;
3471   mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO);
3472 
3473   if (!Thunk.Return.isEmpty())
3474     assert(Thunk.Method != nullptr &&
3475            "Thunk info should hold the overridee decl");
3476 
3477   const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
3478   Mangler.mangleFunctionType(
3479       DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
3480 }
3481 
3482 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
3483     const CXXDestructorDecl *DD, CXXDtorType Type,
3484     const ThisAdjustment &Adjustment, raw_ostream &Out) {
3485   // FIXME: Actually, the dtor thunk should be emitted for vector deleting
3486   // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
3487   // mangling manually until we support both deleting dtor types.
3488   assert(Type == Dtor_Deleting);
3489   msvc_hashing_ostream MHO(Out);
3490   MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
3491   Mangler.getStream() << "??_E";
3492   Mangler.mangleName(DD->getParent());
3493   mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO);
3494   Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
3495 }
3496 
3497 void MicrosoftMangleContextImpl::mangleCXXVFTable(
3498     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3499     raw_ostream &Out) {
3500   // <mangled-name> ::= ?_7 <class-name> <storage-class>
3501   //                    <cvr-qualifiers> [<name>] @
3502   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3503   // is always '6' for vftables.
3504   msvc_hashing_ostream MHO(Out);
3505   MicrosoftCXXNameMangler Mangler(*this, MHO);
3506   if (Derived->hasAttr<DLLImportAttr>())
3507     Mangler.getStream() << "??_S";
3508   else
3509     Mangler.getStream() << "??_7";
3510   Mangler.mangleName(Derived);
3511   Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
3512   for (const CXXRecordDecl *RD : BasePath)
3513     Mangler.mangleName(RD);
3514   Mangler.getStream() << '@';
3515 }
3516 
3517 void MicrosoftMangleContextImpl::mangleCXXVBTable(
3518     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3519     raw_ostream &Out) {
3520   // <mangled-name> ::= ?_8 <class-name> <storage-class>
3521   //                    <cvr-qualifiers> [<name>] @
3522   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3523   // is always '7' for vbtables.
3524   msvc_hashing_ostream MHO(Out);
3525   MicrosoftCXXNameMangler Mangler(*this, MHO);
3526   Mangler.getStream() << "??_8";
3527   Mangler.mangleName(Derived);
3528   Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const.
3529   for (const CXXRecordDecl *RD : BasePath)
3530     Mangler.mangleName(RD);
3531   Mangler.getStream() << '@';
3532 }
3533 
3534 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
3535   msvc_hashing_ostream MHO(Out);
3536   MicrosoftCXXNameMangler Mangler(*this, MHO);
3537   Mangler.getStream() << "??_R0";
3538   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3539   Mangler.getStream() << "@8";
3540 }
3541 
3542 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
3543                                                    raw_ostream &Out) {
3544   MicrosoftCXXNameMangler Mangler(*this, Out);
3545   Mangler.getStream() << '.';
3546   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3547 }
3548 
3549 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
3550     const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
3551   msvc_hashing_ostream MHO(Out);
3552   MicrosoftCXXNameMangler Mangler(*this, MHO);
3553   Mangler.getStream() << "??_K";
3554   Mangler.mangleName(SrcRD);
3555   Mangler.getStream() << "$C";
3556   Mangler.mangleName(DstRD);
3557 }
3558 
3559 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
3560                                                     bool IsVolatile,
3561                                                     bool IsUnaligned,
3562                                                     uint32_t NumEntries,
3563                                                     raw_ostream &Out) {
3564   msvc_hashing_ostream MHO(Out);
3565   MicrosoftCXXNameMangler Mangler(*this, MHO);
3566   Mangler.getStream() << "_TI";
3567   if (IsConst)
3568     Mangler.getStream() << 'C';
3569   if (IsVolatile)
3570     Mangler.getStream() << 'V';
3571   if (IsUnaligned)
3572     Mangler.getStream() << 'U';
3573   Mangler.getStream() << NumEntries;
3574   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3575 }
3576 
3577 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
3578     QualType T, uint32_t NumEntries, raw_ostream &Out) {
3579   msvc_hashing_ostream MHO(Out);
3580   MicrosoftCXXNameMangler Mangler(*this, MHO);
3581   Mangler.getStream() << "_CTA";
3582   Mangler.getStream() << NumEntries;
3583   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3584 }
3585 
3586 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
3587     QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
3588     uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
3589     raw_ostream &Out) {
3590   MicrosoftCXXNameMangler Mangler(*this, Out);
3591   Mangler.getStream() << "_CT";
3592 
3593   llvm::SmallString<64> RTTIMangling;
3594   {
3595     llvm::raw_svector_ostream Stream(RTTIMangling);
3596     msvc_hashing_ostream MHO(Stream);
3597     mangleCXXRTTI(T, MHO);
3598   }
3599   Mangler.getStream() << RTTIMangling;
3600 
3601   // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but
3602   // both older and newer versions include it.
3603   // FIXME: It is known that the Ctor is present in 2013, and in 2017.7
3604   // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4
3605   // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914?
3606   // Or 1912, 1913 already?).
3607   bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC(
3608                           LangOptions::MSVC2015) &&
3609                       !getASTContext().getLangOpts().isCompatibleWithMSVC(
3610                           LangOptions::MSVC2017_7);
3611   llvm::SmallString<64> CopyCtorMangling;
3612   if (!OmitCopyCtor && CD) {
3613     llvm::raw_svector_ostream Stream(CopyCtorMangling);
3614     msvc_hashing_ostream MHO(Stream);
3615     mangleCXXName(GlobalDecl(CD, CT), MHO);
3616   }
3617   Mangler.getStream() << CopyCtorMangling;
3618 
3619   Mangler.getStream() << Size;
3620   if (VBPtrOffset == -1) {
3621     if (NVOffset) {
3622       Mangler.getStream() << NVOffset;
3623     }
3624   } else {
3625     Mangler.getStream() << NVOffset;
3626     Mangler.getStream() << VBPtrOffset;
3627     Mangler.getStream() << VBIndex;
3628   }
3629 }
3630 
3631 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
3632     const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
3633     uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
3634   msvc_hashing_ostream MHO(Out);
3635   MicrosoftCXXNameMangler Mangler(*this, MHO);
3636   Mangler.getStream() << "??_R1";
3637   Mangler.mangleNumber(NVOffset);
3638   Mangler.mangleNumber(VBPtrOffset);
3639   Mangler.mangleNumber(VBTableOffset);
3640   Mangler.mangleNumber(Flags);
3641   Mangler.mangleName(Derived);
3642   Mangler.getStream() << "8";
3643 }
3644 
3645 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
3646     const CXXRecordDecl *Derived, raw_ostream &Out) {
3647   msvc_hashing_ostream MHO(Out);
3648   MicrosoftCXXNameMangler Mangler(*this, MHO);
3649   Mangler.getStream() << "??_R2";
3650   Mangler.mangleName(Derived);
3651   Mangler.getStream() << "8";
3652 }
3653 
3654 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
3655     const CXXRecordDecl *Derived, raw_ostream &Out) {
3656   msvc_hashing_ostream MHO(Out);
3657   MicrosoftCXXNameMangler Mangler(*this, MHO);
3658   Mangler.getStream() << "??_R3";
3659   Mangler.mangleName(Derived);
3660   Mangler.getStream() << "8";
3661 }
3662 
3663 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
3664     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3665     raw_ostream &Out) {
3666   // <mangled-name> ::= ?_R4 <class-name> <storage-class>
3667   //                    <cvr-qualifiers> [<name>] @
3668   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3669   // is always '6' for vftables.
3670   llvm::SmallString<64> VFTableMangling;
3671   llvm::raw_svector_ostream Stream(VFTableMangling);
3672   mangleCXXVFTable(Derived, BasePath, Stream);
3673 
3674   if (VFTableMangling.startswith("??@")) {
3675     assert(VFTableMangling.endswith("@"));
3676     Out << VFTableMangling << "??_R4@";
3677     return;
3678   }
3679 
3680   assert(VFTableMangling.startswith("??_7") ||
3681          VFTableMangling.startswith("??_S"));
3682 
3683   Out << "??_R4" << VFTableMangling.str().drop_front(4);
3684 }
3685 
3686 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
3687     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3688   msvc_hashing_ostream MHO(Out);
3689   MicrosoftCXXNameMangler Mangler(*this, MHO);
3690   // The function body is in the same comdat as the function with the handler,
3691   // so the numbering here doesn't have to be the same across TUs.
3692   //
3693   // <mangled-name> ::= ?filt$ <filter-number> @0
3694   Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
3695   Mangler.mangleName(EnclosingDecl);
3696 }
3697 
3698 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
3699     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3700   msvc_hashing_ostream MHO(Out);
3701   MicrosoftCXXNameMangler Mangler(*this, MHO);
3702   // The function body is in the same comdat as the function with the handler,
3703   // so the numbering here doesn't have to be the same across TUs.
3704   //
3705   // <mangled-name> ::= ?fin$ <filter-number> @0
3706   Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
3707   Mangler.mangleName(EnclosingDecl);
3708 }
3709 
3710 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
3711   // This is just a made up unique string for the purposes of tbaa.  undname
3712   // does *not* know how to demangle it.
3713   MicrosoftCXXNameMangler Mangler(*this, Out);
3714   Mangler.getStream() << '?';
3715   Mangler.mangleType(T, SourceRange());
3716 }
3717 
3718 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
3719     const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
3720   msvc_hashing_ostream MHO(Out);
3721   MicrosoftCXXNameMangler Mangler(*this, MHO);
3722 
3723   Mangler.getStream() << "?$RT" << ManglingNumber << '@';
3724   Mangler.mangle(VD, "");
3725 }
3726 
3727 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
3728     const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
3729   msvc_hashing_ostream MHO(Out);
3730   MicrosoftCXXNameMangler Mangler(*this, MHO);
3731 
3732   Mangler.getStream() << "?$TSS" << GuardNum << '@';
3733   Mangler.mangleNestedName(VD);
3734   Mangler.getStream() << "@4HA";
3735 }
3736 
3737 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
3738                                                            raw_ostream &Out) {
3739   // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
3740   //              ::= ?__J <postfix> @5 <scope-depth>
3741   //              ::= ?$S <guard-num> @ <postfix> @4IA
3742 
3743   // The first mangling is what MSVC uses to guard static locals in inline
3744   // functions.  It uses a different mangling in external functions to support
3745   // guarding more than 32 variables.  MSVC rejects inline functions with more
3746   // than 32 static locals.  We don't fully implement the second mangling
3747   // because those guards are not externally visible, and instead use LLVM's
3748   // default renaming when creating a new guard variable.
3749   msvc_hashing_ostream MHO(Out);
3750   MicrosoftCXXNameMangler Mangler(*this, MHO);
3751 
3752   bool Visible = VD->isExternallyVisible();
3753   if (Visible) {
3754     Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B");
3755   } else {
3756     Mangler.getStream() << "?$S1@";
3757   }
3758   unsigned ScopeDepth = 0;
3759   if (Visible && !getNextDiscriminator(VD, ScopeDepth))
3760     // If we do not have a discriminator and are emitting a guard variable for
3761     // use at global scope, then mangling the nested name will not be enough to
3762     // remove ambiguities.
3763     Mangler.mangle(VD, "");
3764   else
3765     Mangler.mangleNestedName(VD);
3766   Mangler.getStream() << (Visible ? "@5" : "@4IA");
3767   if (ScopeDepth)
3768     Mangler.mangleNumber(ScopeDepth);
3769 }
3770 
3771 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
3772                                                     char CharCode,
3773                                                     raw_ostream &Out) {
3774   msvc_hashing_ostream MHO(Out);
3775   MicrosoftCXXNameMangler Mangler(*this, MHO);
3776   Mangler.getStream() << "??__" << CharCode;
3777   if (D->isStaticDataMember()) {
3778     Mangler.getStream() << '?';
3779     Mangler.mangleName(D);
3780     Mangler.mangleVariableEncoding(D);
3781     Mangler.getStream() << "@@";
3782   } else {
3783     Mangler.mangleName(D);
3784   }
3785   // This is the function class mangling.  These stubs are global, non-variadic,
3786   // cdecl functions that return void and take no args.
3787   Mangler.getStream() << "YAXXZ";
3788 }
3789 
3790 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
3791                                                           raw_ostream &Out) {
3792   // <initializer-name> ::= ?__E <name> YAXXZ
3793   mangleInitFiniStub(D, 'E', Out);
3794 }
3795 
3796 void
3797 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3798                                                           raw_ostream &Out) {
3799   // <destructor-name> ::= ?__F <name> YAXXZ
3800   mangleInitFiniStub(D, 'F', Out);
3801 }
3802 
3803 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
3804                                                      raw_ostream &Out) {
3805   // <char-type> ::= 0   # char, char16_t, char32_t
3806   //                     # (little endian char data in mangling)
3807   //             ::= 1   # wchar_t (big endian char data in mangling)
3808   //
3809   // <literal-length> ::= <non-negative integer>  # the length of the literal
3810   //
3811   // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including
3812   //                                              # trailing null bytes
3813   //
3814   // <encoded-string> ::= <simple character>           # uninteresting character
3815   //                  ::= '?$' <hex digit> <hex digit> # these two nibbles
3816   //                                                   # encode the byte for the
3817   //                                                   # character
3818   //                  ::= '?' [a-z]                    # \xe1 - \xfa
3819   //                  ::= '?' [A-Z]                    # \xc1 - \xda
3820   //                  ::= '?' [0-9]                    # [,/\:. \n\t'-]
3821   //
3822   // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
3823   //               <encoded-string> '@'
3824   MicrosoftCXXNameMangler Mangler(*this, Out);
3825   Mangler.getStream() << "??_C@_";
3826 
3827   // The actual string length might be different from that of the string literal
3828   // in cases like:
3829   // char foo[3] = "foobar";
3830   // char bar[42] = "foobar";
3831   // Where it is truncated or zero-padded to fit the array. This is the length
3832   // used for mangling, and any trailing null-bytes also need to be mangled.
3833   unsigned StringLength = getASTContext()
3834                               .getAsConstantArrayType(SL->getType())
3835                               ->getSize()
3836                               .getZExtValue();
3837   unsigned StringByteLength = StringLength * SL->getCharByteWidth();
3838 
3839   // <char-type>: The "kind" of string literal is encoded into the mangled name.
3840   if (SL->isWide())
3841     Mangler.getStream() << '1';
3842   else
3843     Mangler.getStream() << '0';
3844 
3845   // <literal-length>: The next part of the mangled name consists of the length
3846   // of the string in bytes.
3847   Mangler.mangleNumber(StringByteLength);
3848 
3849   auto GetLittleEndianByte = [&SL](unsigned Index) {
3850     unsigned CharByteWidth = SL->getCharByteWidth();
3851     if (Index / CharByteWidth >= SL->getLength())
3852       return static_cast<char>(0);
3853     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3854     unsigned OffsetInCodeUnit = Index % CharByteWidth;
3855     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3856   };
3857 
3858   auto GetBigEndianByte = [&SL](unsigned Index) {
3859     unsigned CharByteWidth = SL->getCharByteWidth();
3860     if (Index / CharByteWidth >= SL->getLength())
3861       return static_cast<char>(0);
3862     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3863     unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
3864     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3865   };
3866 
3867   // CRC all the bytes of the StringLiteral.
3868   llvm::JamCRC JC;
3869   for (unsigned I = 0, E = StringByteLength; I != E; ++I)
3870     JC.update(GetLittleEndianByte(I));
3871 
3872   // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
3873   // scheme.
3874   Mangler.mangleNumber(JC.getCRC());
3875 
3876   // <encoded-string>: The mangled name also contains the first 32 bytes
3877   // (including null-terminator bytes) of the encoded StringLiteral.
3878   // Each character is encoded by splitting them into bytes and then encoding
3879   // the constituent bytes.
3880   auto MangleByte = [&Mangler](char Byte) {
3881     // There are five different manglings for characters:
3882     // - [a-zA-Z0-9_$]: A one-to-one mapping.
3883     // - ?[a-z]: The range from \xe1 to \xfa.
3884     // - ?[A-Z]: The range from \xc1 to \xda.
3885     // - ?[0-9]: The set of [,/\:. \n\t'-].
3886     // - ?$XX: A fallback which maps nibbles.
3887     if (isAsciiIdentifierContinue(Byte, /*AllowDollar=*/true)) {
3888       Mangler.getStream() << Byte;
3889     } else if (isLetter(Byte & 0x7f)) {
3890       Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
3891     } else {
3892       const char SpecialChars[] = {',', '/',  '\\', ':',  '.',
3893                                    ' ', '\n', '\t', '\'', '-'};
3894       const char *Pos = llvm::find(SpecialChars, Byte);
3895       if (Pos != std::end(SpecialChars)) {
3896         Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
3897       } else {
3898         Mangler.getStream() << "?$";
3899         Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
3900         Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
3901       }
3902     }
3903   };
3904 
3905   // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead.
3906   unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U;
3907   unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength);
3908   for (unsigned I = 0; I != NumBytesToMangle; ++I) {
3909     if (SL->isWide())
3910       MangleByte(GetBigEndianByte(I));
3911     else
3912       MangleByte(GetLittleEndianByte(I));
3913   }
3914 
3915   Mangler.getStream() << '@';
3916 }
3917 
3918 MicrosoftMangleContext *
3919 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3920   return new MicrosoftMangleContextImpl(Context, Diags);
3921 }
3922